
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

7-12-1994

Interfacing a Computer to a Scanning Tunneling Interfacing a Computer to a Scanning Tunneling

Microscope Microscope

Markus Jarasch
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Physics Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Jarasch, Markus, "Interfacing a Computer to a Scanning Tunneling Microscope" (1994). Dissertations and
Theses. Paper 5047.
https://doi.org/10.15760/etd.6923

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5047&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5047&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5047
https://doi.org/10.15760/etd.6923
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Markus Jarasch for the Master of Science in Physics were

presented July 12, 1994, and accepted by the thesis committee and the department.

COMMITTEE APPROVALS:

DEPARTMENTAL APPROVAL:

--~
E d n o_)~g-0111~ cnair

Carl G. Bachhuber

Pavel K. Smejtek

r . • ...
Erik Bodegom: .~·
Departmerifof Physics

**

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY

by on .«~ a::f::::A&;;n-de-b__, /99"1-

ABSTRACT

An abstract of the thesis of Markus Jarasch for the Master of Science in Physics presented

July 12, 1994.

Title: Interfacing a Computer to a Scanning Tunneling Microscope

A program was written in 'C' to control the functions of an already existing Scanning

Tunneling Microscope (STM). A DAS-1601 data acquisition card (from Keithley Data

Acquisition) was installed together with its drivers for 'C' on a computer with a 486-DX

motherboard. The computer was interfaced to the electronics of the STM. Images taken

of HOPG (highly oriented pyrolitic graphite) were of a reasonable quality and showed

atomic resolution.

INTERFACING A C0!\1PUTER TO A
SCANNING TUNNELING MICROSCOPE

by

MARKUS JARASCH

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
m

PHYSICS

Portland State University
1995

ACKNOWLEDGMENTS

First and foremost, I want to thank Professor Erik Bodegom, who never got tired of

encouraging me not to give up my project. He always took plenty of time for me and put

lots of his own work into this project. He always found a solution when I was stuck. His

patience, his noticeable courteousness and his friendliness were remarkable, even at the

end of a long working day. These qualities created such a pleasant atmosphere that I

always enjoyed working with him, talking to him about my project, and, above all,

talking to him about the small details of life that make it so worth living.

I want to thank the Physics Department at Portland State University for the very friendly

integration during my year as an exchange student, especially Margie Fyfield, who spent

time and work on my project and Frances Boyd, who always brought sunshine to the

office of the Physics Department with her cheerful and happy nature.

I also want to thank my roommates, who opened my mind to new ideas and new paths

during late night discussions. They showed avid interest in the progress of my research

and bought me a very useful tool that helped me with it. Last but not least, they never let

me lose my joy in studying at Portland State University.

Finally, I want to thank my parents very much for their continuous support of my

education and for making this year in the US possible for me.

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . Vll

CHAPTER

1 MICROSCOPY

Light Microscopes . 1

Electron Microscopes . 1

Scanning Tunneling Microscopes. 2

Atomic Force Microscopes............................... 6

Laser Force Microscopes . 7

2 SCOPE AND BACKGROUND OF PROJECT 9

3 THE COMPUTER PROGRAM . 11

Introduction . 11

The Menu . 11

Data Acquisition Card . 13

The C-Compiler Used . 15

Description of the Program . 16

4 RESULTS ·. 45

5 CONCLUSIONS . 50

REFERENCES. 53

APPENDIX

A FLOW CHART. 55

B LISTING OF COMPUTER PROGRAM. 59

LIST OF FIGURES

FIGURE PAGE

1. Rear view of the I/O connector (after Ref. 12) . 14

2. Schematic drawing of the configuration that gives rise

to the hexagonal pattern in HOPG............................ 45

3. Image 'chris.dat'. 46

4. Image 'karin.dat'.. 47

5. Tip motion during line scan.. 48

6. Tip motion during and just after the movement back

to start the next line scan. 48

Chapter 1 Microscopy

Light Microscopes

It has always been a dream of scientists and nonscientists alike to see single atoms.

However this was not possible until recently. About 100 years ago the German physicist

Ernst Abbe stated that for any microscope that relies on lenses to focus light or other

radiation, diffraction obscures details that are smaller than about one half the wavelength

of the radiation. As optical instruments use visible light whose average wavelength is

about 2000 times greater than the diameter of a typical atom; optical microscopes cannot

resolve atomic structures (resolution power> 200 nm).

Electron Microscopes

This limitation led to the invention of the electron microscopes. According to quantum

mechanics, light and other kinds of energy, such as electrons, show characteristics of both

particles and waves. Therefore every electron has a certain wavelength according to its

energy. Electrons with a lower energy possess a longer wavelength, electrons with higher

energy a shorter wavelength. The principle of operation of an electron microscope is

similar to that of an optical microscope, except that light waves are replaced by short

wavelength electrons and glass lenses by electromagnetic ones. By using high-energy

electrons in TEMs a resolving power of about 0.2 nm could be achieved, that means

atomic resolution.

2

However, the electron microscope (EM) has also some practical limitations and

disadvantages:

• EM normally cannot resolve surface structures.

• As the EM requires operations in vacuum it is not possible to examine samples that

produce any significant amount of vapor when placed in vacuum. Therefore

biological samples must be dried and since water molecules are an important part of

biological samples, this might change the sample in an undesirable way.

• The specimen is exposed to high-energy-radiation that might damage or alter the

specimen.

Hence there is a need for another type of microscope. This turns out to be the scanning

tunneling microscope.

Scanning Tunneling Microscopes

The principle of operation of a new generation of microscopes, the scanning tunneling

microscope, makes it possible to avoid these difficulties. In 1982 Gerd Binnig and

Heinrich Rohrer of the IBM Zurich Research Laboratory reported about this new kind of

microscopy. The main difference between this microscope and all other ones is that it

uses no free particles. 1
'
2 Consequently, there is no need for lenses and light or electron

sources. Instead the bound electrons already existing in the conducting sample under

investigation serve as the source of radiation.

3

The STM proved to be such a powerful tool in the field of surface science that Binnig and

Rohrer received a Nobel prize just four years later in 1986. The STM makes use of a

common phenomenon on the atomic scale called "tunneling" wherein their quantum

nature permits electrons to penetrate (tunnel) into classically forbidden regions of space

where the particle potential exceeds its total energy. At a sufficiently great distance from

the nucleus of an atom, such a forbidden region exists for all bound electrons. The

chance of finding an electron beyond the surface of a conductor decreases exponentially

with increasing distance from the nucleus. If we position the tip of an atomically sharp

metallic needle so close to the surface of the conducting material that the electron clouds

of the atom at the probe tip and of the nearest atom of the specimen overlap and put a

small potential difference between the two, electrons "tunnel" across the gap, which

generates a tunneling current.

The tunneling current behaves as

I oc exp(-2Kd)

and

K = 1 I h * .J 2m <I>

I: tunneling current

d: distance between tip and surface

K : decay constant

<t>: local work function

m: electron mass

h: Planck's constant

4

That means the tunneling current is exquisitely sensitive to the width of the gap between

the probe and the surface. For a gap distance of 5 A, an applied bias of several tens of

millivolts will induce nanoampere current flows. For a typical work function of 4 eV,

K = 1. 0 A-1
, the current decreases by the factor 10 when the gap d is increased by 1 A. If

the tunneling current is kept constant to within, say 2%, then the gap remains constant to

within 0.01 A.

In the constant height mode of operation the tip is moved back and forth across the

specimen surface in a raster pattern by X and Y piezoelectric controls. The drive of the

first STM of Binnig and Rohrer consisted of a tripod made of piezoelectric ceramics

which contract or expand when voltage is applied, yielding a displacement control better

than 0.1 A. As the probe is maintained at a steady height, the current fluctuates

dramatically, increasing when the tip passes over bumps such as surface atoms and

decreasing as it crosses gaps between atoms. The plot of the tunneling current as a

function of the X and Y piezo voltages is a kind of tunneling replica of the sample

surface, which we refer to as a tunneling image. The data is processed by a computer and

displayed on a screen or a plotter.

In the constant current mode a feedback mechanism senses the variations in tunneling

current and varies the voltage applied to the Z piezo control to keep the current constant

and maintain a constant gap between the probe and the surface. In this mode the

feedback controlled Z piezo voltage is recorded as a function of the X and Y piezo

voltages.

5

The constant current mode was first historically. Its advantage is the fact that one can

track surfaces that are not automatically flat without scratching the tip. The "constant

height mode" requires automatically flat surfaces because the tip is scanned across a

surface at constant height and constant voltage while the current is monitored or at

constant current while the voltage is monitored. This mode allows for much faster

imaging (of atomically flat surfaces) since only the electronics, not the Z-control, musts

respond to the atoms passing under the tip. This enables researchers to study processes in

real time as well as reducing data collection time.

The tip preparation plays a crucial role in scanning tunneling microscopy as the shape of

the tip limits the lateral resolution. It is typically a tungsten wire either ground on a

grindstone or etched to a radius in the range 0.1-10 µm. To obtain atomic resolution the

tip must have a single atom sitting securely on its top. However this situation is currently

obtained only by luck. Paul K. Hansma3 mentioned in his article about scanning

tunneling microscopy three recipes to obtain such tips:

(1) Withdraw the tip more than 1000 A from the sample. Apply a high enough voltage

(of order of several hundred volts) to get a field emission current of a few

microampere, and then turn down as soon as any sudden jump in the current occurs

(useful only in high vacuum).

(2) Apply an oscillating voltage at ~ 1 kHz to the piezo in addition to the feedback

voltage. Increase the magnitude of the oscillating voltage until there is an abrupt

change in the feedback voltage.

6

(3) Set up in a tunneling configuration with the tip scanning over the surface and just

wait about 10 min. to 1 h.

After the tip was formed by methods (1) or (2) it was prudent to move it laterally to a new

region of the sample since these methods for tip forming could modify the surface

directly under the tip.

More recently there is a growing consensus that an etched tip that appears sharp under a

high-quality optical microscope (operated at 200x or above) will give atomic resolution

almost every time either immediately or after a wait as listed in method (3) -- if it is not

banged into the surface. 'Appears sharp' means that no radius can be observed at the end

with the optical microscope. This in tum means that the tip radius is <2000 A. 3

Atomic Force Microscopes

While the STM is largely restricted to imaging electrical conductors, another kind of

scanned probe microscope -- the atomic force microscope -- does not need a conducting

specimen. This device also moves a tiny tip in a raster pattern over the specimen.

However, in this case the atomically sharp tip is mounted on a strip of metal foil. The

overlap of the electron cloud at the tip with the electron clouds of the surface atoms

generates a repulsion and the foil is deflected. This deflection is, in tum, measured by a

STM, the tip is just above the foil. A feedback mechanism holds the tunneling current

between the tip and the foil constant by adjusting the voltage on the Z-piezo control,

7

which moves the sample up and down so that the deflection of the foil remains constant.

The atomic force microscope (AFM) "reads" the surface by recording the contours of the

repulsive force.

Laser Force Microscopes

The AFM could in principle image any nonconducting or conducting sample. However,

it makes contact with enough force to distort or move many biological molecules and

contaminate or damage the sample. Wickramasingle et al. developed the laser force

microscope, a scanned probe microscope that can scan surfaces without touching it4
.

The LFM makes use of the attractive force that develops between a surface and a probe

that is from two to twenty nanometers away. On semiconductors and insulators this force

is largely the result from the surface tension of water that condenses between the tip and

the sample. However, van der Waals interactions contribute also. The effect of these

forces on a vibrating probe is detected by the LFM. The probe consists of a tiny tapered

tungsten wire with a downtumed tip that is etched to a diameter that is less than fifty

nanometers. At the base of the wire a piezoelectric transducer converts an alternating

current with a driving frequency a little above the lowest mechanical resonance of the

wire into a vibration of the wire. When the vibrating tip is brought close to the sample,

the wire experiences a weak attractive force. This force changes the resonance condition

slightly and therefore the amplitude of the vibration changes. The changes are however,

8

quite large due the sensitivity of the resonance condition. These changes in amplitude are

detected by a laser sensor using interferometry and a feedback mechanism responds to

changes in the behavior of the tip by varying the Z piezo voltage. Thus the vibration

amplitude is stabilized and hence the probe-to-surface distance is kept constant.

The AFM and LFM are just two members of a whole family of scanned probe

microscopes that are based on similar technology. Considering the relative ease with

which these technologies can be implemented, it is expected that these microscopies will

h d . . h . d' fu 5 6 7 ave a tremen ous impact m t e 1mme iate ture ' ' .

Chapter 2 Scope and background of the project

At Portland State University a STM has been in use for several years. The complete

setup was bought from "STM Laboratory, Institute of Chemistry, Chinese Academy of

Sciences" and is now used by Margie Fyfield, a Ph.D. student, to take images with atomic

resolution.

The program that controls the tip movement and stores and displays the data is written in

"C," a popular programming language, but the program has some disadvantages:

• some functions that appear in the menus simply do not work

• it is based on the use of an obsolete data acquisition card

• there is no manual available

• the program is poorly documented

• the structure of the program is unclear and it has a poor readability

• the compiler gives about 100 warning messages after compiling, showing a lack of

good programming style

• it's very difficult to amend because of it's unclear structure and poor readability

The University of Portland (UP) has the electronics for a STM, though it is broken just

now and has to be repaired first. UP also has a box that contains the piezo drives and the

tip and sample holder, and it has the necessary computer hardware and a modem data

acquisition card, a DAS-1601 from Keithley Data Acquisition -- the leading brand -

including the drivers for 'C.'

10

I was looking for a project that should have some certain characteristics:

• it should be interesting

• it must be doable in one year

• it should challenge me

• I wanted to learn something new that could be useful later in my job

The project that was suggested to me -- writing a new program for a STM -- seemed to

fulfill my expectations and could, furthermore, profit both PSU and UP.

The first consideration was which language to use. As I did not know any computer

language I chose to learn what arguably is the most widespread language, and which is

also said to be quite efficient: 'C.' After finishing the book C by example8 and having a

look at the hardly readable program in use at PSU, I decided to start a totally new

program. My aim was not to write an as fast, compressed and efficient program as

possible, including many nice and colored menus. I was rather concerned about

readability and well-structured programming with a clear and simple flow so that the

program could be easily amended by a future programmer.

Chapter 3 The computer program

Introduction

The complete computer program listing is shown in Appendix B. The flow chart for this

program is presented in Appendix A. In the next section, the menu will be described.

The following section is devoted to the critical parameters for the data acquisition board

that was used in these experiments. The next section deals with the computer language

used, followed by a section on the global parameters used in the program.

The Menu

The computer menu appears as follows:

X-voltage starting at (- 5.00 - +4.99):
Y-voltage starting at (- 5.00 - +4.99):
scanning Range: 0.40
averaging over N measurements: 1
print screen after M lines: 10
Delay-counter = 1

Gain-nr.: O
Channels: x-chnO y-chnl

min: 606 max: 720

single scanning at 'constant Height' mode
single scanning at 'constant current' mode
continuous scAnning at 'constant height' mode
continuous scanning at 'constant current' mode
Savedata
Loaddata
Printscreen
Exit

your choice:

12

This menu shows the current values for respectively 'xVoltStart', 'yVoltStart',

'xVoltScanRange', 'scanTimes', 'printLines', 'delayCtr', 'gain, 'xChannel' and 'yChannel'

and also for 'zADvalueMin' and 'zADvalueMax'. To change one of these variables the

user has to input the character (followed by 'return') that is capitalized in the

corresponding line:

'x' to change 'x VoltStart'

'y' to change 'yVoltStart'

'r' to change 'xVoltScanRange' (and 'yVoltScanRange')

'n' to change 'scanTimes' (by changing 'poweroffwo')

'm' to change 'printLines'

'd' to change 'delayCtr'

'g' to change 'gain'

'c' to switch the output channels for the x-voltage and y-voltage

In the lower part of the menu the possible functions of the program are listed. Again to

choose one of these functions the user has to input the character (followed by 'return') that

is capitalized in the corresponding line:

'h' for a single scan in the 'constant height' mode (z-voltage is read on input channel #1)

'u' for a single scan in the 'constant current' mode (channel #0)

'a' for continuous scanning in the 'constant height' mode (channel#l)

'o' for continuous scanning in the 'constant current' mode (channel#O)

's' to save the collected data

'l' to load data from a data file

'p' to display the current data on the screen

'e' to exit program

Data acquisition card

13

"The DAS-1601 and DAS-1602 boards (hereinafter referred to as the DAS-1600) are 12-

bit analog and digital interface boards for the IBM PC/XT/ AT and compatible computers.

The DAS-1600 installs directly into a computer expansion slot, turning the computer into

a fast, precise data acquisition and signal analysis instrument. "9

"The DAS-1600 offers 8 differential or 16 single-ended analog inputs with 12-bit

resolution at 100 ksarnples/sec. The inputs can be set in unipolar (0 - 10 V) or bipolar(-

10 - + 10 V) modes. The input configuration is set by switches on the board. Input ranges

are software-programmable. The DAS-1601 provides gains of 1, 10, 100 and 500 while

the DAS-1602 offers gains of 1, 2, 4, and 8. 1110

"Two channels of 12-bit DI A converter are also provided. The outputs have switch

selectable ranges of 0 - 5, 0 - 10, -5 - +5, and -10 - + 10 volts full scale. Regardless of

range selected, all analog outputs are set to 0 V at power up." 11

Analog and digital I/Os use a 3 7-pin, D-type

connector that projects through the connector

panel at the rear of the computer. The mating

connector is a standard, 37-pin D-type female

such as an ITT/Cannon #DC-37S for soldered

connections." 12 See Fig. 1.

"Pins 11 through 18 perform a double function,

depending on the setting of the Channel

Configuration switch. In 8-channel differential

configuration, these pins provide the low inputs

of Channels 0 - 7 corresponding to the high

inputs of these channels on pins 30 - 37. In 16-

channel single-ended configuration, they

provide additional channel-high inputs for

Channels 8 - 15." 13

L\..C!.;O.j~
ChO LO IN /•Ch6 ;.,: i:.; • i S :~1 ChO HI ~
Ch1 LO IN /•CttS Hl IN Ii 7 35 Cil1 HI IN

Ch2 LO IN /•Ch10 t'J N 16 35 Ch2 HI IN

Cl\3 LO IN /•Ch11 HI p.; 15 34 Cl\3 HI IN

CM LO IN /•Ch12 HI N 14 33 CM HI IN

Ch5 LO IN /•Ch13 HI N 13 32 ChS HI IN

Chfi LO IN /•Ch14 HI IN 12 31 CMi HI IN

Ch7 LO IN /•Ch15 HI IN 11 30 Ch7 HI IN

D/A 0 RU IN 1 Q 29 U CNO.

D/A O OUT g 28 U CNO.
VREF' (-SV) 8 27 0/A 1 OUT

POWER CNO. 7 26 D/A RU IN

14

IP1 6 25 IF'O I TRIG c
IP:S 5 24 IP2 / CTR 0 CATE

OP1 4 ~ OPO
Of'J 3 22 OP2

CTR 0 OUT 2 21 CTR 0 CLOCK IN

+5V PWR
-- CTR 2 OUT

Alternative connections used in
16--channel single--ended (SE)
input configuration (set by 8116
Switch).

Figure 1. Rear view of the 1/0
connector (after Ref. 12).

We used the DAS-1601 with following configuration:

Board type: DAS-1601

Base Address: &H300

Clock Select: lOMHz

Wait State: No

AID Mode: Unipolar

15

AID Config: Single-ended

DI A 0 Mode: Bipolar

DI A 1 Mode: Bipolar

DIA 0 Ref: -10.0

DIA 1 Ref: -10.0

DMA Channel: 3

IRQ Channel: 7

Digital Cfg:

Number EXP16s: 0

EXP16 gains: [NIA]

Number EXPGPs: 0

EXPGP Gains: [NIA]

CJR Channel: [NIA]

Number SSH4As: 0

SSH4A Gains: [NIA]

SSH4A Mode: [NIA]

SSH4A Timing: [NIA]

AID Gain: [NI A]

The C-compiler used

The Microsoft QuickC 1.00 compiler was used and in addition, the library files

'DAS1600.LIB' and 'DASRFACE.LIB' provided by the AS0-1600 software package

16

were included to compile the C program 'STM.C'. These files should be in one directory

together with the Microsoft library file 'GRAPHICS.LIB'. To resolve the external

functions and create the executable file 'STM.EXE' one has to type:

'QCL IC STM.C'

'LINK STM,,,DAS 1600+DASRF ACE +GRAPHICS'

Description of the program

The first lines include the standard header files "stdio.h", "graph.h", "math.h", "ctype.h",

"string.h" and "dos.h" and the DAS-1600 Driver include file "userprot.h" provided by the

ASO 1600-package.

The #define-commands determine the size of the image and the minimal and maximal

values for the output-voltages and thus the maximal scanning range. We have chosen an

image consisting of 150x150 data points. To change this size you simply have to change

the numbers behind "NUMBXSTEPS" and "NUMBYSTEPS" respectively. As a matter

of convenience and readability '150' will be used instead of "NUMBXSTEPS" or

"NUMBYSTEPS" in the following. The values for the maximal and minimal voltages

are given by the data acquisition card used and its setup. These values are limited to

values acceptable for the card.

Following is a list of the global variables, their type, their purpose and the functions that

use and change them:

• DAS1600:

type: DDH - user defined (in "userprot.h")

fcts: gethandle()

purpose:

writexDA value()

writeyDAvalue()

readADvalue()

used as argument of

17

several external fcts

(DAS1600_GetDevHandle(), K_DAWrite(), K_ADRead()), defined

• NumberOfBoards:

type:

fcts:

purpose:

• ADvalue:

in "userprot.h"

character

opendevice()

used as argument in 'DAS 1600 _ DevOpen()'

type: long integer

fcts: readADvalue()

purpose:

printmenu()

scansample()

the data acquisition card stores the result of an single AD-operation

in this variable

• zADvalue[][]:

type: 1 SOxl SO-field of integers

fcts: scansample()

purpose:

• zADvalueMin:

savedata()

loaddata()

calczADvalueMin()

calczADvalueMax()

printscreen()

each element holds the value corresponding to one data point

type: integer

fcts: calczADvalueMin()

printscreen()

save data()

loaddata()

18

purpose: holds minimal value of already collected data points, needed for

standardization in 'printscreen()'

• zADvalueMax:

type: integer

fcts: calczADvalueMax()

printscreen()

purpose:

• infl]:

type:

fcts:

purpose:

• dat[]:

type:

fcts:

purpose:

• videoconfig vc:

type:

fcts:

purpose:

• modes[]:

savedata()

loaddata()

19

holds maximal value of already collected data points, needed for

standardization in 'printscreen()'

character array

savedata()

loaddata()

holds extension for data file

character array

savedata()

loaddata()

holds extension for info file

structure

main()

not used yet

type: integer array

fcts:

purpose:

• *modenames[]:

type:

fcts:

purpose:

• xVoltScanRange:

main()

used as argument to change video mode

array of character pointers

not used yet

not used yet

type: floating point

fcts: printmenu()

calcxDAvalue()

changeScanRange()

check Values()

20

purpose: determines the scanning range in x-direction and thereby the

magnification of the image on the screen

• y VoltScanRange:

type: floating point

fcts: printmenu()

calcy DA value()

changeScanRange()

check Values()

purpose:

• xVoltStart:

21

determines the scanning range in y-direction and thereby the

magnification of the image on the screen

type: floating point

fcts: printmenu()

calcxDA value()

changex VoltStart()

check Values()

purpose: determines x-component of starting point of image

• yVoltStart:

type: floating point

fcts: printmenu()

calcyDAvalue()

changeyVoltStart()

check Values()

purpose: determines y-component of starting point of image

• xChannel:

type: integer

fcts: printmenu()

writexDA value()

/

purpose:

• yChannel:

type:

fcts:

purpose:

• powerofTwo:

22

switch Channels()

determines on which output channel x-voltage is output, possible

values: 0 or 1

integer

printmenu()

writey DA value()

switch Channels()

determines on which output channel y-voltage is output, possible

values : 0 or 1

type: integer

fcts: scansample()

purpose:

• scanTimes:

changeNumbofMeas()

2 to the power of 'powerofTwo' measurements are made for each

data point, possible values: 0, 1, 2, 3, ...

type: integer

fcts: printmenu()

scansample()

purpose:

23
changeNumbofMeas()

'scanTimes' measurements are made for each data point, possible

values: 1, 2, 4, 8,... ; cannot be changed directly, just by changing

'poweroITwo'

• printLines:

• gam:

type: integer

fcts: printmenu()

scansample()

changeLines()

check Values()

purpose: after 'printLines' lines of data points are taken while scanning the

image of the already collected data points is printed to the screen

before scanning is continued

type: integer

fcts: printmenu()

readADvalue()

changeGain()

check Values()

purpose: for the DAS-1601: 'O' corresponds to a gain of 1, '1' to 10, '2' to 100

and '3' to 500

• delayCtr:

24

for the DAS-1602: 'O' corresponds to a gain of 1, '1' to 2, '2' to 4 and

'3' to 8

type: long integer

fcts: printmenu()

delay()

changeDelayCtr()

checkValues()

purpose: after moving the tip to the desired place a delay is made in order to

give the tip time to settle down before measuring

Following is a list of the functions, the global and local variables they use, receive and

pass, the functions that each calls and is called from, and the task of each function.

•main():

local variables: character choice

global variables: vc

calls: open device()

gethandle()

changeDelayCtr()

changex Vo ltStart()

changeyVoltStart()

description:

changeGain()

changeScanRange()

changeNumbotM:eas()

changeLines()

switch Channels()

savedata()

loaddata()

25

printscreen(), '149' is passed for 'yCount', e.g. the whole image is

displayed

exitprg()

check Values()

scansample(), the first passed parameter (0 or 1) determines the

channel from which the z-voltage is read; the

second (0 or 1) yields either a single scan (1) or

continuous scanning (0)

at the beginning the hard- and software is initialized and

communication to the board established by calling the external

functions 'opendevice()' and 'gethandle()'; after a keyboard hit the

point 'Menu' marks the beginning of a goto-loop; the screen is

cleared and the menu printed ('printmenu()'); the program waits for

the user to input a single character followed by 'return' and then

executes a command block depending on the input due to a switch

26
command; after executing the command block the goto statement

makes the program begin at the point 'Menu' again; the command

blocks of most cases are self explanatory.

case 'p': the screen is cleared; video mode "VRES 16COLOR"

chosen; the video configuration stored in the variable

'vc'; the logical origin set to 270 pixels to the right

and 30 pixels down from the upper left comer of the

monitor and finally the full image printed on the

screen; after a keyboard hit the default video mode is

restored and the program goes to the beginning of the

goto-loop.

case 'h': single scanning at continuous height:

the values for the global variables are checked; if they

are OK the function call returns a '1' and the program

continues; otherwise, a 'O' is returned; the program

waits for a keyboard hit and then goes back to the

menu; in the first case the function 'scansample()' is

called and passed the value '1' for the variable

'channel' (e.g. channel #1 is used for reading the z-

voltage) and '1' for the variable 'kbFlag' (e.g. a single

scan).

case 'a':

case 'v':

case 'o':

• opendevice()

27

same as above, but this time a 'O' is passed for 'kbFlag'

(e.g. continuous scanning)

similar to above, 'O' for 'channel' (e.g. channel #0 is

used for reading the z-voltage) and 'l' for 'kbFlag'

similar to above, 'O' for 'channel' and 'O' for 'kbFlag'

local variables: integer Err

global variables: Number of Boards

called by: main()

calls: DAS 1600 _ DevOpen()

description: the hard- and software is initialized by calling the external function

'DAS1600_Dev0pen()'; the first parameter must be the address of

the configuration file starting at the directory from which the

program was started; the second parameter is '&Numberoffioards';

in case of failure a bell is rung and the program exits; otherwise, a

confirmation is sent to the screen.

• gethandle()

local variables: integer Err

global variables: DAS 1600

called by: main()

calls: DAS 1600 GetDevHandle()

description:

• printmenu()

28

communication is established by calling the external function

'DAS 1600 _ GetDevHandle(); the first parameter is the number of

the board (always 'O' as just one board was used) and the second

parameter is '&DAS1600'; in case of failure a bell is rung and the

program exits; otherwise, a confirmation is sent to the screen.

global variables: xVoltStart

yVoltStart

x VoltScanRange

scan Times

printLines

delay Ctr

gam

xChannel

yChannel

zADvalueMin

zADvalueMax

called by: main()

description: the first part prints the current values - which can be changed

independently - for the scanning variables on each line; the capital

• scansample()

29
letter in each line indicates which character is to be input in order

to change a value;

the second part prints the other options on separate lines with one

capital letter again indicating which character to input for each

option.

local variables: integer channel

purpose: is passed from 'main()' to 'readADvalue()'; determines

from which input channel z-voltage is read; possible

values: 0 or 1

integer kbFlag

purpose: is passed from 'main()'; determines if scanning 1s

repeated at end of loop (value 'O') or if control returns

to 'main()' (value 'l ')

long integer xDA value

purpose: is passed to 'writexDAvalue()' as argument; range: 0 -

4095; 'O' corresponds to -5.00V, '4095' to +4.99V on

output channel #'xChannel'; calculated and returned as

return value from 'calcxDAvalue()'

long integer yDAvalue

30

purpose: is passed to \vriteyDAvalue()' as argument; range: 0 -

4095; 'O' corresponds to -5.00V, '4095' to +4.99V on

output channel #'yChannel'; calculated and returned as

return value from 'calcyDAvalue()'

integer xCount

purpose: counter for inner loop that controls x-voltage

integer yCount

purpose: counter for outer loop that controls y-voltage

long integer zTotal

purpose: holds sum of results of all measurements for one data

point

integer avgCount

purpose: counter for loop of several measurements for one data

point

character keyhit

purpose: stores keyboard hit of user while scanning

global variables: scanTimes

ADvalue

zADvalue[][]

poweroffwo

printLines

called by: main()

calls:

description:

calcyDAvalue()

writeyDA value()

calcxDA value()

writexDAvalue()

delay()

readADvalue()

printscreen()

calczADvalueMin()

calczADvalueMax()

'Scan' marks the beginning of a goto-loop;

31

in the outer loop, which controls the y-voltage, 'yCount' counts

from 0 to 149; 'yCount' is passed to 'calcyDAvalue()' and

'yDAvalue' holds the return value; possible values for 'yCount': 0 -

4095, depending on 'yVoltStart' and 'yVoltScanRange'; the y

Voltage corresponding to 'yDAvalue' is output on channel

#'yChannel';

the inner loop, which controls the x-voltage, works analog;

'delay()' is called in order to give the tip time to move to the

desired place;

every time the innermost loop is run the z-Voltage is measured, the

result (possible: 0 - 4095) stored in the upper 12 bits of 'ADvalue'

and 'ADvalue' summed to 'zTotal'; in order to obtain values from 0

• writexDAvalue()

32
to 4095 the upper 12 bits of 'ADvalue' must be shifted 4 bits to the

right; 'zTotal' holds the sum of all the single measurements for one

data point; in order to obtain values from 0 - 4095 'zTotal' must be

shifted by 'poweroff wo' bits to the right and the result is stored in

zADvalue[xCount][yCount];

the program checks after scanning one line if a multiple of

'printLines' lines has already been read and prints the partial image

if so;

if the key 'q' has been hit during the scan the program returns

immediately to 'main()';

if a key besides 'q' has been hit 'kbFlag' is set to 'I' (i.e. the

program returns to 'main()' after the last line is read and the whole

image displayed on the screen);

the minimal and maximal value of zADvalue[] [] are calculated and

the whole image is printed on the screen;

if kb Flag equals 'O' the program goes to 'Scan' and repeats the goto-

loop; otherwise, it returns to 'main()'

local variable: integer Err

long integer xDAvalue (passed by value from 'scansample()')

33

purpose: determines the voltage that is output on channel

#'xChannel'; possible values: 0 - 4095, 'O' corresponds

to -5.00V and '4095' to +4.99V

global variables: DAS 1600

xChannel

called by: scansample()

calls: K_DAWrite()

description: the long integer 'xDA value' contains 12 bits of information

(possible values: 0 - 4095); 'K_DA Write()' expects these 12 bits to

be in the upper 12 bits of the used long integer, therefore the bits of

'xDAvalue' must be shifted 4 bits to the left;

by calling 'K_DA Write()' the voltage corresponding to 'xDAvalue'

is output on channel #'xChannel'.

• writeyDAvalue()

local variable: integer Err

long integer yDAvalue (passed by value from 'scansample()')

purpose: determines the voltage that is output on channel

#'yChannel'; possible values: 0 - 4095, 'O' corresponds

to -5.00V and '4095' to +4.99V

global variables: DAS 1600

xChannel

called by:

calls:

description:

• readDAvalue()

scansample()

K DAWrite()

34

the long integer 'yDAvalue' contains 12 bits of information

(possible values: 0 - 4095); 'K _DA Write()' expects these 12 bits to

be in the upper 12 bits of the used long integer, therefore the bits of

'yDA value' must be shifted 4 bits to the left;

by calling 'K_DAWrite()' the voltage corresponding to 'yDAvalue'

is output on channel #'yChannel'.

local variable: integer Err

integer channel (passed from 'scansample()")

global variables: DAS 1600

called by: scansample()

calls:

description:

• calczADvalueMin()

K_ADRead()

by calling 'K_ADWrite()' the z-voltage is read from channel

#'channel' at the gain corresponding to 'gain' and the result

(possible: 0 - 4095) is stored in the upper 12 bits of the long integer

'ADvalue'.

local variables: integer yCount (passed from calling function)

35

purpose: specifies up to which line of the data field the

minimum is looked for

integer xCtr

purpose: counter for inner loop that controls x-position of data

point; counts from '1' to '149'

integer yCtr

purpose: counter for outer loop that controls y-position of data

point; counts from 'O' to 'yCount'

global variables: zADvalueMin

zADvalue[] []

called by: scansample()

printscreen()

description: initially the first data point ('zADvalue[O] [O]') is assigned to

'zADvalueMin'; the following sorting routine looks for the smallest

value for the data points from the first line to the 'yCount'-line

• calczADvalueMax()

local variables: integer yCount (passed from calling function)

purpose: specifies up to which line of the data field the

maximum is looked for

integer xCtr

36

purpose: counter for inner loop that controls x-position of data

point; goes from 'O' to '149'

integer yCtr

purpose: counter for outer loop that controls y-position of data

point; goes from 'O' to 'yCount'

global variables: zADvalueMax

zADvalue[] []

called by: scansample()

printscreen()

description: initially the first data point ('zADvalue[O] [O]') is assigned to

'zADvalueMax'; the following sorting routine looks for the biggest

value for the data points from the first line to the 'yCount'-line

• calcxDAvalue

local variables: integer xCount (passed from calling function)

integer xDA valuelnt

long integer xDAvalue

global variables: xVoltStart

xVoltScanRange

called by: scansample()

description: depending on 'xVoltStart', 'xVoltScanRange' and 'xCount' a value

is assigned to the integer 'xDAvaluelnt'. 'O' corresponds to -5.00V,

• calcy DA value

37
'4095' to +4.99V. 'xDAvaluelnt' is assigned to the long integer

'xDAvalue', which is then returned to the calling function.

local variables: integer yCount (passed from calling function)

integer yDAvaluelnt

long integer yDAvalue

global variables: yVoltStart

y V oltScanRange

called by: scansample()

description: depending on 'yVoltStart', 'yVoltScanRange' and 'yCount' a value

is assigned to the integer 'yDAvaluelnt'; 'O' corresponds to -5.00V,

'4095' to +4.99V; 'yADvaluelnt' is assigned to the long integer

'yDAvalue', which is then returned to the calling function.

• printscreen()

local variables: integer yCount (passed from calling function)

purpose: the first 'yCount' lines are printed on the screen

integer xscreenCtr

purpose: counter for inner loop (0 - 149); determines x-position

of data point

integer yscreenCtr

38

purpose: counter for outer loop (0 - 'yCount'); determines y-

position of data point

integer xscreenCtr2

integer yscreenCtr2

integer pixelcolor

purpose: a number between 0 and 15, which corresponds to a

certain color, is assigned to each data point

floating point norm

purpose: standardization factor

floating point diff

floating point floatMax

purpose: assigns a floating point variable to the Maximum

floating point floatMin

global variables: zADvalueMin

purpose: assigns a floating point variable to the Minimum

zADvalueMax

zADvalue[]

called by: main()

scansample()

calls: calczADvalueMin()

calczADvalueMax()

description:

• savedata

39

a floating point normalization factor 'norm' is calculated so that

'pixelcolor' is assigned values from 0 to 15; if 'zADvalueMin'

equals 'zADvalueMax' the control returns to the calling function

without printing the image on the screen;

each data point corresponds to 2x2 pixels on the screen.

local variables: character string fileName[]

purpose: contains name of data file without extension ".dat"

character string fileName2[]

purpose: contains name of info file without extension 11 .inf'

character string pointer *dataFileName

purpose: contains name of data file with extension 11 .dat"

character string pointer *infoFileName

purpose: contains name of info file with extension 11 .inf'

FILE *dataFptr

purpose: controls writing to data file on disk

FILE *infoFptr

purpose: controls writing to info file on disk

character answer

integer xCount

integer yCount

40
global variables: character <lat[]

character inf[]

zADvalue[]

zADvalueMin

zADvalueMax

called by:

description:

• loaddata

main()

the user is asked to input the filename without extension; after

testing the exit condition the extension ".<lat" is added and a safety

check done to see whether the file already exists;

the data file is opened and the data points 'zADvalue[]' are written

to the data file from the left to the right, line after line with a space

after each data point; finally 'zADvalueMin' and 'zADvalueMax'

are stored and the data file closed;

same procedure for the info file; the body of the info file is empty

so far, i.e. no information is written to the info file yet.

local variables: character string fileName[]

purpose: contains name of data file without extension ".dat"

character string fileName2[]

purpose: contains name of info file without extension ".inf''

character string pointer *dataFileName

purpose: contains name of data file with extension ".<lat"

character string pointer *infoFileName

purpose: contains name of info file with extension ".inf'

FILE *dataFptr

purpose: controls reading from data file on disk

FILE *infoFptr

purpose: controls reading from info file on disk

character answer

integer xCount

integer yCount

41

global variables: character <lat[]

character inf[]

zADvalue[]

zADvalueMin

zADvalueMax

called by:

description:

main()

the user is asked to input the filename without extension; after

testing the exit condition the extension ".<lat" is added, the data file

is opened and the data points 'zADvalue[]' are read in from the data

file from the left to the right, line after line with a space after each

data point; finally 'zADvalueMin' and 'zADvalueMax' are read in

and the data file closed;

• exitprg()

42

same procedure for the info file; the body of the info file is empty

so far, i.e. no information can be read from the info file yet.

local variables: character answer

called by: main()

• delay()

local variables: long integer i

long integer k

global variables: delayCtr

called by: scansample()

• switchChannels()

global variables: xChannel

yChannel

called by: main()

description: by this routine the output channels for the x- and y-voltage are

switched; the resulting image is rotated by 90 degrees.

• changeNumbofMeas()

global variables: poweroffwo

scan Times

called by: main()

• changeLines

global variables: printLines

called by: main()

• changeScanRange()

global variables: x VoltScanRange

y V oltScanRange

called by: main()

• changeGain()

global variables: gain

called by: main()

• changexVoltStart

global variables: xVoltStart

called by: main()

• changeyVoltStart

global variables: yVoltStart

called by: main()

• changeDelayCtr()

global variables: delayCtr

called by: main()

43

• checkValues()

global variables: xVoltStart

yVoltStart

xVoltScanRange

yVoltScanRange

gain

called by:

delayCtr

printLines

main()

44

description: some of the changeable global variables are checked to see whether

they contain allowed values; if the check is OK the function returns

'O'; otherwise, a '1'.

Chapter 4 Results

The program was tested at the STM of PSU to make images of HOPG (highly oriented

pyrolitic graphite), a substance whose atoms are ordered in hexagonal arrays (see Fig. 2),

as follows.

I
c

'c/ ".c/

I I
/c'- ' 'c/

I
Figure 2. Schematic drawing of the configuration that gives rise to the hexagonal pattern

inHOPG.

A thin slice of HOPG was glued on the sample holder by a silver glue. To get an

atomically flat surface, we made use of the fact that the bindings of the carbon atoms are

very strong within one layer. However, the bindings between layers are comparatively

weak. If you rub a piece of scotch tape on the surface of the sample and remove the tape,

several layers will stick to it and you obtain a smooth layer at the surface of the sample,

that is, an atomically flat surface. The tip was made of tungsten wire that was clipped by

scissors.

First, the old program with the Chinese data acquisition board was used to see whether

the tip was of sufficient quality to produce images with atomic resolution. After this, the

46

new program with the DAS-1601 from "Keithley Data Acquisition" controlled the

operation of the STM. In this way, we made sure that causes of fault other than the

program were excluded in case of failure.

The program proved successful. We obtained images showing the hexagonal structure of

HOPG with atomic resolution. In the following, we will show two examples of the

acquired data.

Figure 3. Image 'chris.dat' .

Data in Fig. 3 was obtained under the following scan conditions.

x-voltage starting at: O.OOV N measurements: 2

y-voltage starting at: O.OOV printed after M lines: 150

x-chn #1,y-.din #0 delay-counter: 0

Figure 4. Image 'Karin.dat'

Data in Fig. 4 was obtained under the following scan conditions.

x-voltage starting at: O.OOV

y-voltage starting at: O.OOV

x-chn #1, y-chn #0

N measurements:

printed after M lines:

delay-counter:

2

150

0

47

The images are of medium quality. Considering the comparatively simple methods used

of sample and tip preparation, and the fact that the data are not smoothed, this is a very

48

good result. The distortion of the images at the left edge is due to the tip movement.

Within one single line scan, the tip is moved by single steps in the x-direction, from the

left to the right. As the tip is not totally rigid, it is bent slightly to the left due to its

inertia. See Fig. 5.

tip holder

tip movement

Figure 5. Tip motion during line scan.

At the end of the line the tip is moved by one step in y-direction and from the end of the

line to the beginning of the next line, i.e., from the right to the left. Due to its inertia, this

time the tip is slightly bent to the right. See Fig. 6.

tip holder

tip movement

Figure 6. Tip motion during and just after the movement back to start the next line scan.

49

After some data points in this line, the tip has obtained its 'normal' position again, that is,

being slightly bent to the left, and the distortion disappears.

Unlike the Chinese program, this program could measure several times for one data point

before moving the tip to the reset data point. By averaging over more measurements, we

hoped to improve the quality of the image. However, the best results were obtained for

just one or two measurements per data point. If one sets N, equal or greater 8, the images

were clearly compromized. This is probably due to thermal variations that have a greater

influence the longer the scan takes.

For the same reason, it seemed advisable to choose small values for 'scanTimes',

'delayCtr', and 'x-Volt Scan Range' and to set 'printLines' to '150'.

For an image taken with the same values as above but with switched channels for the x

voltage and y-voltage you expect the same image rotated by 90 degrees. Actually, the

images looked quite different; and the better scans were taken with the x-voltage output

on channel #1 and they-voltage on channel #0. This is similar to what is observed with

the original software and thus seems to be a function of the STM proper.

It turned out that the starting values of the x-voltage and y-voltage did not have any

significant influence on the images. For the same combination of the other variables but

different 'xVoltStart' and 'yVoltStart', the images looked quite the same. This is not

very surprising as the whole sample consisted of HOPG and therefore should show

everywhere the same structure.

Chapter 5 Conclusions

The program has proven to work satisfactorily. It is well structured and easily readable

and though it is quite short it can control the STM and the program produces images with

atomic resolution. Even with our quick and simple tip and sample preparation, medium

quality images are obtained without smoothing the data.

Although the program is not extremely complex and should not be considered the

ultimate program for a STM, it should prove to be a strong building block for future

improvements.

I want to list some possibilities for future improvements:

• The info file contains no information about the image and the way it is produced, yet.

It is up to the user to be clear about which information should be in this file and to

insert the corresponding commands in the program in the functions 'savedata()' and

'loaddata()'.

Some suggestions are:

• value of the changeable variables like 'xVoltStart', 'xVoltScanRange', 'gain' and

so on

• date and time image was taken

• comment on which material was examined

• name of user

51

• 'constant height' or 'constant current' mode

• The program seemed to produce better images the smaller the values for 'scanTimes',

'delayCtr', 'xVoltScanRange' and the bigger the values for 'printLines' were, i.e., the

less time was taken to produce the image. This is probably due to thermal variations

that become more important the longer the scan takes. As it generally takes the most

time to display the image on the screen , it is recommended to assign the value '150'

to 'printLines', i.e., just the image of all 150x 150 data points is displayed after a single

scan and no time is taken to display a partial image while scanning. Then the check

after each line of scanning to see whether the image is to be displayed, could be

omitted. Instead of calling the functions 'calcxDAvalue()' and 'calcyDAvalue()' to

calculate 'xDAvalue' and 'yDAvalue' this task could be done in 'scansample()'

directly, which might also improve the speed of the program slightly. Of course, the

frequency of operation of the CPU is the main factor in determining the overall speed

of the program.

• The image is displayed in the video mode: "VRES16COLOR", that is, 16 different

colors are used to illustrate the differences in 'tunneling current' or 'z-voltage' for the

signal data points. Looking at the images it might have been better to choose a video

mode with gray scales, so darker spots would correspond to holes in the sample and

brighter spots to bumps. Apparently, it is not as easy for the eye to observe structures

that are represented by different colors as it is when the structures are represented by a

gray scale.

52
• It could be useful to see two images on the screen at the same time. For example, one

image could be an already existing image while the other one could display the latest

collected data.

• The first few data points on the left side of each line are distorted due to the resetting

of the tip from the last data point of a line to the first data point of the next line. Thus,

the number of rows could be enlarged by, say ten, and the first ten data points of each

line could be disregarded.

• At the end of a line they-voltage is increased by one single step, while the x-voltage

is reset from its maximal value ('xVoltStart' + 'xVoltScanRange') to its minimal

value ('xVoltStart). One could insert a delay directly before the first data point of a

line is measured to give the tip time to move to the corresponding place.

Other possible ways to improve the program will occur when the program is in use.

Some improvements will depend on the given setup. The program was written such that it

is as readable as possible and it should be no problem for an experienced programmer to

amend this program and adjust it to the setup that will be used.

REFERENCES

I Quate, F, Calvin: Vacuum tunneling: A new technique for microscopy, Physics

Today, August 1986, pp. 26-33, 1986

2 Golovchenko, J., A.: The Tunneling Micrscope: A New Look at the Atomic World,

Science, Vol. 232, pp. 48-53, 1986

3 Hansma, K., Paul; Tersoff, Jerry: Scanning tunneling microscopy, J. Appl. Phys.,

Vol.61, No.2, pp. Rl-R23, 1987

4 Wickramasinghe, H., Kumar: Scanned-Probe Microscopes, Scientific American,

October 1989, pp. 98-105, 1989

5 Demuth, J., E.; Koehler, U.; Hamers, R., J.: The STM learning curve and where it

may take us, Journal of Microscopy, Vol. 152, Pt 2, November 1988, pp. 299-316,

1988

6 Feenstra, M., Randall: Scanning tunneling spectroscopy, Surface Science 299/300,

pp.965-979, 1994

7 Rohrer, H.: Scanning tunneling microscopy: a surface science tool and beyond,

Surface Science 299/300, pp. 956-964, 1994

8 Perry, Greg: C by example, Que Corporation, Carmel, 1993

9 User Guide for the DAS-1600 Data Acquisition Board, Revision A, pp. 1-1, 1992

10 User Guide for the DAS-1600 Data Acquisition Board, Revision A, pp. 1-1, 1992

54

11 User Guide for the DAS-1600 Data Acquisition Board, Revision A, pp. 1-2, 1992

12 User Guide for the DAS-1600 Data Acquisition Board, Revision A, pp. 2-3, 1992

13 User Guide for the DAS-1600 Data Acquisition Board, Revision A, pp. 2-3, 1992

~

lt 3~ ~ :£1 ~ !-g-~
("'>

~('")
--< >c s-~ :s:- JC $> ~~ . ~ I J:)

.E)R \,") s :c
~~ ~A :s:' s ~ 1t o~ ~~

-I: s
~ S!7~ '8.
~ s !:.~ a: a:~ ~
~I ~ 2 *" -· ~~ i
~~

~ S" ~~
±-

~ +.
f J:

~ C> ~- i' ~ s
~

~
e

u;>

.a__

~
~
~

;· s,..

~ 'R r.;)

~
3'
s:: s

-

:µe4~ MOl:I v x1puaddy

95

s
0 s 0

:>< .E:>
{;; ~~
< ~ .2

~
SJ-J::) Cb ~
~

£"a .c: s:=
s

(b 0

-+-~.a=
e-~ ~·,

r--...
s

~ 0

~
~

~ 52-
~ ('"""')

c
<::> .r:;.

s;:

L-t:> ~ ;t--
(b
'--"'

x ("'"'""\

~ ~ s -+-
,,

C)

x.
c;) B ~ .---
<::: E p

s- k (' et-

,Q_
~
s- -<"

~

~ V)
~ \t)
s -+-
~

,.

-<
("'\

~ s:>
::z>.

r--

" < ,c
0

~ s-
~ ~

"
r::r

~
-r\ <:/')

r-~
$ s::: & ~ Q

s
:s 11

a-

Cd 0 g_ ,lo 1 s
--

:;: V\ ~ -· c.-- s::: -0 ~. ~. e ~
s s

> V) 3 ~ r-0

r:
s: s::. ~

a-~ ~

~. }.
.Q

:s ,S;I._

8S

Appendix B Listing of the computer program

/*MICROSOFT INCLUDE FILES*/
#include "c:\qc 1 \include\stdio.h"
#include "c:\qcl\include\stdlib.h"
#include "c:\qcl \include\graph.h"
#include "c:\qc 1 \include\math.h"
#include "c:\qc 1 \include\ctype.h"
#include "c:\qcl \include\string.h"
#include "c:\qcl \include\dos.h"

/* DAS-1600/1400 DRIVER INCLUDE FILE*/
#include "c:\qcl \stm\userprot.h"

/* DEFINE SIZE OF IMAGE */
#define NUMBXSTEPS 150 /*Number of rows */
#define NUMBYSTEPS 150 /*Number of columns */

/*DEFINE MAXIMAL SCANRANGE */
#define XVOLTMIN -5.0
#define YVOLTMIN -5.0
#define XVOLTMAX 5.0
#define YVOLTMAX 5.0
#define XVOLTTOTALRANGE 10.0
#define YVOLTTOTALRANGE 10.0

/* GLOBAL VARIABLES */

/*DETERMINED BY USED */
/* DATAACQUISITION CARD*/
/*AND ITS SETUP */
/* */
/* XVOL TMAX - XVOL TMIN *I
/* YVOLTMAX- YVOLTMIN */

DDH DAS1600; /*DEVICE HANDLE */
char NumberOfBoards; /*NUMBER OF BOARDS IN DAS1600.CFG */
long ADvalue; /* STRORAGE FOR ZA/D VALUE *I
int zADvalue[NUMBXSTEPS][NUMBYSTEPS];
int zADvalueMin;
int zADvalueMax;
char inf[]=" .inf';
char dat[] = ".dat";
struct videoconfig vc;
int modes[16] = { _TEXTBW40, _TEXTC40, _TEXTBW80, _TEXTC80,

_MRES4COLOR, _MRESNOCOLOR, _HRESBW,
_ TEXTMONO, _ MRES 16COLOR, _ HRES 16COLOR,
_ERESNOCOLOR, _ERESCOLOR, _ VRES2COLOR,
_ VRES 16COLOR, _ MRES256COLOR, _DEF AUL TMODE};

char *modenames[16] = {"TEXTBW40", "TEXTC40", "TEXTBW80", "TEXTC80",
"MRES4COLOR", "MRESNOCOLOR", "HRESBW",

"TEXTMONO", "MRES16COLOR", "HRES16COLOR",
"ERESNOCOLOR", "ERESCOLOR", "VRES2COLOR",
"VRES 16COLOR", "MRES256COLOR",
"DEFAULTMODE"};

/* DEFAULT VALUES FOR VARIABLES *I
float xVoltScanRange =4.0;
float yVoltScanRange =4.0;
float xVoltStart =0.0;
float yVoltStart =0.0;
int xChannel = O·

'

int yChannel = 1 ·
'

int poweroffwo = o·
'

int scan Times = 1 ·
'

int printLines = 10;
int gain = 1 ·

'
long delayCtr = I·

'

/*FUNCTION PROTOTYPING*/
void opendevice();
void gethandle();
void printmenu();

/* X-PIEZO DRIVE CONTROLLED BY */
/*CHANNEL #0 OF DAS-1600 */
/* Y-PIEZO DRIVE CONTROLLED BY */
/*CHANNEL #1 OF DAS-1600 */
/*ONE MEASUREMENT */
/* " *I
/*PRINT SCREEN AFTER 10 LINES */
/*FOR DAS-1601 GAIN OF 10 */

void scansample(int channel, int kbFlag);
void writexDA value();
void writeyDAvalue();
void readADvalue(int channel);
void calczADvalueMin(int yCount);
void calczADvalueMax(int yCount);
void printscreen(int yCount);
void savedata();
void loaddata();
void exitprg();
void delay();
void switch Channels();
void changeNumbotMeas();
void changeLines();
void changeScanRange();
void changeGain();
void changex V oltStart();
void changeyVoltStart();
void changeDelayCtr();
long calcxDAvalue(int xCount);

60

61

long calcyDAvalue(int yCount);
int checkValues();

/**/
I* BEGIN MAIN MODULE*/

main()
{
I* LOCAL VARIABLE */
char choice;

I* INITIALIZE HARD/SOFTWARE AND EST AB LISH COMMUNICATION TO
BOARD*/
opendevice();
gethandle();
while (!kbhit());

/*LOOP FOR PRINTING MENU AND GETTING CHOICE*/
Menu:

_ clearscreen (_ GCLEARSCREEN);
printmenu();
choice = getchar();
switch (choice)
{

case ('d') : { changeDelayCtr();
break; }

case ('x') : { changex VoltStart();
break; }

case ('y') : { changeyVoltStart();
break;}

case ('g') : { changeGain();
break;}

case ('r') : { changeScanRange();
break;}

case ('n') : { changeNumbotMeas();
break; }

case ('m') : { changeLines();
break;}

case ('c') : { switchChannels();
break; }

case ('s') : { savedata();
break;}

case ('I') : { loaddata();
break;}

case ('p'): { _clearscreen (_ GCLEARSCREEN);
setvideomode (modes[13]);

_getvideoconfig (&vc);
_setlogorg(270, 30);
printscreen(NUMBYSTEPS-1);
printf ("\n Press <space> to return to menu ! ");
while (!kbhit());

_setvideomode (_DEFAULTMODE);
break;}

case ('e') : { exitprg();
break;}

case ('h') : {if (check Values())
{

}

while (!kbhit());
break;

_ clearscreen(_ GCLEARSCREEN);
_setvideomode (modes[13]);
_getvideoconfig (&vc);
_ setlogorg(270, 30);
printf ("\n Press <q> to quit ! ");
scansample(l, 1);
printf ("\n Press <space> to return to menu!");
while (!kbhit());
_setvideomode (_DEFAULTMODE);
break; }

case ('a') : {if (checkValues())
{
while (!kbhit());
break;
}
_ clearscreen(_ GCLEARSCREEN);
_setvideomode (modes[l3]);
_getvideoconfig (&vc);
_ setlogorg(270, 30);
printf ("\n Press <q> to quit !");
printf ("\n Press <space> to stop scanning ! ");
scansample(l, O);
printf ("\n Press <space> to return to menu ! ");
while (!kbhit());
_setvideomode (_DEF AUL TMODE);
break; }

case ('u') : {if(checkValues())
{

62

}

}

while (!kbhit());
break;

_ clearscreen(_ GCLEARSCREEN);
_setvideomode (modes[l3]);
_getvideoconfig (&vc);
_setlogorg(270, 30);
printf ("\n Press <q> to quit ! ");
scansample(O, 1);
printf ("\n Press <space> to return to menu!");
while (!kbhit());
_ setvideomode (_DEF AUL TM ODE);
break;}

case (' o ') : { if (check Values())
{

}
goto Menu;

return;

}

while (!kbhit());
break;

_ clearscreen(_ GCLEARSCREEN);
_setvideomode (modes[l 3]);
_getvideoconfig (&vc);
_setlogorg(270, 30);
printf ("\n Press <q> to quit ! ");
printf ("\n Press <space> to stop scanning ! ");
scansample(O, O);
printf ("\n Press <space> to return to menu ! ");
while (!kbhit());
_setvideomode (_DEFAULTMODE);
break;}

63

/**!
/*INITIALIZE THE HARDWARE/SOFTWARE*/

void opendevice()
{

/* LOCAL VARIABLE*/
int Err; /*FUNCTION RETURN ERROR FLAG*/

if ((Err= DAS1600_Dev0pen ("DAS1600.cfg", &NumberOffioards)) !=O)

}

{

}

putch (7); /*RING BELL*/
printf ("Error %X during DevOpen\n ",Err);
exit (Err);

else
{

printf ("Device initialized\n");
}

return;

64

/**/
/* EST AB LISH COMMUNICATION WITH THE DRIVER THROUGH A DEVICE
HANDLE*/

void gethandle()
{

}

/* LOCAL VARIABLE */
int Err; /*FUNCTION RETURN ERROR FLAG*/

if ((Err= DAS1600_GetDevHandle(0, &DAS1600)) != 0)
{

}

putch (7); /*RING BELL*/
printf ("Error %X during GetDevHandle ",Err);
exit(l);

else
{

printf ("Communication established\n");
}

return;

/**/
/*PRINT MENU*/

void printmenu()
{

printf (" X-voltage starting at (-5.00 - +4.99): %.2f\n", xVoltStart);
printf (" Y-voltage starting at (-5.00 - +4.99): %.2f\n", yVoltStart);
printf ("scanning Range: %.2f\n", xVoltScanRange);
printf(" averaging overN measurements: %d\n", scanTimes);

printf ("print screen after M lines: %d\n", printLines);
printf (" Delay-counter: %ld\n", delayCtr);
printf (" Gain-nr.: %d\n", gain);
printf (" Channels: x-chn%dy-chn%d\n", xChannel, yChannel);
printf ("\n");
printf ("min: %d max: %d\n", zADvalueMin, zADvalueMax);
printf ("\n");
printf (" single scanning at 'constant Height' mode\n");
printf (" single scanning at 'constant cUrrent' mode\n");
printf ("continuous scAnning at 'constant height' mode\n");
printf ("continuous scanning at 'constant current' mode\n");
printf (" Savedata\n");
printf (" Loaddata\n");
printf (" Printscreen\n");
printf (" Exit\n");
printf ("\n your choice: ");

return;
}

65

/**/
I* SCAN SAMPLE *I

void scansample(int channel, int kbFlag)
{

long
long
int
int
long
int

char

Scan:

xDAvalue;
yDAvalue;
xCount;
yCount;
zTotal = O;
avgCount;

key hit;

I* STORAGE FOR X-D/A VALUE*/
I* STORAGE FOR Y-D/A VALUE*/
I* COUNTER FOR X-VOL T AGE-LOOP *I
I* COUNTER FOR Y-VOLTAGE-LOOP */
I* SUM OF Z-STORAGES */
I* COUNTER OF LOOP FOR AVERAGING OVER
SEVERAL MEASUREMENTS *I

for (yCount=O; yCount<NUMBYSTEPS; yCount++) I* OUTER LOOP */
I* CONTROLS */
I* Y-VOLTAGE */ {

fflush(stdin);
yDAvalue = calcyDAvalue (yCount);
writeyDAvalue(yDAvalue);

for (xCount=O; xCount<NUMBXSTEPS; xCount++) /*INNER LOOP */
{ /* CONTROLS *I

xDAvalue = calcxDAvalue (xCount); /* X-VOLTAGE */

}

writexDAvalue (xDAvalue);
delay();
zTotal = O;

66

for (avgCount=l; avgCount<= scanTimes; avgCount++) /*MEASUREMENTS*/

}

}

{ /*FOR ONE SINGLE*/

}

readADvalue(channel); /*DATA POINT */

I* STRIP CHANNEL TAG (LEAST SIGNIFICANT 4 BITS) OF Advalue */
zTotal += ADvalue >> 4;

zADvalue[xCount][yCount] = (zTotal >> poweroffwo);

if ((((yCount+ 1)/printLines)*printLines)==(yCount+1))
{

printscreen(yCount);
}

if (kbhit())
{

kbFlag = l;
keyhit = getch();
if (keyhit = 'q')
{

}
}

return;

calczADvalueMin(NUMBYSTEPS-1);
calczADvalueMax (NUMBYSTEPS-1);
printscreen(NUMBYSTEPS-1);

if (kbFlag = 0)
{

goto Scan;
}

return;

/**/
/*OUTPUT xDAvalue TO DAC #xChannel */

void writexDAvalue(long xDA value)
{

}

!* LOCAL VARIABLE */
int Err; /*FUNCTION RETURN ERROR FLAG*/

/* THE DAC VALUE TO OUTPUT MUST BE CORRECTLY ALIGNED FOR
OUTPUT; I.E. THE ACTUAL 12-BIT DATA MUST BE IN THE UPPER 12 BITS
OF THE USER INTEGER*/
xDAvalue = xDAvalue << 4;

if ((Err= K_DAWrite (DAS1600, xChannel, xDAvalue)) != 0)
{

}

putch(7);
printf (" Error in K _DA Write operation.");
exit(l);

return;

67

/**/
/*OUTPUT yDAvalue TO DAC #yChannel */

void writeyDAvalue(long yDAvalue)
{

}

/* LOCAL VARIABLE *I
int Err; /*FUNCTION RETURN ERROR FLAG*/

/* THE DAC VALUE TO OUTPUT MUST BE CORRECTLY ALIGNED FOR
OUTPUT; I.E. THE ACTUAL 12-BIT DATA MUST BE IN THE UPPER 12 BITS
OF THE USER INTEGER*/
yDAvalue = yDAvalue << 4;

if ((Err= K_DAWrite (DAS1600, yChannel, yDAvalue)) != 0)
{

putch(7); /*RING BELL*/
printf (" Error in K _DA Write operation.");
exit(l);

}

return;

/**/

68
/* SAMPLE AND READ CHANNEL channel AT GAIN gain AND STORE SAMPLE
IN ADvalue *I

void readADvalue(int channel)
{

}

if ((Err= K_ADRead (DAS1600, channel, gain, &ADvalue)) != 0)
{

}

putch(7); /*RING BELL*/
printf ("Error in K _ ADRead operation.");
exit(I);

return;

/**/
/*CALCULATE MINIMUM OF COLLECTED DATA POINTS*/

void calczADvalueMin(int yCount)
{

}

/* LOCAL VARIABLES *I
int xCtr, yCtr;

zADvalueMin = zADvalue[O][O];
for (yCtr=O; yCtr<=yCount; yCtr++)
{

}

for (xCtr=O; xCtr<NUMBXSTEPS; xCtr++)
{

}

if (zADvalue[xCtr][yCtr] < zADvalueMin)
{

zADvalueMin = zADvalue[xCtr][yCtr];
}

return;

/**/
/*CALCULATE MAXIMUM OF COLLECTED DATA POINTS*/

void calczADvalueMax(int yCount)
{

/*LOCAL VARIABLES*/
int xCtr, yCtr;

}

zADvalueMax = zADvalue[O][O];
for (yCtr=O; yCtr<=yCount; yCtr++)
{

}

for (xCtr=O; xCtr<NUMBXSTEPS; xCtr++)
{

}

if (zADvalue[xCtr][yCtr] > zADvalueMax)
{

zADvalueMax = zADvalue[xCtr][yCtr];
}

return;

69

/**/
/*CALCULATE VALUE FOR WRITING TO X-CHANNEL */

long calcxDAvalue (int xCount)
{

}

I* LOCAL VARIABLES *I
int xDAvaluelnt;
long xDA value;

xDAvalueint = (xVoltStart + xVoltScanRange*xCount/(NUMBXSTEPS-1))
* 4095/XVOLTTOTALRANGE + 2048;

xDA value = xDA valuelnt;

return (xDA value);

/**/
/*CALCULATE VALUE FOR WRITING TOY-CHANNEL*/

long calcyDAvalue(int yCount)
{

/* LOCAL VARIABLES *I
int y DA valuelnt;
long yDAvalue;

yDAvaluelnt = (yVoltStart + yVoltScanRange*yCount/(NUMBYSTEPS-1))
* 4095/YVOLTTOTALRANGE + 2048;

yDAvalue = yDAvalueint;

return (yDA value);

70
}

/**/
/*PRINT COLLECTED DATA POINTS ON SCREEN*/

void printscreen(int yCount)
{

}

/* LOCAL VARIABLES */
int xscreenCtr, yscreenCtr;
int xscreenCtr2, yscreenCtr2;
int pixelColor;
float norm;
float diff;
float floatMax, floatMin;
float calc;

calczADvalueMin(yCount);
calczADvalueMax(yCount);
if (zADvalueMin = zADvalueMax)
{

return;
}

floatMax = zADvalueMax;
floatMin = zADvalueMin;
diff = floatMax - floatMin ;
norm = 16.0/diff;

for (yscreenCtr=O; yscreenCtr<=yCount; yscreenCtr++)
{

yscreenCtr2 = 2 * yscreenCtr;
for (xscreenCtr=O; xscreenCtr<NUMBXSTEPS; xscreenCtr++)
{

}
}

xscreenCtr2 = 2 * xscreenCtr;
pixel Color = (zADvalue[xscreenCtr] [yscreenCtr]-floatMin)*norm;
_ setcolor(pixelColor);
_ setpixel(xscreenCtr2, yscreenCtr);
_ setpixel(xscreenCtr2+ I, yscreenCtr);
_setpixel(xscreenCtr2, yscreenCtr2+ 1);
_ setpixel(xscreenCtr2+ 1, yscreenCtr2+ I);

return;

71

/**/
/*SAVE DATA TO DISK*/

void savedata()
{
I* LOCAL VARIABLES */
char fileName[9];
char fileName2[9];
char *dataFileName;
char *infoFileName;
FILE *dataFptr;
FILE *infoFptr;
char answer;
int Count, yCount;

fflush(stdin);
printf (" Enter name of file: ('e' to exit)\n");
gets(fileN arne);
strcpy (fileName2, fileName);

if (fileName[O]='e')
{

if (!fileName[l])
{

}
}

return;

dataFileName = strcat(fileName, dat);
infoFileName = strcat(fileName2, inf);

/*TEST OF EXIT CONDITION*/

if ((dataFptr=fopen(dataFileN ame, "r")) ! =NULL)
{

printf(" File %s already exists.\n", dataFileName);
printf ("Overwrite old file?\n");
answer = getchar();
if (answer ! = 'y')
{

}
}

return;

if ((dataFptr=fopen(dataFileName, "w"))--NULL)
{

printf ("***Error opening %s ***\n", dataFileName);

}

}

while (!kbhit());
return;

for (yCount=O; yCount<NUMBYSTEPS; yCount++)
{

for (xCount=O; xCount<NUMBXSTEPS; xCount++)
{

fprintf (dataFptr, "%d ", zADvalue[xCount][yCount]);
}

}
fprintf (dataFptr, "%d ", zADvalueMin);
fprintf (dataFptr, "%d ", zADvalueMax);

fclose(dataFptr);

if ((infoFptr=fopen(infoFileName, "w"))==NULL)
{

}

printf ("***Error opening %s ***\n", infoFileName);
while (!kbhit());
return;

/*BODY OF WRITING TO INFOFILE */

fclose(dataFptr);

return;

72

/**/
I* LOAD DATA FROM DISK*/

void loaddata()
{

/*LOCAL VARIABLES*/
char fileName[9];
char fileName2[9];
char *dataFileName;
char *infoFileName;
FILE *dataFptr;
FILE *infoFptr;
int xCount, yCount;
int zADvalueStorage;

ffl ush(stdin);
printf (" Enter name of file: ('e' to exit)\n");
gets(fileName);
strcpy (fileName2, fileName);

if (fileName[O]='e')
{
if (!fileName[l])
{

}
}

return;

dataFileName = strcat(fileName, dat);
infoFileName = strcat(fileName2, inf);

/*TEST OF EXIT CONDITION*/

if ((dataFptr=fopen(dataFileName, "r"))==NULL)
{

}

printf (" ***Error opening %s ***\n", dataFileName);
while (!kbhit());
return;

for (yCount=O; yCount<NUMBYSTEPS; yCount++)
{

for (xCount=O; xCount<NUMBXSTEPS; xCount++)
{

fscanf(dataFptr, "%d ", &zADvalueStorage);
zADvalue[xCount][yCount] = zADvalueStorage;

}
}
fscanf(dataFptr, "%d ", &zADvalueMin);
fscanf(dataFptr, "%d ", &zADvalueMax);

fclose(dataFptr);

if ((infoFptr=fopen(infoFileName, "r"))--NULL)
{

}

printf (" ***Error opening %s ***\n", infoFileName);
while (!kbhit());
return;

I* BODY OF READING FROM INFOFILE */

73

74

fclose(dataFptr);

return;
}

/**/
/* EXIT PROGRAMM */

void exitprg()
{

}

I* LOCAL VARIABLE *I
char answer;

printf (" Press 'y' to exit");
scanf(" %c", &answer);
if (answer = 'y')
{

exit(O);
}

return;

/**/
/* LOOP FOR DELAY */

void delay()
{

}

/*LOCAL VRIABLES */
long i, k;

for (i=O; i<=delayCtr; i++)
{

k=i;
}

return;

/**/
I* SWITCH CHANNELS FORX-AND Y-WRITE */

void switchChannels()
{

if (xChannel=O)
{

}

xChannel= 1;
yChannel=O;

}
else
{

xChannel=O;
yChannel= 1;

}

return;

75

/**/
/*CHANGE NUMBER OF MEASUREMENTS*/

void changeNumbofMeas()
{

}

printf (" Average over how many measurements ?\n");
printf (" Two to the power of: ");
scanf(" %d", &poweroffwo);
scan Times= pow (2, poweroffwo);

return;

/**/
/*CHANGE: PRINT SCREEN AFTER HOW MANY LINES */

void changeLines()
{

}

printf (" Print screen after how many lines? ");
scanf(" %d", &printLines);

return;

/**/
/*CHANGESCANRANGE*/

void changeScanRange()
{

printf (" Scanrange: ");
scanf(" %f', &xVoltScanRange);
yVoltScanRange = xVoltScanRange;

76

return;
}

/**/
I* CHANGE GAIN*/

void changeGain()
{

}

printf (" Gain-Nr (0-3): ");
scanf(" %d", &gain);

return;

/**/
I* CHANGE STARTING VALUE OF XVOLTAGE */

void changex V oltStart()
{

}

printf (" x-Voltage starting at: ");
scanf(" %f', &xVoltStart);

return;

/**/
/*CHANGE STARTING VALUE OF YVOLTAGE */

void changey V oltStart()
{

}

printf (" y-Voltage starting at: ");
scanf(" %f', &yVoltStart);

return;

/**/
/* CHANGE DELAY COUNTER*/

void changeDelayCtr()
{

}

printf (" Delay-Counter: ");
scanf(" %Id", &delayCtr);

return;

77
/**/
/*CHECK IF VALUES FOR VARIABLES ARE IN VALID RANGE*/

int check Values()
{

if ((xVoltStart<XVOL TMIN) II (xVoltStart> XVOLTMAX))
{

printf (" *** Invalid starting value for x-voltage ***\n");
return (l);

}

if ((yVoltStart<YVOLTMIN) II (yVoltStart> YVOLTMAX))
{

}

printf (" * * * Invalid starting value for y-voltage * * *\n");
return (l);

if (((xVoltStart+xVoltScanRange)<XVOLTMIN) II
((x VoltStart+x VoltScanRange)> XVOL TMAX)ll
((yVoltStart+yVoltScanRange)<YVOL TMIN) II
((yVoltStart+yVoltScanRange)> YVOLTMAX))

{

}

printf (" *** Invalid voltage range ***\n");
return (l);

if ((gain>3) II (gain<O))
{

}

printf (" *** Invalid value for gain-nr. ***\n");
return (l);

if (delayCtr<O)
{

}

printf (" ***Delay-counter must be positive! ***\n");
return (1);

if (printLines<=O)
{

}

printf (" *** printLines must be positive! ***\n");
return (l);

return (O);
}

/**/

	Interfacing a Computer to a Scanning Tunneling Microscope
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1563832825.pdf.LKNUz

