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ABSTRACT 

An abstract of the thesis of Arona Chittor for the Master of Science in Electrical and 

Computer Engineering presented December 9, 1994. 

Title : Methodology For Accurate Speedup Prediction 

The effective use of computational resources requires a good understanding of paral­

lel architectures and algorithms. The effect of the parallel architecture and also the par­

allel application on the performance of the parallel systems becomes more complex 

with increasing numbers of processors. We will address this issue in this thesis, and 

develop a methodology to predict the overall execution time of a parallel application 

as a function of the system and problem size by combining simple analysis with a few 

experimental results. We show that runtimes and speedup can be predicted more accu­

rately by analyzing the functional forms of the sequential and parallel times of critical 

code segments of a parallel application that affect the speedup of a parallel program. 

We then combine the functional forms to model the runtime of a parallel application. 

A small set of experiments are sufficient to get a good estimate of the coefficients for 

the runtime models obtained. Speedup can then be derived for any case from the runt­

ime model. We also analyze the effect of the 1/0 on runtimes in memory bounded par­

allel systems, and how speedup is affected by communication and 1/0. 

Throughout the thesis we use the bitonic merge sort as a typical realistic parallel 

application to illustrate our methodology. Several variations of the sorting algorithm 

(such as problem size greater than or equal to the system size, unlimited or limited 

buffer size) suitable for a wide range of problem sizes are implemented in two parallel 

environments and the speedups for them are measured and compared with different 

speedup predictions. We have conducted numerous experiments using Multi and PVM 

to empirically study speedup for the different realistic implementations of the bitonic 



merge sort. The results show how well the various models predicted speedup, and that 

our methodology can predict speedup accurately for a given parallel application. One 

interesting value from a speedup curve is the roll-off point - the system size beyond 

which speedup actually decreases when the number of processors is increased. Results 

show that simple theoretic models predicted roll-off point to be higher than the actual 

values, where as our methodology predicted it to be less than and closer to the actual 

values. The predictions by our methodology also compare well with the speedup esti­

mates provided by the Multi tool. 
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CHAPTERl 

Introduction 

With the enormous progress in the technology of multiprocessor systems, a tremen­

dous potential exists for achieving high gain in speed for applications running on par­

allel systems. However, high gain in speed can be realized for any parallel application 

only if the available computational resources are used effectively. The effective use of 

the computational resources requires a good understanding of the parallel architectures 

and algorithms. The effect of the parallel architecture and also the parallel application 

on the performance of the parallel systems becomes more complex with increasing 

numbers of processors. We will address this issue in this thesis, and develop a method­

ology that will predict the overall execution time as a function of the system and prob­

lem size, thus showing the effect of the number of processors on the performance of 

parallel applications. 

Significant effort has been made in the last decade to understand how the characteris­

tics of parallel architectures and algorithms change with the number of processors 

used. The effect of the increasing number of processors on the architectural and algo­

rithmic characteristics is often referred to as the scalability of the architecture or appli­

cation. Models have been proposed that can quantify the scalability of a specific 

algorithm when it is run on a parallel computer. Such models help in understanding the 

influence of various factors, such as the inherent parallelism of the application, the 

computation power, the memory capacity of the parallel computing system and the 

performance of the communication network, on the performance of the applications. 

The models also help in predicting and optimizing the gain in computational rates as 

we scale the system size. 



The most commonly used metric to characterize the gain in speed is the ratio of the 

execution time of the sequential version of a program in a uniprocessor environment 

to the execution time of its parallel counterpart in a multiprocessing environment (say, 

with n processors). This ratio yields a dimensionless quantity that can be interpreted 

as the speedup. 

The actual speedup achieved on a given multiprocessor system depends on the nature 

of the application being run. In practice, there are several factors that may prevent one 

from attaining an ideal speedup of n on an n-processor system. First, most applica­

tions contain code segments that are inherently sequential in nature and hence must be 

run in a serial fashion. Second, the application segments that run in parallel on differ­

ent processors often have to interact with each other, either to exchange data or to syn­

chronize their executions. These interactions introduce an overhead component into 

the total runtime of the application. Third, a number of hardware resources such as 

memory, communication channels, 1/0 channels, etc. are shared among the processes 

executing in parallel. Each such shared resource can only be accessed by a single pro­

cess at a time in a mutually exclusive fashion. Thus, contention for shared resources 

and the consequent queueing delay introduces yet another overhead component into 

the total runtime of the application[12]. Finally, the overall computation load has to be 

evenly shared by the different processors. This load balancing is also difficult to 

achieve. 

Amdahl s law and Gustafson s scaled speedup are the two well known speedup mod­

els. Both of these speedup formulations use a single parameter, the sequential portion 

of a parallel algorithm, to characterize an application. They are simple and give much 

insight into the bounds on speedup when the system size is scaled. Amdahl s law[8] 

assumes a fixed problem size and models the overall execution time as a function of 

the number of processors. The model shows that the overall execution time is bounded 

by the sequential time of an application, which is assumed to be a constant. Speedup is 

thus bounded by 1/f where f is the sequential portion of the overall execution time. 

The asymptotic behavior of overall execution time predicted by Amdahl s law sug­

gests that massively parallel processing may not gain high speedup. The simple 
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speedup formulation by Amdahl gave good insight into the limitations on parallel sys­

tems, and could explain the observed speedup behavior of many parallel applications. 

In practice, a system with more processors is not only used to reduce the time for a 

given problem size, but to solve a larger problem in a given time. So, Amdahl s simpli-

fied model may not give a fair model for speedup. Hence, Gustafson[9,10] 

approached the speedup formulation from a slightly different point of view. Instead of 

fixing the problem size and then studying the improvement in overall execution time 

as a function of the number of processors, he fixed the response time and then studied 

speedup by determining how large a problem could be solved in this time by a system 

of given size. The speedup is then computed as a ratio of the time taken to run the 

scaled problem on a single processor system to the time to run the problem on a paral­

lel system with P processors. Instead of fixing the response time as the scalability con-

straint, Ni and Sun[3] have considered the finite memory size on individual nodes of a 

parallel system as the scalability constraint. They scaled the problem size to fill the 

entire memory of the system for a given system size. The speedup is then computed 

by finding the computation times for the scaled problem size on a single processor and 

on the parallel system. 

The speedup formulations described above were simple, and could explain the 

observed speedup values for various parallel applications. They also helped in under­

standing the effect of various architectural and algorithmic characteristics on speedup 

when the number of processors is increased. The models still lack in accuracy and 

have several limitations, which have prompted other researchers to improve these 

models. Scherson and Corbett[l 1] accounted for communication overheads by adding 

a fraction of parallel time to the sequential time. In their recent studies, Driscoll and 

Daasch[2] further observe that the sequential portion of the algorithm is not a constant 

but is also a function of the number of processors. In their speedup formulation, they 

retain the separation of execution time into parallel and sequential time as proposed 

by others, but assume the sequential and parallel times to be functions of problem and 

system size. They also show how to include the impact of large number of processors 

on the time required for initialization, synchronization, communication, and input/out-
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put. Experiments were done using simple computational models to support the new 

formulation. 

The accuracy of the speedup models can be further improved by analyzing the critical 

segments of a parallel application (which account for most of the computation times) 

to determine how they vary with the system and problem size. The functional forms 

for typical code segments that contribute to the execution time of a realistic parallel 

program can be a complex function of system size and problem size, which may not 

be captured by the simple models for speedup proposed by others. These functional 

forms can, for example, take linear/logarithmic dependencies on the machine size and 

problem size. The analysis of these functional forms can result in more accurate pre­

dictions of speedup of a parallel application for a given system and problem size. 

More accurate prediction will help in determining the right problem size to achieve 

optimal speedup for a given system size. It may also be possible to predict the execu­

tion time of parallel applications on multiple platforms based on characterizations of 

the algorithmic components of a parallel application and the characteristics of the par­

allel architecture of the platform under consideration. 

In this MS thesis, we further explore the problem of accurate speedup prediction for 

real applications. We develop a methodology to predict the overall execution time as a 

function of the system and problem size by combining simple analysis with a few 

experimental results. We show that runtimes and speedup can be predicted more accu­

rately by analyzing the functional forms of the sequential and parallel times of code 

segments. The functional forms of critical code segments of a parallel application can 

be analyzed and expressed as functions of the problem size N and the system size P. 

We then combine the functional forms to model the runtime of a parallel application 

on a specific system as a linear function of the terms in N and P with unknown con­

stant coefficients. A small set of experiments are sufficient to get a good estimate of 

the coefficients, and thus model the overall runtime as a function of N and P. Speedup 

can then be derived for any case of the parallel application from the runtime model. 

Experiments are also used to measure the execution time for several common contrib­

utors to sequential time such as barriers, spinlocks, and process creation. The results 
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from the experiments can then be used to model how the sequential time scales with P 

on a given system. Our methodology is also used to analyze how speedup is affected 

by communication and 1/0 in memory bounded parallel systems[3]. 

Throughout the thesis we use the bitonic merge sort as a typical realistic parallel appli­

cation to illustrate our methodology. Several variations of the sorting algorithm (such 

as problem size greater than or equal to the system size, unlimited or limited buffer 

size) suitable for a wide range of problem sizes are implemented in two parallel envi­

ronments and the speedups for them are measured and compared with different 

speedup predictions. We have conducted numerous experiments using Multi[l] and 

PVM[4] to empirically study speedup for the different realistic implementations of the 

bitonic merge sort. 

The results show how well the various models predicted speedup, and that our meth­

odology can predict speedup reasonably accurately for a given parallel application. 

The predictions also compare well with the speedup estimates provided by the tool, 

Multi. 

This thesis is organized as follows. In Chapter 2 we will introduce some preliminary 

knowledge and terminologies. The bitonic merge sort algorithm and the parallel 

implementations are discussed in Chapter 3. The methodology to predict the speedup 

will be discussed in Chapter 4. The experiments and results obtained under Multi 

environment are presented in Chapter 5. Chapter 6 describes the experiments and 

results under the PVM environment. Conclusions and comments are given in Chapter 

7. 
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CHAPTER2 

Background 

2.1 Parallel Computer Systems 

The basic concept behind the parallel computer is to simply have more than one pro­

cessor connected by a network to operate concurrently. The key feature that makes it a 

"parallel" computer is that all the processors are capable of operating at the same time. 

There are currently three major class of parallel computers: Shared memory, also 

called multiprocessors, message passing, also called multicomputers, and shared dis­

tributed memory. 

Shared memory multiprocessors constitute an important class of parallel processing 

systems. The architecture of machines representing this class is characterized by a 

number of processing elements connected to a comparable number of memory ele­

ments through an interconnection network. The interconnection medium selected gov­

erns the communication bandwidth of the system and hence determines the maximum 

speed at which processes running on different processors can interact[l2]. Some of the 

well known multiprocessor systems are Convex, BBN's Butterfly, Cray Y-MP and 

Sequent's Symmetry. 

Multicomputers are distributed-memory multiprocessors. They are organized as an 

ensemble of individual programmable computers, called nodes, and communicate 

through an interprocessor communication network. The memory is distributed and a 

portion is associated with each node. When the number of processors increases, the 

memory capacity also increases[3]. Some of the most powerful and large scale parallel 



computing systems such as NCUBE, Intel's Paragon and iPSC series, Cray T30 and 

CM-5 of Thinking Machines belong to the class of multicomputers. 

The current trend in parallel architectures seem to be towards distributed shared mem­

ory systems [14][15]. These systems have physically distributed memory as in multi­

computers. A user process running on a single node can access memory on any other 

node by utilizing the high speed communication network hardware. When there is a 

cache miss and the processor requests the required cache block from memory, the net­

work interface component (NI) will respond if the requested address is mapped to a 

remote node, instead of the memory controller. The NI will then automatically send a 

request to the remote node on the high-speed interconnection network for the required 

memory block. The NI on the remote node will receive the request, access the mem­

ory and send back the requested memory block. Upon receiving it, the NI will return 

the data to the processor. The entire process is handled automatically by the hardware. 

The only difference noticed by the processor when the address it is trying to access 

(on a cache miss) maps to a remote node's primary memory instead of the local node's 

primary memory, is increased delay. (Latency to access memory on a remote node on 

current distributed shared memory systems tends to be an order of magnitude slower 

than latency to access local memory). Various protocols and architectures have been 

proposed to maintain the coherency of shared memory. Thus, the OS can support a 

shared memory model for individual user processes even though the memory is phys­

ically distributed. Distributed shared memory systems are gaining popularity as they 

can scale to hundreds of nodes, but still provide a programming model that is simpler 

to understand. Currently available commercial systems are KSR-1, NEC SX/3, with 

several academic architectures such as Stanford DASH system [14] and MIT's Ale­

wife[15]. Scalable Coherent Interconnect (SCI) standard is another IEEE standard 

proposed for implementing distributed shared memory systems. 

2.2 Sorting Algorithms 

Sorting is one of the most common activities in parallel algorithms. There are several 

parallel sorting algorithms, namely insertion sort, quick sort, rank sort, merge sort, 
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bucket sort, bitonic merge sort, etc.[7]. Simple sequential algorithms require O(N2) 

time for the worst case, and parallel versions of them still take O(N) time with N pro-

cessors. The best* sequential algorithms take O(N log N) time**. However, their par­

allel versions may not do well as they are limited by the sequential parts. For example, 

quick sort, which is based on a divide and conquer strategy, becomes more parallel as 

the problem gets divided into smaller problems. However, the first step in which a sin­

gle sorting problem is divided into two problems is hard to parallelize. On the other 

hand, if we consider merge sort, we find that it can be parallelized more easily in the 

beginning when we merge many small lists. However, the last step, in which two N/2 

sorted lists are to be merged into a single sorted list of length N is difficult to parallel­

ize. The parallel rank sort takes O(N) time to find the position of each element in the 

sorted list. Since finding the position can be done in parallel, the total execution time 

of rank sort will be O(N). The performance of the bucket sort is dependent on the 

evenness of the distribution phase, where different portions of the array of elements 

are assigned to different processors. The sorting of the individual buckets is carried 

out in parallel. 

The bi tonic merge sort, described in detail in Chapter 3, takes O(N log2 N) time on 1 

processor, and hence is not the best sequential algorithm. However, it is more easily 

parallelizable. A parallel version of bitonic merge sort takes only O(log2 N) time to 

sort N elements using N processors, with a shared memory model or ignoring the com­

munication delays. It is one of the best parallel algorithms for sorting, and is used as 

an example of a real application throughout the reminder of this thesis. 

* By best we mean minimum execution time. 

** All logarithms in this thesis are to the base 2. 
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CHAPTER3 

Bitonic Merge Sort 

The bitonic merge sort[l] is a compare-exchange type of sort, very similar to a merge 

sort. It is more suitable for parallelization, as it has O(log2NJ basic steps, called binary 

split, where N is the total number of elements in the list, and each binary split opera­

tion involves N/2 independent compare and exchange operations. Sorting is accom­

plished by repeatedly merging small, partially sorted sublists, called bitonic lists, in 

pairs to form bitonic lists of twice the length. A bitonic list has at most one local max­

imum and/or one local minimum, where a local maximum (minimum) is an element 

that has a value higher (lower) than that of either of its neighbors. A list of two ele­

ments is a bitonic list, and so any list that needs to be sorted can be thought of as con­

sisting of N/2 bitonic lists of length 2. Two bitonic lists of length K can be combined 

into a single bitonic list of length 2K by sorting the first bitonic list in ascending order 

and the second in descending order. The two bitonic lists can be sorted independently, 

and sorting of each bitonic list of length K involves log K basic steps, and each of these 

basic steps involve multiple binary split operations done in parallel on various parts of 

the list (described in detail later). Thus, the binary split operation on a bitonic list 

forms the heart of the bitonic merge sort algorithm. 

In a binary split operation on a list of N elements, each element in the first half of the 

list is compared with the element at the same relative position in the second half. If the 

element in the first half has greater value than the corresponding element in the second 

half, then the two elements are swapped. It can be shown that when we apply the 

binary split operation to a bitonic list, the resulting list will have the following proper-

ties [l]. 



(* Sort a bitonic list of length N in ascending or descending order, 

by repeatedly applying (log N steps) binary split operation *) 

Procedure bitonicsort (blist, N, order) 

begin 

forall k:= 0 to N-1 do 

begin 

for i: =log N-1 down to 0 do 

begin 

(* determine the index of the partner element kl, that needs to be 
compared and swapped with element k *) 

if odd(k div 2i) then kl:= k - 2i else kl:= k + 2i; 

(* ASC=Ascending, DESC=Descending*) 

(*compare elements at k and kl*) 

send(kl, blist[k]) ; (* send copy of my element to my partner *) 

my_part_val := recv(kl); (*receive my partner's value= blist[kl] *) 

if ((order= ASC and k <kl) or (order= DESC and k >kl)) then 

(* replace k th element by the minimum of the two *) 

if (my_part_val < blist[k]) then blist[k] := my_part_val; 

else 

(*replace k th element by the maximum of the two*) 

if (my_part_val > blist[k]) then blist[k]:= my_part_val; 

barrier ; (* wait till all (N) tasks reach this statement *) 

end ;(*for*) 

end ;(* forall *) 

end.(* procedure *) 

FIGURE 1. Parallel algorithm for sorting a bitonic list 

• each element in the first half of the list is less than every element in the second half 

• the first half and the second half of the list are each a bitonic list of length N/2. 

Hence, by recursively applying the binary split to the smaller bitonic lists, we will 

eventually sort the original bitonic list. The binary split operation can be done in par­

allel in 0(1) time, if we have one processor for each element. A bitonic list can be 
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sorted in parallel in O(log N) time as it involves log N steps of binary split operations. 

The algorithm is shown in Figure 1. The example given in Figure 2 illustrates clearly 

how the algorithm works and shows the steps involved in sorting a bitonic list of 

length 8 in ascending order where each step involves one or more binary split opera­

tions done in parallel. 

6 5 

' ! 
l ' * ' I 4 3 6 511 8 7 9 11 I 

* • ' * 
cgcgcgcg 

3 4 5 6 7 8 9 11 I 

FIGURE 2. An example to illustrate the steps in sorting a bitonic list 

The given list is a bitonic list with 3 as the local minima. The first step is a single 

binary split operation done on the entire list. The value of each element in the first half 

of the list is compared with the value of the corresponding element in the second half 

of the list. If the element in the first half is larger than the corresponding element in 

the second half, then the two elements are exchanged. For example, the value of the 

first element, 8 is compared with the value of the fifth element, 4. Since 8 > 4, we 

exchange the two elements. In the first step, the first and second element (values 8 and 

7) were exchanged with the fifth and sixth elements (values 4 and 3) respectively, but 

the third and the fourth elements (values 6 and 5) were not exchanged with the sev­

enth and eighth elements (values 9 and 11). At the completion of the first step we have 

two bitonic lists of length 4, where 3 and 7 are the local minima, with all the elements 
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in the first bitonic list (first half of the list) less than the elements in the second bitonic 

list (second half of the list). 

In the second step, the binary split operation is applied to each of the two bitonic lists 

of length 4 in parallel. After doing the required exchange operations, we end up with 

four bitonic lists of length 2 with every element in each of the bitonic lists less than 

any of the elements in the bitonic lists to its right. In the third and the final step, we 

apply binary split operations to the four bitonic lists in parallel to get the entire list 

sorted in ascending order. 

An unsorted list can be thought of as made up of bitonic lists of length two. As 

explained earlier, the algorithm in Figure 1 can be used to repeatedly merge adjacent 

sublists until the whole list is sorted. This idea leads us to the bitonic merge sort. An 
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FIGURE 3. Steps involved in merging bitonic lists to sort a list of 8 elements 

where ASC is Ascending order and DESC is descending order 

example is shown in Figure 3 to illustrate the steps involved in sorting a list of 8 ele­

ments in ascending order. In this example, we have 4 bitonic lists at the start. In the 

first step we sort the odd numbered bitonic lists in ascending order and the even num-

bered bitonic lists in descending order in parallel using the algorithm in Figure 1. At 
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the completion of the first step we will have 2 bitonic lists of length 4, where 8 and 4 

are the local maxima. We repeat step 1 for each of the bitonic lists and end up with a 

bitonic list of length 8. We will then sort the single bitonic list with 8 as the local max-

ima, in required order using the steps in Figure 2. The algorithm is formally described 

in Figure 4. We now describe the various implementations of this algorithm in detail. 

(* Sort a list of length N in ascending or descending order by repeatedly merg­
ing adjacent bitonic lists to form longer bitonic lists. 

Bitonic lists are merged by sorting the first list in ascending order and the 
second list in descending order. *) 

Procedure sort(list, N, order) 

begin 

suborder: integer; 

for i: = 1 to log N do 

begin 

(* Merge adjacent bitonic lists of length 2i to form a bitonic 

list of length 2i+l*) 

for j:= 0 to N-2i step 2i do(* sort this list starting at index j *) 

begin 

(* determine the order for the sort *) 

(* ASC =Ascending, DESC=Descending *) 

if (2i = N) then suborder:= order 

else if ( odd(j div 2i)) then suborder:= DESC 

else suborder:= ASC ; 

bitonicsort(blistU:j+ 2i- l],2i ,order) ; 

end;(* for j *) 

end;(* for i *) 
end.(* procedure*) 

FIGURE 4. Algorithm to sort any list by using the algorithm to sort bitonic lists 
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3.1 Implementation when N = P 

We implemented the algorithm in Figure 1 and Figure 4 for a general parallel architec­

ture (shared or distributed memory) by the data-parallel function blsort and bmerge-

sort given in Figure 5 and Figure 6 respectively. We made the following modifications 

to the algorithms given earlier to obtain a flexible and efficient implementation. 

• The creation of the parallel tasks (denoted by the FORALL construct in Figure 1) is 

moved to the top level before the main loop in bmergesort function, so that this 

costly operation is done less often (in this case only once). 

• Each process or task handles the element at the same position (=start+ my_id). 

The value of the arguments computed in bmergesort and passed to blsort each time 

determines the bitonic list to which the element belongs for a given iteration. Even 

though the same code of blsort is executed by each process, the arguments deter­

mine the sequence of compare and exchange operations done by any process. The 

arguments also make blsort general and flexible data parallel code. 

• The communication of the elements inside the for loop of the blsort function is 

used to exchange elements, and also to synchronize the individual processes 

implicitly. No barrier operations are done inside the blsort function. Processes are 

only synchronized at the end of the top level for loop in bmergesort function. 

• We assume that N and P will be powers of 2 to keep the functions simple. 

The functions were successfully implemented both in Multi-Pascal and PVM-C. 

3.2 Implementation when N > P 

We further generalized the algorithms for the case when the number of processes is 

less than or equal to the number of elements in the list, i.e., N > P, by doing the fol­

lowing modifications to the algorithms given in Figure 1 and Figure 4. 
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(* Sort a bitonic list in a given order, by repeatedly participating in binary split 

operations) 

Procedure blsort(my _id,start,len,order) 

(* my_id: is the process identification number*) 

(*start : is the index of the first element of the bitonic list*) 

(* len : is the length of the bitonic list to be sorted *) 

(* order : is the order for sorting : ascending or descending *) 

begin 

my_val := data[start+my_id] ; (*assuming data to be sorted is available in 

shared memory, otherwise it has to be received via a message recv call *) 

for pd := len/2 to 1 step pd/2 do (* pd is the distance to my partner *) 

begin 

(*Determine my_partner_pos - to left or right of my position?*) 

my_partition_no :=(my_id -(my_id mod pd)) div pd); 

my_partition_dir := my_part_no mod 2; 

(*Determine partner process id*) 

if my _partition_dir=O then 

my _partner_pos:=my _id+pd 

else 

my _partner_pos:=my _id-pd; 

(*Send copy of my_element's value to my partner*) 

send(my_partner_pos,my_val,1); 

(*Receive copy of my partner's element's value*) 

receive(my_partner_pos, my_part_val,l); 

if dir = my_partition_dir then begin 

(* Retain the smaller of the two items *) 

if (my_val > my_part_val) then my_val := my_part_val; 

(*Retain the larger of the two items*) 

if (my_val < my_part_val) then my_val := my_part_val; 

end;(* if*) 

end(* for loop*) 

data[start+my _id] := my_ val ; 

end. (* end procedure *) 

FIGURE 5. BLSORT - Implementation to sort bitonic lists when N = P 
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(* Sort a list of length N in ascending or descending order by repeatedly merging 
adjacent bitonic lists*) 

Procedure bmergesort(list, N,sortorder) 

(* sortorder: order in which the bitonic list should be sorted*) 

forall k := 0 to N-1 do 

(*Each process my_id runs this code*) 

for bl:=2 to N/2 step bl*2 do 

(* bl is the length of the Bitonic list*) 

(*Determine the bitonic list to which the element k belongs in this 

iteration, and the relative position of element k in the list, 

and call blsort to sort the bitonic list in required order *) 

start:=k-k mod bl; len :=bl ; (* start and length of the bitonic list *) 

my_id:=k mod bl; (*relative position of element kin the bitonic list*) 

order :=(start div bl) mod 2; (* order in which bitonic list is to be sorted *) 

blsort(start,my _id,len,order) ; 

barrier; 

(* wait till all processes finish sorting bitonic lists for this iteration *) 

end ; (* for loop *) 

blsort(O, k, N, sortorder) 

end ; (* forall loop *) 

end.(* end procedure*) 

FIGURE 6. BMERGESORT - Implementation to sort any list when N = P 

1. Process i (0 ~ i < P) is assigned a sublist of (NIP) elements (instead of 1) starting 

from element i * (NIP). This will ensure that each process will do an equal amount 

of work in each iteration. 

2. Before starting the bitonic merge sort, all processes sort the sublists assigned to 

them using the sequential version of the functions blsort and bmergesort. The 

sequential version is obtained by changing the forall to for, and by sequentially 

executing the inner loops for all possible my_id values(= NIP). All processes run 

in parallel on their partitions, so this step of the bitonic merge sort takes O((N/ 
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(* Sort a bitonic list in a given order, by repeatedly participating in binary split 
operations) 

Procedure blsort_ngtp (start, group, my_start, len, order) begin 

(* group : number of elements handled by each process *) 

(* my _start : position of the first element of the group assigned to me*) 

(* all other arguments are same as for blsort *) 

for i := 0 to group-1 do my_val[i] := data[start+my_start+i]; 

for pd := len/2 to group step pd/2 do (* pd is the distance to my partner *) 

begin 

(* Determine my partner direction & position *) 

my_partition_no :=(my_start -(my_start mod pd)) div pd); 

my _partition_dir :=my _part_no mod 2; 

(* Determine partner process id *) 

if my_partition_dir=O then my_partner_pos:=my_start+pd 

else my _partner_pos :=my _start-pd; 

my_part_process_no: =(start+ my_partner_pos) div group; 

(* Send copy of my _element's values *) 

send(my_part_process_no, my_val, group); 

(*Receive copy of my partner's element's value*) 

receive(my _part_process_no, my _part_ val,group) ; 

(* Compare and exchange value if necessary *) 

if dir = my_partner_dir then 

for i: = 0 to group do (* Retain smaller of the two values *) 

if my_val[i] > my_part_val[i] then my_val[i]: = my_partval[i] ; 

else 

for i: = 0 to group do (* Retain the larger of the two items *) 

if my_val[i] < my_part_val[i] then my_val[i]: = my_partval[i]; 

end; (*for pd loop*) 

for i := 0 to group-1 do data[start+my_start+i] := my_val[i]; 

blsort_seq(start + my_start,group,order) ; 

barrier; 

end.(* procedure *) 

FIGURE 7. BLSORT_NGTP - Implementation to sort bitonic lists when N > P 
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P)log2(N/P)) time. 

3. During each compare and exchange step in the innermost loop of blsort, a process 

compares and swaps (NIP) elements instead of just one element. To keep the algo­

rithms simple, it was designed to run only when N and Pare powers of 2. The loop 

is stopped when pd becomes less than or equal to NIP, and the remaining steps (pd 

= NIP, N/2P, ... , 1) are executed sequentially by the individual processes as all the 

elements will be available locally. Here, blsort_seq is the sequential version of the 

algorithm blsort. The algorithms with the above modifications for N >P are given 

in Figure 7 and Figure 8. 

(Comment : Multi supports a feature called group that allows multiple Multi processes 

to be run on the same processor. We tried to use the group feature of Multi to run NIP 

processes on each processor to extend the functions in the previous section (that 

requires N = P) to the general case (N > P). However, the scheduling policy used in 

Multi seems to be non pre-emptive, and hence the system will deadlock on the first 

innermost communication operation). 

3.3 Implementation when N ~ P and limited buff er size 

Primary memory available in each node of a parallel architecture is limited. This also 

affects the performance of a parallel application, and needs to be considered in pre­

dicting speedup. The limited memory will require access to disks. To consider the 

effect of limited memory on speedup, we modified our algorithms further to use a lim­

ited buff er size. 

The communication time for disk 1/0 can be quite significant, and 1/0 has to be han­

dled properly to achieve reasonable performance and speedup as we scale the system 

size. One effective technique is to overlap 1/0 communication time with computation 

by pre-fetching the required data blocks, and post-dumping the results. The technique 

is illustrated in Figure 9. In this example, a large number of blocks need to be pro­

cessed by a single process. The technique shows that in any iteration in which block i 

is being processed, block i+ 1 will be pre-fetching the required data, and block i-1 (that 
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(* Sort a list of length N in ascending or descending order by repeatedly merging 
adjacent bitonic lists, by using P processors where N > P *) 

Procedure bmergesort_ngtp (P, N, order) 

begin 

forall k := 0 to P-1 do 

begin 

group = N div P ; groupstart = k * group ; 

(* sort the group of elements assigned to me in the right order *) 

bmergesort_seq(groupstart,group,(groupstart div group) mod 2); 

barrier ; (*wait till all processes finish sorting their groups *) 

for bl:=2*group to N/2 step bl*2 do 

begin 

(*Determine the bitonic list the to which the element k belongs in this 

iteration, and call blsort to sort the bitonic list in required order *) 

start := groupstart - groupstart mod bl; len := bl ; 

(* start/length of the bitonic list *) 

my _id := groupstart mod bl; 

(* relative position of element kin the bitonic list *) 

order :=(start div bl) mod 2; (* order in which bitonic list is to be sorted *) 

blsort(start,group,my _id,len,order) ; 

barrier ; (* wait till all processes finish sorting bitonic lists for this iteration *) 

end (* for loop *) 

end (* forall loop *) 

end.(* procedure *) 

FIGURE 8. BMERGESORT_NGTP - Implementation to sort any list when N > P 

has been already processed) will be dumped back to the disk*. If communication of 

two blocks can be completed in less than the time taken to process a block, then I/O 

* If communication overheads (delay to initiate a send or receive) is very high for the 
system under consideration, then this approach may not be the best. In such a case, 
we may want to use just one request to fill the entire buffer, process it and send it 
back. Even though communication and computation are now serialized, there will 
be fewer send/receive calls and less overhead. 
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FIGURE 9. Overlapping 1/0 communication with computation 

communication time can be hidden behind computation. The only overhead will be 

the time to initiate read and write of blocks to disk. With communication times no 

longer critical, it may be possible to achieve good speedups even with smaller data 

granularity. The total buffer size required is three times the block size or block size 

will be 1/3 of the buffer size available. 

We used the above technique to extend the blsort_ngtp and bmergesort_ngtp to work 

with limited size buffers. We divided the available memory into six buffers of equal 

size, say B elements. The N elements to be sorted are divided into L =NIB blocks, so 

each block of elements can be held in a single buffer. The following modifications 

were done to handle the case when N > > B. 

1. In the first phase (pre-processing phase), each process is assigned UP contiguous 

blocks. Each process will then sort the blocks assigned to it using bmergesort_seq 

(sequential version of bitonic merge sort to sort any list) by using the technique 

described above to overlap the I/O communication time and the computation time. 

In this phase only three of the six buffers are used. Function bmergesort_ext_pre in 

Figure 10 gives the details for this step. 

2. The parallel merge phase is more interesting. In each binary split iteration, we have 

Ll2 pairs of blocks that need to be compared and exchanged (if necessary). Each 

process needed to process (U2)/ P pairs, which was done by applying the technique 
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Procedure bmergesort_ext_pre (B, groupstart, group, order) 

(*Do an external, sorting of bitonic list starting at groupstart and of length group 
in the specified order, using a limited internal buffer of size of (maxbuf * B) 

where maxbuf ~ 3 . IJO server is expected to acknowledge when a buffer 

is sent which can be received by recv _ack function. Pre-fetch can be initiated 

by sending a recv request by calling send_rreq function *) 

begin 

npart:=group div B; (* npart is the number of partitions for IO access*) 

for I:= -1 to npart do (* sort each partition*} 

begin 

if I > 0 then (* flush previous computation *) 

send_buf(buffer[(I-1) mod maxbuf], groupstart + (I-1) * B); 

if I< (npart-1) then(* prefetch next partition*) 

send_rreq(groupstart +(I+ 1) * B); 

if (I >=0) and (I < npart) then (* call sequential sort *) 

bmergesort_seq(buffer[I mod maxbuf], (order+ I) mod 2); 

if I > 0 then (* receive ack for the previous flush *) 

recv_ack(groupstart + (1-1) * B); 

if I < npart-1 then (* receive response for data request*) 

recv _buf(buffer[(I+ 1) mod maxbuf], groupstart + (I+ 1) * B); 

end;(* for *) 

end.(* procedure *) 

FIGURE 10. BMERGESORT_EXT _PRE: Preprocessing for external sorting of any list 

shown in Figure 9, which is efficient as N >> B. Since pair of blocks were 

prefetched or post-dumped, we needed six buffers instead of th three as shown in 

Figure 9. 

3. The I/O communication was simulated in Multi by having an 1/0 process for each 

regular process. The send/receive requests for 1/0 from a regular process was sent 

to its I/O server. In PVM we did it slightly differently by having only one 1/0 node 

serving all compute nodes to study the impact of the 1/0 bottlenecks. 
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Function bufno (i) : integer ; 

(* Find the buffer number that should be assigned to the first block of the next 
block-pair to be processed in the i th iteration *) 

begin 

bufno := (2 *I) mod NBUF; (*NBUF is the total number of buffers used, 6 here 
*) (* buffers are used in round-robin fashion and each iteration requires 2 buffers 
*) 

end. 

Function bufposn (blockpair_no, pd): integer; 

(* Determine the position of the first element of the first block of the given block 
pair, if the block pairs are at a distance of pd *) 

begin 

bufposn := (((blockpair_no div pd) * 2 * pd + (blockpair_no mod pd)) * BUF-

FIGURE 11. Functions that manage the buffers 

The algorithms with the above modifications for the limited buffer are shown in Fig­

ure 11 Figure 12 and Figure 13.The bufposn function in Figure 11 assumes that the L 

block-pairs are numbered sequentially. 
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Procedure blsort_ext (B,my_id,ln,order) 

(* Sort Bitonic lists of length N using only six buffers of size B *) 

begin 

totblocks := N I B ; blockpairs_per_proc. := (totblocks I P)/2 ; oln := In ; In = ln/2 ; 

while( In ;;::: I ) (* Do binary split operation with peer distance = In *) begin 

for i := -1 to blockpairs_per_proc do begin 

blockpair := my _id + i * P 

if i > 0 then begin (* dump the output of the previous iteration results *) 

send_buf(buffer[bufno(i-1)],B,bufposn(blockpair - P,ln)); 

send_buf(buffer[bufno(i-1)+ l],B,bufposn(blockpair-P,ln)+ln*B)) ; 

end; 

if i < blockpairs_per_proc then begin (* Pref etch the blockpair to be 

computed in next iteration*) send_rreq(bufposn(blockpair+P,ln),B); 

send_rreq(bufposn(blockpair+P)+ ln*B,ln) ; 

end; 

if i;;::: O and i < blockpairs_per_proc then begin(* Do binary splits*) 

if (odd (blockpair div oln) then curorder =(NOT order); 

else curorder :=order ; (*Determine the order for current pair*) 

bmerge(buffer[bufno(i)], buffer[bufno(i)+ 1],B,curorder) ; 

if In= 1 then begin(* continue binary split inside the block*) 

blsort_seq(buffer[bufno(i)],0,B,curorder) ; 

blsort_seq(buffer[buffno(i)+ 1] ,O,B ,curorder) ; 

end; 

end; 

if (i > 0) then begin(* receive acknowledgments for results sent at the 

beginning of the loop*) recv_ack(bufposn(blockpair - P,ln)) ; 

recv_ack(bufposn(blockpair - P,ln) +In* B) ; 

end; 

if (i < blockpairs_per_proc) then begin(* receive data for next iteration*) 

recv _buf(buffer[bufno(i+ 1)] ,B) ; recv _buf(buffer[bufno(i+ 1)+1] ,B) ; 

end; 

end; 

barrier ; (* Wait until all processes complete current step *) 

In := ln/2 ; (* One Binary split operation completed, so length of bitonic lists 

will be half its value earlier *) 

end ;(* while loop *) 

end.(* procedure *) 
FIGURE 12. BLSORT_EXT - External sorting of bitonic lists with buffer of 6*8 
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Procedure bmergesort_ext (N,P,B,order) 

(* Sort data[N-1 :0] array in required order using P processes and 

a limited Buffer of size 6B *) 

begin 

totblocks := N I B ; blocks_per_proc := totblocks I P ; 

forall p := 0 To P-1 do begin(* Create P processes to sort the data concur­
rently*) 

(* Preprocess the blocks: sort them in individually in alternating order to 
create 

bitonic lists of length 2 *B *) 

bmergesort_ext_pre(B ,p*blocks_per_proc, blocks_per_proc,order) ; 

barrier; 

(*Repeatedly merge bitonic lists by sorting then in appropriate order until 

the complete data list is sorted in required order *) 

for bln := 2*B To N step bln*2 do begin 

blsort_ext(B,p,bln,order) ; 

barrier; 

end(* for bin loop *) 

FIGURE 13. BMERGESORT_EXT ·External sorting to sort any list using six buffers 
of limited size 
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CHAPTER4 

Predicting Speedup 

In this chapter, we describe in more detail our methodology to accurately predict the 

speedup of an application by analyzing the algorithm. 

We retain the model proposed by Amdahl [8], and later extended by Driscoll and 

Daasch [2] for the execution time of a parallel application. In their model, the execu­

tion time is separated into two components, sequential and parallel time. The sequen­

tial time is the portion of the execution time that is constant or increases with the 

number of processors and the parallel time is that portion of the execution time that 

decreases with the number of processors[2] for a given problem size. Both sequential 

and parallel times are assumed to be functions of the number of processors and prob­

lem size. 

Thus the execution time for a parallel application in general can be given by the 

expression: 

T(P, N) = Seq (P, N) +Par (P, N) (1) 

where Pis the number of processors and N is the problem size. For a given problem 

size the expression for the execution time becomes: 

T(P) = Seq (P) +Par (P) (2) 

The speedup in execution times can be defined as: 



T(l) 
Speedup = T (P) 

where T ( 1) is the execution time on a single processor, and is given by 

T(l) = Seq (1) +Par (1) 

(3) 

(4) 

The sequential and parallel times for a parallel application are complex functions of P 

and Nin general, and it is very difficult to find the exact functional forms by analyzing 

the application. It is possible to analyze sequential and parallel times to determine 

asymptotic bounds on runtimes. But such analysis cannot predict speedup with rea­

sonable accuracy. On the other hand, one can do extensive experiments to find out 

runtimes for various problem sizes and system sizes to predict execution time. Here, 

we take a middle approach based on the following observations 

• 90-10 rule : In typical parallel applications, 10% of the code contributes 90% of the 

runtime. So, run times for the 10% critical code can predict the overall runtime with 

good accuracy [13]. 

• Most critical code sections have algorithmic constructs that have well understood 

dependency on P and N for a specific parallel architecture. 

We can thus quickly analyze the critical code segments to determine the terms that 

contribute to the sequential and parallel time. The overall sequential and parallel times 

are then expressed as a linear function of the various terms identified. A few experi­

ments will be sufficient to give a good estimate of the coefficients for these terms. 

These ideas lead to our methodology for predicting speedup which is shown in Figure 

14. Experiments are performed in the characterization region to find the coefficients 

in the expression for execution time. We then predict the execution times for the pre­

diction region and validate the predicted values by a set of experiments in that region. 

The steps involved in our methodology are: 

1. Identify the critical code segments in a parallel application. 
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© Characterization Region : Range of experiments conducted to find the 
coefficients in the expression for execution time. 

0 Prediction Region : Range of experiments used to validate the 
execution times predicted by our methodology 

FIGURE 14. Methodology for predicting speedup of a parallel application 

The performance analysis tools such as prof, gprof available on Unix systems, pro­

filer on DOS/Windows or similar tools on parallel computers can be used to ana­

lyze the time taken by various code segments of the parallel application and to 

determine those segments that contribute for most of the runtime. It may also be 

possible to easily identify those critical segments in case of applications that have 

well understood algorithms. 

2. For each critical code segment, determine the sequential and parallel time contribu­
tors. 

As defined earlier parallel times are those components of the runtime that decrease 

as the number of processors is increased. Runtimes for code segments that are exe­

cuted in parallel by different processors contribute to the parallel time. Examples 
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are code segments that are executed by all the processors to operate on different 

data in data-parallel applications. Parallel for loops where different iterations of the 

for loop are independently executed by different processors are used to achieve 

parallel execution. The form factors for parallel runtimes can be determined by 

examining the total computational cost of the parallel code and dividing it by P -

number of processors executing the parallel code. 

Sequential times are contributed by those code segments that cannot be executed in 

parallel by all the processors. We refer to such code segments as sequential code 

segments. Examples are code segments that create new processes, code segments 

in critical sections, operations on lock or semaphore variables etc. Sequential runt­

imes can be determined by finding how may processors can execute the code in 

parallel. For example if only one processor can execute the code segment at any 

instant, then sequential time will be P times the time for one processor to execute 

the sequential code where P is the total number of processors executing the code 

segment. If the number of processors that can execute the sequential code segment 

follow the sequence - P/2, P/4, P/8, ... , 1 (or the reversed sequence), then the 

sequential time will be logP times the time taken by a single processor to execute 

the sequential code segment. 

Analysis of bitonic merge sorting applications later in this section, will further 

illustrate the typical parallel and sequential code segments that can be found in an 

application. 

3. For the parallel architecture under evaluation, find how the sequential and parallel 

parts vary with the problem size N and number of processors P. 

This step is essentially a refinement of the parallel and sequential terms determined 

in step 2 for the specific parallel system or architecture under consideration. The 

refinements can be done based on the data supplied or available for the specific 

parallel system. For example, the time for a barrier operation may have been 

already characterized by the parallel system vendor, or other users of the parallel 

system. Another option to apply such system-dependent refinements to the sequen-
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tial and parallel terms is to conduct a limited set of experiments to study and char­

acterize common parallel and sequential code segments. We actually used this 

option to characterize how barriers and process-creation times vary under the two 

parallel programming environments used in our studies - Multi and PVM. 

4. Express the estimates for overall sequential time and parallel time as a linear func­

tion of the tenns determined in step 3 above. 

Since the various sequential and parallel runtimes detennined in steps 2 and 3, are 

independent of one another, we can express the overall runtime as a linear function 

of the different components. The resultant expression will express runtime as a 

function of the problem size N and the system size P with unknown constant coef­

ficients for each term. 

5. Conduct a limited set of experiments to get a good estimate of the coefficients for 

various tenns that contribute to the overall runtime. 

We determine the coefficients by the numerical methods such as least square 

regression fit which will minimize the sum of the squares of error values, i.e., the 

difference between the value predicted by the runtime expression with the selected 

values for the coefficients and the actual values. We need to run at least as many 

experiments as the number of unknown coefficients using different values of N and 

P, and use the runtimes from those experiments to estimate the coefficients. 

6. Use the expression for overall runtime to predict the speedup for problem sizes in 

prrediction region. 

Since, the expression obtained in step 5 models the overall runtime for any problem 

and system size, we can use it to find the ratio of appropriate runtimes to predict 

speedup expected for different system sizes. 

The analysis of the bitonic merge sort implementations and experiments further illus­

trate how the above steps of our methodology can be applied to predict the speedup of 

parallel applications. 
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As mentioned earlier, the methodology is based on some assumptions about the char­

acteristics of the parallel application and parallel architectures. In the following para­

graphs we further elaborate on characteristics that are desirable and that will limit our 

methodology. 

• data-parallel vs. task-parallel applications : Data parallel applications that use a 

predefined (defined at compile time) number of processes to execute the critical 

code segments are suited to our methodology as it is easier to analyze the sequen­

tial and parallel times for them. Task parallel applications where different tasks are 

loosely synchronized with each other and do different amount of computations are 

more difficult to analyze using our methodology. 

• computation intensive vs. I/O intensive : Computationally intensive applications 

are better suited as the times for critical code segments can be analyzed and charac­

terized. Overall runtime for I/O intensive applications may very much depend on 

the I/O device characteristics, network performance and other factors that make 

identification and characterization of critical segments difficult. 

• shared vs. distributed memory : Architectures that support shared memory are 

desirable if contention for shared memory locations is negligible. In this case, we 

do not have to worry about the communication network characteristics or time to 

access non-local memory locations which may depend on many different features 

of the parallel architecture. 

• overlapped vs. non-overlapped communication: Applications that are not sensitive 

to communication performance and that overlap all communication with computa­

tion are better suited to our methodology. The reason is that communication time 

will then be the overhead to initiate and complete communication which are typi­

cally fixed or may be proportional to message length for long messages. If commu­

nication time is not completely overlapped, than network characteristics and traffic 

patterns may determine the idle time spent by a processor waiting for communica­

tion to complete, and make analysis difficult. This observation is especially true for 

message-passing, distributed memory architectures. 
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• well defined critical code segments : It is also desirable that the number of critical 

code segments is small and fixed, and is not a function of the data input. 

To summarize, data parallel applications that are computation intensive and have a 

few predefined critical code segments that contribute to most of the overall runtime 

are the best candidates for our methodology. 

To evaluate our methodology for speedup prediction, we selected a data-parallel appli­

cation, bitonic merge sort, and actually implemented several variations on two differ­

ent parallel environments/systems. The results from the actual runs were used to 

compare predicted speedup with actual speedup. The details are given in later sec­

tions. 

In the following sections, we describe in detail how our methodology was applied to 

the case of bitonic merge sorting. In section 4.1, we discuss several typical contribu­

tors to the sequential time which controls the speedup achievable for large number of 

processors. In Section 4.2, Section 4.3 and Section 4.4 we analyze the different ver­

sions of bitonic merge sorting to determine the critical code segments and the terms 

that contribute to the sequential and parallel times (steps 1-4 of our methodology). 

4.1 Sequential time 

A few of the complex tasks that contribute to the sequential time and hence limit the 

speedup achievable by a parallel application are the process creation overhead, pro­

cess synchronizations and memory contention. 

The most important building block of parallel applications is the process. Computa­

tional activity takes place when a process is created and is assigned to a processor in 

the underlying parallel computer to initiate parallel activity in the application. The 

creating process is called the parent process and the created processes are called child 

processes. There are at least two mechanisms that can be used for process creation. In 

linear process creation a single parent process has to create the child processes 

sequentially and the time for creation will be O(P). Tree process creation is used when 

the number of processes created is very large. In the case of tree process creation, 
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there are parent processes at each level of the tree creating the child processes and the 

creation takes O(logP) time. We actually measured the time for process creation in 

both Multi and PVM environments. The measured times are given in Table 1. We 

observe that in both the environments process creation time is proportional to the 

number of processes created. We had some practical problems in creating more than 

Multi (in 
No of simulation PVM (in 

processes time units) ms) 

1 15 50 

2 28 50 

4 42 100 

8 78 200 

16 150 500 

32 298 NA 

64 582 NA 

128 1158 NA 

256 2310 NA 

512 4618 NA 

TABLE 1. Time for proce~ creation in Multi and PVM 

32 processes in PVM*. So the values for these cases are not available. 

Since process creations are more expensive than process synchronizations, the usual 

tactic is to create the desired number of processes when the application begins execu­

tion and to synchronize them when necessary. Many processes can be created to work 

on different parts of the application called iterations. However, the processes must be 

synchronized in order for the results of an iteration to be used by the other processes 

for the next iterations. 

The Barrier operation in the parallel program is one of the well known synchroniza­

tion techniques. A Barrier is a point in the application where parallel processes wait 

* Under PVM environment, we could not run 32 or more tasks due to the limits on number of files that 
can be opened by the PVM daemon. The limits could not be avoided even when we use multiple 
workstations to run all the tasks of parallel application. 
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for each other[l]. The first process to execute the Barrier statement will simply wait 

until all the other processes have arrived. After all the processes have reached the Bar­

rier statement, they are all released to continue parallel execution. The barrier imple­

mentation can be linear, where a single entity is used to coordinate the 

synchronization. In tree synchronization, all the processes are brought to the root of 

the tree [1] and the process takes O(logP) time. Figure 15 shows the Barrier sychroni­

zation in detail. 

Processl Process2 Process3 ... Process n 
* * * * 
* * * * 
* * * * 

* * * 
* * * 

---------------------~i~_'. ___ _ 
~"~ * * * * 
* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 
* 

Procedure INIT _BARRIER; 
BEGIN 

bcount := O ; bn := proc 
unlock(barrival) ; 
lock(bdeparture); 

END; 

Procedure BARRIER ; 
BEGIN 
lock(barrival) ; 
bcount := bcount+ 1 ; 
if(bcount < bn) then unlock(barrlval) 
else unlock(bdeparture) ; 
lock(bdeparture) ; 
bcount := bcount-1 ; 
if bcount > 0 then 

unlock(bdeparture) 
else unlock(barrival) ; 

END; 

FIGURE 15. Barrier synchronization of processes 
(* indicates process execution), and its implementation in Pascal 

The procedure INIT_BARRIER is called only once before calling the barrier. Each 

time a barrier is required, each of the processes calls the procedure BARRIER. As 

shown in Figure 15, the body of the BARRIER has two critical regions that control 

access to the shared variable bcount. The lock variables, barrival and bdeparture, 

ensure that only one function can be in these critical regions accessing and modifying 

the variable bcount. This serialization effect implies O(P) time for a BARRIER opera­

tion to complete. 
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The time for barrier operation was measured both in Multi and in PVM on a Unix sys­

tem, and is given in Table 2. In case of Multi the time was measured by setting a 

breakpoint before and after barrier calls that are executed by a unique processor. Mea­

suring the time for barrier operation on PVM was not that easy. We measured the total 

time for all barriers by measuring the difference in runtimes with and without barriers. 

We then divided the total time for all barriers by the total number of barriers executed 

by the application. The results show that the time for barrier operation scale linearly 

with the number of processors in both Multi and PVM as expected. On Multi, the time 

Multi (in 
simulation PVM (in 
time units) ms) 

No of 
processors Unix Unix 

1 30 50 

2 40 100 

4 70 250 

8 130 500 

16 300 1100 

32 660 NA 

64 1310 NA 

128 2590 NA 

256 5150 NA 

512 10270 NA 

TABLE 2. Time for barrier function for a single process in Multi 
andPVM 

is much less because, in a shared memory model, the barrier will involve atomic 

accesses only to shared memory locations. The time is in milliseconds on PVM, as the 

barrier operation involves communication over TCP/IP sockets between the tasks of a 

parallel application. 

The programming constructs explained so far that contribute to the sequential time are 

only a small part of the overall code of a typical parallel application and are referred to 

as the 'overhead'. The bulk of a parallel application code is usually executed by dif­

ferent processors concurrently, and therefore contributes to the parallel time. It is also 
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considered as the useful work of a parallel application. In the data parallel program­

ming model the code that contributes to the parallel time is executed by all the proces­

sors concurrently, but the processors will be executing the same code or operation on 

different portions of the data set. 

We now consider the bitonic merge sort application in more detail to identify the 

sequential and parallel parts and how they scale with the problem size and the system 

size. 

4.2 Analysis of Bitonic Merge Sort for N = P 

We first analyze the simplest algorithms, bmergesort and blsort, given in Chapter 3 for 

the case N = P (Figure 1 and Figure 4 ). The functional forms for the major blocks of 

code in that algorithm are: 

• Initial process creation : There are P processes created in the beginning and assum­

ing constant time to create a process, we find that this step will take O(P) time. 

• Parallel merge core : The core is the innermost for loop in the blsort function which 

merges adjacent bitonic lists by sorting individual bitonic lists in appropriate order. 

Each loop iteration is a binary split which takes 0(1) time as P processes execute 

them in parallel. Since there are log l binary splits to sort a bitonic list of length l, 

and the length of bitonic lists merged are 2,4,8 ... N, the total time for this step is 

logN (bl - 1) . . . . 

[ 
parallel time J = L L [tune for bmary spht wi~] 

for bmerge sort partners at distance 2 
(bl= 2) (l = 1) 

(logN) (bl - 1) 

= L L o < o = o [log2N] 

(bl= 2) (l = 1) 

(5) 

Here, we assumed that the time for one iteration of the parallel merge core takes a 

constant time. This is true as the parallel merge core requires a fixed amount of com-

35 



putation time and the communication time to exchange a single element is a constant 

with negligible contention. 

• Barriers : Barriers are executed at the end of each merge step that increases the 

length of the sorted lists (and also the bitonic lists) by a factor 2. Since there are log 

P such merge steps, and each barrier takes a time proportional to the number of pro­

cessors, we find that barriers contribute O(P log P) time. Since, N = P for this algo­

rithm, we can also say that there are logN barriers, and they contribute O(NlogN) 

time. 

The total runtime can be expressed as a linear function of the three functional forms 

mentioned above, and hence can be modeled as: 

2 
TN= p (N) = A · log N + B · N · logN + C · N + D (6) 

The values of the three constants A, B and C can be calculated from a limited set of 

experiments and the curve fitting algorithms used to obtain the best values for the 

three constants. The runtime for sequential version will be 

2 
T p = 1 (N) = E · Nlog N + F (7) 

We get the speedup for N = P case by the ratio T(N,P=l)!I'(N,P=N). From equations 

(6) and (7) we get 

TN= p (N) A · log 
2
N + B · N · (logN - 1) + ( C · N) + D 

speedup = T (N) = 2 
P = 1 E · N · log N + F 

(8) 

In the next chapter we give the empirical values for constants, and show how this 

speedup model compared with the other models. 
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4.3 Analysis of Bitonic Merge Sort for N > P 

In the case of N > P, a few more code constructs are added to the kernel loops as 

shown in Figure 5 and Figure 6. The effect is to add a few more functional forms to 

the expressions for runtime as described below. 

• Preprocessing : Each processor initially sorts the group of elements assigned to it in 

the appropriate order by using the sequential version of bitonic merge sort. Since, 

each processor is assigned NIP elements, this step will take O(NIP log2 NIP) time. 

• Parallel merge core : This core which merges the initially sorted lists is executed 

log2P times as explained in the previous section, and in each step it has to compare 

and set NIP pairs of elements. So, this step will contribute O(N/P log 2 P) time. 

• Sequential merge : At the end of each merge step in blsort_ngtp function, each pro­

cessor does the final steps of a bitonic merge to sort the block of elements assigned 

to it ( = NIP). This processing time is O(NIP log2 NIP) and is executed logP times. 

So, total contribution of this step to runtime will be O(logP * NIP log2 NIP). 

The above observations can be used to modify equation (6) to obtain the model for the 

parallel runtime when N > P which is given below 

N 2 
TN> p (N, P) = A · :plog P + B · PlogP + C · P 

N 2N N 2N 
+ D · - log - + E · logP · - log -p p p p 

(9) 

Speedup is given by the ratio: (TN>P (N, P)) I (TN>P (N, 1)) 

The equation below shows the expression for Speedup: 
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Speedup = TN> p (N, P) 
T 

N>P (N, 

N 2 N 2N N 2N 
A·-log P+B·PlogP+C·P+D·-log -+E·logP·-log -p p p p p 

= 2 
A· Nlog N 

(10) 

4.4 Analysis of Bitonic Merge Sort for N ~ P and limited buffer size 

The 1/0 communications are overlapped with computation, and we assume that 1/0 

communication for two blocks can complete in less time than it takes to do computa­

tion in the innermost loop. So, the only effect of 1/0 communication is the overheads 

caused by the send and receive calls. The preprocessing and parallel merge core are 

different from those for the previous two cases, and hence their functional forms also 

differ as described below. 

• Preprocessing : Total number of blocks sorted is NIB in this step, and each process 

handles l/P(NIB) blocks. Sorting each block takes time proportional to (B log2 B). 

So, overall parallel runtime for this step is of the form (N/(PB)) *(Blog2 B + F) 

=(N/P(log2B+F/B)) where F is a constant equal to the communication overheads 

per iteration in the function blsort_seq_ext. Hence, for a given B, the time for this 

step is proportional to NIP. 

• Parallel merge core : The parallel merge core, which is the innermost for loop of 

the procedure blsort_ext, is executed about (log 2 NIB) times as in the algorithms 

before, and in each for loop every processor processes N/2PB block pairs in pipe­

line. Processing of each block pair involves eight communication calls and com­

pare and exchange operations on B pairs of elements (to do the binary split). Also 

in the last iteration of the core, B elements are sorted in 2 B log 2 B time. So, over­

all runtime for this step is of the form (log 2 NIB) * N/2PB * B +log NIB * N/2PB 
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* 2 B log 2 B. Since, B is constant, the time for this step is of the form N/2P * log 2 

NIB + NIP log NIB. We can ignore the log term compared to log2 term*. So, we 

find that this step contributes a term NIP log2 NIB to the overall runtime. 

• Barriers : Barriers are executed at the end of the parallel merge core, and are exe­

cuted about (log 2 NIB) times instead of (log NIB) times as for the previous two 

cases. So barriers contribute a term Plog2N!B. 

The overall runtime for this case is due to the three factors described above and the 

creation of P processes, and therefore is of the form 

N N 2N 2N 
Tbu/N, P) = A · p + F · p · log B + D · P · log B + E (11) 

Speedup is obtained as in the previous cases by the ratio Tbtif(N,P)/Tbuf(N,P=l) which 

is given by the equation below. 

N N 2 2 
A · p + F · p · log N + D · P · log N - D' · P + E 

Tbuf (N, P) = 2 (12) 
A · N + F · N · log N + D · logN + E' 

In the analysis for parallel merge core above, we assumed that computation time dom­

inates communication time. If that is not true, then communication time dominates the 

computation time. The communication involves 8 messages and the communication 

time will be a linear function of the buffer size, and is of the form (a+ bB). Since B 

(the buffer size) is a constant for an implementation, the communication time for the 

innermost loop of the parallel merge core is a constant. If the communication time 

dominates the overall loop time, the overall loop time will also be a constant. Hence, 

we find that the term contributed by the parallel merge core will have the same form 

irrespective of whether the communication time dominates the computation time or 

not. 

* If NIB > 5 then log(N/B) will be less than 20% of log2<N/B). 
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CHAPTERS 

Multi : Experiments and Results 

We used the parallel simulation environment, Multi to implement the bitonic merge 

sort application and to verify that our methodology can predict speedup accurately. In 

this chapter, we give the implementation details and results. The speedup results 

obtained from our methodology are compared with the speedups estimated by other 

available techniques. The results show that our methodology results in better speedup 

prediction than simple theoretic models, and comparable or better than the prediction 

supported by the tool. 

5.1 Environment 

The Multi-Pascal interpreter[l] and debugging tool runs on a variety of small and large 

computers, including IBM PC-compatibles. The interpreter allows multi-pascal pro­

grams to be checked for syntax errors and executed to see if they produce the desired 

results. The debugger allows the programmer to work interactively, by allowing the 

programmer to set the break points and keep track of the status and location of parallel 

processes. It helps the programmer to monitor the performance of the program as a 

whole. The Multi-Pascal simulation system is designed for use with a maximum of 

512 processors(256 in the MS-DOS version). 

The Multi-Pascal system is able to simulate the performance of a parallel program on a 

real multiprocessor or multicomputers. At the end of program execution, the system 

will display the total program execution time called the "Parallel Execution Time", the 

estimated value of the actual running time of the program on the target multiprocessor, 

"Sequential Execution Time", the estimate of the execution time on a uniprocessor 



computer, the total number of processors used during program execution, and 

"Speedup", the sequential time divided by the parallel time. 

5.2 Speedup prediction models 

The following are the different speedup prediction mechanisms that were used in the 

experiments to predict speedup, and their accuracies are compared in the next section. 

5.2.1 Speedup prediction by simple theoretic models 

The simple theoretic model for speedup as given by Amdahl s law and extended later 

by others expresses speedup as given by the equations (1)-(4). We compute the 

sequential time by running the parallel version of the program for several values of P, 

with the problem size set to 'O'. To compute the parallel time, we run the sequential 

version of the program for various problem sizes with P set to '1 '. 

The experiments to compute the sequential time were performed for P varying from 

2° to 29. Table 3 gives the Seq(P) computed for various number of processors with the 

problem size set to 0. 

Number 
of Procs Seq(P) 

1 247 

2 307 

4 437 

8 727 

16 1287 

32 2387 

64 4587 

128 9007 

256 17847 

512 35507 

TABLE 3. Seq(P) for various number of processors with problem size 
set to '0' 
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The experiments to compute the parallel time were performed for N varying from 23 

up to 213. Table 4 gives the parallel time Par(N) computed for various problem sizes 

with number of processors equal to '1'. 

Problem 
Size Par(N) 

8 4161 

16 10865 

32 27183 

64 66807 

128 163377 

256 395097 

512 943303 

1024 2186846 

2048 5110577 

4096 11815946 

8192 27061469 

TABLE 4. Par(N) for various problem sizes with a single processor. 

5.2.2 Speedup prediction by Multi tool 

The Multi simulation tool has a built in utility that estimates the sequential time of an 

application on P processors from a parallel simulation. The sequential time is used to 

estimate the speedup achieved and is reported at the end of an experiment. We used 

this feature of Multi as one of the ways to find speedup. As we see later, estimates by 

Multi were better than simple theoretic models, but still not accurate for fine grain 

parallel applications. 

The Pascal program for bitonic merge sort was executed for the problem sizes (N) 

from 23 to 213 and for the number of processors (P) from 2° to 29. Each processor 

handled NIP elements of the list. The problem size was limited to 213 as Multi failed 

to run for larger problem sizes. Numbers are also not shown for the cases when P = 

512 and N ~ 1024 , as Multi failed to run for these cases. Table 5 gives the speedup 
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numbers as reported by Multi for various problem sizes and number of processors. 

The cases when P > N are not valid as our algorithm was designed only for N ~ P, 

and are shown by the shaded cells in Table 5. 

Prob­
lem size 

=N 

8 
16 

32 

64 

128 

256 

512 

1024 

2048 

4096 
8192 

1 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

2 4 
1.69 2.69 

1.77 2.92 

1.78 3.06 

1.82 3.18 

1.87 3.32 

1.90 3.46 

1.92 3.55 

1.97 3.82 

1.97 3.85 

1.98 3.87 

1.98 3.89 

Number of processors = P 

8 16 32 64 128 256 512 
3.88 fili~~rnjjj~jjjjjjj~1 ~ljjjjjjjjjjjjjjjjjjjij~j jjjjjjjjjjjj~jj~jjjM~~~ ~jjjjjjjjjjjjjjjjjjjjjj~~jjjjj; jjjjjjjjjjMj11jj~jjj1j1~j1; jjjjjjjjjjjjjjjj~jjjjjjj]jjjjjjjjjjjj 
4.49 5.74 Rl~Ml~M~~~ i~!1111~11~~~~~l~~1ili 11~mm111~~11111111~ 111~1~~1~1~1~1111m111; fa1l11111]11~111111111]11 
4.93 7.04 7.81 ·~j~jjjljjj~jj~~~lj~f~ l~1m~1111~j~11~ijj~jj!1t 1~1~1~~~111111E!!1!!1l!l; jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj 
5.31 7.86 9.68 9.77 :~~jj~~j~jjjj~1I11~l1~~ jjjjjjjjjjjjjjlt~jjjjjii ~jjjjjjjjjjjjjjj~jjlilll1l 
5.61 8.78 11.75 12.33 11.47 ~~~j~jjjjjjjjjjjjj~jjjjjjjjji 111M1ll!l111l111llI1ll111! 
5.94 9.49 13.50 15.76 14.64 12.94 j~~~jjjjjjjjjjjjll!ll1!l1ll1lllll!lll!l 
6.24 10.17 15.05 19.37 19.40 16.68 14.29 

7.22 13.09 22.01 32.51 37.22 29.41 NA 

7.34 13.51 23.33 36.38 47.80 44.78 NA 

7.44 13.83 24.36 39.38 55.41 63.73 NA 

7.51 14.09 25.18 41.62 61.43 77.83 NA 

TABLE 5. Speedup for bitonic sort algorithm as estimated by 
Multi 

5.2.3 Speedup estimated by simulated runtimes 

Parallel applications can be run on Multi to simulate its run on a specific type of a par­

allel system. Multi uses a single processor to simulate all the processors of a specified 

parallel architecture, and reports the overall time. We can then divide the runtime 

obtained for a single processor (P = 1) by the runtime for P processors to compute the 

speedup. 

Multi gives the parallel runtime in addition to speedup. The parallel runtimes obtained 

from our experimental runs for various N's and P's are shown in Table 6. We can com­

pute the speedup using its definition by dividing the runtimes for P processors by the 

time for the same problem size when P=l. 
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Prob­
lem 
size 
=N 

8 

16 

32 

64 

128 

256 

512 

1024 

2048 

4096 

8192 

Number of processors = P 

1 2 4 8 16 32 64 128 I 256 512 
4161 2201 2141 2491 

10865 5418 4038 3898 4998 ll~ll~~Jfillll~~lll~~lilifillfil~ili~~llll1!1lll1ll~~l1ll~lllllll~l~l1llll~~ll!lllllllllllllllllll!l!lllll1l!llllll!ll\ljl\l\llllltltlll!!1l1 
27183 12922 8672 6752 6942 10102 ~fjfilf:1~li11l~lllllll~ll~ll~ll~llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll!lllllllll!l!lllll1 
66807 30947 19257 13357 11387 13427 21231 ~~~1~lfililillfilm111ili111~i111~111111i111111111111111111111111111111111111111111111111l11 
163377 74117 44147 28577 21097 I 19827 27097 I 46057 ~fam111111111111111~ lll!llllllllllll~llllll~ll~lllllllll 
395097 177760 101900 63030 43180 I 34910 37430 I 57210 I 101100 jjjjj~j~lllllll~l~lllll~l!l~l~l 
943303 423636 236566 140826 91936 I 67926 60486 75286 122886 222116 

2186846 962669 510649 279869 161779 I 102379 75689 75729 119119 NA 

5110577 2262849 1188519 641479 361779 I 219449 149529 124029 151289 NA 

11815946 5262359 2743669 1464269 811479 I 478239 310279 233409 220699 NA 

27061469 12119279 6288269 3324109 1817819 I 1049129 658229 466199 389829 NA 

TABLE 6. Parallel runtimes for bitonic sort algorithm 

5.2.4 Speedup prediction by our methodology 

The speedup in our methodology is modeled by the equations in Chapter 4. We only 

run a small set of experiments with a small problem size N and number of processors 

P varying from 23 to 29. We then use a curve fitting algorithm, namely the least 

square, to determine the best values for the constants in those equations. 

For N = P case, we performed the characterization experiments with N and P varying 

from 2° to 25. The following equation gives the best estimates for the coefficients and 

the overall expression for the execution time for the simplest version (N = P) of 

bitonic merge sorting algorithm (bmerge_sort). 

2 
TN= p (N) = 341+31.23. N · logN- 210.81. N + 403.2 ·log N (13) 

The coefficients look reasonable except for N which has a higher negative value than 

expected. In fact, as we will shortly notice that the execution runtimes for other cases 

also turned out to have higher negative coefficients for the term Nor P than expected. 
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For N > P case, we performed the characterization experiments with N varying from 

23 to 29 and P varying from 2° to 24. The following equation gives the best estimates 

for the coefficients and the overall expression for the execution time for the version (N 

> P) of bitonic merge sorting algorithm (bmergesort_ngtp ). 

N 2 
TN> p = 14773 + 146 · p · log P + 899 · PlogP - 4486 · P 

N 2N N 2N 
+ 22.6 · p · log P + 0.811 · logP · p · log p 

(14) 

For N > P with limited buffer size, we performed the characterization experiments for 

a buffer size B of 4 and 16 elements, with N varying from 23 to 29 and P varying from 

20 to 24. The following equations give the best estimates for the coefficients and the 

overall expression for the execution time for the version (N > P and limited buffer ) of 

bitonic merge sorting algorithm (bmergesort_ext). Equation (15) refers to the execu­

tion time for a limited buff er of size 4 elements and equation ( 16) refers to that for a 

buffer of size 16 elements. 

N N 2 2 
Tbuf(N, P) = 23041- 2748 · -p- 2470 · P + 285 · p ·log N + 45 · Plog N (15) 

N N 2 2 
Tbuf(N, P) = 13573 - 1952 · p - 4126 · P + 87.34 · p ·log N + 80.26 · Plog N (16) 

The graphs in Figure 16 thru Figure 19 show the runtimes that were used in curve fit­

ting to determine the coefficients for our runtime models. Figure 16 shows the curve 

fitting for N = P case. The curve fitting for the N > P case is shown in Figure 17. Fig­

ure 18 and Figure 19 shows the curve fitting for the limited buff er algorithm when 

buffer size is 4 and 16 elements respectively. 
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FIGURE 16. Curve fitting runtimes for bmergesort (N = P) 
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FIGURE 17. Curve fitting runtimes for bmergesort_ngtp (N > P) for N = 26 
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FIGURE 18. Curve fitting runtimes for bmergesort_ext for B = 4 and N = 210 
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FIGURE 19. Curve fitting runtimes for bmergesort_ext for B = 16 and N=210 



5.3 Results 

The speedup values computed by different methods are shown in Figure 20, Figure 21 

and Figure 22. Figure 20 gives the speedup values for the simpler version of the alga-

16 

8 

~ 
<11 

~ 
g 4 

i 
2 

8 16 32 

m 
m 

-- : speedup by simple theoretic model 
_ : speedup predicted by our methodology 
m : speedup as estimated by multi 
a : actual speedup from simulated run times 

64 128 

No of Processors (log scale) 

• Characterization region 

FIGURE 20. Speedup for linear problem size when N = P 

m 

256 

rithm that worked only for N = P. Hence, the size of the problem is scaled with the 

number of processors in the system so as to keep the number of data elements handled 

by a processor same (1 in this case). The curves show that speedup from simple theo­

retic models are not accurate. The estimates by Multi are better than the theoretic 

models. However, our methodology that depends on the functional forms for the criti­

cal code segments, accurately predicts the speedup and the results match very well 

with the actual values. 
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FIGURE 21. Speedup for a constant problem size for N = 29 elements 
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Figure 21 gives the speedup results for a constant problem size of 512 elements. 

Again, we see that the prediction accuracy was same as for the linear problem size 

case for different methods. Our model even predicted that speedup will improve only 

for P up to about 32 processors, and would drop if we use more number of processors, 

where as the simple theoretic models predicted speedup will improve until 128 pro­

cessors. Actual speedup numbers show that our methodology predicted the region of 

linear performance very well. 

Figure 22 gives the results for the best problem size for a given number of processors. 

All the results shown in the graph are in the prediction region. Our experiments 

showed that the best problem size happens to be the largest problem size that we could 

run under Multi which is 8192 elements. The results again show that the simple theo­

retic models give a crude approximation, where as our methodology can predict the 
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speedup reasonably accurately, and gives more conservative estimates by effectively 

taking into account the sequential components of runtime. 
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The next two graphs, Figure 23 and Figure 24. , show the results when memory is lim­

ited, and effects of 1/0 on runtimes are considered. The speedup results shown in these 

graphs are in the prediction region. In this case, we could get higher speedups as com­

munication was overlapped with computation. We have not shown the curves for the 

simple theoretic model as its accuracy was poor for the previous cases. 
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FIG URE 23. Speedup for a limited buffer of size 4 elements for N = 211 
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FIGURE 24. Speedup for a limited buffer of size 16 elements for N = 212 
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5.4 Summary 

In this chapter we described the application of our methodology to different imple­

mentations of bitonic merge sorting application in Multi environment, and presented 

the results. The results showed that our methodology could predict speedup more 

accurately than simple theoretic models, and were better or comparable to the speed­

ups estimated by the built-in feature of the Multi tool. We found that prediction will be 

more accurate if we extend the characterization region along the system size dimen­

sion i.e. increase the range of system size used for estimating the coefficients. The 

speedup was predicted well for all the three different implementations. Our methodol­

ogy could predict the system sizes at which the speedup will peak, and beyond which 

we will get diminishing returns i.e. speedups decrease with increase in system size. 
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CHAPTER6 

PVM : Experiments and Results 

We also evaluated our methodology by implementing the bitonic sort applications in C 

for the PVM environment. PVM is very different from Multi and is a very popular par­

allel programming environment. The results show that our methodology still gives 

good speedup estimates, thus demonstrating its applicability to different parallel archi­

tectures and programming environments. 

6.1 Environment 

PVM(Parallel Virtual Machine)[4] is a software system that enables a collection of 

heterogeneous computers to be used as a coherent and flexible concurrent computa­

tional resource. The individual computers may be shared or local memory multipro­

cessors that may be interconnected by a network. PVM presents a unified, general, and 

powerful computational environment for concurrent applications.User programs writ­

ten in C or Fortran are provided access to PVM through the use of calls to PVM library 

routines for functions such as process initiation, message transmission and reception, 

and synchronization via barriers. Users may optionally control the execution location 

of specific application components. 

6.2 Speedup Prediction by our Methodology 

Unlike Multi, PVM does not support any built-in utility to estimate the speedup. 

Hence, for PVM we applied our methodology to predict the speedup and compared it 

with the actual speedup obtained from the runtimes. We also limited the experiments 

to two implementations of bitonic merge sort. One implementation was for the general 



case when N ~ P assuming unlimited memory, and the other was the limited memory 

implementation for large problems. The runtimes were determined by dividing the 

total runtime for N iterations by N as the time for single iteration was too small to 

measure. 

A small set of experiments were run in PVM, and our methodology was applied to 

determine the coefficients. The runtime results for N up to 213 and P up to 22 were 

used to derive the coefficients. The actual experiments were run for N up to 217 

(128K) and Pup to 24. The graphs in Figure 25 and Figure 26 show how the curves 

predicted by the model, fit the actual experimental values used to estimate the coeffi-

cients. The model for runtime with estimated coefficients are shown in equations ( 17) 

and (18) where all the coefficient values are expressed in milliseconds(ms). 

N 2 
TN> p = 161.9 + 0.23 · p ·log P + 25.36 · PlogP + 167.5 · P 

N 2N N 2N 
+ 0.0025 · P · log -p-0.00047 · logP · P · log P 

(17) 

N N 2 2 
Tbuf(N, P) = 2921- 41.72 · p -2424.6 · P + 0.63 · p ·log N + 46.03Plog N 

(18) 

We observe that the coefficients for the overhead terms (P and P log P) are much 

larger than the coefficients for the computation terms. As we see in the next section, 

the high overheads prevented speedups of more than 4 as predicted by the following 

equation. The graphs in the next section show how well these equations could predict 

the speedup. 
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FIGURE 25. Curve fitting runtimes for unlimited memory implementation of bitonic 
merge sort for N = 212 

4. 
a : actual speedup 
_:Speedup modeled by curve fitting 

2. 

I ....----; 

1. 
a 

0. 

2 4 8 16 

No of processors (log scale) 

II Characterization region 

FIGURE 26. Curve fitting runtimes for limited-memory implementation of the bitonic 

merge sort algorithm for N = 21 O and B = 16 
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6.3 Results 

The speedup results are shown in Figure 27 and Figure 28. Figure 27 gives the results 

for the unlimited memory implementation, and Figure 28 gives the results for the 

fixed buffer size (the actual buffer size in the experiment was 16 elements) implemen-

tation. All the results given in Figure 27 and Figure 28 are in the prediction region. 

The speedup prediction by our methodology indicated that the PVM implementations 

will give very poor speedup numbers because of the high overheads for process cre­

ation, barriers and communication. The experimental results confinn that predictions 

were reasonably accurate. In fact until aboutN = 8192, the best speedup was achieved 

for P =1 for the first implementation which means that we actually loose perfonnance 

by parallelizing. 
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FIGURE 27. Speedup estimates for bitonic merge sort ( N ~ P )for N = i14 
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FIGURE 28. Speedup for N ~ P and limited buffer size for B = 16, N = 211 

6.4 Summary 

In this chapter, we described the results of the application of our methodology to pre­

dict the speedup of bitonic merge sort application in PVM environment. Unlike Multi, 

PVM is a real parallel processing environment that is available on network of work­

stations and massively parallel processors. Our implementation used PVM on a net­

work of workstations. PVM also differed from Multi in the underlying architecture of 

the parallel system. Multi implementations assumed shared memory systems, where 

as PVM used message passing (using TCP/IP sockets) on distributed memory sys­

tems. As the results showed, PVM has high overheads to access memory of remote 

nodes. 

Our methodology predicted speedup well even for PVM implementation, which had 

different underlying parallel architecture and programming model. The terms in the 

model for total runtime remained the same as in multi, but the results from experi­

ments in the characterization region resulted in significantly different values for the 

coefficients of the terms. The predicted speedup matched well with the actual values 

computed by taking the ratio of runtimes as determined from the experiments. The 

predicted speedup values clearly showed that speedup will actually start decreasing 

with increasing number of processors for even a small number. 
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CHAPTER7 

Conclusions and Future Research 

In this thesis, we developed a methodology to show the effect of the number of proces­

sors on the performance of a parallel application, measured by the speedup achieved 

for a given number of processors. Our methodology is based on a good combination of 

analysis and empirical studies to accurately predict the runtime of a parallel applica­

tion. The method involves the analysis of the critical code segments of an application 

to determine how the parallel and sequential parts of the code vary with the number of 

processors and the problem size. A limited set of experiments can then be used to pre­

dict the runtime of a parallel application for any number of processors and problem 

size. 

We successfully applied the methodology to various bitonic-list based sorting pro­

grams by implementing them in Multi and PVM and showing that our methodology 

results in better speedup estimates than current theoretic models. The methodology 

was applied to get the results for smaller number of processors and problem size, and 

then to predict how the speedup will vary for larger numbers of processors and system 

size. The actual speedups as measured from the experiments were compared with the 

predicted values to show that the estimates were reasonably accurate.The methodol­

ogy was able to predict the speedups well even in case of PVM which has high com­

munication and other sequential overheads. 

Our methodology was able to predict speedup better than simple theoretic models as 

we use a limited set of experiments to evaluate machine/architecture dependent 



parameters. The speedup curves are sensitive to how the parallel and sequential com­

ponents of a parallel application vary with problem size and more importantly the sys­

tem size. Actual experiments will help in accurate estimation of the magnitude of 

various sequential and parallel components of the overall runtime. In our studies, we 

found that the prediction accuracy was sensitive to the processor range of the charac­

terization region. Prediction accuracy improved when we increased the range of pro­

cessor sizes for the characterization region. More experiments with larger number of 

processors help in estimating the coefficients of various terms better, and thus predict 

the speedup more accurately. However, additional experiments will take more time. In 

fact this illustrates an important feature of our methodology - it is possible to get more 

accurate speedup prediction by expanding the characterization region and doing more 

experiments. 

Our methodology is very attractive for those applications where the runtimes increase 

quickly with problems size, for example as square or cube of the problem size. In such 

a case, by restricting the characterization region to small problem sizes, time taken for 

the experiments in the characterization region will be negligible compared to the time 

taken to run experiments for the entire problem sizes of interest. For example, consider 

an application whose runtime is proportional to the square of the problem size. To 

determine the speedup over the range N to 1 ON, one can do ten experiments at problem 

10 

sizes N, 2N, ... , 1 ON at a total runtime cost of L i 2
• If we use our methodology and 

i = 1 

restrict the characterization region to only 3N and can do only three experiments at N, 

3 

2N and 3N, then the cost of the experiments in our methodology will be only L ;2 
i = 1 

which is only about 14/385 or 4% of the total cost of the experiments. 

The methodology also helped in understanding the shape of the speedup curves, as 

they show how the magnitude of various terms (that correspond to various segments of 

the code) change when the problem size or number of processor is increased. The 
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coefficient values depend on the parallel architecture whereas the actual tenns depend 

on the algorithm. The terms can only be altered by changing the algorithms used by 

the application, whereas the coefficients of the various tenns can be altered by using 

an appropriate parallel machine and/or compiler/runtime environment. On PYM the 

coefficients for various tenns clearly show that sequential components and overheads 

dominate the overall runtime, and hence will result in poor speedups that were 

observed. 

7.1 Limitations 

As explained earlier in the thesis, our methodology is not applicable for every case and 

is suitable only if they have the characteristics mentioned in Chapter 4. However, 

many data parallel applications in scientific applications do satisfy the requirements 

and hence our methodology is applicable to a wide number of actual applications. The 

following are some of the limitations of our methodology which may prevent its use­

fulness and applicability for some applications. 

• runtimes that are non-linear functions of the problem and system size, and may 

have different functional forms in different ranges of problem or system sizes. One 

example is when there is overlap of communication and computation, and computa­

tion time dominates communication in one range, and vice-versa in the other. If the 

fonn factors for the computation time and communication time are different, then 

the overall runtime will have different form factors in different system and problem 

size ranges. 

• Parallel machine or architecture under consideration have characteristics that result 

in non-linear nmtimes for sequential components such as barriers. For example, 

barrier operation may take O(P) time for small number of processors, but may take 

O(log P) time for large number of processors. 
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• Applications are communication intensive and will depend on the performance of 

the communication network, and are sensitive to the delays due to the contention in 

the network or to the access of shared variables. Such delays due to resource con­

flicts are difficult to characterize without understanding its details and considerable 

analysis effort. 

We feel that the limitations sometimes can be overcome by handling the analysis at the 

right granularity. The limitations may also restrict the applicability of our methodol­

ogy for a certain applications over a limited range of system and problem sizes. 

7 .2 Future Research. 

The methodology we developed was successfully applied to variations of bitonic list 

based on sorting programs for real machines - a cluster of workstations. For lack of 

time, we could not verify our methodology for MPP systems such as Paragon, Cray 

T3D etc. It would be interesting to apply our methodology for real applications run­

ning on these machines which have a different architecture and a high performance 

communication network. 

It would be interesting to apply our methodology to existing real applications for cur­

rent supercomputers that have some or all the desirable characteristics we mentioned 

in Chapter 3, and to evaluate the accuracy of speedup predictions for those applica­

tions. 

The next step would be to automate some of the steps in our methodology. Profilers 

and performance analysis tools can be used to identify and select critical segments of a 

parallel application. Various functions provided by the message passing library for dis­

tributed memory machines, or the synchronizations primitives for shared memory 

machines can be characterized to show how they scale with the problem size and the 

number of processors. Such information can be used to assist or automate the effort to 

analyze the critical code segments. 
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