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Abstract 

The conversion from low speed to high speed and vice versa in various forms, including 

rotary and linear motion, is a requirement for a wide range of applications. For example, 

wind power generation requires a conversion of low speed rotation of turbine blades to 

high speed generator rotation, and ocean wave power generation is achievable by 

conversion of low speed linear motion to either high speed rotation or high speed linear 

motion. Mechanical gearboxes, hydraulic and pneumatic actuators are commonly used to 

achieve these conversions. However, these systems suffer from reliability issues, high 

maintenance requirements, noise, and lack of overload protection. 

As an alternative, electromagnetic actuators overcome most of the issues related to the 

mechanical, hydraulic and pneumatic mechanisms. However, magnetic shear stress is 

constraint by current density and magnetic saturation. Recently, magnetic gearboxes have 

been proposed, which rely only on magnetic loading. They provide speed and force 

conversion like their mechanical counterparts, but without thermal constraints (current 

density limits). Unlike mechanical gears, magnetic gear contact-less operation enables it to 

operate without lubrication and with low noise, and higher efficiency. Its reliance on 

magnetic loading also provides overload protection.   

This dissertation focuses on investigating two new types of magnetic gears; first a 

magnetically-geared lead screw is proposed, which converts a low speed linear motion to 

a high speed rotary motion. The proposed actuator is a combination of two previously 

proposed actuators, the linear magnetic gear and the magnetic lead screw. Unlike these two 

topologies, the translator part of the proposed magnetically geared lead screw is made 
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entirely of low-cost ferromagnetic steel. Therefore, the translator stroke length can be long 

without requiring more magnet material. 

In the second part of this dissertation, an axial flux magnetic gear is proposed that has 

an integrated outer stator. This axial flux magnetically-geared motor is unique in that the 

stator shares the high-speed rotor with the magnetic gear, so there is no need for a separate 

rotor. The high speed and low speed rotors use a flux-focusing typology. The stator is 

mounted outside the axial flux magnetic gear. This makes the design mechanically less 

complex. It also enables the stator to be cooled more easily. 

In the last part of this dissertation, analytical-based models are proposed for a linear 

permanent magnet coupling and magnetic lead screw. These models help to find the upper 

bound of the similar devices, which require a scaling analysis. Numerical methods like 

finite element analysis are accurate and effective enough for modeling various 

electromechanical and electromagnetic devices. However, these simulations are usually 

computationally expensive; they require a considerable amount of memory and time, 

especially when considering 3D finite element simulation. The proposed analytical models 

offer exact field solution while significantly reducing the computational time. 

Detailed analysis of two magnetic gears is given under their corresponding chapters. 

Preliminary experimental results are also provided.  The analytical-based model is 

presented and verified by FEA results. A summary of research contributions and future 

works is outlined. 
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1 Chapter 1: Introduction 

1.1 Motivation 

Actuators are devices that convert energy from an external source into mechanical 

energy [1]. Actuators have a wide range of applications in everyday life; from a small hand 

prosthetic to a giant excavator, from an active car suspension system to an ocean energy 

power take off, and from a simple lock system to a very complicated automation system.  

Fig. 1-1-a shows the Heidelberg pneumatic arm prosthesis, which was the first practical 

externally-powered prosthesis [2]. Fig. 1-1-b shows two examples of small hydraulic 

actuators that have recently been developed for use in prosthetic fingers [3]. The diameters 

of these actuators are just 2.3 mm and 9.6 mm respectively. The 2.3 mm actuator provides 

10.9 N of force and the 9.6 mm diameter actuator provides 89 N of force. As an example 

of a large-scale actuator, Fig. 1-2 shows the size of the eight hydraulic actuators used on a 

6 degree-of-freedom earthquake simulator built at the University of Minnesota. Each 

actuator has the capability of applying a force of 3910 kN [4]. 

  
(a) (b) 

Fig. 1-1. a) Heidelberg pneumatic arm prosthesis [2], b) small hydraulic actuators with diameters of 2.3 mm 

and 9.6 mm for the application of prosthetic fingers [3] 
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Fig. 1-2. 6 DOF earthquake simulator built at the University of Minnesota [4] 

Actuators are characterized by their performance indices: maximum stress (normalized 

force), maximum strain (normalized displacement), maximum volumetric power density, 

maximum mass power density, bandwidth (responsiveness), resolution and stiffness (load 

holding ability) [1], [3]. Different kinds of technologies have been developed to satisfy 

application-specific requirements. They can be categorized based on mechanisms of energy 

transfer. Hydraulic, pneumatic, electromechanical, and electromagnetic actuators are the 

most conventional technologies, which are called macro-motion actuators. Other types of 

actuators termed micro-motion actuators include; piezoelectric, magnetostrictive, shape 

memory alloy, and polymeric actuators [5].  

Due to the wide range of applications for actuators, achieving high performance 

actuation is important. One of the challenges in this area is the design of high force, long 

stroke, and compact actuators. The focus of this dissertation is on conventional macro-

motion actuators.  
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1.2 Literature Review 

In this section, characteristics, advantages and disadvantages of different kinds of 

actuators are given, and the most recent advancement in this area are discussed. This 

section also provides a comparison of different designs in terms of force density and shear 

stress. 

1.2.1 Hydraulic Actuators 

Hydraulic actuators are conventional fluid-powered actuators. These actuators convert 

the energy of a pressurized fluid to mechanical motion. One of the earliest machines using 

hydraulic actuators was a hydraulic press by Joseph Bramah in 1795, which was based on 

Pascal’s Hydrostatic Paradox [6]. The Bramah press, shown in Fig. 1-3, used water as the 

fluid. 

Oil is more commonly used as a fluid in modern hydraulic actuators. Since oil is almost 

impossible to compress, these actuators operate at very high force densities. For instance, 

an excavator hydraulic piston can routinely operate at a pressure of 38 MPa [7]. The 

maximum pressure of hydraulic actuators is in the range of 20-70 MPa [8]. A basic 

hydraulic system and a linear hydraulic actuator are shown in Fig. 1-4. A regular hydraulic 

actuator contains a cylinder, an accumulator, control valves, a pump and motor, filters, 

reservoir, hoses and fittings. These auxiliary components make them relatively bulky and 

complicated. They are also prone to leakage. The hydraulic fluid becomes contaminated 

with particles, requiring filtration. Noisy pumps make them loud. Due to the very complex 

physics behind fluid power, their modeling and control is also complicated [9]. 
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Fig. 1-3. Hydraulic Bramah Press [10] 

 
 

(a) (b) 

Fig. 1-4. a) basic hydraulic system, b) linear hydraulic actuator [11] 

1.2.2 Pneumatic Actuators 

The operational principle of a pneumatic actuator is similar to that of a hydraulic 

actuator, except that they use compressed air instead of pressurized fluid as the actuation 

medium. The higher compressibility, lower viscosity and poor lubrication of air in 

comparison to oil results in lower force density, a higher leakage possibility, and lower 

efficiency relative to hydraulic counterparts [5]. Pneumatic actuator systems can be bulky 

because of the need for air compressors. In applications with limited space, their command 

valve needs to be placed relatively far away from the actuator, which causes a delay in 

response [12]. The main advantages of pneumatic actuators over hydraulic actuators are 

that they are cleaner, they respond faster, and they are lighter, because there is no need for 

a return line. An example of a pneumatic system used in an airplane is depicted in Fig. 1-5. 
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Ktesibios of Alexandria was known as the founder of pneumatics [13]. He invented a 

pneumatic catapult in 300 BC. The maximum pressure of a pneumatic actuator is in the 

range of 0.5-0.9 MPa, which is considerably lower than the working pressures used in 

hydraulic actuators [8].  

 
Fig. 1-5. Pneumatic system [11]. 

1.2.3 Electromechanical Linear Actuators 

Electromechanical linear actuators (EMA) are usually constructed using a mechanical 

ball/roller screw driven by a rotary electric motor either directly or via a set of gears. They 

have several advantages over hydraulic and pneumatic actuators including simpler control 

due to the elimination of valves, pumps, filters and sensors; a longer operational lifetime, 

when maintained properly; lower maintenance requirements; lower noise; and, they do not 

use any hazardous fluids [14].  

Fig. 1-6 shows an electromechanical linear actuator made by Exlar Company. It consists 

of two main components; a roller screw and a PM brushless motor. This Exlar GSX30 
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series actuator has a lead of 5.08 mm, and a maximum stroke of 457 mm [15]. It can provide 

a continuous force of 1995 N, which results in a force density of 730 kN/m3. 

Even if maintained properly, roller screws can still fail from metal fatigue or abrasion 

of the thread flanks. Proper lubrication and sealing from environmental contamination can 

prevent other failures and increase the life time of the roller screw. Lack of lubrication 

causes heat build-up, which can lead to failure. If metal chips get into the roller screw due 

to improper sealing, a failure might then happen [14]. 

 

 

(a) (b) 

Fig. 1-6. a) Exlar GSX series integrated motor/actuator with inverted roller screw, b) the standard roller 

screw [15]. 

1.2.4 Electromagnetic Linear Actuators (Direct Drive Actuators) 

Electromagnetic linear actuators (ELA) convert electrical and/or magnetic energy to 

mechanical energy. ELAs have the advantage over hydraulic, pneumatic, and mechanical 

mechanisms of being able to operate with higher efficiency, and they are potentially more 

reliable [7]. Since computer-based controllers use electrical signals, they are ideal for 

computer control [16]. Replacing the mechanical gears results in cost saving, noise and 

maintenance reduction, and increased mechanical bandwidth [17].  

ELAs are in fact linear motors. They can be abstracted as split and unrolled rotary 

motors, as illustrated in Fig. 1-7. Therefore, they have as many typologies as the rotary 
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motor, including reluctance, induction, and synchronous linear motors [18]. The first linear 

motor was a reluctance type invented by Charles Wheatstone in 1845 [18]. Depending on 

the type of machine, two main force components exist; the Lorentz force, which is due to 

the interaction of a current carrying coil and a magnetic source field [19]; and reluctance 

force, which is due to the interaction of a magnetic source field and a salient ferromagnetic 

core. The magnetic source field can be created by either permanent magnets (PM) or a 

secondary coil. Either the stator or translator needs to be made longer, which results in a 

long stator and a short stator machine, respectively [20]. These are shown in Fig. 1-7 (c) 

and (d) respectively. Induction and synchronous machines with a long stator are expensive. 

Short stator versions on the other hand cause difficulty in sliding contact arrangement [20]. 

Linear motors suffer from two edge effects; longitudinal, and transversal. These edge 

effects are shown in Fig. 1-8.  

The force density of ELAs is constrained by current density and magnetic saturation. 

Induced current in linear induction motor (LIM) structure causes additional thermal 

limitations, which further limits the generated force. 

 

 
(c) 

(a)  

  
(b) (d) 

Fig. 1-7. Construction of linear motor’s geometry; a) conventional motor, b) unrolled conventional motor, 

c) long stator motor, and d) short stator motor [20]. 
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An example of a double-sided LIM (DSLIM) investigated by Abdollahi et al. [21] for a 

transportation application is shown in Fig. 1-8. It consist of one aluminum or copper 

secondary sandwiched between two laminated primary stacks. 

 
Fig. 1-8. A double sided linear induction motor topology [21] 

The linear synchronous motor (LSM), like its rotary counterpart, has an armature 

winding, and a secondary magnetic source field created by PMs. An example of a modular 

LSM proposed by Lee et al. [22] is shown in Fig. 1-9. This motor was designed for an 

ultra-high speed tube train. 

A Linear switched reluctance motor (LSRM) example is shown in Fig. 1-10. In this 

double-sided design, studied by D. Wang et al. [23], windings on one part provide the 

magnetic flux inside the machine, and the variation of the reluctance due to a relative 

displacement of the salient translator creates the reluctance force. The force density was 

reported to be 58 kN/m3, with a shear stress of 8.6 kN/m2. 

 
Fig. 1-9. A modular linear synchronous motor proposed by Lee et al. [22] 
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(a) (b) 

Fig. 1-10. Linear switched reluctance motor presented by D. Wang et al. [23] ; a) 3D FEA, and b) 

prototype. 

Tubular linear motors are another type of ELA, which can be formed by simply rolling 

up a conventional linear motor around its longitudinal axis [24].  

A synchronous tubular linear motor with three different PM arrangements was 

investigated by J. Wang et al. [25]. The parametric designs are shown in Fig. 1-11. After 

completing a parametric optimization, Wang showed that the surface mounted, flux 

focusing, and Halbach PM translator arrangements had a volumetric force density of 225 

kN/m3, 258 kN/m3 and 234 kN/m3 respectively. An example of an interesting three-phase 

tubular PM machine with a modular stator is shown in Fig. 1-12, which was proposed by 

J. Wang et al. [26]. A Halbach PM arrangement was used on the translator. A maximum 

force density of 324 kN/m3 was calculated. 

  
(a) (b) 

 
(c) 

Fig. 1-11. Parametric tubular machines with a) surface mounted, b) flux focusing, and c) Halbach PM 

translator arrangements investigated by J. Wang et al. [25]. 
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Mover 

Winding 

Segment 
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(a) (b) 

Fig. 1-12. Three-phase tubular PM machine a) structure b) Slotted stator core for prototype [26] 

It is challenging for an ELA to create a high force at low speed. ELAs are inherently 

better suited for operating at high power density rather than high force density. A linear 

Vernier motor concept was proposed by Lee (1963) in [27] to increase the force density of 

an ELA. It relied on harmonic modulation to increase the electrical speed. An example of 

a linear PM Vernier motor is shown in Fig. 1-13 [28]. The translator in this motor consist 

of a simple iron core with nt = 17 active salient teeth. The modular stator consists of a set 

of U-shaped laminated cores with additional magnets that have been placed on the teeth 

surface. The translator teeth modulate the magnetic field of the PMs to generate additional 

harmonics in the airgap, which then interact with the magnetic field of the stator winding 

to generate force. The relationship between the PM and stator pole-pairs and translator 

teeth must satisfy [28]: 

fe PM tP P n   (1.1) 

where Pfe, PPM, and nt are the number of pole-pairs of the effective magnetic field, PM 

pole-pairs, and translator teeth respectively. Pfe is designed to be unity to achieve the 

highest thrust force. This results in PPM = 16 pole-pairs. 
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The operational principle of this machine is similar to the flux reversal PM machine 

[28]. The flux linkage in the coil is maximum when the PMs are aligned with the translator 

teeth. It goes to zero as the translator teeth move to the unaligned position, and then reverses 

polarity. The calculated force density for this design was reported to be 305 kN/m3, with a 

shear stress of 27.4 kN/m2. 

 
Fig. 1-13. A modular linear PM Vernier motor [28]. 

 
Fig. 1-14. Configuration of a linear PM Vernier motor [28]. 

Fig. 1-14 shows the configuration of a linear PM Vernier motor with a more traditional 

three-phase distributed winding. A force density of 285 kN/m3, and a shear stress of 45 

kN/m2 were calculated for this design [28]. These results show that although the force 

density of the this Vernier motor is lower than that of previous Vernier motors, due to the 

thicker yoke of the iron core, this motor provides higher shear stress [28]. 

Fujimoto et al. proposed an axial-gap spiral linear actuator [29]. It consists of a spiral 

stator with a three-phase winding and a spiral mover, which contains PMs. The motor is 

shown in Fig. 1-15. Due to load fluctuation, the airgap of this device needs to be controlled. 

Two methods were proposed in [29]. First, the mover rotation angle were actively 
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controlled by torque, which is similar to the concept of magnetic levitation control. Second, 

a ballscrew was used at the axis of the mover to control the airgap.  

 
(a) 

  
(b) (c) 

Fig. 1-15. Spiral actuator proposed by Fujimoto et al. a) Structure, b and c) prototype [29] 

A calculated force density of 274 kN/m3 and a shear stress of 18 kN/m2 were reported 

for this machine [29]. This machine has a complicated structure and is costly to build, 

especially when a long stroke length is required. The airgap control also adds to the 

complexity of the proposed machine. A ball screw driven by a conventional rotary machine 

might result in a simpler design with even better performance than this machine. 

Another approach to increase the effective airgap is to use a multi-airgap structure. Fig. 

1-16 shows the structure of two types of multi-airgap actuators proposed by Cavarec et al. 

[17]. In the distributed stator design shown in Fig. 1-16-a, all the layers of the translator 

have a stator winding, while in Fig. 1-16-b one coil provides the magnetic field and 

surrounds all the layers [17]. The distributed coil structure can be considered as several 

parallel single-airgap actuators. A scaling analysis was completed in [17] for these two 
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types of multi-airgap actuators and it was shown that the global winding structure shown 

in Fig. 1-16-b had the highest force density. 

Based on the findings of this research, Cavarec et al. proposed a multi-rod linear 

actuator (MRLA) [17]. This topology is shown in Fig. 1-17. A force density of 1000 kN/m3 

was reported for this design. A summary of the performance of each of these ELAs is 

provided in Table 1-I on page 24. 

  
(a) (b) 

Fig. 1-16. One phase of the multi-airgap actuator a) distributed, b) global coil [17]. 

 
Fig. 1-17. Multi-rod linear actuator proposed by Cavarec et al. [17]. 

 

1.2.5 Magnetic Gears 

With the advancement in PM material in recent years, various mechanically-inspired 

magnetic devices have been invented that exhibit high force density. MGs rely only on 

magnetic loading, and provide speed/motion and torque/force conversion like their 
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mechanical counterparts, but without thermal constraints (current density limits). Unlike 

mechanical gears, a MG’s contact-less operation enables it to operate without oil and it can 

operate with low noise, and higher efficiency. Its reliance on magnetic torque also provides 

overload protection. Furthermore, as MGs rely only on magnetic loading, they overcome 

the limitation of the ELAs.  

Various kinds of MGs have been proposed to date, including a PM spur gear by Faus 

[30], a magnetic worm gear by Kikuchi [31], and a magnetic planetary gear by Haung et 

al. [32]. Although these mechanically-inspired devices could provide a contactless speed 

conversion, their torque densities are not comparable to their mechanical counterpart, 

because of a lack of strong PM materials, as well as their low active material usage. To 

solve the later problem, Neuland [33] proposed a coaxial MG, which was later improved 

by Reese [34] and then Martin [35]. Martin’s design uses ferrite magnets. In 2001, Atallah 

[36] calculated that a coaxial MG using NdFeB magnets could achieve a higher torque 

density than a direct drive motor. Fig. 1-18 shows the structure of a coaxial MG, which 

contains three concentric parts; an inner rotor and outer rotor with pi and po number of PM 

pole-pairs, which can rotate at the speed of ωi and ωo respectively, and a cage rotor with nt 

steel pole-pieces, which can rotate at the speed of ωt.  

 
Fig. 1-18.  Coaxial magnetic gear with p1 = 4, n2 = 26, and p3 = 22. 

ωt

ωo

ωi

Cage rotor
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Inner rotor
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Outer rotor
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The ferromagnetic pole-pieces of the cage rotor modulate the magnetic field within the 

two airgaps. The inner rotor field is modulated by the cage rotor and therefore generates 

additional spatial harmonics. In order to create coupling between the rotors, the number of 

pole-pairs of the space harmonics must satisfy [36]: 

,

1,3,5,  ,  ;   1,  2,  3,  , 

m k i tp mp kn

m k

 

        
 (1.2) 

By satisfying (1.2) the speed of the rotors is related by: 

,
i t

m k i t

i t i t

mp kn

mp kn mp kn
   

 
 (1.3) 

The highest asynchronous space harmonic field can be achieved by choosing m=1 and 

k=-1, resulting in: 

1, 1 i tp p n    (1.4) 

Therefore, po = p1, -1 and (1.4) can be written as: 

o i tp p n   (1.5) 

The force is maximized when  

t i on p p   (1.6) 

Substituting (1.6) into (1.3) and rearranging gives [37] 

t o
i t o

i i

n p

p p
     (1.7) 

If ωo = 0, the speed relationship simplifies to: 

t
i t

i

n

p
   (1.8) 

where the gear ratio is defined as Gr = nt / pi. 
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Mezani [38] proposed an axial flux MG (AFMG) based on the same concept as the 

coaxial MG. A harmonic MG by Rens [39], and cycloidal MG by Jorgensen [40] are two 

other types of MGs with non-uniform airgaps. However, these two types of MG are 

difficult to control, and the non-uniform airgap degrades bearing life. In all the 

aforementioned MGs, the speed conversion happens between two rotary motions.  

The focus of this thesis is on linear and axial MG actuators, and therefore the rest of this 

chapter reviews these types of MG. Linear MG actuators can be categorized into two 

categories; linear magnetic gears (LMG), and magnetic lead screws (MLS). The LMG and 

MLS rely only on magnetic loading and therefore a higher magnetic air-gap shear stress 

can be sustained when compared to the ELAs. 

1.2.5.1 Linear Magnetic Gears  

Atallah et al. in 2005 proposed a LMG [41]. An example of this actuator is shown in 

Fig. 1-19; it uses magnetic field heterodyning to create linear motion speed change without 

any physical contact.   

 

 
Fig. 1-19. A LMG with pi=15, po= 6 pole pairs and nt = 21 central ferromagnetic rings. 
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The LMG, consists of three concentric tubular parts, an outer cylinder containing, po 

pole-pairs that can move with a translational velocity vo, an inner cylinder containing pi 

pole-pairs that can translationally move at velocity vi, and a central section that contains nt 

ferromagnetic rings. The ferromagnetic rings can move at velocity vt. The ferromagnetic 

rings modulate the magnetic fields within the two airgaps.  The inner and outer translator 

fields are modulated by the ferromagnetic ring pieces and therefore create additional spatial 

harmonics within the outer and inner airgaps respectively. Due to the interaction of these 

magnetic fields with existing magnetic fields within the airgaps, a force is generated only 

if the relationship between pole pairs of the three parts satisfies the same condition as given 

by (1.6). With (1.6) satisfied the translational speed relationship is: 

t o
i t o

i i

n p
v v v

p p
   (1.9) 

Unlike the rotary counterpart, the number of pole-pairs must fit within a fixed axial 

length, L. Therefore the following lead length can also be defined: 

i iL p   (1.10) 

 

o oL p   (1.11) 

 

t tL n   (1.12) 

These are shown on Fig. 1-19.  If the outer translator is held stationary, then (1.9) shows 

that the translational speed can be increased by a gear ratio of nt/pi. 

Atallah and Holehouse [41]–[43] demonstrated that a 3.25 gear ratio LMG with radially 

magnetized PMs is capable of operating with a force density of 1.89 MN/m3, and Atallah 

et al. showed that employing Halbach magnetization increases the force density to 2 
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MN/m3 [42]. This force density was achieved when the ratio of the radially-magnetized 

PMs to the pole-pitch was 0.7. The calculated shear stress for the Halbach design was 

110 kN/m2. And by combining a LMG with a linear motor, the system force density can 

increase by up to 100% in comparison with a direct drive system [42]. The integration of a 

LMG with a linear machine has been considered for various applications. Li et al. [44] 

proposed using a magnetically geared generator for use in an ocean power generation 

application. Fig. 1-20 shows Li’s proposed machine. It consist of a linear PM tubular 

generator cascaded with a LMG. It is claimed that this machine offers higher efficiency, 

and higher power density than a conventional direct-drive machine [44]. 

 
Fig. 1-20. Integration of LMG with linear tubular generator [44] 

Li et al. [45] offered a different configuration of a magnetically geared linear generator 

as a free-piston generator (Fig. 1-21) for a series hybrid electric vehicle. Fig. 1-22 shows 

the structure of the proposed design. The stator winding of the linear generator is located 

around the LMG. 

 
Fig. 1-21. Schematic of a free-piston generator [45] 
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Fig. 1-22. Li’s proposed magnetically geared linear generator [45] 

Holehouse et al. [43] experimentally tested the LMG shown in Fig. 1-23. They showed 

that the transmitted force is very sensitive to the spacing between the pole-piece rings of 

the translator. A 5% reduction in the axial length of the plastic spacer resulted in a 30% 

reduction in the generated thrust. Fig. 1-24 shows the pole-piece translator of this design. 

 
Fig. 1-23. Linear magnetic gear proposed by Holehouse et al. [43] 

 
Fig. 1-24. Pole-piece translator of the Holehouse’s linear magnetic gear [43] 
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1.2.5.2 Magnetic Lead Screw  

The MLS converts linear motion to rotary motion using helically shaped magnets. An 

example of a MLS is shown in Fig. 1-25. The principle of operation of the MLS is 

analogous to a mechanical nut and screw but with a magnetic rotating “screw” and a 

magnetic translating “nut”. Both parts are made of helically-disposed, radially-magnetized 

PMs on the inner and outer steel yokes.  

The relationship between translating velocity, vi, and outer angular velocity, ωi, is given 

by [46]. 

i i ik v   (1.13) 

where the inner rotor wave number is 

2i ik    (1.14) 

and λi = inner rotor lead. This is twice the magnet pole-pitch for a double-start helical 

structure as shown in Fig. 1-25.  The screw will travel by λi when the inner rotor rotates by 

one turn. Depending on the number of helix starts, different values are possible for ki, and 

consequently various gear ratios are possible. Assuming a no-loss system, the translator 

force and rotor torque relationship are calculated as [46]: 

t
i

i

F
T

k
  (1.15) 

 

 
Fig. 1-25. An example of an MLS 

 

 

 

Magnetic screw 

(Helical) 

Magnetic nut 

(Helical) 
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Wang calculated that the MLS could achieve a force density of 10 MN/m3 and shear 

stress in excess of 180 kN/m2 for airgap lengths in the range or 0.4 mm to 0.8 mm and a 

lead λi greater than 7 mm [46]. Recently, Holm et al. experimentally verified the 

performance of a 17 kN MLS for a wave energy converter [47], [48]. 

The calculated force density and shear stress were 2.62 MN/m3 and 130 kN/m2 

respectively. Fig. 1-26 shows the CAD model of the proposed MLS. In order to construct 

the helical structure of the MLS, Holm et al. used round embedded magnets. The design 

used a total of 4340 magnets. The magnet retainer for the translator part is shown in Fig. 

1-27. 

Berg tested a MLS for active vehicle suspension, which is shown in Fig. 1-28-a [49]. A 

segmented structure was used to construct the helical rotor and translator. The authors used 

a polygon back-iron and square shaped magnets to make the threads. The assembly 

procedure of the translator is shown in Fig. 1-28-b. 

 
Fig. 1-26. CAD model of the proposed magnetic lead screw by Holm et al. [47] 

 
Fig. 1-27. Magnet retainer of the translator part of the magnetic lead screw by Holm et al. [47] 
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(a) (b) 

Fig. 1-28. a) Magnetic lead screw suspension system. b) Translator assembly procedure[49]  

PMs in the non-active region of the MLS structure do not contribute to force production. 

Therefore, a low force per kg of PM material is expected for applications with long stroke 

lengths. Furthermore, the translator PMs need to slide on the surface of the linear bearings, 

which increases friction and wear. As the translator includes magnets that are exposed to 

the outside environment, they can attract ferromagnetic materials, which might cause 

corrosion of the magnets [50]. 

Lu et al. [51] proposed an electromagnetic lead screw (EMLS) by replacing the PM 

poles of the translator with a helical winding. In addition, they also added a PM generator 

around the rotor of this EMLS for potential wave energy application. Fig. 1-29 shows the 

structure of the proposed EMLS along with its winding configuration. Although replacing 

the translator PMs with windings might reduce the cost and the complexity of construction, 

the force production capability of the machine is degraded significantly due to the winding-

related thermal limit. 
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(a) (b) 

Fig. 1-29. a) Lue’s proposed electromagnetic lead screw. b) helical winding structure [51]  

Integration of the MLS and a rotary PM machine has been investigated by Pakdelian et 

al. [52]. Pakdelian showed that for short stroke length applications, this integrated design 

resulted in a lower cost, more compact and lighter design when compared to a direct drive 

PM tubular machine. For applications with smaller force and longer stroke, however, this 

integration may lose its advantage over a PM tubular machine [52].  

Ji et al. [53] proposed an integrated MLS with PM generator for use in an artificial heart. 

The PM poles on the MLS structure have a Halbach arrangement. The structure of the 

proposed machine is shown in Fig. 1-30. The MLS with Halbach arrangement of PM poles 

resulted in a 72% higher force capability when compared with radially-magnetized PM 

structure. 

 
Fig. 1-30. PM machine integrated with a magnetic lead screw with Halbach pole arrangement [53]. 
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Berg et al. [50] recently proposed a reluctance MLS for use in a wave energy converter, 

shown in Fig. 1-31. As the translator in the proposed design does not contain any magnet 

material, it can significantly reduce the cost of the MLS for long stroke length applications, 

but at the cost of reducing the output force. the shear force for this design was 88.4 kN/m2. 

 

Fig. 1-31. Reluctance magnetic lead screw by Berg et al. [50] 

1.2.6 Summary 

Various linear actuators were investigated in this chapter. The advent of magnetic gear-

based devices could have a considerable impact on the field of linear actuation. In order to 

compare the performance of all designs, a summary of the force production capabilities of 

the different linear actuators in different categories is given in Table 1-I. 

 

Table 1-I. Performance Comparison of Various Linear Machines 

Structure 

Geometry Force 

Cross section 

area [mm2] 

Axial 

length 

[mm] 

Peak 

[kN] 

Density 

(active) 

[kN/m3] 

Shear 

Stress 

[kN/m2] 

Hydraulic [54] π×31.75×31.75 355.6 262.02 232.6×103 82.74×103 

Pneumatic [55] π×31.75×31.75 220.66 13.1 18.74×103 4.13×103 

EMA [15] 77.4×77.4 457 1.9 730 - 

DSLIM [21] 250×1220 2440 11 16 18 

LSRM [23] 148×185 100 0.16 58 8.6 

Tubular motor [56] π×100×100 224 4.9 696 60 

Spiral motor [29] 204×178 201 2 274 18 

LMG [43] π×97×97 200 11.2 1.89×103 110 

MLS [47] π×71×71 410 17 2.62×103 130 
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1.2.7 Problem Statement 

Linear actuation is often achieved by using either a hydraulic or mechanical gearing 

mechanism. By operating a hydraulic actuator at high pressure, very high force densities 

can be sustained.  ELAs have the advantage over hydraulic and mechanical mechanisms of 

being able to operate with higher efficiencies [8] and are potentially more reliable.  

However, the force density of an ELA is constrained by current density and magnetic 

saturation. Recently, the LMG and the MLS have been proposed as means for increasing 

the force densities of linear actuators. LMG and MLS rely only on magnetic loading and 

therefore a higher magnetic air-gap shear stress can be continuously sustained. 

Both LMG and MLS topologies require one of the linear translating parts be made of 

magnet material. If the linear stroke length is large, then only a small portion of the magnet 

material will be used at any given time. Therefore, this will result in a low force-per-

kilogram of magnet usage and consequently the design will be costly to build for a given 

outer radius. The LMG force density also becomes low when the linear stroke length is 

increased [43]. In the following chapter, a new type of magnetically geared linear actuator 

is proposed and investigated, that does not have PMs on the translator. 
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2 Chapter 2: Magnetically Geared Lead Screw 

2.1 Introduction 

In this chapter, a magnetically geared lead screw (MGLS) is proposed and investigated. 

The MGLS combines the operational concepts of the LMG and the MLS to overcome 

problems associated with these two designs. The MGLS is a rotary-to-linear actuator 

similar to the MLS, but it uses magnetic field modulation, like an LMG. In the following 

section, a small MGLS proof of concept is presented and analyzed. Then, in Section 2.3, a 

scaled-up design is investigated in order to show the force capability of the MGLS relative 

to comparable MLS. In order to experimentally test the MGLS, a small MGLS was 

designed and constructed. Detailed analysis and experimental results are given in Section 

2.4. Lastly in Section 2.5, problems associated with the proposed MGLS are identified and 

a new version of the MGLS is proposed to resolve these issues.   

2.2 Proof of Concept Design 

2.2.1 Structural Characteristics 

Fig. 2-1 shows the proposed MGLS and its cross-sectional parameters. The MGLS 

consists of three concentric tubular parts: an inner rotor with pi helically-skewed, radially-

magnetized pole pairs; an outer cylinder with po radially magnetized pole pairs; and, a 

translator that contains nt ferromagnetic annular skewed pole pieces. To maximize force, 

the pole combination was selected to satisfy: 

t i on p p    (1.6) 
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(a) (b) 

Fig. 2-1. MGLS proof of concept design; a) 3D view, b) cross-sectional parameters 

 
Fig. 2-2. Cut-through view of the magnetically geared lead screw showing the lead lengths for the inner 

outer and translator. 

The required number of inner and outer pole-pairs and the translator pole-pieces must 

fit within the axial length, L. Therefore, the lead lengths, which are defined in Fig. 2-2, 

must satisfy the same equations as given for the LMG. These are: 

/i iL p    (1.10) 

 

/o oL p   (1.11) 

 

/t tL n   (1.12) 

Based on these conditions, one then arrives at the following required pole-lead 

relationships: 

o o t tp n   (2.1) 

 

i i t tp n   (2.2) 
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Also using (1.10)-(1.12), the pole-pair requirement given by (1.6) can be expressed in terms 

of wavenumbers: 

t i ok k k   (2.3) 

where 

2t tk    (2.4) 

 

2o ok    (2.5) 

The amount of helical skew on the inner rotor is defined in terms of a lead angle.  The 

lead angle is a function of the inner rotor outer radius, rio, and lead length. Considering Fig. 

2-3 the lead angle is 

1tan [( / 2) / 2 ]i i ior    (2.6) 

 
Fig. 2-3. Side view of the helical lines of the inner rotor 

 
Fig. 2-4. Side view showing two consecutive skewed ferromagnetic translator rings. The definition for the 

translator rotor lead length λr and translator lead λt is also shown. 

Lead, λi

rio

Lead angle, αi 

 2×rto

λr

αt

λt
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To create coupling between the translator and inner rotor, the translator rings are 

annularly skewed as shown in Fig. 2-4.  In order to describe this skew, a translator skew 

angle was defined based on the ratio of a translator rotor lead, λr, and translator radius, rto, 

such that: 

1tan ( / 2 )t r tor    (2.7) 

These parameters are shown in Fig. 2-4. In order to convert the inner rotor torque to force, 

the translator angle was set equal to the inner rotor lead angle: 

t i    (2.8) 

substituting (2.6) and (2.7) into (2.8) then gives: 

2

to
r

io

r

r
    (2.9) 

This relates the translator rotor lead to the inner rotor lead.  By substituting (2.2) into 

(2.9) the definition of the translator rotor lead, λr, can be related to the translator lead, λt, 

by 

2

to t
r t

io i

r n

r p
    (2.10) 

The difference in lead lengths is shown in Fig. 2-4. 

2.2.2 Operational Characteristics 

Under static conditions, the net force on the three MGLS parts must satisfy 

0t i oF F F     (2.11) 

where Fi = inner rotor force, Ft = translator force, Fo = outer cylinder force.  Due to the 

helical structure on the inner rotor and the translator annular skew, a torque is created on 

these two parts such that 
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0i tT T    (2.12) 

where Ti and Tt are the torque on the inner rotor and translator respectively. The outer 

cylinder does not experience any torque since it is not skewed. 

As the translator is subjected to both an applied torque and force it could undergo both 

translational and rotational motion.  Both such situations are considered separately in the 

following sections.  The inner rotor is connected to a rotary shaft and therefore unable to 

translate. 

2.2.2.1 Translator Case 

The rotation of the MGLS inner rotor with angular velocity, ωi, will create a 

translational field velocity, vi, given by:  

i i ik v    (1.13) 

This translating field is modulated by the ferromagnetic translator pole pieces and 

therefore creates z-axis spatial harmonics. If (1.6) is satisfied, the spatial harmonics then 

interact with the outer cylinder’s magnetic field. By substituting (1.13) into (1.9), one 

obtains: 

i
t t o o i

i

p
n v k v

k
    (2.13) 

Equation (2.13) combines both the speed operating principals of the MLS and LMG. 

By substituting (1.10)-(1.12) into (2.13), the rotary conversion coefficients can be written 

in terms of lead lengths: 

i i i i
i t o

t o

k k
v v

 


 
   (2.14) 

Noting that 
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2i ik     (2.15) 

And utilizing (2.4)-(2.5), equation (2.14) simplifies to: 

i t t o ok v k v     (2.16) 

If the outer cylinder is held fixed (vo = 0), then: 

i t tk v    (2.17) 

Equation (2.17) shows that the translational speed on the ferromagnetic rings is 

converted into an inner rotor rotary speed. If the translator wave number, kt, is designed to 

be large, then this converts a low translational speed to high rotation speed. Importantly, 

the translator part is made entirely of low-cost ferromagnetic steel. Therefore, unlike the 

MLS and LMG, the translator stroke length can be long without requiring more magnet 

material. 

2.2.2.2 Oscillator Case 

In deriving (2.17), the translator was assumed to be prevented from rotating.  However, 

the inner rotor and translator both experience a torque. If the translator is only allowed to 

rotate (prevented for translating), the torque created by the inner rotor will cause the 

translator to rotate.  This translator angular speed, ωt, is equal to the inner rotor angular 

speed such that 

i t    (2.18) 

The rotation of the translator will create an oscillatory z-axis motion as illustrated in 

Fig. 2-5.  The oscillatory motion of the translator is sinusoidal in form as shown by Fig. 

2-6.  The amount of axial displacement, zr, is related to the translator rotor lead such that 
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( ) cos( )
2

r
r t tz


   (2.19) 

where θt = ωtt is the translator angular position.  Taking the derivative of (2.19), the 

translator ring linear speed due to the translator rotation is 

sin( )
2

r
r t tv t


    (2.20) 

This describes simple harmonic motion. 

 

Fig. 2-5. One turn rotation of a translator ring (side view) 

 

Fig. 2-6. Axial displacement of a translator ring as the function of translator angular position 

2.2.2.3 Power Conversion 

If the translator is preventing from rotating, then the power flow relationship must 

satisfy 

i i t t LT Fv P     (2.21) 

where PL is the electrical and mechanical losses. Substituting (2.17) into (2.21) and 

assuming the power loss is relatively small, one obtains 
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i t tT k F   (2.22) 

If the translator lead is small, kt will be large. Equation (2.22) shows that a large force will 

be created from a small torque input. 

2.2.3 Analysis and Results 

The design parameters given in Table 2-I were selected to numerically verify the 

operating principal of the MGLS. Considering the geometric and material parameter values 

given in Table 2-I, the characteristics of the proposed MGLS were investigated using the 

3D finite element analysis (FEA) by JMAG. The pole combination of (pi = 15, nt = 21, po 

= 6) was selected to match with Li’s work on a LMG [57].  

The radial flux density due to the inner rotor PMs near the inner rotor and the outer rotor 

were evaluated. The results are shown in Fig. 2-7; the corresponding spatial harmonics, 

when the translator is present, is also shown. Fig. 2-8 shows the same plots when the PMs 

are only present on the outer rotor. The modulation effect of the translator is clearly evident. 

Table 2-I. Summary of the Design Parameters 

Parameter Value Unit 

Outer rotor (fixed) 

– not skewed 

Pole-pairs, po 6 - 

Outer radius, roo 26 mm 

Back iron, lob 4 mm 

Pole-pitch, wo 8.75 mm 

Airgap length, lg 0.5 mm 

Axial length, L 105 mm 

Translator – 

annular skewed  

Pole pieces, nt 21  

Outer radius, rto 19.5 mm 

Steel thickness, lt 1.5 mm 

Pole-pitch, wt 2.5 mm 

Inner rotor – 

helically skewed 

Pole pairs, pi 15 - 

Inner radius, rii 11.5 mm 

Outer radius, rio 17.5 mm 

Back iron, lib 4 mm 

Magnet thickness, lim 2 mm 

Pole-pitch, wi 3.5 mm 

Lead, λi 7 mm 

Material 

NdFeB magnet, Hitachi NMX-40CH 1.25 T 

416 steel resistivity (translator) 57.0 µΩ-cm 

1018 steel resistivity (back iron) 15.9 µΩ-cm 
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(a) 

  
(b) 

Fig. 2-7 Radial flux densities and related spectrums: a) adjacent to inner rotor due to inner rotor magnets at  

r=17.55 mm), b) adjacent to outer rotor due to inner rotor magnets (at r=19.95 mm). 

  
(a) 

  
(b) 

Fig. 2-8 Radial flux densities and related spectrums a) adjacent to outer rotor due to outer rotor (at r=19.95 

mm), b) adjacent to inner rotor due to outer rotor (at r=17.55 mm) 

When the inner rotor is rotated by 360o while the outer rotor and translator are kept 

stationary, an axial force along the z-axis is created as well as a torque. Fig. 2-9-a shows 

the calculated forces when using the parameters given in Table 2-I. 
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The torque on the MGLS components is shown in Fig. 2-9-b. Due to the helical structure 

of the inner rotor and the translator annular skew, a torque is created only on these two 

parts. The outer rotor does not experience any torque since it is not skewed.  

The translator wave number is kt = 1256.6 m-1, and so the torque is 1256.6 times smaller 

than the force. By having both rotation of the inner rotor and translation of the translator at 

the same time, a constant force in the z-direction is created. Fig. 2-10 shows the force and 

torque on the different parts when ωi = 60 r/min and vt= 5 mm/s. 

  
(a) (b) 

Fig. 2-9. a) Force, and b) torque on different parts of the MGLS due to rotation of the inner rotor 

  
(a) (b) 

Fig. 2-10. a) Force, and b) torque on different parts of the MGLS due to rotation of the inner rotor and 

translation of the translator at the same time 

2.3 Comparative Design 

In order to assess the performance of the MGLS relative to the LMG and MLS, a design 

analysis was conducted using the outer radial dimension, roo = 71 mm, that was given in 

[47].  The same pole combination as that of the small MGLS is selected for this MGLS, 

which was (pi,po,nt) = (6,15,21). With this pole combination, the axial length was selected 

as L = 420 mm (rather than 410 mm as used in [47]). This results in integer lead lengths.  
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The translator wave number is then kt = 314 m-1 and therefore in this design the force is 

amplified by 314 relative to the applied torque.   

A 3D view of the scaled-up MGLS is shown in Fig. 2-11.  The key structural difference 

between the previous design and the scaled-up design is that the outer cylinder pole-pairs 

in the scaled up design were arranged in a flux-focusing structure using axially-magnetized 

ring magnets and a ferromagnetic steel ring.  The lead length definition for this design is 

illustrated in Fig. 2-12.   

 
Fig. 2-11. Structure of the magnetically geared lead screw with pi =15 inner rotor pole-pairs, po = 6 pole 

pairs and nt = 21 segments across the axial length. 

 
Fig. 2-12. Cut-through view of the magnetically geared lead screw showing the lead lengths for the inner 

outer and translator. 

2.3.1 Design Analysis 

A 3D finite element analysis (FEA) iterative parameter sweep analysis was used to 

design the MGLS.  The objective was to maximize the active region volumetric force 

density, defined as: 

2/ ( )Fd t ooV F r L   (2.23) 

Such a design approach was used because the simulation time for each design was very 

long.  The inner rotor back iron was made sufficiently thick so as to avoid saturation. As 

the geometric parameters are interrelated, only three radial parameters are used to describe 
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the radial geometry. They are the inner radius of inner rotor, rii; outer radius of inner rotor, 

rio; and translator outer radius, rto, as shown in Fig. 2-13. The other geometric parameters, 

given in Table 2-II, were fixed. In iteration I, rii was fixed (48 mm) and through a 

parametric sweep of rio and rto a peak force density was determined to occur at (rio, rto) = 

(53, 58.5) mm. In iteration II the iteration I, values were fixed and a parametric sweep for 

rii was performed.  The results are shown in Table 2-III. The peak force density is achieved 

at rii = 45.5 mm. This iterative procedure was repeated until no significant improvement 

was obtained.  

 
Fig. 2-13. Cross-sectional dimensional parameters. 

 

Table 2-II. Scaled-up Design; Fixed Geometric and Material Values 

Parameter Value Unit 

Outer cylinder (fixed)  

  - not skewed 

Pole-pairs, po 6 - 

Outer radius, roo 71 mm 

Pole-pitch, 2wo 33.6 mm 

Airgap length, lg 0.5  mm 

Axial length, L 420 mm 

Translator   

- annular skewed  

Pole pieces, nt 21 - 

Pole-pitch, wt 10 mm 

Translator lead, λt 20 mm 

Inner rotor   

- helically skewed 

Pole pairs, pi 15 - 

Back iron, lib 11 mm 

Pole-pitch, wi 14 mm 

Lead, λi 28 mm 

Material 

NdFeB magnet, Br, NMX-40CH 1.25 T 

416 steel resistivity (translator) 57.0 µΩ-cm 

1018 steel resistivity (inner, outer rotors) 15.9 µΩ-cm 
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The parametric sweep values for the last two iterations are depicted in Fig. 2-14 and 

Fig. 2-15.  Fig. 2-15 shows that a trade-off exists between maximizing mass and volumetric 

force density. The maximum force and force density are 12.46 kN and 1.87 kN/L, 

respectively. 

Table 2-III. Iteration of the radial parameters of the scaled-up MGLS 

Iteration number I II III IV V VI Unit 

Inner rotor 
Outer radius, rio 53 53 51 51 48 48 mm 

Inner radius, rii 48 45.5 45.5 42 42 39.5 mm 

Translator outer radius, rto 58.5 58.5 57.5 57.5 54.5 54.5 mm 

Translator bar thickness, lt 5 5 6 6 6 6 mm 

Outer cylinder inner radius roi 59 59 58 58 55 55 mm 

Translator force, Ft  11.6 11.8 12.1 12.2 12.4 12.5 kN 

Volumetric force density 1.74 1.78 1.81 1.84 1.86 1.87 kN/L 

Force-per-kg magnet, Fko 0.88 0.76 0.86 0.71 0.78 0.69 kN/kg 

 

 

Fig. 2-14. Translation force as a function of inner rotor outer radius, rio and translator outer radius rto for 

iteration V.  The curves for different rto are shown on the figure. 

 

Fig. 2-15. The trade-off between maximizing volumetric force density and force-per-kg of magnet for 

iteration VI when (rio , rto ) = (48,54.5) mm. 
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2.3.2 Operational Analysis 

Using the values given in Table 2-II and Table 2-III, the radial flux density due to the 

outer cylinder PMs near the inner rotor has been evaluated. The results are shown in Fig. 

2-16. The corresponding spatial harmonics, when the translator is present, are also shown 

in this figure. Fig. 2-17 shows the same type of plots for the outer airgap when only the 

PMs are present on the inner rotor. The harmonic analysis plots given in Fig. 2-16 and Fig. 

2-17 show how the necessary 15th and 6th harmonics are created by the translator 

modulation effect. Fig. 2-18 shows the field in the outer air-gap when the magnets are 

present in both the inner and outer rotors.  The high 6th harmonic flux density present in 

the air-gap, relative to the ELA designs [58], is apparent. 

  
(a) 

  
(b) 

Fig. 2-16. Radial flux densities and related spectrums a) adjacent to outer rotor due to outer rotor (at r=54.9 

mm), b) adjacent to inner rotor due to outer rotor (at r=48.1 mm) 
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(a) 

  
(b) 

Fig. 2-17. Radial flux densities and related spectrums: a) adjacent to inner rotor due to inner rotor magnets 

at r=48.1 mm), b) adjacent to outer rotor due to inner rotor magnets (at r=54.9 mm). 

 
Fig. 2-18. Radial flux density in the outer air-gap due to magnets on both the inner and outer rotor. 

When the inner rotor is rotated by 360o while the outer cylinder and translator are kept 

stationary, an axial force along the z-axis is created as well as a torque. Fig. 2-19 shows the 

calculated pole slippage force and torque when using the final design parameters. 

When the rotor speed is ωi = 150 r/min and the translator speed is vt = 50 mm/s, the 

torque and force were calculated on the presented MGLS using 3D FEA. The resulting 

torque and force values are shown in Fig. 2-20. An applied torque of only 39.7 Nm creates 

12.46 kN force on the translator.  The presented design also exhibits very low torque ripple. 
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(a) (b) 

Fig. 2-19. a) Force, and b) torque on different parts of the MGLS due to rotation of the inner rotor 

  
(a) (b) 

Fig. 2-20. a) Force, and b) torque on different parts of the MGLS due to rotation of the inner rotor and 

translation of the translator at the same time 

Fig. 2-21 shows the variation of the force per magnet volume as a ratio of stroke length, 

Ls, to the active length, La, for the MGLS in comparison to the MLS and LMG. The 

geometric and material properties provided in [43] and [47] were used to model the LMG 

and MLS performance.  Fig. 2-21  shows that the proposed MGLS has a higher force per 

magnet volume for all stroke lengths compared to the LMG, and for long stroke lengths 

compared with the MLS.  The force capabilities for the LMG and MLS are summarized in 

Table 2-IV. The translator used by the LMG and MLS are composed of both magnets and 

a back-iron to support the magnet flux path. This back-iron adds significantly more mass 

to the translator. The last row in Table 2-IV shows the added ferromagnetic and magnet 

mass per centimeter of stroke length for each device.  The MGLS translator mass is 

significantly lower. 
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Fig. 2-21. Force per magnet volume as a function of Ls/La 

Table 2-IV. Comparison of the force capabilities 

Design MGLS LMG MLS 

Reference - [43] [47] 

Thrust force [kN] 12.5 11.2 17 

Force per active volume [MN/m3] 1.87 1.89 2.61 

Force per magnet volume [MN/m3] 
Ls/La = 1 5.4 3.1 15.8 

Ls/La = 7 5.4 1.1 5.1 

Added weight per cm of stroke [g] 84.9 724 134 

 

2.4 Prototype Design 

In this section, a scaled down MGLS is designed, analyzed and constructed. Through a 

parametric sweep analysis, the geometric parameters are selected. The experimental results 

is presented 

2.4.1 Design Analysis 

In order to make a prototype, a small MGLS was designed with an axial length of L=120 

mm, and an outer radius of roo=40 mm. A summary of the initial geometric parameters 

used is given in Table 2-V.  The same material properties as shown in Table 2-II were used. 

Using the initial values shown in Table 2-V, the parametric sweep analysis was used to 

maximize the volumetric force density. A summary of the results when using this iterative 

method is given in Table 2-VI. The maximum force density for this design was determined 

to be 3.13 kN/L (iteration IV). 
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Table 2-V. Prototype Designs Geometric Parameters 

Parameter 
Initial 

Value 

Prototype 

Values 
Unit 

Outer cylinder 

 (fixed)  

   

Pole-pairs, po 6 6 - 

Outer radius, roo 40 40 mm 

Pole-pitch, 2wo 9.6 9.6 mm 

Airgap length, lg 0.5 0.5 mm 

Axial length, L 120 120 mm 

Translator   

 

Pole pieces, nt 21 16 - 

Pole-pitch, wt 2.8571 3.75 mm 

Inner rotor   

-helically skewed 

Pole pairs, pi 15 10 - 

Pole-pitch, wi 4 6 mm 

Lead, λi 8 12 mm 

Wavenumber, kt 1099.5 837.75 m-1 

Table 2-VI. Iteration of Radial Parameters 

Iteration number 0 I II III IV V Vp Unit 

Inner rotor 
Outer radius, rio 31 31 31 30 30 30 26 mm 

Inner radius, rii 29 29 25 25 22 22 20 mm 

Translator outer radius, rto 37.5 33.5 33.5 32.5 32.5 32.5 32.5 mm 

Translator bar thickness, lt 6 2 2 2 2 2 6 mm 

Outer rotor inner radius roi 38 34 34 33 33 33 33 mm 

Translator force, Ft  0.76 1.76 1.84 1.85 1.88 1.88 1.06 kN 

Volumetric force density 1.1 2.92 3.06 3.07 3.13 3.13 1.82 kN/L 

Force-per-kg magnet, Fko 1.15 1.75 1.14 1.2 0.97 0.97 0.84 kN/kg 

Fig. 2-22 shows a trade-off between maximizing volumetric force density and force-

per-kg of magnet materials as a function of inner rotor inner radius for iteration IV. The 

translation force as a function of rio and rto for iteration V is plotted in Fig. 2-23. 

In order to handle the mechanical force on the translator rings, it is desirable to have 

enough radial thickness. Therefore, a design with proper translator radial thickness (6 mm) 

was selected instead of the best design achieved (iteration Vp in Table 2-VI). 

 
Fig. 2-22. Trade-off between maximizing volumetric force density and force-per-kg of magnet material. 

Results shown for iteration IV 
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Fig. 2-23. Translation force as a function of translator outer radius, rto and inner rotor outer radius rio for 

iteration V 

In order to make the construction of the helical inner rotor using commercially available 

blocks of magnets, a segmented helix structure was used. Such an approach was also used 

for some MLS designs [59]. Fig. 2-24 shows one turn of the inner rotor helix using different 

numbers of magnet segments. Each helix turn is formed by n magnet segments displaced 

axially with respect to the adjacent segments. The amount of magnet segment axial shift, 

Lsh, depends on the axial thickness of each piece, wi, as well as the number of magnet 

segments, n, in one helix turn. Therefore, the axial shift is defined as: 

/ ( / 2)sh iL w n   (2.24) 

 

  
(a) (b) 

  
(c) (d) 

Fig. 2-24. One turn of the inner rotor helix using a) 4, b) 6, c) 12, and d) 24 magnet segments 
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Considering the axial length of L=120 mm and having pi = 15 inner rotor pole-pairs, the 

axial thickness of these magnet segments would need to be wi = L/(2pi) = 4 mm, which is 

too thin. This magnet thickness will cause two problems from a practical point of view; 

first the thin magnets are likely to break easily, and second, as the magnets must be axially 

shifted with respect to their adjacent magnets, the small magnet thickness means that the 

axial shift is less than 1 mm and this makes it difficult to align the magnets in their correct 

position. Therefore due to these issues and time limits related to the project, the pole-pair 

combination was changed from (pi, po, nt) = (15, 6, 21) to (pi, po, nt) = (10, 6, 16).  This 

enables the axial thickness of each magnet to be increased to wi = 6 mm. The kt value then 

becomes 837.75 m-1. 

Fig. 2-25 shows the inner rotor torque and translator force for the different numbers of 

magnet segments. As predicted, higher numbers of magnet pieces per helix turn results in 

a better approximation of the helical structure, which in turn results in more sinusoidal 

torque and force curves. Based on (2.24) however, a higher number of segments will result 

in smaller amount of axial shift and also a smaller segment arc length, which make the 

design more difficult to fabricate. In addition, as can be seen from Fig. 2-25-b, increasing 

the number of segments does not significantly increase the translator force. 

  
(a) (b) 

Fig. 2-25. a) Torque, and b) force when the inner rotor was rotated by 180 degrees for various designs with 

different inner rotor magnet arc length 
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Fig. 2-26. Side view of the segmented helical inner rotor with 60o magnet arcs 

Therefore, in the proposed MGLS, 6 segments were considered for each helix turn of 

the inner rotor, which corresponds to a 60o magnet arc, and an axial shift of Ls = 2 mm. 

Fig. 2-26 shows the side view of the segmented helical inner rotor with 6 segments per 

helix turn. In order to avoid using a thin piece of magnet at both axial ends, which are 

difficult to fabricate, the rotor back-iron was extended by 5 mm on both sides, and the 

magnets with the same size were used at the ends.  The final prototype values for the MGLS 

are summarized in Table 2-V on page 43. 

2.4.2 Simulation Results 

Using the final values of the parametric sweep given in Table 2-VI and applying the 

practical changes outlined above, a 3D FEA model of the MGLS was investigated. Rotation 

of the inner rotor while the other two parts of the MGLS were kept stationary created an 

axial force and torque on different parts. Fig. 2-27 shows the calculated pole slippage force 

and torque on the different parts.  

Rotation of the inner rotor at 80 r/min and translating the translator at 10 mm/s creates 

a constant force and torque.  Fig. 2-28 shows the calculated force and torque on different 

parts. The peak force is about 840 times larger than the torque due to the magnetic gearing. 

The segmentation of the inner rotor created some torque and force ripple. 

wi Ls 
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(a) (b) 

Fig. 2-27. a) Force, and b) torque on different parts of the MGLS due to rotation of the inner rotor 

  
(a) (b) 

Fig. 2-28. a) Force, and b) torque on different parts of the MGLS due to rotation of the inner rotor and 

translation of the translator at the same time 

2.4.3 Experimental Results 

The numerically-modelled MGLS prototype presented in section 2.4.1 was constructed. 

The assembled inner rotor and translator are shown in Fig. 2-29. Fig. 2-30 shows the MGLS 

on the test bed before connecting to the electromechanical actuator load.  

  
(a) (b) 

Fig. 2-29. a) Inner rotor and b) translator for the MGLS. 

 
Fig. 2-30. The MGLS on the testbed before testing. 

Servo motor

Outer cylinder Translator

Electromechanical actuatorMGLS
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The radial flux density at the surface of the inner rotor and outer cylinder was measured 

using a Gaussmeter. Measurements were compared with the FEA results. Fig. 2-31 show 

the flux density of the inner rotor and outer cylinder. A good agreement was obtained.   

  
(a) (b) 

Fig. 2-31. Radial flux density along z-axis at radial distance of 0.85 mm from the surface of the a) inner 

rotor and b) outer cylinder 

The inner rotor of the assembled MGLS was rotated manually by 90 degrees while the 

translator was kept stationary. Using a FUTEK load cell, the force on the translator was 

measured (Fig. 2-32). Fig. 2-33 shows the measured force on the translator compared with 

the calculated force using FEA. The measured force is considerably lower than the 

calculated force. 

 
Fig. 2-32. Translator force measurement using a load cell when it was pushing against an obstacle. 

 
Fig. 2-33. Measured and calculated translator force with and without 0.1 mm space between rings. 

 

Translator
Load cell

Obstacle
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The force capability of the MGLS is extremely sensitive to the space between 

ferromagnetic pole-pieces of the translator. As the steel and plastic rings of the translator 

were held together using just four Delrin rods, and due to manufacturing tolerances, small 

spaces between the translator rings were present. An FEA tolerance sensitivity analysis 

was performed to calculate the effect of having different spaces between translator rings. 

A small space of just wg =0.1 mm was considered, as shown in Fig. 2-34. Fig. 2-35 shows 

that a 2.6% increase in the space between the steel rings resulted in a 60% reduction in the 

thrust force. Such a sensitivity to tolerance was previously seen to exist for LMGs [43].  

This sensitivity to tolerance must be carefully taken into account when designing the 

translator. 

 
Fig. 2-34. Close up view (not to scale) of the translator pole-pieces and wg = 0.1 mm space between plastic 

(black) and steel rings (gray). 

 
Fig. 2-35. Variation of the translator force as a function of space between two adjacent rings 

2.4.4 Lead Angle 

In the above analysis, the inner rotor lead angle was defined as shown by (2.6), which 

was based on the approximate side view of the helical shaped magnets of the inner rotor. 

This method of defining the lead was also presented by Lu et al. [60].  

 

 

 

wt wg 
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1tan [( / 2) / (2 )]i i ior   (2.6) 

After further study, it was determined that using the standard mechanical definition of 

the lead angle of a helix to determine the translator rings skew angle results in a higher 

force for the MGLS. 

Based on the ANSI/AGMA Standard (1012-G05), the lead angle is defined as the angle 

between the helix and a plane of rotation [61], as illustrated in Fig. 2-36.  The inner rotor 

lead angle is defined as: 

1tan [ / (2 )]i i ior    (2.25) 

Substituting (2.25) and (2.7) into (2.8) gives 

to
r i

io

r

r
 


  (2.26) 

Table 2-VII shows that selecting the translator lead angle based on (2.25), the ANSI 

mechanical standard, rather than the definition provided by (2.6) results in higher translator 

force.  Therefore, future MGLS designs should meet the lead condition given by (2.26). 

 

Fig. 2-36.  Definition of the lead angle per ANSI/AGMA 1012-G05 [61] 

Table 2-VII. Impact of Inner Rotor Lead Angle on Force 

Lead Definition Lead angle [degrees] Ftmax [N] 

Presented experimental design  6.58 1060 

ANSI/AGMA 1012-G05 4.20 1512 

 

 

 

 

,αi 
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2.5 MGLS without Translator Skewing 

As discussed in Section 2.4.3, small tolerance inaccuracies in the rings cause the force 

to reduce significantly when compared to the predicted values. The skewing of the 

translator rings also significantly increases the manufacturing cost of the MGLS, as it is 

difficult to fabricate the skewed rings to a high tolerance. In this section, a new type of 

MGLS is presented that does not require the use of skewed translator rings, therefore 

significantly reducing the translator construction cost. 

2.5.1 Design Analysis 

The translator rings in the new design are not skewed. However, in order to create field 

coupling with the inner rotor, the outer cylinder poles need to be skewed instead. Consider 

the schematic shown in Fig. 2-37. The outer cylinder can be skewed by axially shifting a 

half-ring (180o) of the magnet and ferromagnetic steel by distance La.  

Using the geometric and material parameters given in Table 2-VIII, force as a function 

of axial shift, La, is calculated and shown in Fig. 2-38. The peak translator force Ft = 1444 

N occurs at La = 9 mm. However, if the half ring outer rotor is shifted by La =9.6 mm, then 

this equals the outer cylinder pole-pitch (2wo) and the peak translator force only reduces 

by 0.4% to Ft = 1435 N. 

 
Fig. 2-37. Parametric design to investigate the effect of the axial shift, La, between the top and bottom set of 

half rings 

 

 La

Magnet Ferromagnetic steel 
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Fig. 2-38. Maximum translator force versus axial shift, La of the half rings 

Table 2-VIII. Geometric and material parameters 

Parameter Value Unit 

Outer cylinder (fixed)  

Pole-pairs, po 6 - 

Outer radius, roo 40 mm 

Pole-pitch, 2wo 9.6 mm 

Airgap length, lg 0.5  mm 

Axial length, L 120 mm 

Translator  rings 

Ferromagnetic pieces, nt 16 - 

Outer radius, rto 32.5 mm 

Radial thickness, lt 6 mm 

Pole-pitch, wt 3.75 mm 

Inner rotor   

- helically skewed 

Pole pairs, pi 10 - 

Outer radius, rio 26 mm 

Pole-pitch, wi 6 mm 

Lead, λi 12 mm 

Material 
NdFeB magnet, Br, NMX-40CH 1.25 T 

1018 steel resistivity  15.9 µΩ-cm 

 
Fig. 2-39. Proposed new MGLS 

Therefore, by choosing a half ring shift La = 2wo, a particularly simple design is achieved 

since the outer rotor is made of complete ferromagnetic rings with half-ring magnets. Such 

a design is illustrated in Fig. 2-39. 

 

 

 

Axial displacement, La, of half rings [mm] 
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2.5.2 FEA Analysis 

The MGLS demonstrated in the previous section (with La = 9.6 mm) was simulated 

using JMAG FEA software. The radial magnetic flux density due to the inner rotor magnets 

in the outer airgap with and without translator effect is shown in Fig. 2-40-a. Spatial 

harmonics created by the translator are depicted in Fig. 2-40-b. The modulation effect of 

the translator rings results in a large 6th harmonic being created in the outer air-gap. The 

same plots for the radial magnetic flux density in the inner airgap when magnets are only 

present on the outer cylinder are shown in Fig. 2-41. 

  
(a) (b) 

Fig. 2-40. a) Radial flux density in the outer airgap (r=32.75 mm) when only inner rotor magnets present. 

b) Harmonic content with translator present 

  
(a) (b) 

Fig. 2-41. a) Radial flux density in the inner airgap (r=26.25 mm) when only outer cylinder magnets. b) 

Harmonic content with translator presents 

The force and torque on the different parts, when the inner rotor is rotated by 360o while 

the other two parts are stationary, is shown in Fig. 2-42.  The peak pole slipping force and 

torque occurs at Ft = 1435 N and Ti = 1.72 Nm, respectively.  The values given in Table 

2-VIII (with La = 2wo) were used in the analysis. 
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Considering the inner rotor speed to be ωi = 80 r/min, and a translator speed of vt = 10 

mm/s, the continuous force and torque were calculated using 3D FEA. Fig. 2-43 shows the 

calculated force and torque on the different parts.  A relatively low force ripple and torque 

ripple are present at peak conditions.  The calculated magnetic shear stress of this design 

is 130 kN/m2. 

  
(a) (b) 

Fig. 2-42. a) Force and b) torque on each MGLS part as a function of inner rotor phase angle. 

  
(a) (b) 

Fig. 2-43. a) Force and b) torque on each MGLS part due to rotation of the inner rotor and translation of the 

translator at the same time. 

2.5.3 Experimental Verification 

The inner rotor of the new MGLS is the same as the first prototyped MGLS (Section 

2.4.3), but the outer cylinder and the translator have been modified. These two parts are 

shown in Fig. 2-44. The calculated and measured radial flux density for the inner rotor and 

outer cylinder are depicted in Fig. 2-45-a and Fig. 2-45-b. Their corresponding main 

harmonic orders are compared in Fig. 2-45-c and Fig. 2-45-d. The 10th harmonic of the 

inner rotor flux density is just 0.6% lower than the 10th harmonic of the calculated flux 

density. This discrepancy is 8.2% for the 6th harmonic of the outer cylinder flux density. 
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(a) (b) 

Fig. 2-44. MGLS components; a) outer cylinder, b) translator. 

  
(a) (b) 

  
(c) (d) 

Fig. 2-45. Calculated and measured flux density and the corresponding main harmonics at 0.85 mm above 

the surface of (a) inner rotor and (b) outer cylinder when they are surrounded by air.  The corresponding 

harmonics for the inner rotor and (fixed) outer cylinder are compared in (c) and (d) respectively. 

The test setup for the force measurement is shown in Fig. 2-46 and Fig. 2-47. In this test 

the inner rotor was rotated while the translator was pushed against an obstacle.  

 
Fig. 2-46. Test setup for force measurement 

 

Translator 
Load cell 

Obstacle 
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Fig. 2-47. MGLS on the test bed connected to a spring load 

Measured force and torque are shown in Fig. 2-48. As can be seen the measured 

maximum force value is considerably lower than the calculated force while the applied 

torque is larger than calculated. The possible reason for this discrepancy is the high friction 

inside the MGLS against both rotation and translation.  

  
a b 

Fig. 2-48. a) Measured translator force, b) measured inner rotor torque, when inner rotor was rotated while 

translator pushed against an obstacle. 

Fig. 2-49 shows a cutaway view of the MGLS. As can be seen, the translator slides 

between two sets of sleeve bearings. Although a set of three plastic rods was considered to 

reduce the contact point, there is still a considerable amount of friction. The inner rotor, 

which is connected to two of these sleeve bearings, experiences friction against its motion. 

In order to further understand these losses, two no-load tests were performed. Fig. 2-50 

shows the measured torque, while the inner rotor was rotated and translator was free to 

move. As there was no load attached to the translator, this torque is only due to friction 

losses.  

 

 

 

Rotary motor Torque transducer MGLS Load cell Spring Load 

Couplings 
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Fig. 2-49. 3D cut view of the MGLS showing the plastic rods and sleeve bearings 

 
Fig. 2-50. Measured torque while inner rotor was rotated and translator was free to move. 

Deduction of the average friction torque from the measured torque in previous test (Fig. 

2-48 (b)) results in a value comparable to the calculated torque. In another test, the 

translator was pushed in using a mechanical actuator (not shown in the picture), while the 

torque and force values were measured. Fig. 2-51 shows the results of this test. It can be 

seen that about 1.9 kN, which is considerably larger than the calculated force, is applied 

while the measured torque of about 1.7 Nm is comparable to the calculated torque. These 

results shows that a part of the applied force is lost to overcome the friction.  

 

Outer Cylinder 

Translator 

Inner rotor 

Plastic rods 

 

Sleeve bearing 
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a b 

Fig. 2-51. a) Measured translator force, b) measured inner rotor torque, when translator was pushed in 

using a mechanical actuator. 

2.5.4 Conclusion 

Two different types of MGLS have been proposed for the first time. Manufacturing the 

skewed translator rings with high tolerance is vital, and a small change in the thickness of 

the translator rings results in a significant reduction of output force. In order to address this 

issue, a MGLS without translator skewing was proposed. The PM poles of the outer 

cylinder in the second version of the MGLS were required to be skewed instead, which 

was achieved using half-ring magnets. Results show that with a simpler structure the later 

version of the MGLS achieves the same force performance. The experimental results shows 

that a considerable friction exist within the structure of the MGLS. This issue could be 

considered by redesigning the MGLS both magnetically and mechanically. For high torque 

linear motion applications, the MGLS could be further driven using a magnetically geared 

motor. In the following chapter a new type of axial MG motor is investigated for low speed 

applications. 
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3 Chapter 3: Axial Flux-Focusing Magnetically Geared Motor 

3.1 Introduction 

Growing concerns about climate change have motivated researchers to make use of 

clean and renewable energy. Wind power generation and hybrid electric vehicles (HEV) 

are two areas that have attracted attention recently. The two characteristics of these 

applications are their low speed and high torque nature. Electrical machines cannot provide 

high torque with low speed unless either they use a reduction mechanism or they have a 

large number of poles. Since a limited number of poles can be fitted within a limited 

circumference, they need to be made large and bulky.  

Mechanical gears are used as the reduction mechanism to meet the electromechanical 

requirements of the electrical machine [62]. Due to the physical contact between their 

moving parts, they suffer from low reliability, high noise, and regular maintenance 

requirements. Moreover, they have a short life time. For example, the life time of a typical 

wind turbine is 20 years, while the mechanical gearboxes usually fail before this. The cost 

of replacing the mechanical gearbox is up to 10 percent of the original construction cost 

[63].  

As an alternative, MGs have been investigated. MGs, like their conventional mechanical 

counterparts, provide torque and speed conversion. The unique characteristic of the MG is 

its ability to provide contactless speed conversion. MGs offer a number of significant 

potential advantages compared with their mechanical counterpart, such as quieter 

operation, improved reliability, higher efficiency, reduced maintenance requirements, and 

inherent overload protection [37], [64].  



60 

An axial flux magnetic gear (AFMG) operates based on the same concept as the coaxial 

version, as discussed in section 1.2.5. As they take up less axial space, they are suitable for 

some specialized applications and have been considered for use in hybrid electric vehicles 

[65], [66].  

MGs can be either connected to a regular machine as a separate part, or they can be 

combined with the electrical machine to construct a magnetically geared machine (MGM), 

which has a more compact design, and fewer moving part. The focus of this chapter is on 

investigating a unique AFMG and its integration with electrical machines to construct a 

compact direct-drive machine. The MGM could then be connected to the MGLS further 

increasing the torque to force ratio. 

3.2 Brief Review of Axial Flux Magnetically Geared Motors 

Mezani et al. [38] proposed an AFMG, shown in Fig. 3-1. It works based on the same 

concept as the coaxial MG concept (section 1.2.5), but three parts of the AFMG are placed 

along the axial direction instead of radially. A calculated torque density of 70 Nm/L was 

reported for this design. 

 
Fig. 3-1.  Schematic of an AFMG [38]. 
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Wang et al. [67] combined an AFMG with a PM generator to construct an AFMGM for 

a wind power application, as shown in Fig. 3-2. It consists of an axial machine connected 

to the high speed rotor of an AFMG with a gear ratio of Gr ≈ 6.67. Although the high speed 

rotor of the AFMG is directly connected to the PM rotor of the generator, they have two 

separate sets of PM poles.  A solid iron disc was used as the back iron for both the high 

speed rotor of the MG and the stator PM rotor. The PMs on either side of the stator PM 

rotor and high speed rotor can be arranged in either the same coupled polarity or the 

opposite decoupled polarity shown in Fig. 3-3. The magnetic field of the low speed rotor 

in the coupled design contributes to the total flux linkage in the stator. Therefore, the 

coupled structure results in a slightly higher back-EMF in the stator winding. 

Wang et al. calculated an active region torque density of 105 kNm/m3 for just the MG 

part when the outer diameter is 320 mm. If the volume of the generator, which was almost 

the same as the MG, is also considered, the torque density significantly decreases. 

 
Fig. 3-2.  An axial flux magnetically geared machine proposed by Wang et al [67] 

 
Fig. 3-3.  Magnetic field distribution in coupled and decoupled designs [67] 
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The advantage of this design is that both the MG and the generator can be optimized 

individually to achieve good performance. For example, machines with a larger least 

common multiple (LCM) between the number of poles and slots have a lower cogging 

torque [68]. This can also be considered by checking the “goodness” of the pole-pair 

combination of the MG. Zhu et al. [68] define an index named the cogging factor to check 

the “goodness” of the design as follow: 

(2 , )

2
T

Q

LCM p Q

p
C 


 (3.1) 

where p is the number of pole-pairs, and Q is number of stator slots or modulator pole-

pieces. A unity cogging factor is preferred. Wang’s design has a unity cogging factor for 

the MG side, but CT = 6 for the generator side. This is due to a relatively small LCM of 36 

between the number of slots and poles. 

This design is simply stacking an AFMG with an axial generator. In comparison when 

using a radial version of these machines, this AFMGM considerably reduces the axial 

length of the overall design.  However, as the MG and the generator are physically 

independent and do not share any part, this cannot be considered as a compact axial 

machine design.  

Johnson et al. [69] proposed a compact AFMGM in which the electrical machine is 

placed in the bore of the AFMG, as shown in Fig. 3-4. As the addition of the electrical 

machine does not add to the overall size of the AFMGM, a relatively compact design 

results. A volumetric torque density of 62.6 kNm/m3 was reported for the MG when the 

outer diameter is 239 mm. The torque density of AFMGM was 60.6 kNm/m3, which shows 

a negligible reduction in comparison with just the MG. The rotor has 10 poles, and the 
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stator has 24 slots with a concentrated winding, which results in a cogging factor of CT = 

4. The MG has a gear ratio of Gr ≈ 9.33, with 3 and 28 pole-pairs on the high speed and 

low speed rotors respectively, which results in a unity cogging factor. As the generator and 

high speed rotor of the MG have different numbers of pole-pairs, this design results in a 

sinusoidal back-EMF (i.e. no contribution from the MG side). One disadvantage of this 

design is that in order to magnetically isolate the AFMG and PM machine, a large radial 

airgap was considered, which in turn limited the space for integrating the PM machine. 

Heat transfer in this design may also be challenging, and could limit the rating of the PM 

machine. Diagnosis and maintenance of the generator could be another issue for this 

design. 

Fig. 3-5 shows the structure of an AFMGM proposed by Niguchi et al. [70].  In this 

design, one of the AFMG’s PM rotors is replaced by a stator. Both the stator teeth and steel 

pole-segments of the low speed rotor modulate the magnetic field and create additional 

harmonics, which interact and generate torque in both airgaps. The gear ratio is given by: 

2
r

l

hp

n
G 


 (3.2) 

 

 
Fig. 3-4.  AFMG proposed by Johnson et al. [69] 
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where nl = 20 and ph = 4 are the number of steel pole-segments of the low speed rotor and 

the number of pole-pairs of the high speed rotor, respectively. The calculated gear ratio is 

2.5. This design suffers from very low torque density (15 kNm/m3) and high torque ripple 

(62.5 percent). The former is due to using only one PM rotor. The high cogging toque could 

be due to the high cogging factor (CT = 4). Tong et al. [65] proposed an AFMGM, which 

is shown in Fig. 3-6, for a HEV application. This design also has poor torque density 

performance because only one rotor contains PMs. It was determined by Fu [71] that using 

only one PM rotor results in the torque density being no better than a direct-drive motor. 

 
Fig. 3-5.  AFMGM proposed by Niguchi et al. [70] 

 

 
Fig. 3-6.  Structure of the proposed AFMGM by Tong et al. [65] 
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Using the modulating steel pieces of the AFMG as the stator teeth is another approach 

to construct an AFMGM. Fig. 3-7 shows a design of this type, proposed by Zaytoon et al. 

[72]. This design is an AFMG with a winding around the steel pole-pieces of the modulator. 

This design consist of a high speed rotor with two PM pole-pairs, a low speed rotor with 

seven pole-pairs, and a modulation section with nine ferromagnetic segments. Nine 

individual windings are placed around the ferromagnetic pole-pieces, which construct a 

nine-phase electrical machine. This combination results in a gear ratio of 3.5. As this design 

takes advantage of two PM source of magnetic field, a higher flux density exist within the 

airgap, which results in higher torque density. A very low torque density of about 46 

kNm/m3 was achieved using an outer diameter of 140 mm. 

The stator of this AFMGM is sandwiched between the two rotors, which makes heat 

dissipation difficult. This limits the current density of the winding. In order to fit the 

required winding turns around the pole-pieces, the pole-pieces need to be made thicker, 

which decreases the torque density because it increases the volume of the machine by 

increasing the axial length. 

 

 
Fig. 3-7.  Exploded view of the axial flux magnetically geared machine proposed by Zaytoon et al. [72] 
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Khatab et al. [73] presented an AFMGM similar to Zytoon’s design [72].  This design 

was inspired by the yokeless and segmented armature (YASA) axial flux PM machine 

(AFPM), proposed by Woolmer et al. [74]. YASA is a double-sided AFPM, which contains 

a stator with magnetically separated segments between two PM rotors with the same 

number of poles. The only difference between the YASA motor and the proposed AFMGM 

is that the number of pole-pairs on the three parts is different and satisfies (1.6)  

t i on p p   (1.6) 

Therefore, this design works based on the MG concept. Fig. 3-8 shows the structure of 

the Khatab’s design, which includes a high speed rotor with 5 PM pole-pairs, a low speed 

rotor with 7 pole-pairs and a stator with 12 ferromagnetic segments.  

The combination of the pole-pairs and steel pole-pieces in a regular MG must satisfy 

(1.6). In order to reduce the torque ripple, combinations with unity cogging factor are 

preferred. But for Khatab’s design, other considerations also must be taken into account. 

For example, the number of steel-pieces must be a multiple of the number of phases. In 

addition, the relationship between the stator slot number and rotor pole number should 

satisfy [73]: 

2sn p    (3.3) 

where ns and p are the number of stator slots and rotor poles, respectively. 

 
Fig. 3-8.  Axial flux magnetically geared machine proposed by Khatab et al. [73] 
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This limitation constrains the number of feasible pole-pair combinations and the gear 

ratio. For example, Khatab’s design uses a small gear ratio of 1.4. In comparison, HEVs 

use planetary gears with gear ratios between 1.5 to 3 [75]. A torque density of 44 kNm/m3 

with outer diameter of 90 mm is reported. 

3.3 Axial Flux-Focusing Magnetic Gear 

Fig. 3-9 shows the structure of a AFMG proposed by Acharya et al. [76], [77]. It consists 

of three parts; two rotors with PM poles, which have been arranged in a flux-focusing 

structure, and a rotor with ferromagnetic pole pieces in between them, which modulates 

the magnetic field of the other parts. Rotor 1 consists of p1 = 6 pole-pairs and rotates at ω1, 

rotor 2 consists of n2 = 25 ferromagnetic steel poles and rotates at ω2, and rotor 3 consists 

of p3 = 19 pole-pairs and rotates ω3. The number of pole-pairs must satisfy (1.6). If rotor 3 

is fixed, the speed relationship will be as (1.8). The gear ratio is Gr = n2/p1 ≈ 4.16.  

  

(a) (b) 

Fig. 3-9.  An axial flux magnetic gear with a flux-focusing typology proposed by Acharya et al. [76], [77].  

a) Optimized design, b) assembly design with rectangular magnets and steel poles’ lips. p1= 6 n2 = 25 and 

p3 = 19. 
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Fig. 3-10 shows the design parameters and the initial design used by Acharya et al.  A 

summary of these parameters is given in Table 3-I. A torque density of 289.8 Nm/L was 

reported for the design shown in shown in Fig. 3-9-a. Practical considerations including 

rectangular shaped magnets and steel pole lips in addition to increasing the axial length of 

the rotor three led to the design shown in Fig. 3-9-b. Acharya showed that these 

considerations result in lower, but still high torque density of 257.6 Nm/L. The later design 

was re-simulated in JMAG to verify Acharya’s results.  

 
Fig. 3-10.  Geometric parameters used for the axial flux magnetic gear with a flux-focusing typology [76], 

[77]. . 

Table 3-I.  Summary of the Design Parameters 

Parameter 

Value 

Unit Design by Acharya [76], [77] 
Current design 

Optimized Assembly 

High speed rotor 

Pole-pairs, p1 6 6 6 - 

Steel pole span, θ1s 15 15 15 degrees 

Magnet dimentions π×(1402-802)×25/24 36×60×25 36×60×25 mm3 

Axial length, l1s 25 27 27 mm 

Airgap length, g 0.5 0.5 1 mm 

Low speed rotor  

Pole pieces, n2 25 25 25 - 

Steel pole span, θ2s 8.5 8.5 9.5 degrees 

Axial length, l2s 8 8 8 mm 

Fixed rotor 

Pole pairs, p3 19 19 19 - 

Steel pole span, θ3s 4.74 4.74 4.74 degrees 

Magnet dimentions π×(1402-802)×15/76 11×60×20 11×60×20 mm3 

Axial length, l3s 15 22 22 mm 

MG Radial 
Outer radius, ro 140 140 140 mm 

Inner radius, ri 80 80 80 mm 

Material 

NdFeB magnet, Br, NMX-40CH 1.25 1.25 1.25 T 

Resistivity 1080 steel, 18 1018 steel, 15.9 µΩ-cm 

Resistivity 430FR steel, 76.4 416 steel, 57.0 µΩ-cm 

θ3m

θ3s

l2s

θ2s

θ1m

θ1s

l1s
l3s
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Fig. 3-11 shows the geometry of the AFMG used in this dissertation. The airgap was 

increased to 1 mm and the steel pole lips were place on only one side (facing the airgap). 

A torque density of 173.2 Nm/L was calculated for this design. Geometric and performance 

comparison of these three designs are given in Table 3-I and Table 3-II respectively. 

 
Fig. 3-11.  An axial flux magnetic gear with a flux-focusing typology based on [76], [77].  p1= 6, n2 = 25, 

and p3 = 19. 

3.3.1 Field Analysis 

A 3D FEA model of the AFMG was simulated in order to verify its published 

performance. Fig. 3-12 shows the generated mesh using JMAG FEA software. Total 

number of about 16.5 million elements created a design with relatively fine mesh. Fig. 

3-13-a shows the axial flux density near the fixed rotor due to the magnets only on the 

high-speed rotor (rotor 1), with and without the modulation effect of the low-speed rotor. 

Fig. 3-13-b shows the corresponding harmonic content of the modulated axial flux density. 

The same plots for the axial flux density near the high-speed rotor due to magnets only on 

the fixed rotor is shown in Fig. 3-14. The modulation effect of the low-speed rotor is clearly 

evident. 

ω1

ω2

ω3

Rotor 3 (fixed)

p3 pole-pairs

Rotor 2 (LSR)

n2 steel poles

Rotor 1 (HSR)

p1 pole-pairs



70 

 
Fig. 3-12. Generated mesh using JMAG FEA software 

  
(a) (b) 

Fig. 3-13. a) Axial flux density near fixed rotor 3 due to magnets only on the high-speed rotor (rotor 1) at a 

radius of r=137 mm and an axial distance of 0.5 mm. b) Corresponding harmonic contents. 

  
(a) (b) 

Fig. 3-14. a) Magnetic flux density near the high-speed rotor due to magnets only on the fixed rotor 3 at a 

radius of r=137 mm and an axial distance of 0.5 mm. b) Corresponding  harmonic contents. 

3.3.2 Performance Analysis 

Torque on the different parts of this AFMG, when only the low-speed rotor is rotated, 

is shown in Fig. 3-15. An active region torque density of 173.2 Nm/L was calculated to be 

achievable. Torque and force on different parts of the AFMG when both rotors were rotated 

are shown in Fig. 3-16 and Fig. 3-17, respectively. A large axial force characteristic is 

present within the AFMG. This makes assembly challenging. 
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Fig. 3-15.  Torque on the low speed rotor (LSR), high speed rotor (HSR) and fixed rotor for the case when 

only the low speed rotor is rotating with practical design considerations. 

 
Fig. 3-16.  Torque on the low speed rotor (LSR), high speed rotor (HSR) and fixed rotor for the case when 

both rotors were rotated with practical design considerations. 

 
Fig. 3-17.  Axial force characteristics of the AFMG for the case when both rotors were rotated with 

practical design considerations. 

Table 3-II.  Performance comparison between the initial design and current design 

Parameter 
Acharya et al. [76] 

Current design Unit 
Optimized Assembly  

Torque 872.3 919.9 628.6 Nm 

Volume 3.01 3.57 3.63 L 

Magnet mass 6.3 8.74 8.74 kg 

Torque density 289.8 257.6 173.2 Nm/L 

Torque per kg of magnet material 138.4 105.26 72 Nm/kg 
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3.3.3 Experimental Results 

The experimentally constructed high-speed rotor, low-speed rotor and fixed rotor are 

shown in Fig. 3-18. The measured axial magnetic flux density, Bz, when the rotors are 

surrounded by air for the high-speed rotor is compared in Fig. 3-19.  Fig. 3-20 shows the 

field comparison next to the fixed rotor.  The measured 6th harmonic of the high-speed 

rotor and the measured 19th harmonic of the fixed rotor are respectively 1.7% and 5.2% 

lower than calculated.  Note, these values are different from the reported values in [78] 

because incorrect dimensions for the Gauss meter probe were considered. This resulted in 

larger difference between FEA and measured values. As the fixed rotor contains a higher 

number of poles the measurement accuracy is less than that for the high-speed rotor so a 

larger discrepancy in this case could be partly related to measurement error. 

   
(a) (b) (c) 

Fig. 3-18.  The experimentally assembled axial flux focusing magnetic gear with a) high-speed rotor, b) 

low-speed rotor, and c) fixed rotor. 

  
(a) (b) 

Fig. 3-19. a) High speed rotor axial magnetic flux density at r = 135mm and 1.04mm above the axial rotor 

and b) corresponding spatial harmonic comparison showing the 6th, 18th, 30th, and 42nd harmonic for the 

measured and FEA calculated axial flux density (when surrounded by air). 
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(a) (b) 

Fig. 3-20. a) Fixed rotor axial magnetic flux density field when the rotor surrounded by air at r = 135mm 

and z = 1.04mm above the rotor b) Corresponding harmonic analysis showing the 19th, 57th, 95th, and 

133rd harmonic for measured and FEA calculated axial flux density for the fixed rotor (when surrounded 

by air). 

The axial MG assembly on the test bed is shown in Fig. 3-21.  The low-speed rotor was 

driven by an induction motor, while the high-speed rotor was connected to a PM generator.  

The high-speed rotor was rotated at ω1 = 50 r/min. Using the torque control method, a 

stepped load torque was applied to the MG until it reached the pole-slip torque point. The 

resultant torque plot is shown in Fig. 3-22.   

 
Fig. 3-21.  Axial magnetic gear on the test bed 

 
Fig. 3-22.  Measured torque on high speed and low speed rotors. 

 

Induction motor Torquemeter Torquemeter PM generator
Axial flux magnetic gear (4.16:1)

CouplingsCouplingsGearbox (33.25:1) Gearbox (9.73:1)
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The peak measured torque was 553.2 N m, which resulted in the measured active region 

volumetric and mass torque density being 152.3 N·m/L and 42.3 N·m/kg respectively. This 

is 12 % lower than calculated. The reason for this discrepancy is believed to be primarily 

due to the mechanical frictional losses within the axial bearings as well as for the 

unaccounted-for eddy current losses within the solid steel poles and support mechanical 

structure. The large axial forces present within the MG create significant challenges with 

respect to mechanical construction and cause mechanical losses within the bearings. 

The measured no-load torque on the high speed and low speed rotor is shown in Fig. 

3-23. Fig. 3-24 shows the power loss as a function of load.  The power loss does not change 

with increasing load when the MG input speed is held fixed at ω1 = 50 r/min. This therefore 

results in the efficiency increasing significantly with increased applied load.  

 
Fig. 3-23.  Measured no load torque on low speed and high-speed rotors 

 
Fig. 3-24.  Power loss and efficiency as a function of the load torque at 50 r/min high speed rotor speed. 
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The measured torque ripple as a function of the load for the low speed and high speed 

rotors is shown in Fig. 3-25 and Fig. 3-26, respectively. The torque ripple for different 

loads is relatively unchanged. This results in a very high percentage torque ripple at light 

loads. A summary of the above experimental analysis results is given in Table 3-III. 

 
Fig. 3-25.  Torque ripple as a function of load for low speed rotor. 

 
Fig. 3-26.  Torque ripple as a function of load for high-speed rotor. 

Table 3-III. Measured average torque and calculated power, loss and efficiency at each load step. 

Load % Power loss [W] Efficiency 
Torque ripple [N·m] 

HSR LSR 

0 49.2 43.07 11.55 19.58 

20 48.1 63.02 9.01 15.06 

36 50.5 77.41 10.28 16.64 

52 50.6 84.06 10.89 15.96 

68 50.0 87.86 11.46 16.72 

84 49.8 90.01 11.67 17.55 

100 49.6 91.79 12.18 16.64 

3.4 Axial Flux-Focusing Magnetically Geared Motor 

In this section a new type of AFMGM, as shown in Fig. 3-27, is proposed. Unlike in 

[69], the stator is placed on the outer radius of the high-speed rotor. Also due to the use of 

a flux-focusing rotor structure, the stator takes advantage of the high-speed rotor flux in 
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the radial direction. As a result, there is no need for a separate set of magnet poles for the 

rotor of the PM motor. Using an externally-mounted stator also enables cooling to be more 

easily applied. In this section, a fractional slot winding design is discussed and the 

performance of the proposed AFMGM is investigated. 

 
Fig. 3-27.  Exploded view of the proposed AFMGM with 45 slot stator around the 6 pole-pair high speed 

rotor where p1= 6, n2 = 25, and p3 = 19. 

3.4.1 Stator Slot Design 

The stator specifications are given in Table 3-IV. In order to reduce the torque ripple, 

the selected number of stator slots listed in Table 3-V were evaluated. The least common 

multiple (LCM) between the number of slots and poles, defined as 

1( ,2 )LCM Q p   (3.4) 

and slot per pole per phase (SPP), defined as 

1/ (2 )q Q p m    (3.5) 

and number of slot per pole (SP) 

1/ 2q m Q p    (3.6) 

Rotor 2 (LSR)

n2 steel poles

Rotor 3 (fixed)

p3 pole-pairs

Rotor 1 (HSR)

p1 pole-pairs

Stator

ω1

ω2

ω3

z
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are shown in Table 3-V. Where Q is the number of stator slots, p1 is the high speed rotor 

pole-pairs, and m = 3 is the number of phases. 

The combination of 18-slots/12-pole results in a SPP of 0.5. This combination, which 

uses a non-overlapping winding, generates a high cogging torque due to its small LCM 

between the number of slots and poles [68]. The 36-slot/12-pole combination results in a 

unity SPP winding with a simple layout, but it also has a small LCM, which was predicted 

to produce a high cogging torque. Fractional slot winding designs should reduce the torque 

ripple [79]. Two feasible combinations of 45-slots/12-poles and 54-slots/12-poles were 

investigated.  As shown in Table 3-V, the combination of 45-slots/12-poles results in the 

largest LCM in the listed combinations. The winding is feasible when 

/ ( ) is an integern Q m t    (3.7) 

is satisfied [79]. Where and t is the machine periodicity which is defined as 

1( , )t GCD Q p   (3.8) 

where GCD is the greatest common devisor. 

Table 3-IV. Stator Specifications 

Parameter 
Value 

Unit 
Initial Final 

Outer radius, rso 200 215 mm 

Inner radius, rsi 140.5 155.5 mm 

Airgap length 0.5 1.5 mm 

Stack length 25 16.5 mm 

Maximum current density 6.4 A/mm2 

Winding fill factor 0.6 0.3 - 

Lamination material M19 Steel 

Table 3-V. LCM, GCD, SPP, and SP for Different Combinations of Stator Slots and p1 = 6 Pole-pair Rotor. 

Stator slots, Q LCM[Q, 2p1] GCD[Q, p1] SPP SP n 

18 36 6 0.5 1.5 1 

36 36 6 1 3 2 

45 180 3 1.25 3.75 5 

54 108 6 1.5 4.5 3 
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In order to observe the effect of the selected number of slots for the stator on the torque 

ripple, the AFMGM with the selected combination of slots/poles was simulated using 

JMAG 3D FEA software, when there was no current excitation. These four models are 

shown in Fig. 3-28. Table 3-VI shows the average torque on the different parts of the 

AFMGM, and Table 3-VII shows the corresponding torque ripple. The fractional slot 

design significantly reduces the torque ripple. As predicted, the 45 slot stator results in the 

lowest torque ripple on the high-speed rotor and the stator. The 54 slot stator design has 

the lowest torque ripple on the low-speed rotor and the fixed rotor. However, the purpose 

of using fractional slot winding is to reduce the torque ripple on the combination of the 

stator and high-speed rotor. Therefore, 45 slot stator was selected. 

  
(a) (b) 

  
© (d) 

Fig. 3-28.  Stator and the high speed rotor of the proposed axial flux magnetically geared motor with a) 18, 

b) 36, c) 45, and d) 54 stator slots. 
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Table 3-VI. Average Torque for Each Part of Different Designs 

Design 
Average torque [Nm] 

Low speed rotor High speed rotor Fixed rotor 

18 slots -600 145 455 

36 slots -613 143 466 

45 slots -626 151 475 

54 slots -640 154 486 

Table 3-VII. Torque Ripple Comparison for Different Slot Combinations at Peak Torque Condition 

Design 
Torque ripple [Nm/%] 

Low speed rotor High speed rotor Fixed rotor 

18 slots 5.41/0.9% 15.22/15.3% 4.38/0.96% 

36 slots 7.48/1.2% 71.83/120.2% 6.53/1.4% 

45 slots 2.23/0.4% 7.3/4.8% 1.6/0.34% 

54 slots 1.73/0.3% 14.7/9.5% 1.83/0.4% 

3.4.2 Fractional Slot Winding Design for 45 Slot Stator 

In order to design the phase windings for the 45 slot stator, the star-of-slots approach 

was used [79]. The star-of-slots is the phasor representation of the main EMF harmonic 

induced in the coil side of each slot, which has Q/t spokes, with each spoke containing t 

phasors. The star-of-slots is formed by Q phasors. Phasors are numbered based on the  

designated slot number [79]. For the selected number of slots from (3.5) and (3.6), one can 

calculate 5/4 slot-per-pole-per-phase and 15/4 slot-per-pole respectively. This indicates 

that four poles must be distributed over 15 slots and the pattern will be repeated after four 

poles. The phase shift in electrical degrees between slots, which is the angle between two 

adjacent phasors, is calculated by 

1 (360 / ) 6 (360 / 45) 48e

s p Q        (3.9) 

Considering that the phase shift for the 45 slot design is 48o, the star-of-slots design 

shown in Fig. 3-29 can be created. An equal number of slots are assigned to all three phases. 

The winding layouts of the three phases over the first four poles are shown in Fig. 3-30. A 

slot span of 4 is selected, as it is the closest to 180 electrical degrees (4×48 = 192). 

Considering Nt turns in each coil, the corresponding turns function n(θ), and winding 
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function N(θ), are calculated and shown in Fig. 3-31 and Fig. 3-32 respectively.  The turns 

function and winding function are related by [80] 

( ) ( ) ( )N n n       (3.10) 

where <n(θ)> is the average of the turns function, n(θ), and equal to (26/15)Nt, (11/15)Nt, 

and (-19/15)Nt for the phases A, B, and C windings respectively. 

 
Fig. 3-29.  Star of slots phasor diagram of a 45slots/12poles motor. 

 
Fig. 3-30.  Winding layout of the three phases over the first four poles. 
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Fig. 3-31.  Turns function of the three phases over the first four poles. 

 
Fig. 3-32.  Winding function of the three phases over the first four poles. 

3.4.3 Field Analysis 

A 3D FEA model of the AFMGM was simulated using a 6.4 A/ mm2 current density 

and 0.6 fill factor. The mesh plot using JMAG FEA software is shown in Fig. 3-33. Fig. 

3-34-a shows the axial flux density near the fixed rotor due to the magnets only on the 

high-speed rotor (rotor 1), with and without the modulation effect of the low-speed rotor. 

Fig. 3-34-b shows the corresponding harmonic content of the modulated axial flux density. 

The same plots for the axial flux density near the high-speed rotor due to magnets only on 

the fixed rotor is shown in Fig. 3-35. 
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Fig. 3-33. Mesh plot for axial flux magnetically geared machine using JMAG 

  
(a) (b) 

Fig. 3-34. a) Axial flux density near fixed rotor 3 due to magnets only on the high-speed rotor (rotor 1) at a 

radius of r=137 mm and an axial distance of 0.5 mm. b) Harmonic contents of the modulated flux density. 

  
(a) (b) 

Fig. 3-35. a) Magnetic flux density near the high-speed rotor due to magnets only on the fixed rotor 3 at a 

radius of r=137 mm and an axial distance of 0.5 mm. b) Harmonic contents of the modulated flux density. 

The modulation effect of the low-speed rotor is clearly evident. MMF waveform of the 

stator winding can be calculated from the three-phase winding functions by multiplying 

the winding functions with the corresponding phase current magnitude. In order to verify 

the calculated winding functions, the normalized three-phase MMF of the stator was 

compared with FEA results when IB=IC=-0.5IA. Fig. 3-36 shows the comparison of the 

calculated MMF waveforms using FEA and winding function analysis (WFA).  The 
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corresponding harmonic content of these two waveforms are shown in Fig. 3-37. The 

creation of the 6 pole-pairs is clearly evident. The results of the normalized FEA values 

match very well with WFA. 

 
Fig. 3-36.  Normalized MMF using the winding function analysis and FEA. 

  

(a) (b) 

Fig. 3-37.  Harmonic contents of the normalized MMF a) using FEA results b) using winding function 

analysis. 

3.4.4 Torque Analysis 

A three-phase 60 Hz current was applied to the stator windings. The current amplitude 

and number of winding turns were calculated considering the fill factor of 0.6 and a 

maximum current density of 6.4 A/mm2. This value of the current density was selected 

because it results in the peak high-speed rotor torque, T1 being zero.  At the same time, the 

high-speed and low-speed rotors were rotated at ω1 = 600 r/min and ω2 = 144 r/min 

respectively. Fig. 3-38 shows the calculated torque on the different parts of the AFMGM.  

A summary of the average torque and torque ripple on each part is given in Table 3-VIII. 

ω1 is related to the stator frequency, fe, by 
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1 120 ( / 2 ) 120 (60 /12) 600 rad/sef p        (3.11) 

The calculated active region torque density for this AFMGM is 128 Nm/L. 

 
Fig. 3-38.  Torque on different parts. 

Table 3-VIII.  Average Torque and Torque Ripple for Each Part 

 Low-speed rotor High-speed rotor  Fixed rotor Stator 

Average torque  662Nm 0Nm -501Nm -161Nm 

Torque ripple 5.4Nm/0.8% 22.6Nm 4.1Nm/0.8% 22.6Nm/14% 

The stator torque relationship must satisfy 

1 2 3 0sT T T T      (3.12) 

and power flow relationship must satisfy 

1 1 2 2 3 3 s s lossT T T T P        (3.13) 

power loss ,Ploss is defined as 

loss m h eP P P P    (3.14) 

where Pm, Ph and Pe are mechanical, hysteresis and eddy current losses respectively. 

The high-speed rotor torque, T1 = 0 as it is assumed that power is flowing through the 

stator and not the high speed rotor shaft. Therefore  

2 2 s s lossT T P    (3.15) 

Injecting current into the stator windings could be used to provide additional overload 

torque during transient overshoots.  In order to examine this possibility, a 3D FEA 
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simulation was performed in which a three-phase current was applied that is directly in-

phase with the HSR magnet flux. The stator winding current was varied across the range 

[0A, 80 Arms]. Fig. 3-39 shows the resultant change in the HSR and LSR torque with stator 

current. In this analysis, a MG air-gap of 1 mm and stator airgap of 0.5 mm were used.  

The addition of the stator reduced the torque values when there was no current excitation. 

By using current injection, the HSR torque increased by 151 Nm, a 110% increase, while 

the torque on LSR increased by 86 Nm, a nearly 15% increase. 

 

Fig. 3-39.  Torque on the low-speed rotor and high- speed rotor as a function of stator current for the case 

when a fill factor of 0.3 was used. This lower fill factor was used as it was closer to the experimental value 

used in the prototype. A stator current of 25.4 Arms corresponds to a current density of 6.5A/mm2  

3.4.5 Experimental Results 

The fabricated stator is shown in Fig. 3-40. Due to assembly challenges, the airgap 

between the rotors was increased to 1 mm and the air-gap between the HSR and the stator 

lamination was increased to 1.5 mm. Additional ferromagnetic segments (not-shown) also 

had to be added to enable the stator to be inserted over the AFMG. The stator stack length 

was decreased to 16.5 mm because the low speed rotor steel bars are fixed using an end 

ring from outside, which limits the stator space around the HSR. Therefore, to avoid contact 

between parts, a smaller stack length was needed and the surface of the HSR was raised 

using additional steel poles.  

 

 

HSR 

LSR 
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(a) (b) 

Fig. 3-40.  The experimentally assembled stator a) lamination with winding, b) mounted on the AFMG. 

These design changes resulted in the calculated peak torque and torque density without 

current excitation reducing to 570.7 Nm and 114 Nm/L, respectively.  Due to the space 

limitations on two ends of the stator, the end-windings needed to be made relatively small. 

Consequently, this required the number of turns to be reduced from 100 to 20 in the slots. 

Fig. 3-41 shows the AFMG motor on the test bed. 

 
Fig. 3-41. Axial flux magnetically geared machine on the test bed. 

The AFMG motor was rotated such that the HSR had a 50 r/min angular speed and the 

resultant no-load measured back-EMF voltage was then compared with the FEA calculated 

voltage in Fig. 3-42. The measured value is quite distorted.  The harmonic content of the 

calculated and measured back-EMF is shown in Fig. 3-43. The same harmonics are 

dominant, but the experimentally measured values are significantly lower and have many 

additional harmonics. This could be due to high flux leakage and not perfectly uniform 

Induction motor PM motorTorquemeter Torquemeter

Couplings Couplings

AFMGM
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airgap. The measured and calculated peak back-EMF at different r/min is shown in Fig. 

3-44. This shows a very good agreement with the FEA model. 

 

Fig. 3-42. Measured and calculated no-load three phase back-emf waveforms when the HSR is rotating at 

50 r/min. 

  
(a) (b) 

Fig. 3-43.  Harmonic spectrum of the a) calculated and b) measured no load back-emf voltage. 

 

Fig. 3-44. Simulated and measured peak back-EMF at different speeds  

The LSR was rotated while no-load was connected to the HSR and the stator. The 

calculated no-load losses versus HSR speed is shown in Fig. 3-45.  The experimentally 

measured torque on the HSR and LSR is shown in Fig. 3-46.  The peak measured torque 

and corresponding active region torque density are 473 Nm and 94.4 Nm/L. 
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Fig. 3-45. Experimental no-load losses  

 
Fig. 3-46. Measured torque at HSR speed of 50 r/min at different loads. 

 
Fig. 3-47. Measured loss and efficiency as a function of load  

 

3.4.6 Conclusion  

A new type of AFMGM was proposed and investigated. The proposed AFMGM has 

multiple advantages, including simple and compact design, no need for a separate sets of 

magnet poles for the stator excitation, and relatively high torque rating capability. The 

disadvantage of this design is that because of the complex flux path, solid steel poles were 

used. This limits its applicability to very low-speed applications.  The stator of the PM 

motor was designed with the aim of reducing the torque ripple.  The star-of-slots approach 
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was used in order to design the phase windings for this stator. The stator was designed in 

terms of the number of slots and the winding configuration, but the geometry of the stator 

was not optimized. Therefore, a further reduction in the torque ripple could be achieved by 

conducting a more detailed cogging torque analysis. This AFMGM could also be coupled 

to a suitably-designed linear actuator to achieve a very high torque-to-force ratio actuator. 
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4 Chapter 4: Analytical Model of a Linear Coupling and a Magnetic Lead Screw 

This chapter is dedicated to analytical modeling of a linear permanent magnet coupling 

(LPMC) and a magnetic lead screw (MLS). In section 4.1, an introduction is given. The 

analytical-based model of the LPMC is developed in section 4.2 and an MLS is modeled 

using analytical-based method in section 4.3. 

4.1 Introduction 

In order to determine the upper force density bound of magnetic devices a scaling 

analysis is required. To understand the scaling characteristics and fundamental geometric 

parameters over a large design space, fast and accurate analysis methods are required. Pure 

numerical methods like FEA using available commercial software packages are proven to 

be accurate and effective enough for modeling various electromechanical and 

electromagnetic devices [25]. However, these FEA simulations are usually 

computationally expensive requiring a considerable amount of memory and time, 

especially when using 3D simulation. To address this issue, analytical models of magnetic 

couplings have been proposed. These methods are based on either equivalent current sheet 

or equivalent charge sheet models of PM poles [81]. Xiong et al. [82] proposed a model 

for a flat single-sided PM linear machine based on the concept of magnetic charge and used 

the method of images. An ideal permanent magnet (μr = 1) was considered in this model, 

which resulted in modeling the PMs with only surface charges. This resulted did not 

incorporate the relative permeability of the magnet material. As the model was discretized, 

the final results include summation terms within integrals, which makes this method 

complicated and time consuming. 2D analytical models based on magnetic vector potential 

were proposed in [83], [84] for flat PM linear machines. PM poles were modeled using 
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equivalent current sheets. The relative permeability of the magnet material was not 

considered in these proposed methods. Wang et al. [85] developed an analytical model for 

tubular PM machines based on the magnetic scalar potential. The advantage of using the 

scalar potential over the vector potential is that the vector potential requires three vector 

components to be used whilst the scalar potential utilizes a single scalar term. However, 

the scalar potential method is only applicable in current-free problems [86]. Therefore, 

magnetic charge must be used to model the fields. 

Wave energy power generation [87], energy storage mechanisms [88], and linear 

magnetic springs [89] are some examples of applications that could use LPMC.  More 

generally, the field interaction between two linear PM cylinders can be considered to be 

near the force limit of what is possible for non-superconducting linear motion devices. 

Therefore, developing an analytical-based model helps with understanding the scaling and 

fundamental geometric parameters that govern linear motion magneto-mechanical devices. 

In this chapter, analytical-based scalar potential models of a LPMC and an MLS are 

developed. The effects of various dimensional ratios on the mass and volumetric force 

density performance of each device is investigated. The analysis shows the effectiveness 

of the proposed modeling method in parametric analysis and design optimization of the 

linear magnetic devices. The results provides the upper force density capability of the 

linear-based magnetic devices. 

4.2 Analytical-Based Model for Halbach Linear Permanent Magnet Coupling 

The PM configuration for the LPMC can be formed using a radial, axial or Halbach 

magnet array arrangement [25]. Due to its unique characteristics, the Halbach array 

arrangement has recently attracted more attention. It was originally discovered as a one-
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sided flux structure by Mallinson [90], subsequently it was realized using individual 

magnets by Halbach [91]. The Halbach array is ideally a rotating magnetization vector with 

constant amplitude. Depending on the rotation direction, one side has almost zero flux 

while the other side has a sinusoidal magnetic field. Fig. 4-1 shows a 2D sketch of one 

period of a Halbach array for a LPMC. It consist of four magnet pieces per pole-pair, 

including radially and axially magnetized magnets. This unique magnet structure offers a 

variety of benefits. Such as, a higher torque/force capabilities [92]; a lower torque/force 

ripple [83]; and back-iron is not necessary due to the inherently self-shielded structure [93]. 

For these reasons, the Halbach magnet array structure will be used in the LPMC. The 

magnetization curves due to this configuration are shown in Fig. 4-2. 

The vector representation of this Halbach array is:  

ˆ ˆM ( )r ( )zr I z IM z M z    (4.1) 

and its corresponding Fourier series is: 

1 1

2 2
ˆ ˆM cos( )r sin( )zn I n I

n nI I

n n
a z b z

T T

  

 

     (4.2) 

 
Fig. 4-1. One period of the Halbach array 
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Fig. 4-2. Magnetization plots of the Halbach array 

where 

/2

0

4 2
( )cos( )

IT

n r I I I

I I

n
a M z z dz

T T


   (4.3) 

and 

/2

0

4 2
( )sin( )

IT

n z I I I

I I

n
b M z z dz

T T


   (4.4) 

where TI is the Halbach array period and is defined as: 

I
I

I

L
T

p
   (4.5) 

where LI is the axial length and pI is the number of pole-pairs. Noting the step change 

magnetizing values in Fig. 4-1 and using half-wave symmetry, (4.3) and (4.4) can be 

evaluated as: 

/8 /2

0 3 /8

2 24
[ cos( ) cos( ) ]

I I I I

I I

L p L p

I I
n I I I I

I I I IL p

p n p n
a M z dz M z dz

L p L L

 
    (4.6) 
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3 /8

/8

24
[ sin( ) ]

I I

I I

L p

I
n I I

I I IL p

p n
b M z dz

L p L


   (4.7) 

From (4.6) one can calculate: 

/8 /2

0 3 /8

2 24
[sin( ) sin( ) ]

/ 2

2 3
[sin( ) sin( ) sin( )]

4 4

I I I I

I I

L p L p

I I I
n I I

I I I I I L p

L p n p nM
a z z

L p p n L L

M n n
n

n

 



 




 

  

 (4.8) 

Using the trigonometric identity: 

sin sin 2sin( )cos( )
2 2

   
 


   (4.9) 

Equation (4.8) becomes: 

2
[2sin( )cos( )]

2 4
n

M n n
a

n

 


  (4.10) 

or 

4
[sin( )cos( )] ,   odd

2 4

0 ,   even
n

M n n
n

a n

n

 






 



 (4.11) 

And calculating (4.7) gives: 

3 /8

/8

24
cos( )

/ 2

2 3
[cos( ) cos( )]

4 4

I I

I I

L p

I I
n I

I I I I L p

L p nM
b z

L p p n L

M n n

n





 





 

 (4.12) 

Using the trigonometric identity: 

cos cos 2sin( )sin( )
2 2

   
 

 
    (4.13) 

Equation (4.12) becomes: 
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2
[ 2sin( )sin( )]

2 4
n

M n n
b

n

 


   (4.14) 

or 

4
[sin( )sin( )] ,   odd

2 4

0 ,   even
n

M n n
n

b n

n

 






 



 (4.15) 

Substituting (4.10) and (4.14) into (4.2) gives: 

1

1

4 1 (2 1) (2 1)
ˆsin[ ]cos[ )]cos[(2 1) ]

2 1 2 4

4 1 (2 1) (2 1)
ˆsin[ ]sin[ ]sin[(2 1) ]

2 1 2 4

I I

n

I I

n

M n n
n k z

n

M n n
n k z

n

 



 











 
 



 
 







M  r

 z

 (4.16) 

where kI is defined as: 

2
I

I

k
T


  (4.17) 

For the first harmonic (n = 1), from (4.10) and (4.14) one can obtain: 

1 1| | | | 0.9003a b M    (4.18) 

Therefore, the fundamental magnetization vector magnitude, Mf, can be defined as: 

1fM c M   (4.19) 

where: 

1 0.9003c    (4.20) 

The magnitude of the different harmonics were calculated using (4.10) and (4.14) and 

plotted in Fig. 4-3. 



96 

 
Fig. 4-3. Harmonic spectrum of the magnetization 

The geometry of the inner part of the Halbach LPMC in the cylindrical coordinate 

system is depicted in Fig. 4-4. Cylindrical surfaces 𝑆𝑜
𝐼  and 𝑆𝑖

𝐼 are located at r = rIo and r = 

rIi, respectively, and a volume 𝑉𝐼 is defined in between these two surfaces.  

 
Fig. 4-4. Geometry definition for inner part of the linear coupling 

 
Fig. 4-5. Point charge and related coordinate parameters 
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A point charge is defined as shown in Fig. 4-5. In order to calculate the magnetic field 

of this Halbach cylinder at an arbitrary point of (r, θ, z), two surface charge densities of 

𝜎𝑚𝑜
𝐼  and 𝜎𝑚𝑖

𝐼  and one volume charge density of 𝜌𝑚
𝐼  are defined for surface 𝑆𝑜

𝐼 , surface 𝑆𝑖
𝐼 

and volume 𝑉𝐼, respectively. 

For a current-free problem, the magnetostatic Maxwell’s equations are as follow [94]: 

0 B  (4.21) 

 

0 H  (4.22) 

where B and H are magnetic flux density and field intensity, respectively, which are related 

as: 

0( ) B H M  (4.23) 

where M is the magnetization and μ0 is the permeability of the space. The relationship 

between the magnetization and the magnetic field in a magnetic material can be defined 

using magnetic constitutive law [94]: 

m m M H M  (4.24) 

where χm is the magnetic susceptibility and Mm is the PM magnetization vector, which is 

independent of the external field and defined as: 

0m 
m

M B  (4.25) 

where Bm is the remnant flux density of the permanent magnet. Substituting (4.24) into 

(4.23) gives: 

0

0 0

0

( )m m

r m

m

 

  

 

  

 

 

B H H M

H M

H M

 (4.26) 
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where μr = 1+ χm is the relative permeabilty and μ is the permeability of the material. In 

free space (4.26), reduces down to: 

0B H  (4.27) 

In order to solve for the magnetic field, the magnetic scalar potential, ϕ, is defined, 

which relates to the magnetic field intensity by [95]: 

 H  (4.28) 

Taking the divergence of both sides of (4.26) gives: 

0 m     B H M  (4.29) 

Substituting (4.21) and (4.28) into (4.29) gives: 

2 m

r





 

M
 (4.30) 

Equation (4.30) is a second order scalar equation. As the magnetization imediately 

becomes zero outside the permanent magnet one has: 

2 0   (4.31) 

The integral solution to (4.31) in cylinderical coordinate system becomes [95]: 

1
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r z r dr d dz
r z r z

r d dz
r z r z

r d dz
r z r z

  
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
  
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













M

M

M

 (4.32) 

where R can be defined using the law of cosine: 

2 2 2R( , , , , , ) 2 cos( ) ( )I I I I I I Ir z r z r r rr z z          (4.33) 
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Considering the numerator terms in (4.32), the volume and surface charges are defined 

as follow: 

, in volume I Im
m

r

V



 

M
 (4.34) 

 

, on surface I I

mo m oS   Mr  (4.35) 

 

, on surface I I

mi m iS   Mr  (4.36) 

Therefore, the magnetic scalar potential created by a surface and volumetric magnetic 

charge function is given by: 
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 (4.37) 

Since [95] 

1 1 1r z
r

MM M
M

r r r r z





 
    

  
M  (4.38) 

Substituting (4.2) into (4.38) gives: 

1 1

1
cos( ) cos( )n I I I n I I

n nI

a nk z k nb nk z
r

 

 

   M  (4.39) 

or 

1

1
[ ]cos( )n I n I I

n I

a k nb nk z
r





  M  (4.40) 

Therefore, substituting (4.40) into (4.34) gives: 
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1

1
( ) [ ]cos( ), in volume I II

m I n n I I

n r I r

k
z a nb nk z V

r


 





    (4.41) 

Substituting (4.1) into (4.35) and (4.36) gives: 

1

( ) cos( ), on surface I I

mo I n I I o

n

z a nk z S




  (4.42) 

 

1

( ) cos( ), on surface I I

mi I n I I i

n

z a nk z S




   (4.43) 

Considering just the fundamental component (4.41)-(4.43) become: 

( ) (1 )cos( )
fI

m I I I I I

I r

M
z k r k z

r



    (4.44) 

 

( ) cos( )I

mo I f I Iz M k z   (4.45) 

 

( ) cos( )I

mi I f I Iz M k z    (4.46) 

where Mf is the fundamental magnitude of magnetization defined by (4.19). 

Substituting (4.44)-(4.46) into (4.37) gives: 
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 (4.47) 

The magnetic scalar potential is separated into three terms for surfaces 𝑆𝑜
𝐼  and 𝑆𝑖

𝐼 and 

volume 𝑉𝐼 as follow: 

( , , ) ( , , ) ( , , ) ( , , )I I I I

So Si Vr z r z r z r z           (4.48) 

where: 
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I

I

L

fI Io I I I I
So

Io I IL

M r k z d dz
r z

r z r z




 
  



    (4.49) 

 

/2 2

/2 0

cos( )
( , , )

4 R( , , , , , )

I

I

L

fI Ii I I I I
Si

Ii I IL

M r k z d dz
r z

r z r z




 
  



     (4.50) 

 

/2 2

/2 0

cos( )(1 )
( , , )

4 R( , , , , , )

IoI

I Ii

rL

fI I I I I I I I
V

r I I IL r

M k z k r dr d dz
r z

r z r z




 
  




      (4.51) 

Substituting (4.33) back into (4.49)-(4.51) gives: 

/2 2

2 2 2
/2 0

cos( )
( , , )

4 2 cos( ) ( )

I

I

L

fI Io I I I I
So

L Io Io I I

M r k z d dz
r z

r r rr z z




 
  


    

   (4.52) 

 

/2 2

2 2 2
/2 0

cos( )
( , , )

4 2 cos( ) ( )

I

I

L

fI Ii I I I I
Si

L Ii Ii I I

M r k z d dz
r z

r r rr z z




 
  

 
    

   (4.53) 

 

/2 2

2 2 2
/2 0

cos( )(1 )
( , , )

4 2 cos( ) ( )

IoI

I Ii

rL

fI I I I I I I I
V

r L r I I I I

M k z k r dr d dz
r z

r r rr z z




 
  


 

    
    (4.54) 

 

4.2.1 Magnetic Flux Density for Linear Permanent Magnet Coupling 

Magnetic flux density is determined by substituting (4.37) into (4.28). This gives [96]: 

0

2 2 2 3 2

2 2 2 3 2

2 2

( ) ( , , , , , )
( , , ) {

4 [ 2 cos( ) ( ) ]

( ) ( , , , , , )

[ 2 cos( ) ( ) ]

( ) ( , , , , , )

[ 2 cos( ) ( )

I
I m I I I I

I I I Iv

I

mo I Io I I

Io Io I Is

I

mi I Ii I I

Ii Ii I I

z r z r z
r z dv

r r rr z z

z r z r z
ds

r r rr z z

z r z r z

r r rr z z

   


  

  

 

  

 


    


    


    





R
B

R

R
2 3 2

}
]

s

ds

 (4.55) 

where: 
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ˆˆ ˆ( , , , , , ) [ cos( )] [ sin( )] ( )I I I I I I I Ir z r z r r r z z           R r θ z  (4.56) 

Substituting (4.44)-(4.46) into (4.55) gives: 

/22
0

2 2 2 3/2

0 /2

2
0

2 2 2 3/2

0

(1 )cos( ) ( , , , , , )
( , , )

4 [ 2 cos( ) ( ) ]

cos( ) ( , , , , , )

4 [ 2 cos( ) ( ) ]

IoI

I Ii

rL

fI I I I I I I I
I I I

r I I I IL r

f Io I I Io I I
I I

Io Io I IL

M k r k z r z r z
r z dr d dz

r r rr z z

M r k z r z r z
d dz

r r rr z z





  
 

  

  


  






 

    


    

  



R
B

R
/2

/2

/2 2
0

2 2 2 3/2

/2 0

cos( ) ( , , , , , )

4 [ 2 cos( ) ( ) ]

I

I

I

I

L

L

f Ii I I Ii I I
I I

Ii Ii I IL

M r k z r z r z
d dz

r r rr z z

  


  



    



 
R

 (4.57) 

Substituting (4.56) into (4.57), one can calculate different components of the magnetic 

flux density: 

/22
0

2 2 2 3/2

0 /2

2
0

2 2 2 3/2

/2 0

(1 )cos( )[ cos( )]
( , , )

4 [ 2 cos( ) ( ) ]

cos( )[ cos( )]

4 [ 2 cos( ) ( ) ]

IoI

I Ii

I

rL

fI I I I I I I
r I I I

r I I I IL r

f Io I I Io I
I I

Io Io I IL

M k r k z r r
B r z dr d dz

r r rr z z

M r k z r r
d dz

r r rr z z





  
 

  

  


  





  
 

    

 


    

  


/2

/2 2
0

2 2 2 3/2

/2 0

cos( )[ cos( )]

4 [ 2 cos( ) ( ) ]

I

I

I

L

L

f Ii I I Ii I
I I

Ii Ii I IL

M r k z r r
d dz

r r rr z z

  


  


 


    



 

 (4.58) 

The radial integral term in (4.58) can be evaluated by using: 

1 2 2 2 3/2

2 2 2

2 2 2 2

(1 )[ cos( )]
( , , , , , )

[ 2 cos( ) ( ) ]

cos( ) [ cos( )][( ) cos( )]

R( , , , , , )[ cos ( ) ( ) ]

cos( ){ [( )

I I I I
I I I I

I I I I

I I I I I I I

I I I I I

I I I I

k r r r
r z r z dr

r r rr z z

rr r k r z z r rr

r z r z r r z z

k r z z

 
  

 

     

   

 

  
 

    

        

   

 




2 2 2 2 2 2

2 2 2 2

cos ( ) ] cos( )[( ) ]}

R( , , , , , )[ cos ( ) ( ) ]

cos( )Ln[ cos( ) R( , , , , , )]

I I I

I I I I I

I I I I I I I

r r r z z r

r z r z r r z z

k r r r z r z

   

   

     

      

   

    

 (4.59) 

Therefore, all terms in (4.58) then reduce down to double integrals: 
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/2 2
0

1 1

/2 0

/2 2
0

2 2 2 3/2

/2 0

0

( , , ) cos( )[ ( , , , ) ( , , , )]
4

cos( )[ cos( )]

4 [ 2 cos( ) ( ) ]

cos( )[ cos(

4

I

I

I

I

L

fI

r I I Io Ii I I

r L

L

f Io I I Io I
I I

Io Io I IL

f Ii I I Ii

M
B r z k z r z r r z r d dz

M r k z r r
d dz

r r rr z z

M r k z r r






     



  


  

  







  

 


    

 


 

 

/2 2

2 2 2 3/2

/2 0

)]

[ 2 cos( ) ( ) ]

I

I

L

I
I I

Ii Ii I IL

d dz
r r rr z z




 


     

 (4.60) 

The Bθ component can be calculated as follow: 

/2 2
0

2 2 2 3/2

/2 0

/2 2
0

2 2 2 3/2

/2 0

(1 )cos( )[ sin( )]
( , , )

4 [ 2 cos( ) ( ) ]

cos( )[ sin( )]

4 [ 2 cos( ) ( ) ]

IoI

I Ii

I

I

rL

fI I I I I I I
I I I

r I I I IL r

L

f Io I I Io a
I I

Io Io I IL

M k r k z r
B r z dr d dz

r r rr z z

M r k z r
d dz

r r rr z z







  
 

  

 


  





 
 

    


    



  

 

/2 2
0

2 2 2 3/2

/2 0

cos( )[ sin( )]

4 [ 2 cos( ) ( ) ]

I

I

L

f Ii I I Ii I
I I

Ii Ii I IL

M r k z r
d dz

r r rr z z

  


  




     

 (4.61) 

Using integral solution: 

2 2 2 2 3 2

2 2 2

2 2 2 2

2 2

2 2

(1 )
( , , , , , )

[ 2 cos( ) ( ) ]

[( ) 2 cos ( )]

R( , , , , , )[ cos ( ) ( ) ]

[ ( ) ][ cos( ) 1] cos( )

R( , , , , , )[ c

I I I
I I I I

I I I I

I I I I

I I I I I

I I I I

I I I

k r r
r z r z dr

r r rr z z

k r z z r

r z r z r r z z

r z z kr rr

r z r z r r

  
 

 

   

   

 


 

    

  

   

     






2 2os ( ) ( ) ]

Ln[ cos( ) R( , , , , , )]

I I

I I I I I

z z

k r r r z r z

 

   

  

   

 (4.62) 

Equation (4.61) reduces down to: 

/2 2
0

2 2

/2 0

/2 2
0

2 2 2 3/2

/2 0

0

cos( )sin( )[ ( , , , , , ) ( , , , , , )]
4

cos( )[ sin( )]

4 [ 2 cos( ) ( ) ]

cos( )[

4

I

I

I

I

L

fI

I I I Io I I Ii I I I I

r L

L

f Io I I Io I

I I

Io Io I IL

f Ii I I

M
B k z r z r z r z r z d dz

M r k z r
d dz

r r rr z z

M r k z








        



  


  










  




    



 

 

/2 2

2 2 2 3/2

/2 0

sin( )]

[ 2 cos( ) ( ) ]

I

I

L

Ii I

I I

Ii Ii I IL

r
d dz

r r rr z z


 


 





     

 (4.63) 

The axial component of the magnetic flux density can be calculated as: 
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/2 2
0

2 2 2 3/2

/2 0

/2 2
0

2 2 2 3/2

/2 0

0

(1 )cos( )( )
( , , )

4 [ 2 cos( ) ( ) ]

cos( )( )

4 [ 2 cos( ) ( ) ]

cos(

4

IoI

I Ii

I

I

rL

fI I I I I I
z I I I

r I I I IL r

L

f Io I I I
I I

Io Io I IL

f Ii

M k r k z z z
B r z dr d dz

r r rr z z

M r k z z z
d dz

r r rr z z

M r k






 

  




  









 


    




    



  

 

/2 2

2 2 2 3/2

/2 0

)( )

[ 2 cos( ) ( ) ]

I

I

L

I I I
I I

Ii Ii I IL

z z z
d dz

r r rr z z




 





     

 (4.64) 

By defining: 

3 2 2 2 3 2

2 2

2 2 2 2

(1 )
( , , , , , )

[ 2 cos( ) ( ) ]

[ ( ) ] [1 cos( )] cos( )

R( , , , , , )[ cos ( ) ( ) ]

I I
I I I I

I I I I

I I I I I I

I I I I I

k r
r z r z dr

r r rr z z

k r z z r k r r

r z r z r r z z

  
 

   

   


 

    

      

   


 (4.65) 

one can simplify the (4.64) to: 

/2 2
0

3 3

/2 0

/2 2
0

2 2 2 3/2

/2 0

0

2

cos( )( )[ ( , , , , , ) ( , , , , , )]
4

cos( )( )

4 [ 2 cos( ) ( ) ]

cos( )( )

4 [

I

I

I

I

L

fI

z I I I Io I I Ii I I I I

r L

L

f Io I I I
I I

Io Io I IL

f Ii I I I

Ii

M
B k z z z r z r z r z r z d dz

M r k z z z
d dz

r r rr z z

M r k z z z

r r






      






  









  




    






 

 

/2 2

2 2 3/2

/2 0
2 cos( ) ( ) ]

I

I

L

I I

Ii I IL

d dz
rr z z




 


    

 (4.66) 

 

4.2.2 Force on Linear Coupling 

The axial and cross-sectional parameters of the linear coupling are shown in Fig. 4-6. 

The indices I and II are assigned to the inner and outer translators, respectively. Letters S 

and V denote surface and volume. 
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(a) (b) 

Fig. 4-6. Linear coupling, a) axial parameters, and b) cross sectional parameters 

Four surface and two volume charge functions must be considered for the force 

calculation. Four force functions can be defined: FSS(zd), force between two charge 

cylinders located at r = rI and r = rII; FSV(zd), force between inner volume and outer charge 

cylinders; FVS(zd), force between outer volume and inner charge cylinders; FVV(zd), force 

between inner and outer volume charges. The axial shift between two cylinders is defined 

as zd. The resultant force is the summation of these four components: 

( ) ( ) ( ) ( ) ( )d d d d dVVSS SV VSz z z z zF F F F F    (4.67) 

The equation for each of these force functions will be defined in the next four sections.  

Charge functions for the inner translator are defined by (4.44)-(4.46), and charge 

functions for the outer Halbach magnetic cylinder are written as: 

( ) (1 )cos[ ( )]
fII

m II d II II II II d

II r

M
z z k r k z z

r



      (4.68) 

 

( ) cos[ ( )]II

mi II d f II II dz z M k z z      (4.69) 

 

( ) cos[ ( )]II

mo II d f II II dz z M k z z     (4.70) 

where: 

LI LII

zd

r

z

Translator I

Translator II

I

iS
I

oS

II

oS

II

iS IV

IIV

Iir

Ior

IIor
IIir
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2 II
II

II

p
k

L


  (4.71) 

where LII and pII are the axial length and the number of pole-pairs of the outer Halbach 

translator, respectively. In order to create a constant force, the number of pole-pairs within 

the active length of the coupling must be the same for both inner and outer cylinders. 

Therefore: 

II Ik k k   (4.72) 

4.2.2.1 General Surface Force Components 

The energy between the surface of cylinder I, SI, and the surface of cylinder II, SII, can 

be calculated as [95]: 

2 2

0

2 0

( ) ( , , ) ( )
II

II

L

I II

SS d S II II II m II d II II II

L

W z r z z z r d dz



    


    (4.73) 

The force is computed from: 

 constant

( )
( )

I
s

SS d
SS d

d

W z
F z

z
 





 (4.74) 

Substituting (4.73) into (4.74) one can obtain: 

2 2

0

2 0

( )
( ) ( , , )

II

II

L II
I m II d

SS d S II II II II II II

dL

z z
F z r z r d dz

z




   


 


   (4.75) 

Considering (4.69) and (4.70) the surface charge density on cylinder II is: 

( ) cos[ ( )]II

m II d f II dz z M k z z      (4.76) 

where positive and negative signs are for the outer and inner surfaces of the cylinder II, 

respectively.  
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From (4.52) the magnetic scalar potential field on cylinder II at (r, θ, z) = (rII, θII, zII) created 

by a charge cylinder located at rI is given by: 

2 2

2 2 2
2 0

cos( )
( , , )

4 2 cos( ) ( )

I

I

L

fI I I I I
S II II II

L II I II I II I II I

M r kz d dz
r z

r r r r z z




 
  

 
    

   (4.77) 

Depending on which surface is being considered, rI is equal to rIi or rIo. Positive and 

negative signs refer to the outer and inner surfaces of the cylinder I, respectively.  

Substituting (4.76) and (4.77) into (4.75) one can obtain: 

2 22 2 2
0

2 0 2 0

2 2 2

( )
4

cos( )sin[ ( )]

2 cos( ) ( )

II I

II I

L L

f

SS d

L L

I I II d
II I I II II

II I II I II I II I

k M
F z

r kz k z z
r d dz d dz

r r r r z z

 



 
 

 

 



    

   
 (4.78) 

By defining: 

a II I     (4.79) 

and noting: 

a Id d    (4.80) 

Equation (4.78) becomes: 
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 (4.81) 

As the integral is not a function of θII, (4.81) reduces to: 
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

 


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where the negative sign is used when considering (rI, rII) = (rIi, rIIo) or (rI, rII) = (rIo, rIIi) 

and the positive sign is used when (rI, rII) = (rIi, rIIi) or (rI, rII) = (rIo, rIIo) as defined in Fig. 

4-6 (b). 

4.2.2.2 Surface and Volume Force Components 

The energy content of the volume charge region of VII and the surface charge region of 

SI is calculated as: 

2 2

0

2 0

( ) ( , , ) ( )
IIo II

IIi II

r L

I II

SV d S II II II m II d II II II II

r L

W z r z z z r d dz dr


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

     (4.83) 

Force is calculated as: 
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Substituting (4.52) and (4.68) into (4.84) gives: 
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 (4.85) 

Using definitions (4.79)-(4.80), one obtains:  
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 (4.86) 

As the integrand is not a function of θII, (4.86) simplifies to: 
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Using the integral solution: 

 
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allows (4.87) to be simplified to: 
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where the negative sign is used when considering rI = rIo and the positive sign is for rI = 

rIi. 

Similarly, the energy content of the volume charge region of VI and surface charge 

region of SII is calculated as: 
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Then the volume-surface force can be calculated by evaluating: 
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Substituting (4.54) and (4.69)-(4.70) into (4.91) gives: 
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 (4.92) 

Using definitions (4.79)-(4.80), one can obtain: 
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 (4.93) 

As the integrand is not a function of θII, (4.93) simplifies to: 
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by defining: 
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Simplifies (4.94) to: 
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where the negative sign is used when considering 𝑆𝑜
𝐼𝐼 and the positive sign is for 𝑆𝑖

𝐼𝐼. 

4.2.2.3 Volume Force Components 

Energy content of the volume charge regions of VI
 and VII is calculated as: 
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Force is calculated as: 
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Substituting (4.54) and (4.68) into (4.98) gives: 
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Changing the angular variables based on (4.79)-(4.80) enables (4.99) to become: 
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As the integrand is not a function of θII, (4.100) reduces to: 
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Using the definition (4.95), (4.101) becomes: 
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The quadruple integral was evaluated using Matlab function integralN.  

Substituting (4.82), (4.89), (4.96), (4.102) into (4.67), the complete force equation is: 
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 (4.103) 

Force is maximum when: 

2
dkz


  (4.104) 

substituting (4.71) into (4.104) gives 

4

II
d

II

L
z

p
  (4.105) 

4.2.3 Validation Using Finite Element Analysis 

In order to verify the analytic results, a 3D FEA model of a Halbach LPMC was 

considered. Fig. 4-7 shows the geometry of this linear coupling and the corresponding mesh 

plot. Total number of about 1.3 million mesh element was generated for this model. A 

summary of the design parameters is given in Table 4-I, which has been chosen to match 

the analytic model. Both translators have the same number of pole-pairs in the active 

length, but the inner translator has twice the length of the outer cylinder.  
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(a) (b) 

Fig. 4-7. a) 3D FEA model of a Halbach linear coupling b) the mesh. 

Table 4-I. Summary of geometric and material parameters 

Parameter Value Unit 

Inner translator Inner radius, rIi 10 mm 

Outer radius, rIo 13 mm 

Axial length, LI 96 mm 

Number of pole-pairs, pI 8 - 

Airgap length, g 0.4 mm 

Outer translator Inner radius, rIIi 13.4 mm 

Outer radius, rIIo 16.4 mm 

Axial length, LII 48 mm 

Number of pole-pairs, pII 4 - 

Material NdFeB magnet, Br, NMX-40CH 1.25 T 

The calculated radial and axial flux densities over a line above the surface of the inner 

translator, while surrounded by air, is shown in Fig. 4-8. This figure shows a comparison 

between the analytic method and FEA. The percentage of error is about 1.5 percent at peak. 

The calculated force using FEA and analytical model is compared in Fig. 4-9, which shows 

a perfect match at peak.  

  
(a) (b) 

Fig. 4-8. FEA and analytically calculated magnetic flux density a) radial b) axial 
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Fig. 4-9. FEA and analytically calculated force 

4.2.4 Parameter Analysis 

In order to understand the effect of different geometric parameters on the performance 

of the LPMC, a parametric sweep analysis was performed in this section. The geometric 

parameters are defined as shown in Fig. 4-10. The pole-pitch, τp, between the inner and 

outer translators were kept equal. Three scaling-ratios are considered for a given rIIo:  

Io
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
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where τp is the pole-pitch of the Halbach array as defined in Fig. 4-10.  

 
Fig. 4-10. A 2D cut-view of a Halbach cylinder 

The parametric analysis in this section is based on the approach presented in [25]. The 

ratio of τp/rIIo was fixed at arbitrary value of 0.3 and the volumetric and mass force densities 

 

 

 

τp 

rIIo 

rIIi 
rIo 

rIi 

g 

Center axis 
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as a function of rIi/rIo and rIo/rIIo were calculated. The outer cylinder radius and airgap 

length were also fixed at rIIo = 30 mm and g = 1 mm, respectively. Fig. 4-11 shows the 

results of this parametric sweep. The volumetric and mass force densities are defined as: 

2
  [kN/L]

IIo II

F
FV

r L
  (4.109) 

 

2 2 2 2
  [kN/kg]

( )IIo IIi Io Ii II

F
FM

r r r r L D


  
 (4.110) 

where D is the mass density of the magnet materials. 

Fig. 4-11(a) shows that the maximum volumetric force density of 32.03 kN/L occurs at 

(Γoo, Γio) = (0.75, 0.2), and Fig. 4-11(b) shows that the maximum mass force density of 

6.62 kN/kg is achieved at (Γoo, Γio) = (0.85, 0.83).  

A similar analyses were performed for different values of rIIo. Table 4-II shows the 

values of geometric ratios (4.106)-(4.107) at maximum mass force density for different 

values of rIIo. Studying this table shows that the maximum mass force density occurs when: 

2

Ii IIo
Io

r r
r


 (4.111) 

 

  
(a) (b) 

Fig. 4-11. a) Volumetric force density, and b) mass force density as a function of rIi/rIo and rIo/rIIo, when rIIo 

= 30 mm and τp/rIIo = 0.3. 
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Table 4-II. Summary of the ratios value for different values of rIIo, while τp/rIIo = 0.3. 

rIIo [mm] rIo [mm] rIi [mm] (rIi + rIIo)/2 [mm] Γoo Γio FM [kN/kg] FV [kN/L] 

30 25.5 21.16 25.58 0.85 0.83 6.62 32.03 

40 34.4 28.89 34.44 0.86 0.84 2.71 13.18 

50 43 36.12 43.06 0.86 0.84 2.85 13.94 

60 52.2 44.37 52.18 0.87 0.85 3.94 19.29 

70 60.9 51.76 60.88 0.87 0.85 3.46 16.98 

80 69.6 59.16 69.58 0.87 0.85 3.08 15.15 

90 78.3 65.55 78.27 0.87 0.85 2.78 13.68 

100 87 73.95 86.97 0.87 0.85 2.53 12.46 

The maximum volumetric force density when rIIo = 30 mm happens at rIi/rIo = 0.2. This 

value corresponds to a design with a high magnet mass and consequently low mass force 

density results. Mass force density for different designs within this parametric analysis 

space is plotted against the volumetric force density in Fig. 4-12. This figure shows that in 

order to select a good design, one should make a compromise between cost and 

performance. Therefore, a ratio of rIi/rIo = 0.7 was selected to achieve a design with a 

relatively high volumetric and mass force density. Volumetric and mass force densities as 

a function of rIi/rIo for three different values of rIo/rIIo are shown in Fig. 4-13 for the case 

when rIIo = 30 mm. As can be seen the volumetric force density curves are almost parallel 

to each other, which implies that the ratio of rIo/rIIo is independent of the other two 

parameters [25]. Therefore, rIi/rIo = 0.7 was selected for the next step of the parametric 

analysis. 

 
Fig. 4-12. Volumetric force density versus mass force density for different configurations within the design 

space, when rIIo = 30 mm and τp/rIIo = 0.3. 
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(a) (b) 

Fig. 4-13. a) Volumetric and b) Mass force density as a function of rIi/rIo for three different value of rIo/rIIo, 

when rIIo = 30 mm and τp/rIIo = 0.3. 

By choosing rIi/rIo = 0.7, and using all other parameters the same as the initial values of 

the first step of the parametric analysis, the volumetric force density and mass force density 

as function of τp/rIIo and rIo/rIIo are plotted in Fig. 4-14. There is an optimal combination of 

ratios that results in a maximum force density, (Γoo, Γpo) = (0.78, 0.24). The maximum 

force density is 30.33 kN/L. The corresponding mass force density for this design is 6.15 

kN/kg. This shows that using this approach a design with relatively good volumetric force 

density is achieved while the mass force density is also maintained.  

  
(a) (b) 

Fig. 4-14. a) Volumetric force density, and b) mass force density as a function of τp/rIIo and rIo/rIIo, when rIIo 

= 30 mm and rIi/rIo = 0.7. 

The mass force densities as a function of τp and rIi when relationship (4.111) was 

satisfied for two different values of rIIo are shown in Fig. 4-15. A maximum mass force 

density of 9.3 kN/kg was achieved for design with rIIo = 30 mm. The corresponding 

parameter values were (τp, rIi) = (4 mm, 25 mm). The value of these parameter at maximum 
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mass force density when rIIo = 100 mm are (τp, rIi) = (4 mm, 95 mm). The maximum mass 

force density is almost the same. 

  
(a) (b) 

Fig. 4-15. Mass force density while geometric parameters satisfy (4.111) for a) rIIo = 30 mm and b) rIIo = 

100. 

Plot of maximum mass force densities as a function of τp and rIIo is shown in Fig. 4-16. 

As can be seen, 9.3 kN/kg is the maximum achievable mass force density for different 

values of the rIIo. Mass force densities as a function of rIi for different values of the rIIo is 

shown in Fig. 4-17. 

 
Fig. 4-16. Maximum mass force density for different values of rIIo. 

 
Fig. 4-17. Maximum mass force density for different values of rIIo as a function of rIi. 
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4.3 Analytical Based Model for a Halbach Magnetic Lead Screw 

The principle of operation of the MLS was explain in section 4.2. Understanding the 

scaling and geometric limits of the MLS can provide information on the upper 

torque/force density limit for non-superconducting linear-to-rotary magnetic devices.  

The design of the MLS is challenging because a full 3D finite element analysis model 

is needed in order to account for both the simultaneous linear-to-rotary motion. If the 

translator length is long, then the simulation model becomes excessively large and this 

makes conducting geometric parameter analysis particularly time-consuming. The 

reliance on 2D and 3D FEA to conduct the MLS sizing analysis has been used by a 

number of authors, for instance [47], [51], [53], but only a limited design space was 

simulated using FEA. Wang et al. [46] Pakdelian et al. [59] and Ling et al. [97] have 

relied on a 2D current sheet analytic model of the MLS to help with the design analysis. 

However, the 2D current sheet approach neglects the axial edge effects and also neglects 

the relative permeability within the magnet material. An axial edge effect correction 

factor can be used to minimize the 2D modelling error [85], however the approach is 

still approximate. The analytical-based model explained in section 4.2 is built upon in 

order to develope the 3D MLS analytical model. 

A 2D sketch of one period of a Halbach array for a MLS is shown in Fig. 4-18. The 

magnetization vector form for MLS has the same component basis as the linear 

coupling. The magnetization components are depicted in Fig. 4-19. The only difference 

is that these components displaced along the z direction as the angular position, θ, 

changes.  
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Fig. 4-18. One period of the Halbach array 

 
Fig. 4-19. Magnetization plots of the Halbach array 

The vector representation of this Halbach array is: 

M ( , )r ( , )zr I I z I IM z M z    (4.112) 

and its corresponding Fourier series is: 

1 1

cos[ ( )] sin[ ( )] n I I I n I I I

n n

a n k z b n k z 
 

 

    M r z  (4.113) 

By defining: 

TII = 2π 

u

r

u

r

Mr(u)

Mz(u)

 
 

u

u

Mr(u)

Mz(u)

M

-M

M

-M

4

 3

4

 5

4

 7

4


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I I Iu k z    (4.114) 

The Fourier series coeficients of (4.113) are: 

/2

0

4
( )cos( )

mT

n r

m

a M u nu du
T

   (4.115) 

 

/2

0

4
( )sin( )

mT

n z

m

b M u nu du
T

   (4.116) 

where Tm is the Halbach array period and defined as: 

2mT   (4.117) 

Comparing equations (4.115) and (4.116) with (4.3) and (4.4), the Fourier series 

coefficients for different angular position along the z axis will be the same. This is 

intuitive, because the magnetization plots for different angular positions have the same 

shape and are only shifted along the z direction. Noting the step change magnetizing 

values in Fig. 4-19 and using half-wave symmetry, (4.115) and (4.116) become: 

0

4
cos( )

2
na M nu du




   (4.118) 

 

/4

0 3 /4

2 2 3
[sin( ) sin( ) ] [sin( ) sin( ) sin( )]

4 4
n

M M n n
a nu nu n

n n

 



 


 
      (4.119) 

Using the trigonometric identity of (4.9) equation (4.119) becomes: 

2
[2sin( )cos( )]

2 4
n

M n n
a

n

 


  (4.120) 

or 
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4
[sin( )cos( )] ,   odd

2 4

0 ,   even
n

M n n
n

a n

n

 






 



 (4.121) 

and 

3 /4

/4

4
[ sin( ) ]

2
nb M nu du







   (4.122) 

 

3 /4

/4

2 2 3
[cos( ) ] [cos( ) cos( )]

4 4
n

M M n n
b nu

n n





 

 
    (4.123) 

Using the trigonometric identity (4.13) equation (4.123) becomes: 

2
[2sin( )sin( )]

2 4
n

M n n
b

n

 




  (4.124) 

or 

4
[sin( )sin( )] ,   odd

2 4

0 ,   even
n

M n n
n

b n

n

 






 



 (4.125) 

Note equations (4.121) and (4.125) have the same form as (4.11) and (4.15). Substituting 

(4.121) and (4.125) into (4.113) gives: 

1

1

4 1 (2 1)
sin[ ]cos[(2 1)( )] 

2 1 4

4 1 (2 1)
cos[ ]sin[(2 1)( )] 

2 1 4

I I I

n

I I I

n

M n
n k z

n

M n
n k z

n




















  




  







M r

z

 (4.126) 

For the first harmonic (n = 1), from (4.121) and (4.125) one can obtain: 

1 1 0.9003a b M   (4.127) 

which is the same value as the linear coupling in (4.18). 
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The geometry of the inner part of the Halbach MLS in cylindrical coordinate system is 

shown in Fig. 4-20. Cylindrical surfaces 𝑆𝑜
𝐼  and 𝑆𝑖

𝐼 are located at r = rIo and r = rIi 

respectively, and a volume 𝑉𝐼 is defined in between these two surfaces.  

 
Fig. 4-20. Geometry definition for inner part of the MLS 

 
Fig. 4-21. Point charge and related coordinate parameters 

A point charge is defined as shown in Fig. 4-21. In order to calculate the magnetic field 

of this Halbach cylinder at an arbitrary point of (r, θ, z), two surface charge densities of 

𝜎𝑚𝑜
𝐼  and 𝜎𝑚𝑖

𝐼  and one volume charge density of 𝜌𝑚
𝐼  are defined for surface 𝑆𝑜

𝐼 , surface 𝑆𝑖
𝐼 

and volume 𝑉𝐼, respectively. Volume and surface charges are defined as follow: 

( , ) , in volume I I

m I I

r

z V 



 

M
 (4.128) 
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( , ) , on surface I I

mo I I oz S    Mr  (4.129) 

 

( , ) , on surface I I

mi I I iz S    Mr  (4.130) 

where using (4.38) one can obtain: 

1 1

1
cos[ ( )] cos[ ( )]n I I I I n I I I

n nI

a n k z k nb n k z
r

 
 

 

     M  (4.131) 

or 

1

1
( )cos[ ( )]n I n I I I

n I

a k nb n k z
r






   M  (4.132) 

Therefore (4.132) into (4.128) gives: 

1

1
( , ) ( )cos[ ( )]I I

m I I n n I I I

n r I r

k
z a nb n k z

r
  

 





     (4.133) 

and (4.113) into (4.129) and (4.130) gives: 

1

( , ) cos[ ( )], on surface I I

mo I I n I I I o

n

z a n k z S  




   (4.134) 

 

1

( , ) cos[ ( )], on surface I I

mi I I n I I I i

n

z a n k z S  




    (4.135) 

Considering just the fundamental component (4.133) to (4.135) become: 

1
( , ) ( ) cos( )I I

m I I f I I I

r I r

k
z M k z

r
  

 
     (4.136) 

 

( , ) cos( )I

mo I I f I I Iz M k z     (4.137) 

 

( , ) cos( )I

mi I I f I I Iz M k z      (4.138) 

where Mf is the fundamental magnitude of magnetization defined by (4.19) 
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The magnetic scalar potential at an arbitrary point is defined as follow: 

/22

0 /2

/2 2

/2 0

/2 2

/2 0

( , )1
( , , )

4 R( , , , , , )

( , )1

4 R( , , , , , )
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4 R( , , , , , )
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I Ii

I
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I

I

rL I
I m I I

I I I I

I I IL r

L I

mo I I
Io I I

Io I IL

L I

mi I I
Ii I I

Ii I IL

z
r z r dr d dz

r z r z
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r d dz

r z r z
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





 
  

  
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 
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  













  

 

 

 (4.139) 

Substituting (4.136)-(4.138) into (4.139) gives: 

/2 2

/2 0

/2 2

/2 0

/2 2

/2 0
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( , , )

4 R( , , , , , )
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I Ii

L
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f I I I
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r I I IL r
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
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
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  
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










 

 

 

  

 (4.140) 

which is the same as (4.47) except the charges are dependent on zI and θI. 

Based on the (4.48) magnetic scalar potential can be separated into three terms for 

surfaces 𝑆𝑜
𝐼  and 𝑆𝑖

𝐼 and volume 𝑉𝐼 as follow: 

( , , ) ( , , ) ( , , ) ( , , )I I I I

So Si Vr z r z r z r z           (4.141) 

where 
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I

I
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/22

0 /2
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Replacing the R function in (4.142)-(4.144) gives: 
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4.3.1 Magnetic Flux Density for the Magnetic Lead Screw 

Magnetic flux density can be determined by substituting (4.139) into (4.28) this gives: 
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Substituting (4.136)-(4.138) into (4.148) gives: 
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 (4.149) 

Substituting R from (4.56) into (4.149) one can calculate different components of the 

magnetic flux density: 
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Using the definition (4.59), (4.150) becomes: 
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 (4.151) 

The Bθ component can be calculated as follow: 
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Using the integral solution (4.62), (4.152) becomes: 
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 (4.153) 

The axial component of the magnetic flux density can be calculated as: 
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 (4.154) 

Using the definition (4.65), (4.154) becomes: 

 
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 (4.155) 

4.3.2 Force on Magnetic Lead Screw 

The axial and cross-sectional parameters of the MLS are shown in Fig. 4-22. The indices 

I and II are assigned to the inner and outer translators respectively. Letters S and V denote 

surface and volume. 

  
(a) (b) 

Fig. 4-22. Magnetic lead screw, a) axial parameters, and b) cross sectional parameters 

Four surface and two volume charge functions must be considered for the force 

calculation. Due to interaction of these six components force can be defined as follow: 

( , ) ( , ) ( , ) ( , )d d d d d d d dVVSS SVz z z zF F F F      (4.156) 
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where FSS(zd, θd) is the force between two charge cylinders located at r = rI and r = rII; 

FSV(zd, θd) is the force between inner volume and outer charge cylinders, FVS(zd, θd) is the 

force between outer volume and inner charge cylinders and FVV(zd, θd) is the force between 

inner and outer volume charges. The axial and rotational shift between two cylinders are 

denoted as zd and θd, respectively. Charge functions for the inner translator are defined by 

(4.136)-(4.138), and charge functions for the outer Halbach magnetic cylinder are written 

as: 

1
( , ) ( ) cos[ ( ) ( )]II II

m II d II d f II II d II d

r II r

k
z z M k z z

r
    

 
         (4.157) 

 

( , ) cos[ ( ) ( )]II

mo II d II d f II II d II dz z M k z z           (4.158) 

 

( , ) cos[ ( ) ( )]II

mi II d II d f II II d II dz z M k z z            (4.159) 

where  

2 II
II

II

p
k

L


  (4.160) 

where LII and pII are the axial length and the number of pole-pairs of the outer Halbach 

array, respectively. Like with the LPMC, as the number of pole-pairs within the active 

length of the MLS is the same for both inner and outer cylinders, then: 

II Ik k k   (4.161) 

4.3.2.1 General Surface Force Components 

The energy between a surface of cylinder I, SI, and a surface of cylinder II, SII, can be 

calculated as [95]: 
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2 2

0

2 0

( , ) ( , , ) ( , )
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L

I II
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
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

     (4.162) 

The force is computed from: 

constant

( , )
( , )

I

SS I II
SS d d

II

W r r
F z

z









 (4.163) 

Therefore: 

2 2

0

2 0

( , ) ( , , )
II
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L II
I m

SS d d S II II II II II II
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F z r z r d dz
z




    





   (4.164) 

Form (4.158) and (4.159) the surface charge density on cylinder II is: 

( , ) cos[ ( ) ( )]II

m II d II d f II II d II dz z M k z z            (4.165) 

where positive and negative signs are for the outer and inner surfaces of the cylinder II 

respectively.  

From (4.145) the magnetic scalar potential field on cylinder II at (r, θ, z) = (rII, θII, zII) 

created by a charge cylinder located at rI is given by: 

/2 2

2 2 2
/2 0

cos( )
( , , )

4 2 cos( ) ( )
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L

fI I I I I
S II II II I I
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
 

    
   (4.166) 

Depending on which surface is being considered rI can be rIi or rIo. Positive and negative 

signs refer to the outer and inner surfaces of the cylinder I, respectively.  

Substituting (4.165) and (4.166) into (4.164) gives: 

2 22 2 2
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2 0 2 0

2 2 2

( , )
4
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2 cos( ) ( )

II I

II I

L L

f
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k M
F z

r r k z z kz
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 
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  
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 

 

 

   
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   
 (4.167) 

 Changing the angular variables based on the (4.79)-(4.80), (4.167) becomes: 
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 (4.168) 

Using the trigonometric identity: 

1
cos sin [sin( ) sin( )]

2
          (4.169) 

Numerator of the (4.168) becomes: 

cos[ ( )]sin[ ( ) ( )]

1
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 (4.170) 

Integration over one period of a sine function is zero. Therefore, only the second term of 

(4.170) results in non-zero force. Equation (4.168) becomes: 
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 (4.171) 

As the integral is not a function of θII, (4.171) reduces to: 
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 (4.172) 

where the negative sign is used when considering (rI, rII) = (rIi, rIIo) or (rI, rII) = (rIo, rIIi) 

and the positive sign is used when (rI, rII) = (rIi, rIIi) or (rI, rII) = (rIo, rIIo). 
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4.3.2.2 Surface and Volume Force Components 

The energy content of the volume charge region VII and surface charge region SI can be 

calculated as: 

2 2
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Force is calculated as: 
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Substituting (4.157) and (4.166) into (4.174) gives: 
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Using definitions (4.79)-(4.80) for the angular variables, the equation (4.175) becomes: 
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 (4.176) 

Using Trigonometric identity of (4.170), the only non-zero component is as follow: 
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 (4.177) 

As the integrand is not a function of θII, (4.177) simplifies to: 
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using the definition (4.88), (4.178) becomes: 
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where the negative sign is used when considering rI = rIo and the positive sign is for rI = 

rIi. 

Similarly, energy content of the volume charge region of VI and surface charge region 

of SII is calculated as: 
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Then the force can be calculated as: 
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Substituting (4.147) and (4.165) into (4.181) gives: 
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 (4.182) 

Using definitions (4.79)-(4.80) for the angular variables, the equation (4.182) becomes: 
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Using Trigonometric identity of (4.170), the only non-zero component is as follow: 
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As the integrand is not a function of θII, (4.184) simplifies to: 
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Using definition (4.95), (4.185) simplifies to: 
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where negative sign is when considering 𝑆𝑜
𝐼𝐼 and the positive sign is for 𝑆𝑖

𝐼𝐼. 

4.3.2.3 Volume Force Components 

Energy content of the volume charge regions of VI
 and VII can be calculated as: 
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The Force then is calculated as: 
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Substituting (4.147) and (4.157) into (4.188) gives: 
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Changing the angular variables based on (4.79) gives: 
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Using the trigonometric identity of (4.170) one can obtain: 
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As the integrand is not a function of θII, (4.191) reduces to: 
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Using definition (4.95), (4.192) becomes: 
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4.3.3 Validation Using Finite Element Analysis 

In order to verify the analytic results a 3D FEA model of a Halbach MLS was 

considered. Fig. 4-23 shows the geometry and the generated mesh using JMAG FEA 

software for this MLS. This model included a total number of about 1.9 million mesh 

elements. A summary of the design parameters is given in Table 4-III, which has been 

chosen to match the analytic model. Both translator have the same number of pole-pairs in 

the active length, but the inner translator has twice the length of the outer cylinder.  

  
(a) (b) 

Fig. 4-23. 3D FEA model of a Halbach MLS 

Table 4-III. Summary of geometric and material parameters 

Parameter Value Unit 

Inner translator Inner radius, rIi 10 mm 

Outer radius, rIo 13 mm 

Axial length, LI 96 mm 

Number of pole-pairs, pI 8 - 

Airgap length, g 0.4 mm 

Outer translator Inner radius, rIIi 13.4 mm 

Outer radius, rIIo 16.4 mm 

Axial length, LII 48 mm 

Number of pole-pairs, pII 4 - 

Material NdFeB magnet, Br, NMX-40CH 1.25 T 

The calculated radial and axial flux densities using FEA and analytical methods over a 

line 1mm above the surface of the inner translator, while it was surrounded by air are 

compared in Fig. 4-24. About 1.2 percent error was calculated. The calculated force using 

FEA and analytical model is compared in Fig. 4-25 which shows a very good match. The 

percentage of error is about 1.5 percent at peak. 

θ

z
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(a) (b) 

Fig. 4-24. FEA and analytically calculated flux density a) radial b) axial 

 
Fig. 4-25. Calculated force using FEA and analytical model 

It was observed that LPMC and MLS has the same force capabilities. In order to verify 

this, two design with different geometric parameters, which are given in Table 4-IV, were 

considered. Fig. 4-26 shows a comparison of FEA force calculation between LPMC and 

MLS for Case 1 for different number of pole-pairs. As can be seen LPMC and MLS force 

is almost the same for LPMC and MLS. Fig. 4-27 shows the same plots for the Case 2 

design. Therefore, parametric analysis of the MLS is expected to conclude the same upper 

bound as the upper bound for the LPMC.  

Table 4-IV. Summary of the Fixed Parameter Values for Two Different Cases 

Parameter 
Value 

Unit 
Case 1 Case 2 

Inner cylinder 
Inner radius, rIi 9 23 mm 

Outer radius, rIo 18 36.5 mm 

Outer cylinder 
Inner radius, rIIi 19 37.5 mm 

Outer radius, rIIo 30 50 mm 

Airgap length, g 1 1 mm 

Pole-pitch, τp 9 13 mm 

 

 



138 

  
(a) (b) 

Fig. 4-26. Case1: calculated force of LPMC and MLS a) using FEA and b) using analytical model 

  
(a) (b) 

Fig. 4-27. Case 2: calculated force of LPMC and MLS a) using FEA and b) using analytical model 
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5 Conclusions, Research Contributions and Future Works 

5.1 Conclusions 

A new magnetically geared lead screw has been proposed. The working principles have 

been demonstrated for the first time. It was shown that for long stroke length applications, 

the proposed MGLS offers lower force per kg of magnet material in comparison to other 

magnetic linear actuators. The testing results of the assembled MGLS showed that skewing 

the steel rings of the translator caused construction problems such as tolerance issues and 

cost. Therefore, a second version of the MGLS has been proposed, which does not require 

the skewing of the translator rings. The simple structure of this new MGLS version offers 

the same performance, while at the same time reduces the cost of manufacturing. The 

second version has been constructed and tested. The experimental testing verified the 

operating principle of the MGLS and showed that a considerable amount of friction exists 

within the structure of the proposed MGLS. As the gear ratio was designed to be 837.7:1, 

this resulted in the torque being low and made it difficult for the MGLS to overcome the 

friction losses.  

An axial flux magnetic gear has been analyzed and successfully assembled and tested. 

A peak torque of 553.2 Nm was measured, which resulted in an active region torque density 

of 152.3 Nm/L. Whilst this is 12 % lower than the calculated value it is significantly higher 

than prior tested axial MGs. The MG power loss was shown to not increase with load. 

Therefore, good efficiency was demonstrated at the high torque, low-speed operating 

condition that were tested.  It was also shown that the torque ripple does not depend on the 

load and this therefore resulted in a high torque ripple at low load conditions. 
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A new type of axial flux magnetically geared machine was proposed. The proposed 

machine consisted of a radial-flux stator placed around the high-speed rotor of the axial 

flux MG. The stator of the proposed machine shares the high-speed rotor with the axial 

magnetic gear. Therefore, there is no need for a separate rotor. This also enables the stator 

to provide additional flux into the magnetic gear in order to boost torque during transients. 

The axial flux magnetically geared machine was successfully assembled and tested. The 

peak measured torque and corresponding active region torque density of 473 Nm and 94.4 

Nm/L were achieved. 

An analytical-based model was developed for a linear permanent magnet coupling and 

magnetic lead screw. The accuracy of these models were confirmed using finite element 

analysis results. As this analytical-based model significantly reduces the calculation time, 

it can be used for parametric analyses and optimization purposes. It also helps to provide a 

better understanding of the force density limits and design parameters that leads to higher 

force density when using linear motion magnetic devices.  

5.2 List of Research Contributions 

 A new type of MGLS was proposed [98].  

 A new type of MGLS without translator skewing was proposed [99]. 

 A patent on the new MGLS was published [100]. 

 A new type of axial flux magnetically geared motor was proposed [78]. 

 The performance of the MGLS was experimentally verified and practical issues 

were identified [101]. 

 The axial flux magnetic gear was experimentally tested [102]. 
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 The performance the axial flux magnetically geared motor was experimentally 

verified [103]. 

 An analytical-based model was developed for a linear magnetic coupling [104]. 

 An analytical-based model was developed for a magnetic lead screw [105] 

5.3 Further Works 

 The MGLS need to be re-designed using different pole-pair combination that 

reduces the gear ratio. This will help to get a design with higher torque. 

 Mechanical design of the MGLS needs to be reconsidered to reduce the friction 

inside the structure. 

 The use of a Halbach PM configuration has been shown to effectively increase 

the force/torque capability of magnetic devices. The MGLS could take 

advantage of this configuration to achieve higher force and torque densities. 

 Huge axial force within the axial magnetic gear makes the assembly process 

challenging. The use of magnetomechanical deflection analyses will help to 

provide a better understanding of these forces. 

 Further analysis of the axial flux magnetically geared machine need to be 

undertaken in terms of modeling the stator geometry, so as to reduce the torque 

ripple. 

 The analytical-based model can be used with optimization algorithms to 

improve the geometry of magnetic devices. 
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