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Abstract

Abraded and crumpled encryption allows communication software such as mes-

saging platforms to ensure privacy for their users while still allowing for some inves-

tigation by law enforcement. Crumpled encryption ensures that each decryption is

costly and prevents law enforcement from performing mass decryption of messages.

Abrasion ensures that only large organizations like law enforcement are able to access

any messages. The current abrasion construction uses public key parameters such

as prime numbers which makes the abrasion scheme difficult to analyze and allows

possible backdoors. In this thesis, we introduce a new abrasion construction which

uses hash functions to avoid the problems with the current abrasion construction. In

addition, we present a proof-of-concept for using crumpled encryption on an email

server.
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Chapter 1

Introduction

Recently there has been growing controversy over the usage of strong encryption in

messaging platforms such as WhatsApp and iMessage [9, 32]. Modern cryptography

allows anyone to protect their privacy using cheap computers and networks through

strong, end-to-end, encryption. But this same strong encryption can also prevent law

enforcement from performing important investigations [53, 32]. Many officials want

law enforcement to have the ability to bypass strong encryption for investigation [3],

sometimes called exceptional access. But some governments abuse this power and

have invaded their citizen’s privacy using digital methods [14].

Enforcing both privacy and public security is important, but it is not easy to do

both simultaneously. These two goals have lead to two extreme opinions on whether

to allow the use of end-to-end encryption in mass communication software. One

option, referred to as “Going Dark,” would mean allowing unbreakable encryption

everywhere. This would prevent the recovery of records even when permitted through

warrants [53, 30]. The converse, can be referred to as “Going Bright,” where we

allow governments mass access to recover communication through means such as

wiretapping [27].
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1.1 Importance of compromise

To understand the importance of a compromise between privacy and safety, we

pose a theoretical, yet practical, scenario where a compromise between these two

positions is necessary.

Let’s say that the FBI is investigating a planned terrorist attack, but doesn’t yet

know the location. The terrorists are using a messaging platform to communicate

and coordinate. If we accept the “Going Dark” path, strong encryption is deployed

on the platform and there is nothing the FBI can do to find the location before it is

too late. This scenario would favor the “Going Bright” path, because this terrorist

attack could be prevented in this case.

Let’s now imagine that a group of whistleblowers are collecting evidence to expose

a corrupt official at the FBI. If we “go bright,” this corrupt official could learn about

these whistleblowers and use his or her power in the FBI to fire the whistleblowers.

In this case, we would want the “Going Dark” solution, where the whistleblowers’

communication was hidden from officials that would use that information to control

them.

Another unwanted scenario to consider is where a malicious attacker somehow

steals an FBI official’s access to the system used for the “Going Bright” solution

(access to wiretapping or backdoors). This could occur through some means such as

malware on their computer or social engineering. This malicious attacker would now

have unauthorized power to spy on Americans.

How can we plan a system that responds correctly in all of these situations, pre-

venting surveillance of users with honest communication, while still allowing officials

to investigates threats to public safety?

Ideally, we want a solution that would allow law enforcement to recover exactly
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what they need to complete their investigation and nothing else. Furthermore, we

want this solution to prevent any malicious adversary from reading any records in the

case of a breach.

Many would argue that these criminals could simply use different messaging apps

that did not have exceptional access built in [2]. We know that many criminals do

not do this, and would be caught if the major messaging platforms had exceptional

access [5, 4].

One construction intended to solve this problem is the Escrowed Encryption Stan-

dard, which was used by the Clipper chip [49]. There are currently many problems

with key escrow which encrypts messages with keys that law enforcement has access

to. Encrypting messages with these keys creates a single point of failure for mass,

malicious, decryption and provides many opportunities for programmers to code flaws

into their security protocols [22].

Would our justice system be able to function without access to digital records? If

the answer is no, then compromise is essential. More and more of our communication

is occurring online and increasing the need for a solution to this problem.

1.2 Abrasion and crumpling

In 2018, Wright and Varia proposed the concept of abraded and crumpled en-

cryption to protect records from unlimited investigation while still allowing for some

decryption [58, 59]. Diverging from previous schemes, crumpled and abraded encryp-

tion require no key escrow or backdoors, ensuring that there is no single point of

failure. Instead, these two encryptions require computational work to be done in or-

der to recover the message. This work is divided into a per-message cost and a greater

one-time cost to prevent different types of malicious attackers from decrypting the
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messages.

Crumpled encryption is an encryption that imposes a specific cost per-message.

Imposing a per-message cost prevents any resource-bounded recipient of an encrypted

dataset from performing an unlimited number of decryptions. The total cost of revers-

ing the crumpled encryption grows as more messages are decrypted which prevents

mass decryptions and focuses the target of decryptions to be relevant to investiga-

tions. The cost analysis is aided by the extensive work that has recently been done

in computing DoubleSHA256 due to the popularity of Bitcoin [47, 17]. By forcing at-

tackers to compute DoubleSHA256 many times, we can calculate the computational

“work” required by an attacker to decrypt a record. Using electricity cost we can

then convert this into a monetary value. Wright and Varia suggest a cost of $1000 (or

larger) per message to limit investigations. When used alone, crumpled-encryption

could allow for a resource-bounded adversary to decrypt a few messages, potentially

doing harm. We could solve this by increasing the crumpling cost, but that might

make the cost of decryption too high, hindering legitimate investigation. This is

where abraded encryption helps.

Abraded encryption is meant to impose a one-time cost on the decryption of

many messages. This prevents attackers with small resources from decrypting any

records. Generally, the required cost for breaking abrasion is much higher than the

per-message cost required by crumpled encryption, measured in the millions instead

of thousands of dollars. A high initial cost deters illegitimate attackers who may

gain encrypted messages through a data breach rather than through warrants as our

legitimate attacker would do. These attackers (we call malicious attackers) will not

always have the necessary resources required to break the abraded encryption. If an

attacker only wants one message, they will still have to spend millions of dollars. Law

enforcement (our legitimate attacker) will want to break the abraded encryption to
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decrypt many messages over many investigations, thus amortizing their total cost over

time. After an attacker spends the one-time-cost to break the abraded encryption,

they pay only the crumpling costs for each message.

Both of these encryptions can produce information to aid in breaking the given

key. The extra information is sometimes called a “tag” or a “puzzle.” After a tag is

created, the key is considered to be “abraded” or “crumpled” allowing for retrieval

using the generated tag.

The cost of the abraded encryption is set to ensure that law enforcement can

decrypt it while still being high enough to prevent many attackers from being able

to decrypt messages. For example, if we had an abrasion scheme that cost $1 million

dollars to break, it would not be a significant portion of the budget for the FBI [58],

but many attackers would not be able to spend this cost to start decrypting records.

The threat of a low resource attacker (such as a hacker) gaining records is very

practical. Encrypted records of messaging platforms are not always stored on secure

servers [15] and hacking these servers doesn’t require a lot of resources. Wide-spread

adoption would push the need for abraded encryption even further as there will be

more chance of breach.

The abrasion construction presented by Wright and Varia [58] uses a Diffie-

Hellman key exchange [35] with small primes as public key parameters. The au-

thors use a precomputation attack described by Adrian et al. to measure the cost of

breaking the scheme [23].

Some constructions for exceptional access involve using a public ledger [36], or

requiring physical possession of devices [54]. These are great ideas which we hope can

be composed with the scheme used in this thesis. We provide more details on these

schemes in Chapter 2. Even if governments wish to include key escrow or backdoors,

crumpled and abraded encryption could be applied to the escrowed messages as well.
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This would decrease the risk of abuse and breach.

1.3 Beneficial side-effects of decryption cost

We have discussed how crumpled encryption rate limits government decryptions

at $1000, but there are also benefits to having any amount required for decryption.

Adding a monetary cost to decryptions has another important effect on tracking

how governments perform investigations. We have many systems to track the flow of

money in corporations such as enterprise software like Concur [8]. These applications

could help expose abuse of gathered records even at lower crumpling costs.

A benefit of abraded encryption over schemes like key escrow is the ability to

easily change keys after a data breach. If law enforcement has a data breach and

attackers recover the work required to break the abraded encryption, the public key

could be changed with no coordination with law enforcement. After the public key is

changed, the stolen private key would be useless for future messages. The abrasion

construction presented in this thesis does not require agreement for public key choice.

Removing this barrier to scheme initialization makes changing the public key much

easier.

1.4 Motivation for a new abrasion construction

Crumpled encryption is already well defined and accomplishes its goals [58], but

there is still room for improvement with the more complex problem of abraded en-

cryption.

Crumpling leverages the recent work done to compute DoubleSHA256 efficiently

to have accurate estimations of cost [58, 47, 17]. Unfortunately, the proposed abrasion

construction did not have the same depth of work backing its cost.
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The current abrasion scheme (described in Section 1.2) relies on weakened public

key parameters such as primes. Many are skeptical of using primes generated by gov-

ernment agencies. NIST published a cryptographically secure pseudorandom number

generator (CSPRNG) which relied on specific group parameters which many believed

to have a backdoor created by the NSA [55]. This backdoor could have been created

by choosing specific primes with algebraic relations that would allow the NSA to pre-

dict bits of randomness created by the CSPRNG. An abrasion scheme which is not

susceptible to these backdoors is desirable.

The monetary cost of breaking any given abrasion scheme decreases as hardware

becomes more efficient. To maintain a fixed cost, the parameters of an abrasion

scheme would need to be modified over time to match the efficiency of current hard-

ware. Finding safe parameters to use in these schemes is a difficult problem [19] which

would be exacerbated if the parameters were modified frequently.

More analysis of the original abrasion construction is needed to know whether it

provides security against attackers that only want to retrieve a single message. The

notion of security against this type of malicious attacker is described in Section 5.1 in

Property A. Analyzing this existing construction would require significant knowledge

of modern attacks on public key schemes and is beyond the scope of this thesis. The

original authors of abraded encryption [58] recognized this gap in security and kept

their security proofs modular to allow for improvement.

1.5 Contributions

In this thesis, we address the problems with the existing abrasion scheme. As our

main contribution, we propose a construction that uses cryptographic hash functions

instead of weakened public key parameters. Using hash functions allows us to provide
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provable bounds on its security against a malicious attacker. Cryptographic hash

functions are also much easier to predictably weaken than public key parameters. We

present this main construction is described in Chapter 6.

A second contribution of this thesis is a set of detailed requirements and security

definitions for an abrasion scheme. These are defined in Chapter 5. We also present

a proof of concept of a crumpled encryption library and an example of an integration

of crumpled logging with an email server in Chapter 4.

The abrasion construction presented in this thesis relies on hash functions and

Time/Memory Trade-Offs (TMTOs) to create an abrasion construction that meets

the desired requirements. We review TMTOs in Section 3.1.

1.6 Thesis outline

In Chapter 2, we provide background on the technologies used in this construction

and discuss other solutions similar to ours. Details of preliminaries that we make

extensive use of in this thesis are reviewed in Chapter 3. A small proof-of-concept

implementation of crumpling is presented in Chapter 4. Subsequent chapters focus

solely on abraded encryption. We specify properties, present a generic set of functions,

and define the security of an abrasion scheme in Chapter 5. Our main construction is

presented in Chapter 6 along with some intuition of the statistics involved to compute

the success chance of attackers. The equations needed to calculate the security for the

main construction are derived in Chapter 7 along with a security game and oracle.

We use practical parameters to compute the security and cost of our construction in

Chapter 8. Finally, we sum up our contributions and discuss the future of this work

in Chapter 9.

8



Chapter 2

Related work

In this chapter we discuss constructions that are similar to or used by our con-

struction.

Key escrow is a type of encryption scheme that was introduced in the 1990s. Key

escrow systems perform an encryption that allows authorized individuals such as law

enforcement to decrypt ciphertexts [34].

One construction that seeks to hold investigators accountable is Accountability

of Unreleased Data for Improved Transparency (AUDIT), created by Frankle et al.

This construction utilizes a public ledger to track police investigations. The resulting

publicity is meant to ensure that warrants are properly followed during investigations

[36].

An approach, by Savage, ensures that police have physical access of devices that

they are investigating. This construction uses secure hardware to self-escrow keys

into the device. These keys cannot be read by software and instead require physical

access for some amount of time to be read. Enforcing physical access reduces privacy

violations done over the internet and allows for existing procedures for warrants on

physical evidence to easily apply to digital assets [54].

In 1980, Hellman introduced the concept of using Time/Memory Trade-Offs (TM-

TOs) to aid in the reversal of cryptographic functions [40]. His work focused on

9



finding a key given only the ciphertext of the symmetric encryption scheme DES

(Data Encryption Standard) [48]. These TMTOs can help reverse any cryptographic

function, including cryptographic hashes. The process of reversing these functions

is called cryptanalysis. Hellman’s original work showed that stored precomputation

could be used to speed up later cryptanalysis. This is where the name “time/memory

trade-off” comes from, as it trades off storage space (memory) in order to reduce the

time of later decryptions. One common form of a TMTO is called a “Rainbow Table”

[50]. Readers may know this as a method to reverse password hashes. TMTOs will

be further discussed in Section 3.1.

Abraded and crumpled encryption are similar to time-lock puzzles. Time-lock

puzzles impose a time-cost for decryption or proof [52]. Abraded and crumpled en-

cryption differ as they are not meant to enforce a time requirement, but rather a work

requirement, measured in dollars. Specifically, time-lock puzzles generally try to find

inherently serialized problems, while abraded and crumpled decryptions can be done

in parallel.

Abraded encryption is similar to asymmetric encryption, where many have a public

key and can encrypt, but only those with the private key can decrypt. Asymmetric

encryption has a long history and is used by many systems today. An early example

of public key encryption is RSA, created by Rivest et al. [51].

We utilize a technique known as secret sharing, first invented simultaneously by

Shamir and Blakley [56, 28]. Secret sharing allows some fraction m of n total “shares”

to decrypt a message. We review secret sharing in Section 3.2.

10



Chapter 3

Preliminaries

In this chapter we provide more depth on technical schemes that we use in our

main construction. We first review TMTOs in Section 3.1. Then, we discuss secret

sharing in Section 3.2.

3.1 Time/Memory Trade-offs (TMTOs)

Before our construction can be discussed, readers must have some basic knowledge

of how a TMTO can be used for cryptanalysis. This section also defines some of the

symbols used in equations throughout the paper.

TMTOs can help reverse cryptographic functions such as encryption or hash func-

tions. TMTOs are generic and can be used for any cryptographic functions. The main

construction in this thesis uses TMTOs to reverse hash functions. Throughout the

thesis, we use the terms “preimage” and “hash result” (sometimes shortened to just

“hash”) while discussing how TMTOs work. A preimage is an input to a hash function

and a hash result is the output of a hash function.

A TMTO “attack” is separated into a precomputation (“offline”) phase and a

decryption (“online”) phase. In the precomputation phase, the target hash function

is computed many times, but only some of the results are stored. The stored results

are sorted so that they can be efficiently searched during the online phase to reverse

11



hashes. The stored precomputation of a TMTO can be reused to reverse many hashes.

In order to reverse hashes that we computed but did not store, we compute hashes

in chains. We also use a reduction function which transforms the output of the hash

function into a valid input for the hash function. This allows us to create these chains

by choosing a starting point and computing the hash function and reduction function

repeatedly. Chains computed for a specific hash function and reduction function are

stored as “rows” in a TMTO table.

Equation 3.1 shows the structure of a chain. The reduction function is represented

as R(·) and the hash function as h(·). Each starting point of a chain (pi,0) is a distinct

and valid input to h(·). (R ◦ h)j is a function composition of R and h
(
R(h(·))

)
,

composed with itself j times.

pi,0 →R(h(pi,0)) →(R ◦ h)2(pi,0) →... →(R ◦ h)t(pi,0)

=pi,0 →pi,1 →pi,2 →... →pi,t (3.1)

There are m chains in each table (0 ≤ i < m). Only values
m∑
i=0

(pi,0, pi,t) are saved

from the precomputation. All other values are discarded to save storage space. This

means that the storage space required for a table is proportional to m. The total

amount of work (w) put into the table is proportional to w = m ∗ t. This work is

measured in invocations of the hash function h(·).

When reversing a certain hash result, c, where h(x) = c, we first apply the reduc-

tion function to c
(
R(c)

)
and check if the result is stored as an endpoint in our table.

If this value doesn’t exist in our table, we apply the hash function and the reduction

function again
(
R(h(R(c)))

)
and check if this result is an endpoint of the table. The

hash function and reduction function are repeatedly computed until we find a pi,t in

the table that matches a value computed on c
(
pi,t = (R ◦ h)j(R(c))

)
. The chain is

12



then recomputed from the stored starting point pi,0 to find a preimage that generates

the given hash
(
(R ◦ h)t−j−1(pi,0) = pi,t−j−1, H(pi,t−j−1) = c

)
.

Because of hash collisions, we may find a preimage (p′) such that h(p′) = h(p) =

c, p′ 6= p where p is the “correct” preimage for c. This collision is a type of false

alarm and adds to the cost of our online phase. There is also a chance that h(p) was

never computed in the table. The chance that h(p) is in the table is called the table’s

probability of success, labeled as Pr[Stable].

Hellman proves that the cost of false alarms can’t increase online cost per table

(Ttable) by more than 50% [40]. This means that our search cost for a TMTO table

will be Ttable ≤ t ∗ 1.5 where there each chain in the table is of length t.

To compute this table, we choose a number of starting points (pi) in the preimage

space such that ∀i ∈ {0, 1, ...m − 1}, pi ∈ {0, 1, ...N − 1} where N is the number of

inputs to the hash function. Each starting point is distinct, as using the same starting

point would result in an identical chain and add no value to the table. We store a pi

with the resulting end point
(
(R ◦ h)t(pi)

)
in the table to represent each chain.

There is a chance that two or more of these rows (chains) may merge at some point,

causing the rest of the chain to be duplicated: (R◦h)y(pi) = (R◦h)u(pk), i 6= k. Figure

3.1 shows an example of two chains merging. These chain merges become more likely

as the table becomes larger. Chain merges cause stored TMTO precomputations

to become less effective as m (the size of the table) increases. In other words, the

success Pr[Stable] increases sublinearly with the work put into the table w. This

problem has motivated most of the innovation in the field of TMTO constructions.

The most complex parts of the main construction presented in this thesis are designed

to overcome the diminishing returns of TMTO constructions.An attacker that does

not compute a table to reverse h(x) (a tableless attacker) does not encounter these

merges which gives them an advantage over the table attacker.

13



Figure 3.1: Example of a chain merge in a TMTO

Hellman developed a method to combat merging chains by computing multiple

tables (l tables) on the same hash function h(·). Each table uses a distinct reduction

function (Ri(·), i ∈ {0, 1, ..., l−1}). These tables may have collisions, but their chains

do not merge because they use different reduction functions. Using multiple tables

greatly increases the chance of success of a TMTO solution, but also increases our

online time as we now need to compute a different function on the target hash for each

of the tables. Because we must search multiple tables, our online cost (T ) becomes

T = l ∗ Ttable = l ∗ t ∗ 1.5. Computing these tables also multiplies our storage space

required (M) by l, M = l ∗m.

When we can reverse a target hash using the stored TMTO precomputation we

call this a “success.” We derive the probability of success for Hellman’s TMTO in

Appendix A for any given TMTO parameters (l,m, t). This probability of success is

shown in Equation 3.2.

Pr[STMTO] = 1− exp

(
l

t

∫ u=mt2

N

u=0

1− e−u

u
du

)
(3.2)
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3.1.1 Optimal trade-off parameters

The most “efficient” trade-off occurs when m = t = l, where m is the number of

rows stored in each table, t is the length of each chain, and l is the number of tables

computed [40]. In this case, efficiency is measured as the sum of the rows required

(M) and the online compute time (T ) over the number of invocation of the hash

function (m ∗ t ∗ l).

Many TMTO authors focus on analyzing tables computed to exactly N invoca-

tions of the hash function, where N is the input space of the hash function h(·) [42].

Using the optimal efficiency trade-off, this means our parameters are m = t = l = N
1
3 .

Stopping at at N invocations strikes a decent balance between gaining a significant

success chance and losing too much work to chain merges. While more careful ad-

justments of these parameters may yield a better trade off for abrasion, we use this

“standard” trade-off as a guide for the parameters in our scheme (m = t = l = N
2
3 ).

3.1.2 TMTO improvements

A variant of Hellman’s TMTO solution uses a technique called “Distinguished

Point tables” (DP tables) in order to reduce the number of merging chains in TMTOs.

DP tables were originally suggested by Ronald Rivest [33]. The distinguished points

method was formalized and improved by Borst et al [29]. Borst el al. also introduced

the notion of perfect tables in the same paper. A perfect table is a TMTO construction

that removes merging chains during precomputation. This reduces the number of false

alarms and the size of the table.

An innovation by Avoine et al. reduces the cost of false alarms using a method

called “checkpoints.” In this method, extra information is added to the table to reduce

the online cost to check for false alarms [24].
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We did not consider DP tables or checkpoints for this construction. Instead we

simply prove that a basic TMTO can meet the requirements of an abrasion function

and leave details to be completed by an attacker. Using better TMTO constructions

can only strengthen our scheme as we measure the security of our scheme by compar-

ing the efficiency of an attacker that builds a TMTO against an attacker who does

not compute any tables.

Oechslin created Rainbow Tables in 2003 [50] which uses a small number of tables

with rotating reduction functions. We show the success probability of this construc-

tion in Section 6.2. Our main construction does not use rainbow tables as it is difficult

to compute the probability of success for large values of N , which is required for our

scheme to impose practical initial costs. There is far more research on Hellman tables,

ensuring that our analysis is more robust.

3.2 Secret Sharing

Secret sharing, first invented simultaneously by Shamir and Blakley [56, 28], is a

cryptographic function that encrypts a secret k by generating n different “shares.”

Any subset of these n shares (of fixed size m) can be used to derive the secret.

One of the first secret sharing algorithms used polynomial interpolation [56]. Each

share is an evaluation of the polynomial at a different point. The polynomial is of

(m− 1) order and n evaluations of the polynomial are generated. Any polynomial of

(m− 1) order can be perfectly interpolated with any m different points. This means

that any m of the n generated shares can be used to recreate the polynomial. We

then set the secret as the y-intercept (or another, secret evaluation) of the polynomial

so that any party with m shares can find this secret through interpolation. The

arithmetic for these polynomial evaluations is done over a prime field to ensure it is
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more secure.

In our main construction, we use secret sharing in a generic way. This generic

secret sharing scheme has two functions: SSGen, a function that generates shares for

a secret, and SSDecrypt, a function that finds the secret using the shares.

SSGen takes a secret and scheme parameters m,n as input. The function creates

and returns a set of n shares, labeled s (|s| = n). Many secret sharing schemes also

generate a ciphertext c [43].

s, c← SSGen(k,m, n),m ≤ n

SSDecrypt is a function to retrieve a secret k. The function accepts the ciphertext

generated by SSGen and a set of shares. This set of shares (s′) is a subset of s of size

m (|s′| = m, s′ ⊂ s).

k ← SSDecrypt(c, s′)

We use secret sharing in our main construction in Section 6.3. Secret sharing

improves the success chance of our legitimate attacker in our abrasion scheme. The

legitimate attacker’s probability of success with secret sharing is derived in Section

6.3.10.

An alternative to secret sharing for our main construction is described in Section

6.3.9. This improves the performance of our scheme, but we do not analyze the

security when using this alternative method.
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Chapter 4

Crumpling implementation

In this section we present a proof of concept of crumpled-encryption in C and

modify an email server to use it. We chose to install crumpled encryption into Postfix

[18], which exists on 34.31% of email servers as of 2018 [16].

Crumpled encryption is meant to impose a per-message cost on an attacker that

wants to decrypt records. After a key has been crumpled, any attacker must compute

many hash functions in order to retrieve the key. The number of hash function

invocations is variable depending on how many possible inputs to the hash function

there are. Knowing the expected number of hash invocations, we can determine the

monetary cost of this decryption using known hardware efficiency rates for Bitcoin

mining [17]. The monetary cost is the cost of electricity spent by this adversary.

This implementation mostly follows the construction outlined in the original abra-

sion/crumpling paper [58]. A random public nonce is added to prohibit TMTOs from

being used to reduce the cost of many decryptions. Adding this requires us to store

a tag to reverse crumple-encrypted messages. This tag stores information like the

nonce to ensure decryption is possible.

The header file for the crumpled-encryption library (crumple.h) includes a number

of declarations. One of these declarations is the crumpled message struct shown in

Listing 4.1. This struct stores information needed to recover a message, including
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the ciphertext. A serialized version of this struct is stored in the Postfix logs. The

function in Listing 4.2 performs the actual crumpled-encryption on a message and

stores it in a struct. A key can be crumpled by providing it in place of a message.

The library provides a method for writing the structs to log files using file descriptors,

shown in Listing 4.3.

Listing 4.1: Crumpled message struct

struct crumpled_msg{

unsigned char* enc_msg; // the ciphertext of the message (

↪→ crumple-encrypted)

unsigned char keygen_hash[32]; // hash to break

unsigned char nonce[32]; // nonce to prohibit TMTOs

int bits; // difficulty of the puzzle

};

Listing 4.2: Crumpled encryption function

void crumple_enc(unsigned char* message, struct crumpled_msg* cmsg);

Listing 4.3: Serialize crumpled struct function

void serialize_crumpled_msg(FILE* fd, struct crumpled_msg* cmsg);

In crumple.c, the crumpled-encryption library implementation, OpenSSL was used

to perform the cryptographic functions [13]. The “getrandom” Linux system call was

also used to generate randomness [10].

A small executable is shown in Listing 4.4 which uses the crumpled encryption

library to do a single crumpled-encryption. This takes a plaintext and a difficulty as

input and writes out the serialized crumpled ciphertext.
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Listing 4.4: Crumple encryption binary

// crumple_enc.c

int main(int argc, char **argv){

int num_bits = atoi(argv[2]); // read in the difficulty

unsigned char* text = argv[1]; // read in the plaintext

struct crumpled_msg cmsg; // initialize a struct

cmsg.bits = num_bits; // set the difficulty

crumple_enc(text, &cmsg); // call crumpled encryption library

serialize_crumpled_msg(stdout,&cmsg); // write the crumpled

↪→ encryption out

}

This binary is used by a script which is called by Postfix. This script is shown

in Listing 4.5. It takes in an email from Postfix and crumple encrypts the TO and

FROM fields in a log file before sending it along the Postfix message pipeline.

Listing 4.5: Crumpled logging script

#!/bin/bash

# this script is stored in /opt/crumple/crumplelog_postfix.sh

# take note of the date

received_date=$(date)

# need to call the binary that we created that will crumple-encrypt a

↪→ single message

crumple_enc_binary=/opt/crumple/crumple_enc

# compute the crumpled encryptions

# $3 is the FROM field, $4 is the TO field.
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# The 50 here is the difficulty (in bits)

from_crumpled=$($crumple_enc_binary $3 50)

to_crumpled=$($crumple_enc_binary $4 50)

# write the crumple-encrypted message to the log

printf "email:%s:\n" $received_date >> /var/log/crumpled_email.log

printf "\tfrom:\n\t\t%s\n\tto:\n\t\t%s\n\n" $from_crumpled

↪→ $to_crumpled >> /var/log/crumpled_email_headers.log

# allow email to continue through Postfix (reach receiver)

/usr/sbin/sendmail $@

exit $?

We make two edits in the Postfix configuration file shown in Listing 4.6. These

edits modify Postfix to crumpled encrypt logs.

Listing 4.6: Postfix configuration for crumple encrypted logging

# here are excerpts from the Postfix configuration file: /etc/postfix/

↪→ master.cf

...

# This line pipes smtp traffic through a custom filter

smtp inet n - n - - smtpd -o content_filter=crumplelog-pipe

...

# This line creates the custom filter and points it at our crumpling

↪→ script

crumplelog-pipe unix - n n - - pipe

flags=Rq user=vmuser argv=/opt/crumple/crumplelog_postfix.sh -

↪→ oi -f ${sender} ${recipient}
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An online tutorial aided the creation of this crumpling bash script and modifica-

tions to the Postfix configuration [7].

Listing 4.7 is an example of a crumple encrypted log as generated by the crumpled

logging script. This examples shows a log file with the crumple-encrypted details of

a single email.

Listing 4.7: Crumple encrypted log

email:Mon Apr 22 20:05:12 PDT 2019:

from:

|bits:50|hash:e89f0b6e70f8d3dadae77963a835b55b-62

↪→ ef62a6f7f9774a8a4044d792a25c25|ciphertext:78

↪→ a6760f57d49f7631a7f6d9d4482ec0-02366

↪→ ddcfb2bab6c3a39eadb4d5dc5a8|nonce:

↪→ ab08bf410892fe5f54b3ced722d652fc-

↪→ ef43f4b283343d0474a6e93c2aa91dfd|

to:

|bits:50|hash:e74e93d351e245101375741d70f1b739-

↪→ e465e4f0ce4926e184bf6a0468fa494b|ciphertext:89

↪→ a2251e429245a8ec505c33d0b93071-9

↪→ e9aadb36587a3dcb57060d3f11941f4|nonce:142

↪→ e792ceb6cd4c8b4017355390a25e7-

↪→ c944412fc72edd12ae4038aefc3804bc|
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Chapter 5

Abrasion description

Abrasion is an encryption scheme invented by Wright and Varia [58]. We reviewed

abrasion in Section 1.2. Abraded encryption imposes a large one-time cost on the

decryption of many messages. An initial cost prevents an attacker who doesn’t have

adequate resources from decrypting even a single record. This cost is created using

puzzles which require computational work to solve.

In this chapter, we’ll first describe in detail properties that an abrasion function

should accomplish in Section 5.1. We describe how to determine the security of an

abrasion scheme in Section 5.2. Then we describe what the top-level functions (API)

of an abrasion scheme should be in Section 5.3.

5.1 Properties of abrasion schemes

In order to discuss abrasion functionality effectively, we present desirable proper-

ties of abrasion functions in categories: Ideal, Relaxed, and Optional.

5.1.1 Ideal properties

These are properties that an ideal abrasion construction should do. Current con-

structions do not achieve all of these properties.

Property A - Cost to decrypt 1 message is equal to the cost to decrypt n messages.
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Description: Our legitimate attacker will want to decrypt a large number

of messages (n messages). Other, malicious, attackers may benefit from

decrypting only a single message. For example, a resource-bound hacker

might retrieve some encrypted records in a security breach. Abrasion

should prevent this hacker from retrieving a single message, just as a

strong encryption would. Ideally, the function would require the same

cost for decrypting any number of messages. We refer to this cost as I

for “initial cost.” This relationship is shown in Figure 5.1.

Property B - Concrete lower bound on cost to decrypt 1 message.

Description: An abrasion construction should ensure that an attacker

has to spend a one time cost (I) to start decrypting messages. Ideally,

this lower bound is not probabilistic. When the work spent (w) is less

than some fixed amount (w < I), the adversary should have negligible

(2−128) chance of decrypting any records. This property is also shown by

the step-functions probabilities in Figure 5.1

Property C - Many can use a public key to encrypt.

Description: There are many companies that provide messaging services

containing important information for investigations. We want each of

these entities to be able to use abrasion to encrypt their records without

having the key to decrypt each other’s records. This is a property that

many public key schemes have. Public keys can also be changed to en-

sure that different parties can require work done for different messages if

desired. A real-world application would be if multiple countries used this

to secure their digital evidence. We wouldn’t want the precomputation
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Figure 5.1: Message decryption chance in an ideal abrasion scheme

done by Australian law enforcement to allow decryption of American

records or vice-versa.

Property D - Private key can be stored for future use.

Description: We want a legitimate attacker to be able to store a key

to be used in future investigations. This motivates our construction to

use TMTOs in order to be able to save a representation of the initial

precomputation for later look up.

Property E - Predictable cost.

Description: The cost to decrypt is easily calculated and is based on

25



cryptographic functions with rigorous cost analysis.

Property F - Low cost per-message.

Description: After precomputation for a given public key, all future

abraded key retrievals have very low cost.

5.1.2 Relaxed properties

These are properties from the ideal section that have been relaxed so we can ana-

lyze schemes that come close but are not perfectly ideal. Specifically, these represent

Property A and Property B in a more attainable way.

Property G - Cost to decrypt 1 message is close to the cost to decrypt n messages

Description: Having these two costs be equal is ideal, as noted in Prop-

erty A, but this is difficult to achieve using real-world constructions.

This property relaxes the requirement of Property A. This relaxation is

illustrated in Figure 5.2 by the malicious attacker (red line) rising ear-

lier than the legitimate attacker (blue line). In order to stay “close” to

the malicious attacker, we require our legitimate attacker’s work to scale

sublinearly with the number of messages decrypted. This relaxed prop-

erty defines the “security” of an abrasion function. An abrasion scheme

is secure against a malicious attacker if they must spend a large fraction

( 1
R

) of the work that a legitimate attacker spends. We formally define

this security in Section 5.2.2. In this work, our legitimate attacker uses

R = 13.2 times the amount of work to decrypt 245 messages compared

to an illegitimate attacker’s cost to decrypt 1 message. To put this in

perspective, with only a crumpling scheme, an attacker who decrypts
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245 messages spends 245 times the amount of work as an attacker that

decrypts 1 message.

Property H - Probabilistic lower bound

Description: This relaxation of Property B allows the scheme to allow a

small chance for a message to be decrypted with small cost. This means

that at w = I our illegitimate attacker has an ε chance of decryption.

This ε is larger than 2−128 but still very close to zero. For this work, we

use an ε of 2−45. This relaxation is shown by the “s-curve” (or sigmoid)

shape of the lines in Figure 5.2.

The differences between Figures 5.1 and 5.2 illustrate the relaxation of Property

G and Property H. These two relaxed properties are more formally defined in Section

5.2.

5.1.3 Optional properties

These are desirable properties that improve the scheme, but aren’t required for

an abrasion function.

Property I - Freedom of key choice.

Description: Anyone can initialize the abrasion scheme and assure others

that it is not compromised. Public keys for some asymmetric encryption

can possibly have backdoors [55]. An abrasion function would be stronger

if it were resistant to backdoors that would allow an attacker to subvert

the initial cost I. For a scheme without this property, we believe that

multiparty computation could be used instead [60, 38]. Using multiparty

computation requires mass coordination and can have backdoors if they

have a vulnerability [37] so it is not desirable.
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Figure 5.2: Message decryption chance in a realistic abrasion scheme

Property J - Low code impact on existing applications

Description: If existing programs can be modified easily, there is less of

a chance of security breach due to programmer error

Property K - Non-transferable private key.

Description: Private key is hard to steal from a facility. In our case, the

key is very large in size, requiring exfiltration of petabytes of information.
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5.1.4 Practical abrasion

In order for an abrasion scheme to be practical, it must be able to fulfill require-

ments while not imposing a large cost on key storage and per-message decryption.

We calculate these costs for our final construction in Chapter 8.

To further analyze a given abrasion scheme, we look at the budget of law enforce-

ment agencies and the resources of malicious attackers. Over 2017 and 2018, the FBI

requested almost $60 million for projects to solve the “Going Dark” problem [31, 45].

To compare this with the work that a malicious attacker could spend, we look

at the value of data and the resources of attackers. If a hacker doesn’t have enough

resources, or if there isn’t enough value to gain by breaking an abrasion scheme,

their malicious activity will be prevented. Abrasion can’t prevent attackers with

large resources from decrypting records, but we provide examples of smaller attacks

that could be prevented. The average value of stored PII for a data-driven company

ranges from $3.6 million to $1 billion depending on the size of the company [57]. A

breach doesn’t usually result in all of a company’s records being released. As a more

specific example, a report showed that an individual data seller on the black market

could make $2 million over 4 years by selling stolen credit cards [41]. As for the

resources of cybercriminals, ransomware is easy to track because of public payments.

Cryptolocker, a ransomware operation, resulted in $3 million in payments [1]. A

smaller cybercrime operation profits around $50,000, but there are larger operations

that profit over $1 billion [46].

In Chapter 8, we show that our abrasion construction can prevent attackers with

less than $3 million from decrypting any records, while staying within the FBI’s

“Going Dark” budget. While there are larger cybercriminal operations that could

break any abrasion scheme, these statistics should convince the reader that there are
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attackers that would be thwarted by our practical abraded encryption scheme.

5.2 Security Definitions

In this section, we describe how to evaluate the security of an abrasion scheme.

First, we give an idea for the threat model we plan to protect against in Section 5.2.1.

Next we formally define security definitions based on this threat model in Section

5.2.2. In Chapter 7, we will use these definitions to evaluate the security of our final

construction.

5.2.1 Threat model

In this section we describe our threat model for this scheme. To satisfy Property

G and Property H we look at the probability of success of an adversary that simply

wants to decrypt a single message. If the abraded encryption scheme meets these

properties, this adversary should have to spend a proportional amount of work to our

legitimate attacker. This legitimate attacker will store a private key for the abrasion

scheme, whereas the malicious adversary does not store any of their computation.

To quantify this, we will be bounding the work done by a malicious adversary to

decrypt one message. We will compare this to the work required for our legitimate

attacker to derive a private key that can recover n messages. We calculate this

comparison as a ratio shown in Equation 5.1.

A ratio is more useful than a difference between these costs (computed by subtrac-

tion). An insecure scheme could impose a fixed difference between a legitimate and

malicious attacker by adjusting I. For example, an abrasion scheme could achieve a

difference of $1 million by requiring $1 million for a legitimate adversary and $0 for

a malicious adversary. It is more difficult for schemes to achieve a low ratio and in
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our construction, the ratio does not change significantly as I is adjusted.

Ratio(R) =
legitimate work for n messages

malicious work for 1 message
(5.1)

For example, if the ratio is 2, a legitimate attacker has to spend twice as much

work as a malicious attacker.

We also assume that this adversary has recovered an entire abrasion-encrypted

database of g records while still only needing to reverse one.

The term “legitimate attacker” is left partially undefined to allow individual abra-

sion schemes to define this. In our scheme, the legitimate attacker precomputes a

TMTO, which adds to their work required. We also leave “work” to be defined by

the scheme. In our construction, “work” is the number of invocations of the hash

function. We convert this work into dollars in Chapter 8.

5.2.2 Security Definitions

Definition 1. ε-n-g-R-Security

Let wlegitimate be the work spent by a legitimate attacker to have a 1− ε chance of

solving n different abrasion tags.

Let wmalicious be the work spent by any attacker to have an ε chance of solving 1

record, given g different abrasion tags.

An abrasion scheme is ε-n-g-R-secure if R ≤wlegitimate

wmalicious
.

Definition 2. λ-R-Security

An abrasion scheme is λ-R-secure if it is ε-n-g-R-secure where ε = 2−λ, n = 2λ,

and g = 2λ.

We present Definition 2 in order to compress the idea of Definition 1 to make it

31



easier to discuss. λ represents the idea of “very large” and “very small” parameters.

An ideal scheme that achieves Property A and Property B would be 128-1-secure.

Our construction instead meets Property G and Property H using a smaller λ and

larger R.

We leave the cost I out of this security definition. Our scheme is easily tweaked

to achieve different values of I with the same ratio (R). The value I may also vary

from year to year as hardware efficiency increases.

Because there are many choices that this adversary could make, we need to find

a way to calculate the bounds on their probability of success at any given amount of

work. In Chapter 7 we look at an adversary that has access to a very powerful oracle

function to show that our main construction is secure.

We evaluate our scheme as being 45-13.2-secure for I ≈ $3 million in Chapter 8.

This means that, with work below I (w < I), an adversary only has a 2−45 chance to

successfully decrypt 1 message, given 245 messages. This security is sufficient to deter

many low-resource attackers while still not overwhelming the cost of government.

5.3 Abrasion scheme functions

An abrasion scheme is defined as a collection of functions used to facilitate abraded

encryption. We will list them in this section.

5.3.1 Abrasion scheme initialization

pk ← AbrasionSchemeInitialization(Q, λ,R)

The initialization function takes a cost parameter Q and security parameters λ,R.

It returns an abrasion public key (pk) and may generate public parameters for use in
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other functions of the scheme. This cost Q is distinct from I (the initial cost) as I

will change as hardware becomes more efficient. Given specific hardware, Q should

be proportional to I. In our main construction, Q is the number of invocations of the

hash function. This initialization function is deceiving as, for our main construction,

we calculate R using other parameters from the scheme and acceptable values for R

are found through trial and error.

5.3.2 Abrasion tag generation

a← AbradeKey(pk, k)

To perform an abraded encryption, we “abrade” the key given to us (k), then

use k for the symmetric encryption of a message. To abrade the key, we compute

an abrasion tag (a) and present it to law enforcement along with encrypted records

upon warrant. k itself is not be given to law enforcement. The tag (a) is breakable

for an abrasion private key (sk) computed using pk. This tag allows an attacker to

retrieve k after performing the initial cost of computing sk.

Messaging service providers will use this function to abrade their keys used to store

records. We call the applications that compute abrasion tags as “clients.” Generally

in client-server schemes, the client does less work, similar to the application that

performs the abraded encryption. We do not have the notion of a “server” in abrasion

schemes.

5.3.3 Abrasion private key generation

sk ← AbrasionPrivateKeyGeneration(pk)
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This scheme will generate a private key based on a public key. Deriving this

private key is intended to take R ∗Q work to compute.

5.3.4 Abraded key retrieval

k ← AbradedKeyRetrieval(sk, a)

Using an abrasion private key sk, this function will retrieve the abraded key k

associated with an abrasion tag a. If our scheme is secure there is almost no chance

of any attacker reversing k from a without first spending Q work. This notion of

security was defined earlier in this section and is required to meet Property G and

Property H.
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Chapter 6

Abrasion constructions

In this chapter we will introduce our main construction in Section 6.3. But first,

we introduce simpler, but insecure, abrasion constructions to help the reader under-

stand the concept of a hash-based abrasion scheme. These simpler constructions are

presented in Sections 6.1 and 6.3.1. We explain why these constructions fail to meet

our requirements for an abrasion function in Section 6.2.

6.1 A simple (but insecure) hash-based abrasion scheme

In this section, we will show the reader how a simple hash-based abrasion scheme

could work. This scheme is not secure, but introduces concepts that are used in more

secure schemes. We define a secure scheme as one that meets our security definitions

defined in Section 5.2.2.

We can see from Property D and Property F that we will need a way to allow

our legitimate attacker to compress precomputation into a “private key” that we can

store and reuse. We will use hash functions and TMTOs to achieve this.

To ensure our scheme costs millions of dollars, we must do many hash compu-

tations. Without TMTOs, storing the results of all these computations would take

zettabytes of storage. This would be impractical and means our construction must

accommodate a legitimate attacker that computes a TMTO.
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A malicious attacker will forego TMTO creation to decrypt a single message

quickly. Because of this, we refer to a malicious attacker as a tableless attacker

and a legitimate attacker as a table attacker.

TMTOs can be used to reverse hash results. This means that our legitimate

adversary can reverse hashes we store in the abrasion tag to recover the preimage. To

allow for decryption, the hash function’s input space must be restricted. A full sized

hash function is computationally intractable to reverse, even with TMTOs A smaller

search space is possible to iterate through with some cost. We measure the cost by

calculating the number of hash function computations needed to reverse the abrasion

tag.

To ensure that reversing a preimage will allow the attacker to defeat the puzzle,

we store a “weakened” hash result of a nonce. An attacker can then reverse the hash

function to retrieve this nonce. We use this nonce to encrypt the key and store the

ciphertext in the abrasion tag. We call this process “abrading” the key.

We assume that hash functions are random oracles. Random oracles will deter-

ministically give us truly random bits. The output of a random oracles can only

be reversed if the exact preimage is guessed again. Assuming this property makes

security assumptions easier to prove and is a commonly used model [26].

To create a weakened hash, we will use a strong hash function
(
Hs(·)

)
and reduce

the size of the unknown input space. This strong hash has a large, deterministic,

truly random output ≈ 256-bits. Reducing the input size is done by feeding the hash

function a public key pk concatenated with a short random nonce x. The length of

the nonce dictates the initial cost of the scheme.

We now describe this scheme (labeled as “SingleHash”) using the interfaces de-

clared in Section 5.3.

An assignment of the form: r
$←− {0, 1}k is a random assignment of r from the set
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of all bit-strings of size k.

We use a symmetric encryption scheme (Enc, Dec), such that:

c = Enc(k,m)

m = Dec(k,c)

6.1.1 Abrasion scheme initialization

Algorithm 1 pk ← SingleHash::AbrasionSchemeInitialization(Q, λ,R)

pk
$←− {0, 1}b

N ← Q

N is used as a parameter for other functions in this scheme. It defines the size of

the weakened hash function input space. Setting this equal to Q will ensure that our

initial cost I for this scheme is proportional to Q. The bit length of pk (b) is large

(≈ 256-bits) so that it is difficult to compute a TMTO that solves multiple abrasion

schemes with different pk.

6.1.2 Abrasion tag generation

Algorithm 2 a← SingleHash::AbradeKey(k, pk)

x
$←− {0, 1, ..., N − 1}

a← {ah, ac} =← {Hs(pk||x),Enc(x, k)}

x is the nonce used to encrypt the abraded key k. x is discarded after this

computation.
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6.1.3 Abrasion private key generation

Algorithm 3 sk ← SingleHash::AbrasionPrivateKeyGeneration(pk)

sk ← BuildTMTO(Hs(pk||·) mod N)

The legitimate attacker now computes a TMTO on the cryptographic function

h(·) where h(x) = Hs(pk||x) mod N, x ∈ {0, 1, ..., N − 1}. This TMTO is the private

key sk. We label the function that builds this table as “BuildTMTO,” which takes

a cryptographic function and builds a TMTO to reverse it. The process of creating

a TMTO is described in section 3.1. We calculate the cost of a legitimate attacker

assuming that they use Hellman’s TMTO [40].

6.1.4 Abraded key retrieval

Algorithm 4 k ← SingleHash::AbradedKeyRetrieval(sk, (ah, ac))

x← Lookup(sk, ah)

k ← Dec(x, ac)

After precomputation, they will be able to reverse many hash results by performing

a lookup in the TMTO. This lookup takes substantially less work than precomputa-

tion.

Unfortunately, our table (legitimate) attacker needs to waste a lot of work. This is

because, in order to build a TMTO table that will retrieve close to 100% of messages,

much of the work will be duplicated due to merging chains in the TMTO tables.

Chain merges are described in Section 6.2. The probability of success using a TMTO

to reverse a single hash function levels off at ≈ 86%. The malicious (tableless)

adversary does not need to waste their work creating this table, and therefore spends
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far less work. Because of the large difference in work, this simple abraded encryption

therefore does not satisfy Property G. We will explore this problem in Section 6.2.

6.2 TMTO success chance

To ensure the tableless (malicious) adversary has to spend resources similar to an

attacker that computes a table, we will need to analyze the success chances of various

TMTO strategies.

We derive the success chance of Hellman tables in Appendix A.

Figure 6.1: Probability of success of different TMTO solutions (up to ≈ 86%) vs
tableless approach, N = 225

We have included the success chance of Hellman’s TMTO solution in Figure 6.1.
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As can be seen from this graph, the probability of success levels off as more work is

put into the table. This gives us diminishing returns as we put more work into the

table. If we used a single hash as an abrasion function, this drop off of efficiency

would severely limit a table attacker compared to the tableless attacker.

The probability of success of a rainbow table was described by Oechslin in 2003

[50]. The success chance of a rainbow table attack is graphed against work in Figure

6.1. We can see that rainbow tables perform slightly better than Hellman’s TMTO

solution. Rainbow tables were not evaluated as a method for our legitimate attacker

as Hellman tables are much better understood and there is a greater depth of research

into them [25].

We did not measure the success probability of tables built with distinguished

points (DPs). We discuss DP tables in Section 3.1.

Figure 6.1 graphs the success chance of a tableless attacker that only has one

abrasion tag. When an attacker has multiple abrasion tags, they have an even greater

chance of breaking a single message. This is because all abrasion tags share the

same weakened hash functions. This increases the chance of an attacker recovering a

preimage while iterating through the input space by allowing them to check if a hash

result solves any of the abrasion tags available to them. Our main construction in

Section 6.3 is provably secure against an adversary with many abrasion tags and we

calculate the security ratio (R) of our main construction in Chapter 8.

6.3 Main construction

In this section, we first describe the intuition in for our main construction Section

6.3.1. We then formally present the main construction in Section 6.3.2.
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6.3.1 Intuition

The graph in Section 6.2 shows that using a single weakened hash function to

create an abrasion scheme results in an insecure scheme. With one hash function,

a tableless attacker gains a reasonable success chance with less work than a table

attacker. Using multiple distinct hash functions can modify the success chance of

these different attackers. In this section we will introduce two insecure schemes,

labeled as: “MultipleSame” and “MultipleDifferent.” These schemes will illustrate

methods and statistics that our main construction uses in Section 6.3.2.

First we examine what happens when we modify the “SingleHash” scheme to use

multiple hashes on the same preimage (nonce ‘x’). This scheme is called “Multiple-

Same” as we hash the same preimage multiple times. We do not describe the functions

for “MultipleDifferent” that do not vary much from the “SingleHash” scheme such as

the function for initialization.

The “AbradeKey” function now generates a modified abrasion tag. Assume Y

is a scheme parameter generated during initialization. Y will determine how many

distinct hash functions there are.

Algorithm 5 a← MultipleSame::AbradeKey(k, pk)

x
$←− {0, 1, ..., N − 1}

∀i ∈ {0, 1, ..., Y − 1}, ahi ← Hs(pk + i||x) mod N

ac ← Enc(x, k)

a← {{∀i, ahi}, ac}

The retrieval function is similar to the simple scheme in Algorithm 4. The differ-

ence is that now the attacker has multiple ahi and can choose which one to reverse.

Because we add i to pk while computing Hs(·), each hash function is distinct. This
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means that our table attacker can build multiple TMTO solutions. These TMTOs

will have no collisions or merges with each other because they are computing distinct

cryptographic functions. Because they only have to reverse one of the hashes, their

probability of success increases dramatically. With a large value for Y , we can boost

an attacker’s success chance to around 100%.

Figure 6.2: Tableless vs table attacker, MultipleSame construction. Y = 5, N = 225

Unfortunately, our tableless attacker retrieves the nonce very quickly as well, mak-

ing this scheme insecure. As shown in Figure 6.2, our tableless attacker immediately

has a significant chance to defeat the abrasion puzzle with very low work. A malicious

adversary could get lucky and decrypt a record with a small amount of work in the

“MultipleSame” scheme.
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A different way to modify the scheme is to use different preimages for the distinct

hashes. We concatenate all the preimages and hash it to derive a key. We will use

this key to encrypt our abraded key. Because this key is never stored, we call it the

ephemeral key (e). We call this modified scheme “MultipleDifferent,” because we use

different preimages to compute multiple hash results.

Algorithm 6 a← MultipleDifferent::AbradeKey(k, pk)

∀i ∈ {0, 1, ..., Y − 1}, xi
$←− {0, 1, ..., N − 1}

∀i ∈ {0, 1, ..., Y − 1}, ahi ← Hs(pk + i||xi) mod N

e← Hs(x0||x1||...||xY−1)

ac ← Enc(e, k)

a← {{∀i, ahi}, ac}

Now an attacker has to retrieve all Y preimages to derive the ephemeral key

required to decrypt k.

Algorithm 7 k ← MultipleDifferent::AbradedKeyRetrieval(sk, a)

∀i ∈ {0, 1, ..., Y − 1}, xi ← (Lookup(sk, ah∗))

e← Hs(x0||x1||...||xY−1)

k ← (Dec(e, ac))

Modifying the scheme this way means that our tableless attacker has a much

harder time. There is a much smaller chance that they will get lucky and decrypt all

Y preimages. Specifically, to calculate their success, we sum uniform distributions.

Summing these distributions normalizes the tableless attacker’s chance of success and

ensures that at a small amount of work, they have little chance of success. The success

chance for various attackers in the “MutlipleDifferent” scheme is shown in Figure 6.3.

As can be seen, the success chance of the tableless attacker is starting to resemble

the graphs in Figure 5.2, used to illustrate Property G and Property H.
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The “MultipleDifferent” scheme has a different problem from the “MultipleSame”

scheme. The table attacker has a much harder time increasing their chance of success.

They must put large amounts of work into all the tables to ensure they can recover

many messages. They lose most of their work due to chain merges while building

these large TMTOs.

Figure 6.3: Tableless vs table attacker, MultipleDifferent construction. Y = 5, N =
225

6.3.2 Description

In this section, we present our main construction. In this construction, the at-

tacker must retrieve a subset X of the Y preimages (xi). We show that this gives
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us the desired properties of both of the two previous schemes, “MultipleSame” and

“MultipleDifferent.” Our main construction ensures that the tableless attacker does

not have a significant chance of decrypting a message until they’ve done a significant

amount of work. At the same time, this scheme allows our table attacker to retrieve

many messages without wasting too much work. The table attacker does not need

to compute unreasonably large TMTOs to achieve 1− ε success chance. We call this

scheme the “X-of-Y” abrasion scheme because it requires the attacker to reverse X

of Y hashes. In the following sections, we define the functions that make up our

construction. These functions follow the outline for an abrasion scheme described in

Section 5.3.

We review the variables used in this section in Table 6.1.

Assume SSGen(k,m, n) is a secret sharing generator and SSDecrypt(c, s′) retrieves

those secrets as described in Section 3.2.

Assume (c← Enc(k,m)) is a strong ( 256− bit) authenticated symmetric encryp-

tion with related decryption function (m ← Dec(k, c)). Because it is authenticated,

an authentication tag will be generated with with the ciphertext. The authentication

tag is used by the attacker to verify that they’ve retrieved the correct preimage. If

there were no way to make this verification, our attacker would not know when they

had broken the puzzle. We address the security of this authentication tag and the

ciphertext in Section 7.4.

45



Table 6.1: Important variable definitions
Variable Meaning

I Required cost in dollars to decrypt 1 message
Q Required work in hash invocations to decrypt 1 message
R Work ratio, legitimate attacker over malicious attacker
Y Number of distinct hash functions/preimages
X Required reversals/preimages (out of Y )
N Search space of hash function
λ Security parameter that defines g, n and ε
g Number of abrasion tags given to malicious attacker (2λ)
n Number of abrasion tags decryptable by legitimate adversary (2λ)
ε Success chance of malicious attacker (2−λ)
1− ε Success chance of legitimate attacker
Pr[S∗] Success chance
w Work (in hash invocations)
l,m, t TMTO parameters
k Key to be abraded
pk Public key (bit string)
b Bit length of strong key (b ≥ 256)
sk Private key (set of TMTOs)
x Preimage
Hs Strong hash function
ah Abrasion hash
e Ephemeral key
s Secret shares
sc Secret share ciphertext
c Extra ciphertext of secret sharing

6.3.3 Abrasion scheme initialization

Algorithm 8 pk ← XofY::AbrasionSchemeInitialization(Q, λ,R)

pk
$←− {0, 1}b

X ≈ Y
2

N ← Q∗R
Y

46



The public key (pk) is generated in the same way the simple hash scheme generates

the public key in Section 6.1.1.

N is the size of each weakened hash function. Using the matrix stopping rule,

our attacker will spend N work on each of the Y hash functions. To ensure that our

scheme costs at least Q work to break at the given R, we must set N appropriately

so that N ∗ Y = Q ∗R.

In order to achieve a small R a large Y must be used. X is set appropriately to

ensure the table attacker has 1− ε probability of success when building tables where

w = N . This leads to a value of X that is about half of Y . We calculate the success

chance of our table attacker for this construction in Section 6.3.10.

6.3.4 Abrasion tag generation

Algorithm 9 a← XofY::AbradeKey(pk, k)

{s, c} = SSGen(k,X, Y )

∀i ∈ {0, 1, ..., Y − 1}, xi
$←− {0, 1, ..., N − 1}

∀i ∈ {0, 1, ..., Y − 1}, ahi ← Hs(pk + i||xi) mod N

∀i ∈ {0, 1, ..., Y − 1}, ei ← Hs(pk + 2 ∗ Y + i||Hs(pk + Y + i||xi))

∀i ∈ {0, 1, ..., Y − 1}, sci ← Enc(ei, si)

a← {{∀i, ahi, sci}, c}

The key portions of Algorithm 9 are depicted in Figure 6.4 which shows how each

element in the abrasion tag is derived.

First, we run secret sharing to retrieve the secret shares s. Then we pick Y random

nonces from the search space. The abrasion hashes are then generated (ah∗). These

are meant to be attacked during decryption. Then we generate the ephemeral keys

(e∗) using different public keys for the hash function.
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Figure 6.4: Generation of each element in the abrasion tag in Algorithm 9

We compute the hash twice while generating the ephemeral keys to ensure that

they are not the target of an attack. If we simply used xi to encrypt each share,

an attacker could iterate through the input space and search for the given MAC to

decrypt si. We discuss this attack in Section 7.4.

The secret shares are then encrypted with the ephemeral keys. All ei and si are

discarded at this point. This leaves us with only the ciphertexts of the shares (sc∗).

The abrasion tag, ‘a,’ is now stored on disk to be presented upon warrant along

with records encrypted with k. The abraded key, ‘k,’ can be kept in secure memory

to do a number of abraded encryptions. This helps amortize the disk space and

computation usage by the client as well as cost-per-message for the table attacker.

This key should be scrubbed intermittently and the generation function should be run
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again to get a new key and tag. Using the same k for long periods of time increases the

damage done by data breaches as an attacker will be able to decrypt more messages

with a single k. This enhancement is considered only to increase the performance of

the client. In this thesis, we considered breaking a single tag to be synonymous with

decrypting a single message, ignoring the fact that messaging platforms could use k

to encrypt multiple messages.

6.3.5 Abrasion private key generation

Algorithm 10 sk ← XofY::AbrasionPrivateKeyGeneration(pk)

∀i ∈ {0, 1, ..., Y − 1}, ski = BuildTMTO(Hs(pk + i||·) mod N)

The legitimate attacker now computes Y TMTOs, one for each of the distinct

hash functions. The function “BuildTMTO” is described in Section 6.1.3.

Their work is split evenly among the different TMTOs. This maximizes the effec-

tiveness of their work. To achieve ≈ 100% success, they will need to compute each

hash function Q∗R
Y

= N times. This amount of work follows the “matrix stopping

rule” described in Section 6.2.

6.3.6 Abraded key retrieval

Algorithm 11 k ← XofY::AbradedKeyRetrieval(sk, a = {{ah, sc}, c})
∀i ∈ {0, 1, ..., Y − 1}, xi ← Lookup(ski, ahi)

∀i ∈ {0, 1, ..., Y − 1}, ei ← Hs(pk + 2 ∗ Y + i||Hs(pk + Y + i||xi))

∀i ∈ {0, 1, ..., Y − 1}, si ← Dec(ei, sci)

k = SSDecrypt(c, s′), s′ ⊂ s, |s′| = X
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Figure 6.5: Retrieval of each share in an abrasion tag in Algorithm 11

We illustrate the key parts of Algorithm 11 in Figure 6.5. This diagram comple-

ments Figure 6.4 to show both encryption and decryption in our abrasion construc-

tion.

After computing each of the TMTOs, a table attacker will lookup each of the

abrasion hashes (ahi) in their tables. They can stop once they’ve retrieved X preim-

ages (xi). The attacker then regenerates the ephemeral keys (ei) and uses them to

decrypt the shares (si). Using the X shares they’ve decrypted, the attacker can re-

trieve the abraded key k from the secret sharing scheme using SSDecrypt. Because

we only require that |s′| ≥ X, many of the lookups in the TMTOs can fail without

preventing the table attacker from decrypting the abrasion puzzle.
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6.3.7 Cost calculations

A table attacker performs Q ∗ R hash function invocations. This work is evenly

split among the Y distinct hash functions, creating a different TMTO for each of the

hash functions.

Using Hellman’s TMTO, the storage for each TMTO (M) will be m ∗ l rows as

each TMTO contains l tables of m rows. The total storage will be Y ∗ m ∗ l rows.

Because our table attacker splits their work evenly among the TMTOs, m∗l∗t =
Q∗R
Y

,

where m, l, and t parameterize each of the TMTO. Because we use the standard trade

off, m = l = t =(Q∗R
Y

)
1
3 . This makes the total number of rows, Y ∗m ∗ l, equal to

Y ∗
(
Q∗R
Y

) 2
3 .

For each row, we need to store the starting point and the end point. We can

represent all m starting points for each table in log2(m) bits and each ending point of

the weakened hash as log2(N) bits. Although there are more possible starting points

(up to N), we only need log2(m) bits to store all possible values for a single TMTO

table. To vary starting points between tables, the index of the table is appended to

the starting point when computing chains. This method was shown by Barkan et al.

[25].

In the online phase, our table attacker will search at most Y TMTOs to retrieve

the X preimages. Searching a single TMTO requires T = ttable ∗ l = t ∗ 1.5 ∗ l

invocations of the hash function. This means our online cost to reverse an abrasion

tag (Ttag) is Ttag ≤ T ∗ Y = t ∗ 1.5 ∗ l ∗ Y . The 1.5 in this calculation accounts for

false alarms as described in section 3.1.

To create an abrasion tag, the client will have to invoke the hash function multiple

times. Each weakened hash result requires an invocation of the hash function and

each ephemeral key requires two invocations of the hash function. Because there are
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Y hash results and Y ephemeral keys, this means the client will compute the hash

function Y ∗ 3 times for each abrasion tag.

In Section 6.3.8 we explain how we can redefine the hash function (Hs) to modify

these costs.

6.3.8 Decisions, details and alternatives

We can modify Hs(·) independent of the rest of the scheme. Equation 6.1 repre-

sents defining Hs as computing DoubleSHA256 u-times. Increasing u increases the

cost of our attackers (Q) without increasing the space required to store the private

key.

Hs(·) = (DoubleSHA256)u(·) (6.1)

Running DoubleSHA256 multiple times will also increase the cost of the client

and online cost of the table attacker. To keep our scheme practical, we only increase

u to 500. Each of these invocations of DoubleSHA256 is performed using a distinct

public key (derived from pk) to prevent stored preimages from helping a malicious

adversary. We describe how even a malicious attacker could store computations to

break a single tag faster if we used indistinct hash functions in Section 7.2. To make

our construction secure, we use large numbers of shares that are not supported by

the popular secret sharing libraries [11, 12]. The best performance analysis of secret

sharing schemes currently states that generating a number of shares around Y ≈ 40

takes about .22 seconds [21]. We speculate that an implementation that scales to meet

our needs would not be difficult to create and would still be performant. If future

work finds that secret sharing is not practical at this scale, an alternative scheme

could be used. We describe this alternative in Section 6.3.9.
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6.3.9 Probabilistic sharing

Secret sharing schemes are designed to break up keys to split among different par-

ties. We discuss secret sharing in Section 3.2. These schemes require hard guarantees

on the number of keys required to decrypt the secret. With probabilistic sharing, we

forego these properties to relax the computational intensity.

The idea of this scheme is to statistically require X shares out of Y . The scheme

assumes that shares are found through blind guessing. Any attacker must blindly

guess preimages in the random oracle model, so this assumption should hold for our

abrasion scheme.

With regards to our hash abrasion scheme, probabilistic sharing replaces SSGen

and SSDecrypt with PSGen (Probabilistic Share Generation) and PSDecrypt (Prob-

abilistic Share Decryption) respectively.

PSGen creates a ciphertext c, along a pool of Y shares (|s| = Y ) similar to SSGen.

Some number of shares (Y −d) are duplicates of other shares. There are only d distinct

shares.

{s, c} = PSGen(k,X, Y ), X ≤ Y

PSDecrypt is a function to retrieve k.

k = PSDecrypt(c, s′)

.

The set, s′, contains only the distinct shares of s. This means the size of s′ (|s′|)

is d. The value of d is set so that while reversing preimages blindly, the expected

number of reversals is X. d will generally be less than X (d ≤ X).
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An ephemeral key (e) is generated during PSGen.

e = Hs(s
′
0||s′1||...||s′d−1)

This ephemeral key is used to encrypt the secret k using a randomized encryption

and the ciphertext (e) is returned along with the pool of shares (s).

c← Enc(e, k)

We do not analyze how using this would affect our security. We propose proba-

bilistic sharing as an option to be considered if traditional secret sharing becomes too

costly.

6.3.10 Main construction success chance

We describe TMTOs in Section 3.1 and derive an approximation of a lower bound

on the success chance of multiple Hellman tables in Appendix A.

A binomial distribution can be used to model the probability of exactly X suc-

cesses out of Y trials given probability p. Our table attacker splits their work evenly

among Y different TMTOs, each giving the same probability of success (Pr[STMTO]).

Because we only require X out of Y hashes to be reversed successfully, our table

attackers success chance to reverse a single abrasion tag (Pr[Stag]) can be calculated

with the binomial distribution as shown in Equation 6.2. Where Binomial(k, n, p) =(
n
k

)
· pk(1− p)n−k = Pr[k successes out of n trials, each with p chance of success]

Pr[Stag] =

i≤Y∑
i=X

Binomial(i, Y,Pr[STMTO]) (6.2)
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Because our legitimate attacker wants to recover n messages, we multiply our

success n times, shown in Equation 6.3.

Pr[Slegitimate] =
n∏
i=0

Pr[Stag]

Pr[Slegitimate] =

(
i≤Y∑
i=X

Binomial(i, Y,Pr[STMTO])

)n

(6.3)

By using a lower bound for Pr[STMTO], we can calculate a lower bound for Pr[Slegitimate]

using Equation 6.3. When computing the work of our legitimate attacker (wlegitimate),

we evaluate what value of w causes Equation 6.3 to equal 1− ε where ε is very close

to zero. This calculation is used in Section 8 to evaluate the security of our scheme.
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Chapter 7

Security

In this chapter, we define our legitimate attacker in Section 7.1. A security game

with an oracle is presented in Section 7.2. This game and oracle are specifically

created for our main construction, described in 6.3.2. This security game is not

indended to be used to evaluate other constructions. We then show how to calculate

the success chance of an adversary in this security game in Section 7.3. The security

game and oracle allow us to find values (λ,R) for Definition 2 from Section 5.2. We

also mention other attacks in Section 7.4 and explain how our construction is security

against them.

7.1 Legitimate attacker definition

Our legitimate attacker creates a private key that can be used to decrypt n abraded

keys with 1 − ε probability, where n is a security parameter from Definition 1. We

calculate the success of this attacker in Section 6.3.10. We define “work” in our

construction as computations of the hash function Hs(·). This legitimate attacker

does not actually have to decrypt each message, but only create a private key that

has the potential to decrypt n messages. Leaving the cost of each decryption out

of this definition is realistic as our per-message cost will be offset when we combine

this scheme with a crumpling scheme. We set 2λ to be much larger than the number
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of messages that law enforcement will decrypt. This large chance of success ensures

that law enforcement will never be unable to decrypt an important record with their

computed private key.

7.2 Security game and oracle description

To calculate the security ratio in Definition 2, we will need to bound the success

chance of any adversary. Any attack will involve searching the input space of hash

functions to find preimages. An attacker can switch their focus among different hash

functions during this search. While attacking a set of abrasion tags, there are many

preimages to find in each hash function. This gives the adversary many choices to

make. For example, one strategy is switch to searching untried hash functions after

finding a single preimage. Another strategy could be to reverse many preimages from

a single hash function and then move on to get a better chance of finding match-

ing preimages. While continuing to find preimages, the attacker could have many

combinations of matching preimages, each suggesting a different optimal decision on

which hash function to search next. Instead of calculating the optimal decision at any

point, we create a security game and give an adversary access to a powerful oracle.

This game and oracle are crafted in a way that makes it easy to calculate the success

chance of the optimal strategy and ensures that this bounds any adversary without

the oracle.

While describing this game and oracle, we will represent any set of the form:

{0, 1, ..., x− 1} as Zx.

We assume that hash functions are random oracles in this security proof. This is

described in Section 6.1 and is commonly used in security proofs [26]. This allows us

to predict exactly how much work is required to reverse a hash.
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In this security game, the adversary can only query the oracle once.

First the adversary is given g different abrasion tags. Viewing these tags, the

adversary selects a permutation of the input space for each hash function. This is

the order in which the adversary will pick preimages to compute and compare with

the abrasion hashes, ah. The adversary can choose different orderings for each hash

function and must choose these orderings before querying the oracle. The adversary

must use these orderings to search the hash functions after querying the oracle. Fixing

these orderings is a reasonable restriction as there is no information (without this

security oracle) that would suggest a better search order. There is no information to

be gained because we treat these hash functions as truly random functions

The adversary submits 2 values to the oracle: the order of preimages which they

will search for in each hash function: fj, j ∈ ZY , and the g abrasion tags they have:

ai, i ∈ Zg.

These search orderings (permutations of ZN) that the adversary gives to the oracle

are represented by Y bijective functions fj, j ∈ ZY , fj(y) 6= fj(z), y 6= z. Each order

function has the same input and output space of ZN (fj : ZN → ZN).

The adversary can generate all permutations (fj, j ∈ ZY ) at no cost. All communi-

cation between the adversary and the oracle is considered to be free when calculating

the adversary’s work.

The oracle picks out an abrasion tag (am) and indicates X hash functions, repre-

sented as the set, HX . The tag, am, is the easiest to break of the g supplied abrasion

tags and HX defines the easiest hash functions to search to find preimages for that

tag. Choosing am and HX is dependent on the given the permutations of ZN , f∗.

The oracle returns this information ({am, HX}) to the adversary.

The adversary now searches through the X given hash functions (HX) and finds

preimages for the abrasion tag that the oracle revealed to them (am). The adversary
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tries potential preimages in their pre-defined orderings, f∗, until they have recovered

X correct preimages. Recovering X correct preimages completes the solution of the

abrasion puzzle as the adversary can now use secret sharing to recover k.

Because this adversary is given the optimal hash functions to attack (HX), their

strategy is optimal for their order chosen. There is no better way to choose an order

to search preimages because we assume they are truly random functions. We can

now see that there’s no practical adversary (without this oracle) that could retrieve

a message faster than an adversary with this oracle. This means that bounding the

success chance of this adversary with the oracle will bound any adversary without

the oracle.

After the best HX is revealed, the adversary cannot store work to gain success

faster. They gain nothing because saved computations would only help reverse preim-

ages in the same hash function. They only need to reverse a single preimage for each

hash function and saved computations will not help them break the other preimages

which are hashed with different hash functions. An example of this is where xi = xi+1.

If the hash functions were not distinct, a malicious attacker would know that these

two preimages were the same by comparing the abrasion hash of each. The attacker

could then refer to their previous computations to reverse xi+1 after reversing xi.

7.3 Success calculations

In this section we will show how to calculate the probability of success of a mali-

cious adversary with this oracle, Pr[Smalicious], for a given amount of work wmalicious.

The work spent by this adversary is now the minimum value of the set of the
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minimum work required for each of the submitted messages, (min(wi)).

wmalicious = min({min(w0),min(w1), ...,min(wg−1)})

The work to break each hash function in a single abrasion tag can be found by

looking at the search order fj submitted by the adversary for each hash function hj.

We define xi,j and wi,j as the preimage and the work required for the j-th distinct

hash function of the i-th abrasion tag in g. We know the work required to recover

one of these preimages will be the order of xi,j in the adversary’s preimage search.

This means work for each hash is now: wi,j = fj(xi,j), j ∈ ZY . Because the attacker

only needs to reverse X preimages, the work to reverse a specific abrasion tag is now

min(wi) = minX(f0(xi,0), f1(xi,1), ..., fY−1(xi,Y−1)). Where minX(∗) is the sum of

the X smallest values in a given set. We can now express wmalicious in terms of xi,j in

Equation 7.1.

wmalicious = min({∀i ∈ Zg,min(wi)})

wmalicious = min({minX(f∗(x0,∗)),minX(f∗(x1,∗)), ...,minX(f∗(xg−1,∗))})

wmalicious = min({minX(f0(x0,0), f1(x0,1), ..., fY−1(x0,Y−1)),

minX(f0(x1,0), f1(x1,1), ..., fY−1(x1,Y−1)),

...,

minX(f0(xg−1,0), f1(xg−1,1), ..., fY−1(xg−1,Y−1))}) (7.1)

When each abrasion tag is generated, we pick the preimages xi,j from a scaled

uniform distribution. This means that fj(xi,j) is also a random variable from a scaled

uniform distribution.

wi,j ∼ N ∗ Uniform(0, 1)
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We sum the work for the lowest X preimages, which means that the work follows

a sum of the lowest scaled uniform distributions.

min(wi) = minX(wi,∗) =
X∑
k=1

wi,(k) ∼ N ∗ Uniform(0, 1) (7.2)

Where wi,(k) is an order statistic of the k-th lowest work required of the preimages

in the i-th abrasion puzzle.

To calculate this, we sample this sum of order statistics many times and fit a

normal curve to a histogram of the samples. The normal approximation is shown

in Figures 7.1 and 7.2. The code used for the approximation is shown in Listing

7.1. We also calculate the error of this approximation, which is 5%. This error was

calculated by summing the absolute error between the normal pdf and a histogram

of the samples. We used 100 bins from the minimum to the maximum sample for the

histogram. This approximation also take into account attacks described in Section

7.4.

Listing 7.1 shows an excerpt from the python script used to find the construction

ratio. In this excerpt, we fit a normal distribution to the sum of minimum uniform

distributions.

Listing 7.1: Fit normal to order statistics

min_x_samples = [sum(sorted(scipy.uniform.rvs(loc=0,scale=N,size=Y))[:

↪→ X]) for _ in range(0,20000)]

mean,stdev = scipy.norm.fit(min_x_samples)

The probability that the work of our adversary is less than any given work, w,

(wmalicious < w) is equal to the probability that there exists an abrasion tag in g that
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Figure 7.1: Uniform minimum sum pdf (approximated with 20,000 samples) vs normal
approximation

is easier to break:

Pr[wmalicious ≤ w] = Pr[∃i ∈ Zg,min(wi) ≤ w]

The probability that such an i exists is the inverse of every min(wi) being greater

than w:

Pr[∃i ∈ Zg,min(wi) ≤ w] = 1− Pr[∀i ∈ Zg,min(wi) > w]

The probability of every min(wi) being greater than w is the product of the
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Figure 7.2: Uniform minimum sum cdf (approximated with 20,000 samples) vs normal
approximation

probability that each message is greater.

Pr[∀i ∈ Zg,min(wi) > w] = Pr[min(wi) > w]g

We invert this so that we can use a cumulative density function to calculate it.

Pr[∀i ∈ Zg,min(wi) > w] = (1− Pr[min(wi) ≤ w])g

Pr[wmalicious ≤ w] = Pr[∃i ∈ Zg,min(wi) ≤ w] = 1− Pr[∀i ∈ Zg,min(wi) > w]

Pr[wmalicious ≤ w] = 1− (1− Pr[min(wi) ≤ w])g
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Because we found that min(wi) can be approximated by a normal distribution,

we can use the cumulative density function of the normal distribution to compute

Pr[min(wi) ≤ w] and with that, easily compute Pr[wmalicious ≤ w].

The probability of success of this adversary (Pr[Smalicious]), at a given work (w),

is the probability that the required work wmalicious is less than that work.

Pr[Smalicious] at work w = Pr[wmalicious ≤ w]

We can now calculate the work when Pr[Smalicious] = ε. This value gives of a lower

bound on the work of any malicious adversary as shown in Section 7.2.

In hash-based abrasion using TMTOs, we define our legitimate attacker as an

attacker that precomputes a TMTO to decrypt abrasion tags. We call this a “table

attacker.” The calculations for the probability of success for the table attacker are

derived in Section 6.3.10. We now know how to calculate the values needed to compute

our security as defined in Section 5.2.2, wlegitimate and wmalicious.

We calculate the work for our table attacker where our probability of success is

1− ε. This allows us to derive a ratio, R.

R =
wlegitimate

wmalicious

R =
Work at Pr[Stable attacker recovers n] = 1− ε

Work at Pr[Stableless attacker recovers 1 given g] = ε
(7.3)

We also factor in the cost of storage into this ratio in Section 8.2.

Different values of Y and X will yield different results. In Section 8 we give

concrete values. These optimal parameters yield a ratio of R ≤ 13.2 when λ = 45.

This means our scheme is 45-13.2-secure by Definition 2. We believe this is a sufficient

ratio to claim that this scheme accomplishes abrasion Property G and Property H.
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7.4 Other attacks

A malicious attacker could also attack other parts of the scheme, such as secret

sharing.

As described in Section 6.3.4, each share is encrypted with a strong key that

results from a weak hash. The result of this encryption is a ciphertext sci and an

authentication tag (ti). This authentication tag was not shown in Algorithm 9 but

was assumed to be generated along with each sci. Generally, the authentication tag

is computed on the ciphertext of an encryption. This encryption mode is known

as “Encrypt-then-MAC” [39]. Using “Encrypt-then-MAC” means that an attacker

could recompute the exact same authentication tag on the ciphertext if they find the

correct key.

To perform a brute-force search, a malicious attacker only needs a conditional to

test if they’ve found the correct preimage. For each preimage, the adversary can use

a brute-force attack on either the intended hash functions, ahi, or the authentication

tag for that share, ti. The two conditionals necessary to perform these brute-force

searches are shown in Equations 7.4 and 7.5. All of these variables except for xi

are given to the adversary, allowing them to brute-force search for xi using either

conditional.

Hs(pk + i||xi)
?
= ahi (7.4)

MAC(Hs(pk + 2 ∗ Y + i||Hs(pk + Y + i||xi)), sci)
?
= ti (7.5)

This second conditional allows for a potentially easier path to recover preimages

as the attacker’s search order for ti could yield xi faster. This means that the easiest

way to find a preimage is the smallest of a pair of uniform variables. These two
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uniform variables are the order in which the adversary would recover the preimage

through either the abrasion hash ahi or the authentication tag ti. Using this fact, we

can show an updated calculation for min(wi) in g in Equation 7.6. We previously

derived min(wi) in Equation 7.2. The function f ′(·) is the ordering the adversary

picks for the distinct hash functions used to create the ephemeral keys. We multiply

this second value in the pair by 2 because two invocations of the hash function Hs(·)

are used to create the ephemeral key during the brute-force attacks which doubles

the work required. We can approximate this with a normal distribution as shown in

Figures 7.1 and 7.2.

min(wi) = minX(min(f0(xi,0), 2f
′
0(xi,0)),

min(f0(xi,1), 2f
′
1(xi,1)),

...,

min(f0(xi,Y−1), 2f
′
1(xi,Y−1)))

min(wi) = minX(∀j ∈ ZY ,min(fj(xi,j), 2f
′
j(xi,j))) (7.6)

Even if we removed this authentication tag from our scheme, secret sharing could

also give a malicious attacker other ways to brute-force preimages. If the attacker

has recovered X − 1 correct shares (|s∗| = X − 1), they can brute-force search the

last share they need regardless of the secret sharing scheme used. The conditional

needed for this brute-force search is shown in Equation 7.7. In this brute-force search,

attacker can choose a plaintext (p) and retrieve the ciphertext and abrasion tag c, a.

This p could be a message sent over the messaging platform that is performing the

abraded encryption. This c is different than the c described in our construction in

Section 6.3 and is instead the result of the encryption of p with key k. Allowing
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an attacker this ability is a reasonable attack scenario known as a chosen plaintext

attack. After the attacker finds an xi that satisfies this condition, they can recover

the last share and learn k.

e′ = Hs(pk + 2 ∗ Y + i||Hs(pk + Y + i||xi))

s′ = Dec(e′, sc)

k′ = SSDecrypt(s∗ + {s′})

Dec(k′, c)
?
= p (7.7)

Bounding all attacks using the secret sharing scheme is difficult and relies on prop-

erties of the secret sharing scheme. To make our abrasion construction independent

of which secret sharing scheme is being used, we assume that an attacker can always

brute-force search for ephemeral keys to break the scheme.

To ensure this attack does not affect our security significantly, we require compu-

tation of the hash function Hs twice when deriving keys from each nonce, xi. This

double hash makes it much more costly to retrieve a secret share using the authen-

tication tag compared to reversing an abrasion hash (ah∗) as intended. The table

attacker only has to compute this double invocation of Hs this when verifying a

preimage, meaning it doesn’t affect their online cost significantly.

67



Chapter 8

Results

In this chapter, we use real-world parameters to calculate the security and cost

of our scheme. First, we will show the parmeters used, the security ratio (R), and

important costs in Section 8.1. Then we show calculations of other costs associated

with a scheme intialized with these parameters in Section 8.2. We show costs for

other sets of parameters in Table 8.1.

8.1 Summary

For reference, we provided a number of definitions of important variables in Table

6.1 in Section 6.3.2.

Established in Section 5.2, we want to calculate the ratio of the work done by our

legitimate attacker vs the work done by a malicious attacker
(
R =

wlegitimate

wmalicious

)
.

Using calculations in Chapter 7, we can now calculate bounds on wmalicious. Shown

in Section 6.3.10, we can calculate the cost of our table attacker (wlegitimate). In Section

6.3.7 we show how to calculate other associated costs with the construction.

We set concrete parameters: Y = 6114, X = 3035, g = 245 (trillions of records),

ε = 2−45, n = 245, N = 263, and define Hs(·) as 500 computations of DoubleSHA256.

With these parameters, we find that our table attacker spends $40.2 million com-

puting the hash function and our security ratio (R) is ≤ 13.2. This means that if
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our legitimate adversary spends $40.2 million on a private key that can decrypt 245

records, an adversary that decrypts a single message will spend $3 million.

The required work for a table attacker is low enough to allow law enforcement to

investigate. At the same time, the cost of a tableless attacker ($3 million) is high

enough to deter smaller attackers from decrypting records. The resources of these

attackers were estimated in Section 5.1.4. Our main construction is the first abrasion

scheme that provably provides these properties. Allowing decryption by a table at-

tacker while preventing attacks by malicious attackers means that our construction

achieves Property G and Property H.

These parameters were found through experimentation. We follow the “matrix

stopping rule” described in Section 6.2 and fix Y,N,Hs(·) to give us a $40.2 million

cost, then found the X that gives our table attacker 1−ε success chance. The security

ratio, R, was then computed using these parameters.

Larger values of Y and X give better ratios, but also impose a larger cost for

computing abrasion tags and increase storage requirements. The best ratio of X
Y

stayed around 50% regardless of the values of Y or N . Using our approximations, we

were able to compute this ratio up to Q = 280 which is an abraded encryption that

could reasonably cost billions of dollars to break. At any reasonable value of I (from

$1 million to $100 million), our scheme stays secure with acceptable security ratios.

We only compare invocations of the hash function when calculating the security

ratio. Factoring in storage requires us to factor in hash efficiency and power costs

which makes analyzing schemes much more complicated.

A comparison of table and tableless success chances is shown in Figure 8.1, which

starts at 0 work and continues to the work required where Pr[Slegitimate] = 1− ε. The

“s-curve” parts of these two attackers’ probabilities are shown in Figures 8.2 and 8.3.
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Figure 8.1: Tableless vs table attacker, success chance vs work

8.2 Detailed cost analysis

Calculations showed that the table adversary would need to perform Q ∗ R =

N ∗ Y ≈ 5.64 ∗ 1022 computations of the hash function Hs.

We used calculations from the original paper on crumpled and abraded security

[58], to estimate the cost of electricity that a table attacker will use to derive a private

key for this abrasion puzzle. The calculation of our legitimate attacker’s cost to create

a private key is shown in Equation 8.1.

5.64 ∗ 1022 ∗ 500 Hashes

1.02 ∗ 1010 Hashes/Joule
∗ 1 kWh

3, 600, 000 Joules
∗ .0523

$

kWh
≈ $40.2 million (8.1)
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Figure 8.2: Tableless attacker ε to 1− ε success chance

This assumes that the government purchases very powerful hashing equipment,

the Antminer S9, which has an efficiency of 1.02 ∗ 1010Hashes/Joule [17, 58]. The

cost of purchasing this hardware is not calculated. When calculating the ratio, we

assume a tableless attacker purchases the same hardware as the table attacker.

We find M ∗Y and multiply it by the storage requirement for each row to get the

total storage cost, shown in Equation 8.2.

(m ∗ l) ∗ Y ∗ (start point bytes + end point bytes) = bytes of storage(
5.64 ∗ 1022

6144

) 2
3

∗ 6144 ∗
(⌈

63

8

⌉
+

⌈
log2(m)

8

⌉)
≈ 296 PB (8.2)
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Figure 8.3: Table attacker ε to 1− ε success chance

The cost to store these TMTOs would vary. Using projected hard disk drive costs

for 2019 [6], we calculate the cost of storing a private key in Equation 8.3.

296 PB ∗ 1, 000, 000
GB

PB
∗ 0.03

$

GB
= $8.8 million (8.3)

This storage cost does not overwhelm our electrical cost. This pool of storage

can be split up into Y = 6114 different searchable arrays, each containing 47 TB.

Splitting the data up this way should substantially reduce the overhead cost to store

this data, which is left out of our calculations.

Now we can derive the total precomputation cost of our table attacker, described
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in Equation 8.4.

electrical cost + storage cost = total cost

$40.2 million + $8.8 million = $49 million (8.4)

Including the storage cost gives us a cost ratio of 16. We keep this total cost ratio

distinct from our security ratio (R) as the cost ratio will fluctuate based on hardware

efficiency and electricity costs. The security ratio, R, is based on invocations of the

hash function and will never change due to changes in hardware/electricity cost.

The online cost for each decryption with a table will be the equivalent of searching

through T ∗6114 = t∗ l∗1.5∗6114 hashes, coming to around N
2
3 ∗1.5∗6114 = 4∗1016

operations. Using the cost analysis from the original paper [58], we calculate the

online cost of the table attacker in Equation 8.5.

4 ∗ 1016 ∗ 500 Hashes

1.02 ∗ 1010 Hashes/Joule
∗ 1 kWh

3, 600, 000 Joules
∗ .0523

$

kWh
≈ $29 (8.5)

This cost is smaller than the crumpling cost suggested [58], which was ≈ $1000. If

we combine this scheme with a crumpling scheme, we can adjust the cost of retrieving

a crumple-encrypted message to offset the $29 imposed per-message by this abrasion

scheme. This low per-message cost gives our scheme Property F.

The client needs to compute Y hashes of 500 length 3 times. We calculate the

cost of computing an abrasion tag in Equation 8.6.

6114 ∗ 3 ∗ 500 Hashes

5 ∗ 105 Hashes/Joule
∗ 1 kWh

3, 600, 000 Joules
∗ .0523

$

kWh
≈ $0.0000003 (8.6)

The client must compute Hs for each distinct hash function to compute the abra-
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sion hashes ahi. This multiplication by 3 comes from the two extra Hs invocations

needed to generate the keys to encrypt the secret shares. The reasoning for this

double hashing is described in Section 7.4.

We use a weaker Hashes/Joule ratio, associated with CPUs, to calculate client

cost as clients will not likely use powerful hashing hardware like Antminers. A value

of 5 ∗ 105 Hashes/Joule was used in [58].

The frequency of abrasion tag computations can be adjusted as described in Sec-

tion 6.3.2 to offset this cost and the storage size of abrasion tags. This storage size is

computed in Equation 8.7.

Y ∗
(⌈

log2(N) ∗ 1 byte

8 bits

⌉
+ 32

)
6114 ∗ (d63/8e+ 32) = 244.5 KB (8.7)

The extra 32 bytes accounts for the secret share ciphertexts. Each of these takes

32 bytes including a MAC.

There are many trade-offs to consider in these calculations. Depending on how

important some factors are, these parameters could be adjusted to achieve different

costs. One major trade-off is the number of hashes that Hs(·) computes. Increasing

this will decrease the storage required by the table attacker, but also increase the cost

of computing an abrasion tag.

These parameters must be fixed for all clients. Changing Y , X, N or H(·) will

force the table attacker to regenerate some or all of their table to maintain the same

chance of success.

A legitimate attacker could also adjust l, m, and t to change the storage/online

costs of their TMTO solution. They could also use another TMTO such as rainbow

tables or distinguished points. We do not explore this in this work.
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If this strategy were adopted by a legal system, law enforcement could build this

TMTO strategy on-the-fly, meaning they spend somewhere between $3 million and

$49 million to decrypt their first message while still building the TMTO tables. Their

total cost will increase as they decrypt more and more abrasion tags, getting to $49

million after they decrypt trillions of records.

In Table 8.1, we calculate the ratios and costs of schemes with other parameters.

All rows use a λ of 2−45. The parameter u defines the number of invocations of

DoubleSHA256 used by Hs. The cost for the table attacker includes storage in this

table. The first row displays the values found previously in this section. Row 2 shows

what happens when all parameters are scaled up. Rows 3 and 4 show what happens

when we redefine Hs. Rows 5 through 7 show what happens when we change the input

space for preimages. Rows 8 through 11 show what happens when we modify both

Y and X. In rows 12 and 13, we’ve reduced the work spent on each hash function

(wlegitimate =N∗Y
2

) and the ideal X was reduced to give this table attacker 1 − ε

chance of success. Deviations from the first row are highlighted for set parameters

(R is derived from other parameters).

8.3 Revisiting abrasion requirements

In this section, we list the properties that our main construction, from Section 6.3,

achieves. We reference the locations in the thesis where we proved these properties.

Many of our claims rely on the fact that reversing the hash functions is the easiest

way to break the scheme. This is proven in Section 7.4.

During the description in Section 6.3.2 we described how our construction uses a

public key to satisfy Property C.

Because the weakest part of our encryption uses hash functions, we can easily
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Table 8.1: Costs with other parameters
Parameters Costs (millions of dollars) Costs (dollars)

# N Y X u R Table Malicious Storage Online

1 263 6114 3035 500 13.2 $49.0 $3 $8.8 $29
2 264 7000 3499 700 12.8 $144.9 $10.1 $16.1 $73.1
3 263 6114 3035 100 13.2 $16.9 $0.6 $8.8 $5.7
4 263 6114 3035 1000 13.2 $80.3 $6 $8.8 $57
5 264 6114 3035 500 13.2 $80.3 $6 $14 $45
6 260 6114 3035 500 13.2 $7.2 $0.4 $2.2 $7.2
7 267 6114 3035 500 13.2 $704.0 $49.5 $61.5 $182.4
8 263 8000 4024 500 12.5 $52.5 $4.2 $11.6 $37.5
9 263 10000 5079 500 12.1 $80.2 $5.4 $14.5 $47.0

10 263 4000 1936 500 14.5 $32.1 $1.8 $5.8 $18.8
11 263 1000 419 500 25.9 $8.0 $0.3 $1.5 $4.7
12 263 6114 1885 500 18.8 $25.7 $1.1 $5.6 $18.1
13 263 10000 3035 500 17.1 $39.6 $1.8 $8.8 $28.4

calculate the costs of how to break it. This is similar to how the costs for crumpling

were originally calculated [58]. This gives our construction Property E.

When treating hash functions as a random oracle model, there is no way to re-

verse a hash without iterating through its input space [26]. This allows any abrasion

construction that is based on hash functions to achieve Property I as there’s no way

to generate a public key that makes the hashes easier to reverse. Random oracles are

described in Section 7.2.

From our first simple hash-based abrasion scheme in Section 6.1 it should be clear

how an adversary can reuse a TMTO as a “private key,” satisfying Property D.

We described a security model in Section 5.2, created a security game and oracle for

our scheme in Chapter 7, and calculated real world numbers in Chapter 8. Our main

construction is the first abrasion scheme to provably guarantee security. We describe

the resources of various attackers in Section 5.1.4 and thus can claim Property G and

Property H. Also in Chapter 8, we show that our private key is very large, which
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could help prevent its theft. This could be beneficial and meets Property K.

In Section 8.2, we calculated other costs of our scheme, proving that it is practical.

We also calculated the per-message cost of our abrasion construction. This cost is

much smaller than the crumpling cost suggested by Wright and Varia [58]. This means

that, when our scheme is combined with a crumpling scheme, it achieves Property F.

As for ease of implementation, we integrated crumpled logging into Postfix in

Section 4. This implementation is quite simple, and an abraded encryption imple-

mentation may not be much more complicated. Our construction also does not require

any secret keys to be escrowed. These two qualities show that our construction would

be simple to implement, as required by Property J.
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Chapter 9

Conclusion

In this thesis we were able to achieve a practical abraded encryption scheme and

evaluate the cost and security of it. We developed a framework to evaluate the security

of any abrasion scheme. The main construction presented in this thesis is the first

abrasion construction to be proven to guarantee any level of security. While some

of the costs for storage and computation of our construction may seem undesirable,

they are not overwhelming. We also created a proof of concept for crumpling.

9.1 Future work

We believe that probabilistic sharing (described in Section 6.3.9) can be used to

reduce the cryptographic dependencies of this construction, thus making it easier to

implement and audit. Future work will evaluate the security of our construction when

used with probabilistic sharing.

Another improvement to the abrasion construction would be to modify the abra-

sion function described in Section 6.3.4 to mimic the creation of a TMTO. Introducing

similarities between tag creation and table creation ensures that tables are more effec-

tive in reversing tags when compared to brute-force attacks. Specifically, we believe

that if each abrasion hash were computed in a chain in the same way that TMTO

chains were computed, our table attacker would have a significant advantage. This

78



improvement should reduce our ratio dramatically, but requires a new security oracle

and game to fully analyze. Also, more research into TMTOs would be required to

derive the legitimate attacker’s success chance.

This abrasion construction could have applications in other fields. The novel

properties of one-time work for multiple decryption could possibly be used in a proof-

of-work blockchain or similar technology.

9.2 Crumpling and abrasion

The monetary cost of abrasion and crumpling is not negligible even with ideal

constructions as we must force attackers to spend work to deter small attackers and

rate limit law enforcement. Combining this solution with other exceptional access

solutions such as AUDIT [36] or self-escrow [54] could help reduce this cost. The cost

of doing nothing is arguably greater than any of these exceptional access solutions

as uncontrolled weakening of security by law enforcement could have far more costly

effects on society.

One potential problem with abrasion is the possible creation of criminal tag rever-

sal as a service. A larger criminal could spend the initial cost to break the abrasion

puzzle, then sell individual decryptions to smaller criminals to recoup their loss. While

this would be a problem, abrasion would naturally centralize criminals that had the

ability to do these decryptions. A centralized criminal organization is easier to attack

than many smaller operations.

9.3 Safety and privacy

Our criminal investigations are progressively requiring more interaction with tech-

nology and the internet. With internet privacy being so important today, compromise

79



between privacy and safety is hard to develop and solutions to this problem can be

very polarizing, politically. Attempting to introduce a compromise is often met with

fierce opposition, which hampers progress towards a solution. Part of the motivation

for this construction is to generate conversation about this compromise. We hope

that this construction can be used to create or inspire the creation of more, practical,

compromises between privacy and security in the future.
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Appendix A

Hellman table success derivation

The success chance of a TMTO is the chance that any given output of the hash

function is reversible by the tables. These tables are computed based on certain

parameters, which affect the success chance. We review TMTOs and these parameters

in Section 3.1.

In the original TMTO paper in 1980, Hellman finds a lower bound for the success

chance of one of his TMTO tables through some simple reasoning and algebra [40]. We

review Hellman’s derivation here and extend it to find Equation A.2. This extension is

not overly complex and has been used by many TMTO authors [42]. In our research,

we did not find a long form derivation of this equation. This appendix provides that

missing long form derivation. Kusuda et al. found through experimentation that this

equation produces a lower bound on the success chance of TMTOs [44].

We can think of the success chance of a TMTO table as a function of the number

of preimages that are “covered” by the table. If the preimage for a given hash value

was never computed by the table creator during precomputation, there’s no way to

use the table to reverse that hash value.

Let’s label this number of preimages covered by a table as the set Ai,j where i is

the index of the row and j is the index in the chain of that row. This is the set of every

distinct preimage that has been computed, resulting in a corresponding hash. The
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i and j parameters determine the row and index in the chain that the table creator

has reached. After precomputation of a table is complete, their covered preimages

will be Am,t.

Our probability of success for our table Pr[Stable] is the probability that any given

hash is in the table and can be shown as:

Pr[Stable] =
1

N
∗ E[|Am,t|]

Where |Ai,j| is the number of elements in Ai,j and N is the input space of the

cryptographic function.

Our preimages are generated in a number of rows spanning a number of columns.

This can be modeled mathematically like so:

Pr[Stable] =
1

N
∗ E

[
m∑
i=1

t−1∑
j=0

Pr[Xi,j is new]

N

]

By being “new” we mean the preimage in row i, column j (Xi,j) has not appeared

in the table previously and thus increases the size of Ai,j.

We know that the probability Pr[Xi,j is new] is at least equal to or higher than

the probability that Xi,j is new and every Xi,k where k < j is new.

Pr[Xi,j is new] ≥Pr[Xi,0 is new]

∗Pr[Xi,1 is new|Xi,0 is new]

∗...

∗Pr[Xi,j is new|Xi,0 is new, Xi,1 is new, ..., Xi,j−1 is new]
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This takes the chance of chain merges into account. We describe chain merges in

Section 3.1. Xi,j would be a duplicate if any Xi,k, k < j were a duplicate. Multiplying

our probability by the chance that each previous index in the chain was new represents

this chance [44].

Substituting Ai,j recursively, we can see that this equation is equivalent to fol-

lowing equation because Ai,0 is the number of new preimages at the start of row

i.

Pr[Xi,j is new] ≥N − |Ai,0|
N

∗N − |Ai,0| − 1

N

∗...

∗N − |Ai,0| − j
N

If we assume that every single preimage was new, we can substitute in i ∗ t for

each of the |Ai,0| − k, k ≥ 0, k ≤ j, leaving us with:

Pr[Xi,j is new] ≥
(
N − i ∗ t

N

)j+1

This allowed Hellman to derive the final equation.

Pr[Stable] ≥
1

N

m∑
i=1

t∑
j=1

(
N − i ∗ t

N

)j
(A.1)

Note here that this lower bound in Equation A.1 could’ve been tighter if (i−1)∗t−k
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were substituted in for each |Ai,0| − k, k ≥ 0, k ≤ j instead of simply i ∗ t for each.

Pr[Stable] ≥
1

N

m∑
i=1

t∑
j=1

j∏
k=0

N − (i− 1) ∗ t− k
N

Using Equation A.1 allows us to make some approximations that might not have

been possible with a closer bound.

When using l tables, our hash chance of success for reversing the hash Pr[Shash]

becomes:

Pr[Shash] ≥ 1− (1− Pr[Stable])
l

We don’t have to worry about merging chains across tables because they use

different reduction functions. Each table’s chance of success is independent if different

starting points are used for each table. We will not run out of distinct starting points

as long as m ∗ l ≤ N .

When m and t are large, this equation becomes very difficult to compute. Even

using heavy parallelization on available GPUs, this equation would take months to

compute for N = 280.

We approximate this chance of success using integrals, which uses far less CPU

time.

In this approximation, a linear approximation to ex is used.

e−x ≈ 1− x

This approximation allows us to estimate the lower bound as:

Pr[Stable] ≈
1

N

m∑
i=1

t∑
j=1

e
−ijt
N
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We can estimate a sum with an integral from 0 to t:

Pr[Stable] ≈
1

N

(
m∑
i=1

(∫ t

j=0

e
−ijt
N di

)
− 1

N

)

Pr[Stable] ≈
1

N

(
m∑
i=0

∫ t

j=0

e
−ijt
N di

)
− m

N2

The m
N2 term is very close to 0 when m� N :

Pr[Stable] ≈
1

N

m∑
i=1

∫ t

j=0

e
−ijt
N di

Pr[Stable] ≈
1

N

(
m∑
i=1

(
−N
it
∗ e

−it2

N

)
−
(
−N
it
∗ e0
))

Pr[Stable] ≈
1

t

(
i=m∑
i=0

1− e−it2

N

it
N

∗ t

N

)
− 1− 1

N

Here we use another integral approximation of the sum:

Pr[Stable] ≈
1

t

∫ i=m

i=0

1− e−it2

N

it
N

∗ t

N
di

Pr[Stable] ≈
1

t

∫ i=m

i=0

1− e−it2

N

i
di

Replacing it2

N
with u (u = it2

N
, du = t2

N
di):

Pr[Stable] ≈
1

t

∫ u=mt2

N

u=0

1− e−u
u∗N
t2

N

t2
du

Pr[Stable] ≈
1

t

∫ u=mt2

N

u=0

1− e−u

u
du
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If we use the e−x ≈ 1−x approximation here, we can create an equation for when

multiple Hellman tables are used:

Pr[STMTO] ≈ 1− (1− Pr[Stable])
l

Pr[STMTO] ≈ 1− exp

(
l

t

∫ u=mt2

N

u=0

1− e−u

u
du

)
(A.2)

In this thesis, we calculate this integral with the scipy function integrate.quad

[20].
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