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ABSTRACT 

An abstract of the thesis of Radovan Kopecek for the Master of Science in 

Physics presented June 29, 1995. 

Title: Electrolysis of Titanium in Heavy Water 

The purpose of these studies was to determine if results similar to those of 

Fleischmann and Pons could be obtained using a titanium cathode instead of 

palladium in an electrolysis in a heavy water cell. The electrolyte consists of 

D20 and H2S04• Two experiments have been performed to examine the 

features of this electrolysis. As titanium shows the same properties to attract 

hydrogen, it seemed possible that excess heat could be produced. Radiation 

was monitored, and the surface of the titanium cathode was examined 



2 

before and after electrolysis for any changes in the morphology and 

composition, hoping to discover new elements that can be created only by 

fusion reactions in the cell, i.e. by transmutation. The heat and radiation 

effects have been evaluated in comparison to a control cell, using the same 

electrolyte and current. The only difference was the cathode, which was of 

platinum. 

It appears that excess heat is produced during electrolyses of heavy water 

with a titanium cathode. The amount of this excess heat was 750 cal in a 

one hour period, an energy gain of 44%. No significant emission of any of 

the products associated with a "classical" deuterium-deuterium fusion was 

observed during either experiment, i.e. heat but no radiation. Unexpected 

elements were found in both experiments, i.e. K. Cr, Fe, Ni and Zn. 

Remarkable is the fact that the new elements always occur very close in the 

periodic table to an impurity element, i.e. Cu and Zn. 
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INTRODUCTION 

A lot of effort and money have been invested into research to enable 

fusion-reactions at low temperatures. Steven Jones had been pursuing 

the goal of cold fusion since the early 1980's. Working for a number of 

years on muon- catalyzed fusion, Jones had then begun to look into the 

possibility of beefing up nuclear fusion through the use of extremely 

high pressures. 

But two other scientists (chemists rather than physicists) had suddenly 

moved into the scene and appeared to have changed the whole cold 

fusion story. Martin Fleischmann and Stanley Pons, using a small 

electrolysis cell with a palladium cathode and heavy water electrolyte, 

observed a large amount of heat produced by the cell. The project was 

worked out in the Pons family kitchen. In fact, the first experiments were 

fairly simple and done just for fun. To save money, Pons was employing 

his son Joey, who had recently graduated from high school, as an 

assistant. In these early experiments nothing spectacular happened and 
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the whole thing seemed to be going nowhere. Then, one night in 1989, 

the cell they were using grew so hot that it melted down. At that 

moment, Pons realized, the cell must be producing an enormous amount 

of energy. On that day, cold fusion became a reality, at least to 

Fleischmann and Pons. 

To understand the construction of Fleischmann and Pons cell, one must 

begin with that curious rare metal, palladium. This gray-white element 

has been around scientists' laboratory for almost 200 years and is used in 

a variety of electrical experiments and as a chemical catalyst. The most 

interesting property of palladium is its ability to absorb hydrogen. This 

property of hydrogen absorption has been known for a long time. In fact, 

scientists used palladium to store hydrogen isotopes. As the hydrogen 

atoms enter the palladium, they give up their electron to move around 

with the other electrons in the metal itself. The hydrogen nuclei then 

begin to pack together. But would this "passive" packing bring the 

nuclei that close together to produce fusion? The business of pumping 

hydrogen gas into palladium had been going on for quite some time and 

yet no one had spoken about nuclear fusion. What was needed was some 
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additional force to set the deuterium nuclei even closer together. Pons 

and Fleischmann speculated that the most practical way of forcing 

hydrogen atoms into palladium metal would be to use an electrolytic 

cell. 

In fact, their cell is a simple variant on an experiment that is performed 

in many school chemistry departments: 

j 1. + 

v 
'---

j H2 02 i 
0 

0 Q~ L 'LL anode 
cathode 11 .... I 0 

~+ 
H20 

Figure 1. Electrolysis of light water performed in many lectures. 

Water can be split into its base components by electrolysis. An ionic 

current is passed from one electrode to the other through the water itself. 

Hydrogen atoms transfer their electrons to oxygen, which becomes 

negatively charged. Each positively charged hydrogen nucleus is 

attracted toward the negative electrode. Once it reaches and sticks to the 
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surface of the electrode, it is able to attract an electron and tum back into 

a neutral hydrogen atom, then into a hydrogen molecule, which bubbles 

off as hydrogen gas. 

Fleischmann and Pons were attempting a variation on this basic 

experiment. They passed a current through heavy water so that, instead 

of the deuterium gas bubbling off at the negative electrode, the 

individual atoms would be driven into the metal itself. Pushing up the 

voltage on the cell itself increased the "electrical pressure" on the 

deuterium nuclei and crowded them even more tightly into the electrode. 

There are several characteristic "signatures" that indicate a nuclear 

reaction is going on. They were attempting to detect all of them, but for 

Fleischmann and Pons the most convincing argument was the heat being 

released. The degree of heat in the palladium electrode suggested a 

release of energy that was far higher than anything achievable in any 

chemical reaction. The problem with this was that the large amount of 

heat being generated in the cell should be accompanied by a huge 

radiation. There was plenty of heat but not enough nuclear radiation. 
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Later, two chemists at the University of Utah were to develop a theory to 

explain this process. They suggested that a form of nuclear fusion was 

occurring in which the energy released is given directly to the metal so 

that no nuclear radiation or neutrons are produced. In short they claimed 

that a totally clean form of nuclear energy was theoretically possible 

(D + D ~ 4He + Energy). M. Miles was recently performing many 

experiments to examine this matter 6). For experiments producing excess 

power, the measured 4He concentration was higher than the background 

level. If this is the only reaction that governs the process, then 

everything would be simple. There would be pure heat and no radiation. 

But the Utah group estimated that one in every 10 millions fusions 

would still go along the conventional path (e.g. D + D ~ 3He + n + 

Energy) and that means some nuclear radiation. Fleischmann and Pons 

claimed to detect neutrons and gamma rays during their experiments. 

Later, some scientific groups confirmed 5) some of their findings, others 

were to criticize IO) the way the measurements had been carried out and 

deny the detection of nuclear radiation. 
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At the present time a large number of experiments is going on to get 

clearer results in this field. The leading countries in this research are 

Russia, Japan, Italy and the USA. Various theories have been presented 

to explain the process, which can not be simply understood by quantum 

mechanics S). This is the main reason why most physicists do not want 

to deal with this matter. 

In the experiments reported here - electrolysis of titanium in heavy 

water- the aim was to produce results similar to those of Fleischmann 

and Pons using a titanium cathode. As titanium shows the same 

properties to attract hydrogen, excess heat should be produced. The other 

purposes of these studies were to monitor radiation and mainly to 

examine the titanium before and after electrolysis for any changes in the 

structure, hoping to discover new elements that can be only created by 

fusion reactions in the cell, i.e. by transmutation. 

The heat and radiation effects have been evaluated in comparison to a 

control cell, using the same current. This cell differs just slightly from 

the experimental cell. There are two possibilities to run this experiment: 



1) Experimental and control cell both have a platinum anode 

and a titanium cathode. The only difference is the electrolyte. 

D20 + H2S04 is used in the experimental cell, H20 + H2S04 in 

the control. 

2) The electrolyte is in both cells the same as above for the 

experimental. The difference in this kind of experiment is the 

cathode consisting of titanium in the experimental, platinum in the 

control. The anodes still consist of platinum. 

7 

In both cases, excess heat and radiation should be detected in the 

experimental cell. The second possibility has been chosen for the two 

following experiments. 
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DESCRIPTION OF THE EXPERIMENTS 

Two experiments have been performed, using an experimental cell 

(D cell) with platinum anode and titanium cathode and a control cell 

(C cell) with only platinum for both electrodes. The electrolyte used in 

both cells was D20 + H2S04. The concentration of the acid in the 

electrolyte in the second experiment differs from the first one, for some 

reasons explained later. The sulfuric acid has the purpose to ionize in the 

heavy water. This makes it possible to use a lower cell voltage. 

For the collection of the temperature data, copper-constantan 

thermocouples were used on the outside of both cells. For possible 

neutron and gamma ray detection, thermoluminescent dosimeters 

(TLDs) from the Radiation Detection Company were used along with 

two Geiger-Mueller counters (Pasco Scientific, Model: SE 7985). For 

the TLDs a combination of 6LiF and 7LiF chips has been used. The 

technical data for these devices can be found in the appendix. A constant 

current source was used and cell voltages were monitored. The titanium 
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cathode before and after the experiment was examined by SEM 

(scanning electron microscope). All micro graphs and EDS (energy 

dispersive spectrometer) spectra were taken using an ISI-SS40 SEM 

equipped with LINK ANlOOOO EDS. 

- ' ·+ 

- 11 + 

seal (Apiezon Q) 
electrode holder 

electrolyte 

platinum anode 

- ' ·+ 

platinum cathode 

Figure 2. Schematic diagram showing components of electrolytic 
cells and circuit of experimental (D) and control ( C) cell. 
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FIRST EXPERI:MENT 

The cells consist of small glass cylinders (about 25 ml volume) and 

Teflon electrode holders. The electrolyte contains heavy water with 0.06 

mol fraction sulfuric acid. 99.99+% pure titanium from Johnson Matthey 

Company was used as a cathode in the experimental cell (stock number: 

13975, lot number: G07D10). The chemical analysis determination of 

impurities can be found in the appendix. The cathode in the control and 

the anodes in both cells were made from Johnson Matthey 99.9% pure 

(stock# 00261, lot# B24E24) platinum foil of 0.30 mm thickness. The 

areas of both cathodes have been calculated to get a current density of 2 

A/cm2 by a given current of 0.75 A. Because of the small thickness of 

the titanium foil (0.25 mm), the surface area of the edges was neglected 

in the calculations. Using Teflon tape, the rest of the cathode area was 

covered to isolate it from electrolysis. A recombination catalyst (20% Pt 

on Carbon from Protech Company) was used in both cells to avoid a 

significant loss of electrolyte and to keep it at a stable pH. For the same 
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reason both cells were sealed with Apiezon Q (James G. Biddle 

Company). The exact data of this seal are unknown (compounds, 

specific heat) but its used only at the outside of the cells. 

recombination 
catalyst (C+Pt) 

Teflon tape 

polybag with 
two Li chips 

cathode 
(titanium) 

anode 
(platinum) 

glass 

seal 
(Apiezon Q) 

electrode holder 
(Teflon) 

electrolyte level 

,, 1 1 cathode 
(titanium) 

r---- wire through the 
electrode holder 
(platinum) 
anode ~ 
(platinum)~ 

Figure 3. Electrolytic cell (D cell) with a platinum anode and a 
titanium cathode. C cell has a platinum cathode. 

The electrolytic cells were connected in series (Figure 2.) and a constant 

current source supplied them with 0. 75 A. The cell voltages have been 
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recorded by a strip chart recorder. The first experiment was expected to 

run for more than two days, but after 21 hours and 4 7 minutes the 

concentration of the sulfuric acid in the electrolyte became so high that it 

reacted strongly with the Ti cathode and the cathode broke in two halves 

at the connection with the Teflon tape. The total loss of electrolyte in 

both cells was the same, about 2.5 ml. At the beginning each cell 

contained 9 ml. This loss caused a decrease in the pH of 0.5. Therefore 

the concentration of the acid had to be lowered in the next experiment to 

make it run for a longer time. 
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Radiation 

Each cell contained two LiF chips (Li-6 and Li-7) sealed in a polybag to 

protect them from the electrolyte. The background was taken by an 

additional pair outside of the cells. Li-6 is sensitive to betas, x-rays, 

gammas and neutrons while Li-7 is sensitive to all except neutrons. 

Using this feature allows design of a dosimeter which can detect neutron 

doses by subtraction ofLi-7 readings from Li-6 readings. The chips were 

returned to the supplier for analysis after each experiment. 

To understand the physical process of thermoluminescence in these 

chips, a simple model can be considered. A primary stimulation event 

(alpha, beta, gamma or neutron for Li-6) excites an electron out of the 

valence band of the solid, producing a hole in the valence band and a 

electron in the conduction band, as shown in Figure 4. 12
) 



Conduction band 

Electron trap 

Xray Hole trap 

·~ 0 Valence band 

Conduction band 

Heat 
Electron trap 

hv 
------- -> 

Hole trap 

Valence band 

Figure 4. Simple schematic band model for TL (trapping and 
detrapping). 

14 

Both electron and hole wander in their respective bands until they each 

find a localized defect where they become trapped. Additional energy is 

required for either the electron or a hole to be detrapped. This can be 

done, as shown in Figure 4 , by heating. The free electron then wanders 
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in the conduction band until it is able to recombine with a hole. Light is 

given off during the recombination process. This light is the 

thermoluminescence (TL), which may be recorded as a function of 

temperature. 

TL 

: T-195 °C 

Temperature 

Figure 5. TL glow peak for 6LiF and 7LiF. 

The maximum intensity for both Li chips occurs at a temperature of 

195 °C (Appendix). This property is good for the experiments, where the 

expected heat in the cells is about 70 °C maximum. This means that the 

electrons will not get detrapped during the experiment itself. The 

specifics of the trapping and recombination processes can be complex, 
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depending on the amount of retrapping occurring at the original trap, the 

presence of other traps, and nonluminescent recombination paths. The 

second important feature for these experiments is that the both chips 

have identical tissue-equivalent response to photons but very different 

response to both thermal and fast neutrons (thermal: eV range, fast: MeV 

range) 4). 

The results from the Radiation Detection Company for experiment one 

are given in Table 1. 

set TLD Light Output u'Cs eq mrem 

Bkgd 600 10 8 

700 13 8 

c 600 11 8 

700 0 0 

D 600 0 0 

700 0 0 

Table 1. Readings obtained from the LiF chips. 
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There have been no significant readings out of the chips. Net doses 

under 10 mrem Cs equivalent are not statistically significant. For this 

reason longer experiments are desirable. Next time also Geiger-Mueller 

counters will be used to measure possible gamma rays and other 

radiation. 

What seems very strange is that the counts for the 7LiF chips for both 

cells and 6LiF for the D cell are even under the background. This is 

because the cells were surrounded by lead bricks, and the background 

radiation could not reach them. This was improved in the second 

experiment. 
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Temperature 

Each component in the D cell was slightly heavier than its counterpart in 

the C cell in order to exclude mistakes on heat output from the two cells. 

The temperature during this experiment was determined with only one 

thermocouple on the outside of each cell and recorded by a strip chart 

recorder. Because of the very unstable voltage (bubbles at the cathode) 

in each cell it was impossible to calculate the power input into the cells. 

This makes temperature calculations senseless. For the next experiment 

six thermocouples were used for each cell and the voltage was stabilized. 



+ 
electrolyte level 

glass 

Teflon tape 

bubbles 

anode 

cathode 

electrolyte 

voltage 

time 

Figure 6. Geometry of bubble formation and the resulting instable 
voltage. 
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The accumulation of the bubbles was due to the Teflon coverage. 

The ref ore the resistance between the cathode and the anode changed 
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drastically with time, depending on the amount of bubbles surrounding 

the titanium cathode. 

As is well known, the resistance of any conductor is proportional 

directly to its length and inversely to its cross-sectional area, namely, 

l 
R=pA 

where R is the resistance in ohms, 1 the length in centimeters, and A the 

area in square centimeters 1
). The proportionally constant p, termed the 

specific resistance, is the resistance of a conductor 1 cm in length and 

width a cross-sectional area of 1 cm2
• The value of p depends on and is 

characteristic of the nature of the conductor. The conductance L is the 

reciprocal value ofR: 

L = ~ = ~ ( ;) = Ls(;) 

Ls is the specific conductance of the conductor. Of greater significance is 

the equivalent conductance A which is defined as follows 

A= 1000 L/C 

where C is the concentration of a solution in gram equivalents per liter1
). 

The equivalent conductance A also varies with temperature 2
). For most 
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pure liquid electrolytes, the experimental log A versus 1/T plots are 

essentially linear. 

This implies the usual exponential dependence of a transport property 

upon temperature 

A= J\oexp(-EA/RT) 

where EA is the activation energy and R the Avogadro-constant. Out of 

these equations the resistance is proportional to 

R ~ { exp(l/T)} {l/A} 

Out of this, the unstable voltage is explainable. During bubble formation 

the reduction in area of the cathode increases the resistance and 

therefore the voltage increases. When a bubble disappears the resistance 

drops rapidly. The temperature dependence can be observed in the 

second experiment. As the temperature in the cell increases, the 

resistance gets lower, and the voltage drops slowly. This can be observed 

in Figure 25. 
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Morphology and microanalyses of the Ti cathode 

The cathode was ultrasonically cleaned in deionized water bath several 

times, each for five minutes. The same procedure was done with the 

specimen holder (Al). Then the electrode was attached to the SEM 

specimen holder with conducive tape. The thin window of the EDS 

detector was in place, thus allowing detection of atomic number six and 

above. The sample was tilted 45 degrees along its longitudinal axis for 

efficient X-ray detection of the surface relief. 

titanium cathode 

y 

signal processing '" . : 

< I Si-crystal ()<~ ~ ~=:·:·if: 

x-rays 

conductive tape 

platinum foil 

platinum wire 

electron beam 

specimen holder 
tilted by 45° 

specimen 
chamber 

Figure 7. Specimen holder with a titanium cathode and geometry of 
the energy dispersive spectrometry (EDS). 



.A..nalysis before electrolysis: 

Figure 8. 

.,,...,. 9 f-i 1 o--nre · 
··~~ . 

-

Titanium cathode before electrolysis. 
(working distance 45 mm, no tilt, magnification 1 lx) 

Lower end of the titanium cathode before electrolysis . 
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< • 0 5. 160 k e:U 
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10.3 > 
1 P+ cts 

10.3 > 
169 cts 

Figure I 0. EDS spectra of areas marked in Figure 9. 
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Figure 11. EDS spectra of spots marked in Figure 9. 
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From the spectra it can be seen that there is no significant impurity on 

the cathode. Titanium is the only element to be detected (compare also 

the certificate of analyses from Johnson and Matthey Catalog Company 

in the appendix) with small Fe and Cu peaks. During the whole 

examination of the titanium cathode before electrolysis similar spectra 

were detected. Fe is the largest impurity (6.60 ppm), Cu has a possible 

source from spot welding. Although the thin window was in place no C 

or 0 was detectable. It is possible that is was frozen during the 

examinations. 

The three most prominent peaks that can be seen on the spectra is the Ka 

line at 4.510 keV and the K~ at 4.931 keV of titanium and a Si escape 

peak due to the Si detector. This is the Ti Ka line shifted by the Si 

energy of 1.740 keV 14
), i.e. at 2.770 keV. 
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Analyses after electrolysis for 22 hours: 

After the electrolysis the cathode was so thin that it was impossible to 

clean it ultrasonically without destroying it. The only cleaning possible 

was to wash it gently several times in deionized water. The cleaned 

electrode was again placed on a SEM electrode holder, this time just 

covered with aluminum foil taped to the stub to avoid any damage. 

Possible elements on the cathode due to deposition from cell 

components or from the electrolyte: 

- Pt (anodes and recombination catalyst) 

- Cu (due to spot welding) 

- C (recombination catalyst) 

- Fe (the strongest detectable impurity of the Ti cathode ( 6.6 ppm)) 

-Al (glass) 

- Ca (glass) 

Al and Cu characteristic x-rays might also arise from the stub to which 

the Ti cathode was attached in the SEM. 



Figure 12. Titanium cathode after electrolysis. (same area 
as in Figure 8) 
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The right part of the cathode is the part that has been uncovered during 
Q ~ ~ ~ 

the electrolysis. It v;as attacked by the acid at temperatures above room 

temperature and became transparent. (An additional experiment has been 

performed with a piece of Ti in the same electrolyte bv temperature of 
- );. .I ... 

1'A 
...;V 

O/""'! .,...., • , 1 • • • 
? · H"tT,01'"1. "'w~tnort p1t:i-~t.,..-n.tvs1s +ha 
'-"· ..L.Jv~11 ..i\i...l u~ '-'.i'-'V~l.v:...t r tvll""' 

. . . ' T~ t1tamum became transparent J· i he 

"' ~ 1 '"t "JI: • ~· ..,,. ? covered. part stay ea almost the same as can be seen m .t igure 1-. 



1=11·oure 13 .... 0 ....... The same edge as in Figure 9 after the electrolysis with 
almost the same magnification. 
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There is a change in shape but the spectra of the same regions are almost 

h B ..c.. • • • ' h 1 • "'r'" ... "" t e same. ; ut au.er a closer exammat10n near the ... mes m .r 1gure lL 

interesting formations occurred. 



.,,....... "4 H • 11,.. ! .... lg!A-.1.e ..... 

F~ ~-. ; .::; "'- lgure ,);.__.'. 

Electrode after electrolysis; area near the big hole . 
(wd 10 mm, tilt 45°, mag. 30x) 

Region (a) from area in Figure 14. 
fT•; 1Q.. t"hJ." 0 

" 1160 \ \.wa .1. mm, 11 .. ,...; , ma.g. i. 1 X; 
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< .0 5.160 keV 
FS= 2K ch 268= 
MEM1:r1q2099513 (spot A) 
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IT 

1 l \ f ~ IUJlJU 
< .O 5.160 keV 
FS= 2K ch 268= 
MEM1:r1qq189515 (spot 8) 

" 

" 

10.3 ) 
268 cts: 

10.3 ) 
311 cts 

Figure 16. EDS spectra from region (a). (Figure 15) 
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The unexpected element in this area is nickel. The same element occurs 

also in many other regions for example in region (b ). 

Figure 17. Region (b) from area in Figure 14. 
(wd 1_0 mm, tilt 45°, mag. 1160x) 
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C' 

< • D Sw 160 t::e1.) 
FS= 2K 268= 
~1Er11ir16'!f 1s~3516 C:a.rea 

~L..i~~J:.#"~,;)J-~ 
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p; ,..,.,~... 1 8 
.i.. 1~u.1e l • EDS spectrum from region (b ) . 
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316 cts: 

Figure 18. EDS spectra from region (b ). (continued) 
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Ni has a very strong peak even when the area mode is used. Fe is always 

present. 



Figure 19. Region (c) of area marked in Figure 14. 
(wd 10 mm, tilt 45°, mag. 12800x) 

~ ,< 

ill 

i< "CJ 
FS= 2K 
t~Et11 : r2tf 220 St533 

r ~ .., t f 

:~ j 
J~#.~~m~ 41' ~ ~ ... ~~ 

• •1 kC•i) 
z:::, 1 bl,.. ··-.:...~o= -''"' .;::t; .. _. 

.. , (ar-ea i 

L 

~ 

10#3 > 
259 e:t.s 
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Figure 20. EDS spectra from region (c). (continued) 
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Figure 20. EDS spectra from region (c). (continued) 
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Zn and Cu have been found in this region. Cu has a possible source from 

spot welding but Zn was unexpected. 

There have been many similar areas like these where Ni and Zn was 

found. Ni was always in combination with Fe, Zn with Cu. 
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Results from the first experiment 

The radiation and temperature measurements have to be improved in the 

second experiment. The experiment has to last longer (exposure for the 

TLD chips), cell voltages have to be stabilized, more thermocouples will 

be used and the data will be recorded with computers. 

For the morphology and microanalysis of the Ti cathode, the 

concentration of the electrolyte will be lowered. This makes it possible 

to clean the cathode after the experiment ultrasonically in deionised 

water. In this experiment Ni, Fe and Zn have been found as unexpected 

elements on the titanium cathode. Ni occurred in combination with Fe, 

Zn with Cu. It is unclear if Fe is a result of contamination or occurs in a 

larger quantity as before electrolysis. The strong palladium peak in 

Figure 18 was the only large location of this element. No other region 

was found. 
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SECOND EXPERIMENT 

Experience from the first experiment was helpful to run the second one 

for the time desired. For this reason the concentration of the sulfuric acid 

had to be lowered to 0.01 mol fraction. Because of the high loss of the 

electrolyte in the previous experiment 15 ml were used in each cell and 

the cells were sealed better than before. The total time for this 

electrolysis was 54 hours. It was also possible to stabilize the voltages 

in each cell: therefore the temperature calculation was doable. Six 

thermocouples instead of one were used. 

The electrolytic cells were connected in series again supplied by 0.55A. 

The current was also decreased to avoid a large loss of electrolyte. For 

this reason the area of the cathodes had to be decreased to obtain still a 

current density of 2 A/cm2
. The cell voltages and all temperatures were 

monitored continuously. 

In addition to the chips, two Geiger-Mueller counters were used to 

measure the radiation of both cells. Background measurements were 
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done after the experiment. The data from the Geiger-Mueller counters 

were also collected with computers. 
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Temperature 

Every component of the D cell was made heavier for the same reason as 

in the first experiment. Six thermocouples were used on the outside of 

each cell, one thermocouple was collecting the room temperature. The 

placement for each thermocouple can be seen below. 

® 
room temperature 

(!) 

Figure 21. Placement of the six thermocouples on the outside of the 
cells. (D and C cell) 
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The measurement of temperature was performed for 33 hours, collecting 

data every 5 seconds. After 23 hours the C cell was taken out of the 

circuit (too much loss of electrolyte; the difference between D and C cell 

was 1.5 ml) but for the D cell the collection continued. For the 

evaluation of the data, the average of all thermocouples for each cell was 

taken (data are listed in the appendix) . The standard deviation of the 

average just shows how homogeneous the temperature distribution was 

and does not play any important role in the evaluation because each 

thermocouple was showing a higher temperature in the D cell almost 

without exception. With given voltage, the power input was calculated 

as P = I *V. The graphs for temperature and power input during 33 

hours can be seen below: 
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Figure 22. Temperature in D and C cells during the whole experiment. 
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Figure 23. Power input for D and C cells during the whole experiment. 
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As we can see, the average temperature of the D cell was higher all the 

time although the power input was lower for almost 18 hours. We will 

look at the beginning of those graphs more precisely. 
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Figure 24. Temperature in D and C cells during the first hour. 
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Figure 25. Power input for D and C cells during the first hour. 
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Above we see the temperatures and power input for both cells during the 

first hour. The decrease of the power input during the experiment despite 

the constant current is due to the increasing temperature of the cells. This 

means that the resistance is decreasing (theory in experiment 1). The 

temperature in the D cell is higher from the beginning on. After 22 

minutes the difference is 4 °C. The power input into the D cell is lower 

all the time. The difference is up to 0.5 W. This can be seen more clearly 

when the temperatures and power inputs from both cells are subtracted 

(D-C), as shown in Figure 26. 

Difference in temperature and power input 
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' 
-1.0-'-~---~~-'-~~..__~__....~~-'-~~---~---~~--~--'~~__._~~---~__, 
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Figure 26. Difference in temperature and power input during the first 
hour. 
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The question is if the difference in temperature does not result just from 

the larger electrolyte loss in the C cell and from the heat of formation of 

titanium hydride. An estimation calculation can be carried out. 

Conservative assumptions are used. 

The three terms that contribute to the formation of heat in the D cell are 

the formation of titanium deuteride, the power input and possibly the 

heat due to cold fusion. The C cell has just the second term. The heat 

loss in both cells is due to the heat transferred to the surroundings and to 

evaporation of electrolyte (MI vap(D20) ~ 10.5 kcal/mole) or loss of the 

recombination enthalpy of D2 + 112 0 2 ~ D20, (~H ~ 57 kcal/mole) on 

the catalyst. Since the last term is larger, it is employed in the 

calculations. The following equations give the rate of enthalpy change in 

each cell: 

D cell: dHof dt = H c.F/dt + H TiD/dt + V nl - H vap (D) /dt - al\ TD 

C cell: dHc/dt = V cl - Hvap (C) /dt - al\ Tc , 

where Hn is the enthalpy content of the cell, 

H c.F. is the enthalpy released by cold fusion, 



H vap (D) is the recombination enthalpy lost by D2 and 0 2 escape 

from the D cell, 

HTiD is the enthalpy from the formation of the TiD, 

V 0 is the cell voltage of the D cell, 

I is the current through each cell, 

a is the rate of heat loss by the cell to its surroundings, and 

~ T 0 is the difference in temperature between the cell and the 

surrounding. 

The terms with subscript C have the same meaning for the C cell. 
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At steady state both equations can be set equal to 0. Since the cells are 

the same the second equation can be solved for a and plugged into the 

first one. 

=>H C.F/dt + H mJdt +vol - Hvap(D)/dt - ~ T DI~ T c(V cl - Hvap(C)/dt) = 0 

Out of this equation it can be calculated if there is any positive "cold 

fusion" term. For E TiD and E vap some estimation calculations have to be 

done. After 45 minutes the temperature in both cells reaches steady state. 



49 

~T0 is 20.6 °C and ~Tc amounts to 16.5 °C. Therefore the quotient is 

1.25. If we consider our calculations for one hour steady state, the 

energy input into the D and C cell is: 

V0 1t = 7200 J = 1720 cal 

V cit= 9000 J = 2150 cal 

The electrolyte loss in the D cell was 1.5 ml during 33 hours, i.e. 0.045 

ml per 1 hour or 2.5 * 10-3 mol D20. If we consider the worst case that 

the D20 split and escaped as follows: 

D 20 ~ 1/2 02t + D2t 

Then the enthalpy for splitting is approximately 57,000 cal/mol 15
). 

With this information the enthalpy that was carried away can be 

calculated to be: 

H vap (D) = 57 * 103 cal/mol * 2.5 * 10-3 mol = 142.5 cal . 

In the C cell the loss during the 3 3 hours amounted to 3 ml 

~ H vap (C) = 57 * 103 cal/mol * 5 * 10-3 mol = 285 cal 
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The last missing enthalpy in our problem is the enthalpy that is being 

released in the D cell during the formation of the titanium hydride. Some 

estimation calculations can be carried out, again with consideration of 

the worst case. 

The free enthalpy is approximately given by ~H = -29.5 kcal/mole.2
) 

This means this is an exothermic reaction. This is the worst case when 

the titanium is "loaded" completely. The mass of the cathode at the 

beginning of the experiment was 0.0625 g. We assume that the "loading" 

lasts the whole experiment and is linear. After one hour, 3.95*10-5 mole 

Ti is converted into TiD2. 

=> HTiD = 29.5 kcal/mole* 3.95*10-5 mole= 1.17 cal 

We can put all energies that have been estimated into our equation: 

Hc.F.+ 1.17 cal+ 1720 cal - 142.5 cal - 1.25 * (2150 cal - 285 cal ) = 0 

=> Hc.F. = 751.15 cal 

We can see that the enthalpy for TiD formation is negligible. This means 

that we have at least 7 50 cal energy per one hour released out off the D 

cell that can not be explained, an energy gain of 44% (750/1720). 
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Radiation 

To prevent the Li chips from contact with the electrolyte, the chips were 

sealed into two polybags. In addition to the chips, two Geiger-Mueller 

counters placed behind each cell were used for the detection of radiation. 

computer: 
CPU 80486 
DX2/66MHz 

GM-counter 1 GM-counter 2 

computer: 
CPU 80286 
lOMHz 

Figure 27. Placement of the Geiger-Mueller counters. (view from top) 
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The number of counts have been monitored separately every 3 minutes 

with two computers for a total time of 63 hours which includes time 

when both cells were disconnected from the circuit. Background 

measurements have been taken for 45 hours after the experiment. The 

table for these measurements can be found in the appendix. Average and 

standard deviation have been calculated for both measurements, 

Table 2. 

counts per h countl{D) count2(C) countl (back) count2(back) 

average 640 617 614 597 

st. dev. 28 32 28 28 

Table 2. Average in counts per hour and standard deviation for 
experimental radiation data and background for each cell. 

There is a difference of 23 counts per hour during the experiment 

between the D and C cell, the D cell being higher. But also the counts 

during the background measurements shows a remarkable difference of 

1 7 counts. The other interesting thing is that the count rate in the C cell 

during the experiment is also higher than the background taken with the 
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same counter. This suggests that the C cell also produces a small amount 

of radiation during electrolysis. 

The background from the corresponding counter was subtracted from 

each data point and plotted in a graph with a linear trendline. 

Radiation in dependence of the background 
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-60 

time (h) 

• D-cell 

• C-cell 
-unear (D-cell) 
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Figure 28. Radiation from each cell. (background subtracted) 

Stronger radiation in the D cell is clearly visible. The minimal and 

maximal counts for this measurement (Table 3) also underline this result. 



D cell C cell 

maximum 150 91 

minimum -40 - 54 

Table 3. Minimal and maximal count rates per hour in both cells 
minus the background. 
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For a quantitative consideration, counts per minute have been calculated 

for every data series (1-5 experiment; 6-8 background). 

Counts per minute in the D and C cell 

11 
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e 
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measurement# 

Figure 29. Counts per minute for each cell and for the background. 
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Each bar gives the average number for a period of 840 minutes from 

beginning to end of the experiment and for 900 minutes after the power 

was turned of. 

The average counts per minute for the background was calculated and 

subtracted. 

0.6 

0.5 

0.4 c e 
~ 0.3 
c 
0 
:l 
CJ 0.2 

0.1 

0 

Counts per minute in both cells after subtracting the background 

2 3 4 5 

maesurement # 

•count/m D 

•count/m C 

Figure 30. Counts per minute for each cell. (background subtracted) 

Each measurement number represents the total counts recorded for each 

cell over a period of 840 minutes. Only in measurement #4 a higher 

count rate is visible. The average count rate was calculated. 



D cell C cell 

average counts per minute 0.42 0.31 

standard deviation 0.12 0.14 

Table 4. Average count rate per minute for each cell. (background 
subtracted) 
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The difference between D and C cell amount to 0.11 counts per minute. 

This means that in 9 minutes there is one event more expected in the D 

cell. This could be alpha, beta or gamma radiation. 

Because the window from the detector can detect only a small part of the 

radiation that is emitted, other rough estimations can be done. The radius 

of the window is 0.5 cm, the distance of the cell from the detector 3 cm. 

With this, the factor was calculated to x = 143. This means 143 counts 

per 9 minutes or roughly 16 counts per minute more than in the C cell. 

The standard deviation is unfortunately too high to be sure about this 

radiation data. The readings out of the chips are for some reason still 

under the minimum output for a significant result. 
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set TLD Light Output u
1Cs eq mrem 

c 600 12 7 

700 6 4 

D 600 10 6 

700 3 2 

Table 5. Readings out of the TL chips for the second experiment. 

The neutron dose would be calculated by subtracting the Li-7 chip 137 Cs 

equivalent from the Li-6 chip 137 Cs equivalent and multiplying the 

difference by a factor which depends on the neutron energy spectrum. 

The difference in the D cell is 1 mrem more compared to the C cell. But 

these small exposures do not have any significance. It is suggested to run 

this experiment with the same devices for even a longer time because of 

this possible small effect to be measured. If it is possible the experiment 

should be performed for at least a week. 
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Morphology and microanalyses of the Ti cathode 

The electrode was again untrasonically cleaned in deionised water bath 

several times (five minutes each time). The same procedure was done 

with the specimen holder again. The electrode was attached to the holder 

with a conductive tape. The thin window was in place and the cathode 

was tilted again for all EDS spectra. 

Analysis before electrolyses: 

Figure 31. Side 1 of the titanium cathode before electrolysis. 
(wd 38 mm, tilt 45°, mag. 20x) 



I 1

4 

Figure 32. Bottom edge of side 1 before electrolysis. 
(wd 10 mm, tilt 45°, mag. 74x) 
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The following 12 spectra are the EDS spectra from Figure 32.. The 

acceleration voltage was 20 keV. The only elements detected are 

elements which are expected due to contamination. Al from the 

specimen holder, Si can be found everywhere, Cu from spot welding, S 

and Fe are also not very unusual. 
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Figure 33. EDS spectra of spots and areas marked in Figure 32. 
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Figure 33. EDS spectra of spots and areas marked in Figure 32. 
(continued) 
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Figure 33. EDS spectra of spots and areas marked in Figure 32. 
(continued) 
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Figure 33. EDS spectra of spots and areas marked in Figure 32. 
(continued) 
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Figure 33. EDS spectra of spots and areas marked in Figure 32. 
(continued) 

64 



< • 0 5. 160 k eU 
FS= 2K ch 268= 
1'1EM1:rn9~119511 (spot H) 

T 

< • 0 5. 160 keU 
FS= 2K ch 268= 
MEM1:rn9~119512 <area q) 

10.3 > 
137 cts 

10.3 > 
226 cts 

Figure 33. EDS spectra of spots and areas marked in Figure 32. 
(continued) 
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Figure 36. Side 2 of the titanium cathode before electrolysis. 
(wd 38 mm, tilt 45°, mag. 19x) 

...,...,. ,._,,...., T.,. • h r- •d 2 k • • .,,....,. 3/' r igure :; 1. upper ng t corner or s1 e mar ed m r igure o. 
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c c 

< • 0 5. 1 60 I< e:U 10 • 3 > 
FS= 2K ch 268= 239 c:t.s: 
1'£M1:rn2Jq20527 <are:a 1) 

c c 

< • 0 5. 1 60 k e:U 1 0 • 3 > 
FS= 2K ch 268= 250 cts: 
MEM1:rn23q2052'+ <area 2) 

Figure 38. EDS spectra of areas marked in Figure 37. 
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fu"1alvses after electrolvsis of the titanium cathode for 50.5 hours r,more 
~ ~ 

than 2 times longer that in the first experiment): 

After electrolysis the cathode was ultrasonically cleaned in deionised 

water bath several times, five minutes each time. This cleaning was 

possible, because the electrolyte did not attack the cathode as strongly as 

in the first experiment. 

'r'!• 39 !.'"'I.~ 2 tt ~ 1 • ( 1 • t1gure . . :s1ae a.uer electro1ys1s \same area ana mag. as m 
Figure 36). (•.vd 38, tilt 45°, mag. 19x) 
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The areas marked in Figure 39. (a-g) are examined more precisely in the 

follff'vVing. 

F ~1• O'"'u.1rP 4, Q, ...... 0 • .._., • Region (a) from Figure 39 . 
( .. ~ 1 1 0 ' +·1 ... 4.:::: 0 260) wa l mm, dL . ..,, , mag. 
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C ~ F 

< .0 5.160 1<e:U 
FS= 2K ch 268= 
MEM1:rndq27952 (spot A) 

T 

c c t 

< • 0 5. 1 60 k eU 
FS= 21< ch 268= 
PEM1:rnd~2795q (spot 8) 

10.3 > 
216 cts 

10.3 > 
285 cts 

Figure 42. EDS spectra of spots marked in Figure 41. 
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< .O 5.160 keU 
FS= 2K ch 268= 
MEM1:rnd~27957 <sPot C) 
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c c 

< .0 5.160 keU 
FS= 2K ch 268= 
MEM1:rnd~27958 (spot 0) 

10.3 > 
271 e:ts 

10.3 > 
3'f1 cts 

Figure 42. EDS spectra of spots marked in Figure 41. (continued) 
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Figure 43. Higher magnification of Figure 41. 
(wd 10 mm, tilt 45°, mag. 1770x) 
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Figure 44. 
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< • 0 5. 1 60 k e:U 
FS= 2K ch 268= 
f'EM1:rneq279't11 (spot 8) 

10.3 ) 
282 cts 

c 
ll 

10.3 > 
210 cts: 

EDS spectra of spots marked in Figure 43. 
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'T"'l1 ' • • • 1 ,.. , • • • ~ 1 1 . l ne new elements wn1ch can oe touna m these regmns atter e ectro vs1s 
~ ~ 

are Zn and Cr. Zn has been already found in the first experiment but Cr 

is a new finding. 

Figure 45. Higher magnification of Figure 40. (Region II) 
(wd 10 mm, tilt 45°, mag. 1770x) 



K 
T 

< .O 5.160 keU 
FS= 2K ch 268= 
l-EM1:rnf~279S1q (spot A) 

10.3 ) 
q?o cts 

Figure 46. EDS spectrum of spot labeled in Figure 45. 

K and Ca have very strong peeks in this region. Also Cr can be located. 
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Figure 47. 

Figure 48. 

Area (b) marked in Figure 39. 
(wd 10, tilt 45°, mag. 230x) 
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< • 0 5. 1 60 k e:lJ 
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MEM1:rnkq299521 (spot) 

10.3 ) 
115 e:ts 
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Figure 48. EDS spectra of regions marked in Figure 4 7. (continued) 
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p, 
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< • 0 5. 160 k e:U 
FS= 2K ch 268= 
11EM1:rnl~299522 (spot A) 

T 
i 

F 

< .O 5.160 ke:U 
FS= 2K ch 268= 
11EM1:rrva~299525 <spot 8) 

10.3 > 
339 cts 

p 

10.3 > 
652 cts 

Figure 50. EDS spectra of spots marked in Figure 49. 
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T 
i 

< -.0 5.080 keU 
FS= 2K ch 26'+= 
1'£Ml:rn1q29952q (spot C) 

10.2 > 
'+'+0 cts 

Figure 50. EDS spectrum of spot marked in Figure 49. (continued) 
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The Pt originated from the anode. The titanium cathode got covered by 

platinum. There are many similar "balls" all over the cathode. What is 

very surprising is the strong Zn and Cr peak. Also Ni can be located in 

this area. 
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c 
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10.2 > 
62 cts 

Figure 52. EDS spectra of spots marked in Figure 51. 
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The strongest Cr peak can be found in this area. Ca and K, Zn and Cu are 

present again. 



Figure 53. 
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< -.O 5.080 keU 
FS= 2K ch 26q= 
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10.2 > 
266 cts 

Figure 54. EDS spectra of spots marked in Figure 53. (continued) 
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FS= 2K 
11EM1:rnolf299533 

T 

f F C 

26'+= 282 

Figure 54. EDS spectrum of spot marked in Figure 53. 
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The same elements occur in this region again. Only the strength of the 

peaks is different. Kand Ca are the strongest in this area. 



Figure 55. 
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< -.0 5.080 keV 
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MEM1:rnp50q9537 (spot 8) 
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FS= 2K ch 26q= 
11EM1:rnp50q9538 (spot C) 
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'l 

10.2 > 
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p 
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10.2 > 
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Figure 56. EDS spectra of spots marked in Figure 55. (continued) 

The Cu-Zn "pair" has the strongest peak in this area. Cr is also present. 
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Figure 57. 
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Figure 58. EDS spectra of spots marked in Figure 57. (continued) 
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ch 26lf= 500 
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Figure 58. EDS spectrum of spot marked in Figure 57. 
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Cr and Fe peaks are very strong in this area. They are even stronger than 

the Ti peak. 
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The Cr, Fe, Ni, Zn and K impurities listed in the analysis provided by the 

supplier of the Ti cathode material would be an obvious source for these 

elements which are detected in EDS analysis. The cathode was made 

from 99.99+% pure titanium (Johnson Matthey, stock#: 13975, lot#: 

G07D10). The chemical analysis of the titanium can be found in the 

appendix. 

The concentrations of the elements in question in the titanium before 

electrolysis (in ppm) were: 

Fe 6.600 

Cr 1.150 

Ni 0.060 

Zn <0.035 

K <0.030 

Table 6. Concentrations of some impurities in the titanium cathode 
before electrolysis. 

As iron and chromium show the highest contaminations, some 

calculations will be done with these two elements. The assumption is 
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that these elements occur homogeneously throughout the titanium before 

electrolysis. 

The volume of the titanium cathode in the second experiment amounted 

to 0.0034 cm3 (with 0.25mm thickness). The ratio of the Fe atoms to the 

Ti atoms in the cathode is 1 F el 1. 52*105 Ti and of the Cr atoms 1 Cr/ 

8.70*105 Ti. 

Mass density of 22Ti: 4.51 g/cm3 (atomic weight: 4 7. 90) 

26 3 Fe: 7.87 g/cm (atomic weight: 55.85) 

24Cr: -8.96 g/cm3 (atomic weight: 52.01) 

=> Volume for one mol 22Ti: ( 
3 3 V mole = 4 7 .90/4.51) cm = 10.62 cm 

26 3 
Fe: Vmole = 7.10 cm 

24 3 
Cr: V mole= 5.81 cm 

22 . 23 3 
=>Volume for one atom Ti: Vatom= (10.62/6.023*10 ) cm 

= l.76*10-23 cm3 

26Fe: Vatom= l.18*10-
23 

cm
3 

24Cr: Vatom= 0.96*10-
23 

cm
3 
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Now the number of atoms for each element can be calculated. 

=>X*l.76*10-23 cm3+Y*l.18*10-23 cm3+Z*0.96*10-23 cm3 = 0.0034 cm3 

with Y=X/l.52*105 andZ=X/8.70*105 

(X, Y, Z are the number of atoms) 

Substitute and solve for X, Y and Z. 

=> X= l.93*1020(Ti atoms), Y = 1.27*1015 (Fe), Z = 2.22*1014 (Cr) 

Out of this information the volume of each element included in the 

cathode can be calculated: 

-The volume of Ti in the cathode is: 

l.93*1020 * l.76*10-23 cm3 = 0.0034 cm3 

This volume was expected because of the negligible contaminations. 

-The volume of Fe in the cathode is: 

l.27*1015 * l.18*10-23 cm3 = 1.50*10-8 cm3 

This would be a cube with side length of 25 µm. 

-The volume of Cr in the cathode is : 

2.22*1014 * 0.96*10-23 cm3 = 2.13*10-8 cm3 

This would be a cube with side length of 28 µm. 

The chromium cube is larger because of smaller mass density of Cr. 
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The electron beam for the EDS will penetrate about 1 µm. The volume 

of the cathode that emits x-rays when the beam is on a spot is roughly 

spherical: 

413 7t*(l * 10-4 cm/2)3 =5.2*10-13 cm3 

If all of the Fe was concentrated in a single area on the surface, then 

100% concentration of Fe in the volume that x-ray luminescence would 

be a (122*122)µm 2 area. Chromium would be about (146*146)µm2
. An 

estimation calculation can be done if the amount of unexpected 

elements found on the cathode after the electrolysis increased. It is very 

hard to say, because Fe and Cr are not miscible in Ti in the temperatures 

used, i.e. they can occur as clusters. A more precise method as the SEM 

would be needed for this purpose. 
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Results from the second experiment 

Excess heat was observed in the D cell in comparison to the C cell 

during the whole measurements for 33 hours. A calculation for the first 

20 minutes underlines this result on page 4 7. 

A small difference in radiation collection was detected in both cells, the 

D cell being higher. But the standard deviation is too high to have 

confidence in this data. For the TLD chips the time was still too short to 

have any significant readings out of the chips. The same experiment 

should be repeated for a longer time, at least for one week. For this 

reason the concentration of the H2S04 in the electrolyte should be 

lowered again and the amount of electrolyte should be increased. This 

means other cells must be constructed with a bigger volume. 

During the morphology and microanalysis of the Ti cathode the elements 

found in the first experiment occurred again on the surface of the 
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cathode but also new elements have been found (old: Zn, Ni and Fe). 

The new unexpected elements are Cr, Ca and K. 
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RESULTS 

No significant emission of any of the products associable with 

deuterium-deuterium fusion was observed. The readings out of the TL 

chips were under the threshold of significance, and the standard 

deviation for the emission of the radiation collected by the GM-tubes 

was too high. 

In the second experiment a large amount of excess heat was found for 

the D cell in comparison to the control. 

Highly localized, unexpected elements were found in both experiments. 

Zn, Ni and Fe were found in both experiments, Cr, Kand Ca only in the 

second experiment. 
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CONCLUSION 

It appears that excess heat is produced during electrolyses of heavy water 

with a titanium cathode. The amount of this excess heat seems 

comparable to that produced with a palladium cathode3
). 

No significant emission of any of the products associated with a 

"classical" deuterium-deuterium fusion was observed during both 

experiments, i.e. heat but no radiation. 

Unexpected elements were found in both experiments. Remarkable is the 

fact that the new elements always occur very close in the periodic table 

to an impurity element, i.e. Zn with Cu. 
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impurity new element 

Cu Zn 

Ca K 

'Ti' Cr 

Table 6. New elements found on the Ti cathode after electrolysis 

It is not clear if Fe is detected due to contamination or if it is also a new 

element in higher concentration. If the first is the case then Fe-Ni would 

be an additional "pair". Although occurring in only a small fraction of 

the titanium cathode, these unexpected elements correlate with measured 

excess heat and may have arisen through transmutation caused by 

neutrons from nuclear fusion reaction. It is possible that the impurity 

elements (Cu, Ca, "Ti") capture the neutrons produced by the possible 

deuteron-deuteron fusion and decay to the elements next to them. But 

then e -or e + should be detected by the GM counters. 
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Possible reaction 11
): 

64 Cu i2.101 h 64Ni + e -

But as mentioned above, some radiation should then be detected. 



REFERENCES 

1) Bockris J. O'M.,Reddy A., "Modem Electrochemistry", Plenum 
Press, 1, 553-555,(1971) 

103 

2) Mueller W. M., Blackledge J.P., Libowitz G. G., "Metal Hydrides", 
Academic Press, 365-367, (1968) 

3) Dash J., Noble G., Diman D., "Surface Morphology and 
Microcomposition of Palladium Cathodes After Electrolysis in 
Acidified Light and Heavy Water: Correlation With Excess Heat", 
Transactions of Fusion Technology, 26, Part 2, 299-306, (Dec. 1994) 

4) Gerthsen Ch., Kneser H. 0., Vogel H., "Physik", Springer Verlag, 
16,674-680,(1989) 

5) Iwamura Y., Itoh T., Toyoda I.., "Observation of Anomalous 
Nuclear Effects in DrPd Systems", Transactions of Fusion 
Technology, 26, Part 2, 161-164, (Dec. 1994) 

6) Miles M., Bush B., "Heat and Helium Measurements in 
Deuterated Palladium", Transactions of Fusion Technology, 
26, Part 2, 156-159, (Dec. 1994) 

7) Miyamaru H., Chimi Y.," Search for Nuclear Products of Cold 
Fusion", Transactions of Fusion Technology, 26, Part 2, 
151-15 5, (Dec. 1994) 



104 

8) Peebles P. J.E., "Quantum Mechanics", Princeton University Press, 
52-60, (1992) 

9) Prutton C. F., Maron S. H., "Fundamental Principles of Physical 
Chemistry", Macmillan Company, 448-450, (1944) 

10) Hodgman Ch., "Handbook of Chemistry and Physics", Chemical 
Rubber Publishing Co., (1959) 

11) Kocher D., "Radioactive Decay Data Tables", Technical Information 
Center, 79, (1981) 

12) Yigal S. Horowitz, "Thermoluminescence and Thermoluminescent 
Dosimetry", CRC Press, 1, 20-23, (1984) 

13) Yigal S. Horowitz, "Thermoluminescence and Thermoluminescent 
Dosimetry", CRC Press, 2, 108-111, ( 1984) 

14) Johnson G., White W., "X-Ray Emission Wavelengths and keV 
Tables for Nondiffractive Analysis", American Society for Testing 
and Materials, 1-5, (1970) 



XIGNHddV GNV Sff1HV .1 

~OI 



I I 

I I ! i 

I ·Radiation data from the D and C cell 
I I ! I 

I I i 

: EXPERIMENT i BACKGROUND 
-

I ! I 

:countrate st.dev. countrate st.dev. • countrate st.dev. countrate st.dev. 
time [h] D-cell :o-cell C-cell .C-cell D-cell(ba) : 0-cefl 1C-cell(ba) :C-cell 

1 695i 6 619: 61 6051 6i 627 5 
2 685i 6i 5981 61 i 569' 6i 649 4 
3 63t T 573: 5, 615i 51 632 6 
4 672 1 61 634! 6: 670! 51 574 5 
5 642 7' 65T 4, 614i 6 607 4 
6, 6061 61 598! Si 577

1 
6i 588. 6 

7 632: 51 579! 51 5881 T 602 5 
8· 664 31 607' 5 649i 7 583 5 
9! 6661 6 5951 51 637 6 603· 5 

10: 602: 5 588 61 644 1 5 633 5 
11 668: 61 6641 61 601 61 594 6 
12 6231 5: 675 6: 524: 5! 592 4 
13 647 8 622: 5; 678 7; 586 5 
14: 639[ 5 606: 7 574i 5: 564 5 
15 595i 5. 6081 41 628 1 7 577 6 
16' 646i 6: 633: 61 646i Si 603 7 
17 653) 5 586: 6 562\ 6! 680 5 
18: 578i 5 620i 7 6671 6i 606 6 
19· 653! 6i 554: 5 535: 41 580 5 
20 6261 7 675: 6 616i 6' 583 4 
21 6281 T 628i 6: 593! 5 551 5 
22 6361 7' 622 1 7! 6201 6 6141 5 
23' 638 1 5: 624 6 634! 61 625 7 
24 642! 7 6161 6: I 6231 5: 571 6 
251 628: --6;- 5911 4) ! 5731 6i 514: 5 
25: 666! 6' 600 1 s: 616i 6i 524: 5 
27 6581 6 6001 4 585i 6i 597 6 
28: 6401 7 627 4 6231 s: 605 8 
29 663. 6 594; 5! 6091 1: 570: 6 
30i 6201 5: 597 s: 599! 7! 615. 5 
31 658: 4 5821 6! 593i 6i 595 6 
32 1 599 5: 636! 5, 5991 6: 575 6 
33 545: 8' 577' 5; 652i 5: 591 4 
34 671 7 654: T 608i 1: 583 1 5 
35 632 7 621 Si 662: 6! 603 4 
36 6551 5, 588: 5 628! ?i 621 5 
37 653' 7 590 5: 5641 6. 594 7 
38 638! 5: 612 51 616: Si 617 6 
39 557: 5: 651 a. 610! 5: 589 6 
40 636: 5: 657' 5 604 6 

_---s48 _______ 6 



41 ! 656 6 629i 6: 598 6 5981 6 
421 682 7 6881 6 606 7 5861 5 
43 607 5 579: 6 582 5 6241 4 

44! 629 5, 600! 51 622 5 5831 5 
-

45i 602 6\ 595: 5' 617 6 5931 5 
45: 609 7' 6681 5 

4T 6611 6 6551 7laverage b. : 614; I 597! 
48: 5741 7 664: stst. dev. b. 281 i 28i 

49~ 674 6 615: 51 ! 

50i 642 5: 6181 6 
51 i 619 6' 6491 5 

52! 665 e: 6631 6: 
53'. 618! 5 5a2: 61 
54: 635i 6 633i 6i I 

55; 6581 7 5431 41 I 
I 

56: 591 l 5 5841 61 : 

57' 636i 5 582i 4 : 

58 611: 5 632: 5: 

59t 662 5 602·. 61 

601 640; 5 597: Si 
61 ! 628! 5· 6631 4: 

62' 719! 6 615! 4, 

63' 645: 5: 6421 41 
I 

I 
I I 

average I 640, 617! I ! 
I 

st. dev. 281 32: I 



Experiment 2 

'comparison in temperature ·and power input for 0 and C cell 
(in 30 minutes intervalls) 

1average !standard average standard voltageM i[VAs] :[Wj voltageM l[VAsJ [W] 
time[ min] : temp O[C] ·deviation i temp C[C] ·deviation : 0-cell : energy D power D C-cell : energy C power C 

0 23.7 0.31 23.9 0.8: 0.0, 0.0 0.0: 0.0: O.Ot 0.0 
30: 42.8, 3.4' 38.51 3.8: 4.1. 4092.0! 2.3! 5.0, 4947.61 2.7 
601 44.7! 3.5 40.8 4.4i 4.0! 4002.5\ 2.2 4.9i 4836.4: 2.7 
90 43.8! 2.51 40.7 4.1' 4.0 3917.9 2.2! 4.91 4858.2 2.7 

120! 43.0i 2.7' 40.6 5.1 4.0 4005.0: 2.2i 5.01 4947.Si 2.7 
150 42.8: 3.0i 40.2 4.5 4.0' 3951.8 2.2: 4.8: 4734.9' 2.6 
180' 42.9i 2.8: 39.8 5.1: 4.0: 3990.51 2.2 5.0 4904.1; 2.7 
2101 42.3 2.7 39.6 4.5 4.0 3959.01 2.2 5.0i 4937.9 2.7 
240 
270 

41.7 2.6: 39.6 4.3 4.0 4007.3i 2.21 5.0: 4947.6 1 2.7 
41:8' 2.81 39.6 4.5: 4.0 3983.2i 2.2 4.9: 4841.2 1 2.7 

300. 41.8 2.8' 39.9 4.9 4.1 4043.6i 2.2! 4.9! 4838.8 2.7 
330: 42.3: 3.7 39.6 4.91 3.9 1 3886.5! 2.2 4.7: 4693.8 2.6 
360 42.3 2.9 1 39.6 4.8 4.0 3956.6: 2.2: 4.61 4543.9 2.5 
3901 43.6i 3.3 40.1 5.8: 3.9' 3885.1 2.2 4.8: 4744.6\ 
420: 43.0 2.9: 39.8 5.0: 4.1 4055.7 2.3: 4.8 4742.1, 
450! 43.5, 3.2 40.2 6.2i 4.0 3932.4 2.2 4.6i 4587.5; 
480 43.1: 2.8 40.8 5.7' 4.0: 3988.0 2.2 4.5! 4498.0 
510: 43.9 3.7' 40.1' 5.51 4.0: 3934.9 1 2.2. 4.8 4720.4: 
540i 43.8: 3.5 40.3! 6.3i 4.0 3956.61 2.2, 4.81 4708.31 
570' 43.7' 3.7 37.7 5.8' 3.9 1 3876.9! 2.2: 4.7i 4657.5: 
600: 43.6i 3.2 38.0' 6.3i 4.01 4005.0 2.2 4.61 4543.9: 
530: 44.0 3.51 37.7 6.7 3.9 1 3903.4 2.21 4.5i 4471.4' 
660: 44.0 3.1 1 37.9. 6.7: 4.01 3954.2 2.2: 4.3 4220.1 
590: 44.0i 4.1 36.8 6.4i 4.0 3954.2; 2.2 4.5 4442.4 
720 43.2: 3.51 36.7 6.8' . 4.0 3966.31 2.2 4.5: 4442.41 
750 43.3 4.5i 36.81 6.6 3.91 3898.6! 2.2, 4.51 4427.91 
780 43.7 1 4.0: 37.2 6.8' 3.91 3884.1' 2.2 1 4.5: 4442.4: 
810 43.6 5.2. 37.6: 6.8: 3.9 3903.4 2.2: 4.6: 4587.S: 
840' 43.3 4.2 37.3 7.2: 4.0 3990.51 2.21 4€' 4510.1 
870. 43.4' 3.7' 38.1 7.4 4.0: 3930.0: 2.2 1 4.61 4517.4i 
900 44.31 4.3! 38.2 6.6 3.9: 3893.8\ 2.2 4.41 4394.1 • 
930! 44.4 4.2 37.8 6.6 4.0' 3971.1 2.2 4.4: 4314.3: 

I 960: 44.2 3.7 37.5 7.1 4.01 3910.7 1 2.2 1 4.5 4471.4' 
990 43.0 3.6 37.2 7.1 3.9 3891.4 1 2.2 1 4.3 4215.2 

1020; 43.31 4.3 37.3 7.1 3.9 3874.4, 2.2 1 4.3 4227.3 
--- 10501 45.7' 4.2 39.0· 8.0: 3.8 3794.7 1 2.1. 4.31 4287.7 
-·-1080: 45.5 3.9< 37.9 7.4! 3.9' 3874.4i 2.2 3.81 3765.7' 

2.6 
2.6 
2.5 
2.5 
2.6 
2.6 
2.6 
2.5 
2.5 
2.3 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.5 
2.4 
2.4 
2.5 
2.3 
2.3 
2.4 
2.1 

--1110:- -m---~3y2---s--:a---3.8-3789.8-:- - ·-2-:-1--~-3772.9 ____ 2.1 



1140: 45.9' 3.8 37.2 7.31 3.8 3787.4: 2.1 3.7 3669.0 2.0 
1170 46.0: 4.0' 37.4: 6.4 3.8 3765.7 2.1 i 3.7, 3625.5 1 2.0 
1200 45.6 3.9 37.5 7.2: 3.9 3826.1; 2.1 3.8i 3799.5 2.1 
12301 45.7: 4.3 1 37.6! 7.0 3.8 3734.3! 2.1 3.8: 3741.5 2.1 
1260 45.4: 4.6 37.4: 6.7 1 3.8 3756.0: 2.1 3.8: 3736.7 2.1 
1290i 45.81 4.1: 37.6 7.8 1 3.9 1 381641 2.1 3.6! 3591.71 2.0 
1320' 46.5' 4.1 38.41 7.1 3.8 3765.7' 2.11 3.7i 3671.41 2.0 
1350· 45.9 3.8: 38.3, 6.8: 3.8 3743.9! 2.1 3.7 1 3666.6: 2.0 
1380, 47.0 5.4! 38.6' 7.4, 3.8 3777.8' 2.11 3.6i 3545.7 2.0 
1410 40.3i 4.5 1 26.8! 2.0 4.0 3922.8 2.2: 0.0; o.o: 0.0 
1440: 44.4 1 4.8! 24.3; 1.1' 3.9· 3843.0: 2.1 0.0! o.o: 0.0 
1470 45.2' 4.6; 23.7 1.0 3.9 3821.3. 2.1' 0.0' 0.0 0.0 
1500 45.5: 5.6 23.5. 1.1 3.8 3787.41 2.1 0.0 1 o.o: 0.0 
1530' 45.2. 4.5 23.2• 0.7, 3.8 3739.1' 2.1: 0.0: 0.0 1 0.0 
1560 45.0! 4.8 23.3• 0.6 3.8 1 3780.2: 2.1' 0.0 1 0.0 0.0 
1590 45.1 · 5.6 23.2· 1.41 3.9 3828.5 2.1 0.0 O.Oi 0.0 
1620 44.91 4.31 23.2 1 0.9 3.9 3816.4 1 2.1 0.0 0.0 0.0 
1650 45.0 4.8 23.1 0.5 3.9 3838.2 2.1 0.0 0.01 0.0 
1680 45.3; 5.o: 23.2 1 1.3· 3.9 3823.7' 2.1 • 0.0\ 0.0 0.0 
1710 44.91 4.6 23.2' 1.0 3.8 3787.4: 2.1 0.0 o.o: 0.0 
1740; 44.6: 4.1; 23.2: 1.3 3.8 3801.9 1 2.1 o.o· 0.0 0.0 
1770· 44.8! 3.4 23.3 0.8 3.8 3724.6 2.1 0.0 0.0 1 0.0 
1800 45.41 3.9 23.4 1.1 3.9 3830.9! 2.1 0.01 0.0 0.0 

1830 45.2: 3.7 23.3 1 0.8. 3.8 3777.8: 2.1 0.0 0.0 0.0 
18601 45.3 3.6 23.4 1 0.81 3.9 3855.1' 2.1: 0.0 o.o: 0.0 
18901 45.2 1 4.0: 23.1 1.2 3.8 3787.41 2.1 1 0.0 0.01 0.0 
1920' 45.4 1 4.0 23.4 1.1 3.9 3872.0: 2.2: 0.0 1 0.0. 0.0 
1950• 44.1 3.2: 22.8 1 1.31 3.9 3814.0 2.1 0.0 0.01 0.0 
19801 43.2: 4.3 1 22.6: 0.7: 3.9 3840.6' 2.1 o.o: 0.0: 0.0 
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i comparison in temperature and power input for D and C cell 
! (beginning in 1 minute intervafls). 

average 1standard average standard voltage[V] ![VAs) '[W=UI] ivoltage[V] i[VAs) i[W=UI] 
time[min] temp D[C] \deviation itemp C[C] !deviation D-cell 'energy D power D IC-cell 'energy C :Power C 

0 23.71 0.3( 23.9! 0.81 0.0 0.0 0.01 O.O: O.Ol 0.0 
1 25.0i 2.01 24.4; 0.91 4.7 155.9: 2.6 5.0, 164.9· 2.7 
2 25_41 2.81 25_5; 1.4: 4.7 154.7 2.6, 5.o: 164.9 2.7 
3 27.81 3.4[ 26.6i 1.6\ 4.6· 151.0I 2.51 5.0! 164.9: 2.7 
4 1 28.9. 3.31 27.41 2.2'1 4.5 149.31 2.5i 5.0[ 164.9! 2.7 
5 30.2 3.2~ 28.6i 2.6i 4.51 149.5' 2.5i 5.0! 164.9i 2.7 
6 31.5! 2.9i 29.4! 2.4: 4.6, 151.5! 2.51 5.0i 164.91 2.7 
7 32.51 2.6! 30.21 2.2' 4.5 149.91 2.5! 5.o: 164.9\ 2.7 
8 33.4: 2.81 31.0 2.61 4.3. 140.6: 2.31 5.01 164.91 2.7 
91 34.4 2.71 31.9 1 2.5 4.3: 140.91 2.31 5.0i 164.9! 2.7 

10 35.1: 2.81 32.4i 3.0i 4.3 140.71 2.3 1 5.0: 164.91 2.7 
11 35.91 2.81 33.1: 3.2 4.3 140.71 2.3' 5.0! 164.9 2.7 
12 36.81 2.91 33.9' 3.4 4.2 139.1' 2.3, 5.0i 164.9 2.7 
13 37.5 11 2.6i 34.4 3.1 4.2 140.2 2.3' 5.0' 164.9· 2.7 
14 38.01 2.6 35.0' 3.5· 4.2: 137.7 2.3: 5.0 164.9 2.7 
15 38.71 2.9 35.5 3.9 4.2 138.7 2.3 5.0· 164.9 2.7 
16 39.21 3.0 35_3: 3.8 1 4.3 140.3 2.3: 5.o 164.91 2.1 
17 39.8: 2.9[ 36.41 3.8' 4.2 137.6: 2.3: 5.0 164.9: 2.7 
131 39.7' 3.2 1 35.91 3.7 4.2 138.6i 2.3: 5.o: 154_9: 2.1 
19, 39.91 3.3 36.o: 3.3i 4.3 140.7' 2.31 5.01 164.91 2.7 
20i 40.31 3.3i 36.4 1 3.7 4.2 138.2' 2.3 5.01 164.9! 2.7 
21 40.7 3.5 36.7' 3.4 4.1 136.9 1 2.3. 5.0! 164.9i 2.7 
22' 40.9! 3.6! 36.9i 3.5: 4.2 137.01 2.3 1 5.0 164.9! 2.7 
23 41.31 3.6i 37.1 3.4 1 4.2 137.7i 2.31 5.o: 164.9! 2.7 
24! 41.21. 3.2: 37.4i 3.7' 4.2: 139.1: 2.3l 5.01 164.9 2.7 
25: 41.21 3.9 1 37.8· 3.3' 4.31 140.71 2.31 5.01 164.9 2.7 
26 1 42.0: 4.2 1 37_9: 4.0: 4.2: 140.21 2.31 5.01 164.9: 2.7 
27' 42.2: 3.4[ 38.1' 4.3 4.2 139.5 1 2.31 5.01 164.9 1 2.7 
28i 42.31 4.3: 38.2' 4.1 4.2· 139.1 2.3; 5.01 164.9 2.7 
29 42.71 3.7: 38.5. 4.3i 4.1 136.31 2.3: 5.0i 164.9! 2.7 
30 42.8 3.4' 38.5! 3.81 4.1 136.4 2.3. 5.0i 164.9• 2.7 
31: 43.1 4.0i 38.81 4.2i 4.2. 138.9· 2.31 5.01 164.9 2.7 
32' 43.6 4.o: 38.9: 3.6 4.2i 137.01 2.3: 5.o: 164.9 1 2.1 
33 43.4. 3.3i 39.3 4.2 4.2: 138.1 i 2.3' 5.0i 164.9' 2.7 
34 43.31 3.5 39.3! 4.11 4.2' 138.9 1 2.3! 5.0' 164.9' 2.7 
35 43.7 3.1 39.41 4.0 4.1 · 134.7' 2.2\ 5.0i 164.91 2.7 
36 43.6 3.6'. 39.7 1 4.3 1 4.1 136.6 2.31 5.0 164.9; 2.7 
37' 43.7 3.1 39.6 1 4.2 4.1 135.0 2.3 4.9i 160.3i 2.7 
381 43.8' 3.0 39.9 4.4 4.1 134.2 2.2; 5.0! 164.9 2.7 
39: 43.9 2.8 39.7 3.9 4.0 133.5 2.2 5.0 164.9 2.7 
40 43.8: 3.2 40.1 4.5 4.1 134.6 2.21 4.9; 162.4 2.7 
41 44.2 3.5' 40.1 3.9 4.1 136.4 2.31 5.0 164.9 2.i 
42 44.1 3.1i 40.1 4.3 4.1 134.1 --~--s.0--164.9~----2.7 



43 44.5i 3.5 40.5' 4.2' 4.1 135.2 2.3! 5.0: 164.9 2.7 
44 44.5' 3.5i 40.2i 3.8 4.01 131.5 2.2: 5.0 164.9\ 2.7 
45 44.31 3.1 40.4 3.8 1 4.1 133.7 2.2' 5.o: 164.9! 2.7 
46 43.9: 3.2i 40.41 4.0. 4.0: 132.9 2.2! 5.0 1 164.9 2.7 
47 44.6 1 3.4 40.6 4.1' 4.1' 135.5 2.31 5.0 164.91 2.7 
48 44.6i 3.4 40.4i 4.3 4.01 133.0 2.2 4.9! 162.9 2.7 
49 44.61 3.7 40.5 4.1 4.0' 133.3 2.2 5.0. 164.9! 2.7 
50: 44.61 3.7 40.6: 4.3 4.0 132.6i 2.2 5.0 164.9 2.7 
51 i 44.7 3.3i 40.3, 4.2 4.0 133.3 2.2 5.0 164.9 2.7 
52! 44.6: 3.3 40.7' 4.5i 4.01 132.3\ 2.2i 5.0 164.91 2.7 
531 44.51 3.0 1 40.5i 4.3i 4.0 133.3, 2.2: 5.0i 164.9 1 2.7 
54 1 44.61 3.3' 40.51 4.3 4.1 i 134.31 2.2: 5.0 164.9! 2.7 
55 44.6: 3.0, 40.8 4.01 3.9 130.91 2.21 5.0' 164.9 2.7 
561 45.01 3.3' 40.4: 3.5 4.0' 133.2 2.2: 5.0' 164.91 2.7 
57 44.7i 3.5! 40.7 3.9 3.9· 129.6i 2.2: 5.0 164.9, 2.7 
58! 44.7! 3.1; 40.5i 4.2 4.0! 131.6 2.2! 5.0 164.9' 2.7 
59, 44.6i 3.1 40.7 4.2 4.1 133. 7' 2.2 5.0 164.9 2.7 
60i 44.7 1 3.5 40.8. 4.4 4.0i 133.4 2.2' 4.9i 161.2~ 2.7 
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Geiger-Mueller Tube Technical Data 

BACKGROUND 

Simple Geiger-Mueller tubes similar to type used in the LGI are referred to as mica end window 
tubes. The stainless steel tube is hermetically capped with a thin sheet of mica only .001 to 
.002 grams in mass. The interior of the sealed tube has an anode rod running the length of the 
long axis of the tube, and the tube contains neon gas spiked with a halogen contaminant. When an 
incoming alpha, beta or gamma causes a neon atom to lose an electron, the ejected electron finds 
itself pushed very strongly toward the anode rod while the neon ion is pushed strongly toward 
the steel case of the tube. Along the way, collisions with these charged particles cause other 
neon atoms to lose their electrons. From a singular disintegration, an avalanche builds in a few 
microseconds, as momentary conduction through the neon gas occurs, driven by the 450 to 500 
volt potential between anode rod and case. As neon ions acquire electrons from the case, the neon 
atoms return to an excited metastable state. This means that the neon atoms, although now 
neutral, still have energy to give up before they return to their ground state. This energy would 
keep the tube continuously discharging. The halogen gas contaminant is designed to "quench" this 
continuous discharge by absorbing the energy released by the neon as it falls from its neutral 
metastable excited state to the ground state. Typically, it takes 100 microseconds for the 
avalanche of neon ions to be neutralized to their ground state. 

TYPICAL GEIGER-MUELLER TUBE CHARACTERISTICS 

1. Sensitivity alpha, beta, gamma 

2. Window thickness 1 to 2 mg/sq. cm. 

3. Gas filling Neon + Halogen 

4. Starting voltage 400 V DC 

5. Operating voltage 450 V DC to 550 V DC 

6. Dead time 100 microseconds 

7. Background from unit 1 O counts per. minute max. 

8. Capacitance 4 picofarads 

9. Operating temp. range -40 to +75 degrees C. 

10. Tube life 10 billion counts 



Alfa® A:5AR® ~=cmnoo. Certificate . 
·· of tzlnaCysis 

Titanium. foil, 0.25mm (0.0098in) thick, 99.99+% 
(metals basis) 

Li <C.004 
~ - 2.350 .-.. -. 

"'\j'' 0.910 
)Ii 0.060 
Se <0. 'J 50 
?d <0.009 
SD <0.030 
I...a <0. 0008 
~e <'J.003 
~g <0.010 
u <.0.0004 
0 250. ll* 

Be 
Si 
C::::-
Zn 
3::::-
.~g 

Te 

Stock Number: 13975 
Lot Number: G07~10 

ANALYSIS 

<O. 002 3 <0.004 
0.430 p <0.006 
:. . 150 Mn <0.026 

<0.035 Ga <0. '.J:!.5 
<0.050 Z::::- 1.200 
<0.0:.5 Cd <0.J85 
<0.075 I <0.040 

Ce <O.oo:.o Nd <0.004 
Os <0.006 I::::- <0.006 

-- <O.o:.o ?b <0.008 
s 4.000* -· 2.0* 

_or. !~te~fe~e~ce: 

Ca <0.450 
'! <210.0 

Sc <0.050 
Nb <0.400 

:~s~=~me~c Con~ami~at~cn: 

<0.950 Cl <l.000 

Ca 1.850 
Mo <0.065 

Ta <6.500 

N"a <0.035 
;( <0.030 
?e 6.600 
Ge <0.025 
?,;;. <Cl. 009 
- <0.009 -·-
Cs <0.002 

~= 0.025 
?~ <0.015 
3i <0.005 
c 24.5* 

?.b <3.0 

* LEC~; A:l others by GDMS Analysis is in ppm 

!""'.:.~~' ;, -"'d 3v· 

~:;:~ 
?::::-oduc~ Spec~alis~ 

:JM('X~ 
.Johnson Matthey 

,JOl-'1'-ISCf'l 1',1,:.>.7'Hf:V CAT,.:..LCG CCl'v1PANY 

Mg <0.0lO 
Ti Ma:::-: ix 
Co 0.048 
A.s <0.015 
~- 0.300 
Sn ::J. 300 
3a <0.0010 
w <0. 22.; 
rlU <0.070 
Th <0.0004 
3 17.0* 

S:::- <2450.0 
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