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Abstract 

 

Our first aim was to identify and quantify Biological Volatile Organic Compound 

(BVOC) emissions, specifically emissions of isoprene, from the moss Polytrichum 

juniperinum during its earliest stage of life. Isoprene emission from mosses could be a 

significant component of the total global budget of BVOC emissions. Data concerning 

the spatial and temporal variability of these emissions are lacking due to poor 

characterization of the physical and biological factors controlling isoprene synthesis in 

both vascular and non-vascular plants. We found that P. juniperinum in its early life stage 

(protonema) can emit isoprene at detectable levels at day five after spore 

germination.  These results suggest that protonema is capable of isoprene emission, 

shown here for the first time, and media affects emission rates. We saw a negative trend 

with leaf emergence and protonema growth. Chlorophyll fluorescence ratio had a positive 

correlation with isoprene emission, and isoprene emission was both temperature and light 

dependent in early protonema. 

Our second aim was to determine the effects of sex and sexual expression on 

isoprene emission in mosses. Sex is a biologically costly, but it can result in genetic 

adaptability and variety for resulting offspring. Using three Polytrichaceae species, we 

measured isoprene emission between plants sexually expressing and non-expressing and 

between male and female moss plants. We found that non-sexually expressing 

gametophytes had significantly higher isoprene emission than gametophytes expressing 

sex, suggesting that sex expression may be costly and that additional resources are 
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allocated to isoprene emission when plants are not reproducing. Males emitted higher  

levels of isoprene than females, but surprisingly this difference occurred only when 

plants were not expressing sex. We found species and sex-specific differences in 

chlorophyll fluorescence ratio (CFR) and relative electron transport rate (RETR).                                                         

Our third aim was to investigate and categorize the effect of nitrogen addition on 

isoprene emission of P. juniperinum by creating an artificial nitrogen gradient with 

ammonium nitrate addition (NH4NO3). Current rates of anthropogenic N deposition are 

altering many biogeochemical processes. In these changing environments, increased 

nitrogen availability alters plant phenology, physiology, and the allocation of resources, 

but no information is available on whether additional N increases isoprene emissions in 

mosses. We used a manipulative experiment to measure the effects of nitrogen addition 

on moss isoprene emission, as well as on moss morphology and reproductive effort. We 

found site-specific differences in our morphological and physiological measurements. 

Isoprene emission was site, sex, and N addition specific, with the highest isoprene 

emission seen from our mid-level N addition, in both female- and male-majority pots. We 

found significant treatment and sex-specific interactions among our sites and within sites. 

We saw the highest reproductive effort counts from non-sexual expressive gametophytes, 

followed by high sporophyte count from female-majority pots. We also saw chlorophyll 

fluorescence ratio (CFR) differences between sites and treatments, but not between sexes. 
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Chapter 1  

 

 

Introduction 

 

Global emissions of non-methane Biogenic Volatile Organic Compounds 

(BVOCs) produced by plants are estimated to be between 700 and 1150 Tg C yr-1 

(Guenther et al. 1995, 2006, 2012) and have significant effects on tropospheric chemistry 

at regional and global scales (Zimmerman et al. 1978; Fehsenfeld et al. 1992). Isoprene is 

highly reactive and in the presence of OH has a short atmospheric lifetime (Guenther et 

al. 1991, 1993; Funk et al. 2003; Fowler et al. 2009; Matsunaga et al. 2012; Seinfeld et al. 

2012; Harrison et al. 2013). We must understand these emissions if we are to properly 

model regional atmospheric processes and chemistry transport models (CTMS).     

Isoprene (2-methyl-1,3-butadiene; CH2=C(CH3)CH=CH2), an unsaturated 

pentahydrocarbon, is the dominant non methane BVOC by mass, contributing about half 

of the global non methane BVOC flux (Stotzky et al. 1976; Guenther et al. 1995, 2006, 

2012; Müller et al. 2008; Atkinson et al. 2003; Ashworth et al. 2013; Marmulla et al. 

2014). In many ecosystems and even some urban areas, isoprene plays a significant, often 

dominant role, in photochemical reactions in the atmospheric boundary layer (Chameides 

et al. 1988; Goldstein et al. 1998). Modeled isoprene emission from urban areas with high 

nitrous oxides (NOX) (Curci et al. 2009; Calfapietra et al. 2013) can be as significant as 

anthropogenic hydrocarbons input (Geron et al. 1994; Guenther et al. 1994; Biesenthal et 

al. 1997). High levels of NOX, particularly in major cities where atmospheric 

photochemical reactivity and ozone production are high (Ling et al. 2014) are of global  
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concern (Fares et al. 2011; Dieleman et al. 2012; Lahr et al. 2015). In these environments 

a single isoprene molecule can lead to the production of multiple ozone (O3) molecules 

(Zeng et al. 2008; Fini et al. 2017) through Secondary Organic Aerosol (SOA) production 

(Cai et al. 2006; Ng et al. 2008; Goldstein et al. 2009; Hallquist et al. 2009; Makkonen et 

al. 2012; Pratt et al. 2013; Rap et al. 2018; Tegen et al. 2018).  

Daytime atmospheric chemistry of BVOCs, such as isoprene, is dominated by 

OH/isoprene reactions that result in SOA’s and precursors to tropospheric ozone 

(Chameides et al. 1988; Goldan et al. 1995; Lerdau et al. 1997; Duane et al. 2002), and 

thus can contribute to a localized feedback on radiative forcing (Peñuelas et al. 2010; 

Bonan et al. 2011). Oxidation capacity of the boundary layer is therefore reduced with a 

positive feedback on climate change by increasing the lifetime of tropospheric methane 

(Lelieveld et al. 1998; Bell et al. 2003, 2007; Peñuelas et al. 2003, 2009, 2010). Under 

increased BVOC production due to warming, commiserate increases in SOA production 

is expected. Given that the atmospheric chemistry interactions of isoprene with OH and 

the reactive nitrogen species reactions are implicated in creating atmospheric ozone, with 

increased climate change we expect to see increased BVOC production, including 

increased isoprene, resulting in increased SOA (Ng et al. 2008; Bison et al. 2018; Jambert 

et al. 2017; Fiore et al. 2005) and boundary layer ozone production.  

Persistent BVOCs can serve as a viable carbon source.  For example, methane can 

account for 15% of the carbon source for Sphagnum mosses (Raghoebarsing et al. 2005; 

Larmola et al. 2010). Active consumption of isoprene in soil is performed by microbes 

that consume isoprene as a source of energy and carbon (Van Ginkel et al. 1987; 
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Pegoraro et al. 2006; Gray et al. 2015; McGenity et al. 2018). Rain or precipitation can 

transport BVOCs to soils, where microorganisms encounter BVOCs while living in or on 

plants (Atkinson et al. 2003; Fu et al. 2009; Ziemann et al. 2012). Specific bacteria that 

can degrade isoprene in soil, marine sediments, and on the leaves of plants have recently 

sparked interest in new areas of investigation (Crombie et al. 2019). These interactions 

regulate a considerable amount of soil communities carbon and energy budgets and 

affects chemical ecology both aboveground and belowground. 

Organic molecules like isoprene are extremely costly for plants to produce 

(Sharkey et al. 2001), and the ability has been lost and gained multiple times during plant 

evolution (Sharkey et al. 2007, 2013; Fineschi et al. 2013; Monson et al. 2013; Dani et al. 

2014; Loreto et al. 2015). Normal levels of isoprene production are greatly influenced by 

many abiotic and biotic factors, such as temperature, water stress, CO2 and drought, and 

have been measured using a wide range of techniques in a number of higher plants 

(Zimmerman, 1979; Khalil et al. 1992; Fares et al. 2006; Tiiva et al. 2007a,b; Duncan et 

al. 2009; Pétron et al. 2001; Peñuelas et al. 2001, 2003, 2010; Rasulov et al. 2010, 2018; 

review Loreto et al. 2015; review Sharkey et al. 2014, 2017; Yu et al. 2017; Bamberger et 

al. 2017).  

Speculation as to why plants spend so much of their resources on isoprene 

production and the functional role of isoprene emission continues (Saxena et al. 2019). 

Isoprene has mainly been investigated and explored in vascular plants, but its biological 

and environmental significance is still poorly understood (Sharkey et al. 2017). There is a 

complicated and poorly understood calculous between isoprene emission and biomass 
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accumulation in vascular plants (Hong et al. 2012). Understanding the reasons for the 

observed resource allocation will require a better understanding of the benefits to fitness 

of isoprene production and emission.  

Isoprene emission has been observed in nonvascular plants (Hanson et al. 1999; 

Janson et al. 1999; Trapp et al. 2001; Haapanala et al. 2006; Tiiva et al. 2007a,b), in 

freshwater green algae (Disch et al. 1998), marine phytoplankton, cyanobacteria 

(Meskhidze et al. 2015; Dani et al. 2017), and macroalgae (seaweed) (Broadgate et al. 

2004). Isoprene emission has roles in a wide array of interactions including evolutionary 

roles (Hanson et al. 1999; Harley et al. 1999; Sharkey et al. 2005b), biological roles (Fall 

et al. 1998; Logan et al. 2000; Loreto et al. 2001; Sharkey et al. 2001; Brilli et al. 2009; 

Tattini et al. 2014; Velikova et al. 2004, 2005, 2016; Sanadze et  al. 2017; Wilson et al. 

2018), and atmospheric roles (Lim et al. 2005; Zhang et al. 2007; Gerken et al. 2016). 

Isoprene is considered a true “building block in nature” (Barton et al. 1999; Morrison et 

al. 2002); however, our understanding of the role of isoprene emission in vascular plants 

is limited and in non-vascular plants it is extremely limited. 

 

Purpose of Study 

 

Bryophytes have been shown to be more responsive than vascular plants to 

nitrogen deposition and climate warming, and in a changing environment, they can serve 

as model systems in exploring biodiversity and ecosystem functioning (Becker Scarpitta 

et al. 2017). Bryophytes diverged from vascular plants with many unique morphological 

and biochemical adaptations (Roberts et al. 2012). Mosses contain a number of unique 

metabolites (Asakawa et al. 1981, 1995, 2007, 2011; Xie et al. 2009; Erxleben et al. 
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2012; Ruiz-Molina et al. 2015). Over 300 BVOC chemical compounds have been 

recorded in bryophytes (Rosenstiel et al. 2012), but a lack of mechanistic understanding 

of these compounds hinders our ability to interpret and predict the responses of mosses to 

anthropogenic drivers such as climate change and anthropogenic nitrogen addition 

(Vitousek et al. 1997; Royles et al. 2015; Patiño et al. 2016; Gavazov et al. 2018; 

Delgado‐Baquerizo et al. 2018). This is particularly important today as researcher are 

trying to decode the moss genome to understand how climate change will affect plants 

(Ludwig et al. 2017) and what mechanisms enable moss to survive extremely unfavorable 

environments (Hartley et al. 2014; Machteld et al. 2017).  

Data concerning the spatial and temporal variability of BVOC emissions are 

lacking due to poor characterization of the physical and biological factors controlling 

isoprene synthesis in non-vascular plants as most research has been focused on vascular 

plants (Sharkey et al. 2017). There is also scarce research into sex expression in 

bryophytes regarding BVOC emissions and cost benefit analyses for reproductive effort. 

Previous research in bryophytes suggests that some BVOC emissions are sex-specific and 

can influence fertilization in mosses by microarthropods (Rosenstiel et al. 2012). There 

exists modest evidence that physiological factors affect sex expression in bryophytes, and 

sex can be modified by these external physiological factors (Bowker et al. 2000; 

Rosenstiel et al. 2012; Shortlidge et al. 2014; Slate et al. 2017). 

To test hypotheses concerning the biosynthetic, metabolic and functional 

processes relating to isoprene emission, we investigated isoprene emission in the 

Polytrichaceae. Polytrichaceae are morphologically diverse (Mishler et al. 2009), 
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perennial and evergreen, and are able to colonize a wide range of habitats on every 

continent (Bazzaz et al. 1970, Shortlidge et al. 2016) and are a significant pioneer 

species.   

● In Chapter 1, I introduce isoprene emission as it relates to plant BVOC 

production in vascular and non-vascular plants. I explain the background 

for my dissertation, explaining the potential roles of nitrogen deposition 

and sexual allocation in influencing BVOC emissions.  

● In Chapter 2, I describe isoprene emission in early P. juniperinum 

protonema by assessing and quantifying isoprene emission. Further, I 

explore effects on protonema growth and how physiological factors 

contribute to and are affected by these emissions.  

● In Chapter 3, I assess and quantify how isoprene emission varies between 

species and sexes within the Polytrichaceae family. In addition, I measure 

morphological and physiological traits from the cell to population level to 

investigate how these traits can contribute to isoprene emission.  

● In Chapter 4, I conduct a four-year nitrogen addition experiment with P. 

juniperinum and explore abiotic and biotic factors that influenced isoprene 

emission, sexual expression, reproductive effort, morphology and 

physiological diversity along an artificial nitrogen gradient. 

 

A conceptual model of isoprene production by plants can be seen in Figure 1.1, 

where production is considered a result of morphological and physiological 

characteristics, though it can also be positively or negatively be influenced by genetics, 
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environmental factors, and atmospheric chemistry. This may shed light on community 

wide emission characteristics from different populations and site categories, both as 

snapshots and over time for spatial location of the colony within the population of both 

sexes, and time during ontogeny. This work will examine for the first time the hypothesis 

that isoprene-BVOC emission capabilities are present in early protonema in P. 

juniperinum. This work will also examine for the first time the hypothesis that sexual 

expression affects isoprene emission in Polytrichaceae species. Lastly, this work will 

examine for the first time the hypothesis that isoprene emission under nitrogen addition 

influences isoprene emission in P. juniperinum.  

 Isoprene emissions from mosses and their response to climate change could lead 

to an increase in landscape level BVOC emissions with profound implications for 

possible uncharacterized climate change feedback mechanisms. Currently, non-vascular 

plants are not included in atmospheric chemistry modeling, and after 60 years of research 

into isoprene emission with vascular plants, the reason why some plants emit and what 

provides the evolutionary pressure to do so remains poorly understood (Sharkey et al. 

2017). With uncertainty in the capacity of largely overlooked non-vascular plants to emit 

isoprene it is hard to predict how these emissions will be affected by and in turn affect 

climate change in possible positive or negative feedback loops.  

In Chapters 1-4, as outlined above, I discuss how I have conducted research to 

understand my research topic and explain what steps I have taken to complete this 

dissertation. In Chapter 5, I discuss the broader implications of this work for future 

studies of the role of moss isoprene emissions on Earth’s early land plant evolution. The 
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results from this work will allow a preliminary parameterization of the emission of 

BVOC’s, specifically isoprene, from this often overlooked but ubiquitous flora. I further 

give explanation for the work I did, which supports a role for bulk isoprene emission in 

the development of water stress management in mosses possibly going all the way back 

to the emergence of life onto land. The implications of mosses isoprene emissions driving 

local atmospheric hydrological processes are explored but their parameterizations are 

beyond the scope of this study and require further research.  
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Chapter 2 

 

 

Isoprene emission from Polytrichum juniperinum protonema 

 

 

Abstract 

 

Isoprene (2-methyl-1, 3-butadiene) accounts for > 90% of non-methane Biogenic 

Volatile Organic Compounds (BVOCs) emissions from vegetation. In this study, working 

with the moss Polytrichum juniperinum (Polytrichaceae), we (1) determine when 

isoprene emission begins after spore germination, (2) quantify isoprene emission in 

single-spore isolated protonema (the earliest life stage after spore germination), (3) 

investigate physiological effects through laboratory gas exchange measurements, and (4) 

investigate light and temperature curves that influence and affect isoprene emission. 

 Here, we show for the first time that protonema from P. juniperinum emits 

isoprene, and a time lag after germination exists before isoprene production. We recorded 

an increase in isoprene emission with young protonema and measured emission at 

detectable levels between days 5-6, which declined over time with leaf expression. The 

emission is the first ever reported for P. juniperinum, or any moss protonema. We show 

that physiological measurements, such as relative electron transport rate, are comparable 

to what is known for macro algae. Isoprene emission is temperature and light dependent 

and these curves correspond to what is has been observed in vascular plant isoprene 

emissions. We think moss may provide a novel model system suited to assess further 

questions as to why early land plants emitted isoprene, why plants continue to emit 

isoprene and what factors contribute to these emissions.  
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Keywords: bryophyte, isoprene emission, life stage, Polytrichum juniperinum, 
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Introduction 

 

Annually, plants assimilate 120 Picogram (Pg) of carbon dioxide through 

photosynthesis. Carbon dioxide has increased in the Earth’s atmosphere due to 

anthropogenic emission factors (Bala et al. 2007; Pongratz et al. 2009; Reichstein et al. 

2013; Ussiri et al. 2017; Doetterl et al. 2018; Mau et al. 2018). Atmospheric CO2 is 

warming the planet, will alter carbon cycles, and is already intensifying shifts in 

ecosystem processes (Gorham et al. 1991; Heimann et al. 2008; Allison et al. 2010; Jiang 

et al. 2013; Pold et al. 2017; Unda et al. 2017; Yvon-Durocher et al. 2017; Quesada et al. 

2018; Pellegrini et al. 2018). Plants use carbon dioxide for photosynthesis, but in the 

process can transform it into chemically complex molecules, some of which are re-

emitted back into the atmosphere in the form of isoprene (Sharkey et al. 1993, 1995, 

1996; Harley et al. 1994; Magel et al. 2006; Kuhn et al. 2007; Ghirardo et al. 2011, 

2014). Isoprene, a terpenoid, is significantly more chemically reactive than CO2 and may 

have a larger than suspected impact on atmospheric temperature through albedo effects 

via the formation of SOA (Mooney et al. 1987; Scholefield et al. 2004; Lohmann et al. 

2005, Arneth et al. 2007; Heald et al. 2009; Bauwens et al. 2018).      

We need to understand why and at what rate plants produce isoprene to fully 

understand the global carbon cycle and the effects of vegetative shifts on climate change. 

However, as of yet, our limited understanding of isoprene emission does not include a 

definitive reason as to why some plants emit isoprene and others do not. This is all the 

more remarkable given that isoprene production is so metabolically costly (Loreto et al. 

2010; Behnke et al. 2007, 2009, 2012). Despite decades of work on this topic, the 
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physiological role and the evolutionary origins of isoprene emission is a matter of debate. 

Even within plant groups (e.g., flowering plants) isoprene emission is inconsistent 

(Hanson et al. 1999; Monson et al. 2013). Without an understanding of the fundamental 

motivations for isoprene production and emission, we have a limited ability to predict 

emissions with increasing climate change (Sharkey et al. 2017).  

The process of isoprene synthesis and emission are biochemically expensive and 

energy dependent (Vickers et al. 2009; Loreto et al 2010; Sharkey et al. 2001; Behnke et 

al. 2012). Isoprene is produced from its five-carbon precursor, isopentenyl diphosphate 

(IPP) to its isomer, dimethylallyl diphosphate (DMAPP) (Lichtenthaler et al. 1997) by 

isoprene synthase enzyme (Kuzma et al. 1993; Schnitzler et al. 1996; Miller et al. 2001; 

Sharkey et al. 2005a,b). Two pathways are known for isoprene synthesis: the eukaryotic 

mevalonic acid pathway (MVA) in cytosol and the methylerythritol phosphate (MEP) 

pathway in plastids (Kuzuyama et al. 2002), with little crosstalk between the pathways 

(Eisenreich et al. 2001; Laule et al. 2003; Schuhr et al. 2003; Loreto et al. 2004; Peñuelas 

et al. 2005). Isoprene is not a general plant trait (Ekberg et al. 2011), but all plants 

possess the MEP pathway.  

Isoprene emission is more common in mosses and ferns than in other major plant 

groups (Hanson et al. 1999), making bryophytes (liverworts, mosses, and hornworts) an 

important focus of research in isoprene emissions. Bryophytes were the earliest land 

plants observed in the fossil record and date back 475 million years (Wellman et al. 2003; 

Nickrent et al. 2000; Morris et al. 2018; Rensing et al. 2018a). Isoprene emission has 

been hypothesized as a thermo-tolerance mechanism beneficial for the radiation of early 
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plants on land (Hanson et al. 1999) through resistance to damage due to increased 

temperature variations that are part of an aerial existence.  Later plants evolved other 

protective mechanism such as heat shock proteins (Waters et al. 1996; Heckathorn et al. 

1998) to cope with these temperature swings. Isoprene emitted by these early plants 

should be accounted for in models of early climate and biological environmental 

engineering. Under current climate conditions, mosses occur on every continent, 

dominating observed biomass in the high arctic and can tolerate a wide array of 

temperature and water stresses (Ward 1960; Collins 1976; Corradini et al. 1999; Van der 

Velde et al. 2001, 2005; review Mishler et al. 2001; Wilson et al. 2003; Shafigullina et al. 

2018; Ojiodu et al. 2018). Global warming may lead to the expansion of isoprene 

emitting moss communities in some regions such as Antarctica and an increase in 

landscape level isoprene emissions with profound implications for climate change.  

Isoprene emitting mosses have been found in the Sphagnum (Sphagnaceae) and 

Warnstorfia (Amblystegiaceae) genera, and several species from the Polytrichaceae 

family (Hanson et al. 1999). Research suggests that these mosses can emit substantial 

amounts of isoprene to the atmosphere with an annual emissions peak observed in the 

relative heat and high solar insolation days of both the northern and southern summers. 

Temperature, light level and time of day all contribute to diurnal and annual variation in 

isoprene emissions.  Enhanced UV-B radiation leads to higher observed emissions which 

were explained by higher carbon assimilation (Sharkey et al. 1996, 1999; Singsaas et al. 

1997, 1998; Rinne et al. 2002; Centritto et al. 2011; Fares et al. 2011; Ryan et al. 2014; 

Nogues et al. 2018; Niinemets et al. 2018). This research suggests that peatlands are 
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likely to be more important sources of isoprene than forests in the subarctic (Janson et al. 

1998, 1999; Haapanala et al. 2006; Hellén et al. 2006; Tiiva et al. 2007a,b, 2009).  

A time lag that exists between the onset of photosynthesis and isoprene emission 

has been observed in young vascular plants (Grinspoon et al. 1991; Rasulov et al. 2014, 

2015). However, it is unknown when during development mosses start to emit isoprene, 

and whether the emission rates are similar to mature plants. Understanding how emission 

rates change during moss development will help us better estimate moss isoprene 

emissions on larger scales. 

The objective of this study was to quantify moss isoprene emission across the 

earliest life history stages. After testing more than 90 species of moss for isoprene 

emissions including ten members of the Polytrichaceae family, all of which emitted 

isoprene, we chose the moss Polytrichum juniperinum as our test species because of its’ 

high rate of emission, global distribution (Conard 1956; Cremer et al. 1965; Callaghan et 

al. 1978; Crum et al, 1981; Van der Velde 2000, 2003; Ryömä et al. 2005; Newton et al. 

2000; Nickrent et al. 2000; Bell et al. 2010a,b; Yumol 2016) and status as a one of the 

planets most successful pioneer species (Scotter 1964; Sims et al. 1981; Foster 1985; Kim 

et al. 2014; Shortlidge et al. 2016). Comparable rates of emission are found coming from 

oak leaves 32.8 ± 2.9 nmol m-2 s-1 at 30℃ and 900 µmol m-2 s-1 (Sharkey et al. 1991) a 

widely distributed vascular counterpart. In this study, we investigated: 1) whether 

isoprene emission is present and quantifiable in P. juniperinum protonema and 2) how 

isoprene emission changes during gametophytic development. Additionally, we attained 

1) repeated protonema growth measurements, 2) gas exchange measurements and 
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electron transport rates, and 3) light and temperature curves with respect to isoprene 

emissions. These data allow us to assess both the production of isoprene during the early 

life stages in this moss species, but also allows the first look at how this production may 

vary with environmental and growth parameters.  

 

 

Materials and Methods  

 

Study species  

 

We used Polytrichum juniperinum (Hedw.) (Polytrichaceae), a cosmopolitan 

species, for the experiments described in this study (Smith 1972; Forrest et al. 1995; 

Zouhair et al. 2000; Magombo et al. 2003; Hyvönen et al. 2004; Bell et al. 2010 a,b). P. 

juniperinum grows on every continent (Conard 1956; Cremer et al. 1965; Callaghan et al. 

1978; Crum et al, 1981; Van der Velde 2000, 2003; Ryömä et al. 2005; Newton et al. 

2000; Nickrent et al. 2000; Bell et al. 2010a,b; Yumol 2016) and is a pioneer moss 

species (Scotter 1964; Sims et al. 1981; Foster 1985; Kim et al. 2014). It is often found in 

disturbed habitats and on recently burned soil (Rundel et al. 1977; Rencz, et al. 1978; 

Fryer 2008; Depante et al. 2018; Maslov et al. 2018; Shafigullina et al. 2018) where it 

can rapidly outcompete non-colonizing species (Duncan et al. 1982; Delach et al. 2002; 

Gonzáles et al. 2013; Juutinen et al. 2015). This moss has been observed to vary in 

physiology and morphology to adapt to fluctuating environments (Bazzaz et al. 1970; 

Sarafis 1971; Collins 1976; Potter et al. 1995; Callaghan et al. 1997; Shafigullina et al. 

2018), can sustain high light level fluctuations (Lloyd et al. 2003; Marschall et al. 2004; 

Proctor et al. 2018), and withstand increased summer temperatures (Potter et al. 1995; 
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Richter et al. 2000; O’Neill et al. 2006; Oishi 2018). This observed resilience and 

strategy for broad temperature tolerance and make it of particular interest as a model 

species for observing potential plant physiological changes in the face of a warming 

environment. 

 

 

Protonema from mixed spore samples 

 

To assess detectable levels of isoprene emission from P. juniperinum, ten intact 

adult mature sporophytes were collected randomly from three locations in and around 

Portland, OR during the summer of 2015 (Table 2.1). Mature spores were inspected 

under a Leica DME compound microscope (Figure 2.1a) to ensure sporophytes had intact 

protective cover (calyptra) over sporophytes and were not damaged. Calyptra and seta 

were detached using forceps before sterilization. Using sterile techniques, the calyptra 

was removed from each sporophyte (n=7), and sterilization of mature sporophytes was 

achieved by using sodium hypochlorite following (McDaniel et al. 2007). We sterilized 

the capsules in 1.0 % solution of sodium hypochlorite for 60 seconds and subsequently 

washed them in tap water for 60 seconds repeating this three times in three Eppendorf 

tubes inside a laminar flow hood. The fourth Eppendorf tube contained 1 ml water in 

which the sporophyte was ruptured using sterilized forceps and spores released.  

Agar and nutritive BCD media were prepared following protocol outlined by 

Wang et al. (2015). Sixty milliliters of prepared media was poured into base of 9.5 cm x 

9.5 cm x 3.5 cm PlantCon™ containers (MP Biomedicals, 2017) and sterilized before the 

addition of spore mixtures under UV light. The container lid was placed atop the base 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298231/#bib8
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which measured 9.5 cm x 9.5 cm x 7.0 cm. PlantCon™ containers are made of clear 

polyvinyl chloride (PVC) and are designed for plant culture applications because they 

allow light transmission and produce optimal growth. The PlantCon™ container 

eliminated bacterial growth and allowed for easy sampling (Figure 2.1b).  

Three sporophytes from the same location were chosen at random and the capsule 

of the three sporophytes were excavated and vortexed together to ensure enough spores 

would be viable to achieve detectable levels of isoprene emission. Once thoroughly 

blended, the mix was plated in PlantCon container on agar or BCD media. Spores 

emissions were assessed daily until detectable isoprene emission was observed. The P. 

juniperinum protonema samples were grouped into a binary system of emitting and non-

emitting samples for analyses. 

 

 

Protonema from single spores 

 

 To assess isoprene emission from single-spores of P. juniperinum, a single 

capsule was obtained from a rural site outside of Portland, Oregon (Table 2.1). Using the 

protocol described above and using standard microbiological procedures, the single 

healthy sporophyte was opened using sterile forceps and ~100 spores per 90-mm-

diameter Petri dish were spread on agar following Cove et al. (2009). This allowed 

dilution of the spores from the plate and made it possible to transfer individual spores 

under a Leica microscope (Leitz DME, Leica, Wetzlar, Germany) with a AxioCam 105 

Color camera and Zen Blue software (version 1.1.2.0; Carl Zeiss Microscopy). Using 

sterile forceps single spore isolates were transferred onto individual 90-mm Petri dishes 
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with agar media which then were sealed with Parafilm wax film (Pechiney Plastic 

Packaging, Menasha, WI). Eighty one single-spore isolates were allowed to grow for 2 

months under standardized growth conditions of (55–70 μmol m-2 s−1) light intensity and 

a photoperiod of 16 h light to 8 h dark at 22°C ± 2 SEM using Adaptis1000 Conviron 

growth chambers (Pembina, ND). 

P. juniperinum moss spores germinate on agar in ~2 days, and protonema 

develops in 7 days (Nehlsen 1979; Duncan et al. 1982). Every two week, we tested the 

single-spore germinated protonema for isoprene emission under controlled light level and 

basal rate (maintained at 1000 μmol m-2 s1, ± 100 SEM) and 30 ± 2°C using a Reduced 

Gas Detector (RGD2, Trace Analytical, Menlo Park, CA). Light intensity was assessed 

every other day to maintain consistency and samples were rotated clockwise each day to 

avoid edge effects and allow light optimum to penetrate each Petri dish.  

Two isoprene emission sampling events occurred for single-spore isolated 

protonema. First, isoprene emission was assessed at from day 1 after spore plating and 

germination until day 45, and second after 75 days. P. juniperinum spores need 20-40 

days for complete protonema formation (de Carvalho et al. 2011). In the first set of 

isoprene emission at day 45, we sampled isoprene from three sites in two growth media 

and performed physiological measurements. In the second set, our assessment consisted 

of single-spore isolated protonema, where we investigated whether protonemal growth 

had an effect on isoprene emission. We used 81 half-siblings from one capsule to 

eliminate environmental variability and variance in maternal effects (Shaw 1985; 

Vanderpoorten et al. 2002; Budke et al. 2012, 2013). These spores were assessed in two-



 

19 

week intervals, starting from assessment one on day 75 on September 2, 2016. The 

second isoprene assessment on day 89 occurred on September 15. The last isoprene 

assessment on day 103 occurred on September 28, 2016. During the last two isoprene 

assessments (assessments 2 and 3), protonema began to sprout phyllids (leaves), and 

plants were now considered to be in the gametophytic stage.  Therefore, the last two 

isoprene emission quantifications included leaves. Quantitative analyses using Reduced 

Gas Detector (RGD2, Trace Analytical, Menlo Park, CA) picked up detectable levels of 

isoprene emission.  

Using a Leica microscope (Leitz DME, Leica, Wetzlar, Germany), single-spore 

grown protonema were quantified with a bright-field microscope and inspected for 

health. Differential interference contrast images were captured using automatic exposure 

when taking images of the protonema; the drawing tool was used to manually circle the 

area of moss protonema growth using Leica Application Suite software. A 2 mm stage 

micrometer (Ward’s Science, cat. #949910) was used to calibrate the camera drawing 

tool, and we used calibrated images from Zen software version 1.1.2.0 (Carl Zeiss 

Microscopy).  

 

 

Isoprene measurement method of P. juniperinum protonema   

 

To measure isoprene emission in P. juniperinum protonema, we used a 

nondestructive method, headspace sampling, which gives a spatially realistic profile of 

emission for sampling volatiles in an ecological context. Headspace gas chromatography 

using gas extraction was used after a specified time interval, and a small headspace 
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sample was injected with a syringe directly into packed columns in the Gas 

Chromatograph with a reduction gas detector (GC/RGD2). Each sample was allowed an 

acclimation period before the headspace was sampled under the standard conditions of 

controlled light level (maintained at 1000 μmol m-2 s-1 ± 100 SEM), also known as the 

basal rate of isoprene emission. We tested isoprene emission during timed intervals with 

3 samples of protonema and 3 replicates and found that most of the isoprene was emitted 

within the first five minutes of incubation. The moss protonema were photographed 

under a Leica microscope (Leitz DME, Leica, Wetzlar, Germany), to establish the area of 

each sample allowing us to use area in the equation for isoprene emission (Equation 1.).  

All protonema level isoprene emission samples were collected in 2 ml Pressure-

Lok® Precision Analytical Syringe (VICI Precision Sampling Inc., Baton Rouge, LA, 

USA) for laboratory analyses. These samples were injected into 1 ml sample loop within 

10 minutes. Prior to use, 20 ml round bottom vials were cleaned by rinsing with 3 ml 

methanol and then baked at 60 ºC for a minimum of 2 hours on a MaxQ 4000 ventilated 

shaker (Barnstead Lab-Line, Thermo Scientific; Logan, UT). Vials were removed from 

heat and immediately capped with clean septa and caps that had been washed using DI 

water and baked at 60 ºC alongside the vials. Each moss protonema clump was placed in 

a clean 20 ml vial with Teflon backed 6mm silicone septa (Supelco, Sigma-Aldrich; 

Bellefonte, PA).  After 10 minutes, 1 ml of air was removed via Pressure-Lok® precision 

analytical syringe (VICI Precision Sampling Inc., Baton Rouge, LA) and injected into a 

reduction gas detector (RGD2, Trace Analytical, Menlo Park, CA). Isoprene was 

separated isothermally (100 ºC) in a stainless-steel column (1.3 m long x 2 mm inner 
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diameter i.d.) packed with UNI 8 Beads 3S 60/80 6’ x 1/8”, 0.085 SS (Alicat Scientific, 

Inc; Tucson, AZ).  

Peak times and areas were recorded using a commercial integrator (Model 3396, 

Hewlett-Packard, Avondale, Pennsylvania) and transformed to parts per million of 

isoprene. The GC-RGD2 was calibrated each day using a standard cylinder containing 71 

ppb (v/v) isoprene, referenced to a National Institute of Standard and Technology (NIST) 

and helium (He) standard (SRM 1660a; 1 ppm He in N2, Rochester, NY; Praxair Inc., 

Specialty Gases, Portland, OR) with a ten point standard dilution of isoprene and Helium 

as a carrier gas. Blanks were run every five samples to ensure quality assessment and to 

detect contamination within the column. Isoprene gas was mixed with high purity helium 

using a mass flow controller calibrated to a flow rate of 21 ml/min (Alicat Scientific, Inc; 

Tucson, AZ). One ml of the calibration gas mixture was removed with a syringe from a 

mixing chamber and injected into the GC-RGD2 to create the calibration curve and 

obtain slope of the equation see (Equation 1.). 

 

 

Isoprene GC-analyses of P. juniperinum protonema 

 

Two types of isoprene measurements were performed to determine isoprene 

emission from P. juniperinum protonema. First, we tested whether isoprene emission 

occurs in early protonema. We found no previous reports on isoprene emission from 

moss protonema. To test for isoprene emission in protonema, we used protonema derived 

from spores grown from several sporophytes (see above “Protonema from mixed spore 

samples”). Second, we wanted to assess quantity of isoprene emission from single-spore 



 

22 

isolates grown into protonema after a period of adjustment (see above “Protonema from 

single spores”). Variation in isoprene emission during three separate time intervals was 

assessed and labeled; assessment 1 (September 2, 2016), assessment 2 (September 15, 

2016), and assessment 3 (September 28, 2016).  

 Isoprene emission measurement was calculated as follows, using Peak Area Units 

(PAU) from the standard calibration curve y= mx+b, at GC temperature of 298 Kelvin 

(K), and Atmospheric Pressure (P) of 760 Torr.  

 
Equation 1. Formula used to convert isoprene from calibration curve, y=mx+b, and PAU 

to isoprene (nmol m-2 s-1).  

  

We obtained the volume-mixing ratio of isoprene (ppb) using Equation 1 to 

determine protonema isoprene emission flux. We determined the area of the protonema 

using AxioCam 105 Color camera, and Zen Blue software, version 1.1.2.0 (Carl Zeiss 

Microscopy).  

Peak identification was performed with the PEAK software (Stein 1999) that 

integrates raw peak area units and retention times. To identify isoprene, a custom 

calibration curve was created from isoprene standard (Sigma, Deisenhofen, Germany). 

For quantification, peak areas of isoprene were determined after baseline correction. 

Levels of background contamination were determined from blanks. Analytical quality 

was analyzed by using Standard Reference Material of isoprene (NIST SRM 1515, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909245/#CR49
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National Institute of Standards and Technology, Gaithersburg, MD). The standard 

material was used in the analyses to create calibration curves for quality assurance and 

quality control purposes. 

 

 

Laboratory gas exchange measurements of P. juniperinum protonema 

 

To investigate physiological factors affecting isoprene emission from P. 

juniperinum, we conducted measurements of photosynthetic parameters of mature 

photosynthetic green protonema tissue using Junior Pulse-amplitude modulated 

(JUNIOR-PAM) chlorophyll fluorometer and WinControl Software (Walz, Effeltrich, 

Germany). All gas exchange measurements in the lab were conducted using the protocol 

outlined by JR-PAM, with a single 100 cm plastic fiber, 1.5 mm in diameter. The Junior-

PAM (Walz, Germany, http://www.walz.com/) was used according to the manufacturer’s 

instructions with the following parameters: light – saturation pulse intensity 6, pulse 

frequency 20 sec, actinic light intensity 8. The effective photochemical quantum yield of 

photosystem II [Y (II)] was calculated as described by Genty et al. (1989).  

Our second physiology measure was chlorophyll fluorescence ratio (CFR), as a 

non-intrusive tool in using it as a proxy to establish plant stress and gain information on 

photosynthetic reactions in the chloroplast (Schreiber et al. 1987). The fluorescence-

emission spectra read out two maxima in the 690 nm and the 735 nm 

region. The fluorescence ratio F690/F735 for green leaves is higher (values of 0.8 to 

1.1), than in the yellow to red wavelength region (525 to 633 nm), which only yields 

values for F690/F735 of 0.5 to 0.7 (Rinderle et al. 1988). Chlorophyll fluorescence ratio 

http://www.walz.com/
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2010.04213.x/full#b11
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2010.04213.x/full#b11
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2010.04213.x/full#b11
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(CFR) was measured with a chlorophyll content meter (OPTI-Sciences model CCM-300, 

Hudson, USA).  

Relative Electron Transport Rate (RETR) was calculated with JUNIOR-PAM 

chlorophyll fluorometer and WinControl Software (Walz, Effeltrich, Germany). 

Modulated excitation energy and the fluorescence signal were transmitted through a 

bifurcated fiber-optic cable. P. juniperinum protonema samples were placed in a cuvette 

containing moist cotton ball to provide adequate moisture through the assessment. 

Measurements with the Junior-PAM were conducted under constant fluorescent lighting 

in the laboratory at mean photosynthetically active radiation (PAR) value of 250 μmol m-

2 s-1 ± 50 SEM. Relative electron transport rate (RETR) can be obtained as PFD x (Φ) PSII 

(Bilger et al. 1995). Junior-PAM recorded electron transport rate, photosynthetic yield 

and PAR light levels ranging from 0-1500 PAR μmol m-2 s-1.  

 

 

Light and temperature response curves of P. juniperinum protonema 

 

Isoprene emission rates were quantified at different levels of incident light of 

photosynthetic photon flux density (PPFD). Temperature curve measurements were 

controlled by a water bath. Sample container leaf temperatures were monitored with 

thermocouples and adjusted as needed. Experiments were carried out under standard 

conditions (30°C and 1,000 μmol m−2 s−1 photosynthetic photon flux density at leaf level 

(PPFD)), unless otherwise noted. Light was provided with a Dracast LED1000 Pro 

Daylight light panel, with a light-emitting diode array (Photon Systems Instruments, 

Albuquerque, NM).  
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Light and temperature curve measurements were made using JUNIOR-PAM 

chlorophyll fluorometer and WinControl Software (Walz, Effeltrich, Germany). For 

temperature response curves, we subjected P. juniperinum protonema (n=17), with 3 

replicates for each sample with temperature increasing from 0-35.5°C under constant 

irradiance of 1000 μmol m-2  s-1 to establish basal emission rates. The temperature at the 

time of the measurement correlated to inside temperature of the PlantCon™ containers 

(MP Biomedicals, 2017), which was 0.5 cm away from the sample. For light 

measurements we used (n=28) with three replicates per protonema  

under constant temperature of 30°C and increasing light from 0-2250 μmol m-2 s-1 

photosynthetic photon flux density (PPFD).  

 

 

Statistical analyses  

 

Statistical analyses of the data were performed using R version 3.4.2 (R Studio 

2017) and JMP Pro 14.0 (SAS Institute, Cary, North Carolina, USA). To determine the 

effects of day number, site, and media on isoprene emission in protonema, we used Chi-

square Goodness of Fit with a statistical significance level of p=0.05. Day number, site 

and media using binary code of isoprene emitters (1), and non-isoprene emitters (0) was 

used to analyze the dataset. The chi-square statistic quantified how much of the observed 

distribution of isoprene emitter counts varied from a hypothesized uniform distribution. 

To determine the effects of media and site on protonema isoprene emission up 

until day forty-five, we used an ANOVA to compare means of protonema emission from 

each site and each media to assess whether the means of emission by media and site  
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stayed consistent. We ran a second ANOVA to test the effects of leaf number on isoprene 

emission from our half sibling isoprene emission experiment. For our continuous half-

sibling experiment early P. juniperinum protonema, we ran repeated measure ANOVA 

(RM ANOVA) to test the effects of media and time on isoprene emission during our 

three assessments. Data met the assumptions of the model. 

We used regression analysis to examine the relationship between isoprene 

emission and protonemal growth along with percentage change in protonema growth. 

Logged isoprene emission was classified as the response variable, and protonemal growth 

was classified as the continuous predictor. 

To determine the effect of media on CFR, we used an ANOVA. We used 

regression analysis to examine the relationship between CFR and isoprene emission. To 

determine the effect of media on Relative Electron Transport Rate (RETR), we used an 

ANOVA. We also used regression to examine the relationship between RETR and 

isoprene emission. Similarly, we used regression analysis to examine the relationship 

between isoprene emission and light, as well as isoprene and temperature. 

 

 

Results 

 

Early isoprene emission in Polytrichum juniperinum protonema  

 

Day number and initial collection site contributed significantly to our model fit in 

predicting isoprene emission in early P. juniperinum protonema. There was a significant 

difference between effect of day (DF=7; Χ2=149.6; P< 0.0001) for total isoprene emitting 

samples of P. juniperinum and site-specific effects (DF=2; Χ2=6.015; P≤ 0.0009).  Not 
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all samples emitted isoprene at the same time, and we saw site-specific differences in 

emission ability and timing. Overall, day contributed to 78% of variation in emission, 

while site contributed only 2% of variation in isoprene emission, with the rest of the 

contribution coming from residual effects (Figure 2.2). On day five, 14 % of the samples 

(3 of 21) emitted isoprene, and plants from two of the three sites were emitting at 

detectable levels. The last site started emitting the following day. By day six 62 % of the 

samples (13 of 21) were emitting, and plants from all three sites were emitting at different 

rates. This increased to 95% (20 of 21 samples) emitting isoprene by day eight, and we 

saw emissions from all samples and sites on day ten. From three sites, site 6 vs. site 8, 

and site 8 vs. site 9 were statistically significant from each other, while site 6 vs. site 9 

had no statistical significance. We found no effect of media on isoprene emission at this 

early stage (P = 0.44). 

 

 

The effects of media and time on isoprene emission in early Polytrichum juniperinum  

protonema  

 

Isoprene emission was greatly influenced by the media on which it was grown by 

day forty-five (ANOVA; DF=1; F= 7.4082; P <0.0001; Figure 2.3). Isoprene emission 

from single spore isolated protonema showed higher levels of emissions on BCD media 

than agar. Mean isoprene emission on agar media was lower than BCD media. On agar 

isoprene emission mean value was 26.2 nmol m-2 s-1 ± 8.093 SEM (n=9), on BCD media 

mean isoprene emission value was 62.56 nmol m-2 s-1 ± 9.887 SEM (n=9). All surviving 

protonema in its resting phase has increased in growth, but none of the samples  
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differentiated into gametophytic tissue in the first assessment (Figure 2.4). Protonema by 

day 45 was embedded into the agar and separation was not possible without breaking the 

integrated protonemal network. Overall, media contributed 58% of the total variation in 

isoprene emission, protonema on agar had 42% less isoprene emission than protonema on 

BCD, while we have found no statistical significance between sites (P=0.1325).   

In our second assessment, we found that isoprene emission was significantly 

affected by leaf number for single spore isolates of eighty-one siblings (ANOVA; DF= 4; 

F=4.01; P= 0.0036; Figure 2.5), with isoprene emission decreasing as leaf number 

increased. Total leaf count was 35 by our second assessment (n=81), and 51 on our third 

assessment. Mean isoprene emission was significantly different between days tested and 

leaf number (RM ANOVA; DF=1; Χ2=4.83; P ≤ 0.0001). Mean isoprene emission from 

the three individual time assessments was 9.76 nmol m-2 s-1 ± 0.55 SEM (n=243), and 

ranged from 7.23 to 11.41 nmol m-2 s-1 (n=243), with the lowest isoprene emission seen 

on our last assessment.  

 

 

Isoprene emission and growth in Polytrichum juniperinum protonema  

 

We found a significant correlation between isoprene emission and protonema 

growth. Protonema growth showed a negative trend against isoprene emission with larger 

diameter protonema emitting less isoprene than protonema with smaller diameter. 

Logarithmic line equation for first assessment was Y=-1.15ln(x) + 3.02; and for the 

second assessment was Y= -1.02ln(x) + 2.72 (Regression; r2= 66.18; P<0.0001; Figure 

2.6). Isoprene emission increased in the beginning, plateaued midway and as soon as leaf 
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emergence took place isoprene emission dropped significantly. Collectively, mean 

isoprene emission from single spore isolates from all dates were 27.4 nmol m-2 s-1 ± 

4.378 SEM (n=243), which were higher than from protonema grown from ~ 100 spores. 

Isoprene emission ranges during September 2, 2016, September 15, 2016 and September 

28, 2016 were from 13.92 nmol m-2 s-1 ± 1.217 SEM to 40.89 nmol m-2 s-1 ± 8.434 SEM 

(n=162).  

Mean protonema growth for the three time intervals (September 2, 2016; 

September 15, 2016; September 28, 2016) was 1.456 mm2 ± 0.0657 SEM (n=243). 

Protonema growth ranges were from 1.04 mm2 ± 0.089 SEM to 1.872 mm2 ± 0.072 

SEM (n=162). Overall protonema growth contributed to 52% of total variation in 

isoprene emission in the first assessment from September 2, 2016 to September 15, 2016 

and contributed to 23% of total variation in isoprene in the second assessment from 

September 15, 2016 to September 28, 2016.  

We found significant differences in percentage change in protonema growth 

versus leaf emergence (ANOVA; DF= 2; F=67.23; P= <0.0001; Figure 2.7). In the first 

assessment we saw an increase in the percentage change in protonema growth up until 

leaf emergence, but with leaves % change in protonema growth declined with more 

horizontal, rather than vertical growth development.  

 

 

Laboratory gas exchange measurements 

 

We have found that media significantly affects isoprene emission (DF=1; Χ2= 

21.25; P <0.0001), as well as isoprene emission and CFR (DF=1; Χ2=5.85; P < 0.0156). 
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The line slopes between media for CFR vs. isoprene emission are statistically 

significantly different with a regression line equation for agar Y=3.2774*x + 0.5941, and 

for BCD Y=0.7023*x + 2.641 (F= 37.96; P<0.0001; Figure 2.8). We found media 

significantly affects CFR measures (ANOVA; DF=1; F= 11.6593; P <0.0013; Figure 

2.9).  

Mean isoprene emission values overall were 16.18 nmol m-2 s-1 ± 1.614 SEM 

(n=52). While on agar media mean isoprene emission were 9.267 nmol m-2 s-1 ± 1.137 

SEM (n=26), and ranged from 3.021 to 22.901 nmol m-2 s-1 (n=26). Mean isoprene 

emission values on BCD were 23.140 nmol m-2 s-1 ± 2.348 SEM (n=26), and ranged from 

4.274 to 57.680 nmol m-2 s-1 (n=26).  On agar media, we saw a reduction of isoprene 

emission and on BCD isoprene emission was 40% higher than on agar media. CFR 

measures together explained 60% variability in isoprene emission seen from P. 

juniperinum protonema.  

Mean CFR values collectively were 0.489 ± 0.015 SEM (n=52). On agar and 

BCD media CFR values ranged from 0.33 to 0.74 (n=26), but mean CFR values on BCD 

media was higher (0.5377 ± 0.012 SEM, n=26), than on agar media (0.442 ± 0.010 SEM, 

n=26).  On agar media, CFR contributed 39% of variation in isoprene emission, and on 

BCD media, CFR contributed 21% of variation in isoprene emission.  

We also took two light setting measurements for Relative Electron Transport Rate 

(RETR) curves for plants on two media (agar and BCD).   Under low light setting (0-820 

µmol m-2 s -1), we found no statistical differences in RETR curves between media (P = 

0.81; Figure 2.10). Mean RETR values were 33.06 µmol m-2 s -1 ± 3.367 SEM (n=40).  
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While on agar media under low light setting (0, 66, 90, 125, 190, 285, 420, 625, 820 

µmol m-2 s -1), RETR mean values were 32.18 µmol m-2 s -1 ± 3.328 SEM (n=20) on agar; 

and on BCD media mean RETR were 33.94 ± 3.406 SEM (n=20). Our regression line 

equation under agar was Y= 0.1067*+ 1.812, and under BCD was Y= 0.1102*x+0.8975.  

Under high light setting, we found statistical difference in media (RM ANOVA; 

DF=1; F= 3.9027; P < 0.05; Figure 2.11). Regression line equation for RETR measures 

on agar being Y= 0.1116* + 0.9509, and under BCD were Y= 0.1486*x + 2.885 (RM 

ANOVA; DF= 1; x2= 3.65; P= 0.056). Under higher light settings (236, 302, 325, 361, 

425, 520, 655, 860, 1055 µmol m-2 s -1), mean RETR values were 74.06 µmol m-2 s -1 ± 

4.746 SEM (n=40). Mean RETR values on agar were 68.06 µmol m-2 s -1 ± 4.28 SEM 

(n=20) and on BCD media were 81.14 µmol m-2 s -1 ± 5.212 SEM (n=20). RETR values 

contributed to 78.5% variation under low light setting (0-820 µmol m-2 s -1) on agar 

media, and RETR values contributed 51% variation under high light setting (0-1150 

µmol m-2  s -1) on agar media with PAR levels selected as random effects. Our combined 

low agar and low BCD media RETR values were 26.2 µmol m-2 s -1 ± 8.093 SEM (n=20); 

whereas the combined high agar and BCD values were 62.56 µmol m-2 s -1 ± 9.887 SEM 

(n=20), with a regression line equation for low agar and BCD; Low Y= .01087*x+1.355, 

and for high agar and BCD; High Y=0.13012*x + 6.197 (Figure 2.12).  

 

 

Light and temperature response curves of P. juniperinum protonema      

 

We found that isoprene emission and light in P. juniperinum were statistically 

correlated across temperature. Our regression line equation for isoprene emission and 
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temperature was Y= 0.4798*x-4.791 (Regression; r2=0.56; P < 0.0027; Figure 2.13). 

Light correlated logarithmically to PPFD with a nonlinear lognormal line equation of Y=-

49.69ln(x) + 34.2 (Regression; r2=0.62; P <0.0004; Figure 2.14). Under varying 

temperature and constant light (PPFD) P. juniperinum mean isoprene emission were 11.7 

nmol m-2 s-1 ± 0.8862 SEM (n=38). Under varying light (PPFD) and constant temperature 

mean isoprene emission were 7.267 nmol m-2 s-1 ± 0.421 SEM (n=53).  

 

 

Discussion 

 

Isoprene emission in Polytrichum juniperinum protonema  

 

Sampling detectable levels of isoprene emission from P. juniperinum protonema 

was accomplished here for the first time. We demonstrate that protonema from mature 

sporophytes (Figure 2.1) can be successfully assessed for isoprene emission in both as 

single spore isolates from half siblings and from mixed spores. In the earliest life stage in 

the moss life cycle, P. juniperinum can emit detectable levels of isoprene (Figure 2.2). 

Our aim was to assess and quantify isoprene emission in moss protonema. We have 

found that mosses can emit isoprene as early as five days after spore germination, and we 

demonstrate that a time lag exists from the beginning of protonemal development to 

isoprene emission. In vascular plants, it is already established that a time lag exists 

between onset of photosynthesis and isoprene emission (Rasulov et al. 2014). Vascular 

leaves will take days to weeks to be able to produce isoprene depending on 

photosynthetic adequacy (Sharkey et al. 1993; Monson et al. 1994; Goldstein et al. 1998; 

Kuhn et al. 2004; Mayrhofer et al. 2005; Wiberley et al. 2005; Sharkey et al. 2007). We 
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can confirm that we observed moss protonema isoprene emission time lag that is 

comparable to the time lag observed in vascular plants where isoprene emission develops 

by day six after new leaf emergence (Velikova et al. 2008; Rasulov et al. 2014). Our 

results indicate that isoprene emission initiates during the first moss protonemal stage, a 

stage which can last indefinitely in many mosses (Rensing et al. 2007, 2018a,b; Reski et 

al. 2018a,b; Ryo et al. 2018).  

Additionally, our results suggest that isoprene emission capacity is higher for 

young moss tissue compared with older tissue. We found average isoprene emission for 

protonema to be 45.85 nmol m-2 s-1 (at 1000 µmol m-2 s-1 and 30°C). This range is higher 

than what is reported for P. juniperinum gametophytes of 37 nmol m-2 s-1 (at 1600 µmol 

m-2 s-1 and 30°C) (Hanson et al. 1999). Isoprene emission from protonema was highly 

variable, in both mixed sporophytes and half sibling surveys, suggesting genetic 

differences within moss capsules. Our data suggest that isoprene production in P. 

juniperinum is influenced by site-specific effects suggesting both genetic control and 

environmental effects in isoprene emission. These results are similar to those found in 

vascular plants, where large genetic differences between plants have been recorded 

(Loreto et al. 1998, 2009; Velikova et al. 2014). In addition, in vascular plants, isoprene 

emission has been seen to be highly developmentally variable within the same plant when 

sampled between the lower branches and top branches of a single tree, with emissions 

higher in the top of the tree (Harley et al. 1997).  

For our spore mixtures from multiple sporophyte assessment, isoprene emission 

increased on nutritive BCD media as opposed to non-nutritive agar. This suggests that the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909245/#CR4
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young protonema on nutrient rich media was able to utilize the resources available for 

secondary metabolite production rather than expend the resource on growth (Figure 2.4). 

We observed more isoprene emission from spores plated on BCD suggesting that the 

protonema can utilize environmental sources of nutrients to fix carbon for isoprene 

emission. On agar media, observed isoprene emission was lower as demand for resources 

to expand and grow initiated a higher demand than available supply allowed (Lambers 

1993; Kuhn et al. 2004; Owen et al. 2005; Rosenstiel et al. 2004; Brilli et al. 2007; Loreto 

et al. 2007a,b; Sharkey et al. 2007; Morfopoulos et al. 2014). Moss protonema 

development provides useful insight into what factors control life cycle phases of mosses 

(Niklas et al. 2010; Hackenberg et al. 2016; Silva-e-Costa et al. 2017).  

Light and temperature are closely linked to protonema development (Cove et al. 

1978), as is bioavailable nitrogen (Alcade et al. 1996). Other factors that can contribute to 

protonema development include macronutrient availability (Basile et al. 1975), cell 

growth by osmotic cell properties (George et al. 2008), and the effects of moisture 

conditions (Pakarinen et al. 1977; Chopra et al. 1981; Chaban et al. 1999; Silva et al. 

2010; Sabovljević et al. 2014; Nishihama et al. 2015; Liu et al. 2016). However, no other 

study has looked at isoprene emission and protonema development and considered this as 

a factor when assessing growth and resources allocation, as well as carbon allocation 

between growth and isoprene emission.  

For our half sibling experiment, using single-spore isolates, we saw high isoprene 

values initially. We observed a decrease in isoprene emissions by our second assessment 

when leaves had first emerged from the young protonema. For the third and final 
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isoprene assessment, we saw more leaves and the lowest amount of isoprene collectively 

(Figure 2.5), suggesting a metabolic cost to isoprene emission. The 81 half siblings 

reached peaked protonema growth just as leaves emerged and dropped significantly as 

more leaves grew perhaps as a result of exhausted resources and accumulation of stress 

factors within the PlantConTM container.  

Isoprene synthase enzyme is developmentally regulated and for mature vascular 

leaves, emission rates depend on DMADP (dimethylallyl diphosphate) availability, 

whereas in young leaves emission is also influenced by isoprene synthase protein 

availability (Vickers et al. 2010). Differences have been observed in vascular plant 

isoprene emission, where its capacity was 124% higher in young leaves than in older 

mature leaves (Alves et al. 2014). We suspect that we could also find young to mature 

gametophyte P. juniperinum isoprene emission differences as we saw protonema age and 

leaf development with decreased isoprene emission. 

 

 

Isoprene emission and growth in Polytrichum juniperinum protonema  

 

In vascular plants, each isoprene molecule costs carbon and energy. The energy 

and carbon cost have been summarized by Sharkey et al (2001), with each isoprene 

molecule costing nine carbon atoms, 24 molecules of ATP, and 14 molecules of NADPH 

when using the MVA isoprene production pathway (Sharkey et al. 2001; Niinemets et al. 

1999; Sanadze 2010; Sanadze et al. 2016; Fini et al. 2017). Whether the cost in non-

vascular plants is the same as it is in vascular plants is yet to be determined. However, to 

be able to emit isoprene in mosses, photosynthetic capability must be adequate as it is in 
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vascular plants (Schnitzler et al. 2005), and carbon that is used for isoprene emission may 

not be available for growth. Isoprene emission rate and photosynthetic rate generally 

correlates, but both processes can have independent responses to plant growth (Monson 

et al. 1994).  

In vascular plants under increased CO2 growth of biomass can be enhanced, but 

isoprene emission is reduced, suggesting leaf level suppression of isoprene emission 

given increased CO2 (Rosenstiel et al. 2003). We explored protonema growth as one of 

the costs to isoprene emission and found that plants with small protonema growth had 

higher isoprene emission than plants with higher rates of growth (Figure 2.6) suggesting a 

trade-off between growth and isoprene emission for carbon resource allocation in early 

protonema development. It was very interesting to find that some moss protonema 

allocated enough resources to isoprene production that growth was significantly delayed 

indicating that isoprene production and emission can play a role in early development 

whose importance is on par with the imperative of early growth.  

Similar trade-offs have been reported in vascular plants. In overexpressed 

Populus canescens isoprene synthase gene in non-isoprene emitter Camelina sativa lead 

to alterations in its growth and metabolism. This resulted in shorter and smaller leaves 

than wild types, suggesting a trade-off between biomass production and isoprene 

emission (Rossi et al. 2017).  

We observed a significant trade off associated with growth and isoprene emission 

when we assessed the percentage change in protonema growth compared to isoprene 

emission as new leaves began to emerge. Then with increased growth as evidenced by 
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more leaves emerging, and P. juniperinum spent resources on horizontal, rather than 

vertical growth (Figure 2.7) isoprene emissions leveled off and then fell. The advantages 

that plants receive must outweigh the cost to keep isoprene emission as an evolutionary 

trait present in many species. This observation makes studies showing that North 

American oaks all emit isoprene, but many of the European oaks do not (Loreto et al. 

1998; Kesselmeier et al. 1999) that much more confounding in our search to understand a 

mechanistic model that provides a cost benefit analysis between isoprene emission and 

growth. 

Mosses can serve as an ideal system to study isoprene emission, as many of the 

necessary traits such as isoprene emission were established in early land plants. Isoprene 

emission was conserved in some mosses and vascular plants, but not all plants emit 

isoprene. Since plants, including mosses have lost and gained this trait multiple times, it 

is possible to trace evolutionary linkages with gene targeting to understand what the 

evolutionary advantage is that repeatedly selected for this mechanism (Reski 1998; Wood 

et al. 2000; Stenøien et al. 2001, 2005; Fattash et al. 2007; Cove et al. 2009; Reski 2018b; 

Lang et al. 2018; Zhao et al. 2018).  

 

 

Laboratory gas exchange measurements  

 

We wanted to find out whether isoprene-emitting protonema are able to maintain 

typical levels of photosynthesis as stress levels change and if we could observe a 

relationship between isoprene emission and either chlorophyll fluorescence ratio (CFR) 

or Relative Electron Transport Rate measures (RETR). Polytrichaceae gametophytes 
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have been found to have a good negative exponential saturation curve in high irradiances, 

and this moss light saturation curve approaches and can exceed full midday sun (Proctor 

et al. 2005, 2006). However, no protonema electron transport curves have been published 

to our knowledge. We know that there is a strong positive correlation between 

photosynthetic electron transport rate and isoprene emission (Warren et al. 2000; Dani et 

al 2015). Even under moderate stress, electron transport rate values can be maintained 

(Genard et al. 2014). In vascular plants, mild stress can decrease stomata opening and 

affect carbon assimilation, while isoprene emission and electron transport rate 

maintenance is not affected (Niinemets et al. 2010).  

Desiccation tolerant bryophytes and desiccation tolerant dicots conserve 

chlorophyll during desiccation (Tuba et al. 1996; Porembski et al. 2000), suggesting 

chlorophyll loss is an acceptable cost associated with desiccation tolerance (Hinshiri et al. 

1971; Alpert 2000; Oliver et al. 2005).  We have seen in our protonema that the low 

values we obtained for chlorophyll fluorescence ratio (CFR) was due to phenotypic 

plasticity to desiccation. Chlorophyll fluorescence is sensitive to moss water content and 

during desiccation, mosses suffer low capacity to maintain photosynthetic efficiency 

(Robinson et al. 2000). Mosses are C3 plants and the relationship between CO2 gas 

exchange and ETR are complex and different from what has been found in higher plants 

(Green et al. 1998). We found a statistically significant relationship between chlorophyll 

fluorescence ratio on agar versus BCD media, and we saw a statistically significant 

relationship between media and CFR values affecting isoprene emission (Figure 2.8; 

Figure 2.9).  
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Relative electron transport rate measures stress and enables dissipation through 

photorespiration or photochemical quenching. Changes in isoprene emission have been 

strongly correlated with changes in leaf ATP content suggesting that the rate of 

photosynthetic electron transport (ETR) may exert control over isoprene production and 

emission (Loreto et al. 1990; Niinemets et al. 1999). RETR was measured independently 

using fluorescence and was not coupled with LiCor measurements and should only be 

taken as indicative and not as absolute measures (Dani et al. 2014). The values presented 

here for low light RETR, high RETR and combined low and high RETR curves were 

assessed for stress. Our results correspond under both high and low light conditions to 

what has been documented for macroalgae RETR ranges (Franklin et al. 2001; Figueroa 

et al. 2003), where a good correlation can be found between RETR and O2 evolution 

(Beer et al. 2000; Longstaff et al. 2002). Our ranges are considered to be under low 

stress, neither of our low or high RETR curves reached saturation, meaning that 

protonema is capable of exceeding our values once saturation is reached (Figure 2.10, 

2.11, 2.12).  

 

 

Light and temperature response curves of P. juniperinum protonema 

 

Isoprene emission saturation values for light (PPFD) and temperature in P. 

juniperinum are much lower than reported for mature vascular plants, where isoprene 

emission can increase with photosynthetic photon flux density of up to 3000 µmol m-2 s-1 

(at 30℃) and can continue to increase after photosynthesis is saturated at 1000 µmol m-2 

s-1 (Sharkey et al. 1993). We found a strong effect on isoprene emission of both 
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temperature and light, indicating that isoprene emission can increase with photon flux up 

to 2250 µmol m-2 s-1 and temperature for up to 35℃. Our ranges for emission maxima 

were between 40-45℃ and 800-1200 µmol m-2 s-1, which is close to saturation level of 

young leaves in vascular plants (Alves et al. 2014). Isoprene saturation in moss 

protonema occurred at 1500 PPFD µmol m-2 s-1, and isoprene emission did not saturate 

for our temperature curves. This suggests that P. juniperinum protonema is sensitive to 

changes in light, but whether it is able to tolerate higher temperature values to reach 

saturation remains to be seen. Others have shown that at 40℃ and 1000 PPFD µmol m-2 

s-1 isoprene emission reaches maximum level and can produce over 200 nmol m-2 s-1 in 

kudzu leaves (Sharkey et al. 1993). Water stress plays a large role in emission as was 

shown by Sharkey where at 35℃ and 1000 µmol m-2 s-1 isoprene emission in proportion 

to photosynthesis increased from 24% to 67% (Sharkey et al. 1993).  

The positive correlation in this study between isoprene emission and temperature 

(Figure 2.13) as well as between isoprene emission and light (Figure 2.14) confirm 

temperature dependency and light dependency in moss protonema, as has been reported 

from vascular plants (Sanadze et al. 1966, 1969; Tingey et al. 1979; Monson et al. 1989, 

1992; Sanadze 2004; Sasaki et al. 2005). Many protonemal samples did not respond to 

either light or temperature and remained flat lined through the trials, while higher 

temperatures caused the chloroplast to be released from the protonema membrane at 

40℃. This resulted in complete chloroplast loss as evident the next day with protonema 

that turned translucent. High variability in isoprene emission seen in our light and 

temperature trials indicates that there is a close relationship between photosynthesis and 
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isoprene emission (Kuhn et al. 2002). We need to understand how much carbon taken up 

by photosynthesis is released as isoprene in mosses. In vascular plants, the loss of carbon 

that is fixed by photosynthesis can vary, and it can be as high as 20% (Sharkey et al. 

1991, 1993). It has been shown in vascular plants that carbon fixed by photosynthesis and 

re-emitted as isoprene is 53% higher in sun leaves than in shade leaves (Harley et al. 

1996). Further investigation is required to understand isoprene emission in moss species 

such as the Polytrichaceae, which ecologically occupy a wide range of habitats from 

xerophytes capable of withstanding high light to species which thrive in deep shaded wet 

habitat.  
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Tables and Figures 

 

Table 2.1 Summary table of Polytrichum juniperinum populations used for protonema 

single spore and mixed spore experiments.  

 

Experiment Latitude Longitude Elevation 

(meters) 

Protonema from single 

spore samples 

 

45°41'38.34"N 122°52'14.23"W 15  

Protonema from mixed 

spore samples 

Location 1 

 

45°47'17"N 122°56'16.00"W 241  

Protonema from mixed 

spore samples 

Location 2 

 

45°41'50.54"N 122°52'40.83"W 145  

Protonema from mixed 

spore samples 

Location 3 

 

45°46' 58.78'' N 123°22'14.14'' W 315  
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Figure 1.1 Conceptual model for exploring isoprene emission in moss. Factors in this 

study excluded from analyses were Environmental factors and Atmospheric Chemistry 

differences associated with isoprene emission. 
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Figure 2.1 (a) Depiction of P. juniperinum spores before capsule sterilization from two 

sites (upper right rural forest site), and (lower left high elevation mountain site); (b) forty-

five day old P. juniperinum protonema growing in BCD media in PlantCon™ containers.  
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Figure 2.2 Isoprene emission (nmol m-2 s-1) versus P. juniperinum spore germinated 

protonema (n=21). Isoprene emission (nmol m-2 s-1) by day is plotted on the x-axis from 

day 1 to day 10. Nominal Tukey-Kramer HSD Multiple Comparisons Test shows areas of 

significant difference between isoprene emitting samples among days. Letters show 

statistical significance between means. Means with the same letter are not significantly 

different. A * indicates significant difference, ** indicates a highly significant difference, 

*** indicates high statistical significance, NS indicates no significance.  
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Figure 2.3 Isoprene emission (nmol m-2 s-1) versus media (agar versus BCD) in P. 

juniperinum protonema (n=52). Media source is plotted on the x-axis. Error bars 

represent ±1σ (standard deviation). Letters show statistical significance between means. 

Means with the same letter are not significantly different. A * indicates significant 

difference, ** indicates a highly significant difference, *** indicates high statistical 

significance, NS indicates no significance. 
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Figure 2.4 Image depicting P. juniperinum protonema growth versus day number (n=21). 

Detail is shown for average protonema growth for each day. Growth of protonema was 

measured using upright bright-field microscopy (Leitz DME, Leica, Wetzlar, Germany) 

equipped with AxioCam 105 Color camera and Zen Blue software (version 1.1.2.0; Carl 

Zeiss Microscopy). 
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Figure 2.5 Isoprene emission (nmol m-2 s-1) versus P. juniperinum protonema and leaf 

number (n=81). Assessment date is plotted on the x-axis. Tukey-Kramer HSD Multiple 

Comparisons Test shows areas of significant difference between isoprene emission (nmol 

m-2 s-1) vs. leaf number. Error bars represent ±1σ (standard deviation). Letters show 

statistical significance between means. Means with the same letter are not significantly 

different. A * indicates significant difference, ** indicates a highly significant difference, 

*** indicates high statistical significance, NS indicates no significance. 
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Figure 2.6 Isoprene emission (nmol m-2 s-1)/growth versus protonema growth (n=246). 

Protonema growth is plotted on the x-axis. The line slopes between two assessments are 

not significantly different. A * indicates significant difference, ** indicates a highly 

significant difference, *** indicates high statistical significance, NS indicates no 

significance. Logarithmic line equations are shown for both time intervals. 

 

   Protonema growth*** 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 50 

Figure 2.7 P. juniperinum % change in protonema growth versus leaf emergence for 

three individual dates (n=246). Date is plotted on the x-axis. Lines represent % change in 

protonema growth with leaves present for individual dates. Tukey-Kramer HSD Multiple 

Comparisons Test shows areas of significant difference between % change in protonema 

growth vs. leaf emergence. Error bars represent ±1σ (standard deviation). Letters show 

statistical significance between means. Means with the same letter are not significantly 

different. A * indicates significant difference, ** indicates a highly significant difference, 

*** indicates high statistical significance, NS indicates no significance. 
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Figure 2.8 Isoprene emission (nmol m-2 s-1) versus Chlorophyll Fluorescence Ratio 

(CFR) in P. juniperinum protonema on agar and BCD media (n=52). Chlorophyll 

Fluorescence Ratio (CFR) is plotted on the x-axis. The line slopes between the two media 

are statistically significant. A * indicates significant difference, ** indicates a highly 

significant difference, *** indicates high statistical significance, NS indicates no 

significance. Regression line equations are shown for both media source. 
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Figure 2.9 Chlorophyll Fluorescence Ratio (CFR) versus P. juniperinum protonema on 

agar and BCD media (n=52). Media is plotted on the x-axis. Error bars represent ±1σ 

(standard deviation). Letters show statistical significance between means. Means with the 

same letter are not significantly different. A * indicates significant difference, ** 

indicates a highly significant difference, *** indicates high statistical significance, NS 

indicates no significance.  
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Figure 2.10 Relative Electron Transport Rate (RETR) (µmol m-2 s-1) from P. 

juniperinum protonema versus agar and BCD media under low-light setting (0-820 µmol 

m-2 s-1) PPFD (n=20). Photosynthetic Photon Flux Density (PPFD) is plotted on the x-

axis. No statistical differences were found between media and RETR. The line slopes 

between media are not significantly different. Error bars represent ±1σ (standard 

deviation). Letters show statistical significance between means. Means with the same 

letter are not significantly different. A * indicates significant difference, ** indicates a 

highly significant difference, *** indicates high statistical significance, NS indicates no 

significance. Regression line equation shown below for media under RETR versus low-

light (PPFD). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 54 

Figure 2.11 Relative Electron Transport Rate (RETR) (µmol m-2 s-1) from P. 

juniperinum protonema versus agar and BCD media under high-light setting (0-1150 

µmol m-2 s-1) PPFD (n=20). Photosynthetic Photon Flux Density (PPFD) is plotted on the 

x-axis. The line slopes between media are significantly different. Error bars represent ±1σ 

(standard deviation). Letters show statistical significance between means. Means with the 

same letter are not significantly different. A * indicates significant difference, ** 

indicates a highly significant difference, *** indicates high statistical significance, NS 

indicates no significance. Regression line equation shown below for media under RETR 

versus high-light (PPFD).  
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Figure 2.12 Relative Electron Transport Rate (RETR) (µmol m-2 s-1) from P. 

juniperinum protonema versus combined agar and BCD media under low-light setting (0-

820 µmol m-2 s-1) and high-light setting (0-1150 µmol m-2 s-1) PPFD (n=40). 

Photosynthetic Photon Flux Density (PPFD) is plotted on the x-axis. The line slopes 

between media are significantly different. Error bars represent ±1σ (standard deviation). 

Letters show statistical significance between means. Means with the same letter are not 

significantly different. A * indicates significant difference, ** indicates a highly 

significant difference, *** indicates high statistical significance, NS indicates no 

significance. Regression line equation shown below for media under RETR versus light 

(PPFD).  
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Figure 2.13 Isoprene emission (nmol m-2 s-1) in P. juniperinum protonema versus 

temperature (°C; n=38). Temperature is plotted on the x-axis. Regression line is 

statistically significant. Error bars represent ±1σ (standard deviation). A * indicates 

significant difference, ** indicates a highly significant difference, *** indicates high 

statistical significance, NS indicates no significance. Regression line equation shown 

below for isoprene emission versus temperature.  
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Figure 2.14 Isoprene emission (nmol m-2 s-1) in P. juniperinum protonema versus 

Photosynthetic Photon Flux Density (PPFD) (n=53). Photosynthetic Photon Flux Density 

(µmol m-2 s-1) is plotted on the x-axis. Error bars represent ±1σ (standard deviation). A * 

indicates significant difference, ** indicates a highly significant difference, *** indicates 

high statistical significance, NS indicates no significance. Regression line equation 

shown below for isoprene emission versus light (PPFD). 
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Chapter 3 

 

 

The role of isoprene in Polytrichaceae sexual systems 

 

 

Abstract 

 

Mosses are some of Earth’s most species-rich, ancient, and stress-tolerant 

ecosystem engineers. They play key roles in carbon and nitrogen cycling. Emission by 

mosses of Biological Volatile Organic Compounds (BVOCs), including isoprene, may 

locally engineer the atmosphere causing changes in the atmospheric hydrological cycle. 

Isoprene emission is poorly understood in bryophytes, and little is known about variation 

in emission across species and sexes. In this study, working with mosses in the 

Polytrichaceae family we (1) investigate the effects of morphological and physiological 

traits on isoprene emission in P. juniperinum, (2) explore the effects of gametangia 

expression or lack thereof on isoprene emission in P. juniperinum, and (3) assess 

variation in isoprene emission among mosses within the family. 

 Isoprene emission rate is significantly higher in sexually non-expressing 

gametophytes than female or male gametophytes. The cosmopolitan Polytrichum 

juniperinum had higher isoprene emission than shade adapted Atrichum undulatum and 

montane Pogonatum urnigerum. The highest emission rates were seen from non-sexually 

expressing gametophytes with significant canopy traits affecting isoprene emission; such 

as total leaves (TL) per gametophyte, gametophyte width (GW), wet weight (WW) and 

leaf tip redness (LTR). We are the first to report sexual expression affecting isoprene 

emission in Polytrichaceae species. We hypothesize that gametophytes with no sexual 
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expression are the least expensive to maintain as they have a higher investment after 

sexual organ formation takes place. We also saw great variation in above and 

belowground traits, along with isoprene emission and physiological measures between 

species and within sexes. This research uses a combination of physiological and 

comparative approaches to develop the first comprehensive view of the relationship 

between isoprene emissions and sexual systems in the mosses.  

 

Keywords: bryophyte, gametophyte, isoprene, life stage, sexual systems 
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Introduction 

 

Background 

 

Large fractions of atmospheric hydrocarbons are emitted by plants in the form of 

Biogenic Volatile Organic Compounds (BVOCs).  These represent a larger fraction than 

is emitted by human activities (Purves et al. 2004; Sharkey et al. 2007). Recent data 

suggest that these emissions have a complex link to climate and contribute to global 

warming (Peñuelas et al. 2003, 2010; Feng et al. 2019; Guidolotti et al. 2019; Mäki et al. 

2019). Increase in temperature can disrupt these chemical signals leading to significant 

increases in landscape level BVOC emissions with profound implications for both 

vascular and nonvascular plants (Kivimäenpää et al. 2016). Isoprene, a BVOC, has been 

shown to increase thermotolerance of photosynthesis in vascular plants (Sharkey et al. 

1995) and in nonvascular plants such as mosses (Hanson et al. 1999). As a result, 

isoprene emission may have been beneficial for the radiation of early plants on land 

(Hanson et al. 1999). The capacity to emit isoprene was gained and lost multiple times 

during bryophyte evolution; in addition, it was lost in later divergent plants that have 

evolved other protective mechanism from light such as heat shock proteins (Waters et al. 

1996, Heckathorn et al. 1998). More systematic observations are needed; currently, there 

are not enough measurements of enzyme activity, substrate pools, costs of alternate 

protection strategies between emitting and non-emitting species in vascular plants to 

better understand isoprene and its place in plant evolution (Harrison et al. 2013). No data 

exists, to our knowledge, concerning the tradeoffs made in the divergence of isoprene 

emitting species and non-emitting species within families in non-vascular plants. 
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Isoprene represents a loss of fixed carbon and a significant metabolic cost to 

plants (Behnke et al. 2012; Ryan et al. 2014).  In isoprene emitting plants, emission is 

controlled through light-dependent regulation of the isoprene synthase enzyme (IspS), 

which uses dimethylallyl diphosphate (DMADP) as a substrate for isoprene biosynthesis 

(Potosnak et al. 2014). We know that some of the emitted isoprene can be locally 

deposited where a number of bacterial and fungal taxa are capable of breaking down and 

utilizing isoprene as their energy and carbon source (Gray et al. 2015; McGenity et al. 

2018; Crombie et al. 2019; Singh et al. 2019). These interactions help regulate soil 

microbe and fungal communities and affect soil chemical ecology and biogeochemistry.  

Isoprene emission fluxes from bryophyte fens have been shown to be comparable 

to boreal forests (Janson et al. 1998, 1999; Tiiva et al. 2007a,b). Biogenic isoprene has 

been observed in monitoring stations as early as March and it is speculated to be of 

bryophytes in origin given that broadleaf trees in these latitudes at this time are bare and 

unable to produce or emit isoprene (Reimann et al. 2000). Isoprene emissions are highest 

in the summer influenced primarily by temperature (Tingey et al. 1979; Monson et al. 

1994; Schnitzler et al. 1997; Nogues et al. 2018; Meehl et al. 2018). Mosses can emit 

significant quantities of BVOCs and experience microclimates that can 

greatly deviate from and broader local conditions (Busby et al. 1978; Hinshiri et al. 1971, 

Bates, 1979; Bisang et al. 2006; Zotz et al. 2007).  

Approximately 60% of mosses have separate male and female individuals 

(dioecious sexual system) (Villarreal et al. 2013), rather than being hermaphroditic as is 

more common in vascular plants. In mosses, females generally outnumber males 3:2 

http://www.sciencedirect.com/science/article/pii/S0367253007000874#bib6
http://www.sciencedirect.com/science/article/pii/S0367253007000874#bib18
http://www.sciencedirect.com/science/article/pii/S0367253007000874#bib2
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(Shaw et al. 1993), even up to 4:1 (Newton 1972; Stark et al. 2001; Baughman et al. 

2017). These skewed sex ratios have been hypothesized to be a result of competitive and 

facilitative interactions among relatives (Hamilton 1967; Clark 1978; Gowaty 1993; 

McLetchie et al. 2001; Bisang et al. 2008; Korpelainen et al. 2008; Baughman et al. 

2017). Most often, it has been found that sterile or undifferentiated moss gametophytes 

outnumber males and females (Longton et al. 1990), and in mosses such as Ceratodon 

purpureus, the non-reproductive gametophytes make up high percentages of the 

population (Shaw et al. 1993; Rydgren et al. 2002a,b; Cronberg et al. 2003). Sexual 

reproduction can be rare for many dioecious mosses; one study found that out of 380 

species of dioecious mosses 262 (69%) have been found to have rare sporophytes, which 

suggests that they are rarely sexually reproductive. Often, this is apparently due to 

individual females and males living in different patches and not in close proximity 

(Gemmell 1950; Haig 2016; de Jong et al. 2018).  

Isoprene research in mosses has been gaining a foothold in the literature (Hanson 

et al. 1999, 2001; Tiiva et al. 2007, 2009; Ekberg et al. 2011; Lantz et al. 2015), but 

studies looking for sex-specific BVOCs in mosses have been rare and more recent 

(Rosenstiel et al. 2012; McCuaig et al. 2015).  Mosses have effective defense in the form 

of chemical barriers and can serve as model systems for studying land plant evolution, 

and early chemical defense evolution, as they are sophisticated in ontogeny and have a 

host of defenses against both abiotic and biotic stress factors. Through isoprene emission, 

not only do mosses regulate their own system but they appear to exert influence on their 

surrounding environment. Other local influences exerted by moss emitted BVOC’s may 
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include sex-specific volatile compounds that influence microarthropods mediated 

fertilization in mosses (Rosenstiel et al. 2012). Further, there are sex-specific fungal 

communities that affect their ecology (Sharkey et al. 2001; Devika et al. 2012; Kandi et 

al. 2015, Balkan 2016). 

Mosses can influence nearby atmospheric process by emitting isoprene which is 

reduced by hydroxyl radical (OH) into water droplet nucleation. Secondary Organic 

Aerosol (SOA) acts as a local form of cloud or fog seeding allowing plants to exert 

influence on the atmospheric hydrological conditions of its local microclimate. The 

prospect of microclimate engineering among some mosses is an exciting prospect and 

bears further study. Bryophytes are key component of many forest landscapes where they 

serve as components of many diverse ecosystems (Jonsson et al. 1993; Longton et al. 

1997; Sedia et al. 2003; Gornall et al. 2011). Mosses also uptake nutrients from the 

surrounding environment (Wilkinson et al. 2005; Ayres et al. 2006; Gundale et al. 2011), 

and they provide habitat for micro-invertebrates (Gerson 1982; Sohlberg et al. 1987; 

Nakamura et al. 1992; Andrew et al. 2003; Korsu et al. 2004; Heino et al. 2005; Jakub et 

al. 2018). Mosses possess two different terpene synthase genes, unlike vascular plants, 

which only possess one type of terpene synthase gene. In bryophytes in addition to the 

plant terpene synthase gene another class called microbial-terpene synthase like genes are 

also present (Chen et al. 2018). Terpenoids, including isoprene, have important function 

in biological, ecological and atmospheric processes.    

The maintenance of sex is one of great interest in evolutionary biology (Smith 

1978; Burt 2000; Vamosi et al. 2003). It has been hypothesized that when sex in a 
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dioecious species is mate-limited the non-limiting sex will produce the greatest 

abundance of floral scents (Case et al. 2009), and a similar pattern has seen by found in 

bryophytes (Rosenstiel et al. 2012). Mosses have been investigated for their sex-specific 

interactions (Eppley et al. 2011; Koncz et al. 2012;  Balkan, 2015; Bisang et al. 2017; 

Slate et al. 2017; Maraist et al. 2018), but moss sexual systems and emission profiles are 

rarely studied together so as to understand these processes.  

 

 

Purpose of Study 

 

 Mosses are some of Earth’s most species-rich, ancient, and stress-tolerant 

“ecosystem engineers” (Jones et al. 1994; Eckstein et al. 2000; Keuper et al. 2011; Jassey 

et al. 2013). Unfortunately, only 2% of the 20,000 species of mosses have been 

chemically investigated (Turetsky et al. 2012). Despite their potential evolutionary and 

ecological significance, sex-specific BVOC emissions are extremely poorly characterized 

in mosses, creating a fundamental gap in our understanding of the chemical ecology of 

these ubiquitous plants. The lack of mechanistic understanding of the emission profiles of 

over ~300 chemical compounds (Rosenstiel et al. 2012) hinders our ability to interpret 

and predict the responses of mosses will have to anthropogenic drivers such as climate 

change (Vitousek et al. 1997; Aerts et al. 1999; Bell et al. 2007; Christensen et al. 2007; 

Erwin 2009; de Vries et al. 2011; Feng et al. 2019).  

In this study, we will use a combination of physiological and comparative 

approaches to develop the first comprehensive view of the relationship between isoprene 

emissions and sex in mosses. This work will examine the hypothesis that isoprene-BVOC 
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emissions are related and perhaps contribute to the evolution of sexual systems in the 

mosses. We aimed to measure the rate of change in sexually expressing individuals in 

emission capacity within and across species in the Polytrichaceae family. By 

understanding emission capacity of individual sexes and species-specific profiles we will 

gain a comprehensive understanding of the variation in isoprene emission within the 

sexes and enable us to address future hypotheses aimed at addressing fitness costs and 

benefits associated with sexual reproduction in mosses.    

 

 

Methods 

 

Study species 

 

We have used three species from the Polytrichaceae family in this study: 1) 

Polytrichum juniperinum (Hedw.), 2) Atrichum undulatum (Hedw.), and 3) Pogonatum 

urnigerum (Hedw.).  The polytrichaceous mosses reside in the base of the phylogenetic 

tree, having no close living relatives (Bippus et al. 2018) and contain approximately 200 

accepted species (Hyvönen et al. 1998; Bell et al. 2010a,b). The family Polytrichaceae 

forms a monophyletic group (Hyvönen et al. 2004) and possesses the highest degree of 

specialization, able to move photosynthate through conducting cells called leptoids, in 

both the haploid gametophyte and diploid sporophyte. Leptoids acts like protophloem 

sieve cells in vascular plants (Ligrone et al. 2000). The structure of leaves in 

Polytrichaceae is, among bryophytes, closest to the function of the leaves of vascular 

plants with thick cuticularized leaves having differentiated photosynthetic tissue anatomy 

(Clayton- Greene et al. 1985).      
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Mosses experience strong limitation of photosynthesis because of the high 

resistance to CO2 diffusion through liquid water into the leaf surface and in the cell wall. 

The evolution of rows of chlorophyll-rich specialized lamellae cells are critical in this 

moss family for providing increased leaf surface area capable of 6-fold rates of CO2 

uptake per unit area (Proctor 1990, 2005; Marschall et al. 2004). This is a faster rate of 

diffusion of CO2 into the plant when compared to other mosses (Krupa 1984).  Lamellae 

also facilitate the absorption of CO2 by repelling water with the presence of wax coated 

cells that prevent surface water retention. Air trapped in these lamellae cells minimize 

water loss (Bayfield 1973) while still allowing free gas exchange.  The folding of leaves 

against the stem, followed by lateral closure appears to minimize water loss from the 

lamellar space and loss during the progression from leaf arrangements, resembling 

stomatal closure in vascular plants (Thomas et al. 1996). Poikilohydric plants, such as 

bryophytes, rely on soil water supply and atmospheric humidity for water uptake and 

retention (Stuber 2013, Yumol 2016); therefore, growth and weather are closely tied to 

productivity of the plant. This is a condition left over from the ancestral state (Raven et 

al. 2002, 2014). Polytrichum mosses are able to utilize water vapor in the air (Proctor 

2005), giving them an advantage over other mosses. We hypothesize that isoprene 

emission plays a role in this.  

 Endohydric Polytrichum mosses differ from typical bryophytes in that they have 

a network of underground rhizomes and efficient internal water and carbohydrate 

conducting systems with apoplastic sugar loading (Thomas 1990). They are able to 

translocate photoassimilates to sister shoots suggesting capacity for physiological 
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integration between connected moss stems (Thomas 1988). This family of mosses also 

stores starches in their rhizoids, which act as sites for overwinter storage for 

carbohydrates (Skre et al. 1983). It has been suggested that the inflexed achlorophyllous 

leaf margins enclosing the photosynthetic lamellae in P. juniperinum serve to increase the 

relative humidity and temperature of the air surrounding the lamellae, and this adaptation 

can increase the length of the effective growing season (Thomas et al. 1996; Proctor 

2005).  

P. juniperinum has great desiccation tolerance that is owed to drought evasion 

strategy enabled by its highly specialized photosynthetic lamellae.  It has been 

hypothesized that early land plants had to be desiccation tolerant in both gametophyte 

and reproductive states (Renzaglia et al. 2000; Oliver et al. 2000, 2005). New research 

highlights that a key biochemical pathway to aid moss on land was the development of 

moss cuticle, wax covered epidermal cells, which predate lignin in vascular plants 

(Renault et al. 2017).  

 

 

Polytrichaceae moss collection method 

 

In our first experiment, we wanted to investigate isoprene emission from non-

sexually expressing gametophytes to avoid sex-specific differences or maternal effects 

(Shaw et al. 1999, 2000). In February 2016 we collected P. juniperinum (n=45) moss 

from a single large population in Oregon (Table 3.1). Moss was collected from a forested 

area with substratum and rhizoidal connections intact and brought to the lab in enclosed 

containers. From this a number of 5cm by 5cm sectors were selected and were cleaned of 
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debris and detritus. We identified the moss species using costa cross sections and moss 

field guides for the Pacific Northwest using Leica microscope (Leitz DME, Leica, 

Wetzlar, Germany) with an AxioCam 105 Color camera and Zen Blue software (version 

1.1.2.0; Carl Zeiss Microscopy). We randomly selected 45 healthy individuals within the 

containers and immediately made physiological measurements (see below). Once 

physiological testing concluded gametophytes were labeled and placed individually in 

PlantCon™ containers (MP Biomedicals, 2017). We proceeded to take both aboveground 

and belowground morphological measurements (see below).  

In our second experiment, we wanted to explore effects of sexual organ 

(gametangia) expression or lack thereof in isoprene emission under agar a non-nutritive 

media and BCD a nutritive media. In March of 2016 we collected sexually expressing P. 

juniperinum (n=25) female, male, and undifferentiated (non-sex expressing) 

gametophytes from six individual locations and grouped them accordingly (Table 3.2). 

Moss was brought in from the field as described above and was kept together with the 

rhizoidal connections intact. Gametophytes were selected and randomly distributed 

between media. Agar and nutritive BCD media was prepared following protocol outlined 

by Wang et al. (2015).  Four females, four males and four non-sexually expressing 

gametophytes were cleaned of debris and soil and placed in agar media. Five females, 

four males and four non-sexually expressing gametophytes were cleaned of debris and 

soil and placed in BCD media. Sixty milliliters of prepared agar media was poured into 

base of 9.5 cm x 9.5 cm x 3.5 cm PlantCon™ containers (MP Biomedicals, 2017) and 

sterilized under UV light before each gametophyte was randomly placed in the middle of 
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a container. The gametophytes were allowed a two-week acclimation period before 

isoprene emission sampling began. 

In our third experiment, we wanted to assess variation in isoprene emission and 

sexual expression among moss species within Polytrichaceae family. In April 2015, we 

selected shade adapted Atrichum undulatum (n=70) from four locations. We collected 

cosmopolitan Polytrichum juniperinum (n=56) from seven locations, and montane 

Pogonatum urnigerum (n=41) from six locations (Table 3.3). We selected several sites 

for each moss species as we were investigating species and site-specific differences 

between related mosses. Mosses were brought in as described from above and immediate 

testing of isoprene emission began, following morphological assessment of sex.  

 

 

Aboveground morphological data collection from P. juniperinum gametophytes  

 

Our aboveground measurements of P. juniperinum gametophytes included twelve 

canopy structure traits including leaf length (LL, mm) and leaf width (LW, mm) by using 

a digital caliper (Fowler, Lux Scientific Instrument Corp., Tucson, AZ, USA). Leaf tip 

redness or the apex of non-photosynthetic tissue (LTR, mm) was measured by examining 

five leaves from each gametophyte and determining leaf tip redness using a Leica 

microscope (Leitz DME, Leica, Wetzlar, Germany) with an AxioCam 105 Color camera 

and Zen Blue software (version 1.1.2.0; Carl Zeiss Microscopy).  Lastly, we determined 

canopy height (CH, mm) of each gametophyte by taking total gametophyte length (GL, 

mm) measurement and subtracting the rhizoid length (RL, mm).  
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To count the total number of leaves (TL), gametophytes were viewed under a 

dissection microscope and individual leaves were counted on each gametophyte (Leica 

L2, Leica Microsystems Inc.). We obtained leaf mass area (LMA, mg cm-2), which is the 

ratio between leaf dry weight after 48 hours and leaf area (Villar et al. 2013). We have 

also calculated plant biomass (B) by dividing dry weight by total leaf area from the moss 

gametophyte (TLA, mg cm-2).  

Water holding capacity measures were estimated using Pypker et al. (2006). Adult 

P. juniperinum gametophytes were saturated with water in a plastic sealed container for 

12 hours, after which they were blotted dry, and maximum wet mass was measured using 

an analytical microbalance (AB104-S/FACT, manufactured by Mettler Toledo 

Corporation, Tualatin, Oregon). Shoots were air-dried and weighed again at 24 hours, and 

oven dried at 60°C for 48 hours and then weighed again for dry mass. We determined 

loss of water weight in gametophyte (LWC, mg) by using dry weight of each 

gametophyte and subtracting it from the final wet weight of the gametophyte.  

We have calculated leaf moisture (LM, mg); in which we took the final dry 

weight of the gametophyte subtracted final wet weight and divided by wet weight (Xiao 

et al. 2015; Wang et al. 2006). To measure water content of the gametophyte (WC, mg), 

we have calculated WC= (fresh weight-dry weight)/ fresh weight *100. Values are 

represented in milligrams (mg cm-2) and expressed as percentage dry mass (Michel et al. 

2013). After all other measurements were completed, we weighed each gametophyte 

while wet and oven dried each gametophyte at 60°C for 48 hours for the purpose of dry 
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weight (DW, mg) and wet weight mg (WW, mg) using an analytical microbalance 

(AB104-S/FACT, manufactured by Mettler Toledo Corporation, Tualatin, Oregon).  

In all, we measured seven leaf dimension traits. We placed the gametophyte intact 

and deconstructed between two transparency sheets and scanned at 1600 dpi to determine 

leaf area (LA, mm-2) and total leaf area by multiplying leaf area with number of leaves 

(TLA). Once the leaves were removed from each gametophyte, we were able to take five 

leaves from each gametophyte, use a wet mount each leaf and measure costa length (CL, 

mm), costa width (CW, mm), costa cross sectional area (CCA, mm-2) and lamina 

thickness, which was measured midway between costa and leaf margin (LT, μm) from all 

five replicates. We also calculated leaf density (LD, mg m-3), by taking the width of cross 

section of the leaf dividing it by area of the cross section of the leaf, and multiplying it by 

leaf mass area (LMA, mg cm-2) from our canopy trait measurements (Xiong et al. 2016).  

To measure two leaf shape traits, we followed protocol from Waite et al. (2000); 

and calculated perimeter 2/leaf area (P2/A, cm-3) and length/width of individual 

gametophytes (L/W, cm).  We went a step further and calculated two other measures 

appropriate for leaf shape traits. To account for total perimeter, we first measured 

perimeter (P, cm) with the formula P= 2 (width of gametophyte) + 2 (height of 

gametophyte). We then took perimeter and divided it by area (P2/A, cm-3) from 

measuring the leaf surface area. To determine total perimeter/area (TP2/A), we took 

perimeter we have calculated earlier, and divided it by leaf surface area multiplied by 

total leaves on each gametophyte. This was calculated from the photograph of each leaf 

sample under a Leica microscope (Leitz DME, Leica, Wetzlar, Germany) with an 
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AxioCam 105 Color camera and Zen Blue software (version 1.1.2.0; Carl Zeiss 

Microscopy).   

In addition, we measured ten cell-specific traits where we used enhanced and 

magnified images of the leaves and mid-lamina cross sections. The average area of an 

individual cell lumen, cell lumen area (CLA, μm-2) was measured. These were averaged 

from the five individual leaves from the same gametophyte. To measure, interior cell wall 

thickness (IWT, μm-2), we followed methods outlined in Waite paper, and measured the 

lamina cross section centrally between margin and costa (Waite et al. 2010).  

Lastly, we supplemented further cell trait measures of our own, such as lamellae 

number (LN) by counting the number of lamellae cells at five locations within the widest 

part of the costa cross section from five individual leaves on the same gametophyte 

(n=25) (Figure 3.1). We also measured lamellae height (CLH, mm) by measuring the 

widest part of five lamellae stacks within same costa cross section from five individual 

leaves (n=25) (Figure 3.2). We measured the number of rows of lamellae (NRL) that each 

costa cross section contained from the five leaves and five costa cross sectional cuts, by 

measuring how far within each costa cross section the lamellae extends from one end to 

the other side of the lamina. We also took the number of rows of lamellae (NRL) and 

multiplied it by lamellae cells we counted (LN) to get an area estimate of lamellae space 

(LANR) within each leaf costa cross section.  Lastly, we quantified how much area was 

taken up by chloroplast (CHA, μm-2) within lamellae cells from a perpendicular thin layer 

of leaf section. We used one or two layers of lamellae that was visible and individual cell 
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size could be measured (ICS, μm), as well as the space that surrounded or was next to the 

chloroplast (CS, μm) within each cell (Table 3.4). 

 

 

Belowground morphological data collection from P. juniperinum gametophytes  

 

We collected data on belowground rhizoidal function and stem structure to shed 

light on possible roles of these structures in non-vascular plants and the role they might 

play in isoprene emission.  P. juniperinum has been found to have extensive penetrating 

underground network of rhizoids, which aids in resource acquisition and storage in harsh 

environments and allows recolonization after fires (Duncan et al. 1982; Viereck et al. 

1983). Polytrichum mosses are able to inhibit large areas with the aid of a thick 

tomentum of rhizoidal network as far reaching as 1-2 meters in depth (Smith et al. 2008). 

We wanted to determine how the rhizoidal network assists in retaining water in P. 

juniperinum, as it is highly variable in some moss species. Some mosses have been 

reported to have water content potential of up to 20 times the dry weight (Clymo et al. 

1982), or the water holding capacity of up to 1400% of their dry mass (Glime 2007; 

Proctor 2008; Michel et al. 2013).  

For our belowground measurements of P. juniperinum gametophytes (n=45), we 

measured fifteen stem related measurements and water related traits. All water related 

trials were started using 72 hour air dried material that was then soaked until full 

saturation was achieved after about 24 hours. We measured rhizoidal length (RL, mm) of 

each gametophyte using a digital caliper (Fowler, Lux Scientific Instrument Corp., 

Tucson, AZ, USA). We obtained measurements of dry stem area (SAD, mm-2), and dry 



 

74 

diameter of the stem (SSD, mm-2) by first capturing the image under a microscope slide 

with a Leica microscope (Leitz DME, Leica, Wetzlar, Germany) with an AxioCam 105 

Color camera and then tracing the area of the stem or the diameter of costa cross section 

of the stem (Zen Blue software (version 1.1.2.0; Carl Zeiss Microscopy).   

We placed dry gametophytes in water for 12 hours (WSA12), and 24 hours 

(WSA24) to measure how much water stems alone absorb without any leaves on the 

gametophytes. We measured the diameter of the stem at same time intervals. This way 

we could measure water content in steam area at 12 (SAWC12) and 24 hours (SAWC24) 

and measured water content within stem diameter at 12 (SDWC12) and 24 hours 

(SDWC24) (Figure 3.3). We took the final value we obtained from our water measures, 

as follows; ((24 hour wet measures - initial dry measures)/initial dry measures) and 

multiplied by a 100. We calculated total dry stem area (TDSA, mm-2), by taking the dry 

stem area and multiplying it by the gametophyte length. We proceeded to do the same for 

wet stem area at 12 hours (TWSA12) and at 24 hours (TWSA24).  We also estimated 

root shoot ratio (RSR, mm-2) by taking the dry area of the root and dividing by dry area 

of the aboveground gametophyte length (Table 3.5).  

 

 

Sex determination among mosses within the family of Polytrichaceae 

 

Each gametophyte sexual expression was assessed using forceps and Leica 

microscope (Leitz DME, Leica, Wetzlar, Germany) with an AxioCam 105 Color camera 

and Zen Blue software (version 1.1.2.0; Carl Zeiss Microscopy). Species within the 

Polytrichaceae family were cataloged as either female if sporophyte development was 
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visible (Hughes 1962) or archegonia was found, in which case the number of archegonia 

present was documented. Males were categorized based on splash cup presence (Brodie 

1951), and all splash cups were examined for viable antheridia containing male sperm. In 

these species, male splash cups serves as innate markers (Bu 2005); while for females 

reproduction in terms of fertilization and sporophyte production is fatalistic (Greene 

1960; Sarafis 1971; Watson 1975; Callaghan et al. 1978). 

Gametophytes were categorized as non-sexually expressing if only sterile 

paraphyses were found, and no sexual organs were present along the body of the 

gametophyte (Frederick et al. 1968). Paraphyses are multicellular hair-like structures that 

can conserve moisture, secrete mucilage and aid in sperm discharge (Goebel 1905). 

Paraphyses can regenerate into protonema and rhizoids (Brown 1919); hence, they serve 

an important function in moss life strategy. Sexual expression was assessed for the 

current year and recorded if previous year sexual expression was visible.  Identification 

and key to each species was accomplished following McCune et al. (2018), with 

herbarium samples deposited at the Portland State University herbarium.  

 

 

Isoprene emission among mosses within the family of Polytrichaceae 

 

 Polytrichaceae gametophytes were sampled in a randomized fashion on a 

GC/RGD2 Gas Chromatograph with a RGD2 reduction gas detector (RGD-2, Trace 

Analytical Instruments, Menlo Park, CA) to avoid species bias. An individual 

gametophyte was separated from the clump and analyzed for isoprene emission. After 

moss collection from the field, identification and debris removal, we placed each 
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gametophytes into a 40 ml glass vial. We proceeded to collect isoprene by closing the 

vials and placing them under basal conditions of 1,000 μmol photons m-2 s-1 using 

Dracast LED1000 Pro Daylight light panel, with light-emitting diode array (Photon 

Systems Instruments) and using a water bath at (30°C). This gives a better spatially 

realistic profile of emission for sampling volatiles in an ecological context (Geron et al. 

2000).  

The isoprene collection lasted for a five-minute period, after which a 1 ml 

Pressure-Lok® Precision Analytical Syringe (VICI Precision Sampling Inc., Baton 

Rouge, LA, USA) was used to pull the headspace gas from the vial and inject it into a 

reduction gas detector (GC/RGD2). One ml of the calibration gas mixture was removed 

with a syringe from a mixing chamber and injected into the GC-RGD2 to create the 

calibration curve and obtain slope of the equation see (Equation 1) as described in the 

previous chapter.  Isoprene was separated on a stainless steel column (1.3 m long x 2 mm 

inner diameter i.d.). The column was packed with UNI 8 Beads 3S 60/80 6’ x 1/8”, 0.085 

SS (Alicat Scientific, Inc; Tucson, AZ). The GC-RGD2 was calibrated each day using a 

standard cylinder containing 71 ppb (v/v) isoprene, references to a National Institute of 

Standard and Technology (NIST) and helium (He) standard (SRM 1660a; 1 ppm He in 

N2, Rochester, NY).  

Isoprene gas was mixed with high purity helium using a mass flow controller 

calibrated to a flow rate of 21 ml/min (Alicat Scientific, Inc; Tucson, AZ). Blanks were 

run every five samples to ensure quality check and to detect contamination within the 

column. Isoprene emission measurement was calculated as follows, using Peak Area 
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Units (PAU) from the standard calibration curve y= mx+b, at GC temperature of 298 

Kelvin (K), and Atmospheric Pressure (P) of 760 Torr.  

 

Equation 1. Formula used to convert isoprene from calibration curve, y=mx+b, and PAU 

to isoprene (nmol m-2 s-1).  

 

We obtained the volume-mixing ratio of isoprene (ppb) to determine gametophyte 

emission flux. We determined the area of the gametophyte using AxioCam 105 Color 

camera, and Zen Blue software, version 1.1.2.0 (Carl Zeiss Microscopy).  

Peak identification was performed with the PEAK software (Stein 1999) that 

integrates raw peak area units and retention times. To identify isoprene, a custom 

calibration curve was created from isoprene standard (Sigma, Deisenhofen, Germany). 

For quantification, peak areas of isoprene were determined after baseline correction. 

Levels of background contamination were determined from blanks. Analytical quality 

was analyzed by using Standard Reference Material of isoprene (NIST SRM 1515, 

National Institute of Standards and Technology, Gaithersburg, MD). The standard 

material was used in the analyses to create calibration curves for quality assurance and 

quality control purposes.  

Both Experiment 1 and Experiment 3 isoprene emission testing involved a 

snapshot view of emission for non-sexually expressing P. juniperinum gametophytes 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909245/#CR49
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(n=45), and sexually expressing A. undulatum, P. juniperinum, and P. urnigerum 

gametophytes (n=167) (Figure 3.4).  

Experiment 2 involved repeated measure isoprene emission testing of P. 

juniperinum sexually expressing gametophytes from different locations and under non-

nutritive agar and nutritive BCD media (n=25). Isoprene emission was checked three 

times a month, beginning May of 2016, through August of 2016 totaling eighteen 

isoprene observations. P. juniperinum was kept in PlantCon™ containers under the light 

source of standardized growth conditions of (150–200 μmol m-2 s−1) light intensity and a 

photoperiod of 16 h light to 8 h dark at 20 ± 3°C using Adaptis1000 Conviron growth 

chambers (Pembina, ND). The PlantCon™ containers were allowed to sit in the growth 

chambers until isoprene emission testing occurred under basal conditions of 30°C and 

1000 μmol m-2 s−1. Each sample was opened daily, and after isoprene emission testing 

was completed, the individual gametophyte was sprayed with 5 ml tap water to ensure 

proper hydration. Visual inspection followed, where bacterial growth, brown tissue was 

recorded and noted if the sample has completely turned brown and showed no visible 

sign of green leaf tissue. We did have high mortality and out of 70 samples, 25 samples 

remained to test for continuous isoprene emission. This allowed us to gain basal isoprene 

emission (Monson et al. 1994) from non-sexually expressing gametophytes, and sexually 

expressing male gametophytes and female gametophytes from multiple sites.  

 

 

Laboratory gas exchange measurements of P. juniperinum gametophytes    
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To assess and compare differences between physiological measurements we have 

subjected gametophytes to the same protocol as was outlined in the previous chapter for 

gas exchange measurements (see Chapter 2 methods).  We have conducted three separate 

laboratory gas exchange measurements. After isoprene emission testing, gametophyte 

samples were placed in a glass cuvette containing a moist cotton ball to provide adequate 

moisture through the trial. All gas exchange measurements in the lab were conducted 

using protocol outlined by Junior Pulse-amplitude modulated (JUNIOR-PAM) 

chlorophyll fluorometer and WinControl Software (Walz, Effeltrich, Germany), with a 

single 100 cm plastic fiber, 1.5 mm in diameter. We measured chlorophyll fluorescence 

ratio (CFR), as a non-intrusive tool in using it as a proxy to establish information on 

photosynthetic reactions in the chloroplast (Schreiber et al. 1987). The fluorescence-

emission spectra read out two maxima in the 690 nm and the 735 nm 

region. The fluorescence ratio F690/F735 for green leaves is higher (values of 0.8 to 

1.1), than in the yellow to red wavelength region (525 to 633 nm), which only yields 

values for F690/F735 of 0.5 to 0.7 (Rinderle et al. 1988). Chlorophyll fluorescence ratio 

(CFR) was measured with a chlorophyll content meter (OPTI-Sciences model CCM-300, 

Hudson, USA). 

The Junior-PAM (Walz, Germany, http://www.walz.com/) was used according to 

the manufacturer’s instructions with the following parameters: light saturation pulse 

intensity 6, pulse frequency 20 sec, actinic light intensity 8. The effective photochemical 

quantum yield of photosystem II [Y (II)] was calculated as described by Genty et al. 

(1989). Relative Electron Transport Rate (RETR) was calculated with JUNIOR-PAM 

about:blank
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2010.04213.x/full#b11
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2010.04213.x/full#b11
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2010.04213.x/full#b11
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2010.04213.x/full#b11
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chlorophyll fluorometer and WinControl software. Modulated excitation energy and the 

fluorescence signal were transmitted through a bifurcated fiber-optic cable. 

Measurements with the Junior-PAM were conducted under constant fluorescent lighting 

in the laboratory at mean Photosynthetically Active Radiation (PAR) value of 250 ± 50 

μmol m-2 s-1. Relative electron transport rate (RETR) can be obtained as PFD x (Φ) PSII 

(Bilger et al. 1995). Junior-PAM recorded electron transport rate, photosynthetic yield 

and PAR light levels ranging from 0-1500 μmol m-2 s-1.  

 

 

Statistical analyses   

 

Graphical and statistical analyses of the data were performed using Prism 7.0 

software (GraphPad), R version 3.4.2 (R Studio 2017) and JMP Pro 14.1 (SAS Institute, 

Cary, North Carolina, USA); with significance determined at α = 0.05. We were 

interested in which independent variables influenced isoprene emission and used Tukey-

Kramer HSD Multiple Comparison test (Ellison et al. 2004) to find sources of significant 

differences between Polytrichaceae species and within sexual expression and non-sexual 

expression. Violations of normality were diagnosed using distribution plots and normal 

quantile plots and assessed using Shapiro-Wilk test for normality. Violations of 

homoscedasticity were assessed using residuals versus predicted values. Violations of 

independence were assessed using a table or plot of residual autocorrelations. Violations 

of linearity or additivity were assessed using residuals versus individual independent 

variables using Tukey 1-df Tests for Nonadditivity (Hair et al. 2009). Violations of 

unequal variances were estimated using Welch Tests (Rusticus et al. 2014). Violation of 
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multicollinearity was assessed using nonparametric correlation matrix to determine if any 

of the variables are highly correlated. As well as we have determined variance inflation 

factor (VIF), and found low VIFS indicating that our variables did not have 

multicollinearity (Craney et al. 2002). 

For our morphological data for aboveground and belowground, we log 

transformed our dependent variable, which was isoprene emission because it did not fit a 

normal distribution and we observed heteroscedasticity after testing for unequal variances 

with Levene’s test using the statistical software JMP Pro 14.1 (SAS Institute, Cary, North 

Carolina, USA). We wanted to answer if isoprene emission, our dependent variable had 

significant effects on our independent variables of aboveground and belowground 

measurements, and what interactions were present among them. To determine the effects 

of isoprene emission on our aboveground variables, we analyzed the data using the 

generalized linear models (GLM) procedure in JMP Pro 14.1 (SAS Institute, Cary, North 

Carolina, USA). To determine the effects of isoprene emission on our belowground 

variables, we used multiple regression procedure in JMP Pro 14.1 (SAS Institute, Cary, 

North Carolina, USA). We choose AIC (Akaike’s Information Criteria) to evaluate the 

contribution of subsets of explanatory variables to our response variable. The GLM 

model assessed variance and bias by controlling for factors causing variability in multiple 

independent variables (Armstrong 1985). This way we acquired greater statistical power 

by controlling for differences and correlations between and within groups (Field et al. 

2012). We used a multiple regression to determine the influence of our belowground 

variables on isoprene emissions. 
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For our species and sex data set within P. juniperinum, we ran repeated measure 

ANOVA (RM ANOVA) to test the effects of sex, media, site, and time on isoprene 

emission. Isoprene emission was log transformed to meet assumption for analyses. We 

also used this method to compare data points over time between groups, such as isoprene 

emission in May 2016, June 2016, July 2016 and August 2016 between and within 

groups. For data looking at the factors affecting isoprene emission across categorical 

variables, including leaf number, shoot number, and species, we used ANOVA. 

Additionally, we used regression analysis to determine how isoprene emission correlated 

with gas exchange measures. 

 

 

Results 

 

Experiment 1a:  

 

The effects of aboveground morphological variables on isoprene emission in P. 

juniperinum gametophytes 

 

We found that six variables explain 50% of variability in isoprene emission 

(GLM; DF=6; x2=27.325; P<0.0001; Figure 3.5). Isoprene emission among P. 

juniperinum gametophytes was highly variable, with a mean isoprene emission of 16.917 

nmol m-2 s-1 ± 1.4183 SEM (n=45). We found minimum isoprene emission value of 2.917 

nmol m-2 s-1 and a maximum value of 53.460 nmol m-2 s-1. Four aboveground variables 

explained 39% of the variability in isoprene emission, and two belowground variables 

explained 11% of the variability in isoprene emission. The aboveground canopy traits 
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included: total number of leaves (TL) on a gametophyte, gametophyte width (GW), wet 

weight (WW), and leaf tip redness (LTR).  

Total leaves (TL) mean values were 55.98 ± 2.944 SEM (n=45), with minimum 

leaves counted as 11, and maximum leaves counted as 103 per gametophyte. We did not 

see an increase in isoprene emission with increase number of leaves (P=0.06).   

 Gametophyte width (GW) mean ranges were 10.98 mm ± 0.2494 SEM (n=45), 

with minimum gametophyte width of 4.18 mm and maximum value of 13.79 mm. 

Gametophyte width was shown to be statistically significant when it came to isoprene 

emission, as it contributed to 19% variability in isoprene emission between gametophytes 

(ANOVA; DF=1; F=10.4395; P=0.0024). As gametophyte width increased, isoprene 

emission increased. 

We also found that gametophyte leaf length (LL) scaled geometrically with leaf 

area (LA) resulting in 27% variability due to gametophyte leaf length (LL) among 

samples (ANOVA; DF=1; F=15.8299; P<0.0003). Unlike Waite and Sack et al. (2010), 

who found that gametophyte leaf width (LW) scaled geometrically with leaf area (LA), 

we found that for P. juniperinum gametophyte leaf width (LW) did not scale with leaf 

area (LA) (P=0.081).  

Wet weight (WW) mean values were 62.29 mg ± 4.932 SEM (n=45), with 

minimum wet weight of 19.6 mg and maximum of 169 mg. As wet weight (WW) 

increased isoprene emission decreased. Lastly, leaf tip redness (LTR) mean values were 

1.004 mm ± 0.03291 SEM (n=45), with a minimum value of 0.582 mm and a maximum 

value of 1.58 mm. The more leaf tip redness was present (LTR) the more isoprene 
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emission decreased. We found no statistical effects for leaf dimension, leaf shape or cell 

traits on isoprene emission.  

 

 

Experiment 1b:  

 

The effects of belowground morphological variables on isoprene emission in  

P. juniperinum gametophytes 

 

Two belowground traits contributed to 11% variability in isoprene emission in our 

final model; stem area dry (SAD), and wet stem area at 24 hours (WSA24). When we 

logged isoprene emission against stem area dry, we saw that the relationship was 

statistically significant and as dry stem area increased isoprene emission followed 

(Regression; r2=0.11;  P=0.0293; Figure 3.6). Our regression line equation with logged 

isoprene emission and stem area dry (SAD) was Y=5.851185*x + 2.2250985. For our 

belowground morphological measures, stem area dry (SAD) mean values were 0.0782 

mm2 ± 0.00465 SEM (n=45). For wet steam area at 24 hours (WSA24) mean values were 

0.1609 mm2 ± 0.00626 SEM (n=45). 

We also significant correlation between shoot to root ratio (RSR) and logged 

isoprene emission (Regression; r2=0.09; F=4.2174; P=0.0461). We were able to establish 

that as dry stem area (SAD) increased isoprene emission increased. As wet stem area 

(WSA24) increased isoprene emission decreased. We also saw a strong positive linear 

correlation between dry stem area (SAD) and wet stem area (WSA24).  

 

 

Experiment 2: 
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P. juniperinum isoprene emission, sex and morphological variables   

 

Sex had a significant effect on isoprene emission (RM ANOVA; DF=1,9; F=7.11; 

P=0.026; Figure 3.7), with males producing higher isoprene emission levels than females. 

These plants had been previously sexed, but they were not expressing sex when isoprene 

emission was measured. Female mean isoprene emission value was 8.032 nmol m-2 s-1 ± 

0.642 SEM (n=27), male mean values were 8.946 nmol m-2 s-1 ± 0.662 SEM (n=24). 

Media did not have a significant effect on isoprene emission (F=0.90; P=0.37), and site 

also did not have a significant effect on isoprene emission (F=1.42; P=0.30).  

The number of leaves on sexually expressing gametophytes was statistically 

significant and explained 20% variability in isoprene emission (ANOVA; DF=2; 

F=4.675; P=0.0098). We have found that for females the number of shoots and 

gametophyte width explained 45% variability in isoprene emission (ANOVA; DF=7; 

F=5.485; P<0.0001). For males, we found that 49% of variability in isoprene emission 

could be explained by number of shoots and gametophyte width (ANOVA; DF=12; 

F=2.790; P=0.0089).  

We saw several morphological variables that were influenced by sex of the 

gametophyte, and invariably affected our isoprene emission measurements. Gametophyte 

width had statistical significance when it came to the three sexes in our continuous 

isoprene emission and explained 16% variability between the sexes in gametophyte width 

(ANOVA; DF=2; F=4.5190; P=0.0160).  
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Experiment 3: 

 

A. undulatum, P. juniperinum and P. urnigerum isoprene emission, sexual expression 

and site-specific differences   

 

Isoprene emission among Polytrichaceae species was statistically significant 

explaining 42% variability in isoprene emission between species (ANOVA; DF=2; 

F=59.010; P<0.0001; Figure 3.8).  The highest isoprene emission was seen from 

cosmopolitan P. juniperinum, where we saw our maximum value at 59 nmol m-2 s -1, the 

highest recorded value for this moss species.  P. juniperinum mean isoprene emission 

values were 16.3885 nmol m-2 s -1 ± 1.902 SEM (n=56). Montane P. urnigerum mean 

isoprene emission were 4.496 nmol m-2 s -1 ± 0.5981 SEM (n=41). Lastly, our shade 

adapted A. undulatum mean isoprene emission value were 2.4183 nmol m-2 s -1 ± 0.196 

SEM (n=70). 

In all three species sexual expression was statistically significant, from our data 

we can explain 48% variability in isoprene emission by sexual expression nested within 

species (ANOVA; DF=6; F=24.25; P<0.0001; Figure 3.9). The highest isoprene emission 

was seen from P. juniperinum non-sexually expressing gametophytes. In all three species 

of Polytrichaceae, species that did not have sexual expression were found to have higher 

isoprene emission than those that were sexually expressing. We found that sexual 

expression nested within species contributed 50% variability in isoprene emission 

between species and sex (ANOVA; DF=2; F=7.334; P=0.0009; Figure 3.10). 

We also saw site-specific variation in all three species that explained high 

variation in isoprene emission. In A. undulatum site-specific differences can be attributed 
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to 18% of variability in isoprene emission (ANOVA; DF=3; F=4.97; P=0.0036; Figure 

3.11). In P. juniperinum, 27% of variability in isoprene emission can be attributed to site-

specific differences (ANOVA; DF=6; F=3.0792; P=0.0123; Figure 3.12). Lastly, in P. 

urnigerum, 30% of variability in isoprene emission can be attributed to site-specific 

differences (ANOVA; DF=5; F=3.082; P=0.0208; Figure 3.13).  

 

 

Laboratory gas exchange measurements  

 

Experiment 1 

 

We found isoprene emission positively correlated with CFR across species 

(Regression, r2=0.85; P<0.0001; Figure 3.14). Our regression line equation with CFR was 

Y= 36.22*x-16.12. Mean CFR values were 0.9264 ± 0.011 SEM (n=45), with minimum 

value of 0.698 and maximum value of 1.074.  

           We found statistical differences between the forty-five non-sexually expressing 

gametophytes we tested for RETR in low photosynthetic photon flux density (PPFD) 

µmol m-2 s -1 and high photosynthetic photon flux density (PPFD) µmol m-2 s -1 (ANOVA; 

DF=1; F=18.343; P<0.0001). Our low PPFD µmol m-2 s -1 setting values between the 45 

non-sexually expressing gametophytes explained 16% variation between samples, and 

under high PPFD setting we saw 24% variation in RETR values. 

 

 

Experiment 2 

 

We found a significant positive correlation between CFR and isoprene emission 

(Regression; r2=0.07; P<0.0001; Figure 3.15). Our regression line equation for isoprene 
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emission vs. CFR measures were Y=2.820*x + 0.1808. Mean CFR values were 

0.703±0.0094 SEM (n=25).  Also, we saw sex-specific differences in CFR values, with 

the highest CFR values in males (ANOVA; DF=2; F=5.446; P=0.0046; Figure 3.16). 

Under female sexual expression, mean CFR value were 0.678±0.0105 SEM (n=15). 

Under male sexual expression, mean CFR value were 0.723±0.008 SEM (n=12). Lastly, 

under non-sexually expressing gametophytes, mean CFR value were 0.693±0.010 SEM 

(n=12).   

The sexes were significantly different in (RETR); however, these effects 

depended on light conditions and the type of media the plants were growing on. Under 

low PPFD µmol m-2 s -1 we found significant differences in RETR curves between sexes 

for plants growing on BCD media. Our regression line equation for males on BCD media 

was Y=0.0447*x + 4.912 (Figure 3.17). Male RETR values were higher than female or 

non-sexually expressing gametophyte values. At neither low nor high PPFD µmol m-2 s -1 

we found no statistical differences in RETR curves between sexes for plants growing on 

agar media (P=0.51; P=0.40).  Only under high PPFD µmol m-2 s -1 growing on BCD 

media did we find significant differences in RETR curves between sexes (ANOVA; 

DF=1; F=9.0432 P<0.0001).  

 

 

Experiment 3 

 

Isoprene emission had a positive correlation with CFR, and was statistically 

significant in A. undulatum (Regression; r2=0.41; P=0.0123; Figure 3.18). Our regression 
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line equation with CFR was Y= 9.9136*x-17.1921. We found no statistical significance 

for isoprene emission vs. CFR values in P. juniperinum (P=0.445). 

CFR values explained 24% of variability among species in the Polytrichaceae 

family (ANOVA; DF=1; F=8.4475; P < 0.0074; Figure 3.19). P. juniperinum had higher 

CFR values than A. undulatum. Mean CFR value for A. undulatum was 0.73 ± 0.015 

SEM (n=15). Mean CFR value for P. juniperinum was 0.79 ± 0.026 SEM (n=13).  

Species differences among RETR values were high, explaining 45% of variability 

in RETR values among species (ANOVA; DF=1; F=21.2391; P < 0.0001; Figure 3.20). 

Cosmopolitan P. juniperinum had five fold higher values in RETR measures than did 

shade adapted A. undulatum.  

We accounted for nested sex within species, and used RETR as our response 

variable and found statistical significance between sexes (ANOVA; DF=1; F=4.4601; P 

=0.0357; Figure 3.21). A. undulatum under PPFD µmol m-2 s -1 mean values were 18.6 

µmol m-2 s -1 ± 0.72 SEM (n=15). P. juniperinum under low PPFD µmol m-2 s -1 mean 

values were 29.2 µmol m-2 s -1 ± 1.32 SEM (n=13). We could not analyze isoprene 

emission versus RETR, as each sample contained eight RETR measures, and we have 

sampled one isoprene emission value at basal isoprene emission (1000 µmol m-2 s -1 and 

30 ºC).   

 

 

Discussion 

 

Aboveground morphological variables and isoprene emission 
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A single moss gametophyte is made up of many leaves and each leaf contributes 

to isoprene emission (Wildermuth et al. 1996; Velikova et al. 2011, 2012; Schnitzler et al. 

2005). Even within the same population of P. juniperinum, we saw a high degree of 

variation of isoprene emission all within the range of what has already been previously 

reported (Hanson et al. 1999) and even exceeding previously reported values. We found 

that the four most significant variables, canopy traits, contributed 39% of variation in 

isoprene emission. We saw high variation in isoprene emission from the forty-five P. 

juniperinum gametophytes of a single population. Within the canopy, multivariate traits 

were found to have a positive correlation between total leaves (TL), dry weight (DW), 

and canopy height (CH), and negative statistical significance was found between leaf tip 

redness (LTR) and total leaves (TL) (Figure 3.5). Leaf number contributed to 11% 

variation in isoprene emission among gametophytes and gametophyte width contributed 

to 19% variation in isoprene emission revealing that a larger area will contribute to more 

isoprene emission and chloroplast area. 

Like Waite and Sack (2010), we have found high correlation between leaf length 

(LL) and gametophyte length/gametophyte width (GL/GW) which support taller 

gametophyte structure. High allocation to structural support with longer gametophytes 

need more support for more leaves. We found gametophyte leaf length (GL) scaled 

geometrically with leaf area (LA), as it has been shown in mosses by Waite (2010). We 

also show that non-sexually expressing gametophytes had significantly higher dry weight 

compared with males and females. This suggests that nutrient requirement and allocation 



 

91 

pattern of resources differ in investment strategies between gametophytes that are 

sexually reproducing versus gametophytes that are non-sexual.  

 

 

Belowground morphological variables and isoprene emission 

 

Many internal factors (genetics and biochemical) and external factors (abiotic and 

biotic influences) control BVOC emissions (Lehning et al. 1999; Peñuelas et al. 2001, 

Geron et al. 2001; Sasaki et al. 2005; Sharkey et al. 2007; Monson et al. 2012; Sharkey et 

al. 2017). We were able to show a high rate of variation in isoprene emission out of 

which two belowground morphological variables were extracted for use in our final 

emissions model. These were stem area dry (SAD) and wet stem area at 24 hours 

(WSA24). These together contributed to 11% variation in isoprene emission in our model 

(Figure 3.6).  

Isoprene synthesis requires energy and photosynthetic carbon (Grinspoon et al. 

1991; Rasulov et al. 2009; Melis et al. 2013; Unger et al. 2013; Jiang et al. 2013). When 

conditions limit photosynthesis, alternate carbon sources have been found to be used in 

vascular plants.  Besides recently photosynthetically fixed CO2, alternate carbon sources 

include xylem transported carbohydrates, and leaf internal carbon pools which can be 

used for isoprene production (Schnitzler et al. 2004). Given vascular plants can utilize 

alternate source of carbon for isoprene production, such as starch from xylem transported 

carbon, we hypothesize that our model moss P. juniperinum might also use alternate 

carbon sources, as we know that starch is stored in its underground rhizoids and these 

acts as sites for overwinter storage of carbohydrates (Skre et al. 1983).  
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Species and isoprene emission  

 

In this study, we tested isoprene emission from three species of the Polytrichaceae 

family, which we collected from a range of altitude from 4 meters to 88 meters above sea 

level and from a variety of substrates (Table 3.3). The phenological stage of the mosses at 

the time of collection could have played a part in the high degree of variation we saw in 

isoprene emission rates between and within species. We saw low isoprene emission 

values for our deep shade adapted A. undulatum which is always found in forest 

understory and does not live in direct sunlight. While, our sun loving P. juniperinum was 

able to emit high amounts of isoprene which can be comparable to levels found in 

isoprene emitting vascular plants. This is not entirely surprising as this moss has the 

ability to survive in insolation values exceeding equatorial noon sunlight (Marschall et al. 

2004; Proctor et al. 2005), and it is accustomed to high temperature regimes (Monson et 

al. 1994; Geron et al. 2001). 

In vascular plants, it has been noted that isoprene emission rates vary greatly 

among species and isoprene emission ability may or may not be shared by member of the 

same family or genus with no clear evolutionary link between emitters (Harley et al. 

1999; Sharkey et al. 2001, 2007; Dani et al. 2014; Loreto et al. 2015). Given basal 

emission rates of the three species tested, we saw varying isoprene emission rates due to 

environmental and genetic factors. Further work is required to evaluate independently 

how these factors affect the instantaneous isoprene emission rate against basal isoprene 

emission rate.  
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Sex and isoprene emission  

 

Over 60% of moss species have separate sexes (Wyatt et al. 1984; Hedenäs et al. 

2011), while sexual differentiation only occurs in 5% of seed plants (Richards 1997). 

Sexual reproduction in mosses is an energy and resource intensive process (Glime 1984).  

Sex is costly and is subject to resource limitations in the Polytrichaceae family (Koncz et 

al. 2012). The “cost of sex hypothesis” predicts that the most expensive sex should be the 

rarest sex (Stark et al. 2000) and suggests that the costly sex would have few resources to 

allocate elsewhere, including isoprene production. In P. juniperinum, we found that male 

and female plants, that are not currently expressing sexual organs, differ in isoprene 

emission, with males emitting more isoprene than female counterparts (Figure 3.7). 

However, in our experiment using all three species, in which the males and females were 

expressing sex organs, males and females did not differ in isoprene emission (Figure 3.9, 

3.10). Our results indicate that there are sex-specific differences in isoprene emission 

between non-sexually expressing male and female moss plants, but these may lessen 

when plants are paying the cost of producing sexual organs. Further study is required, as 

sexual organ formation takes up considerable resources and space in moss gametophytes. 

The difference we saw in male and female isoprene emission could be due to a number of 

both environmental and genetic factors.  

Also, in our study, we found that non-sexually expressing gametophytes of all 

three species had significantly higher isoprene emission rates compared to sexually 

expressing moss, suggesting resource limitation does exist in mosses. Previously, 

reproductive effort has been investigated in mosses by assessing sporophyte abortion 
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rates, morphological differences between the sexes in terms of size, growth, branching 

and number of sexual organs in each sex (Glime 1984; Bowker et al. 2000). We are the 

first to report that sexual expression affects isoprene emission in moss, and presents a 

reproductive cost as sexually expressing females and males had much lower isoprene 

emission rates than non-sexually expressing gametophytes. Isoprene emission in each sex 

is a resource that is limited, perhaps affects reproductive performance, and contributes to 

reproductive cost in these species. To our knowledge, this study is the first to examine 

potential trade-offs in resource allocation among female, male and non-sexually 

expressing gametophytes. Future investigation should differentiate between trade-offs 

associated with isoprene emission in sexually expressing and non-sexually expressing 

gametophytes and consider the cost and benefit associated with these emissions in 

conjunction with biomass and nutrient content. We propose that further study of these 

isoprene-emitting mosses should help resolve some fundamental unanswered questions in 

resource allocation between species and between sexes, and even fundamental questions 

such as land plant evolution of the sexes. Much more work is needed to understand the 

evolutionary pressures and environmental factors that influence isoprene emission from 

mosses and all major group of land plants.  

Changes in resource allocation associated with isoprene production might play a 

role in directing and constraining sexual reproduction in mosses under stress (Eppley et 

al. 2011, Huttunen 2003; Kis-Papo et al. 2003; Stark et al. 2005). Changing stressors 

associated with global warming, particularly in high latitude environments may 

exacerbate these effects. The factors influencing maintenance of sex are of great interest 
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in evolutionary biology (Vamosi et al. 2003). While sex-specific BVOC emissions are 

poorly characterized in mosses, we do know they are sex-specific and mediate 

microarthropod fertilization in mosses (Rosenstiel et al. 2012). Sexual expression 

explained 38% variability in isoprene emission.  

In many bryophytes, a large part of the population is made up of sterile plants, 

with males and females absent (Stark 2002; Rydgren et al. 2002a,b) and many 

interdependent factors affect reproductive success (Longton et al. 1983, 1990; Mishler et 

al. 1988; Shaw  1991a,b; Bisang et al. 2004; McLetchie 2001; Silva et al. 2012). We saw 

the highest isoprene emission from all three species in non-sexually expressing 

gametophytes (Figure 3.9). In turn, A. undulatum explained 14% variability in isoprene 

emission within its sexes while P. urnigerum explained 18% variability in isoprene 

emission in sexes. In P. juniperinum, we saw the least amounts of variability, accounting 

for only 11% variation within sexes. We had a total of 65 gametophytes that did not 

express sex, and 35 gametophytes that expressed sexual female and male characteristic, 

with males emitting higher isoprene values than females (Figure 3.10). Large moss 

populations contain non-sexual gametophytes, and the key to understanding isoprene 

fluxes from moss populations will be to understand the control on the development of sex 

organs in mosses (Zaugol'nova 1971; Watson 1974; Callaghan et al. 1978; Glime 2017). 

Life history for male and female gametophytes must be assessed independently, as the 

sexes are dimorphic in size, maturation rates, and reproductive output (Shaw et al. 1999).  

 

 

Laboratory gas exchange measurements  
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Most mosses have saturating light curve levels that are close to 600 µmol m-2 s-1 

Photosynthetic Photon Flux Density (PPFD), while species in the Polytrichaceae family 

attain the highest light saturating curves. For A. undulatum light saturation have been 

found to be ~ 648 µmol m-2 s-1 PPFD (Marschall et al. 2004). This low light level 

saturation helps explain the low isoprene emission we saw from this species typically 

found in deep shade near water sources. P. urnigerum light saturation have been found to 

be ~ 957 µmol m-2 s-1 PPFD (Marschall et al. 2004). This is a high elevation montane 

species that is often exposed to more sunlight than shade adapted A. undulatum and has a 

thicker leaf composition than the one-cell layer leaves of A. undulatum. Lastly, the 

cosmopolitan P. juniperinum, the highest isoprene emitter we have documented,  has 

been shown to have light saturation curves comparable to vascular ‘sun plants’ reaching 

values as high as 2175 µmol m-2 s-1 PPFD (Proctor et al. 2002; Marschall et al. 2004; 

Proctor 2005). We saw this species emit the highest amount of isoprene, but further study 

is needed to look at how habitat and environment influences isoprene emission. In 

general, we saw high within species variation in isoprene emission as well, which was 

potentially due to the fact that we had a wide range of environmental variation including 

altitude and substrate differences.  

We measured the basal isoprene emission under controlled condition as a function 

of temperature of 30°C and as a function of light at 1000 µmol m-2 s-1 PPFD. This 

measure depends on substrate availability and photosynthetic machinery from the plant; 

this measure is often taken as the inherent capacity of isoprene emission (Monson et al. 

1994; Sharkey et al. 1999; Geron et al. 2000). A second level of isoprene emission rate 



 

97 

called the “instantaneous emission rate’ needs further investigation in non-vascular 

plants. This measure is set against environmental condition on basal emissions (Monson 

et al. 1994). Future work should focus on understanding how environmental drivers affect 

isoprene emission in mosses.  

Isoprene production rate and chlorophyll content in marine phytoplankton shows 

a “simple and robust” relationship (Shaw et al. 2003; Palmer et al. 2005), with peak 

isoprene emission correlating strongly to chlorophyll fluorescence (Bonsang et al. 1992, 

2010; Baker et al. 2000). We used chlorophyll fluorescence ratio (CFR) as a non-

intrusive tool as a proxy to establish information on photosynthetic reactions in the 

chloroplast and stress level in plants (Schreiber et al. 1987).  We saw chlorophyll 

fluorescence ratio highly correlating to isoprene emission. We found a positive 

correlation between CFR and isoprene emission (Figure 3.14; Figure 3.15). We also saw 

sex-specific CFR value differences between species, owing to cost of sexual 

reproduction, with males having higher CFR values than females or non-sexually 

expressing gametophytes (Figure 3.16). High light dwelling P. juniperinum had higher 

CFR values than shade adapted A. undulatum with species difference explaining 24% 

variability in CFR measures (Figure 3.19). 

Since the light dependent isoprene emission is related to electron transport rate in 

vascular plants (Dani et al. 2014; Niinemets et al. 1999, 2015), we looked at electron 

transport rates within our samples to determine if we can establish a relationship between 

the two. RETR was measured independently using fluorescence and was not coupled 
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with LiCor measurements and should only be taken as indicative and not as absolute 

measures (Dani et al. 2014).  

We have observed species and sex-specific RETR curves (Figure 3.17). We 

analyzed if we could find species differences in RETR values, and showed that sun 

tolerant P. juniperinum had five fold higher RETR values than shade adapted A. 

undulatum (Figure 3.20). Lastly, we showed sexual differences in RETR between the 

species (Figure 3.21), with non-sexual gametophyte having higher values of RETR than 

sexually expressing gametophytes. 

Mosses vary widely in their photosynthetic light response, but Polytrichum 

species were shown to have the highest light saturating curves of 39 species of mosses 

tested (Marschall et al. 2004). This moss species is unique given their lamellae that forms 

a ventilated photosynthetic tissue (Marschall et al. 2004). The photosynthetic lamellae 

aids in lowering leaf resistance to CO2 uptake, allowing the utilization of direct sunlight 

(Proctor 2005). With our RETR curves, we did not reach full saturation, as some 

Polytrichaceae species reach saturation at 2549 µmol m-2 s-1 (Marschall et al. 2004). Our 

highest value was measured consistently at 1500 µmol m-2 s -1 and in further experiments; 

a higher saturation PPFD would allow us to measure RETR saturation curves for this 

species in conjunction with isoprene emission. We aim to create electron transport rate 

curves by taking isoprene emission values at each level of a full light saturation curve. 

This will allow us to confer what has been found with vascular plants and determine if 

electron transport rate is positively correlated with isoprene emission in mosses as it is in 

vascular plants (Niinemets et al. 1999).  
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Under drought conditions, it has been shown that while electron transport values 

are still favorable, isoprene emission can decrease which highly suggest carbon limitation 

(Dreyer et al. 2001; Dani et al. 2014; Darbah et al. 2008). It is hypothesized that leaf 

temperature determines the amount of isoprene in the membrane, when the temperature 

goes up isoprene emission ameliorate the stresses on the membrane, but once cooling it 

can dissipate as a safety valve (Rosenstiel et al. 2004; Singsaas et al. 1998).  

Lower isoprene emission was shown to exist with young leaves compared to 

mature leaves. Isoprene emission from young leaves was twice what was observed in 

older leaves. The saturating light for isoprene emission could positively correlate with 

photosynthetic electron transport rate in mosses as it has been observed in vascular plants 

(Niinemets et al. 1999; Rasulov et al. 2009; Morfopoulos et al. 2014). We can speculate 

that, as with vascular plants, we would see electron transport rate scale with isoprene 

emission. Further research and methodological development is necessary. Our 

experimental setup and data collection would have had to take an isoprene emission 

sample at each light interval to determine if this holds true. From preliminary data 

collection we were able to confirm that this is the case at least in what we were able to 

observe. RETR values we observed are less than half the values we have seen in our 

previous experiments, possibly due to the fact that the gametophytes were planted in 

March and checked for RETR measures at the end of the experiment as they were 

embedded in media by this time, with many shoots sprouting out. We believe that these 

values reflect a low photosynthetic rate given exposure to low light levels throughout the 

trial.   
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Tables and Figures 

Table 3.1 Summary table of P. juniperinum populations used for non-sexually expressing 

isoprene emission (n=45). 

 

Altitude 

(meters) 

Latitude Longitude Substrate 

241  45°47'17"N 122°56'16.00"W Clay soil, hillside road 

cut in forest 
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Table 3.2 Summary table of P. juniperinum populations used for sexually expressing 

isoprene emission (n=25). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site Altitude 

(meters) 

Latitude Longitude Substrate 

1 15  45°41'38.34"N 122°52'14.23"W Gravelly soil, on 

hillside near 

highway 

2 21  45°38'7.45"N 122°49'45.09"W Gravelly soil, steep 

hillside next to road 

3 145  45°41'50.54"N 122°52'40.83"W Gravelly soil, steep 

hillside next to road 

4 315  45°46' 58.78'' N 123°22'14.14'' W Clay soil, hillside 

road cut 

5 412  45°44'6.80"N 122°59'30.62"W Clay soil, hillside 

road cut in forest  

6 241  45°47'17"N 122°56'16.00"W Clay soil, hillside 

road cut in forest 
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Table 3.3 Summary table of Atrichum undulatum, Polytrichum juniperinum and 

Pogonatum urnigerum populations used for sexually expressing isoprene emission 

(n=167). Abbreviations: MC-Multnomah county, CC-Columbia county, CL-Clatsop 

county MC-Marion country, COC-Cowlitz county, WC-Washington county, TC-

Tillamook county. 

 

Moss ID Alt. 

(m) 

Latitude Longitude County Substrate 

A. undulatum 

(n=9) 

 

U1 8 45°8'1.55"N 122°0'57.57"W    MC 

gravelly 

soil 

A.undulatum 

(n=24) 

A

U2 

1

20 45°44'43.95"N 122°57'32.99"W CC 

loamy 

soil  

A.undulatum 

(n=22) A

U3 

4

76 45°43'34.68"N 122°59'3.91"W CC 

decayed 

tree 

stump 

A.undulatum 

(n=15) 

A

U4 

1

31 45°44'24.32"N 122°57'37.19"W CC clay soil 

P. 

juniperinum 

(n=3) 

P

J1 

1

21 45°44'46.89"N 122°57'37.54"W CC 

loamy 

soil  

P. 

juniperinum 

(n=5) 

P

J2 

3

9 45°13'38.97"N 122°52'5.00"W MC 

gravelly 

soil 

P. 

juniperinum 

(n=5) 

P

J3 

1

56 46°20'37.13"N 122°43'41.10"W COC 

gravelly 

soil 

P. 

juniperinum 

(n=13) 

P

J4 

2

39 45°45'40.19"N 123°18'25.48"W WC gravel 

P. 

juniperinum 

(n=14) 

P

J5 

2

4 45°38'7.44"N 122°49'44.95"W MC gravel 

P. 

juniperinum 

(n=12) 

P

J6 

1

9 45°41'38.75"N 122°52'14.18"W MC 

gravelly 

soil 

P. 

juniperinum 

(n=4) 

P

J7 

8

83 45°57'55.06"N 123°40'46.24"W CL 

loamy 

soil  

P. urnigerum 

(n=4) 

 

PU1 

 

83 

 

45°57'55.06"N 

 

123°40'46.24"W 
 

CL 

loamy 

soil  

P. urnigerum 

(n=11) 

P

U2 

4

72 45°43'47.10"N 122°59'22.03"W CC 

loamy 

soil  

P. urnigeium 

(n=4) 

P

U3 

5

71 45°57'37.98"N 123°41'6.02"W CL 

loamy 

soil  
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P. urnigerum 

(n=9) 
P

U4 

6

88 

 

45°57'44.30"N 

 

123°41'1.16"W 
 

CL 

 

loamy 

soil  

P. urnigerum 

(n=7) 

P

U5 

6

21 45° 57'39.31''N 123°40'58.62"W TC 

loamy 

soil  

P. urnigerum 

(n=6) 

P

U6 

7

37 45°57'46.89"N 123°41'1.49"W TC 

loamy 

soil  
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Table 3.4 Summary table for aboveground morphological trait measurements from P. 

juniperinum gametophytes to assess discernable characteristics and contributions to 

isoprene emission (n=45). 

 

Canopy structure Leaf mass area (LMA) (mg cm-2) 

Leaf surface area (LSA) (cm-2) 

Biomass (B) (mg cm-2) 

Leaf length (LL) (mm) 

Leaf width (LW) (mm) 

Total leaves (TL) 

Leaf tip red (LTR) (mm) 

Wet weight (WW) (mg) 

Dry weight (DW) (mg) 

Canopy Height (CH) (mm) 

Leaf moisture (LM) (mg) 

Water content of gametophyte (WC) % 

Loss of water weight (LWC) (mg) 

 

Cell traits Cell lumen area (CLA) (mm-2) 

Cell lumen length (CLL) (μm) 

Interior cell wall thickness (IWT) (μm) 

Cell lamellae height (CLH) (μm) 

Lamellae number (LN) 

Number of rows of lamellae (NRL) 

Lamellae number * rows of lamellae (LANR) 

Chloroplast area (CHA) (μm-2) 

Cell space (CS) (μm) 

Individual cell size (ICS) (μm) 

Leaf dimension traits Leaf area (LA) (mm-2) 

Leaf density (LD) (mg m-3) 

Total leaf area (TLA) (mm-2) 

Costa length (CL) (mm) 

Costa width (CW) (mm) 

Costa cross sectional area (CCA) (mm-2) 

Lamina thickness (LT) (μm) 

Leaf shape traits Perimeter (P) (cm) 

Perimeter2 /area (TP2/A) (cm-3) 

Total Perimeter2 /area (TP2/A) (cm-3) 

Length/width (L/W) (cm) 
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Table 3.5 Summary table for belowground morphological trait measurements from P. 

juniperinum gametophytes to assess discernable characteristics and contributions to 

isoprene emission (n=45). 

 

Rhizoidal network and  

Stem structure 

Rhizoid length (RL) (mm) 

Root shoot ratio (RSR) (mm-2) 

Stem area dry (SAD) (mm-2) 

Total area dry stem (TDSA) (mm-2) 

Total wet stem area (TWSA12) (mm-2) 

Total wet stem area (TWSA24) (mm-2) 

Wet stem area 12 hr. (WSA12) (mm-2) 

Wet stem area 24 hr. (WSA24) (mm-2) 

Water content in stem area 12hr  (SAWC12) 

Water content in stem area 24hr (SAWC24) 

Stem dry diameter  (SDD) (mm-2) 

Wet diameter of the stem 12 hr. (WDS12) (mm-2) 

Wet diameter of the stem 24 hr. (WDS12) (mm-2) 

Water content in stem diameter 12hr (SDWC12) 

Water content in stem diameter 24hr (SDWC24) 
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Figure 3.1 Illustration of P. juniperinum costa cross section with number of lamellae 

counts (LN) measurement at the widest part of the costa cross section. Each costa cross 

section was taken from five leaves with five replicate and at the widest part number of 

lamellae was counted using a Leica microscope (Leitz DME, Leica, Wetzlar, Germany) 

with a AxioCam 105 Color camera and Zen Blue software (version 1.1.2.0; Carl Zeiss 

Microscopy). 
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Figure 3.2 Illustration on P. juniperinum costa cross section with five lamellae height 

(CLH) measurement at the widest part of the costa cross section. This was  

accomplished by using a Leica microscope (Leitz DME, Leica, Wetzlar, Germany)  

with a AxioCam 105 Color camera and Zen Blue software (version 1.1.2.0; Carl Zeiss 

Microscopy). 
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Figure 3.3 Illustration on P. juniperinum costa cross section of gametophyte stem after 

leaf removal. Stem area was measured at 12 hour water logged, following 24 hours water 

logged and dry state to approximate area and swelling of the stem. Water capacity 

assessment was estimated  using a Leica microscope (Leitz DME, Leica, Wetzlar, 

Germany) with a AxioCam 105 Color camera and Zen Blue software (version 1.1.2.0; 

Carl Zeiss Microscopy). 
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Figure 3.4 Setup for isoprene emission assessment for individual gametophyte emission 

using Dracast LED1000 Pro Daylight light panel, with light-emitting diode array (Photon 

Systems Instruments). Polytrichum species with rhizoids were pulled through a septa and 

inverted in glass vial. The rhizoid was then placed into a test tube filled with tap water.  
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Figure 3.5 Logged isoprene emission (nmol m-2 s-1) versus above and belowground 

morphological variables in non-sexually expressing P. juniperinum gametophytes (n=45). 

Above and belowground variables are plotted on the x axis. Tukey-Kramer HSD Multiple 

Comparisons Test shows areas of significant difference between logged isoprene 

emission vs. canopy traits: total leaves (TL), wet weight (WW), gametophyte width 

(GW), leaf tip redness (LTR), vs. belowground traits: steam area dry (SAD), and wet 

stem area at 24 hours (WSA24). Error bars represent ±1σ (standard deviation). Letters 

show statistical significance between means. Means with the same letter are not 

significantly different.  A * indicates significant difference, ** indicates a highly 

significant difference, *** indicates high statistical significance, NS indicates no 

significance.  
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Figure 3.6 Isoprene emission (nmol m-2 s-1) best fit regression line versus stem area dry 

(SAD) mm2 in P. juniperinum gametophytes (n=45). Stem area dry (SAD) mm2 is plotted 

on the x axis. Regression line is statistically significant. A * indicates significant 

difference, ** indicates a highly significant difference, *** indicates high statistical 

significance, NS indicates no significance. Regression line equation shown below for 

isoprene emission and stem area dry (SAD).  
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Figure 3.7 Isoprene emission (nmol m-2 s-1) versus plant sex in P. juniperinum 

gametophytes that were not expressing sex during the experiment (n=300). Sex is plotted 

on the x- axis. Error bars represent ±1σ (standard deviation). Letters show statistical 

significance between means. Means with the same letter are not significantly different.  A 

* indicates significant difference, ** indicates a highly significant difference, *** 

indicates high statistical significance, NS indicates no significance. 
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Figure 3.8 Isoprene emission (nmol m-2 s-1) versus species: Atrichum undulatum, 

Pogonatum urnigerum and Polytrichum juniperinum gametophytes (n=167). Species are 

plotted on the x-axis. Error bars represent ±1σ (standard deviation). Letters show 

statistical significance between means. Means with the same letter are not significantly 

different.  A * indicates significant difference, ** indicates a highly significant 

difference, *** indicates high statistical significance, NS indicates no significance. 
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Figure 3.9 Logged isoprene emission (nmol m-2 s-1) versus sex between species of A. 

undulatum, P. urnigerum and P. juniperinum gametophytes (n=167). Species and sex are 

plotted on the x- axis. Tukey-Kramer HSD Multiple Comparisons Test shows areas of 

significant difference between isoprene emission (nmol m-2 s-1) vs. species and sex. Error 

bars represent ±1σ (standard deviation). Letters show statistical significance between 

means. Means with the same letter are not significantly different.  A * indicates 

significant difference, ** indicates a highly significant difference, *** indicates high 

statistical significance, NS indicates no significance. 
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Figure 3.10 Isoprene emission (nmol m-2 s-1) versus sexes in Polytrichaceae 

gametophytes (n=167). Sexual expression, female, male and non-sexual expressions are 

plotted on the x- axis. Error bars represent ±1σ (standard deviation). Letters show 

statistical significance between means. Means with the same letter are not significantly 

different.  A * indicates significant difference, ** indicates a highly significant 

difference, *** indicates high statistical significance, NS indicates no significance. 
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Figure 3.11 Isoprene emission (nmol m-2 s-1) versus site in A. undulatum gametophytes 

(n=70). Altitude is plotted on the x- axis. Tukey-Kramer HSD Multiple Comparisons 

Test shows areas of significant difference between isoprene emission (nmol m-2 s-1) vs. 

site. Error bars represent ±1σ (standard deviation). Letters show statistical significance 

between means. Means with the same letter are not significantly different.  A * indicates 

significant difference, ** indicates a highly significant difference, *** indicates high 

statistical significance, NS indicates no significance. 
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Figure 3.12 Isoprene emission (nmol m-2 s-1) versus site in P. juniperinum gametophytes 

(n=56). Altitude is plotted on the x- axis. Tukey-Kramer HSD Multiple Comparisons 

Test shows areas of significant difference between isoprene emission (nmol m-2 s-1) vs. 

site. Error bars represent ±1σ (standard deviation). Letters show statistical significance 

between means. Means with the same letter are not significantly different.  A * indicates 

significant difference, ** indicates a highly significant difference, *** indicates high 

statistical significance, NS indicates no significance. 
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Figure 3.13 Isoprene emission (nmol m-2 s-1) versus site in P. urnigerum gametophytes 

(n=41). Altitude is plotted on the x- axis. Tukey-Kramer HSD Multiple Comparisons 

Test shows areas of significant difference between isoprene emission (nmol m-2 s-1) vs. 

site. Error bars represent ±1σ (standard deviation). Letters show statistical significance 

between means. Means with the same letter are not significantly different.  A * indicates 

significant difference, ** indicates a highly significant difference, *** indicates high 

statistical significance, NS indicates no significance. 
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Figure 3.14 Isoprene emission (nmol m-2 s-1) best fit regression line versus Chlorophyll 

Fluorescence Ratio (CFR) in P. juniperinum gametophytes (n=45). CFR is plotted on the 

x-axis. Regression line is statistically significant. A * indicates significant difference, ** 

indicates a highly significant difference, *** indicates high statistical significance, NS 

indicates no significance. Regression line equation shown below for isoprene emission 

and CFR.  
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Figure 3.15 Logged isoprene emission (nmol m-2 s-1) best fit regression line versus 

Chlorophyll Fluorescence Ratio (CFR) in P. juniperinum gametophytes (n=28). CFR is 

plotted on the x-axis. The nonlinear regression line is statistically significant in A. 

undulatum. The regression line in P. juniperinum is not statistically significant. A * 

indicates significant difference, ** indicates a highly significant difference, *** indicates 

high statistical significance, NS indicates no significance. Regression line equation 

shown below for isoprene emission vs. CFR for A. undulatum. 
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Figure 3.16 Chlorophyll Fluorescence Ratio (CFR) versus sex in P. juniperinum (n=25). 

Sex is plotted on the x-axis. Error bars represent ±1σ (standard deviation). Letters show 

statistical significance between means. Means with the same letter are not significantly 

different.  A * indicates significant difference, ** indicates a highly significant 

difference, *** indicates high statistical significance, NS indicates no significance. 
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Figure 3.17 Relative Electron Transport Rate (RETR) (μmols m-2 s-1) versus sex on BCD 

media in P. juniperinum and A. undulatum gametophytes (n=28).  Photosynthetic Photon 

Flux Density (PPFD) (μmols m-2 s-1) is plotted on the x-axis. The regression line is 

statistically significant in male A. undulatum. The regression line in P. juniperinum is not 

statistically significant. A * indicates significant difference, ** indicates a highly 

significant difference, *** indicates high statistical significance, NS indicates no 

significance. Regression line equation shown below for RETR vs. PPFD for A. 

undulatum. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

123 

Figure 3.18 Isoprene emission (nmol m-2 s-1) best fit regression line versus Chlorophyll 

Fluorescence Ratio (CFR) in P. juniperinum gametophytes (n=28). Chlorophyll 

Fluorescence Ratio (CFR) is plotted on the x-axis. The regression line in P. juniperinum 

is not statistically significant. The regression line in A. undulatum is statistically 

significant. A * indicates significant difference, ** indicates a highly significant 

difference, *** indicates high statistical significance, NS indicates no significance. 

Regression line equation shown below for isoprene emission vs. CFR for A. undulatum. 
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Figure 3.19 Chlorophyll Fluorescence Ratio (CFR) versus species: P. juniperinum and A. 

undulatum gametophytes (n=28). Species is plotted on the x-axis. Error bars represent 

±1σ (standard deviation). Letters show statistical significance between means. Means 

with the same letter are not significantly different.  A * indicates significant difference, 

** indicates a highly significant difference, *** indicates high statistical significance, NS 

indicates no significance. 
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Figure 3.20 Relative Electron Transport Rate (RETR) (μmols m-2 s-1) versus 

Photosynthetic Photon Flux Density (PPFD) (μmols m-2 s-1) in P. juniperinum and A. 

undulatum gametophytes (n=28). PPFD is plotted on the x-axis. The regression line for 

both species is statistically significant. Error bars represent ±1σ (standard deviation). A * 

indicates significant difference, ** indicates a highly significant difference, *** indicates 

high statistical significance, NS indicates no significance. Regression line equation 

shown below for RETR vs. PPFD for P. juniperinum and A. undulatum. 
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Figure 3.21 Relative Electron Transport Rate (RETR) (μmols m-2 s-1) versus sex in P. 

juniperinum and A. undulatum gametophytes (n=28). Sex is plotted on the x-axis. Error 

bars represent ±1σ (standard deviation). Letters show statistical significance between 

means. Means with the same letter are not significantly different.  A * indicates 

significant difference, ** indicates a highly significant difference, *** indicates high 

statistical significance, NS indicates no significance. 
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Chapter 4 

 

 

The effect of nitrogen addition on moss morphology, sexual reproduction, 

and isoprene production 

 

 

Abstract 

 

Isoprene (2-methyl-1, 3-butadiene) accounts for approximately one third of all 

global BVOC emission and has been shown to protect plants from both abiotic and biotic 

stress with species and sex-specific preferences. As anthropomorphic nitrogen (N) 

increases in altered ecosystems, understanding the influences of N on morphology, 

physiology and reproductive effort is important and has not been well-studied in 

bryophytes.  In this study, we set up a four-year common garden experiment in the moss 

Polytrichum juniperinum to test the effects of nitrogen addition on plant morphology, 

sexual reproduction and isoprene emission. Morphological, sexual expression and 

physiological measures varied significantly across the six populations from which we 

collected plants. Nitrogen addition significantly affected gametophyte length, isoprene 

emission and chlorophyll fluorescence ratio (CFR). We are the first to report increased 

isoprene emission under nitrogen addition in P. juniperinum. The high variation in 

morphology and physiology makes mosses ideal study systems as they are highly 

adaptable to their environment. The role of isoprene emission in mosses has gone nearly 

unnoticed, BVOC in vegetation have been demonstrated to have both regional and global 

atmospheric chemistry and climate impacts, while estimating emission fluxes from 

mosses is poorly understood.  



 

128 
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Introduction 

 

 

Background nitrogen deposition 

 

Tracking nitrogen deposition patterns is important for understanding how 

anthropogenic sources of nitrogen affect both natural habitats and urban environments 

(Pujadas et al. 2000; Raciti et al. 2008; Kaushal et al. 2014; Jones et al. 2018; Chávez et 

al. 2018). The global deposition of anthropogenic N now surpasses those from natural 

sources, with a four-fold increase in the amount of N available to organisms in less than a 

century (Vitousek et al. 1997; Fields 2004; Luo et al. 2004; Bobbink et al. 2010; Schulte‐

Uebbing et al. 2018; Taboada et al. 2018; Calvo-Fernández et al. 2018). To quantify N 

deposition is a complex task, with a wide range of compounds in the gas phase, in 

aerosols, and in precipitation (Krusche et al. 2003; Miller et al. 2003; Mahowald et al. 

2011; Guo et al. 2018; Zheng et al. 2018; Cook et al. 2018; Lu et al. 2018; Xu et al. 

2018). It is now well established that the level of N introduced to the atmosphere is 

increasing due to human activities (Vitousek et al. 1997; Galloway 1998, 2008; Bobbink 

et al. 2010; Erisman et al. 2013; Mogollón et al. 2018), and the process of climate as 

drivers of  nitrogen are difficult to predict (Hess et al. 2018). Nitrogen deposition models 

forecast that by the year 2100 nitrogen deposition will be the third largest threat to 

biodiversity with climate change remaining the leading continuing threat (Galloway et al. 

2004; Gruber et al. 2008; Sala et al. 2010; Wankel et al. 2010; Erisman et al. 2013; 

Stevens et al. 2018). 
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Anthropogenic bio-available N sources are driven by emission of nitrogen oxide 

species, such as nitrogen oxides: such as nitric oxide and nitrogen dioxide 

(NOx=NO+NO2) and ammonia (NH3), in the atmosphere (Crutzen 1970, 1971; Liang et 

al. 1998; Glarborg et al. 2018). The oxidized forms of N, such as N2O and NOx, are 

predominantly emitted as a byproduct of transport, industry and energy production which 

helps explain regional differences in N deposition, with transportation contributing 70% 

of the emissions of oxidized compounds (Patterson et al. 1994; Clapp et al. 2001; 

Carslaw 2005; Yuan et al. 2005; Hoekman et al. 2012; Chaichan et al. 2018; Souri et al. 

2018; Teixeira et al. 2018). Once released to the atmosphere, N reactive compounds, such 

as NOx, oxidize to nitric acid (HNO3) in a relatively short period of time, while the 

oxidation to organic nitrates occurs in less than a day (Zhang et al. 2012). Nitric acid 

(HNO3) or nitrate (NO3-) is the dominant sink for reactive nitrogen oxides in the 

atmosphere (Fang et al. 2011). Nitric acid (HNO3) and nitrate (NO3-) are considered to 

be the principal compounds in nitrogen deposition (Phillips et al. 2006). In wet 

deposition, most of the nitrogen is in the form of nitrate (NO3-) and ammonium (NH4+). 

In dry deposition, nitric acid (HNO3), ammonia (NH3), and nitrogen dioxide (NO2) 

dominate (Poikolainen et al. 2009).   

The largest source of nitrogen comes from fuel NOx from vehicles (Widory 

2007). NOx contributes to the formation of ozone (O3) and aerosol particulate matter and 

is thus an important factor affecting regional air quality and radiative balance due to 

smog production (Ehhalt et al. 2001). Since the lifetime of fixed nitrogen is short, most of 

the N deposition is near its source and is local in origin (Ollinger et al. 1993; Asman et al. 
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1998; Munger et al. 1998; Aneja et al. 2001; Kirchner et al. 2005, 2014; Moomaw et al. 

2002; Zhang et al. 2012; Redling et al. 2013; Xu et al. 2018). Nitrogen deposition in 

North America is damaging sensitive ecosystems, even with efforts to reduce nitrogen 

oxide emissions (Li et al. 2006) and further steps are needed to reduce nitrogen 

deposition (Ellis et al. 2013).  In the Pacific Northwest nitrogen deposition spans the 

range of 0.15 kg N ha-1 yr -1 to 39 kg N ha-1 yr -1 (Root et al. 2013).  In and around urban 

areas, N deposition from anthropogenic sources can be many times the natural sources, 

significantly changing the behavior of the nitrogen cycle (Skeffington et al. 1988; Lovett 

1994; Fenn et al. 1998, 2003; Kim et al. 2011; Pardo et al. 2011; Zhang et al. 2012; 

Benedict et al. 2018; Kharol et al. 2018). 

An increasingly large body of evidence suggests that traits of plants adapted to 

nutrient-poor or nutrient-rich habitats may have feedback effects on a number of 

aboveground and belowground systems and communities (Aerts et al. 1989; Hobbie 

1992; Nadelhoffer et al. 2000; Aber et al. 2003; Kou et al. 2018; Hou et al. 2018; Xia et 

al. 2018). Many biological and physiological processes, including photosynthesis, 

respiration, and carbon allocation due to increased nitrogen deposition have been used to 

analyze and detect environmental stress in plants (Darrall 1989; Townsend et al. 1996; 

Nellemann et al. 2001; Clark et al. 2008; Bobbink et al. 2010; Smithwick et al. 2013; 

Fusaro et al. 2017; Damgaard et al. 2017; Hess et al. 2018).  

An increase in nitrogen in some cases can have a stabilizing effect on ecosystem 

development (Kristensen et al. 1998; Aerts et al. 1999; Neff et al. 2002; Dijkstra et al. 

2004; Zechmeister et al. 2008; Kou et al. 2018; Ibáñez et al. 2018), but in most cases 
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increased nitrogen deposition alters leaf and root composition (Xia et al. 2018), and alters 

growth responses of trees by increasing sensitivity to increased temperatures (Hess et al. 

2018).  

Even at low rates, N enrichment causes community shifts (Payne et al. 2017), 

affects greenhouse gas emissions (Song et al. 2017), causes key shifts in ecosystems such 

as widespread loss of species (Stevens et al. 2004; Maskell et al. 2010; Duprè et al. 2010) 

increase carbon sequestration (McKinley et al. 2008; de Vries et al. 2009; Liu et al. 

2010), and promotes microbial competition in both subsoil and topsoil (Jones et al. 2018). 

Nitrogen increase can adversely affect seed productivity and flowering (Phoenix et al. 

2012; Bogdziewicz et al. 2017; Wolf et al. 2017), increase competition and plant density 

among plant species, and influence decomposition and ecosystem nutrient turnover (Price 

et al. 1980; Steer et al. 1986; Muchow 1988; Vitousek et al. 1997; Cox et al. 2001; Vos et 

al. 2005; Kosola et al. 2018; Lemaire et al. 2018). There is also strong evidence to 

suggest that current rates of N deposition are altering many biogeochemical processes, 

which are influenced by climatic conditions (Southon et al. 2013; Neumann et al. 2018) 

and already cause reduction in soil respiration (Janssens et al. 2010), and alter 

photosynthetic capacity, foliar nutrient status and nitrogen metabolism (Mao et al. 2018). 

 

 

Nitrogen deposition and bryophytes 

 

The distribution pattern of mosses in urban centers can be related to the degree 

and extent of pollution (LeBlanc et al. 1971; Rao 1982). The major source of nitrogen 

input for mosses comes from atmospheric wet deposition as precipitation, throughfall and 
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dry deposition of fixed N; this allows for a correlation between the N content of moss 

tissue and local N deposition (Pitcairn et al. 1995; Solga et al. 2006; Wilson et al. 2009; 

Harmens et al. 2011; Kosonen et al. 2018). Mosses are readily available and can be used 

as an inexpensive tool to monitor nitrogen levels. While the N content in mosses provides 

no direct quantitative measurement of atmospheric deposition, the data obtained can give 

an indication of spatial patterns and temporal trends of N deposition from the atmosphere 

(Schröder et al. 2010, 2014; Kosonen et al. 2018). The use of moss nitrogen content and 

δ15N can be used to acquire nitrogen signal strength and origin (Pearce et al. 2003; 

Pitcairn et al. 2003; Turetsky 2003; Paulissen et al. 2004; Bragazza et al. 2005; Solga et 

al. 2005, 2006; Pesch et al. 2008; Arróniz‐Crespo et al. 2008; Harmens et al. 2011; 

Varela et al. 2013; Schröder et al. 2010, 2014; Erisman et al. 2014; Meyer et al. 2015; 

Izquieta-Rojano et al. 2016; Song et al. 2016; Felix et al. 2016; Shi et al. 2017; Kosonen 

et al. 2018; Carballeira et al. 2018; Olmstead et al. 2018).      

 Cryptogamic covers, such as cyanobacteria, algae, lichens, bryophytes, fungi, and 

archaea fix approximately 50 million tons of nitrogen per year and take up approximately 

14 billion tons of carbon dioxide per year (Elbert et al. 2012). Mosses can adjust their N 

assimilating regime in response to anthropogenic N deposition (Bakken et al. 1995; 

Granath et al. 2009; Wiedermann et al. 2009; Waite et al. 2010; Lee et al. 2018). As a 

result, mosses can be vulnerable to increased N uptake. NO, NO2 and NH3 is readily 

deposited on moist leaf surfaces, where it is reduced through nitrate reductase to nitrite 

(Cape et al. 2004). Mosses are known as competitive scavengers of N and are known to 

reduce N availability for higher plants (Svensson 1995). They play an important role in N 
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cycling within the environment (Turetsky 2003) for both past and present atmospheric 

conditions shifting over time (Shetekauri et al. 2018; Xu et al. 2018; Olmstead et al. 

2018).   

High concentrations of nitrogen deposition has also been directly linked to 

negative effects on bryophyte communities leading to losses in moss cover and 

productivity (Pearce et al. 2003; Koranda et al. 2006; Arróniz‐Crespo et al. 2008; Britton 

et al. 2018; Xing et al. 2019), losses in biodiversity (Alatalo et al. 2018), declines in 

nitrate reductase activity of plant tissue (Pearce et al. 2002; Gordon et al. 2001), and 

reduction in shoot length (Bell 1992, Salemaa et al. 2008). Without a vascular nutrient 

transport system and in the absence of roots, mosses are perennial primary producers that 

accumulate mineral cations and anionic nutrients through wet and dry deposition. High 

surface area to volume ratio in moss in addition to high cationic exchange capacity 

(Clymo et al. 1963; Little et al. 1974;  Wells et al. 1990; Büscher et al. 1990; Turetsky et 

al. 1993) favor the accumulation of atmospherically available nutrients from which fixed 

N is obtained (Gerdol et al. 2002).  

 

 

Purpose of Study 

 

While the interaction between nitrogen deposition and mosses are well-studied in 

some respects, the effects of nitrogen deposition on volatile organic compounds 

(BVOCs), such as isoprene, is largely unknown in mosses. Only some plant species 

produce isoprene, and it has also been hypothesized that the isoprene-producing plants 

both protect themselves against ozone and, in NOx-rich environments, increase the ozone 



 

135 

stress on their non-isoprene-producing neighbors (Arneth et al. 2007). This suggests a 

physiological role of isoprene emission being more related to its putative function as an 

antioxidant (Holopainen 2013). In high N environments, where reactive N species such as 

NOX dominate near major roadways, plants are able to utilize the excess nitrogen and 

isoprene can oxidize in the presence of NOX creating organic nitrates (Tuazon et al. 1990; 

O'Brien et al. 1995). 

We theorize that nitrogen will have a significant influence on bryophyte isoprene 

production, as a positive significant relationship has been found between isoprene 

emission rate and leaf nitrogen concentration in both sun and shade leaves of oak trees 

(Litvak et al. 1996). Understanding how nitrogen availability influences BVOC 

productivity and potentially their life history, including sexual reproduction, in mosses is 

key to understanding how these species are functioning, particularly in urban areas with 

high N input. Recently, sex-specific BVOC emissions have been shown to influence the 

reproductive success of C. purpureus (Rosenstiel et al. 2012), a cosmopolitan moss, 

suggesting a previously unrecognized role for these products in the moss sexual life 

cycle. Moss sex-specific isoprene/BVOC emissions are an important and poorly 

characterized piece of the chemical diversity that exists in these early land plants, and 

how gametangia expression changes with increased nitrogen availability creates a 

fundamental gap in our understanding of the chemical ecology of these ubiquitous plants. 

To test the effects of nitrogen on Polytrichum juniperinum populations, a common garden 

experiment was set up at Portland State University (PSU), which contained male-majority 

and female-majority intact moss patches from six populations. Ammonium nitrate was 
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administered monthly for four years with treatments of 0 kg N ha-1 yr -1, 10 kg N ha-1 yr -

1, and 20 kg N ha-1 yr-1.  We measured morphological, reproductive, and physiological 

traits, including isoprene emissions. Using our data, we are able to test the hypothesis that 

increased nitrogen will influence bryophyte 1) morphology, 2) reproduction, and 3) 

isoprene production. 

 

 

Materials and Methods 

 

Study species 

 

Cosmopolitan, endohydric Polytrichum juniperinum mosses differ from typical 

bryophytes in that they have a network of underground rhizomes, and efficient internal 

water and carbohydrate conducting systems with apoplastic sugar loading (Thomas et al. 

1990). They are able to translocate photoassimilates to sister shoots suggesting capacity 

for physiological integration between connected moss stems (Thomas et al. 1988; 

Eckstein et al. 1999). This family of mosses also stores starch in their rhizoids which act 

as sites for overwinter storage for carbohydrates (Skre et al. 1983). The family 

Polytrichaceae forms a monophyletic group (Hyvönen et al. 2004) and possesses the 

highest degree of specialization in being able to move photosynthate through conducting 

cells called leptoids, in both the haploid gametophyte and diploid sporophyte. The 

structure of leaves in Polytrichaceae is closest to the function of the leaves of vascular 

plants of all the mosses (Clayton- Greene et al. 1985; Potter et al. 1995), with thick 

cuticularized leaves that possess differentiated photosynthetic tissue anatomy.   
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Polytrichum has a “high octane physiology” (Dani et al. 2014), and its highly 

complex anatomy facilitates high isoprene emission rates (Hanson et al. 1999).  

Polytrichum mosses possess many morphological, anatomical, and physiological 

properties that affect the capacity to accumulate nutrients on their surfaces and affect 

their uptake of nitrogen intracellularly (Zechmeister et al. 2003). P. juniperinum is 

equipped with a species-specific unique photosynthetic lamellae, a “proto phloem” like 

leptoid rich plasmodesmata, translocation of photoassimilates to sister gametophytes 

(shoots) through its rhizoidal system that allows for storage of starches not seen in other 

moss families (Thomas et al. 1988; Shotyk et al. 1998; Fernández et al. 2002; Limpens et 

al. 2003). It has been suggested that the inflexed achlorophyllous leaf margins enclosing 

the photosynthetic lamellae in P. juniperinum serve to increase the relative humidity and 

temperature of the air surrounding the lamellae, this adaptation can increase the effective 

growing season of the moss (Bazzaz et al. 1970; Bayfield et al. 1973; Krupa et al. 1977; 

Sveinbjörnsson et al. 1981). Polytrichum mosses have great desiccation tolerance that is a 

strategy for drought resistance and is enabled, at least in part, by its photosynthetic 

lamellae (Proctor et al. 2005, 2006). The negative effect of similarly increased lamellae 

temperature during summer months could be offset by its lower dark respiration rates 

(Herbst 1975), which could aid in attaining higher rate of new stem production, turf 

densities and higher rate of decomposition. The available reserve photosynthate present 

in the adult moss shoot could be transferred into new gametophytes via the extensive 

underground rhizoid system (Bowen et al. 1931; Wigglesworth et al. 1947; Collins et al. 

1974; Trachtenberg et al. 1978; Schofield et al. 1981; Reinhart et al. 1981; Döbbeler et al. 
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1987; Kodner et al. 2001; Groeneveld et al. 2007; Elumeeva et al. 2011; Tuba et al. 

2011).     

Since mosses experience strong limitation of photosynthesis because of the high 

resistance to CO2 diffusion through liquid water on the leaf surface and in the cell wall, 

the evolution of specialized lamellae cells are critical in this moss family to help reduce 

this resistance (Thomas et al. 1988; Barsig et al. 1998), providing larger and dry area for 

CO2 uptake (Proctor 2005; Marschall et al. 2004) and facilitate the absorption of CO2 by 

repelling water with cuticular waxes (Proctor 1979; Haas 1982; Neinhuis et al. 1995). 

The folding of leaves against the stem, followed by lateral closure appears to minimize 

water loss from the lamellae space and loss during the progression from wet to dry 

conditions (Bayfield 1973; Callaghan et al. 1978; Penny et al. 1982) and resembles 

stomatal closure in vascular plants (Thomas et al. 1996). Polytrichum populations that 

have been exposed to nitrogen have shown greater gametophyte height increase 

compared to rural sites, but at a cost of 36% less new shoot growth and 56% less old 

shoots with new growth (Bell et al. 1992). This suggests that in rural site with low 

nitrogen deposition, moss is able to utilize and benefit from extra nitrogen by growing 

upward toward light (Marschall et al. 2004). It is good to keep in mind that Polytrichum 

species incorporate about 23% photosynthetic assimilates to its new structural material 

aboveground, and 77% of assimilates are either respired or allocated belowground, but 

from this experiment did not link isoprene emission to allocation (Skre et al. 1983). 

Bryophytes are the closest living relatives to the first land plants, they are very suitable 

models for understanding the evolution of isoprene emission, and perhaps untangle the 
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biological processes involved in BVOC/isoprene emission function and its implications 

from an evolutionary perspective.  

 

 

P. juniperinum moss collection method along a nitrogen gradient  

 

To establish a stable population of P. juniperinum we collected plants from six 

populations of P. juniperinum along a nitrogen gradient of low too high N in the winter 

of 2014 in Oregon. Each site was chosen to represent differing geographically isolated 

populations, environmental and altitudinal gradients.  We established a common garden 

experiment at Portland State University Research greenhouse facility. P. juniperinum was 

collected from two sites near high traffic density, labeled as Site1 and Site 2; two 

populations from mid traffic density, labeled as Site 3 and Site 4; and two were collected 

from low traffic density areas, labeled as Site 5 and Site 6 (Table 4.1). We have also 

recorded environmental variables associated with each site (Table 4.2).   

P. juniperinum was identified and specimens were placed in the Portland State 

University Herbarium (HPSU). Each population contained male, female and non-

expressing gametophytes (shoots). Plants were removed with all of the substrate down to 

the rock outcrop below the soil. This ensured the least disruption to the thick rhizoidal 

network holding the moss mats together as higher mortality have been reported when this 

species is disturbed by severing the rhizoidal network (Watson 1979). The moss mats 

were placed in 39.37 cm diameter pots, 50 cm deep holding 38 liters of substrate of 2:1 

propagation grade sand and soil. Approximately 30 majority-male pots and 30 pots 

majority-female pots were planted from each site. Each 39.37 cm diameter pot in which 
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the moss patch was placed contained approximately 1500 moss gametophytes, yielding 

~90,000 individual gametophytes. In addition, two set of control pots from each 

population and treatment containing only sand/soil mix pot was placed in between the 

rest of the pots. These were all randomly rotated every second week along with the 60 

pots to ameliorate environmental conditions. Each pot was set 1.2 meters away from 

adjacent pots on all sides. 

To obtain an idea of population differences, fifty random gametophytes from each 

pot were randomly collected and assessed for age category (Table 4.3). Polytrichum 

species possess morphological cues in their aboveground gametophyte, which can serve 

in identifying age characteristics and life history, and give a spectrum of age distribution 

observed to be initiated annually (Longton et al. 1967; Longton 1970, 1972, 1979; 

Collins 1976; Callaghan et al. 1978). All samples were cleaned of debris, such as other 

plant species, lichen and detritus, and all sporophytes were cut. Mosses were allowed to 

acclimate in a ‘common garden’ setting to reduce variation as a result of previous 

environmental conditions and maternal effects (Shaw 1986). Weeds were manually 

removed regularly, and pots were monitored on an ongoing basis.  

 

 

Sex determination from six populations of P. juniperinum   

 

To measure sex-specific characteristics, we assessed each population on a number 

of morphological and physiological characters. Annual growth increments can be 

observed to have regular variation in leaf length, where stem elongation continues 

throughout a season, but longer leaves are created during the middle of the growing 
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season and are conspicuous (Hébant 1973). In male-majority pots, splash cups are visible 

discs on tops of the gametophytes, and new growth from the tip of the splash cups can be 

seen in early spring. In female-majority pots, after sporophyte production which develop 

for about a year after fertilization (Innes 1990), the gametophyte stem ceases to exist 

(Greene 1960; Sarafis 1971; Watson 1975; Callaghan et al. 1978), or shoots may 

innovate from below the perichaetium and continue to grow and produce sporophytes 

(Hedderson et al. 2008). All gametophytes may produce branches from shoot bases or on 

rhizoidal wicks (Wigglesworth 1947). Female P. juniperinum gametophytes therefore 

start new each time reproduction ensues, terminating with sporophyte maturation and 

spore release (Hughes 1962; Watson 1975; Hughes 1990).   

We classified reproductive effort by counting sporophytes from females, 

gametophyte containing splash cups from males, and we counted non-sexually expressing 

gametophytes from each site and year. Non sexual gametophytes were counted and 

classified.  Individual stems were chosen at random, gametophyte shoots from each sex 

were selected from each pot and marked with gold wire to follow sexual expression and 

morphological measurements (Watson 1975). We used gold-coated 0.31 mm 28 gauge 

soft wire as it is chemically inert. Once banded baseline measurements were taken, the 

gold wire was placed 5 mm below the last leaf on the gametophyte. In female-majority 

pots, 6 females were randomly chosen, 2 males and 2 undifferentiated gametophytes were 

marked and measured with digital caliper. For male-majority pots, 6 males, 2 females and 

2 undifferentiated gametophytes were marked and measured. Three measurements were 
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taken from each gametophyte, the total height, lowest leaf to apex of shoot, and diameter 

of each shoot. Individual shoots were scored by age category (Callaghan et al. 1978).   

Reproductive development followed an index described by Greene (1960). A total 

of 600 individual gametophytes were scored and studied. For male gametophytes, 

antheridia splash cups were counted, and for females, sporophytes were counted. When 

the study began, a majority of female stems had sporophytes. The sporophytes were 

collected in the late operculum intact stage of development (Greene 1960; Longton et al. 

1967) and were cut, counted and stored once maturity was reached to avoid cross 

contamination among populations. Growth for males was measured from the base of the 

gametophyte 2-5 mm from the soil to the top of apex of the shoot, where usually 

antheridia resided. Females were measured from 3-5 mm from the soil surface to the top 

of the leafy apex of the shoot, not including sporophyte length. Vegetative stems were 

measured 3-5 mm from the soil surface to the top of the apex of the shoot. Growth of 

stems was followed from time of collection to termination of nitrogen addition 

experiment.  

 

 

Morphological data collection from six populations of P. juniperinum  

 

Morphological measurements were obtained from the populations before and after 

nitrogen addition. The collection involved intact in situ gametophyte measurements. 

Additionally, morphological characteristics were observed to ascertain population and 

leaf level differences between additions. We assessed gametophyte length (GL, mm), 

gametophyte width (GW, mm), gametophyte rhizoid length (GRL, mm), and 



 

143 

gametophyte canopy area (GCA, m2) using a digital Fowler caliper (Lux Scientific 

Instrument Corp., Tucson, AZ, USA). Total bryophyte cover in each pot was assessed, 

and percent cover green shoots and percent cover brown shoots were estimated.  

Each pot was photographed ~60 cm above the canopy, and images were 

transferred to ArcMap GIS software (Version 10.4.1, ESRI Inc., ESRI, Los Angeles, 

USA). We estimated percent green and percent brown cover by using the Classification 

Tool in the Spatial Analyst package in ArcMap. We ran a Maximum Likelihood 

Classification (MLC), which is based on maximum likelihood probability theory. It 

assigns each pixel from a jpeg image to classes based on means and variances of the class 

signature, created precisely to look for specific pixel ratios (which is a technique that 

mathematically extracts factors from a set of variables (Shukla et al. 2017)). The jpeg was 

transformed into a multispectral image and was categorized and assigned into 50 classes. 

We ran unsupervised classification, where clusters were created from the statistical 

properties of the pixels. Pixels with similar properties were grouped to form individual 

clusters (ArcGis Desktop, 10.4.1, ESRI Inc., Los Angeles, USA).     

In addition, sex-specific counts, live, brown shoots, and total number of shoots for 

each population and each pot were counted and monitored before and after the nitrogen 

experiment. All other morphological and anatomical observations were counted and 

recorded. Dead shoots were classified as no longer viable when the apex of the shoot was 

entirely brown (Potter et al. 1995). A detailed list can be found on summary of 

morphological and physiological measures (Table 4.4).  
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Ammonium nitrate (NH4NO3) addition method to six population of P. juniperinum  

 

P. juniperinum moss patches were allowed to acclimate for a six-month period 

and ammonium nitrate additions began in the winter of 2015. All six sites and sex-

specific pots were randomly distributed between the additions so that 10 female-majority 

pots and 10 male-majority pots from the three nitrogen level gradient were distributed 

evenly across the three N treatment additions (Table 4.5). The nitrogen additions imposed 

were as follows: the 0 kg N ha-1 yr-1 group (control pots or No N) with a total of 20 pots, 

the 10 kg N ha-1 yr-1 group (Med N) with a total of 20 pots, and the 20 kg N ha-1 yr-1 

group (High N) with a total of 20 pots. Nitrogen in the form of granular ammonium 

nitrate was mixed with water to create an aqueous solution of ammonium nitrate NH4NO3 

which was applied at the end of each month for four consecutive years starting in the 

winter of 2015 until winter of 2019.  

Ammonium nitrate was measured out with analytical microbalance (AB104-

S/FACT, manufactured by Mettler Toledo Corporation, Tualatin, Oregon. The measured 

compound was placed in a 500 ml Erlenmeyer flask and vortexed with 200 ml of tap 

water until crystals dissolved completely. The NH4NO3 liquid was then transferred into a 

1 Liter hand held pressure pump mister sprayer (Solo INC., Model 418, Newport News, 

VA). The same volume of water was added to the control pots at same frequency. The 

sprayer was held 20 cm above each pot and sprayed in clockwise circular motion 

beginning in the middle of the pot to the edge of the pot (Figure 4.1). Additional water 

was added to remove the fertilizer solution from the moss canopy and to minimize any 

potential damage to the plants as described in (Potter et al. 1995).  
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The inside diameter of each pot was measured to be = 41.91 cm, with a radius of 

20.995 cm. We then calculated area of the pot, by A= π*r2, area of inside the pot equals 

1379.48 cm2 5 0. 137948 m2 per pot. We then followed by taking 1 hectare converted to 

square meters, which  equals to 10000 m2. We have then taken our inside pot radius of 

20.995 cm and divided it by 1 hectare, yielding 0.0000137948 = 1.37948*10-5 hectares. 

We then took our desired addition of 20 kg (High N) and multiplied it by 1.37948-5 

hectares. This yielded 0.000276 kg/pot, which we converted into grams as 0.276 grams 

per pot of NH4NO3 for equivalent of 20 kg N ha-1 m-1. Each month 0.276 grams of 

NH4NO3 was sprayed into each pot in the High N addition, giving an annual N addition 

rate of 240 kg N ha-1 year-1. Next, we took our (Low N) of 10 kg N and multiplied it by 

1.37948-5 hectares. This yielded us with 0.000138 kg/pot, which we converted into grams 

as 0.138 grams per pot of NH4NO3 for equivalent of 10 kg N ha-1 m-1. Each month 0.138 

grams of NH4NO33 was sprayed into each pot in the Low N addition, giving an annual N 

addition rate of 120 kg N ha-1 year-1.    

 

 

Physiological measurement of six populations of P. juniperinum 

 

All gametophytic leaf level isoprene emission samples were taken non-

destructively by leaving P. juniperinum gametophyte intact. All six populations survived 

the transplant process. We collected isoprene emission data from moss canopy level from 

each intact population of P. juniperinum, because mechanical damage (burning, cutting, 

wind, rubbing) of a leaf, or nearby leaves, decreases isoprene emission (Loreto et al. 

1993). Therefore, we sampled intact moss ramets for this experiment as this method with 
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basal emission rate, as it gives a more spatially realistic profile of emission for sampling 

volatiles in an ecological context as it was more feasible to leave moss tissue intact for a 

multi-year experiment involving the addition of anthropogenic nitrogen (N) addition 

when trying to correlate isoprene emission to morphological and physiological traits. 

All sixty pots not including six control pots (two per N addition regime) were 

tested using static accumulation chambers, and samples were collected between 9 am and 

10 am to reduce diurnal variation. Measurements were taken after testing and utilizing a 

lab constructed 77mm × 77mm × 97 mm static chamber (Magenta™ vessel) made of 

polypropylene closure (Sigma-Aldrich Co., 2017) which, we have outfitted with 

thermocouple and Swagelok® and a small fan for proper mixing of static air within the 

chamber. Magenta vessels ™ were designed and inverted to best fit our experimental 

design.  Leaf tissue was gently inserted into the magenta vessel when inverted, and 

carefully measured as to given an accurate representation of actual moss gametophytic 

canopy area (CA) under the magenta vessel (Figure 4.2). We have added a drilled hole to 

the side of the vessel equipped with a septa and Swagelok® to be able to take 

measurements from the side of the vessel. Measurement was taken by inserting a 2 ml 

Pressure-Lok® Precision Analytical Syringes (VICI Precision Sampling Inc., Baton 

Rouge, LA, USA) after 10 minutes of incubation. Canopy moss temperature was 

measured with a shaded thermocouple (maintained at 30℃, ±3C) in order to collect 

precise dynamic isoprene emission measurements.  

An acclimation period was allowed before measurements were taken and 

temperatures were monitored with thermocouples and reported. Experiments were carried 
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out under standard conditions (30°C, 1,000 μmol m−2 s−1 photosynthetic photon flux 

density at leaf level (PPFD), unless otherwise noted. Light was provided with a Dracast 

LED1000 Pro Daylight light panel, with light-emitting diode array (Photon Systems 

Instruments). Sexually expressing gametophytes patches were chosen, with no other 

debris and only photosynthetic active green tissue was sampled. Sampling order was 

randomized throughout the two trials in order to ensure that all sixty pots were sampled 

in a random matter. From each pot, four measurements were taken, each area consisting 

of about 16 cm2, resulting in four replicates per pot.  

After 10 minutes, 1mL of air was removed via Pressure-Lok® precision analytical 

syringe (VICI Precision Sampling Inc., Baton Rouge, LA, USA) and injected into a 

reduction gas detector (RGD2, Trace Analytical, Menlo Park, CA). Isoprene was 

separated on a stainless steel column (1.3 m long x 2 mm inner diameter i.d.). The 

column was packed with UNI 8 Beads 3S 60/80 6’ x 1/8”, 0.085 SS (Alicat Scientific, 

Inc; Tucson, AZ).  Peak times and areas were recorded and transformed to ppm of 

isoprene. The GC-RGD2 was calibrated each day using a standard cylinder containing 71 

ppb (v/v) isoprene, references to a National Institute of Standard and Technology (NIST) 

Helium (HE) standard (SRM 1660a; 1ppm He in N2, Rochester, NY), (Praxair Inc., 

Specialty Gases, Portland, OR) with a ten point standard dilution of isoprene and He as a 

carrier gas. Blanks were run every four samples to ensure quality check and to look for 

contamination within the column. Isoprene gas was mixed with high purity helium using 

a mass flow controller calibrated to a flow rate of 21 ml/min. (Alicat Scientific, Inc; 

Tucson, AZ). One mL of the calibration gas mixture was removed with a syringe from a 
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mixing chamber and injected into the GC-RGD2 to create the calibration curve and 

obtain slope of the equation see (Equation 1.)  Isoprene emission measurement was 

calculated as follows; using Peak Area Units (PAU) from the standard calibration curve 

y= mx+b, at GC temperature of 298 Kelvin (K), and Atmospheric Pressure (P) of 760 

Torr.  

 

Equation 1. Formula used to convert isoprene from calibration curve, y=mx+b, and PAU 

to isoprene (nmol m-2 s-1).  

 

We obtained the volume mixing ratio of isoprene (ppb) we used Equation 1 to 

determine gametophyte emission flux. We determined the area of the gametophyte using 

a ruler. Peak identification was performed with the PEAK software (Stein 1999) that 

integrates raw peak area units and retention times. To identify isoprene, a custom 

calibration curve was created from isoprene standard (Sigma, Deisenhofen, 

Germany).  For quantification, peak areas of isoprene were determined after baseline 

correction. Levels of background contamination were determined from blanks. Analytical 

quality was analyzed by using Standard Reference Material of isoprene (NIST SRM 

1515, National Institute of Standards and Technology, Gaithersburg, USA).  

Isoprene emission measures were achieved twice during the nitrogen addition, 

before N addition in 2015 and after N addition in 2016. We calculated that we can fit ~9 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3909245/#CR49
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magenta vesselsTM into each ~40cm diameter container (Figure 4.3). The portable Gas 

Chromatograph with the Reduced Gas Detector (GC/RGD2) was utilized in multiple field 

sites at the time of this study, and monthly isoprene emission collection was not possible. 

Isoprene emission measures were taken in the winter of 2015 and in the summer of 2016, 

but due to seasonal differences it was not possible at this time to compare isoprene 

emission measures before and after nitrogen addition. 

Canopy level isoprene emission was measured using a Magenta™ vessel, but to 

establish area of moss under the vessel, we have used displacement by volume of moss 

tissue to calculate accurate headspace in the vessel from which isoprene measurement 

was taken. Where appropriate dry weight measurements were taken to assess initial moss 

selection. The volume displacement method was standardized by taking 10 point 

measurements of 16 cm2 moss with differing heights under the vessel and placing it into a 

cylinder to accrue water displacement. Moss ramets are highly varied in their structure, 

unlike vascular plants in which a flat area can easily be calculated. We felt given mosses 

3D structure this method is better suited than what is currently used for vascular plant 

isoprene emission assessment.  

Our second physiology measure was chlorophyll fluorescence ratio, as a non-

intrusive tool in using it as a proxy to establish information on photosynthetic reactions in 

the chloroplast (Schreiber et al. 1987). The fluorescence-emission spectra read out two 

maxima in the 690 nm and the 735 nm region. The fluorescence ratio F690/F735 for 

green leaves is higher (values of 0.8 to 1.1) than in the yellow to red wavelength region 

(525 to 633 nm) which only yields values for F690/F735 of 0.5 to 0.7 (Rinderle et al. 
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1988). Chlorophyll fluorescence ratio (CFR) was measured with a chlorophyll content 

meter (OPTI-Sciences model CCM-300, Hudson, USA).  

 

 

Statistical Analyses   

 

We used repeated measures ANOVA to determine the effect of site, nitrogen 

treatment and pot majority-sex on gametophyte length and gametophyte width for two 

years after nitrogen treatment (2016 and 2017). We used repeated measures ANOVA to 

determine the effect of site, nitrogen treatment, and pot majority-sex on reproductive 

effort (sporophytes) for three years after nitrogen treatment (2016, 2017, and 2018). We 

used ANOVA to determine the effect of site on isoprene production before we applied 

the nitrogen treatments, and we used ANOVA to determine the effect of site, nitrogen 

treatment, and pot majority-sex on isoprene emission after the treatment was applied. We 

used a similar ANOVA to determine the effect of site, nitrogen treatment and pot 

majority-sex on CFR after the nitrogen treatments were applied. We transformed our data 

when necessary to meet the assumptions of ANOVA. We also used Tukey-Kramer HSD 

Multiple Comparison test (Ellison et al. 2004) to find sources of significant differences 

between sites and nitrogen additions. JMP Pro 14.1 (SAS Institute, Cary, North Carolina, 

USA) was used for all analyses.   

 

 

Results 

 

Gametophyte length  
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We found significant differences among sites in gametophyte length (GL) (RM 

ANOVA; DF=5,591; F= 15.97; P <0.0001; Figure 4.4). After nitrogen addition, mean 

gametophyte length was highest from our Site 4 with mean values of 1.823 cm ± 0.046 

SEM (n=200). Our Site 5, had the smallest gametophyte length with mean values of 

1.621 cm ± 0.0371 SEM (n=200). We also found a significant site by time interaction 

where 11% of gametophyte length (GL) variation could be explained by time (RM 

ANOVA; DF=5,591; F= 45.71; P <0.0001), with site differences becoming less 

pronounced, and sites resembling each other as the experiment progressed. 

Gametophyte length (GL) was significant different among nitrogen addition 

treatments, explaining 21% of variation in gametophyte length (GL) (RM ANOVA; 

DF=2,591; F=7.723; P=0.0005). The longest gametophyte length (GL) was in the 20 N 

kg ha-1 yr-1 addition with mean values of 2.259 cm  ±0.101 SEM (n=200), and lowest in 

the 0 N kg ha-1 yr-1 addition with mean values of 1.186 cm ± 0.042 SEM (n=200). In the 

10 N kg ha-1 yr-1 addition we saw intermediate mean values of 1.886 cm ± 0.078 SEM 

(n=200). We also found a significant nitrogen treatment by time interaction (RM 

ANOVA; DF=2,591; F=14.32; P<0.0001), where we saw gametophyte length mean 

values closer to each other in all three treatments.  

Gametophyte length (GL) differed significantly between the male- and female-

majority pots, with gametophyte length in female-majority pots longer than gametophyte 

length in male-majority pots (RM ANOVA; DF=1,591; F=19.65; P <0.0001). We also 

found a significant difference for the interaction between nitrogen treatment and pot 

majority sex (RM ANOVA; DF=2,591; F=5.4261; P = 0.0046; Figure 4.5). Gametophyte 
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length in female-majority pots was longest in the 20 N kg ha-1 yr-1 addition with mean 

values of  2.403 cm  ±0.132 SEM (n=200), and lowest in the 0 N kg ha-1 yr-1 addition 

with mean values of 1.344 cm ± 0.052 SEM (n=200). In the 10 N kg ha-1 yr-1 addition we 

saw intermediate mean values of 1.965 cm ± 0.126 SEM (n=200).  Gametophyte length 

in male-majority pots was longest in the 20 N kg ha-1 yr-1 addition with mean values 

of  2.065 cm  ±0.162 SEM (n=200), and lowest in the 0 N kg ha-1 yr-1 addition with mean 

values of 1.175 cm ± 0.0437 SEM (n=200). In the 10 N kg ha-1 yr-1 addition we saw 

intermediate mean values of 1.437 cm ± 0.0404 SEM (n=200). The interaction between 

pot majority sex and time was not significant (RM ANOVA; DF=1,591; F=2.75; P = 

0.09), as the differences in gametophyte length between male- and female-majority pots 

did not change during the course of the experiment.   

 

 

Gametophyte width  

 

We also found statistical significance in site differences for gametophyte width 

(GW) (RM ANOVA; DF=5,591; F= 13.8676; P <0.0001; Figure 4.6). The widest 

gametophyte width (GW) was found in Site 5 with mean values of 1.184 cm ± 0.030 

SEM (n=200). Site 3 had the least wide gametophyte width cm (GW) with mean values 

of 1.083 cm ± 0.010 SEM (n=200). We also found a significant site by time interactions 

(RM ANOVA; DF=5,591; F= 22.27; P <0.0001), with sites becoming significantly less 

different in gametophyte width as the experiment progressed. 

Gametophyte width (GW) was not significant between treatments (RM ANOVA; 

DF=2,591; F=1.28; P=0.28). Gametophyte width was also not significantly different 



 

153 

between male- and female-majority pots (RM ANOVA; DF=1,591; F=0.71; P=0.40). 

However, for gametophyte width the interaction between nitrogen additions and pot 

majority sex was significant (RM ANOVA; DF=2,591; F= 32.5288; P <0.0001; Figure 

4.7).  Gametophyte width in majority female pots was widest in the 20 N kg ha-1 yr-1 

addition with mean values of  2.403 cm  ± 0.139 SEM (n=200), and least wide in the 0 N 

kg ha-1 yr-1 addition with mean values of  1.343 cm ± 0.056 SEM (n=200). In the 10 N kg 

ha-1 yr-1 addition we saw intermediate mean values of 1.192 cm ± 0.0232 SEM (n=200). 

Gametophyte width in male-majority pots was widest in the 10 N kg ha-1 yr-1 addition 

with mean value of  1.634 cm ± 0.136 SEM (n=200), and least wide in the 0 N kg ha-1 yr-1 

addition with mean values of 0.910 cm ± 0.0253 SEM (n=200). In the 20 N kg ha-1 yr-1 

addition we saw intermediate mean values of 1.192 cm ± 0.0232 SEM (n=200).  

We also found a significant interaction among pot majority sex, treatment and 

time (RM ANOVA; DF=2,591; F= 16.14; P <0.0001). Gametophyte width decreased in 

both male- and female-majority pots over the course of the nitrogen addition, because of 

moss rapid turnover rate. While gametophyte width in female-majority pots did not 

change over time, gametophyte width in male-majority pots changed during our nitrogen 

addition, and the widest mean values were found in the 20 N kg ha-1 yr-1 addition with 

mean value of  0.921  ± 0.0191 SEM (n=200). Our least wide gametophyte width in 

male-majority pots remained in the 0 N kg ha-1 yr-1 addition, with mean values of 0.765 

cm ± 0.0143 SEM (n=200). 

 

 

Reproductive effort  
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Female reproductive effort in terms of sporophyte count was statistically 

significant among sites (RM ANOVA; DF=5; F=5, 49; P =0.0002; Figure 4.8). The 

highest count of sporophytes was from Site 6 with 1848 sporophytes (n=20), and we 

counted the lowest sporophytes in Site 3 with 945 (n=20). Some sites increased 

sporophyte output between the years and treatment, while other sites remained stable 

across time. 

We found that treatment did not significantly affect sporophyte count (RM 

ANOVA; DF=2,49; F=2.6403; P = 0.08). Reproductive effort in sporophyte count was 

statistically significant between male-majority and female-majority pots, with plants in 

female-majority pots producing more sporophytes than plants in male-majority pots (RM 

ANOVA; DF=1,449; F=13.4107; P=0.0006). We did not find majority-sex by treatment 

interaction for sporophyte count (RM ANOVA; DF=2,49; F=2.6559; P = 0.08). Lastly, 

we saw a significant time and majority-sex interaction (RM ANOVA; DF=2,48; 

F=4.1298; P=0.0221). Sporophyte count was similar in both male-majority and female-

majority pots for the first two years of nitrogen addition, with very low count of 

sporophytes in male-majority pots. For our last year of nitrogen addition, sporophyte 

count was much higher in female-majority pots than male-majority pots.  

 

 

Isoprene emission before nitrogen addition 

 

Site-specific differences alone explained 22% variability of isoprene emission 

(ANOVA; DF=5; F=13.1835; P <0.0001; Figure 4.9). Within each site, we saw even 

more variation in isoprene emission than between sites (Figure 4.10). Overall, we saw 
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mean isoprene emission values of 6.787 nmol m-2 s-1 ± 0.218 SEM (n=240). The highest 

isoprene emission was seen from Site 1 with a mean values of 10.337 nmol m-2 s-1 ± 

0.281 SEM (n=40). We saw Site 6 mean values of 7.123 nmol m-2 s-1 ± 0.114 SEM 

(n=40). Site 5 mean values of 7.118 nmol m-2 s-1 ± 0.856 SEM (n=40). Site 3 mean 

values of 6.742 nmol m-2 s-1 ± 0.186 SEM (n=40).  Site 4 mean values of 5.534 nmol m-

2 s-1 ± 0.081 SEM (n=40). Lastly, Site 2 had the smallest isoprene emission with a mean 

values of 3.867 nmol m-2 s-1 ± 0.134 SEM (n=40). 

We also saw sex-specific differences in isoprene emission with female-majority 

pots having a larger mean emission than male-majority pots (ANOVA; DF=1; 

F=10.2925; P <0.0015; Figure 4.11). We saw that Site 1, Site 2, Site 4 and Site 6 female-

majority pots had higher isoprene emission values than male-majority pots. Only in Site 

3, and Site 5, we saw male-majority pots having higher isoprene emission than female 

plots. In Site 1, we saw the highest isoprene emission from female-majority plots with 

mean values of 13.735 nmol m-2 s-1 ± 0.472 SEM (n=40). Our lowest isoprene emission 

from majority-female plots was seen from Site 2 with mean values of 4.231 nmol m-2 s- 

1  ± 1.154 SEM (n=40). We saw the highest isoprene emission from male-majority pots 

from Site 1 with mean values of 6.932 nmol m-2 s-1  ± 1.79 SEM (n=40), and the lowest 

isoprene emission from Site 2 with mean values of 3.508 nmol m-2 s-1  ± 0.812 SEM 

(n=40). 

 

 

Isoprene emission after nitrogen addition 
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We continued to see site-specific differences which explained 12% variability of 

isoprene emission between sites after nitrogen addition (ANOVA; DF=11; F=7.3488; P 

<0.0001; Figure 4.12; Figure 4.13). After nitrogen addition we saw isoprene emission 

mean values of 28.562 nmol m-2 s-1 ± 0.710 SEM (n=240). Isoprene emission was highest 

for Site 1 with mean values of 38.801 nmol m-2 s-1 ± 0.793 SEM (n=40). Site 2 mean 

values were 35.321 nmol m-2 s-1 ±0.894 SEM (n=40). Site 3 mean values were 24.678 

nmol m-2 s-1 ± 0.679 SEM (n=40). Site 5 mean values were 27.298 nmol m-2 s-1 ±0.663 

SEM (n=40). Site 6 mean values were 24.173 nmol m-2 s-1 ± 0.521 SEM (n=40). Our 

lowest isoprene emission was seen from Site 4 with mean values of 21.093 nmol m-2 s-1 ± 

0.512 SEM (n=40).  

We did not observe a statistically significant difference between male- and 

female-majority pots in isoprene emission after N addition (P=0.89). We did however, 

observe a significant interaction between treatment and sexual expression in isoprene 

emission in the 10 N kg ha-1 yr-1 N treatment (ANOVA; DF=5; F=23.63; P < 0.0001; 

Figure 4.14). Female and male isoprene emissions were highest in the 10 N kg ha-1 yr-1 N 

treatments. Male mean values were higher than female values 2.341 ± 0.023 nmol m-2 s-1 

SEM (n=44). Female mean values were 2.214 ± 0.181 nmol m-2 s-1 SEM (n=36). In the 

20 N kg ha-1 yr-1 females values were similar to male values, female mean values were 

1.514  ± 0.035 nmol m-2 s-1 SEM (n=52), and male mean values were 1.560 ± 0.105 nmol 

m-2 s-1 SEM (n=32). Lastly, in the 0 N kg ha-1 yr-1  treatment female values were higher 

than male values, with female values of 1.625  ± 0.141 nmol m-2 s-1 SEM (n=32), and 

male values of 1.389 ± 0.015 nmol m-2 s-1 SEM (n=48). 
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We also saw treatment specific differences which explained 32% variation in 

isoprene emission (ANOVA; DF=2; F=56.09; P <0.0001; Figure 4.15). Our 10 kg N ha-1 

yr-1 treatment had the highest isoprene emission with mean values of 2.284 nmol m-2 s-1 ± 

0.071 SEM (n=80). The 20 kg N ha-1 yr-1 treatment had mean values of 1.533 nmol m-2 s-

1 ± 0.033 SEM (n=84). Lastly, we saw our lowest isoprene emission with our 0 kg N ha-1 

yr-1 treatment with mean values of 1.484 nmol m-2 s-1 ± 0.041 SEM (n=80). 

 

 

Physiological measurements  

    

We saw site-specific differences in CFR values (ANOVA; DF=5; F=8.1600; P 

<0.0001; Figure 4.16). Our highest CFR values were seen from Site 6, with mean values 

of 0.9222 ± 0.006 SEM (n=484). Our lowest CFR values were found in Site 4, with mean 

values of 0.85 ± 0.0190 SEM (n=484).  

Nitrogen additions significantly affected CFR (ANOVA; DF=2; F=3.8437; P 

<0.0228; Figure 4.17).  Our 0 kg N ha-1 yr-1 addition, was significantly lower (0.998 ± 

0.0124 SEM; n=484) in CFR than our 20 kg N ha-1 yr-1 addition (1.007 ± 0.009 SEM; 

n=484). Our 10 kg N ha-1 yr-1 addition was not significantly different from either other 

addition. We did not find sex-specific differences in our CFR values (P=0.097).  

 

 

Discussion 

 

We collected moss samples from six locations around Portland Oregon, and we 

have established a large common garden experiment where we used Ammonium nitrate 

(NH4NO3) to evaluate the effects of nitrogen addition on morphology, reproductive 
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effort, and physiology in P. juniperinum. We used nitrogen values of 0 kg N ha-1 yr-1, 10 

kg N ha-1 yr-1, 20 kg N ha-1 yr-1 as for the Pacific Northwest nitrogen deposition spans in 

this range of 0.15 kg N ha-1 yr -1 to 39 kg N ha-1 yr -1 (Root et al. 2013). We found 

significant effects of nitrogen addition and majority-sex of populations on gametophyte 

morphology. We also found significant effects of the nitrogen treatment on isoprene 

emissions and chlorophyll fluorescence ratio. We discuss our results below.   

 

 

Gametophyte morphology  

 

Gametophyte length (GL) and gametophyte width (GW) had high variation 

between sites (Figure 4.4; Figure 4.6). We saw the dynamics of moss communities going 

through cyclic changes as evidenced by rapid turnover of all moss populations. We found 

that both gametophyte length and gametophyte width were significantly affected by our 

six sites. However, for both morphological traits, the differences among sites diminished 

across time. 

We saw gametophyte length (GL) affected by nitrogen addition (Figure 4.5), but 

not gametophyte width (GW) (Figure 4.7). We saw 21% variation in gametophyte length 

be attributable to nitrogen addition (Figure 4.5). P. juniperinum could have used the 

added N to grow longer as it established optimal growth and the benefit of extra nitrogen 

was utilized either as respired carbon or allocated into belowground growth; as extensive 

rhizoidal system exist in this species (Wigglesworth 1947). In Polytrichum species, 

photosynthetic assimilates can be added to form new structural material belowground, or 

they can be respired or allocated to aboveground structures (Skre et al. 1983). Work from 
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previous studies shows that nitrogen in Polytrichum ecosystems is retained in the soil and 

dead moss tissue (Bowden 1991). Further work will be required to assess belowground 

biomass to fully comprehend nitrogen treatment affects both aboveground and 

belowground where it could be utilized by rhizoids or stored in the soil.  

Sex-specific resource allocation was evident. Gametophyte length (GL) was 

affected by sex, with majority-female pots having longer lengths than males (Figure 4.5), 

and this difference was significantly affected by the nitrogen treatments. The sex-specific 

difference was not found in the control treatment or in the high nitrogen treatment, but 

only in the 10 kg N ha-1 year-1 treatment. 

We know that Polytrichum species have the very low caloric values, with very 

little energy fixed in tissue of the moss (Rastorfer 1976), suggesting that they spend all 

their acquired photosynthetic carbon on either allocation or respiration. Other studies 

have found that in Polytrichum species, variations in N addition of 20 vs. 10 kg N ha-1 

year-1 did not affect growth (Van der Wal et al. 2005). While others, have shown that 

Polytrichum populations that have been exposed to nitrogen addition have greater height 

increase at a cost of 36% less new shoots (Bell et al. 1992), but we do not know if these 

new shoots were sexually expressing.  

 

 

Reproductive effort  

 

Nitrogen treatment had no significant effect on reproductive effect. However, 

reproductive effort in majority-female and majority-male pots was statistically different 

when it came to sporophyte reproduction, which was higher than male splash cup counts, 
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as expected. Sporophyte count was highly variable among sites. Sporophytes production 

was most likely a result of inter-gametophyte self-fertilization (Stark et al. 2009; Koncz 

et al. 2012). We saw that non-sexually expressing gametophytes outnumbered female and 

male gametophyte counts (Figure 4.8). In bryophytes, sex expression is reduced mainly 

because sporophyte maturation is resource-limited (Stark et al. 2009). Variation among 

populations in viability and germination capability of the spores refers to different levels 

of effective sexual reproduction. Populations with high viability and germination 

capability of spores indicate effective realized sexual reproduction (Longton 1988, Innes 

1990). Denser populations as compared to sparser ones have a higher allocation to sexual 

reproduction (Wyatt and Derda 1997, Cronberg et al. 2006). We saw extremely dense 

populations produce more sporophytes than less dense populations.  

 

 

Physiology measurements 

 

In this study, nitrogen addition influenced isoprene emission in P. juniperinum 

populations. We are the first to report isoprene emission increasing under nitrogen 

addition in any moss species, and we are the first to report isoprene emission increasing 

under nitrogen addition in P. juniperinum. We found significant effects of the nitrogen 

treatment on isoprene emission in this species. Isoprene emission variation was 

statistically significant between sites and explained 30% variation in winter of 2015 

(Figure 4.9), and within sites (Figure 4.10). We also saw isoprene emission differences 

between the sexes before nitrogen addition, suggesting sex-specific resource allocation at 

this time of year, with female isoprene emission higher than male isoprene emission 
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(Figure 4.11). After nitrogen addition, we continued to see site-specific differences in the 

summer of 2016 explaining 12% variability between sites (Figure 4.12) and within sites 

(Figure 4.13). Isoprene emission rates vary among vascular plant species from near zero 

to over 50 nmol m-2 s-1 (Harley et al. 1999), and here we are the first to show large 

variation in isoprene emission from P. juniperinum under nitrogen addition.  

 In our experimental study, the medium level nitrogen treatment resulted in the 

highest isoprene emission level with almost twice the isoprene emission as the control 

treatment with no additional nitrogen, and significantly more than the high nitrogen 

treatment (Figure 4.14; Figure 4.15). The availability of nitrogen affects the concentration 

of secondary compounds such as isoprene in a predictable manner according to the 

carbon/ nutrient balance hypothesis (Bryant et al. 1983). If a plant is growing in nitrogen 

poor environments, the plant can use the carbon from photosynthesis for isoprene 

emission instead of growth allowing it to have increased secondary compounds (Bryant et 

al. 1983, Herms et al. 1992, Jones et al. 1999). A previous study assessing nitrogen in P. 

juniperinum population has found that belowground biomass of both live and dead tissue 

had higher nitrogen concentrations than aboveground tissue (Bowden 1991). This suggest 

that P. juniperinum under high nitrogen addition may not utilize all of available nitrogen. 

Nitrogen uptake response in mosses involves several steps (Heijmans et al. 2001, 

Xing et al. 2010). Initially, mosses can utilize nitrogen and benefit from nitrogen addition 

(Jauhiainen et al. 1994; Williams et al. 1997). In many moss populations, nitrogen is 

limiting (Bowden 1991; Bakken 1995; Eckstein et al. 1999, 2000; Aldous 2002; Ayres et 

al. 2006; Koranda et al. 2006; Arróniz‐Crespo et al. 2008; Du et al. 2014; Juutinen et al. 
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2015; Felix et al. 2016; Izquieta-Rojano et al. 2016; Becker et al. 2017; Kosonen et al. 

2018), and thus additions of nitrogen result in increasing photosynthesis which can be 

used for additional growth, reproduction, or production of secondary compounds. The 

first phase of utilizing the nitrogen, when plants are limited in nitrogen, was seen in P. 

juniperinum in the difference between our control and our medium nitrogen addition, 

when isoprene emission increased significantly with nitrogen addition. This reflects 

similar findings in vascular plants, where nitrogen addition increases isoprene emission 

rate and photosynthesis (Harley et al. 1994).  

Eventually, in the final phase of nitrogen uptake response in mosses, a maximum 

nitrogen content is reached and nitrogen leaches into the soil or fungal hyphae in the 

rhizome mat (Bowden 1991; Bragazza et al. 2005). Once maximum nitrogen content is 

reached, which we saw in our highest nitrogen addition, the added nitrogen may have 

been leached into the rhizoidal mat or soil reflecting the low isoprene emission we saw in 

our high nitrogen addition group. At this stage, the added nitrogen was potentially 

harmful as we saw these values were close to isoprene emission values from our no 

nitrogen, control pots. Nutrient translocation and retention from older tissue to young 

tissue is a key mechanism mosses use to avoid nutrient loss and nitrogen utilization peaks 

during highest growth (Clymo et al. 1982; Aerts et al. 1999). Under our highest nitrogen 

addition, carbon allocation could have been used for peak growth and additional nitrogen 

was not utilized resulting in lower isoprene emission, as all the resources were utilized in 

either above or belowground growth. The highest nitrogen addition we applied could 

have represented an environmental shift in available nitrogen to P. juniperinum, and this 
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may have hindered the mosses ability to uptake this form of nitrogen and utilize it. We 

know that vascular plants can utilize many forms of nitrogen, and we could have seen a 

decrease in isoprene emission in our high nitrogen addition because of competition for 

carbon skeletons between the supply and demand of isoprenoid precursor dimethylallyl 

pyrophosphate (DMAPP) (Rosenstiel et al. 2004).  

Mosses can also utilize different forms of nitrogen, and mosses access to nitrogen 

depends on direct bioavailable nitrogen coming from atmospheric deposition, internal 

nitrogen cycling by mineralization, and lastly species dependent nitrogen translocation 

(Aldous 2002; Bowden 1991). Future research should focus on determining the role of 

nitrogen from the demand side process including analyses of aboveground and 

belowground tissue concentrations, fungal biomass retention of nitrogen, and soil 

nitrogen content. Additional insights could be gained from work to understand what 

carbon allocation strategies P. juniperinum uses and what the consequences for 

ecosystem level carbon cycling under enhanced nitrogen deposition.  

We also saw significant site-specific chlorophyll fluorescence ratio (Figure 4.16). 

Our highest CFR values were seen from forest Site 5, and Site 6, indicating reduced 

stress compared to the other sites. We found our highest CFR values in the highest 

nitrogen treatment (Figure 4.17), which we used as a as a proxy to establish information 

on photosynthetic reactions in the chloroplast (Schreiber et al. 1987). Stress in plants 

induces lower chlorophyll content, and lower rate of photosynthesis, because of 

degradation of chlorophyll content due to many factors, including excessive nitrogen 
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addition (Rinderle et al. 1988). We did not see this pattern, as only healthy green 

gametophytes were sampled for chlorophyll content.  

 

 

Conclusion 

 

We have shown that moderate nitrogen addition significantly increases isoprene 

emission in moss populations. These results have important implication for 

understanding isoprene emissions from bryophyte communities as anthropogenic 

nitrogen levels increase. Our data also suggest that nitrogen male and female of P. 

juniperinum will respond differentially to nitrogen in terms of morphology, but this may 

not result in differential response in isoprene emission at the population level. Future 

work should focus on understanding the effect of additional community interactions, 

including the microbiome, on isoprene production in mosses across nitrogen gradients. 
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Tables and Figures 

Table 4.1 Summary table of Polytrichum juniperinum from six populations (n=60).  

 

Site Location Expected 

Nitrogen 

background 

Latitude Longitude Elevation 

(meters) 

1 Highway High N  45°41'38.34"N 122°52'14.23"W 15 

2 Highway High N  45°38'7.45"N 122°49'45.09"W 21  

3 Intermediary Medium N  45°41'50.54"N 122°52'40.83"W 145 

4 Intermediary Medium N 45°46' 58.78'' N 123°22'14.14'' W 315  

5 Forest Low N  45°44'6.80"N 122°59'30.62"W 412 

6 Forest Low N 45°47'17"N 122°56'16.00"W 241 
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Table 4.2 Site characteristics of Polytrichum moss collected in the winter of 2015. Soil 

type, slope, depth to water table and available water in storage profile data was assessed 

from Soil Survey Staff, Natural Resources Conservation Service, United States 

Department of Agriculture. Web Soil Survey. Available online. Accessed 

(7/13/2018)https://websoilsurvey.sc.egov.usda.gov.  

 

Site Location Location Soil type Slope Depth to 

water table 

(cm) 

Available 

water 

storage in 

profile 

(mm) 

1 Highway High N gravelly loam,  

un-weathered  

bedrock 30-70 % 203  + Low (83) 

2 Highway High N sandy loam,  

gravelly loamy  

sand 40-60 % 91-183 

Moderate 

(216) 

3 Intermediary Medium N silt loam,  

clay loam 60-70 % 63-99  

Moderate 

(198) 

4 Intermediary Medium N silt loam,  

clay loam,  

weathered bedrock 30-60 % 203+ 

Moderate 

(216) 

5 Forest Low N silt loam,  

clay loam 12-20 % 163  

Moderate 

(193) 

6  

Forest 

 

Low N silt loam 15-30 % 64-252  

Moderate 

(191) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://websoilsurvey.sc.egov.usda.gov/
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Table 4.3 Age classification rubric of P. juniperinum populations.  

 

Age category  Classification  

Year 1  (0.0-2.0 cm) (n=50) 

Year 2 (2.0-4.0 cm) (n=50) 

Year 3 (4.0-6.0 cm) (n=50) 

Year 4 (6.0-8.0 cm) (n=50) 

Year 5 (8.0-10.0 cm) (n=50)  

Year 6 (10.0-12.0 cm) (n=50)  

Year 7 (12.0-14.0+ cm) (n=50)  
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Table 4.4 Summary of all morphological measurements taken from P. juniperinum 

populations.  

 

12/01/2015 

Before N 

06/05/2016 

After N 

01/10/2017 

After N 

06/05/2018 

After N 

    

G. Length 

(mm) 

G. Length 

(mm) 

G. Length 

(mm) 

G. Length 

(mm) 

G. Width 

(mm) 

G. Width 

(mm) 

G. Width 

(mm) 

G. Width 

(mm) 

G. Canopy 

area (mm) 

G. Canopy area 

(mm) 

G. Canopy 

area (mm) 

G. Canopy area 

(mm) 

G. Rhizoid 

length (mm)  

   

Damage by 

larvae 

Damage by 

larvae 

Damage by  Damage by 

larvae 

% cover green % cover green % cover green % cover green 

% cover 

brown 

% cover brown % cover 

brown 

% cover brown 

CFR   CFR   

CFR by sex  CFR by sex  

Isoprene 

emission 

(nmol m-2 s-1) 

 Isoprene 

emission 

(nmol m-2 s-1) 

 

Canopy area 

(m2) for 

Isoprene 

 Canopy area 

(m2) for 

Isoprene 

 

Total 

sporophyte 

count 

Total 

sporophyte 

count 

Total 

sporophyte 

count 

Total 

sporophyte 

count 

Last year 

sporophyte 

count 

Last year 

sporophyte 

count 

Last year 

sporophyte 

count 

Last year 

sporophyte 

count 

New year 

sporophyte 

count 

New year 

sporophyte 

count 

New year 

sporophyte 

count 

New year 

sporophyte 

count 

Total splash 

cup count 

Total splash 

cup count 

Total splash 

cup count 

Total splash 

cup count 

Last year 

splash cup 

Last year splash 

cup 

Last year 

splash cup 

Last year splash 

cup 

New year 

splash cup 

New year 

splash cup 

New year 

splash cup 

New year 

splash cup 
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Non-sexual 

gametophytes 

Non-sexual 

gametophytes 

G. Canopy 

area (mm) 

Non-sexual 

gametophytes 

Total 

gametophyte 

Total 

gametophytes 

Total 

gametophyte 

Total 

gametophyte 

Age category Age category Age category Age category 

  Pots with less 

than 50 shoots 

Pots with less 

than 50 shoots 
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Table 4.5 Experimental design set up showing three nitrogen additions. Within each 

block there are twelve pots. The three additions contain six control pots, two control pots 

in each addition and 20 pots in each addition.  
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Figure 4.1 Ammonium nitrate addition to P. juniperinum moss via 1-Liter (L) hand  

held pump mister sprayer (Solo INC., Model 418, Newport News, VA).  
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Figure 4.2 Small 77mm × 77 mm × 97mm static chamber (magenta jar) created for 

headspace analyses using (Magenta vessel TM). Equipped with battery-operated fan to 

ensure equal mixing of air in the chamber and avoid settling.  
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Figure 4.3 Magenta vesselTM used to collect isoprene emission data from P. juniperinum 

populations before and after nitrogen addition. Seen here inverted with Pressure-Lok® 

precision analytical syringe (VICI Precision Sampling Inc., Baton Rouge, LA, USA).  
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Figure 4.4 Gametophyte length (GL) cm versus sites (1-6) in P. juniperinum (n=3596). 

Site is plotted on the x-axis. Tukey-Kramer HSD Multiple Comparisons Test shows areas 

of significant difference between gametophyte length and site. Error bars represent ±1σ 

(standard deviation). Letters show statistical significance between means. Means with the 

same letter are not significantly different. A * indicates significant difference, ** 

indicates a highly significant difference, *** indicates high statistical significance, NS 

indicates no significance. 
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Figure 4.5 Gametophyte length (GL) cm versus sex and nitrogen treatment in P. 

juniperinum (n=3596). Nitrogen treatment is plotted on the x-axis. Tukey-Kramer HSD 

Multiple Comparisons Test shows areas of significant difference between gametophyte 

length vs. nitrogen treatment and sex. Error bars represent ±1σ (standard deviation). 

Letters show statistical significance between means. Means with the same letter are not 

significantly different. A * indicates significant difference, ** indicates a highly 

significant difference, *** indicates high statistical significance, NS indicates no 

significance. 
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Figure 4.6 Gametophyte width (GW) cm versus sites (1-6) in P. juniperinum (n=3596). 

Site is plotted on the x-axis. Tukey-Kramer HSD Multiple Comparisons Test shows  

areas of significant difference between avg. gametophyte width cm (GW) and site.  

Error bars represent ±1σ (standard deviation). Letters show statistical significance 

between means. Means with the same letter are not significantly different. A * indicates 

significant difference, ** indicates a highly significant difference, *** indicates high 

statistical significance, NS indicates no significance. 
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Figure 4.7 Gametophyte width (GW) cm versus sex and nitrogen treatment in P. 

juniperinum (n=3596). Nitrogen treatment is plotted on the x-axis. Tukey-Kramer HSD 

Multiple Comparisons Test shows areas of significant difference between gametophyte 

width vs. nitrogen treatment and sex. Error bars represent ±1σ (standard deviation). 

Letters show statistical significance between means. Means with the same letter are not 

significantly different. A * indicates significant difference, ** indicates a highly 

significant difference, *** indicates high statistical significance, NS indicates no 

significance. 

 
 

 

 

 

 

 

 

 

 

 



 

178 

Figure 4.8 Reproductive effort versus sexual expression in P. juniperinum (n=1440). 

Sexual expression is plotted on the x-axis. Tukey-Kramer HSD Multiple Comparisons 

Test shows areas of significant difference between total reproductive effort by 

sporophytes, splash cups, and non-sexual gametophytes. Error bars represent ±1σ 

(standard deviation). Letters show statistical significance between means. Means with  

the same letter are not significantly different. A * indicates significant difference, ** 

indicates a highly significant difference, *** indicates high statistical significance, NS 

indicates no significance. 
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Figure 4.9 Isoprene emission (nmol m-2 s-1) in the winter of 2015 versus site-specific 

differences in P. juniperinum gametophytes (n=244). Site is plotted on the x-axis.  

Tukey-Kramer HSD Multiple Comparisons Test shows areas of significant difference 

between avg. isoprene emission and site. Error bars represent ±1σ (standard deviation). 

Letters show statistical significance between means. Means with the same letter are not 

significantly different. A * indicates significant difference, ** indicates a highly 

significant difference, *** indicates high statistical significance, NS indicates no 

significance. 
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Figure 4.10 Isoprene emission (nmol m-2 s-1) before N treatment versus within site-

specific differences in P. juniperinum gametophytes (n=244). Site is plotted on the x-

axis. Error bars represent ±1σ (standard deviation). A * indicates significant difference, 

** indicates a highly significant difference, *** indicates high statistical significance, 

 NS indicates no significance. 
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Figure 4.11 Isoprene emission (nmol m-2 s-1) before N treatment versus sex in P. 

juniperinum gametophytes (n=244). Sex is plotted on the x-axis. Error bars represent ±1σ 

(standard deviation). Letters show statistical significance between means. Means with the 

same letter are not significantly different. A * indicates significant difference, ** 

indicates a highly significant difference, *** indicates high statistical significance, NS 

indicates no significance. 
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Figure 4.12 Isoprene emission (nmol m-2 s-1) after N treatment versus site-specific 

differences in P. juniperinum gametophytes (n=244). Site is plotted on the x-axis. Tukey-

Kramer HSD Multiple Comparisons Test shows areas of significant difference between 

avg. isoprene emission and sites (1-6). Error bars represent ±1σ (standard deviation). 

Letters show statistical significance between means. Means with the same letter are not 

significantly different. A * indicates significant difference, ** indicates a highly 

significant difference, *** indicates high statistical significance, NS indicates no 

significance. 
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Figure 4.13 Isoprene emission (nmol m-2 s-1) after N treatment versus within site-specific 

differences in P. juniperinum gametophytes (n=244). Site is plotted on the x-axis. Error 

bars represent ±1σ (standard deviation). A * indicates significant difference, ** indicates 

a highly significant difference, *** indicates high statistical significance, NS indicates no 

significance.  
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Figure 4.14 Isoprene emission (nmol m-2 s-1) after N treatment versus sex in P. 

juniperinum gametophytes (n=244). Treatment is plotted on the x-axis. Tukey-Kramer 

HSD Multiple Comparisons Test shows areas of significant difference between avg. 

isoprene emission vs. nitrogen treatment.  Error bars represent ±1σ (standard deviation). 

Letters show statistical significance between means. Means with the same letter are not 

significantly different. A * indicates significant difference, ** indicates a highly 

significant difference, *** indicates high statistical significance, NS indicates no 

significance. 
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Figure 4.15 Isoprene emission (nmol m-2 s-1) versus nitrogen treatment in P. juniperinum 

gametophytes (n=244). Nitrogen addition is plotted on the x-axis. Tukey-Kramer HSD 

Multiple Comparisons Test shows areas of significant difference between avg. isoprene 

emission vs. nitrogen treatment.  Error bars represent ±1σ (standard deviation). Letters 

show statistical significance between means. Means with the same letter are not 

significantly different. A * indicates significant difference, ** indicates a highly 

significant difference, *** indicates high statistical significance, NS indicates no 

significance. 
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Figure 4.16 Chlorophyll Fluorescence Ratio (CFR) measures versus site in P. 

juniperinum gametophytes (n=244). Site is plotted on the x-axis. Tukey-Kramer HSD 

Multiple Comparisons Test shows areas of significant difference between CFR vs. Site 

(1-6).  Error bars represent ±1σ (standard deviation). Letters show statistical significance 

between means. Means with the same letter are not significantly different. A * indicates 

significant difference, ** indicates a highly significant difference, *** indicates high 

statistical significance, NS indicates no significance. 
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Figure 4.17 Chlorophyll Fluorescence Ratio (CFR) measures versus N treatment in P. 

juniperinum gametophytes (n=244). Nitrogen treatment is plotted on the x-axis. Tukey-

Kramer HSD Multiple Comparisons Test shows areas of significant difference between 

CFR vs. nitrogen treatment.  Error bars represent ±1σ (standard deviation). Letters show 

statistical significance between means. Means with the same letter are not significantly 

different. A * indicates significant difference, ** indicates a highly significant difference, 

*** indicates high statistical significance, NS indicates no significance. 
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Chapter 5 

 

 

Conclusion 

 

We still do not understand the functional role of isoprene production and emission 

from vascular plants (Sharkey et al. 2017) or non-vascular plants. The ability to emit 

isoprene has been gained and lost multiple times during plant evolution (Sharkey et al. 

2007, 2013; Fineschi et al. 2013; Monson et al. 2013; Dani et al. 2014; Loreto et al. 

2015). Isoprene is the second most abundant BVOC in the atmosphere, and it represents 

one of the most important interactions between plants and the atmosphere (Monson et al. 

1995; Sharkey et al. 1999; Niinemets et al. 2004; Peñuelas et al. 2010; Loreto et al. 2010; 

Guidolotti et al. 2019; Nagori et al. 2019; Li et al. 2019). Isoprene is the most abundant 

non-methane hydrocarbon in air near forests and has the greatest potential for transport 

from forest to urban areas (Khalil et al. 1992). In many ecosystems and even some urban 

areas, isoprene may dominate photochemical reactions in the atmospheric boundary layer 

(Chameides et al. 1988; Goldstein et al. 1998; Arneth et al. 2007; Park et al. 2011; Chang 

et al. 2014; Kota et al. 2015).  

BVOC emission data are quite limited for non-vascular plants which do not 

possess structures such as stomatal pores, complex leaves, stems, or roots regulating 

water loss (Duckett et al. 2009; Ruszala et al. 2011; Chater et al. 2016). Since the 

signaling pathways for these emissions are present in both vascular plants and mosses 

(Cove et al. 2009), mosses make ideal systems to study the origin, diversification, and 

early function of isoprene emission. These often-overlooked early land plants might 
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provide the crucial link to finally understand why plants in general produce and emit 

isoprene, partially because emission is more common in mosses than any other major 

land plant group (Hanson et al. 1999). 

 

 

Isoprene emission from Polytrichum juniperinum protonema 

 

In Chapter 2, we examined at what life stage mosses emit isoprene and at what 

cost. We have discovered that after spore germination, P. juniperinum is capable of 

isoprene emission in the protonema phase of its life cycle. We hypothesize that mosses 

are releasing isoprene as it is produced, and thus in their earliest life stages, as they do not 

possess guard cells or stomata in their gametophytic leaves (Woodward 1998; Raven 

2002; Chater et al. 2011; Merced et al. 2013). Given mosses are rarely limited by 

nutrients (Bergamini et al. 2002), they must use direct uptake of dissolved nutrients from 

the atmosphere over their entire gametophytic leaf surface. Mosses gaseous exchange can 

be impacted by the slightest change in atmospheric humidity (Miyata et al. 1961). We 

suggest that mosses may always be in an opportunistic state, where emission and growth 

are tightly bound, and carbon gained from photosynthetic process is allocated to either 

growth or isoprene emission. Polytrichum species could lose water as reserves are 

deposited primarily within storage tissues in rhizoids, displacing water from the cells. 

With isoprene production, Polytrichum mosses could retain more of that water if through 

bioengineering the nearby atmospheric hydrological microenvironment.  

We hypothesized that isoprene emission is fundamental to the emergence of life 

on land. The feedback mechanism that supplies BVOCs aerosols for cloud formation and 
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precipitation helps to sustain the hydrological cycle in an ecosystem. Isoprene emission 

encourages cloud nuclei formation via isoprene/OH reduction to secondary organic 

aerosols (SOA), which in turn affects cloud droplet number (Claeys et al. 2004; Engelhart 

et al. 2011; Kerminen et al. 2012). Model simulations support this hypothesis, indicating 

that 100% of the observed changes in cloud properties can be attributed to isoprene 

secondary organic aerosols (SOA) (Pöschl et al. 2010). It is our suggestion that moss may 

employ a similar strategy throughout its lifecycle with an additional more direct water 

retention strategy when it reaches its adult gametophyte stage. Isoprene emission in both 

mature and protonemal moss is sensitive to both increased insolation and thermal stress. 

Both of these stress mechanisms have a direct effect on a plant’s ability to maintain water 

levels, and both thermal and insolation changes can in theory be mitigated through 

isoprene emission leading to SOA water droplet nucleation particles. 

The examination of isoprene (BVOCs) in the context of water strategies may shed 

significant light on the evolution of the earliest plants to colonize areal environments, 

with possible implications for our understanding of colonization strategies for all of 

Earth’s plant life. Future work should address cost benefit analyses in isoprene emission 

and mosses as they are novel model system to test fundamental theories of ecological and 

ecosystem evolution. A better characterization of isoprene emissions from non-vascular 

plant species will be required, not just among the basal group of mosses, but also in later 

divergent species of mosses.  

Additional work should distinguish genetic vs. environmental factors at work in 

the control of isoprene emission in mosses, and future work should focus on molecular 
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work. A number of isoprene synthase enzymes have been characterized in vascular plants 

(Kuzma et al. 1993; Silver et al. 1991, 1995; Sharkey et al. 2005; Schnitzler et al. 2005). 

As of now, isoprene synthase enzyme has been characterized in only the heath star moss 

Campylopus introflexus (Lantz et al. 2015). This could pave the way for using mosses as 

a model system for understanding the evolution of isoprene in land plants that emit 

isoprene.  It could also shed light of why not all plants emit isoprene and why there is 

such high variation in emission capability even within families that emit isoprene (Harley 

et al. 1999).     

To further understand isoprene emission in protonema, the next step would be to 

suppress isoprene and assess the overall effect of mosses response to the loss of the 

ability to produce and emit isoprene. We have seen that protonema growth exhibited a 

negative correlation between isoprene emission and growth. It would be necessary to 

successfully suppress isoprene emission and evaluate growth. A study comparing 

isoprene emission and protonema mortality under various stress regimes would also be 

useful in elucidating the role of isoprene. A further step will be to utilize new 

methodology to suppress isoprene emission that will differ from vascular plant methods. 

No known literature exists on this subject, and it could provide useful and invaluable 

information to what is known in isoprene emission suppression in vascular plants 

(Niinemets et al. 1999; Sharkey et al. 2001; Grote et al, 2013).  

 

 

The role of isoprene emission in Polytrichaceae sexual systems 
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In Chapter 3, we wanted to address the hypothesis that isoprene emission is 

related to the evolution of sexual systems in the mosses. Previous research in our lab has 

indicated that BVOCs can influence sexual strategies in mosses (Rosenstiel et al. 2012). 

Of particular interest to us was to understand how sex-specific isoprene emissions (both 

quantity and composition) change throughout the moss life cycle, and particularly during 

gametangia formation. We found that the highest isoprene emission was actually seen 

from non-sexually expressing gametophytes. Isoprene emission may confer benefits to 

species to negate the effects of selection pressure from loss of carbon and energy 

(Velikova et al. 2012). 

These results suggest that the benefits associated with isoprene production may be 

too costly to maintain during periods of investment in reproductive structures. This would 

indicate that bulk isoprene emission does not play a role in sexual reproduction strategies 

other than to be shed and free up resources to invest in sexual organs. Bulk emission 

would seem to be involved in some non-sexual survival strategy. In Polytrichum mosses, 

male and female sexual organ formation does not occur synchronously (Watson 1974), 

and sexual reproduction is resource limited. 

While sex has been investigated in these species independently from isoprene 

emission (Lloyd et al. 1977; Brown et al. 1990; Korpelainen et al. 1992, 1998; Rydgren 

et al. 2003; Stark et al. 2000, 2005, 2010), no one has invested in exploring isoprene 

emission and sexual expression in mosses.  BVOCs taken together with sexual expression 

might explain some of the differences in sex and allocation of resources seen in 

Polytrichum species. Isoprene emission might suppress other chemical compounds that 
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the moss emits, and since we categorized only one compound, it is necessary to run 

emission profiles for species within Polytrichaceae using analyses by gas 

chromatography–mass spectrometry (GC-MS). This could elucidate if a host of chemical 

compounds are suppressed while isoprene emission dominates. From non-isoprene 

emitting Ceratodon purpureus, we know that emission of over ~281 chemical 

compounds are present, some that are analogous to floral volatiles (Rosenstiel et al. 

2012). There is an interest in understanding if mosses that emit isoprene would have 

dissimilar chemical profiles and the evolutionary significance is between mosses that 

emit and mosses that do not emit isoprene. It is also evident, that large population of 

mosses contain non-sexually expressing gametophytes, of which there are no known 

chemical profiles. It seems that sex is costly in mosses (Stark et al. 2000), but not for 

isoprene emission in Polytrichaceae species.  

 

 

The effect of nitrogen addition on moss morphology, sexual reproduction, and  

isoprene production 

 

In Chapter 4, we tested the effects of nitrogen addition on moss morphology and 

physiology. In our experiment, we saw isoprene emission varied with season and site, and 

increased significantly with moderate increases in nitrogen. Also, treatment-specific 

differences were evident in morphology measurements. Polytrichum mosses are pioneer 

species and are highly adaptable across environments. In poor nitrogen conditions, low 

resource availability will limit growth of plants, and the allocated carbon could be used 

for secondary compounds instead of growth (Bryant et al. 1983). There is a complicated 
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and poorly understood interaction between isoprene emission and biomass accumulation 

in vascular plants (Hong et al. 2012), where trade-offs exist between carbon partitioning 

and biomass accumulation. Understanding the reasons for the increased isoprene 

emission we saw after nitrogen addition and the observed resource allocation will require 

a better understanding of the benefits of isoprene production versus growth. Studies are 

needed to examine the ontogenic patterns associated with isoprene emission in mosses. In 

vascular plants, the rates of emission are dependent on a host of environmental factors, 

and biotic interactions such as life stage, age, genotype, day length, temperature regimes, 

and water status (Harley et al. 1997; Hakola et al. 2003; Owen et al. 2002; Pio et al. 2005; 

Grabmer et al. 2006; Steinbrecher et al. 2009; Holopainen et al. 2010).  

Future work in understanding the effect of nitrogen on isoprene emission in 

mosses should focus on allocation trade-offs as well as on biotic interactions. Further 

work could deconstruct the belowground morphological traits, such as rhizoidal biomass, 

nitrogen in soil and nitrogen within moss tissue both above and belowground to 

determine their effects on isoprene emissions. It has been shown that trait variation and 

inter-population differences must have a genetic basis and are associated with metabolic 

tradeoffs (Hedderson et al. 2009). Additionally, research has found that bacterial and 

fungal taxa are involved in degrading isoprene in vascular plant systems. Vascular plants 

emit isoprene that is deposited on their surfaces and in surrounding soil; microbial 

communities subsequently degrade isoprene on vascular plant leaves and in nearby soils 

(Rasmussen  1970; Cleveland et al. 1998; Fall et al. 2000; Gray et al 2005; Holopainen et 

al. 2013, 2017; El Khawand et al. 2016; Johnston et al. 2017; Crombie et al. 2019). 
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Further work is required to assess if this holds true for non-vascular plants. Assessment 

must be made to estimate the number of bacterial and fungal taxa that can degrade 

isoprene in the soil or on the leaves of mosses. These interactions could regulate soil 

communities and affect chemical ecology both above and belowground. Isoprene 

emission and surface adsorption may play an additional role in water regulation by 

making the surface of the plants emitting isoprene and the surrounding soil much more 

hydrophilic than it otherwise would be.  This would aid in amelioration of both water and 

heat stress through reducing the internal/external moisture gradient to zero while 

providing water for evaporation buffering against rapid thermal changes.   

Another biotic interaction that might influence isoprene emission in mosses is 

herbivory. Isoprene has been shown to mediate plant-herbivore interaction in vascular 

plants (Laothawornkitkul et al. 2008). Whether isoprene emission deters or attracts 

herbivores in mosses is yet to be seen, as it has not been investigated before. In P. 

juniperinum, we have documented for the first time the destructive eating habits of the 

invasive generalist herbivore Noctua pronuba. Although mosses appear to have an 

extensive arsenal of chemical defenses, bryophyte herbivory by invertebrates is 

remarkably poorly characterized, creating a fundamental gap in our basic understanding 

of plant-animal interactions and the ecology of Earth’s earliest terrestrial plants. In our 

preliminary data collection, we have found N. pronuba larvae fed on both grass and moss 

tissue, however survival rates were highest for N. pronuba larvae feeding on the grass 

Poa annua.  Relative growth rate of the larvae was significantly influenced by food 

choice, and its attendant C: N ratio. Despite our relatively poor understanding of the role 
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of herbivory in bryophyte ecology, we found that mosses may be an important alternative 

food source for Noctua pronuba larvae, although strong moss species-specific effects 

may influence this plant-animal interaction. Allocation to resources such as isoprene may 

come at the expense of reproduction affecting optimal growth, fitness and chemical 

composition of other BVOCs within Polytrichum species. Future studies should focus on 

allocation of resources in ontogeny between different life stages and tissue type, above or 

belowground sources and sinks and nutrient demands between seasons and climates. In 

order to address isoprene emission and understand its multiple ecological functions and 

evolutionary implications, mosses provide the ideal study system and should be assessed 

as a model that may eventually be applied to both vascular and non-vascular plants.   

Our research testing the effects of nitrogen addition on mosses is timely and 

imperative as we measured isoprene emission increases in moss plants with nitrogen 

addition. Further, we found that isoprene emissions increased strongly with temperature, 

and we saw species level variation, which could feed into functional type modeling. 

Isoprene emission is expected to increase at a global level because of increased climate 

warming (Feng et al. 2019; Guidolotti et al. 2019). Mosses must be accounted for in 

climate modeling, as they take up 350 million hectares on land in 175 countries (Harenda 

et al. 2018). One of the primary mosses to occupy these areas is Polytrichum species, a 

high isoprene emitter among mosses, and the focus of this research. We must consider 

what we know about general model predictions of global average temperatures increase 

by 2-9℃ by the end of the 21st century, and an increase in nitrogen from anthropogenic 

sources, which now surpass a 4-fold increase of nitrogen available to organisms 
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(Christensen et al. 2007; Erwin 2009). Future work should focus on understanding how 

isoprene emission from mosses influences climate change. 

Both temperature and nitrogen deposition will influence the carbon/nitrogen ratio 

of leaf tissue in mosses, and we must consider the species level response to these 

changes. As nitrogen deposition increases and global temperatures rise, an increase in 

higher percentage of photosynthetically fixed carbon may be utilized as isoprene from 

Polytrichum species altering the total ecosystem budget of carbon and nitrogen, which up 

to now has been largely overlooked. We do not understand how these changes will affect 

increased isoprene emission from mosses.  

Carbon allocation could be used to supply primary processes such as growth 

either below or aboveground, translocation to growth of fungal or microbial populations, 

reproduction or as storage in the rhizoidal mat. If mosses are such great ecosystem 

engineers and they are translocating nutrients, recycling resources out of the atmosphere 

to include water and regulating flow of carbon and nitrogen, these mosses clonal 

integration provide several potential benefits to all ecosystems and as such this places 

them at the forefront of understanding why some plants emit isoprene and others do not.   

Future work should focus on analyzing leaf tissue nitrogen, rhizoidal mat nitrogen 

content and soil nitrogen content as mosses can retain nitrogen anywhere from three to 

ten years in their biomass (Eckstein 2000; Du et al. 2014). This will be greatly affected 

by an increase in temperature and increase in nitrogen deposition at the species level, and 

a more thorough evaluation needs to be carried out. This would be especially important to 

assess as mosses are important elements in forest carbon and nitrogen cycling because 
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they can utilize and access nitrogen from the atmosphere, their rhizoidal mat and soil. We 

conclude that some mosses will be at higher risk from global warming and nitrogen 

deposition at the species level. Mosses that emit isoprene might have an advantage and 

must be further investigated as the wider consequences of isoprene emission from mosses 

remain to be understood. This work highlights the importance of understanding how 

mosses shape local and global climate at a species level under enhanced temperature and 

nitrogen we can expect isoprene emission to increase from non-vascular plants. 
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