
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

2-10-1995

Design of a Digital Compensation Filter Design of a Digital Compensation Filter

Nader Fakhry
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Fakhry, Nader, "Design of a Digital Compensation Filter" (1995). Dissertations and Theses. Paper 4961.
https://doi.org/10.15760/etd.6837

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F4961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/4961
https://doi.org/10.15760/etd.6837
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Nader Fakhry for the Master of

Science in Electrical and Computer Engineering were presented

February 10, 1995, and accepted by the thesis committee and

the department.

COMMITTEE APPROVALS:

DEPARTMENT APPROVAL:

?ih-Chyrln JElNQ,l

W. Robert DAASCH

R. CRITTENDEN
Representative of the Office of
Graduate Studies

Department Of Engineering

*

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY

L::,
,

by on :f 721~ /995

'-._...-.,~~

ABSTRACT

An abstract of the thesis of Nader Fakhry for the Master of

Science in Electrical and Computer Engineering presented

February 10, 1995.

Title: Design Of A Digital Compensation Filter

The 24-bit Motorola DSP56001 processor will be used in

combination with the DSP56ADC16 and the PCM-56 to design a

good FIR compensation filter. Our objective is to digitize

the input analog signal, and to compensate for the

attenuation in the magnitude response of the digital sine

wave.

Two different experiments will be conducted, a hands

on approach, and a simulation program.

The first one will be realized directly, using the DSP

system. We will determine the magnitude response of the

system, and then deduce the coefficients of the FIR

sin(x)/x filter. A look up table will store those values

which will be fetched by the DSP program. With a minimum

set of instructions we will generate a new digital output

sequence after a N-point circular convolution is performed.

The output signal is a good reconstruction of the input

signal at frequencies below 22 Khz.

However, a second experiment will be needed to improve

this FIR sin(x)/x compensation filter, because we are not

able to go beyond a 300-point impulse sequence. After that

value (300-point), the time that each value is read and is

ready to be processed by the DSP56001 becomes smaller than

the time each instruction in the DSP program is executed

and written to the PCM-56 via the SSI register. To be able

to expand our experiment, we need to write a simulation

program.

2

A simulation program of the previous experiment, which

take as input the measured magnitude response of the

system. The challenge will be to find ways to map the

frequency domain, by using the maximum value of each linear

convolution sequence, with a finite input sequence.

A step by step approach will be drawn until our final

objective is reached. Our final step will be, to increase

the number of sampling point in the frequency domain and

will be to demonstrate that the result of the simulated

program value will coincide with our objective, which is to

compensate for the attenuation of the magnitude response of

the system. By increasing the sampling frequency we will

eventually obtain a good compensation filter.

DESIGN OF A DIGITAL COMPENSATION FILTER

by

NADER FAKHRY

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
IN

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1995

ACKNOWLEDGEMENT

I would like to thank my dear parents, Mr. Kamel and

Mrs. Aida FAKHRY for their encouragement and their kindness

toward me. I believe, I would have never been able to finish

my education without their overwhelming support.

Also, I want to give a special thank to my advisor,

Dr. Yih-Chyun JENQ, who has continually guided me and shown

me new insight into Digital Signal Processing.

Dr. Yih-Chyun JENQ has always assisted me during my research

work, by suggesting ways to solve the problems that I was

faced with.

In addition, I wish to thank Dr. Robert DAASCH and

Dr. Richard CRITTENDEN for.their help and for their time in

reviewing my thesis. I like to acknowledge Ms. Shirley CLARK

for her assistance.

Nader FAKHRY

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

LIST OF TABLES

LIST OF FIGURES . . .

CHAPTER

I INTRODUCTION

II FUNDAMENTAL OF DIGITAL SIGNAL PROCESSING

2.a Digitization ..

2.a.1 Ideal Sampling .

2.a.2 Sampling Rate Selection

2.a.3 Uniform Sampling Theorem .

2.a.4 Discrete-Time Signals

2.a.5 The DTFT

2.b Filter Fundamentals

2.b.1 Low Pass Filters ..

III INTRODUCTION TO THE DSP56001 AND THE ADS

3.a DSP56001 Processors

3.a.1 Architecture .

3.a.2 Speed

3.a.3 Precision

PAGE

ii

vi

vii

1

3

. 3

. .. 6

. 7

. 8

10

12

13

13

18

18

19

21

21

IV

v

3.a.4 Instruction

3 .b

3.c

General Description Of The ADS . .

Implementing And Design Of FIR

3.c.l FIR Frequency Response ..

3.d Implementing An FIR Filter .

3.d.l FIR Filter On DSP56001 ..

3.d.2 DSP56001 Instructions

DIGITAL SIGNAL PROCESSING SYSTEMS

4.a DSP System .

4.b DSP56ADC16EVB

4.c DSP56001 SSI Port Pins

4.d Setting Up The SSI Port

4.d.l SSI Port Selection

4.d.2 SSI CRA Register

4.d.3 SSI CRB Register

4.d.4 SSI Status Register

4.d.5 SSI Receive Register .

4.d.6 SSI Transmit Register

4.d.7 RX And TX Registers

RECONSTRUCTION OF ANALOG SIGNAL

.

.

5.a Process To Design The Compensation Filter

5.a.l Overview Of The DSP Program

5.a.2 Algorithm .

5.b The Compensation Filter

5.b.l Measured Values

iv

. .. 23

.

.

25

25

26

27

27

30

39

39

41

42

43

44

44

45

47

47

47

48

50

50

51

51

53

53

VI

5.b.2 Design Of The Compensated Filter

SIMULATION PROGRAM

6.a Overview Of The Program

6.a.1 Digitization And Shift

6.a.2

6.a.3

Convolution Algorithm

Inverse DFT

6.a.4 Main Program

6.b Choice Of The Input Data

6.b.1

6.b.2

Introduction

Program Constraints .

v

53

59

59

61

62

63

64

66

66

67

6.c The Compensation Filter 79

6.c.1 Discontinuity At High Frequency 79

VII CONCLUSION 84

REFERENCES90

LIST OF TABLES

TABLE PAGE

1. Measured magnitude response of the digital sine wave 54

2. Measured magnitude response of the digital sine after
it has been filtered 56

3. Magnitude of the, inverted values and DFT of
sin (x) /x filter 81

4. Maximum peaks 82

LIST OF FIGURES

FIGURE PAGE

1. An analog signal and 3 different type of sampling . 4

2. Quantized signal

3. Ideal sampling

5

6

4. Spectrum of an ideally sampled signal 7

5. Aliasing due to overlap of spectral images

6. Spectrum of ideal sampled signal ..

7. Sampling with Dirac and Kronecker impulses .

8 . Ideal filter responses . . .
9 . Monotonic magnitude response . .

10. Magnitude response with ripples in the passband

11. Magnitude response with ripples in the stopband

12. Magnitude response with ripples in the passband and

stopband

13. DSP56001 block diagram

14. Application development system

8

9

11

14

15

16

16

17

23

24

15. Assembler instructions to implement an FIR filter 32

16. Memory map at the beginning of then iteration . 33

17. Memory map after the CLR instruction 34

18. Memory map after the execution of the MAC

instruction 35

19. Memory map after the execution of the 2nd MAC

instruction

20. Memory map after the execution of the last MAC

instruction

21. Memory map after the execution of the MACR

instruction

22. DSP system

23. EVB block diagram

24. SSI pins

25. Development process to generate .lod file

26. A/DD/A magnitude response

27. 124-point sin(x)/x impulse response .

28. Compensated magnitude response

29. Magnitude responses

30. Magnitude response with no phase shift

31. Magnitude response with a phase shift of 15

degree

32. Magnitude response with a phase

degree

shift of 30

33. Magnitude response with a phase shift of 45

degree

34. Magnitude response with a phase shift of 60

35.

degree

Magnitude

degree

response with a phase shift of 75

viii

36

37

38

39

40

43

52

56

57

57

67

69

69

70

70

71

71

ix

36. Magnitude response with a phase shift of 90

degree . 72

37. Magnitude response of collected maximum 72

38. Sample points in the unit circle 74

39. Magnitude response of the average values 75

40. Convolution sequence with Gibbs' Phenomenon 76

41. Discrepancies for particular phase shift 77

42. Successful correction of the magnitude response . . 78

43. 496-point sin(x)/x impulse response 79

44. Inverted magnitude values 80

45. Magnitude response of the compensated values . . 83

CHAPTER I

INTRODUCTION

In a typical Digital Signal Processing System (DSP) , the

analog signal is sampled and digitized to produce a digital

sample. The digitized signal is processed through a DSP

program. Finally, the digital signal is converted back to an

analog signal by an D/A converter and a reconstruction

filter. In the process of digitization (A/D) and of

reconstruction {D/A) of the input signal some discrepancies

occur, which in turn introduces some distortion in the

signal. The purpose of this digital compensation filter is to

compensate for the drop off in the magnitude response of the

A/D and D/A converters.

This thesis studies an implementation of a digital

compensation filter. It is organized as follows:

1) In Chapter II, we introduce some fundamental concept of

digital signal processing such as Digitization,

Aliasing, and Discrete Time Fourier Transform.

2) In Chapter III, the Motorola DSP56001 and the

Application Development System (ADS) is described.

3) In Chapter IV, the digital signal processing system

which consists of an analog-to-digital, a digital-to

analog converters, a DSP56001 processor, and a

DSP56000ADS Application Development System is

2

introduced.

4) In Chapter V, the reconstruction of the analog signal

and the compensation of the magnitude response up to 22

Khz is shown.

5) In Chapter VI, the design criterion for the algorithm

are considered as well as the implementation of the

algorithm, are shown.

6) In Chapter VII, the conclusion of the thesis is given.

CHAPTER II

FUNDAMENTAL OF DIGITAL SIGNAL PROCESSING

Digital signal processing (DSP) is based on the fact

that an analog signal can be digitized and input to a

general-purpose digital computer or special-purpose digital

processor. Once this is accomplished, we are free to perform

all sorts of mathematical operations on the sequence of

digital data samples inside the processor. Some of these

operations are simply digital versions of classical analog

techniques, while others have no counterpart in analog

circuit devices or processing methods.

2.a DIGITIZATION

Digitization is the process of converting an analog

signal such a time-varying voltage or current into a sequence

of digital values. Digitization actually involves two

distinct parts -sampling and quantization- which are usually

analyzed separately for the sake of convenience and

simplicity. Three basic types of sampling, shown in Figure 1,

are ideal, instantaneous, and natural. From the illustration

we can see that the sampling process converts a signal that

is defined over a continuous time interval into a signal that

has non zero amplitude values only at discrete instants of

time (as in ideal sampling) or over a number of discretely

4

separate by internally continuous subintervals of tiille (as in

instantaneous and natural sampling). The signal tha~ results

frcm a sampling process is called a sampled-data signal. The

signals resulting from ideal sampling are also referred to as

discrete-time signals.

/'"
., '

' . JI

I,,,:: ,(ri

(c) J !

Figure 1. An analog signal (a) and three different types of
sampling: (b) ideal, (c) instantaneous, and (d) natural.

Each of the three basic sampling types occurs at

different places within a DSP system. The output from a

Sample and Hold amplifier or digital-to-analog converter

(DAC) is an instantaneously sampled signal. In the output of

a practical analog-to-digital converter (ADC) used to sample

5

a signal, each sample will of course exist for some nonzero

interval of time. However, within the software of the

digital processor, these values can still be interpreted as

the amplitudes for a sequence of ideal samples. In fact,

this is almost always the best approach since the ideal

sampling model results in the simplest processing for most

applications. Natural sampling is encountered in the

analysis of the analog multiplexing that is often performed

prior to A/D conversion in multiple-signal systems. In all

three of the sampling approaches presented, the sample values

are free to assume any appropriate value from the continuum

of possible analog signal values.

Quantization is the part of digitization that is

concerned with converting the amplitudes of an analog signal

into values that can be represented by binary numbers having

some finite number of bits. A quantized, or discrete-valued

signal, signal is shown in Figure 2. The sampling and

quantization process will introduce some significant changes

Figure 2. An analog signal (a) and the corresponding
quantized signal (b).

6

in the spectrum of a digital signal. The details of the

changes will depend upon both the precision of the

quantization operation and the particular sampling model that

most aptly fits the actual situation.

2.a.l IDEAL SAMPLING

x = ii I

Figure 3. Ideal sampling

In ideal sampling, the sampled-data signal, as shown in

Figure 3 comprises a sequence of uniformly spaced impulses,

with the weight of each impulse equal to the amplitude of the

analog signal at the corresponding instant in time. Although

not mathematically rigorous, it is convenient to think of the

sampled-data signal as the result of multiplying the analog

signal x(t) by the periodic train of unit impulses:

n••
XS (.) = x(t) E a (t-nT) (1)

n•-•

The spectrum of the sampled-data signal could be obtained by

convoluting the spectrum of the analog signal with the

7

spectrum of the impulse train:

7[x(t) E ~ (t-nT)] = X(f) * [fs L a (f-mfs)] (2)
n=-oo m=--oo

As illustrated in Figure 4, this convolution produces

copies, or image, of the original spectrum that are

periodically repeated along the frequency axis. Each of the

images is an exact (to within a scaling factor) copy of the

original spectrum. The center-to-center spacing of the

images is equal to the sampling rate f 9 , and the edge-to-

edge spacing is equal to f 9 -2fH. As long as f 9 is greater

than 2 times fH, the original signal can be recovered by a

lowpass filtering operation that removes the extra images

introduced by the sampling.

" (f)

I I
I I

I I
I I

. , . • f,. 0 '• ,,, .. '• ,,.,,.

~ I r r,-zr ..

Figure 4. Spectrum of an ideally sampled signal

2.a.2 SAMPLING RATE SELECTION

8
If f. is less than 2f 8 , the images will overlap, or

alias, as shown in Figure 5, and recovery of the original

signal will not be possible. The minimum alias-free sampling

rate of 2f8 is called the Nyquist rate. A signal sampled

exactly at it Nyquist rate is said to be critically sampled.

- f s 0 I fH f9 Z fs

f1 • fH

Figure 5. Aliasing due to overlap of spectral images

2.a.3 UNIFORM SAMPLING THEOREM

If the spectrum X(f) of a function x(t) vanishes beyond

an upper frequency of fa Hz or ~ rad/s, then x(t) can be

completely determined by its values at uniform intervals of

less than 1/ (2f a) or Tr/ 6). If sampled within these

constraints, the original function x(t) can be reconstructed

from the samples as follow:

x(t) = E x{nT) sin (2fs (t-nT))
n•-• 2f • (t-nT)

(3)

Where T is the sampling interval.

Since practical signals cannot be strictly band limited,

9

sampling of a real-word signal must be performed at a rate

greater than 2f 8 where the signal is known to have negligible

Co>

-40 dB

(b)

-40 dB- - - - - - - - - - - - - - - - -

fs/2 f1

(c)

-40 dB

Figure 6. Spectrum of an ideally sampled practical signal:
(a) spectrum of raw analog signal, (b) spectrum after lowpass
filtering, and (c) spectrum after sampling.

(that is, typically less than 1 percent) spectral energy

10

above the frequency fH. When designing a signal processing

system, we will rarely, if ever have reliable information

concerning the exact spectral occupancy of the noisy real

world signals that our system will eventually face.

Consequently, in most practical design situation, a value is

selected for ~ based upon the requirements of the particular

application, and then the signal is low-pass-filtered prior

to sampling. Filters used for this purpose are called

antialiasinq filters or guard filters. The sample-rate

selection and guard filter design are coordinated so that the

filter provides alternation of 40dB or more for all

frequencies above £5 /2. The spectrum of an ideally sampled

practical signal is shown in Figure 6. Although some aliasing

does occur, the aliased components are suppressed at least

40dB below the desired components. Antialias filtering must

be performed prior to sampling. In general, there is no way

to eliminate aliasing once a signal has been improperly

sampled. The particular type (Butterworth, Chebyshev, Bessel,

Cauer, and so on) and order of the filter should be chosen to

provide the necessary stop band attenuation while preserving

the pass-band characteristic most important to the intended

application.

2.a.4 DISCRETE-TIME SIGNALS

Once we are operating strictly within the digital or

discrete-time realms, we can dispense with the Dirac delta

11

impulse and adopt in its place the unit sample function,

which is much easier to work with. The unit sample

function is also referred to as Kronecker delta impulse.

Figure 7 shows, both the Dirac delta and Kronecker

delta representations for a typical signal. In the function

sampled using a Dirac impulse train, the variable

(a) ~
(b) I ;·~ I I 111 L . '

0 2T 4T 6T 8T

1(n)

(c)

I , I I I 1111 , ..
o ' 2 3 • 5 & 1 a g

Figure 7. Sampling with Dirac and Kronecker impulses:
(a) continuous signal, (b) sampling with Dirac impulses,
and (c) sampling with Kronecker impulses.

is the continuous time t, and integer multiples of the

sampling internal T are used to explicitly define the

discrete sampling instants. On the other hand the Kronecher

12

delta notation assumes uniform sampling with an explicitly

defined sampling interval. The independent variable is the

integer-valued index n whose values correspond to the

discrete instants at which interval is dispensed with

completely by treating all the discrete-time functions as

though they have been normalized by setting T=l.

2.a.5 DISCRETE-TIME FOURIER TRANSFORM

The Fourier series is given by equation 4

x(t) = L X[n] ei21tnFt (4)
n=-oo

Where F = l/t0 = Sample spacing in the frequency domain

t 0 = period of x (t)

Likewise

X [n] = ~J x (t) e-in21tFtdt (5)
ta to

The fact that the signal x(t) and sequence X [n] form a

Fourier series pair with a frequency domain sampling interval

of F can be indicated as:

x(t) <---~---> X[n]

Once we have defined a discrete-time sequence x[n], the

Discrete-Time Fourier Transform (DTFT) can be used to obtain

the corresponding spectrum directly from the sequence without

having to resort to impulses and continuous-time Fourier

analysis.

13

The Discrete-Time Fourier Transform, which links the

discrete-time and the continuous-frequency domain is defined

by :

X (ej"'T) = L x [n] e -j"'nT (6)
n=-oo

and the corresponding inverse is given by

x[n]

Tt

= _l:_ Jx (ej"') ej"'nT d(i)
21t

-1t

(7)

2.b FILTER FUNDAMENTALS

Ideal filters would have rectangular magnitude responses

as shown in Figure 8. The desired frequencies are passed

with no attenuation while the undesired frequencies are

completely blocked. If such filters could be implemented,

they would enjoy widespread use. Unfortunately, ideal filters

are non causal and therefore not realizable. However, there

are practical filter designs that approximate the ideal

filter characteristics and which are realizable. Each of the

major types Butterworth, Chebyshev, and Bessel optimizes a

different aspect of the approximation.

2.b.1 MAGNITUDE RESPONSE FEATURES OF LOWPASS FILTERS

The magnitude response of a practical lowpass filter

will usually have one of the four general shapes shown in

Figure 9 through Figure 12. In all four cases the filter

characteristics divide the spectrum into three general

14

regions as shown. The passband extends from direct current up

to the cutoff frequency 2wc. The transition band extends from

we up to the stop band at w1 , and the stop band extends upward

from w1 to infinity. The cutoff frequency we is the frequency

at which the amplitude response falls to a specified fraction

(usually -3 dB, sometimes -1 dB)

(a) D
fc

t IHI~
I (b)

•
'c '

t IHUlj

!cl I I •
fL fu '

t jH!flj

(d} I I •
fL fu '

Figure 8. Ideal filter responses: (a) lowpass, (b) highpass,
(c) bandpass, and (d) bandstop.

of the peak passband values. Defining the frequency w1 which

marks the beginning of the stop band is not quite so straight

forward. In Figure 9 · or Figure 10 there really isn't any

particular feature that indicates just where w1 should be

15

located. The usual approach involves specifying a minimum

stop band loss a 2 (or conversely a maximum stop band

amplitude A 2)

Ao

Ao
.fi

At t···································~·······

0 wo .,,
a----- ,....------b~----·

~c...,.i

Figure 9. Monotonic magnitude
lowpass filter: (a) pass band,
transition band.

response of a practical
(b) stop band, and (c)

and then defining w1 as the lowest frequency at which the

loss exceeds and subsequently continues to exceed a 2 • The

width wT of the transition band is equal to (we - w1) . The

quantity wT/we is sometimes called the normalized transition

width. In the case of response shapes like those shown in

16

~o

Azi·································1······~····················

0 "'e .,,

o-------- ----b----

-c-

Figure 10. Magnitude response of a practical lowpass filter
with ripples in the passband: (a) pass (b) stop (c)
transition.

Ao

Ao
12

Az

0 WO 111t

------a -----.. ----- b ------

c- -

Figure 11. Magnitude response of a practical lowpass filter
with ripples in the stop band: (a) pass band (b) stop band
(c) transition band.

17

Ao

Air··························· .. ···············r···F
0

-------0-------- -----b ----·

c- -

Figure 12. Magnitude response of a practical lowpass filter
with ripples in the pass band and stop band: (a) pass band
(b)stop band (c) transition band.

Figure 11 and 12, the minimum stop band loss is clearly

defined by the peaks of the stop band ripples.

CHAPTER III

INTRODUCTION TO DSP56001 DIGITAL SIGNAL PROCESSORS AND THE

DSP56001 ADS APPLICATION DEVELOPMENT SYSTEM

The DSP56K processor is design to be used with the ADS

(Application Development System) for real time DSP systems.

It is a general purpose and single chip Digital Signal

Processors (DSP) . In this chapter we will describe the

DSP56K.

3.a DSP56001 PROCESSORS GENERAL DESCRIPTION

The DSP56001 processor is designed to be fast, and to be

a general purpose DSP implemented with high density, low

power, 5-volt HCMOS technology. The DSP56001 processor

feature an on-chip program memory and two independent on

chip data memories which are part of a dual Harvard

architecture. They are all externally expandable to 64K words

(192 Kwords total) and accessible with zero wait states. This

processor has 512 words of on-chip program RAM supported by

an on-chip Bootstrap Loader.

The DSP56001 processor was not designed for a particular

application but was designed to execute commonly used DSP

benchmarks (such as Digital Filtering, Signal Processing,

Data Processing, Modulation, Numeric Processing, Spectral

Analysis) in a minimum time for a single-multiplier

19

architecture. Useful application combines several of those

useful functions with other functions. DSP can duplicate

almost any analog electronic circuitry. The advantages in

doing so are becoming more and more wide spread since a DSP

is faster and more cost effective.

3.a.l HIGH PERFORMANCE ARCHITECTURE

The DSP56001 has been designed to maximize throughput

in data intensive digital signal processor applications. The

dual nature of the architecture facilitates writing software

for DSP applications. For example, data is naturally

partitioned into X and Y spaces for graphics and image

processing applications, into coefficient and data spaces,

for filtering applications and into real and imaginary, for

performing complex arithmetic. The DSP56001 processors use,

a non-obtrusive three-stage instruction fetch/decode/execute

pipeline, combined with three independent execution units

connected by seven independent buses to three independent on

chip memory blocks, to provides the parallelism needed for

high performance digital signal processing.

The major architectural components of the DSP56001

processors is shown in Figure 13 and include:

a) Three independent Execution Units:

1) The Data ALU

20

2) The Address Generation Unit

3) The Program Controller

b) Six on chip Memories:

DSP56001: One 512 word program RAM

One 256 word X-data RAM

One 256 word Y-Data RAM

Two 256 word programmed ROMs

One 32 word Bootstrap ROM

c) Four independent 24-bit Data buses:

1) The XD Data Bus,

2) The YD Data Bus,

3) The PD program Data Bus,

4) The GD Global Data Bus

e) One memory expansion Port A with:

1) 24 package pins assigned for 24-bit data words;

2) 16 package pins assigned for 16-bit,memory block

linear addressing to 64 Kword;

3) 3 package pins assigned for segmented selected of

a 64 Kword program memory block, a 64 Kword X-

Data memory block, and or a 64 Kword Y-Data memory

block.

4) 4 package pins for handshaking functions.

f) Three multimode on-chip peripherals:

1) One serial communication Interface or general purpose

I/O port C.

2) One Synchronous Serial Interface or general purpose

21

I/O port C.

3) One parallel host interface or general purpose I/O

port B.

g) One clock generator.

h) Input/Output:

1) Memory Expansion (Port A)

2) General-Purpose I/O (Ports B and C)

3) Host Interface

4) Serial Communication Interface (SCI)

5) Synchronous Serial Interface (SSI)

3.a.2 HIGH PERFORMANCE SPEED

At a clock rate of 20.48 MHz, the DSP56001 processor can

execute 10.24 million instructions per second (MIPS)

including up to 30.72 million concurrent arithmetic and dual

data move operations per second (MOPS) . At a clock rate of

27Mhz, this performance becomes 13. 5 MIPS and 40. 5 MOPS

respectively. For example, at a 2 O. 4 8 MHz clock rate the

DSP56001 can execute a 1024 point complex fast fourier

transform (FFT) with bit reversed data addressing in 3.39

milliseconds using 24-bit fixed point arithmetic; at 27Mhz

this same FFT can be executed in 2.57 milliseconds.

3.a.3 HIGH PERFORMANCE PRECISION

The DSP56001 is organized around the registers of a

central processor composed of three independent execution

units.

22

The buses move data and instructions while

instructions are being executed inside the execution units.

Data movement on the chip occurs over four, bidirectional,

24-bit buses: the X data bus (XDB), the Y data bus (YDB), the

program data bus (PDB) , and the global data bus (GDB) . The X

and Y data buses can be a one 48-bit data bus by

concatenation of XDB and YDB.

The 24-bit data buses provides 144 dB of data dynamic

range, the 48-bit concatenated data buses provides 288 dB of

data dynamic range. This data dynamic range is 50% greater

than that provided by 16-bit DSP. This is sufficient for most

real-world applications since the majority of data converters

are 16 bits or less, and not greater than 24 bits. The data

ALU registers may be read or written over the XDB and the

YDB as 24- or 48-bit operand. The source operands for the

data ALU, which may be 24, 48, or 56 bits, always originate

from data ALU operations are stored in an accumulator. The

56-bit accumulator internal to the data ALU provides 336 dB

of internal dynamic range so that no loss of precision will

occur due to intermediate processing. This arrangement

allows, for example, up to 256 multiply instructions to be

executed without any loss of precision due to truncation or

rounding. This capability is directly applicable, for

example, to high precision and efficient implementation of

Finite Impulse Response (FIR) .

Data dynamic range is calculated as:

Data dynamic range in dB = 2 O log10 (2 number of bits)

14 4 dB = 2 0 1og10 (2 2 4
)

288 dB = 20 log10 (2 48
)

9 6 dB = 2 0 1og10 (2 16
)

23

filters. The two 56-bit accumulators each provide 336 dB of

data dynamic range.

YAB

1 1
: rXTERNAL1 ADDRESS ADDRESS XAB AO DRESS

PORT I GENERATION I PAB I : : : BUS
B OR UNIT • • n J t.I' ' SWITCH HOST

' 15, _J ON-CHIP ~ 1111 ROM 11 RAM 11 l!IO)(l4 I l:JO x l~ I BUS
PERIPHERALS I~ I .. 32. 24 512"' 24 µ..iA ROM SINE ROM CONTROLLER~ I PORT A

HOST. SSI. SCI .
.+ 1 PARALLEL 1/0

PORT C

~~,D,i;, I '-:~;i~~~~~· ~ I ! 11 =4k Ji ::-sz· i?" 1f ~ ~&:~
MANIPULATION

UNIT

CLOCK
GENERATOR

XTAL
EXT AL

,...---·- - r---- ... -- - --·
t PROGRAM I 1 PROGRAM I 1 PROGRAM I
I ADDRESS DECODE ... INTERRUPT 1

~G~~R~T~R J ~~~o.:L~J ~~T~C.:L~:
PROGRAM CONTROLLER

DATA ALU
24 x 24 + 58 t 56-BIT MAC

lWO 51-BIT ACCUMULATORS

MOOAllRQA
RESET

16 BITS

c:== 24 BITS

Figure 13. DSP56001 Block Diagram

3.a.4 HIGH PERFORMANCE INSTRUCTION SET

The objective of the instruction set is to provide

capability to keep the ALU (Arithmetic Logic Unit) and the

AGU (Address Generation Unit) busy with each instruction

cycle, achieving maximum speed and minimum program size.

The DSP56001 instructions consist of -one or two 24-bit

words- an operation word and an optional effective address

24

extension word. Four columns are used for each instruction

syntax : opcode, operands, and two parallel-move fields. An

operand sizes are defined as follows: a byte is 8 bits long,

a short word is 16 bits long, a word is 24 bits long, along

word is 48 bits long, and an accumulator is 56 bits long.

The instruction set includes 62 microprocessor - like

mnemonics which make the transition from programming

microprocessors to programming the DSP56001 processor easy.

The instruction set offers features which take full

advantage of the duality of the architecture and at the same

time yields a compact code. For example, a Repeat Next

Instruction (REP) instruction is repeatable n-times. A single

REP(n) instruction followed by a single multiply-accumulate

(MACR) instruction (with two concurrent data move operations)

allows an n-tap FIR filter algorithm to be compactly coded

with only two instructions and executed in only 2(n+l) clock

cycles.

Interface
Card

DSPS6001
ADM

Ribbon
Cable

Ribbon
Cable

AID
DIA

DSPS6ADC16
Evaluation Board

Figure 14. Application Development System Component

25

3.b GENERAL DESCRIPTION OF THE ADS

To design, debug and evaluate hardware tool such as the

DSP56000 based systems, a DSP56001 ADS application

development System (ADS) is used.

As shown in Figure 14, the ADS contains three components:

1) An ADS56000 software program which runs on the host

platform. It interfaces with the user and controls the

ADM.

2) A host interface board which is located into the back

plane of the host platform and is hooked up to the ADM

via a ribbon cable;

3) An application development module (ADM) board which

consists of a DSP56001 processor, off-chip expansion

memory, an interface and control circuitry, and

several connectors for hook-up to application specific

boards; The host platform between the user and the ADM

uses the IBM-PC. Therefore, it is required that a host

interface board which is compatible with the IBM PC's

backplane and ADS56000 User Interface Software Program,

be used.

3.c DESIGNING FIR FILTERS AND IMPLEMENTING THEM ON THE

DSP56001 PROCESSOR

The FIR filter has three distinct properties it is

stable, realizable, and can always be designed to have a

linear phase response.

26

3.c.l FIR FILTER FREQUENCY RESPONSE

The digital output sequence y(n) is related to the FIR

filter's digital input sequence x(n) by the following

equation:

N-1

y(n) = E bix(n-i) (8)
i=O

Where bi are filter coefficients and N is the number of those

coefficients. The filter coefficients bi provides the

characteristics of the filter through which x(n) is inputed

to create the desired output sequence y (n) . The output

sequence y(n) of this nonrecursive filter (FIR filter) is a

function of its current and past inputs. The z-transform

transfer function H(z) corresponding to equation 8 can be

expressed as:

H(z) = Y(z)
X(z)

N-1 N-1

= E biz-i = E h(i) z-i (9)
i=O i=O

Where h(i) the impulse response of the FIR filter,is composed

of bi, the coefficients of the FIR filter.

To determine the frequency response of the FIR filter,

the Z-transform variable z is evaluated on the unit circle

as:

z = ej21tf (1 o)

where f = normalized frequency (actual frequency divided by

the sampling frequency)

27

By substituting equation (10) into (9) the frequency response

of the FIR filter can be written as:

N-1

H(ej21tf) = E h(i) e-j2Ttfi (11)
i=O

3.d IMPLEMENTING AN FIR FILTER

Equation 8 is used to implement an FIR filter. The

following algorithm is performed to perform the convolution

of the input sequence x(n) and the impulse sequence bn:

1. The initial value of the input sample x (n) is

stored.

2. The input sample x(n) is multiplied by b 0 then,

accumulated, the resulting products of the filter

states x(n-i) and the coefficients bi to finally

yield the output y(n).

3. Shift the filter states to obtain the next output

sample y(n+l).

3.d.1 IMPLEMENTING AN FIR FILTER ON THE DSP56001 PROCESSOR

Step 1-3 of the previous section can be efficiently

implemented on the DSP56001 processor by using its:

a) Address pointers to mimic FIFO-like shifting of

RAM data.

b) Modulo modifier addressing capability Mn

Modulus-1) to provide wrap-around data buffers.

c) A signed Multiply-Accumulate (MAC) instruction

which multiply two operands and adds the product

to a third operand in a single instruction cycle.

d) A parallel data move with the MAC instruction, to

keep the multiplier running at full capability.

e) Repeat Next Instruction (REP) instruction.

28

The DSP56001 processor's Address Generator Unit is

composed of 8 Address Registers (Rn), 8 associated Offset

Registers (Nn), and 8 associated Modulo Registers (Mn). The

DSP56001 processor's capability to perform modulo addressing

allows an Addressing Register (Rn) value to be incremented

(or decremented) and yet remain within an address range of

size L, where L is defined by a lower and an upper address

boundary.

For the FIR filter, L is equal to the number of

coefficients (taps) . The value L-1 is stored in the DSP56001

processor's Modifier Register (Mn). Because of the manner in

which the DSP56001 processor's modulo addressing mechanism is

implemented, the lower address boundary of L (base address)

must have zeros in its K LSBs, where 2k ~ L, e.g, the base

address boundary is the sum of the lower address boundary

(base address) plus the modulo size minus one, e.g, the base

address value plus L-1. Note, the upper address boundary is

not stored in a register.

29

When modulo addressing is used, the Address Register

(Rn) points to a modulo (circular) data buffer located in X-

memory and Y-memory. The address pointer (Rn) is not required

to point at the lower address range L. If the address pointer

increment post the upper address boundary (base address plus

L-1 plus 1) it will wrap around to the base address.

3.d.1.a CIRCULAR CONVOLUTION

Ntaps-1

y [n] = L b [m] *X [((n-m)) N] o ~n~Ntaps-l (12)
m=O

In linear convolution, the computation of the sequence

value y [n] involves multiplying one sequence by a time-

reversed and linearly shifted version of the other and then

summing the values of the product b 0 * x[n-m] over all m. To

obtain successive values of the sequence representing the

convolution, the two sequences are successively shifted

relative to each other. In contrast, for the convolution as

given by equation (12), the second sequence is circularly

time reversed and circularly shifted with respect to the

first. For this reason, the operation of combining two

finite-length sequences according to equation (12) is called

circular convolution. If both sequences are of the same

length, then we can call it a N-point circular convolution.

To illustrate the circular convolution we can take two

Ntaps point periodic sequences. To evaluate y[n] for n=3, we

30

have to multiply bm and x[3-m] and then sum the product terms

bm * x[3-m] for 0 s m s Ntaps - 1 to obtain y[n]. As n

changes, the sequence x[n-m] shifts appropriately, and is

evaluated for each value along that interval. This circular

convolution of Ntaps points will be used and illustrated in

the next section.

3.d.2 DSP56001 INSTRUCTIONS FOR IMPLEMENTING AN FIR FILTER

To implement the sin (x} /x FIR filter, we take two

sequences of same length, Ntaps. The input sequence x [n] will

be, the digitized sine wave, and bn will be the coefficient

of this filter. Since both have the same length we use an

Ntaps-point circular convolution. We have already seen that

to convolute this two sequences we need to:

1. Multiply/Add the sequences

2. Rotate any one (since this operation is commutative)

of the sequence.

The DSP56001 instructions shown in Figure 15 are used to

implement the FIR filter algorithm where:

1. Modulo Register MO will get the value of Ntaps - 1

(modulo NTAPS} . Address Register RO is set to point to

the filter data shift register buffer located in X

memory. We will do the same, with Modulo Register M4

which get the value Ntaps - 1 and R4 point to the filter

coefficients buffer located in Y-memory. We assume that

31

the program has been executing for some time, and is

ready to process the input sample x(n) in the Data ALU

Input Register XO, the address in R4 is the base address

(lower boundary) of the coefficient buffer. The address

in RO is M, where M is greater than or equal to the

upper-boundary X-memory address. The contents of the

DSP56001 processor's A-accumulator and Data ALU Input

Registers XO and YO are as shown in Figure 16.

2. The CLR instruction not only clear the A-Accumulator, it

also moves the input sample x(n) from the Data ALU's

Input Register XO to the X-memory location pointed to by

Address Register RO and transfers the first coefficient

from the y-memory location pointed to be Address

Register R4 to the Data ALU's Input Register YO. RO and

R4 are also incremented at the end of this instruction,

see Figure 17.

3. The REP loop instruction will executes the following MAC

instruction Ntaps-1 times:

mac xO,yO,a x: (rO)+,xO y: (r4) +,yo

4. A circular convolution will be implemented using the MAC

instruction by multiplying the filter state variable in

XO by the coefficient in YO, and by adding the product

to the A-Accumulator, and simultaneously do the same

things The X-memory map for the filter states, the Y

memory map for the coefficient and the contents of the

32

first, second and last MAC instruction are as shown in

Figure 18, 19 and 20 respectively.

5. The MACR instruction calculates the final tap of the

filter algorithm, performs convergent rounding of the

result, and simultaneously decrements the address. This

FIFO like shifting of the filter state variables is

accomplished by simply adjusting the RO address pointer.

The X-memory map for the filter states, the Y-memory map

FIR.filter

XO
a
Ntaps

= input .sample
= output sample
:::: number of coefficient taps in

move #states ,ro
move #ntaps-1,mO
move #coef ,r4

move ··#ntaps~1, m4

clr a
rep #ntaps ... 1
mac .xo,yo,a
macr xO,yO,.a

.xO,X:{rO)+

x:{rO}+,xo
{rO} -

point ··to filter states
mod(ntaps)

; point to filter
coefficients

mod(ntaps)

y.: t:r4J+,yo

y :··•·{:r4·)·.+.•,yo

Figure 15. DSP56001 Assembler Instructions to implement
the FIR filter Algorithm

l\~11

~ L'_'"_, __ _ ~
Yo~.,..,._, -1

X (Up~r

Boundary I

X 1M + J

X IM + 2

'< IM+ I

'< !Ml

'< tM - I

X IM - 2

X 1M - J

X ·(Lown
Boundary I

I

)

)

I

I

I

t

I

I
t In - ~)

•In - 21

tin - II

•In - nca"'I ~

• In - nllP\ + II

• In - nllf" + 2)

' (n - nllf'\ +])
-

t::_: I

33

b., ... I

b,

ti?

n,

blot

Figure 16. Memory Map and Data Registers at the Beginning of
the n iteration.

"I ct

~.~

"1 Y,. li__-==-=--_I

'((l'l"fll''
Bou111J.uy1

\ IM+ I

X 1M • 2

X 1\.1 + I

' 11\il

'< 1M

X 1M - 2

X rM - I

'((lo"""'
8oumJary)

l
I

I

I

I

'
I

I

• I
' 1n - 11

' (0 - 21

' fO - II

'(Ill

' 10 111.ir" + 11

'1n - nra('\ • 21

' (n - 111 ap' • 11

• I

34

b., - I

b1

b1

b,

bo

Figure 17. Memory Map and Data Registers after the CLR
Instruction.

for the coefficients, and the contents of the A-

Accumulator and Data ALU Input Registers XO and YO after

execution of the MACR instruction are as shown in Figure

21.

A:-

x.. [

v .. [

X ll'p~r
Boundary I

"(1M + H

"(1M + 21

"((M +II

"((!\ti

"((M - II

x (M - 21

x 1M - ,,

x clown
Boundary)

35

bo • (n)

ll (n - I)

b,

' In - ''

'In - ~I

'en - 11

• (n I

' en - nra'" + 11

' (n - nraf"' + 21

• tn - n1a'" +))

Figure 18. Memory Map and Data Registers after the execution
of the First MAC instruction.

br, • fn• + b, • fn - II

I

"· i • '" - :1

'" i ~z

"\ 1 l 'rrt'r
l\t•um.Jan I

' 1'' • ''I • In - II

\ 1 \I .. :11 'Ill ~·
\ 1 \I • 111 ' In II -\ 1 \It 'tnl -
' 1 \' II; 'In 11tJ1"' • 11

\ , ,, :i1 \Ill llf •• ,,. • :1

\ , ,,
''l 'Ill Ill.If'' " ll

~

, ·J .,. ... , I
"··1111d.ll\ t

1+-G

36

Figure 19. Memory Map and Data Registers after the Execution
of the Second MAC Instruction.

-'[

x.i I
Yn [

X · fLIJ'per
Boundary I

x IM +- J)

'(IM +- 21

"(CM+- II

x (Ml

"(1M - II

"(1M - 21

x IM - JI

X ·flower I
Boundary I

37

bo • fn) +- b1 • (n - I) + +- h"'""'. z • In - n1a~ +- 21

• (n - ntaps + I)

b",..,. - I

bnt--1

'en -)I

'In - 2)

•In - I l

• (nl

1tn - nta~ +-II

• (n - nliJ" + 2)

'In - nta~ +- H l l I b,

bz
--
b,

I I I bioi

Figure 20. Memory Map and Data Registers after the execution
of the Last MAC Instruction.

,\ (b,, 1 fn) +. +- b,.. __ , 1 (n - ntaps + I) ,. y (n)

'(,, I • (n - nta~ +- II

Yo I b.,. __ ,

I l
X · IUl'J!n
Bound.arvl I I I I b. .. - 1

" f\t ... l)

" (1\1 ... z
X fl\1 +.I

X 1Ml

X fl\1 - I

" (1\1 - 21

" (1\1 - ,,

X llo..,l'f
R<!11nd.arvl I

1 fn - H

1 '" - 2)

11 fn - I)

1 (nl

1 In - nta'" + I l l
' fn - ntar" +. 21

ll (n - Ml.Ir" +. 1) It,

b1

I bi,

b,

38

Figure 21. Memory Map and Data Registers after the execution
of the MACR instruction.

CHAPTER IV

DIGITAL SIGNAL PROCESSING SYSTEMS

The DSP system consist of an analog-to-digital (A/D}

converter, a DSP56001 processor, a digital-to-analog (D/A}

converter. A DSP56000ADS Application Development System (ADS}

is used to provide and control the DSP56001 processor; a

DSP56ADC16EVE Evaluation Board (EVE} is used to provide and

control the A/D converter and the D/A converter. The DSP56001

processor's Synchronous Serial Interface (SSI} port is used

to accommodate serial data transfers from the D/A converter.

In this chapter we will describe this DSP system that monitor

the DSP56K.

4.a DSP SYSTEM

In the DSP System defined above and shown in Figure 22

and 23 an analog input signal is digitized by the A/D

OSP,6001
rFIR F1lttrl

Figure 22. DSP system.

--L 4nalot
01 4 Oucpu• Si1Ml . ___ __J yttl

converter on the EVE. The digitized signal is the output from

40

the A/D converter as a 16-bit serial data stream delimited by

a Frame Sync Output (FSO) signal via the receive channel of

the DSP56001 processor's SSI port, the digitized signal is

received by the DSP56001 processor located on the Application

Development Module (ADM) of the ADS. The DSP56001 processor

V+
AnaJoa
lnpuc

v-

EVB !Attached DSP5GI ADM l

-----------. Ex& ConnlCIOr

SOO I <J 1 ' •I

OSP,6ADCl6 sco I " I

AID

FSOl"I I

XT AL Oscillator

Oock

DIA /LE~------

s
s
I
p
0
R
T

.___.DSP .. , ___ .,, _ __.1

Jumper Opcion 1 ~'!P ~
20KHz
Lo wpm

Reconsuuc:lioa
Filter

,,_ _____ .. Ana10I Oulput

DSP'6001

Figure 23. EVB block diagram.

41

routes the digitized signal from the receive channel of its

SSI port to the transmit channel of its SSI port via the

transmit channel of the DSP56001 processor's SSI port, the

digitized signal is outputed from the DSP56001 processor as

a 16-bit serial data stream and routed to the serial input of

the D/A converter located on the EVB. The D/A converter

constructs an analog output signal from the digitized input

signal. A reconstruction filter smooths the analog signal

output from the D/A converter. In order for the D/A converter

to be able to properly reconstruct the analog signal which

was originally input to the A/D converter, the Nyquist

Sampling Theorem must first be satisfied. That is, the analog

signal input to the A/D converter must be sampled by the A/D

converter at a rate greater than twice its highest frequency

component (fh) . Sampling at this frequency (2fh) is known as

sampling at the Nyquist Rate.

The output signal is a good reconstruction of the input

signal at frequencies below 20 KHz. Since the Nyquist theorem

is not contradicted (2*fh s 48 Khz) and the cut off

frequency start at 20Khz.

4.b DSP56ADC16EVB EVALUATION BOARD (EVB)

The EVB is an A/D and D/A conversion system that can be

used in configuration with the ADS. The major components of

the EVB, shown in Figure 23 are:

1. One DSP56ADC16 16-bit, oversampling, Sigma-Delta

A/D converter which can serially output 16 bit

data samples at group rates up to 100 KHz per 16

bit sample,

2. One 16 bit D/A converter and

3. One low pass reconstruction filter with a cut off

frequency of 20 KHz.

4.c DSP56001 PROCESSOR SSI PORT PINS

42

The SSI port has six dedicated pins as shown in Fig 24

1. Serial Transmit Data (STD)

2 . Serial Receive Data (SRD)

3 . Serial Clock (SCK)

4. Serial control (SCO)

5 . Serial control (SCl)

6 . Serial control (SC2)

As shown in Figure 23, the SSI port's STD, SRD, SCK, and

SC2 pins are used to interface the DSP56001 processor on the

ADM to the A/D converter and D/A converter on the EVB. The

STD pin is used to output data from the SSI port's Serial

Transmit Shift Register. This data is routed to the input of

the D/A converter. The SRD pin is used to receive data into

the SSI port's Receive Data Shift Register. This data

transferred from the A/D converter. The SCK pin is used by

the SSI port to accept an external clock. The source of this

43

external clock (inverted form) is the Serial Clock Output pin

of the A/D converter.

This external clock (non-inverted form) also clocks the

D/A converter. The SC2 pin is used by the SSI port to accept

external frame sync. This external clock (non-inverted form)

also clocks the D/A converter. The SC2 pin is used by the SSI

port to accept external frame sync.

p
0
R
T

c

PCO . . . •
PCl · · · · · · · · •
PC2•
SCO Serial Control .Pin 0
SC 1 Serial Control Pin I
SC2 Serial Control Pin 2 Serial
Sa< Clock Pin
SRD Serial Receive Dara Pin
STD Serial Transmit Data Pin

Figure 24. Synchronous Serial Interface Pins.

4.d SETTING UP THE DSP56001 PROCESSOR'S SSI PORT

Each of the Host, SCI,and SSI on chip peripherals have

their own control, status, and data registers. The DSP56001

processor accesses each of these registers as if they were

memory mapped I/O. These on chip memory mapped registers are

accessed at X-Memory locations $FFCO-$FFFF.

44

4.d.1 SSI PORT SELECTION

In the DSP System, the SSI port of the DSP56001

processor which is located on the ADM is used to receive

serial data from the A/D converter on the EVB and transmit

serial data to the D/A converter on the EVB. The DSP56001

processor's port C Control Register {PCC) has 9 bits which,

in a one-on-one fashion, individually select each of the 9

pins of port C to operate either as a general purpose I/O pin

or as a SCI and/or as a SSI peripheral function pin. Port C

pins can be configured as a general purpose I/O pins by

clearing the corresponding PCC register bits; Port C pins can

be configured a SCI and/or SSI function pins by setting the

corresponding PCC register bits. The PCC register can be

accessed at X-Memory location $FFE1. The following DSP56001

processor instructions select Port C to operate as both a SCI

port and a SSI port:

pee equ $000lff

movep #pee,x:$ffel; write PCC

4.d.2 SSI PORT CONTROL REGISTER A (CRA)

The operation of the SSI Port is directed by two 16-bit

read/write Control Registers CRA and CRB. The CRA controls

the SSI port's:

a) Internal bit clock generator rate

b) Internal frame divider rate, and

c) Data word length

45

The data word length can be 8, 12, 16, or 24 bits. eRA's

word Length Control bits 13 (WLO) and 14 (WLl) .

In the DSP System, the SSI port's internal bit clock and

frame generators are not used. The DSP56001 instructions

below set the eRA to select a 16-bit word length. eRA

occupies X-Memory location X:$FFEC.

eRA equ $004000

movep #eRA,x:$FFEe

4.d.3 SSI PORT CONTROL REGISTER B (CRB)

The operation of the SSI Port is directed by two 16 bit

read/write Control Registers CRA and eRB. eRB controls the

SSI port's:

1. Multifunction pins Se2, SCl, and sea

2. Serial output flag control bits ;

3. Input versus output direction of pins seK, se2,

se1, and sea

4. Operating modes

5. Transmitter and receiver enables ; and

6. Transmitter and receiver interrupt enables.

eRB occupies X-Memory location $FFED. The DSP56001

instructions shown below set up CRB where:

1. eRB bit 4 is cleared to select the direction of

the se2 pin to be an input (external frame sync) ;

2. eRB bit 5 is cleared to select the direction of

the SCK pin to be an input (external clock for

both the Transmit and Receive Shift Registers)

3. CRB bit 6 is cleared to select the Transmit Shift

Register to transmit data MSB first and the

Receive Shift Register to receive data MSB first;

4. CRB bit 7 and 8 are cleared to select a word

length (16-bit) frame sync ;

5. CRB bit 9 is set to select both the transmitter

and the receiver to operate in the synchronous

mode and use a common clock (SCK pin) and a common

frame sync (SC2 pin) ;

6. CRB bit 10 is cleared to select the "continuous"

clock operating mode ;

7. CRB bit 11 is cleared to select

operating mode where one data word

transmitted or received per frame ;

the "normal"

(16-bits) is

8. CRB bits 12 and 13 are both set to enable the

transmitter and receiver respectively

CRB bits 14 and 15 are both cleared to disable the

transmit and receive interrupts respectively ;

9. CRB bits 3-0 are not pertinent to this particular

SSI port configuration, nevertheless they are

cleared.

CRB equ

movep

$003200

#CRB Ix: $FFED

46

47

4.d.4 SSI PORT STATUS REGISTER

The SSI port's Status Register (SSISR) is an 8-bit read

only register used by the DSP56001 processor to interrogate

the status and serial input flags of the SSI port. The Status

Register occupies X-memory location $FFEE.

4.d.S SSI PORT RECEIVE REGISTERS

The SSI port's Receive Shift Register is a 24-bit

register that receives incoming data from the Serial Receive

Data (SRD) pin. The Receive Data Register (RX) is a 24-bit

register that accepts data in parallel from the Receive Shift

Register when the Receive Shift Register becomes full. RX

occupies X-Memory location $FFEF. The Receive Data Register

Full Flag (RDF) of the SSI port's Status Register (bit 7) is

reset when the DSP reads the contents of the Receive Data

Register or when the DSP56001 processor is reset.

In the DSP System, the Receive Shift Register accepts

serial input data via the Serial Receive Data (SRD) pin when

an external frame sync asserts Serial Control Pin 2 (SC2).

The Receive Shift Register is externally clocked via Serial

Clock (SCK) pin.

4.d.6 SSI PORT TRANSMIT REGISTERS

The SSI port's Transmit Shift Register is a 24-bit

register which transmits (outputs) serial data via the Serial

Transmit Data (STD) pin. The Transmit Data Register (TX) is

48

a 24-bit register which supplies data in parallel to the

Transmit Shift Register Data to be transmitted is written

into the TX Register and is automatically transferred to the

Transmit Shift Register when a frame sync is asserted. TX

occupies X-Memory location $FFEF. The Transmit Data Register

Empty Flag (TDE) of the SSI port's Status Register (bit 6)

is set when the contents of the TX are transferred to the

Transmit Shift Register. TDE is cleared when the DSP56001

processor writes new data to TX or when the DSP56001

processor is reset.

In the DSP System, the Transmit Shift Register transmits

serial output data via the Serial Transmit Data (SRD) pin

when an external frame sync asserts Serial Control Pin 2

(SC2). The Transmit Shift Register is externally clocked via

the Serial Clock (SCK) pin.

4.d.7 READING RX AND WRITING TO TX

For the DSP system, the DSP56001 process reads RX and

transfers its contents without modification to TX. The

DSP56001 instructions shown below :

1. Polls the RDF in the SSI port's status register

(bit 7)

2. Reads RX when RDF becomes set (RX contains data

supplied by the DSP56ADC16 A/D converter at a 48

KHz sampling rate)

3. Moves the contents of RX to TX (TX contains data

49

to be supplied to the D/A converter) and

4. loop back to Step 1

poll btst #7,x:$ffee ,· test for A/D data

jcc poll ; loop until RDF bit=l

movep x:$ffef,a ; move A/D data to "a"

move a,x:$ffef ; send A/D data to D/A

jmp poll ; loop indefinitely

CHAPTER V

RECONSTRUCTION OF ANALOG SIGNAL UP TO 22 KHz

A/D AND D/A RECONSTRUCTION

An analog input signal is provided from a function

generator to the analog input signal of the EVB. The analog

input is monitored by one channel of a dual trace

oscilloscope. The analog input from the EVB is monitored by

the other channel of the oscilloscope.

The DSP56001 processor located on the ADM executes the

absolute load file evb.lod to route the digitized form of the

analog signal. The file evb. lod is assembled and linked

result of the assembler program.

The analog-to-digital converter (DSP56ADC16) sample the

analog signal and send it to the digital-to-analog converter

(PCM56) to reconstruct the signal. The output is sent to the

oscilloscope via BNCl.

S.a PROCESS TO DESIGN THE COMPENSATION FILTER

The following steps are needed before describing how to

get those values

1. Overview of the DSP program

2. The compensation filter

51

S.a.1 OVERVIEW OF THE DSP PROGRAM

After editing an assembly source file the ASM56000

Relocatable Macro Cross Assembler is used to translate to the

file of assembler source statements for each program or macro

into a relocatable file of DSP56001 object code statements.

The LNK56000 Linker is then used to process the relocatable

object code file generated by the assembler for each program

or macro to produce an absolute load file which can be either

loaded directly into the ADS for execution and testing or

input to the SIM56000 Simulator program for simulated

execution and testing. Figure 25 shows the DSP56001 program

development process. An alternative way to generate an

absolute load file takes advantage of the assembler

executable options. A -b option specifies that an object file

is to be created for assembler output. The type of object

file produced depends on the assembler operation mode. If the

-a option is supplied on the command line, the assembler

operates in absolute mode and generates an absolute object

file (filename.cld).

This file has to undergo another process to be able to

be downloaded into the ADS. The command line cldlod transform

an .cld file into an .lod which can be used by the

DSP56001ADS or the SIM56000.

S.a.2 ALGORITHM

The DSP algorithm which reconstruct an analog signal,

52

compensate for the sin(x)/x droop off of the D/A zero order

hold effects, works as follow:

FILE.LOO

Write Proanm Usiq ~tor

Assemble Usina ASM56000

DSP~6000ADS
Applicatiom

. Development
System

Sl~6'XX>
Simula&or

FILE.LNK

Figure 25. Development process to generate a .lod file.

A data file which has the FIR filter

coefficient is called

Set up into the X-Memory, starting at

location O, an ntaps storage values for

the input sample

Set up into Y-Memory, starting at

LOOP:

location 0, the FIR coefficients

• Set up the ADS board

• Set up register usage for FIR filter

• Set up port C to function as SS I I SCI,

then set the SSI CRA and CRB control

register for external continuous clock,

synchronous, normal mode.

Read the DSP56ADC16 and process samples

through a sin(x)/x compensation filter

and write the circular convolution

result to the PCM-56 which is a D/A

converter.

S.b THE COMPENSATION FILTER

53

To design a compensation filter we need to sample the

signal at an equal frequency interval, get the measured

magnitude values, then deduce the impulse response desired to

input those values into the compensation filter.

S.b.1 MEASURED VALUES

The frequency interval is chosen to be equal to 387 Hz

(Half Sampling frequency I 2 * Ntaps = 24 KHz I 62) . All the

measured values have been tabulated in Table I.

S.b.2 DESIGN OF THE COMPENSATED FILTER

Using the measured magnitude values in Table I of the

K

123,1

122,2

121,3

120,4

119,5

118,6

117,7

116,8

115,9

114,10

113,11

112,12

111,13

110,14

109,15

108,16

107,17

FREQ

(Hz)

387

774

1161

1548

1935

2323

2710

3097

3484

3871

4258

4645

5032

5419

5806

6194

6581

MAG K

1. 62 106,18

1. 62 105,19

1. 615 104,20

1. 615 103,21

1. 61 102,22

1. 605 101,23

1. 6 100,24

1. 6 99,25

1. 595 98,26

1. 595 97,27

1. 595 96,28

1. 59 95,29

1. 59 94,30

1. 59 93,31

1. 585 92,32

1. 585 91,33

1. 58 90,34

(Table continues in the next page J

FREQ

(Hz)

6968

7355

7742

8129

8516

8903

9290

9677

10065

10452

10839

11226

11613

12000

12387

12774

13161

54

MAG

1. 57

1. 56

1. 55

1. 545

1. 53

1.53

1.515

1. 5

1.48

1.475

1.46

1.46

1.44

1. 435

1.43

1.42

1.4

K

89,35

88,36

87,37

86,38

85,39

84,40

83,41

82,42

81,43

80,44

79,45

78,46

77,47

76,48

TABLE I

FREQ

(Hz)

13548

13935

14323

14710

15097

15484

15871

16258

16645

17032

17419

17806

18194

18581

MAG

1.41

1.405

1. 385

1. 375

1. 36

1. 345

1. 32

1. 3

1.29

1.28

1. 265

1. 26

1.24

1. 225

K

75,49

74,50

73,51

72,52

71,53

70,54

69,55

68,56

67,57

66,58

65,59

64,60

63,61

62,62

55

FREQ MAG

(Hz)

18968 1. 2

19355 1.185

19742 1.165

20129 1.115

20516 .84

20903 .49

21290 .24

21677 .122

22064 .0586

22452 .0282

22839 .0146

23226 .00915

23613 .00745

24000 .0002

The Analog Signal is set to 2.015 V ± 0.005 and is
processed through a straight A/D D/A converters.
The Measured Magnitude Response Of The Digital Sine
Wave is recorded Every 24000/62 Hz and is
tabulated.

56

MAG

3

~J ,:) 30 ~o 50 60

FREQ

Figure 26. Plot Of The Magnitude Response (as tabulated in
Table I) when the analog sine wave is processed through a
straight A/D D/A converter. 24000/62 Hz represents a unit in
the frequency axis.

FREQ MAG FREQ MAG FREQ MAG FREQ MAG

(HZ) (rnV) (HZ) (mV) (Hz) (mV) (Hz) (mV)

19742 17 20903 20 22065 21 23226 13

20129 17 21290 21 22451 21 23612 8

20516 18 21677 21 22839 18 24000 1

Table II Tabulated Result Of The Magnitude Response Of The
Digital Signal after it has been filtered.

57

11111 ..

). ~~

:. J 100 :20

-J.J::.

-) . ~ ~

-) . : ~

- ,j . ,:, 5

Figure 27. 124-point sin(x)/x impulse sequence.

~AG

: . 6

l . ""

J.3

).6

) ~

) .:

10 20 30 ~o so .;J FREQ

Figure 28. Plot of the magnitude response of the compensated
values which were tabulated in Table II. 24000/62 represents
a unit in the freauencv axis.

/

58

straight D/A and A/D converter and computing the IDFT of

those values allows us to get an impulse function h[n]. The

DSP program will then take this impulse function, which can

be a real sequence, and will convolute it with the sampled

function.

/

CHAPTER VI

SIMULATION PROGRAM

INTRODUCTION

To show the complexity of the design of the simulation

program and the constraint inherent to programming, we will

first present a general overview of the algorithm and how to

obtain the coefficient of the filter, finally we will discuss

the result of our analysis.

We will implement a new program which takes as input a

constant unit gain for each input sine wave, and only in the

final stage of the program we will let the input sine wave

have a gain corresponding to the magnitude response of the

system. This stage is necessary to better isolate the

compensation process.

6.a AN OVERVIEW OF THE ALGORITHM

To design this simulation program we need to find ways

to work around some constraints inherent to programming,

while duplicating what we have done using the DSP system. We

will first take as input a constant unit gain for each input

sine wave, and only at the end we will let the input sine

wave have a gain corresponding to the magnitude response of

the system. One important limitation is to work with a small

number of sine wave as oppose to an unlimited number in the

60

hands-on approach (using directly the DSP system) . To remedy

this obstacle we will associate a phase shift for each input

sine wave. This phase shift is preferably chosen to be a

prime number. After this program digitizes and shifts a sine

wave, it will convolute this new sampled sine wave with the

designed digital compensation filter. Only the maximum

magnitude value resulting from that convolution will be

stored, the remaining values will be discarded. For each

maximum magnitude value corresponds an increment frequency

finer' up to 24 KHz. This increment frequency is equal to

Nyquist frequency divided by the number of point used to

design the filter. By collecting all the magnitude value

starting at O and incrementing by f incr until the Nyquist

frequency, we will be able to determine the behavior of this

compensation filter up to 24 KHz.

After successfully processing the data (the theoritical

values are the same values as the measured values), we will

be ready to allow the input gain to be equal to the magnitude

, .. response of the system and to monitor the behavior of the

magnitude response. The program can be divided into 4 parts:

,"'\

I
1) Digitization and shift of a sine wave

2) Convolution with the design sin(x)/x filter

3) Mathematical tools to design the filter such as the

DFT and IDFT

61

4) The main program

The program shapes the output in Maple V format. This

formatted output will allow us to plot the value of a sine

wave which is digitized and shifted, or/and the convolution

result, or/and the magnitude response of the reconstructed

digital signal.

6.a.1. DIGITIZATION AND SHIFT OF THE SINE WAVE

The digitization and shifting procedure, will be used to

sample at 48 KHz (theoretical sampling rate of the DSP56ADC16

A/D converter) a sine wave at a given frequency.

In practice, using the DSP system we have a large number

of periods of input sine waves. To get a replica of this

signal and be able to process it in our program we need to

shift this sine wave. By shifting this digitized signal we do

not change the magnitude of its fourier transform, however we

will amplify the magnitude response by T/27r and we will

normalize the frequency domain by 27r/T.

!T(g(t-t
0
)) = G(cu)e-j'Alto (13)

Now if we introduce a phase shift a= 2n(t-t0)/T, the DFT of

g(t) becomes:

!T[g((21t/T) (t-t0))] = (T/21t) G(cu/ (21t/T)) ej6>to (14)

So, shifting a finite number of periods of sine wave is one

62

solution to recover the original sequence of an unlimited

number of periods of the input sine wave and allows us to

duplicate the process used by the DSP system. The following

is the code used to get the digitized and shifted sine wave

BEGIN

for i = O to Ntaps-1 do

digital[i]=gain*sin((2n*freq*i)/S_rate+(shift*phase))

END

6.a.2 CONVOLUTION ALGORITHM

There are several techniques to convolute two sequences.

It is easier for us to think about two sequences of equal

length. If one of them is larger, than the smaller sequence

is padded with zero until they are of same length.

The following code assumes that the convolution is starting

BEGIN

For j=O to j<Ntaps do

Begin

For i=O to isj do

temp =First seq[j-i]*second seq[i]+temp; - -
convolution_seq[j] = temp;

End

END

63

Now that the end of the First-seq has been reached the pseudo

code will be:

BEGIN

For j=Ntaps to j < 2* Ntaps-1 do

Begin

count = count +l

For i = count to i < Ntaps - do

temp = first_seq * second_seq[j-i]+temp;

convolution_seq[j] = temp;

End

END

6.a.3 INVERSE DISCRETE FAST FOURIER

The Inverse Discrete Fourier Transform will be used to get

the sin(x)/x coefficient filter

BEGIN

For m=O to m<idft_points do

For k=O to k<idft_points do

Begin

Angle = 2*m*k/idft-points;

SimRe=x[k].Re*cos(Angle)-x[k].Im*sin(Angle)+SumRe

Simim=x[k].Im*cos(Angle)+x[k].Re*sin(Angle)+Sumim

End

x[m].Re = SumRe/idft_points;

x[m].Im = Sumim/idft_points;

END

64

6.a.4 MAIN PROGRAM

The objective of this program is, to design a good

digital compensation filter and to duplicate what we did with

the DSP system. This program takes as input the measured

magnitude value of the system. Before designing this FIR

filter we need to think about two flaws that arise:

1) Only a finite sequence of data are available to

digitize the continuous sine wave function. To get a

good replica of the continuous sine wave we need to

shift the sine wave. By adding a phase shift, the

magnitude of the discrete fourier transform does not

change (see 6.a.l).

2) The Gibbs'phenomenon occurs when we are convoluting a

finite length data record with the digital filter.

65

BEGIN

• Initialization;

• Input data;

• Create the filter coefficient:

a) Inverse the gain-array

b) Inverse discrete fourier transform

c) Shift impulse sequence

d) Add zero to the impulse sequence

While (Frequency less than 24 KHz) do

Begin

For (phase shif t=O till End phase shift angle) do

Begin

• Digitize and Shift the sine wave

• Convolution of the Digitize sine wave with the

design FIR filter and discard transient states

only the steady state of the convolution is

accepted

• Determine the maximum magnitude value

End

Increment frequency

End

• Compare all the maximum magnitude value after applying

different phase shift and pick the maximum of that set.

• For each frequency store all the maximum magnitude in

an array.

END

66

6.b CHOICE OF INPUT DATA

This section will focus on choosing the right input data

for which the reconstructed signal will be adequately

compensated. After analyzing the behavior of this new signal

in the frequency domain we will be able to better understand

the output recorded using the DSP system.

6.b.l INTRODUCTION

From the magnitude of the discrete fourier transform of

the impulse sequence, and the measured magnitude values of

the system, we are able to compare, the expected theoretical

values of the reconstructed digital signal (when both values

are multiplied) and, the measured values of the reconstructed

signal. Also, in Figure 29, a SO-points DFT sin(x)/x

magnitude response is shown.

From the measured magnitude values of the system, the

inverse magnitude values will be computed which in turn will

allow us to find the magnitude response of the FIR filter. To

layout the complete simulation program we will compare the

theoretical magnitude values, derived from the FIR filter and

found previously, with the program generated values (let us

call them the measured values). The gain is assumed to be 1.

later, we will incorporate in the program the corresponding

gain for each given frequency.

1.6

MAG
1.4

1. 2

0.8

0.6

0.4

0.2

-0.2

I Simulation
lvalues

~0-point lmpulse

500

67

.@
Measured values of a reconstructed signal

50-point OFT of © I the impulse response

1000 1500 2000

FREQ

Figure 29. 50-point DFT impulse sequence and magnitude
response of the, measured values, programmed values, inverse
values, expected reconstructed and straight A/D D/A
converters of the digital signal. 24000/1000 = 24 Hz
represents a unit along the frequency axis.

6.b.2 PROGRAM CONSTRAINTS

In this section, we will present and analyze several

graphs where discrepancies between the theory and the

measurement (programmed value) are observed. A solution to

remedy those differences will be suggested.

68

The Motorola DSP56001 processor in combination with

DSP56ADC16 and the PCM-56 converters, can input several

continuous sine wave to be sampled and convoluted. The result

will be sent directly to the oscilloscope. This process

happens so fast that we are not able to see the transient

state. Only, the steady state appears on the oscilloscope

screen. No limit on the number of periodic sine wave need to

be observed. Continuous periodic sine wave versus of finite

number of periodic sine wave is one of the program constraint

that we will have to deal with.

We can see in Figure 29, that the theoretical and the

program magnitude response are different. Let's observe

figure 30-36. We notice that at certain points, the measured

value peaks and several bumps shapes the curve. Also, it is

surprising to see that the measured value is even greater

than the theoretical values. Those observations will be

analyzed and a step by step approach will be conducted on

each graph until we will be able to reconcile the measured

and theoretical values.

69

MAG
1. 4 I

1. 2

l

0.8

12 KHZ

0.6

0.4

0.2

FREQ

100 200 300 400

1.4

1. 2

l

0.81 8 KHZ

0.6

0.4

0.2

FREQ

100 200 300 400

Figure 30 (top) and 31 (bottom). Magnitude Response of the
program values and its corresponding SO-point DFT for a phase
shift of, respectively O and 15 degree. 24000/480 = 50 Hz
represents a unit in the frequency axis.

70

1.8

1. 6

1. 4

1. 2

1

8 KHz 12 KHz
0.8

0.6

0.4

0.2

FREQ

100 200 300 400

1.4+ MAG

1.2

1

16 KHz
0.8

0.6

0.4

0.2

FREQ

100 200 300 400

Figure 32 (top) and 33 (bottom). Magnitude Response of the
program values and its corresponding 50-point DFT for a phase
shift of, respectively 30 and 45 degree. 24000/480 = 50 Hz
represents a unit in the freauencv axis.

71

MAG
I

1. 4

l. 2

1

J 4.8 KHz 12 KHz

0.6

0.4

0.2
I

FREQ

100 200 300 400

I /"'\.('
1.4

1.2

1

0.8

0.6

0.4

0. 2,

FREQ

100 200 300 400

Figure 34 (top) and 35 (bottom). Magnitude Response of the
program values and its corresponding 5 0-poin t DFT for a phase
shift of, respectively 60 and 75 degree. 24000/480 = 50 Hz
represents a unit in the frequency axis.

-:-2

l . 6

1 . 4

1. 2

0.8

0.6

0.4

FREQ

200 300 400

1.St MAG

1.6

1.4

1. 2

0.8

0.6

0.4

0.2

FREQ

100 200 300 400

Figure 36 (top) and 37 (bottom). Magnitude Response of the
prcgram values and its corresponding 50-point DFT for a phase
shift of, 90 degree. Collected maximum of each phase shift is
shown in figure 41. 50 Hz represents a unit in the frequency axis.

73

To get the program values of the magnitude response we

take the maximum amplitude value of the convolution sequence

at each incremented frequency as seen in Figure 30-36. Our

first objective is to explain why the measured values peaks

at certain frequencies. From the graph we notice that the

points at which the amplitude peaks, are when those values

are multiples of 48 KHz (sampling frequency) . This

observation indicates that the sine wave has not been

properly digitized at those particular frequencies see Figure

38.a and 38.b.

As a result of those observations, we have introduces a

phase shift for each sine wave. By shifting the sine wave, we

will not change the magnitude response of the signal. Each

sine wave shifted will have its corresponding maximum value

determined after convoluting. The magnitude response of this

digital signal will be chosen to be the maximum value of the

collected maximum values found previously (see Figure 37) .

6.b.2.b GIBBS' PHENOMENON

In Figure 37, most of the minimum peaks have been

removed. We need now, to minimize the error that arises

between the measured and the theoretical values.

We notice that when averaging all the maximum value of

the corresponding phase shift, the magnitude response of the

measured valuE· come closer to the expected values. But

s~Lund SJJ\k Pnin1

\
_ 12(1

I

Third Samp~Pomt ,

"____ 2.+U

74

F1rs1 SJJnpk Puinl

o_/

Sampled PoinlS

Digu.U s~quencc
I

~ An'1og s.gn'1

Figure 38. (a) Shows the sample points in the unit circle,
when the frequency of the signal is 16 KHz (b) Shows the
corresponding point in the time domain.

75

----;,

~~;/ \
/./..

MAG

•

_) _j ~ 5 FREQ

Figure 39. Magnitude response of the average values of each
shifted sine wave, shown in figure 30-36. Each unit in the
frequency domain represents 960 Hz.

again, the measured values gives us at certain frequencies,

a magnitude response greater than the one we want, see Figure

39. We need to examine why the magnitude response is greater

than the magnitude values.

In the time domain, we can see that the convolution

sequence reconstructs a distorted peak at the beginning (can

also happen at the end) of the steady-state see Figure 40.

This explains why, an error of up to 14% occurs between the

expected and the measured values, in the frequency domain. To

avoid taking the wrong maximum values, we have discarded the

·) ;+-

I
'\
;.-1

76

I
,,

\. j r

\j
Figure 40. Represents the transient and the steady state of
the convolution sequence of, the sine wave at 2880 Hz, with
the sin(x)/x FIR filter. A discrepancy of the sine wave peak
in the transient state of the convolution sequence due to the
Gibbs' Phenomenon is shown.

beginning and the end sequence of the convolution sequence.

Only, the middle of the steady state is processed to obtain

the maximum value. The result of this operation is shown in

Figure 41.

6.b.2.e PARTICULAR VALUES OF THE PHASE SHIFT

By shifting the sine wave we are able to improve the

magnitude response (see figure 30-36 and 37). In figure 41, .
we can see that some discrepancies still exist at several

points. These points are particular since the sine wave

frequency divided by the sampling frequency are multiple of

77

the phase shift, so it is as if no phase shift has been

applied. The first point where a discrepancy occurs, is at

2.4 Khz. 20 points will sample this sine wave at every ~/10

radian, and the phase shift happen to be twice this latter

value, see Figure 41.

MAG

1 -

19.2 KHz

1J • ~ 9.6 KHz
2.4 KHZ

) . s

'). 4

5 •) l JO i. 50 200

FREQ

Figure 41. Discrepancies of the magnitude response exist
when the frequency (of the signal) divided by the Sampling
Frequency are multiple of the phase shift. 2v/10 rad is the
phase shift. 120 Hz represents a unit in the frequency
domain.

78

One solution would be to take a prime number as phase shift.

The new magnitude response is shown in figure 42.

MAG

).o

J.6

.) . ~

so 100 150 200

Figure 42. Successful correction of the magnitude
response of the program value by taking a prime number
as a phase shift (43 degree). 120 Hz represents a unit
in the frequency axis.

FREQ

Now that the errors have been corrected we are ready

to design the filter by introducing the corresponding gain

of the measured magnitude values (straight A/D and D/A

measured values) at each given frequency.

79

6.c THE COMPENSATION FILTER

After the analog signal has been pass through the A/D

and D/A converters, we are able to determine the magnitude

response of the digital sine wave. To design the FIR

compensation filter we need to invert those values and take

the inverse discrete fourier transform.

100 400 500

-1

-2

-3

Figure 43.
filter.

Impulse response of a 496-point sin(x) /x FIR

6.c.l DISCONTINUITY AT HIGH FREQUENCY

Around 20 Khz (point 50 in Figure 44) the inverted

values begins to increase very sharply, while the number of

80

sampling frequency points are limited. We can see in Figure

43 that at low frequency the rate at which the curve changes

is almost 0 while there is a large number of points that map

this frequency region. However, around 20 Khz (point 50 in

Figure 44) the rate start to change and reaches a very large

number while a very small number map this frequency region.

MAG

:.zo

:JO

ao

60

~o

20

10 20 }Q ~o ~o 0° FREQ .

Figure 44. Inverted magnitude values of the straight A/D
D/A converters (See Table I). Only 62 points sample the
frequency up to 24 Khz. A unit in the frequency axis,
represents 387 Hz.

From the magnitude response of the system recorded

in Table I, we have inverted those values and tabulated

them in Table III. Also, we have computed the DFT of the

impulse response to compare it with the inverted values.

Both values should be the same since the coefficient

81

FREQ INVERSE DFT OF FREQ INVERSE DFT OF

(KHz) COE FF (KHz) COE FF

18.43 .8403 .8368 21.53 2.5 2.159

18.62 .8474 .8439 21.73 3.125 2.812

18.82 .8474 .8475 21.92 3.636 3.381

19.01 .8547 .8511 22.12 5.0 4.318

19.2 .8621 .8584 22.31 10.0 7.5

19.4 .625 .7435 22.5 14.29 12.14

19.6 .625 .625 22.7 20.0 17.14

19.8 .8658 .7454 22.9 33.33 26.67

20 .8696 .8677 23.08 40.0 36.67

20.18 .8696 .8696 23.28 52.63 46.32

20.37 .9091 .8893 23.47 58.82 55.73

20.56 1. 0 .9545 23.67 66.66 62.75

20.76 1. 052 1. 026 23.86 76.92 71. 79

20.95 1.111 1. 082 24 76.92 76.92

21.15 1. 333 1. 222

21.34 1.818 1.576

TABLE III Magnitude of the, Inverted values and DFT of the
coefficient of the filter (same starting frequency)

82

of the filter has been derived from the inverted values by

doing an Inverse Fourier Transform.

Table III shows that, the magnitude response of the inverted

values and of the DFT of the coefficient of the sin (x) /x

filter are not the same values, at high frequency. Therefore

it is normal that there will be some discontinuity in the

magnitude response as seen in Figure 44. The frequency

response of the digital sine wave has been compensated up to

22 Khz. The discontinuities that we see at high frequencies

are due to the limited number of point that map this

frequency region. So, as we sample the magnitude response of

the straight A/D D/A converters with a larger number of point

the discrepancies will decrease. Table IV, shows that as we

increase this number (sampling frequency point) the maximum

amplitude peak is reduced, from a magnitude of 1.96 with 62

sampling point to 1.2 for 248 sampling point as shown also on

Figure 44.

SAMPLING 62 124 248

POINTS POINTS POINTS POINTS

MAXIMUM

I
1. 96

I
1. 52

I
1.2

I AMPLITUDE

Table IV Shows that as we increase the number of sampling
point in the frequency domain the maximum peaks
decreases.

MAG

1.3

1.6

1.. 4

1.2

x~ f

I
f I

\\ Ii~ ----
v·
2 'JO 210

/
/

/
/

/

'/

)

I
I

I
I

83

1.96

/\ f 62 Sampling points I
I \
I \

\
\

\

I 1.52 \ /\ !Ap __ 2_4_S_a_m_p-lin_g_p_o-in_t_s_}

I \ I ~\-------~
I \ I \ I \ I ________

/ \ I j\ \ 248 Sampling points
I \/ A ~ I

220 230 240

FREQ

Figure 45. Plot of 3 magnitude response of the compensated
program values, which have been determined after the analog
sine wave is passed through respectively 124-point, 496-point
and 992-point sin(x)/x FIR compensation tilter. Respectively,
62, 124 and 248 points are needed to sample the magnitude
response of the A/D D/A converters. A unit in the frequency
axis represents 115 Hz. The frequency starts at 19.4 Khz.

CHAPTER VII

CONCLUSION

This thesis focused on the design of a good digital

compensation filter. Our objective was to correct for the

magnitude attenuation of the input signal when processed by

the Motorola DSP56K. Our simulation program which allowed us

to monitor the magnitude response of the system has shown

that, as we decreased the frequency interval increment finer'

we got closer to an ideal magnitude response.

We have used the 24-bit Motorola DSP56K which is a

general purpose, single chip Digital Signal Processor (DSP).

It was not designed for a particular application but to

execute commonly used Digital Signal Processing benchmarks

(such as Digital Filtering, Signal Processing, Data

Processing) . A DSP can duplicate almost any analog electronic

circuitry.

To compensate for the magnitude decrease of the output

signal (sine wave), we have inverted the magnitude response

of the system and taken the Inverse Discrete Fourier

Transform (IDFT) of the inverted response. The magnitude

response of the system is determined by finding the magnitude

at each frequency interval increment which is equal to the

Nyquist frequency (frequency at which no aliasing occurs)

divided by the number of taps (the number of point used to

85

design the filter) . The impulse response (coefficient of the

filter) obtained is convoluted by the digitized sine wave.

Each digitized sine wave has its corresponding gain, which is

determined by the system. At the beginning of the experiment,

a phase shift is introduced which depends on the time we have

sampled the signal. Although we have focused our study on a

sine wave input signal, it can be generalized to other

periodic signals.

Two experiments have been conducted to compensate for

the magnitude decline of the digital signal:

The first experiment used the DSP56K Application

Development System, which allowed us to design, debug, and to

evaluate a hardware tool such as the DSP56K based system.

Also, the 24-bit Motorola DSP56K processor has been used in

combination with the DSP56ADC16 (A/D converter) and the PCM-

56 (D/A converter) , to determine the magnitude response of

the system. From those values, we have deduced the

coefficients of the FIR filter by taking the IDFT of the

inverse magnitude response. A look-up table stored those

values which would be fetched later by the DSP program. By

taking advantage of the instruction set features offered by

DSP56K we were able to generate a compact code. By combining

a Repeat Next Instruction (REP) with a single multiply

accumulate (MACR) instruction, which is capable of executing

two concurrent data move operations, we were able to design

an N-tap FIR filter algorithm. This minimum set of

86

instructions performed a N-point circular convolution which

allowed us to generate a digital output sine wave of constant

amplitude at low frequency (less than 20 KHz). However, a

second experiment will be needed to improve this digital

compensation filter because the Gibbs' phenomenon introduced

errors at high frequency (greater than 20 KHz) . Also, we were

not able to go beyond a 300-point impulse sequence, because

the time that each sample value is read and is processed by

the DSP56K is shorter than the time each instruction in the

DSP program is executed and is written to the PCM-56. To be

able to expand our experiment, we needed to conduct a new

experiment, to show our premise (as we decrease the frequency

interval increment, we would obtain a good filter).

_In the second experiment, we wrote a new program which

took as its input a constant unit gain for each input sine

wave, and at the final stage of the program we let the input

sine wave have a gain corresponding to the magnitude response

of the system. To do this it is necessary to better isolate

the compensation process. This program has enabled us to

design the desired filter associated with the DSP56K

Application Development System and to observe the compensated

magnitude response. To implement this program, a step by step

approach has been drawn until our final objective has been

reached.

To design this simulation program we needed to find ways

to work around some constraints intrinsic to programming,

87

while duplicating what we did with the DSP system. One

important limitation of this program was that it worked with

a small number of periods of the input sine wave as opposed

to a continuous sine wave (using directly the DSP systems) .

To remedy this obstacle we have associated a phase shift for

each input sine wave. This phase shift is preferably chosen

to be a prime number to avoid that the frequency divided by

the sampling rate is a multiple of the phase shift because

this would be as if we didn't shift the input signal. Also,

we noticed that the sine wave resulting from the convolution

of the digitized sine wave and the impulse sequence peaked at

the beginning and/or at the end of the sequence, and

introduced an error of up to 14% compared with the maximum

peak in the steady state component of that sequence. To avoid

those error values, we have discarded the beginning and the

end of the convolution sequence. This method allowed us to

get the maximum peak in the steady state. Each shifted sine

wave would have its corresponding optimum value, that is the

maximum value of the whole convoluted sequence. The magnitude

value at a particular frequency fc was determined by

collecting all the optimum values at fc and by taking the

maximum in absolute value of those values. By gathering all

the magnitude values starting at 0 and at increments of f~~

until the Nyquist frequency, we were able to successfully map

the frequency response of the system. Until now, the

compensation process hasn't started, (the gain of the input

88

sequence remains equal to one) .

Now we set the input gain to be equal to the magnitude

response of the system and designed several digital

compensation filters, to compare and to analyze their

magnitude response. Two observations have been made after

designing a 124-point compensation filter:

First, the inverse magnitude response divided the

frequency domain into two regions. The first one is the

frequency below 20 KHz which has a good mapping of this

frequency region (most of the magnitude values are

concentrated here and the magnitude response is a constant) ,

while in the second one, the rate at which the curve changed,

became larger as the frequency increased and only a few

points (9 points) covered the remaining 4 KHz.

Second, we observed that, at high frequency the DFT of

this impulse sequence (bJ is not the same value as the

inverse magnitude response of the system.

From these observations we were able to conclude that,

as we increase the sampling frequency, bi would eventually

converge to the inverse magnitude response of the system.

However, they would never be equal because of the Gibbs'

Phenomenon. Two other digital filters have been designed: a

248-point and 496-point digital filter. The latter is closer

to the ideal filter than the former, supporting our

conclusion. Our underlying hypothesis from the beginning has

been that these filters could be adequately approximated:

89

such sharp cutoff digital filters can be realized, although

they are more costly. However, if we compare them with sharp

cutoff analog filters which are designed using active

networks and integrated circuits, a digital filter may be the

cheaper alternative.

REFERENCES

[l] Yih-Chyun Jenq, Sine Interpolation Errors in Finite Data

Record Length, IEEE IMTC/94, Hamamatsu, Japan, May 10-12

1994.

[2] A.D Evans (Ed.) I Designing with Field-Effect

Transistors, New York: McGraw-Hill, 1981.

[3] Williams, Arthur B., Electronic Filter Design Handbook.

New York, NY:McGraw-Hill, 1981.

[4] Holt, C. A. Electronic Circuits Digital and Analog. New

York: Wiley, 1978.

[5] Mohammed El Sharkawy, Real Time Digital Signal

Processing Applications With Motorola's DSP56000 Family,

Prentice-Hall, 1990.

[6] Alan V. Oppenhenheim and Ronald W. Schafer, Discrete

Time Signal Processing, Prentice Hall, 1989.

[7] Antoniou, A.: Digital Filters: Analysis and Design,

McGraw-Hill, New York, 1979.

	Design of a Digital Compensation Filter
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1559163629.pdf.KmD0O

