
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

5-10-1996

Contention-free Scheduling of Communication Contention-free Scheduling of Communication

Induced by Array Operations on 2D Meshes Induced by Array Operations on 2D Meshes

Andreas Bernhard Georg Eberhart
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Eberhart, Andreas Bernhard Georg, "Contention-free Scheduling of Communication Induced by Array
Operations on 2D Meshes" (1996). Dissertations and Theses. Paper 5077.
https://doi.org/10.15760/etd.6951

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5077&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5077
https://doi.org/10.15760/etd.6951
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Andreas Bernhard Georg Eberhart for the Master of Sci

ence in Computer Science were presented May 10, 1996, and accepted by the thesis

committee and the department.

COMMITTEE APPROVALS:

DEPARTMENT APPROVAL:

Jingke

Michael A. Driscoll

Bradford~ - .. Crau
Repregve of the Office of Graduate Studies

Jofll McHugh, Chair
epartment of Computer Science

**

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY

b /~ .. '' on?' ;k1u: /'9%
/~}'

ABSTRACT

An abstract of the thesis of Andreas Bernhard Georg Eberhart for the Master of

Science in Computer Science presented May 10, 1996.

Title: Contention-Free Scheduling of Communication Induced by Array Operations

on 2D Meshes

Whole array operations and array section operations are important features of

many data-parallel languages. Efficient implementation of these operations on distri

buted-memory multicomputers is critical to the scalability and high-performance of

data-parallel programs. This thesis presents an approach for analyzing communi

cation patterns induced by array operations and for using run-time information to

schedule the message flow. The distributed, dynamic scheduling algorithms guaran

tee link-contention-free data transfer and utilize network resources almost optimally.

They incur little overhead, which is important in order not to reduce the speedup

gained by the parallel execution. The algorithms can be used by compilers for the

generation of efficient code for array operations. Implemented in a runtime library,

they can derive a schedule depending on parameters passed by the parallel applica

tion. Simulation results demonstrate the algorithms' superiority to the asynchronous

transfer mode that is commonly used for this type of communication.

CONTENTION-FREE SCHEDULING OF COMMUNICATION INDUCED BY
ARRAY OPERATIONS ON 2D MESHES

by

ANDREAS BERNHARD GEORG EBERHART

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
1n

COMPUTERSCIBNCE

Portland State University
1996

Acknowledgements

There are many which need to be acknowledged with regard to the preparation of

this thesis. First and foremost, I thank my advisor, Prof. Jingke Li, for many long

hours he spent discussing issues of this work with me. Without his careful guidance

and insights this thesis would not have been possible. I also thank the members of my

thesis committee, Prof. Andrew Tolmach, Prof. Michael Driscoll, and Prof. Bradford

Crain, for their very helpful comments and careful reading. Finally, I would like to

thank the tutors of the computer science department for their help on LATEX and

system-related questions.

This work was supported in part by a National Science Foundation grant ASC-

9123141.

Contents

List of Figures

1 Introduction
1.1 Distributed-Memory Multicomputers
1.2 Data-Parallel Languages
1.3 Translation of Array Statements . .
1.4 Handling the Communication
1.5 Outline of the Thesis

2 Problem Formulation
2.1 Platform

2.1.1 Network Routing
2.1.2 Link Contention and Network Switching
2.1.3 Communication Model
2.1.4 Synchronization

2.2 Language Parameters . . .
2.2.1 Array Operations . .
2.2.2 Data Distribution .

3 Scheduling Solutions for Identical Alignments
3.1 Identical Block-Distributions

3.1.1 Communication Pattern ...
3.1.2 Establishing a Lower Bound ..
3.1.3 Diagonal Scheduling Scheme .
3.1.4 Avoiding Node Contention

3.2 Regular Block-Distributions
3.2.l Communication Pattern
3.2.2 Extended Diagonal Scheduling Scheme
3.2.3 Scheduling Algorithm
3.2.4 Region Communication Subroutine

3.3 Arbitrary Block-Distributions .
3.3.1 Communication Pattern
3.3.2 Initial and Final Shifts
3.3.3 Applying the Extended Diagonal Scheduling Scheme

11

lV

1
1
2
3
4
6

7
7
7
8
9
9

11
11
12

14
14
15
16
17
20
21
22
23
27
28
34
35
37
40

3.3.4 General Scheduling Algorithm

4 Scheduling Solutions for Transposed Alignments
4.1 Identical Distributions

4.1.1 Finding a Tight Lower Bound
4.1.2 Deriving an Optimal Scheduling Algorithm .

4.2 Arbitrary Block-Distributions
4.2.1 Grouping Base Patterns into Regions
4.2.2 Communication Subroutine

5 Simulation Results for Wormhole Routed Networks
5.1 The Simulator
5.2 Identical Alignment

5.2.1 Results for Identical Block-Distributions
5.2.2 Results for Regular Block-Distributions .
5.2.3 Results for General Block-Distributions ...

5.3 Transposed Alignment

6 Conclusion
6.1 Summary
6.2 Related Work
6.3 Future Work

A Proofs of the Theorems
A.l Proof of Theorem 1
A.2 Proof of Theorem 2 ..
A.3 Proof of Theorem 3 ..
A.4 Proof of Theorem 4 . .

B The WARP Simulator

Bibliography

lll

43

46
46
47
50
51
52
53

54
54
55
55
58
61
62

64
64
65
66

68
68
69
70
71

73

76

lV

List of Figures

1.1 4 x 4 mesh network. 2

2.1 Two-dimensional block-distribution. 12

3.1 Shift of the array section A(O : 1, 0 : 4 : 2) to B(3 : 4, 3 : 5). 16
3.2 Step 1 of 3 of the collision free shift from Figure 3.14. 17
3.3 Shift with a smaller offset. 19
3.4 Avoiding both link and node contention, by adjusting the section size. 21
3.5 Transfer of the array section A(0:7) to B(6:20:2). 22
3.6 Communication pattern of a regular transfer for each of the four cases. 23
3. 7 Generalizing the diagonal scheme. 24
3.8 Scatter/scatter, gather/gather, scatter/gather, and gather/scatter. . 24
3.9 Partitioning arrays into sections of nodes that require a common link. 26
3.10 One-to-one transfer of a region. 29
3.11 Local gather/scatter transfer of a region. 32
3.12 One-to-one and the local transfers applied on a 4 -t 2 pattern. 34
3.13 Hybrid solutions for a 4 -t 2 transfer. 35
3.14 Communication pattern for the transfer of a lD array section. 37
3.15 Communication pattern for the transfer of a 2D array section. 38
3.16 Initial shift applied to the example from Figure 3.14. 39
3.17 Smallest and largest base communication patterns possible. 40
3.18 Examples of general transfers. 42
3.19 One-to-one transfer of a region with varying base pattern sizes. . . . 44
3.20 Local transfer of a region with varying base pattern sizes. 44

4.1 Transposition of 3 x 2 nodes with offset (3,3). 47
4.2 Conflicting sets of nodes for a transposition. 48
4.3 Four critical channels with the corresponding sets of nodes. 48
4.4 Obtaining Scmax from the parameters Nr, Ne, r and c. 49
4.5 Links available for base patterns. 52
4.6 Combining base patterns for transpose operations. 52
4. 7 Determining the size of the largest section in each direction. 53

5.1 Simulation results for shifts.
5.2 Transmission dynamics for a shift
5.3 Simulation configuration for regular transfers.
5.4 Simulation results for regular transfers.

56
57
58
59

5.5 Simulation results for general transfers.
5.6 Simulation results for transpositions.

A.I Definition of offset.

B.l Transmission dynamics of four messages in the network.
B.2 WARP's module tree

v

61
63

71

74
74

1

Chapter 1

Introduction

Massively Parallel Processing (MPP) techniques have advanced rapidly in recent

years, as witnessed by the emergence of new systems such as the TMC CM5, the

Intel Paragon, the Cray T3D, the IBM SP-2, and the SGI Power Challenge. These

systems all have powerful processors, large storage space, and fast communication

hardware, providing the required high performance for computationally intensive sci

entific and engineering applications. MPP systems promise to achieve computational

power that exceeds the performance of traditional vector-supercomputers by several

orders of magnitude. However, there are some obstacles for applying MPP systems:

programming these machines is extremely difficult and there is a lack of software

tools that simplify the programming while using the immense raw computational

power efficiently.

1.1 Distributed-Memory Multicomputers

Figure 1.1 shows an example of a 2D mesh parallel architecture, which is the focus

of this thesis. The circles represent the processors with their local memory. These

units are called nodes. Each of these nodes executes a program which is stored locally.

The programs can be identical on each node, but, the data processed is different. This

category of multicomputers is also called MIMD (Multiple Instruction Multiple Data).

Results of local computations can be exchanged via the interconnection network

using the message-passing approach. A node can send data along with the destination

node's location to an attached communication unit, called router. A message path

IJ(

~ 2
.5
c e ::s
8 3

4

row index

2 3 4

Figure 1.1: 4 x 4 mesh network.

2

is established and the data is sent to the destination node's router from where it is

forwarded to the local memory.

1.2 Data-Parallel Languages

Data-parallel languages such as Fortran 90 and High Performance Fortran (HPF)[4,

15, 29] greatly simplify programming on MPP systems and are widely seen as an ef

fective means for developing portable application programs. A major feature of these

languages is the array operation, in which an element-wise operation o over whole

arrays or array sections is specified simply as Ao B or A(l:h:s) o B(l':h':s') if the array

section notation (see Chapter 2) is used. With these expressions, array-based parallel

algorithms can be expressed clearly and concisely. The following Fortran 90 example

demonstrates the use of array sections:

program matrix

integer, dimension(lOOO, 1000) :: a, b

integer, dimension(lOOO) :: c

a= (a+b)*2

c = a(2, :)

stop

end program

3

The simple statement a= (a+ b) * 2 adds two matrices and multiplies the resulting

matrix by two. The second statement copies the second column 1 of matrix a to the

vector c. Due to the array operations, the programming style is closer to the code

for single processor systems. Programmers do not have to worry about where the

arrays are located and how they are distributed across the processors. No explicit

send and receive statements are necessary, decoupling the program from the architec

ture. Compilers can generate different code with different message-passing steps for

specific topologies. The lack of portability has been a great problem for many parallel

applications. Array operations, make programs easier to read, and more importantly,

easier to compile for parallel execution.

1.3 Translation of Array Statements

When a data-parallel program is compiled to an MPP system, the data arrays

in the program are often decomposed and distributed over the system's distributed

memory modules. Several languages provide the programmer with directives for spec

ifying the array alignment and distribution; others rely on the compiler to do the job.

Due to the data distribution, array elements involved in an array operation may

be scattered over different locations. To perform the operation, corresponding ele

ments must be brought together to the same processor, resulting in data movement

across the interconnection network. An analysis shows that even with very regular

1Fortran 90 represents matrices in column major order. In this thesis, row indices precede column
indices.

4

data alignment and distribution, a simple array operation can induce very complex

communication patterns.

Assume the array A in the example above is distributed evenly over 10 x 10 pro

cessors, each holding a submatrix of size 100 x 100. When the target program is

generated the compiler generates code on node (r, c) for the statement a= (a+ b) * 2,

which corresponds to:

for i = 0 to 99

for j = 0 to 99

a(r·lOO+i, c·lOO+j) = (a(r·lOO+i, c·lOO+j)+b(r·lOO+i, c·100+j))·2

end for

end for

The compiler must make sure that before this code is executed on node (r, c), the

corresponding data of array b (i.e. all elements with indices from 100 · r to 100 · r + 99

and 100 · c to 100 · c + 99) is available on the node. If this is not the case, the compiler

must (1) identify the array elements involved in the operation, (2) determine the

required communication, and (3) generate the appropriate code that will send the

messages when the program is executed on a parallel machine. This is the place

where the communication algorithms presented in this thesis are applicable.

Some communication can be avoided if programmers use a clever data distribution.

However, similar to programming parallel computers, this process is very difficult.

Since the main purpose of data-parallel languages is to provide simple and user

friendly environment for programming parallel computers, the scheduling algorithms

should be prepared to transfer data between arrays with arbitrary data distribution

parameters.

1.4 Handling the Communication

A simple approach for handling communication induced by an array operation

(or by any statement in a program) is to generate messages for bringing the data

from the sources to their destinations directly, without evaluating the communication

5

pattern. This method is called asynchronous or unscheduled transfer. As observed by

many users of MPP systems, a large number of unorchestrated concurrent messages

can cause high levels of resource contention, message blockage, buffer overflow, and

even deadlock [14]. To rectify this, many data-parallel language compilers perform

communication optimizations, including the identification of special collective com

munication patterns such as broadcast, multicast, and reduction[19, 25, 27], which

are either one-to-many or many-to-one patterns. The analysis of the communica

tion induced by array operations in Chapters 3 and 4 will show that this type of

communication does not fall into these categories.

For arbitrary and totally unstructured communication patterns, an alternative

approach is to analyze and schedule the message flow. The goal is to optimize the

usage of the limited network resources. A typical scheduling algorithm decomposes a

complex pattern into simpler patterns and carries them out in separate steps. Efficient

implementation of collective communication is an example of this approach[14, 20, 31].

In this thesis, the problem of optimizing communication induced by array opera

tions is studied and distributed, dynamic scheduling algorithms for these communi

cation patterns are proposed. The algorithms have several distinct features: (1) they

produce message-passing steps which are link contention-free, and in many cases,

the schedules can be proven to be optimal with respect to the number of message

transmission steps; (2) no global information exchange is required at runtime, thus

they incur little overhead; (3) they derive a message-passing schedule from array

distribution and array operation statements, hence they are suitable to be used by

compilers and in libraries. If all parameters are constants, then the algorithms are

executed at compile-time. The generated schedule is then hard-wired in the program

code with statements like:

send message 3 in step 5

If some parameters, for example the array section stride, is variable and only known

at run-time, then the compiler places a call to the scheduling algorithm in the code.

The algorithm then determines the schedule at run-time with low software overhead.

(4) The algorithms have a modular structure, allowing convenient fine-tuning for spe

cific interconnection networks. A simulation study for a wormhole-routed network

6

was conducted, showing that there is a significant performance improvement by using

scheduled messages.

1.5 Outline of the Thesis

In Chapter 2, a description of the supported hardware platform is given. Fur

thermore, array operations and possible data alignments on processor networks are

explained in detail.

With this information, the communication induced by array operations can be

examined. This is done in Chapter 3. At first, strong restrictions are imposed in

order to obtain easy scheduling solutions. Then step by step, more general cases are

solved by extending the algorithms for the restricted cases. For each phase, simulation

results are presented that evaluate both the scheduling solutions and the unscheduled

transfer, demonstrating the effects of link-contention.

Chapter 4 briefly describes how the results from Chapter 3 are used to extend the

scheduling algorithms to transfers between arrays with transposed alignments.

Several simulations results for the different cases and comparisons to the unsched

uled transfer are presented in Chapter 5. This also includes a detailed analysis of

some worst case examples that occur during an unscheduled transfer.

A summary of the results and possible future research is given in Chapter 6.

7

Chapter 2

Problem Formulation

This chapter defines the hardware platform and the data distribution of data

parallel languages across the processors.

2.1 Platform

This study considers mesh networks, where the nodes are arranged in a matrix.

Each interior node is connected to four neighbors; the border nodes are connected

to two or three neighbors (Figure 1.1). Each connection between neighboring nodes

consists of two channels that can be used simultaneously: one transports messages

from left to right, the other one from right to left. The analogous statement can be

made for the vertical connections.

The network is assumed to be a multiport architecture, which means that nodes

can send and receive messages at the same time. For our algorithms, however, it is

only necessary that a node can send and receive one pair of messages concurrently.

If this is not the case, the algorithms are still applicable but will not be as effective

(see Section 2.1.4).

2.1.1 Network Routing

The routing algorithm defines how messages are propagated through the intercon

nection network from the sending node to the destination node. It is assumed that the

underlying network uses dimension-ordered routing. With dimension-ordered routing,

a message travels continuously in one dimension of the network, then switches to an-

8

other dimension. For 2D mesh networks, dimension-ordered routing means either

X-Y routing (traveling in the X (horizontal) dimension first, then in the Y (vertical)

dimension) or Y-X routing (the opposite). As indicated in Figure 1.1, the algorithms

will be presented with respect to X-Y routing, but they can be easily converted for

Y-X routing networks by exchanging the row and column indices in the scheduling

sequence.

2.1.2 Link Contention and Network Switching

This section explains how the message path is established. Since not every pair

of nodes has a unique connection, channels are used by several different nodes. This

can cause conflicts if two messages request a channel at the same time. The way this

link-contention is resolved depends on the switching strategy. Virtual cut-through,

circuit switching, and wormhole routing[24, 32] are considered.

Circuit switching tries to establish the complete path to the destination before

sending the message. If several nodes try to occupy the same channel, only one

succeeds. The other nodes have to retreat and retry. Heavy contention in the network

causes nodes to retreat several times before they are able to send the message, causing

significant overhead.

Virtual cut-through works similarly to circuit switching. However, if a required

channel is occupied, the message gets buffered at the node adjacent to the busy

channel until it is released. Depending on the size of the message and the start-up

latency, frequent buffering causes large overheads.

Wormhole routing partitions a message into fixed size packets. Those packets are

then sent sequentially along the path to the destination node. When a message worm

requests a channel that is already in use, the worm blocks. It remains in the network,

holding all the channels that it has acquired. These channels then remain blocked for

other worms without actually being used for message transmission. In Figure 1.1 the

message from node (2, 1) is blocked because it requests the channel from node (2, 2)

9

to node (2, 3). Note that the other two messages do not conflict even though their

paths cross each other.

All of these switching strategies in some way exploit the benefits of pipelining,

which makes them superior to the store-and-forward strategy. The difference lies in

the conflict resolution. Wormhole routing has become the most popular among this

class of strategies since it allows useful extensions such as virtual channels[lO]. Most

of the recent MPP systems use the wormhole routing strategy and therefore, this

thesis reports simulations on networks with this strategy to evaluate the scheduling

algorithms.

2.1.3 Communication Model

A simple model is used, which assumes the time to send a message of L units to

be: a+ L{3. Wormhole-routing, virtual cut-through, and circuit switching transfer

the data in a pipelined fashion through the connection network. The elapsed time

from the source node's request to send a message to the arrival of the first data

elements at the destination node is described as the start-up cost (latency) a. Due

to the pipelined transfer, the distance between the nodes has no major effect on the

total transfer time unless the message is very small. In this context, (3 is defined as

the time to send one data unit across the network. This is the reciprocal bandwidth.

Thus, (3 depends on both the channel bandwidth and the definition of the data unit.

2.1.4 Synchronization

Some kind of step synchronization must be available in the network, so that all

processors can execute statements of the form

if step = i then ...

guaranteeing that messages transmitted at time i - 1 are no longer in the network,

unless they were blocked.

It is important to note that any kind of scheduling scheme needs the notion of

steps; otherwise there is only the possibility of sending unsynchronized messages with

10

the chance of network contention. Some MPP systems support efficient synchroniza

tion, which enables them to obtain the full advantage of communication scheduling.

For example, both the Cray T3D and the TMC CM-5 have specialized hardware for

supporting synchronization(7, 26]. Recently, Hall[16, 17, 18] has shown the design and

implementation of a simple secondary coordination processor system which can be

attached to an MPP system to speed up synchronization and other global operations.

For systems that rely on regular message-passing for synchronization, however, the

benefit of communication scheduling will be reduced by the cost of synchronization.

The duration of one synchronized step depends on the amount of data transferred.

When large messages are synchronized, then the relative cost of synchronization is

comparably small, even if message-passing is used.

Besides the implementational cost of synchronisation, there is also an overhead

involved if the messages sent during one step have different transmission times. This

can be caused by non-uniform message sizes, different start-up latencies due to varying

path lengths, or node contention. Messages from the next step always have to wait

until all messages have left the network. Therefore, if the maximum transmission time

is much longer than the average time, sending synchronized messages is less effective

compared to the asynchronous case.

This thesis shows, that in our setting, almost all messages are of the same size. Fur

thermore, for data-parallel applications, it is likely that large arrays are distributed

over the processors, causing large messages to be sent. Thus, varying start-up la

tencies do not have a significant impact on the transmission times. Finally, node

contention can have an impact on single-port architectures. In Section 3.1.4, some

ideas to handle the problem with this architecture are presented.

11

2.2 Language Parameters

2.2.1 Array Operations

The triplet notation A(l:h:s) allows convenient denotation for a subset of A, called

array section:

A(l: h: s) = {A(l +is): 0 :5 i :5 (h - l)/s, s > O}

The triplet consists of the lower-bound, the upper-bound, and the stride of the array

section (the stride can be omitted if it is 1). The upper-bound h is normalized so

that h = l +is holds for some integer i.

Consider array operations of the following forms:

A(l:h:s) o B(l':h':s')

A(lr:hr:Sr,lc:hc:sc) O B(l~:h~:s~,l~:h~:s~)

(2.1)

(2.2)

A(l: h: s) and B(l': h': s') are two conforming array sections (one-dimensional), and

so are A(lr:hr:sr,lc:hc:sc) and B(l~:h~:s~,l~:h~:s~) (two-dimensional). o represents

an element-wise operation.

The two expressions (2.1) and (2.2) specify element-wise operations on the cor

responding (at the same relative position in the sections) elements of two array sec

tions. Without loss of generality, it is assumed that the computation takes place at

the location of the second operand, i.e. on the processors where B's section resides. 1

Therefore, A's section must be transferred to the locations of B's section (if it is not

already there). 2

1Computation location for an array operation can be optimized using approaches such as de
scribed in [6). Once the location is determined, the scheduling algorithms are applicable.

2Solutions for the transfer of an array section can also be applied to implement the redi8tribute
command, which changes the distribution of an array.

12

II P-,o II P-,1 II P-,2 II
0,0 ... 0,9 0,10 . .. 0,19 0,20 . .. 0,29

Po,-
3,0 ... 3,9 3, 10 . .. 3,19 3,20 . .. 3,29
4,0 ... 4,9 4,10 . .. 4,19 4,20 . .. 4,29

P1,-
7,0 ... 7,9 7,10 . .. 7,19 7,20 . .. 7,29
8,0 ... 8,9 8,10 . .. 8,19 8,20 . .. 8,29

P2,-
11,0 ... 11, 9 11, 10 ... 11, 19 11,20 . .. 11,29
12,0 ... 12,9 12,10 . .. 12,19 12,20 . .. 12,29

P3,-
15,0 ... 15,9 15,10 . .. 15,19 15,20 . .. 15,29

Figure 2.1: Two-dimensional block-distribution. Each node of the 4 x 3 grid holds a
4 x 10 subarray.

2.2.2 Data Distribution

Block-Distributions

In a block-distribution, an array is distributed over p processors each storing one

block of k consecutive data elements. k is the blocksize of the distribution. If the

array has n elements, then the following condition holds: n =pk. The function 'P(i)

describes the location of the processor holding A(i). It is defined as:

'P (i) = i div k

If two-dimensional arrays are distributed across a processor mesh, then the distribu

tion must be specified for each dimension. The parameters for the row and column

distribution are (Pr, kr) and (pc, kc)· Figure 2.1 shows the layout of the array across

the processors. The functions 'Pr(i) and 'Pc(i) are defined as 'P(i)lk=k,. and 'P(i)lk=kc·

All parameters or functions referring to the destination array section are marked with

prime. For example P;(i) is defined as 'P(i) lk=k~ and returns the row-index of the

processor holding B (i).

The only assumption on Equations 2.1 and 2.2 is that the stride cannot be larger

13

than the blocksize. This guarantees that at least one section element is located on

each node.

Two Level Mappings

In a two-level mapping, an auxiliary cartesian grid called template is used. Arrays

are aligned to templates, and templates are distributed across the processors. This

allows one to define an additional offset a and stride b for the mapping of the templates

to the processor. If A is aligned with a two-level mapping, then A(l:h:s) generates the

same distribution as A(a +lb: a+ hb: sb) with A mapped directly to the processors.

Due to this observation, the algorithms can be applied to two-level mappings as well.

Dimension Alignment

Two-dimensional arrays can be aligned to the processor grid in two ways: array

rows to processor rows or array rows to processor columns. Chapter 3 deals with

the transfer between arrays that have the same dimension alignment and Chapter 4

presents solutions for the other case.

Chapter 3

Scheduling Solutions for Identical

Alignments

14

The following three sections cover transfers between block-distributed array sec

tions with identical dimension alignment. The problem is split into three difficulty

levels. The transfer subclass of shifts is analyzed in Section 3.1. In a shift operation,

each source node sends out a single message to its destination. This approach is

generalized to regular transfers in Section 3.2. Rather than single source destination

pairs, groups of nodes perform an all-to-all communication during a regular transfer.

Finally all restrictions are dropped in Section 3.3, which deals with transfers between

arbitrary block-distributions. Note that shifts are a subset of regular transfers, which

in them are a subset of transfers between arbitrarily block-distributed array sections.

Thus, the more general scheduling algorithms will still work for the special cases.

3.1 Identical Block-Distributions

First, we define regular array sections. They have the property that all nodes,

including those holding the first and last section element, store the same number of

data elements.

Definition With respect to a (p, k) block-distribution, an array section A(l: h: s)

is regular if (l mod k = (h + s) mod k < s) and (slk).

15

If an array A is distributed with four elements per node (k = 4), then A(l : 11 : 2)

processor 0 processor 1 processor 2
0 1 2 3 4 5 6 7 8 9 10 11

is a regular section. Two divides four and therefore, k/ s = 4/2 = 2 elements are

located on each node. The conditions 1 mod 4 = 1 < 2 and {11 + 2) mod 4 = 1 < 2

make sure that this statement is true for the first and last processors, too. The array

section A(3 : 11 : 2)

processor 0 processor 1 processor 2
0 1 2 3 4 5 6 7 8 9 10 11

is not regular, because 3 mod 4 = 3 f:. 2. This indicates that the block of the first

processor contains only one element. Array section A(2: 11 : 3)

processor 0 processor 1 processor 2
0 1 2 3 4 5 6 7 8 9 10 11

is not regular either, because three does not divide four, so that some processors hold

l k/ s J = 1 element whereas others store rk/ s l = 2.

In this section the easiest form of array section transfers, the shift, is presented:

Definition A transfer of a 1-dimensional regular array section A(l: h: s) to another

regular array section B (l': h': s') is called a shift if k / s = k' / s', which means that all

nodes holding part of either array section store the same number of data elements.

For 2-dimensional array sections, a transfer is called shift if the transfers in both

dimensions are shifts and the arrays are aligned in the same way.

3.1.1 Communication Pattern

Given the locations of the nodes holding the upper left (A(lr, le)) and lower right

{A(hr, he)) array elements, it can be deduced that Nr x Ne source nodes perform the

shift, where:

Nr = Pr(hr) - Pr(lr) + 1, Ne= Pe(he) - Pe(le)+ 1 (3.1)

16

The destination processor grid is of the same size since the same number of data

elements is stored on both the source and the destination nodes: N; x N: = Nr x Ne.
As illustrated in Figure 3.1, each node sends out one message to one destination at

the same relative position in the destination grid. The shifting offset is:

P;(l~) - Pr(lr) vertically and P~(l~) - Pc(le) horizontally.

- ~

A(O,O): A(0,2): A(0,4): ... , ... ~ "" A(l,Q): A(l,2): A(l ,4) \ \ \ --- --- --- \
~ ~ - ~

-........ ,8(3,3)""""' ~ 8(3,4) " '8(3,5)
8(4,3) 8(4,4) 8(4,5)

Figure 3.1: Shift of the array section A(O : 1, 0 : 4 : 2) to B(3 : 4, 3 : 5). All blocksizes
are one except for kc = 2. The shifting offset is (3, 3).

The following method is used to develop an optimal algorithm: first, the communi

cation bottlenecks are identified. Then lower bounds for the number of communication

steps needed are established by counting the messages that have to (sequentially)

pass the bottlenecks. The source nodes of messages that get routed through the

same bottleneck are combined into conflicting sets. Finally, a scheduling algorithm is

developed, which assures that nodes out of the same conflicting set never send their

messages in the same step. This algorithm guarantees contention-free communication

in the network.

3.1.2 Establishing a Lower Bound

At first, the case in which the source area and destination area do not overlap is

considered. This can be characterized by the conditions

IP;(z~) - Pr(lr)I ~ Nr and IP~(l~) - Pc(le) I ~Ne

indicating that the shifting offset in each dimension is larger than the number of

source nodes.


~~~~~~f.~1~~~~~ . . . . . . . . . 
-m I j .... ; ..... : 

: : : : LJ t . :····::·····:·····:· ....... ····:·····: 
:verucal bQttle~k / : : . ' . . :· ... ·:· ... ·:· ... ·:· .. . . . . 
I I I t 

. . . 

·-0·· 
·-0·· 

:·····!·····:·····:·····:·····:·····:·····: 
I I I I I t I f 

t I I I t t I t 
f I I I I t I I 

• ..... • ........... • ........... • ..... • ..... . 

17 

Figure 3.2: Step 1 of 3 of the collision free shift from Figure 3.14. Sending the 
diagonals concurrently avoids contention in the network while allowing maximum 
parallelism for the transmission. 

In the example shown in Figure 3.2, the data located at the six nodes in the top 

left corner are shifted. Every message travels 3 columns and 3 rows. All the messages 

sent from nodes in the first row use the channel marked "horizontal bottleneck,'' 

according to the X-Y routing algorithm. Since each channel can only allow one 

message to pass in each step, the three messages from the first row must go through 

the horizontal bottleneck sequentially. In the same way, the messages from the nodes 

in the first column get routed through the channel marked "vertical bottleneck.'' 

Similar bottlenecks exist for the other rows and columns. 

For each bottleneck channel, a conflicting set is defined, which consists of nodes 

whose messages must go through the channel. The cardinality of the largest conflict

ing set hence is a lower bound for the number of transmission steps. 

As illustrated in Figure 3.2, the source nodes belonging to the same row form a 

conflicting set; so do the nodes belonging to the same column. Therefore, a lower 

bound for the number of steps required for the transmission is max(Nr,Nc)· 

3.1.3 Diagonal Scheduling Scheme 

Any communication schedule that matches a lower bound is optimal. One such 

schedule is proposed here. Consider the nodes on a diagonal line. They each belong 



18 

to a different row, hence their messages do not share any horizontal channels. In 

addition they each belong to a different column, which implies that the destinations 

also belong to a different column. Therefore, the messages from a diagonal line do 

not share any column channels either. 

The following scheduling algorithm decomposes the source nodes into max(N,., Ne) 

diagonal sets, and transfers the data in an optimal number of steps (row and col are 

my row and column IDs): 

forall (source nodes) in parallel do 

if col - row + 1 ~ 0 

send my message to destination in step col - row+ 1 + max(N,., Ne) 

else 

send my message to destination in step col - row + 1 

end if 

end forall 

This strategy invokes the sending order shown in Figure 3.2, with a total of three 

steps. 

In general, the source area and the destination area may overlap. Figure 3.3 shows 

the shifting of 3 x 5 source nodes by an offset of 2 rows and 3 columns. The lower-right 

part of the source area overlaps with the upper-left part of the destination. Message 

traffic increases in the overlapped area because the nodes there have double identities: 

they are both senders and receivers. 

However, contrary to the intuition that increased message traffic would increase 

communication delay, the cost of shifting can actually be reduced if there is overlap. 

As illustrated in Figure 3.3a, messages from sources that are two rows or three columns 

apart do not conflict. 

With this observation and the diagonal scheduling approach, the following strat

egy to handle the general shifts is derived: divide the source nodes into sections 

of size IP;(l~) - 'P,.(l,.)I x l'P~(l~) - 'Pe(le)I (assuming IP;(l~) - 'P,.(l,.)I ~ N,. and 

l'P~(l~) - 'Pe(le) I ~ Ne) and then use the diagonal scheduling approach developed 

for the simple case on the sections (Figure 3.3b ). The sections of size 2 x 3 are visu-



(a) 

·O 
0 

·O 

(b) 

19 

·O 

Figure 3.3: Shift with a smaller offset. The scheme from Figure 3.2 is applied on the 
grid of 2 x 3 submatrices in parallel. Step 1 out of 3. 

alized by the solid lines. In general, the size of each section is max(l, min ( 11';( l~) -

1'r(lr)l,Afr) X max(l, min(l1'~(l~)-1'c(lc)l,Afc) since it is bounded by the minimal size 

one and the total number of source nodes in the row or column. If the source and the 

destination area do not overlap, then only one section covers all source nodes yielding 

the scheduling order described in the beginning of this section. For the convenience 

of presentation, the notation [ x J: is introduced: 

[x]b = \: 

and define the section sizes 

if x <a 

if a$ x $ b 

if b < x 

(3.2) 

sec_ver = [IP;(l~) -1'r(lr)l]lr,., sec..hor = [IP~(l~) -1'c(lc)IJ1rc (3.3) 

Algorithm 1 implements the strategy described above. It is to be run by every 

processor in a distributed manner. The for loop goes through all the communication 

steps with the sending condition triggering the node's message transfer. 

Theorem 1 Algorithm 1 shifts the data of NrxAfc source nodes in max(sec_ver, sec..hor) 

link-contention-free steps, which is optimal. 



20 

Algorithm 1 (Diagonal Scheduling Scheme on Sections) 
Scheduling algori.thm for shifts. The two parameters row and col denote the node's 
location in the network 

Main Program 
if this_node is a source node 

determine sec_ver and sec...bor 
section_row = (row - 'P,. ( l,.)) mod sec_ ver 
section_col = (col - 'Pc( le)) mod sec...bor 
diagonaLnum = section_row - section_col + 1 
if diagonaLnum ~ 0 

/*use Equation 9.9 */ 
/* determine * / 
/*relative position */ 

diagonaLnum = diagonaLnum + max(sec_ver, sec...bor) 
end if 
for step = 1 to max(sec_ver, sec...bor) /*steps needed */ 

if step = diagonaLnum /* send condition * / 
send_message_to( row+ 'P; ( l~) - 'P,. ( lr), col+ 'P~( l~) - 'Pc( le)) 

end if 
end for 

end if 
end Main 

Proof: See appendix. 

3.1.4 Avoiding Node Contention 

For Algorithm 1 it was assumed, that concurrent sending and receiving at a node 

does not cause any delay. On some architectures however, the layout of the router 

does not support this feature. In those cases node contention might cause some 

overhead [42]. 

We present an idea on how to modify Algorithm 1 so that it avoids both link and 

node contention without any additional overhead. Algorithm 1 divides the source 

nodes into smaller sections of size sec_ver x sec...bor and transmits all messages in 

max(sec_ver, sec...bor) steps. In case sec_ver =f sec...bor, the matrix can be divided into 

square sections of size max(s~c-·ver, sec...bor) x max(sec_ver, sec...bor) without requiring 

additional steps. Using this different section avoids node contention, because inside a 

section the diagonal sending is no longer the diagonal receiving. Figure 3.4 shows the 



21 

example from Figure 3.3 with a section size of 3 x 3 rather than 2 x 3. The node in 

the top left corner of the destination area does not send a message with the adjusted 

section size. In both examples, three steps are needed to complete the shift. 

0 • u I ti) ,. I I i 

O· O· • I ( ) (I) .. 

00 

Figure 3.4: Avoiding both link and node contention, by adjusting the section size. 
The example from Figure 3.3 has a modified section size of 3 x 3. Step 1 out of 3. 

If (sec_ver = secJ10r), then the section must be changed to (sec_ver+ 1 x sec_ver). 

This requires an extra step as well as the case, where sec_ver = 0 or sec.Jior = 0. 

In those cases the section sizes are set to (1 x sec...hor + 1) and (sec_ver + 1 x 1) 

respectively. 

3.2 Regular Block-Distributions 

This section extends the results from the previous section to regular transfers, 

where nodes can have more than one source or destination. 

Definition A transfer of a regular array section A( l : h: s) to another regular array 

section B(l': h': s') is called a regular transfer, if one section's data elements per node 

is a multiple of the other's ( (k/ s) l(k' / s') or (k' / s')l(k/ s) ). 



22 

Figure 3.5: Transfer of the array section A(0:7) to B(6:20:2). A and B are distributed 
with block-sizes 4 and 2. Each source node must send messages to a cluster of C' = 4 
destination nodes. 

3.2.1 Communication Pattern 

For regular transfers, each source node holds k/ s data elements and each destina

tion node holds k' / s' elements. The induced communication falls into two cases: (1) 

if k/ s ~ k' / s', then each source node scatters its data to k~7;, adjacent destination 

nodes (Figure 3.5); (2) if k/s < k'/s', then the data from k~7;' source nodes is gathered 

to a single destination node. In other words, a lD regular array operation induces 

either a collection of 1 ~ k~7;, communication patterns or a collection of k~7:' ~ 1 

communication patterns. These patterns are called base communication patterns for 

the array operation. With 

k' / s' , k/ s 
c = r k/ s 1 and c = r k' Is' l (3.4) 

the two base communication patterns for the lD array operation can both be repre

sented as C ~ C'. In Figure 3.5, for example, the pattern is rWil ~ r$1 = 1 ~ 4. 

The communication pattern induced by a 2D array operation is basically a com

position of two lD communication patterns, one for each dimension. Consequently, 

there are four basic communication patterns: 

• scatter/scatter (1 x 1 ~ le,,./•.,. x kc/•c) 
le!,./•~ k~f·~ 

• scatter/gather (1 x ~ ~ ~/•.,. x 1) 
kc/le le!,./ 1~ 

• gather/scatter (k~/·~ x 1~1 x kc/•c) 
lr,,,./1.,. k~f ·~ 

• gather/gather (~7;: x ::7:: ~ 1 x 1) 



23 

(a) scatter/scatter and gather/gather (b) scatter/gather and gather/scatter ....___... _ _, 

Figure 3.6: Communication pattern of a regular transfer for each of the four cases. 
The squares represent nodes and solid lines mark source and destination nodes of a 
base pattern that communicate exclusively with each other. The processors on the 
left in Figure (a) hold six times as much data of the array section as the processors 
on the right, resulting in a 1 x 1 +-+ 2 x 3 pattern. In Figure (b) the left nodes have 
three times the elements vertically and half of the elements horizontally compared to 
the right nodes. The later distributions yield a 1 x 2 +-+ 3 x 1 pattern. 

Figure 3.6 illustrates these cases. Extending the notation in (3.4) to row and column 

parameters, it is possible to represent all four basic patterns with one formula: n x 

C--+ 'R' x C', where: 

k, /s' - r_r ___ r_ 1, 
n - kr/sr 

'R,1 = rkr/ Sr 
k'/s' l, r r 

c = rk~/s~l 
kc/Sc ' 

kc/Scl 
C' = f k~/s~ 

3.2.2 Extended Diagonal Scheduling Scheme 

(3.5) 

With the information about the communication pattern derived in the previous 

section, the message traffic on a mesh network can be analyzed and scheduled by 

simply extending the concept presented in Section 3.1. Figure 3. 7 shows how to 

generalize the diagonal scheme from single nodes to regions of nodes for handling 

array section operations. The size of the source and destination regions is set to 

'R · C' x C ·'Rand 'R' · C' x C' · 'R (explained below). The following text shows that, 

similarly to the single-element case, regions located on a "diagonal line" can send 

out messages concurrently, which are guaranteed to be collision-free since the regions 

consist of base patterns with disjoint destinations. 



:Q - H I 

(a) 

:o 
:o. 0: 

~ 0 
e 
§ 

"60 

e -

24 

0 1 2 :O:O· 
region-column 

(b) 

Figure 3.7: Figure (a) shows the first of three steps of the single element case. Mes
sages of nodes from different rows or columns do not conflict. In Figure (b) this 
diagonal scheme is generalized to the case where the source nodes become regions 
of four nodes (solid boxes) performing two 1 x 2 base patterns (dotted lines). Two 
base patterns are grouped into regions in order to have two links in each dimension. 
Again, messages sent from regions (solid boxes) from different rows and columns do 
not conflict. Thus, the diagonal scheme is applied to regions rather than single nodes. 

1l =4 ., ~ 
' . . 
' . . 
! .... . .... ! ................... . 

Figure 3.8: The dotted lines show the links available for scatter/scatter, 
gather/gather, scatter/gather, and gather/scatter (left to right). 

Regions In Section 3.2.1, the four base communication patterns for a 2D array 

operation were represented by the single formula 'R x C -+ 'R' x C'. Since X-Y routing 

is used, for a basic communication pattern, there are 'R horizontal links and C' vertical 

links available for its data transfer (Figure 3.8). Potentially, min('R, C') messages can 

be transferred concurrently without collision. However, if 'R :j:. C', then some links 

will be wasted. Figure 3. 7b shows the induced communication pattern from a 2D 

array operation, where the base communication pattern is 2 x 1 -+ 1 x 1. Since 

C' = 1, one base pattern by itself would not allow any concurrent message transfer 

and would always leave one of the two horizontal links unused. 

In order to achieve optimal link utilization, the same number of links should be 



25 

available in both horizontal and vertical dimensions for a concurrent communication 

step. This can be accomplished by grouping C' x 1?.. adjacent base patterns into a 

region. 1 

The extended communication pattern becomes n · C' x C · n ~ n' · C' x C' · n and 

it has C''R links in both dimensions. Section 3.2.4 shows how an optimal number of 

C''R non-conflicting messages can be sent in parallel using all available links. 

Sections As pointed out earlier, in the single element case, nodes can be grouped 

into sections to allow more messages to be transferred concurrently (Figure 3.3). In 

applying this scheme to the array case, where many-to-many rather than one-to

one communication is used, it is not sufficient to consider just the shift offset. In 

Figure 3.9a there is no additional horizontal offset involved. Sections are established 

by determining the nodes requiring a common link. The two right-most source nodes 

need the link to their right. The second source node is not included since it does not 

require that link for data transfer. This is continued until all nodes are classified. 

In Figure 3.9b the situation is different since the source of the base pattern is 

larger than 1 x 1. The five right-most nodes in each source row must utilize the link 

to the left of them. Those nodes belong to two source regions. Since regions always 

send messages during a step, the six right-most nodes or the two right-most regions 

are grouped into one section, which is also the largest in the source area. No collision 

would occur because regions sending messages are in different columns and at least 

two regions (six nodes) apart. 2 In both examples, the largest section is the bottleneck 

for the transfer. Thus, partitioning the grid into sections that have the size of the 

largest section avoids conflicts, and the transfer is as fast as for any other partitioning. 

Horizontally, the largest section is always located at the left or the right end of 

the arrays. Thus, its size can be computed by the offset of the left-most (right-most) 

nodes of the source and destination areas (those are the nodes holding A(lc) and A(Z~)) 

11n order to keep the regions smaller, only C' /gcd(n, C') x n/gcd(n, C') can be grouped. The 
number of bottlenecks in each dimension is still the same. 

2The closest nodes are only four columns apart, but the region-communication implementation 
makes sure that only nodes at the same relative position in the regions send at the same time (e.g. 
the first nodes of each region). 



26 

section left section right 

I • •. • •............ s~rmion rig t 

lrilo 0 1. • •. () 0 1 
(a) 4 to 8 (b) 12 to 4 

Figure 3.9: Partitioning the arrays into sections of nodes that require a common 
link. The size of the largest section determines the degree of parallelism and is 
located either on the left or the right side of the arrays. Messages sent from regions 
of different sections do not conflict. Note that the scatter/gather base patterns in 
Figures (a) and (b) both have one link in each dimension ('RC'= 1; no grouping of 
base patterns is necessary). 

divided by the horizontal region-size of the destination or the source, depending on 

whether the outmost nodes belong to the source or the destination (if and otherwise 

cases). The min operators reflect that the number of nodes cannot exceed the total 

number of nodes holding the source (Ne) and the destination array (JV:} in this 

dimension. 

The larger number of reg;ons determines the maximal section size: 

max..section..size = max( sec_ ver, sec_hor) 

sec...hor = max( secJeft, sec_rigbt) 

sec_ver = max(sec_up, sec_down) 

(3.6) 



where 

( 

rmin('Pc(lcJ;-;!(l~) • ..V:>1 if 'Pc( le) - 'P~(l~) > 0 

secJeft = 
rmin('P!(l~~-;[c:(lc:),Jlc:) l otherwise 

( 

f min('P!(h~J~:c:Chc:),A'Dl if 1'~(h~)-1'c(hc)>O 
sec_right = 

f min('Pc:(hc:~:!(h~),Nc:)l otherwise 

27 

(3.7) 

and sec_up and sec_down can be defined accordingly by changing subscripts from 

column to row, C''R to 'R'C' and C'R to 'RC'. It is possible t-o split up the whole 

source into sections consisting of sec_ ver x sec..hor regions and apply the diagonal 

scheme to each section in parallel. Thus, max(sec_ver, sec..hor) region transfers are 

required. In Figure 3.9c this was already done: there are two sections of 2 x 2 regions, 

and regions on all first diagonals are sending their messages. If the vertical offset 

would be zero rather than 3 rows, regions of the first row could send independently 

from nodes of the second row. 

3.2.3 Scheduling Algorithm 

Algorithm 2 consists of a main program and a region-communication subroutine. 

The algorithm is to be run in a distributed manner by every processor. 

The program identifies sections and arranges messages from diagonal regions in 

each section to be sent in parallel. The main program calls a subroutine to carry out 

region-to-region data transfers. The actual implementation of the subroutine does not 

affect the overall scheduling approach, as long as it assures that the low level data 

transfer between the regions is contention-free and done with optimal link usage. The 

algorithm requires reg· max(sec_ver, sec..hor) steps, where reg is the time it takes the 

subroutine to transfer a region. 

Theorem 2 If the largest quotient {one of secJeft, sec_right, sec_up, or sec_down) 

determining max_section_size in Equation (9. 7) has no remainder, then the schedule 



28 

Algorithm 2 (Extended Diagonal Scheduling Scheme) 
Scheduling algorithm for regular transfers. The two parameters row and col denote 
the node's location in the network 

Main Program 
if this..node is a source node 

regionJow = (row-1'r(lr)) div ('RC') 
region_col = (col - Pc( le)) div (C'R) 
determine sec_ver and sec_hor 
section_row = region_row mod sec_ ver 
section_col = region_col mod sec_hor 
diagonaLnum = section_row - section_col + 1 
if diagonaJ..num ~ 0 

/* determine my * / 
/* region number * / 
/* use Equation 9. 6 * / 
/*region's position */ 
/* inside section * / 

diagonaLnum = diagonaJ..num + max(sec_ver, sec_hor) 
end if 

for step = 1 to max(sec_ver, sec_hor) 
if step = diagonaLnum 

region_communication 
end if 

end for 

end if 
end Main 

/* region-steps needed * / 

generated by the algorithm is optimal with respect to the number of data transfer steps. 

If the quotient has a remainder, then the algorithm wastes fewer than reg steps. 

Proof: See appendix. 

3.2.4 Region Communication Subroutine 

Depending on the message size and architectural parameters such as start-up 

latency and channel bandwidth, there are several different region-communication im

plementations that are most suitable for certain cases. The procedural layout allows 

us to use different solutions interchangeably. In the following sections, a transfer us

ing local scatter and gather operations, the direct one-to-one transfer, and a hybrid 



29 

solution are presented. 

step 1 step 2 step 3 

~·· step 1 o O ~ 
:·.o 

' . ' . . . 

·0 
step 2 o 

(b) 

~ 
step 3 · o O ~ 0 

step o · 

Figure 3.10: One-to-one transfer of a region. The ovals represent the groups of 
vertically aligned nodes sending in parallel. Even though the sizes of the regular 
sections (2 and 3) do not correspond in Figure (a), the scheduling algorithm still 
makes optimal use of the six vertical and horizontal links. In Figure (b) the pattern 
is similar, but each source node has two destinations in the same column. 

One-To-One 

During a shift operation, a region consists of C' x 'R. base patterns; each has n x C 

source nodes. In the beginning of the main program, each node determines the region 

it is in by dividing its relative position by the region-size. Then, in the beginning of 

the subroutine, the node's index inside the region is determined. Using this index, C' 

vertically aligned nodes are grouped together. Even though those nodes are located 

in the same column, they can still send messages concurrently since each base pattern 

has C' vertical links. However, it must be ensured that the nodes' destinations are in 



30 

disjoint columns. This is done by the following method: C' steps are required since 

each node has C' destinations. During step j of the transfer, node i of the group 

(counting from zero) sends its message to the node in the ( ( i + j) mod C')th column 

of its base pattern destination. The groups themselves are sent using the diagonal 

scheme. Figure 3.lOa shows an example. 

Figure 3. lOb shows a scatter/ scatter case where each node has destinations in 

two rows. Each "step" then consists of 'R' message transfers. In Figure 3.9b the 

scatter/gather requires six messages per step. The general number for all cases is 

'R'C. The overall number of steps for the transfer of an 'R · C' x C · 'R region to its 

'R' · C' x C' · 'R destination is 

reg1-+1 = 'R · C · 'R' · C' ·(a+ {3), (3.8) 

with a+ f3 being the time to transmit one message. 

The direct approach has the advantage of the lowest software overhead possible 

since no intermediate nodes are used. Furthermore, no initial gathering of data is 

necessary. However, several message startups are required. 

Local Gather and Scatter 

Rather than sending each message separately, this subroutine gathers all the mes

sages to a single node in the base pattern source, sends a single message to the base 

pattern destination, and scatters the data from there. 

Figure 3.lla shows this process for the example from the previous section. The 

local gather and scatter nodes are marked grey. Base patterns at position ( i, j) = 

(locaJJ'ow div 'R, locaLcol div C) within the region gather the data on the node with 

index (j, 0) = (localJ'ow mod 'R, locaLcoJ mod C) within the base pattern and scatter 

the data from the node (0, i). Figure 3 .. llb shows a scatter/scatter operation where 

the message is sent to a node in the top row by default. Note that the gather and 

scatter operations can be performed in parallel for all regions. Calls to the subroutines 

locaLgather and locaLscatter must be added into the blank lines before and after the 

sf for loop in Algorithm 2. Since gather and scatter are standard routines of the 



31 

Algorithm 3 {One-To-One Base Pattern Subroutine) 
Subroutine for regions consisting of n x C --+ 'R' x C' base patterns. The two 
parameters row and col denote the node 's location in the network 

Procedure region_communication 
locaLrow =(row- 'Pr(lr)) mod ('RC') /*determine my */ 
locaLcol = (col - 'Pc:(lc:)) mod (C'R.) /*offset in region */ 
diagonaLnum = locaLrow div C' - locaLcol div C + 1 
if diagonaLnum ~ 0 /* diagonal groups * / 

diagonaLnum = diagonaLnum + 'R 
end if 
for step = 1 to 'R /* 'R groups of C'xC */ 

if step = diagonaLnum /* perform group * / 
for j = 1 to C' /* C' dest. columns * / 

forall rows: send 'R'C messages from C node(s) to all destinations 
in the ((locaLrow mod C' + j) mod C')th column sequentially 

end for 
end if 

end for 
end Procedure 

Message Passing Interface (MPI)[13], no explicit listing is presented here. Efficient 

implementations can be found in [1, 2, 3]. 

This method has the lowest transfer-time possible since all data passes the bot

tleneck channels with a single message, saving several message start-ups: 

reggather/•catter = a:+ 'R · C · 'R' · C' · {3. (3.9) 

The drawback is the overhead caused by the initial gather and the scatter operations 

at the end. Implemented with recursive halving and doubling [36] and assuming 

power of two number of nodes these operations require: 

overhead9ather/acatter = a:· (log2('R · C) +log2('R' · C')) +{3 · (2· 'R·C ·'R'·C' -'R·C-'R.'·C') 

(3.10) 

Which subroutine runs faster depends on the ratio of the startup time a: and the 

transfer time for a unit message f3. Furthermore the number of sequential region 

transmissions is important. With growing number of regions, the constant overhead 

of the local gather/ scatter scheme plays a lesser role in the overall time. 



32 

(a) (b) 

Figure 3 .11: Local gather/ scatter transfer of a region. 

So far, only the two most extreme cases for the implementation of building blocks 

were presented. Sometimes it may not be clear which solution is more appropriate and 

therefore, it makes sense to introduce a method that combines part of the properties 

of both extremes. 

Hybrid 

The example in Figure 3.13 shows different degrees of message combination for 

the transfer from 4 to 2 nodes. Figures (a) and (f) represent the one-to-one case (no 

message combination) and the local gather/scatter case (complete message combina

tion). There is only one bottleneck in each dimension connecting the two processor 

arrays. 

a J b c l d e J f 
gather/ scatter a 0 1 1 2 2 3 

overhead {3 0 2 4 6 6 10 
time( a= {3) 0 3 5 8 8 13 

transmission a 8 4 4 2 2 1 
through {3 8 8 8 8 8 8 

bottleneck time( a= {3) 16 12 12 10 10 9 
total for 1 region 16 15 17 18 18 22 
total for 4 regions 64 51 53 48 48 49 
total for 10 regions 160 123 125 108 108 103 



33 

Algorithm 4 (Local Gather and Scatter Base Pattern Subroutine) 
Subroutine for regions consisting of 'R x C ~ 'R' x C' base patterns. The two 
parameters row and col denote the node 's location in the network 

Procedure region_communication 
local..row =(row- 'P,.(l,.)) mod ('RC') 
locaLcoJ =(col- 'Pc(lc)) mod (C'R) 
if (local..row mod 'R) = (locaLcol div C) 

and (JocaLcol mod C) = 0 

/* determine my * / 
/* offset in region * / 

send to base pattern destination (0, locaLrow div 'R) 
end if 

end Procedure 

Procedure locaLgather 
forall base pattern sources 

gather data at node (locaLcol div C, 0) 
end forall 

end Procedure 

Procedure locaLscatter 
forall base pattern destinations 

/* called before the loop * / 

/* called after the loop * / 

scatter data from node (0, local..row div 'R'Y* use 'R' for dest. node */ 
end forall 

end Procedure 

This table shows the performance of the different transfers split up into the com

munication overhead caused by the gather and scatter operation and the data-transfer 

across the bottleneck. a and {3 are defined as in Section 2.1.3. Each source node holds 

two data packages that take 2{3 pure transmission time and each destination receives 

four packages. The times are computed with a= {3. Note that the local operations 

require some additional processing time on the nodes. This is omitted in the table. 

From left to right, the transmission time decreases but the overhead time increases. 

The pattern from Figure ( c) is always worse than its counterpart in Figure (b) be

cause a gather operation on the larger array is more efficient than a scatter on the 

smaller destination array since more channels are in use and thus, the message sizes 

are smaller. 



34 

Figure 3.12: The transfer patterns presented so far are applied on a 4 ~ 2 base 
pattern with a single bottleneck. The figures correspond to Figures 3.13a and 3.13f 
showing the one-to-one and the local gather/scatter transfers. 

The bottom lines show the total time required for the transfer of 1, 4, and 10 

regions with a = {3. For a small number of regions, patterns with a lesser degree of 

combination do better (band d/e) but for 10 regions, pattern (f) is the most efficient. 

The idea is to determine the optimal degree of message gathering for specific values 

of a, {3, and the number of sources and destinations. Algorithm 5 starts out with the 

situation from Figure (a). It compares the cost of an immediate one-to-one transfer 

(regions· sources· dests · (a+ {3)) with the cost of a gather in the source region followed 

by a one-to-one transfer ((a+ {3.) +regions· sources/2 · dests· (a+ 2{3)) or a one-to-one 

transfer followed by a scatter in the destination region (regions· sources· dests/2 · 

(a+ 2{3) +(a+ f3d)), depending on which region is larger. {3. and f3d are the times 

to transfer the data located on the source and destination nodes. If the immediate 

one-to-one transfer has a higher cost, then the parameters are adjusted with respect 

to the scatter or gather operation. This cycle is repeated until the one-to-one pattern 

is the fastest. 

Note that Algorithm 5 only works for region-sizes that are a power of two. The 

actual communication algorithm can be derived from Algorithms 3 and 4 but is 

omitted here. 

3.3 Arbitrary Block-Distributions 

In this section all restrictions from Section 3.2 are dropped and a solution for 

arbitrary block-distributions is presented. 



35 

~ 

Figure 3.13: Hybrid solutions for a 4 --+ 2 transfer. The dotted line represents the 
bottleneck between the source (on the left side) and the destination (on the right 
side). The transfers left of the dotted line represent local gather operations and the 
transfers right of the dotted line represent local scatter operations. Messages through 
the bottleneck must be sent sequentially, the other transfers can be performed in 
parallel. 

The functions F( n) and £( n) describe the array section indices of the first and the 

last elements of A( l: h: s) that are located on node n (these are elements A( l + s · F( n)) 

and A(l + s · £(n))). 

F(n) == r(nk - l)/ s l, £(n) == F(n + 1) - 1 

Functions F'(n), and £'(n) are defined similarly for the destination array section B. 

3.3.1 Communication Pattern 

From the topology and the hardware routing algorithm, the communication pat

tern for the transfer of an array section can be derived. Figure 3.14 shows an example. 

Since s does not necessarily divide k, the source nodes hold either lk/ s J or rk/ s l data 

elements. An exception are nodes at the beginning or the end of the array section. 

Those nodes might store less data (e.g. source 3). Analogously, up to rk' I s'l elements 

are located on the destination nodes. In the example, the source nodes hold more 

data and therefore, each source node scatters its data to a cluster of destination nodes. 



36 

Algorithm 5 (Hybrid Base Pattern Subroutine) 
Subroutine to determine the optimal degree of message combination for the transfer 
of (regions) sequential transfers of n x C -+ n' x C' regions using a single bottleneck 
channel. 

Procedure region_communication 
sources = no, dests = 'R'G' 
/3. = /3 · dests, /3a. = {3 · sources 
gather...steps = 0, scatter...steps = 0 
loop 

/* initial situation is * / 
/* one to one transfer * / 

save_on_one_to_one = (regions · sources · dests · a) /2 
cosLcombine = a+min(/3., f3a.) 
exit loop if ( cosLcombine > save_on_one_to_one) or (sources = des ts = 1) 
if sources > dests /* perform gather on source * / 

sources= sources/2, /3. = 2(3. /*twice the data on half nodes */ 
gather...steps = gatber..steps + 1 

else 
dests = dests/2, /3a. = 2/3a. 
scatter ..steps = scatter ..steps + 1 

end if 
end loop 

end Procedure 

/* per/ orm scatter on dest. * / 

Whereas the middle nodes of a cluster get only one message (destination 2), the two 

boundary nodes can each get an additional message from a different source node (the 

cluster 1-2-3 gets messages from source 1, the middle node 2 gets one message, while 

1 and 3 each get two messages). If the source nodes hold less data, then the pat

tern is reversed and a cluster of source nodes gathers its data onto one destination 

node. Just as in the regular case, these scatter and gather operations are called base 

communication patterns. Figure 3.15 illustrates the four 2D patterns. 

The figures show that the transfer of array sections yields quite complicated mes

sage patterns where neither the number of destinations for a source node nor the size 

of the messages that have to be sent is constant. Two-dimensional tr an sf ers are even 

more complicated since they involve lD patterns in both dimensions. 



37 

source 0 source 1 source 2 source 3 

O· 

0 

dest 0 dest 1 dest 2 dest 3 dest4 dest S dest 6 

Figure 3.14: Communication pattern for the transfer of a lD array section with 
blocksizes k = 9, k' = 5 and section-strides s = s' = 2. The nodes are symbolized 
by the solid boxes. A number i indicates the ith array section element. The source 
nodes hold either 4 or 5 array section elements and the destination nodes hold either 
2 or 3. The arrows show the resulting communication pattern .. 

3.3.2 Initial and Final Shifts 

In order to derive a scheduling solution for the communication induced by array 

operations, it is necessary to simplify complex communication patterns. The idea 

is to avoid message path overlaps among concurrent gather and scatter operations, 

and to obtain regionally independent operations that can be integrated in an overall 

scheduling approach. 

Scatter In a scatter situation (e.g. Figure 3.14), this goal can be achieved by 

combining array segments that must be sent to a common destination from two 

adjacent source nodes. By convention, the two array segments are combined to the 

left node. Figure 3.16 shows the new communication pattern for the example in 

Figure 3.14, after the array segments are combined. This initial shift involves only 

neighbor-communication; therefore, the messages can all be sent in parallel inducing 

only a constant overhead ofless than o.+{3. Each source node n can detect if it has to 

shift data by checking whether the destinations of its first and the preceding node's 

last section elements are the same. The first source node does not shift its data. 

P'(l' + s' · .1'(n)) = "P'(l' + s' · £(n - 1)) (3.11) 

In Figure 3.16, for example, source one's first array section element ( 4) has the 

same destination (dest 1) as source zero's last array section element (3). Thus, source 



38 

(a) scatter/scatter and gather/gather (b) scatter/gather and gather/scatter 

Figure 3.15: Communication pattern for the transfer of a 2D array section. The dotted 
squares represent the nodes and the solid lines mark the sources and destinations of 
the base communication patterns. Processors that receive two scatter-messages or 
send two gather-messages are colored grey. In Figure (a), each source scatters data 
to a processor grid of size 2 x 3 or 2 x 2. Pairs of nodes communicate with a 3 x 1 
processor grid in Figure (b). 

one must shift all data that must be transferred to destination one. 

Gather If the source nodes hold less data than the destination nodes,3 then clus

ters of source nodes gather data. Sources that store data for two destinations send 

everything to the left destination. After all gathers are completed, the data is shifted 

right to the correct location (final shift). Each destination node n can detect if it will 

receive data that must be forwarded to the next node. This is the case if the sources 

of its last and the next node's first section elements are the same: 

'P(l + s · l'(n)) = 'P(l + s · :F'(n + 1)) (3.12) 

Two-Dimensional Array Sections For scatter/scatter or gather/gather opera

tions (Figure 3.15a), two shifts (one horizontally and one vertically) must be per

formed sequentially in any order before (scatter/ scatter) or after (gather/ gather) the 

main data transfer. Scatter/ gather and gather/ scatter operations (Figure 3.15b) re

quire one shift before and one after the main data transfer. 

3 For this comparison the real values of k/ s and k' / s' must be used. 



39 

source 0 source 1 source 2 source 3 

·O 2· 3 I 4: 15· ·6· T JO 

0 3 -4 115 8· :9 1110 

dest 0 dest 1 dest 2 dest 3 dest 4 dest 5 dest 6 

Figure 3.16: Example from Figure 3.14 after nodes that provide only a partial data set 
for their leftmost destination shifted the data to their left neighbor. Non-overlapping 
scatter operations are obtained. 

Determining the Base Pattern Index In order to schedule the individual base 

communication patterns, each source node must determine the ba.se pattern it belongs 

to. The base patterns are identified by an index. If a scatter operation is performed 

by node n, then the base pattern index is equal to n's location relative to the first 

node in the cluster. In Figure 3.16, for example, the enumeration of the source nodes 

reflects their pattern indices. 

If node n performs a gather operation, then n's base pattern index is determined 

via its destination node (source and destination have the same pattern index). The 

destination node is found with the array section index of n's first data element which is 

transferred to B(l'+s'·:F(n)). Thus, the destination node is located at 'P'(l'+s'·:F(n)). 

Its pattern index I' can be determined with the method described in the previous 

paragraph. 

I(n) = { 
n - 'P(l) if scatter pattern 

I'(P'(l' + s' · J="(n))) if gather pattern 

(3.13) 

'( ) { n - P' ( l') if gather pattern 
In= 

I(P(l + s · J="'(n))) if scatter pattern 

To determine the pattern index of destination 3, for example, its first array section 

element is used (i.e. 8). The corresponding array element is located on source 1. Thus, 

source 1 and destination 3 have the same pattern index 1. 



40 

r klsl source elements Lk!sJ source elements 

••• • •• one element is 
shifted away 

/ \ ~ed from the neighbor / \ ~he node 

s' ~I s' 
_, 

s' 
_, q I s' 

_, 
s' 

_, 
s' -k' 11 k' I I k' I 

(a) (b) 

Figure 3.17: Smallest and largest base communication patterns possible. 

Determining the Base Pattern Size The size of the base patterns is no longer 

fixed. In a scatter operation, the source can have up to rk/ s l data elements. The 

destinations of these elements are located on a subarray of the destination array with 

size fk/ s l · s'. The ceiling of this size divided by the blocksize k' yields the maximum 

number of destination nodes (Figure 3.l 7a): 

C = 1, C' = f rk/ s l · s' 
1-1 l (3.14) 

The base pattern size for the gather case can be derived by exchanging s and s', as 

well as k and k'. 

The minimum number of destination nodes (Figure 3. l 7b) is determined as follows: 

at least l k / s J data elements are located on the source. The destination elements are 

located on a ( l k/ s J - s') · s' + 1 submatrix. Again, this size is divided by k' to obtain 

the number of destinations. The floor operator is used here, since partial data for a 

node is shifted away: 

C = 1, C' = l ( l k / s J - s') · s' + 1 
1-1 J (3.15) 

3.3.3 Applying the Extended Diagonal Scheduling Scheme 

After the initial and final shifts are applied, the array section case has similar 

properties compared to the regular case described in Section 3.2. The only difference 



41 

is that some base patterns might have fewer participating nodes (Figure 3.18a). The 

following text shows how to apply the regular case to this problem. 

Equation 3.16 determines the offset for one dimension. In this context, the offset 

represents the maximum number of base patterns a message traverses on its way. It is 

obtained via the base pattern index of the destination node next to the first and last 

source node. The offset is the maximum of the offsets on both ends. It cannot exceed 

the total number of base patterns, which is I('P(h)) - I('P(l)) + 1. In Figure 3.18a, 

for example, the first destination node is located in the fifth column. Since the left 

neighbors belong to the horizontal base pattern one, the offset is two (four nodes 

belonging to two base patterns). 

I 
I'('P(l) - 1) + 1 

first= 0 

I('P'(l') - 1) + 1 

if 'P( l) > 'P' ( l') 

if 'P(l) = 'P'(l') 

if 'P( l) < 'P' ( l') 

I 
I'('P'(h')) - I'('P(h) + 1) + 1 if 'P(h) < 'P'(h') 

last= 0 if 'P(h) = 'P'(h') 

I('P(h)) - I('P'(h') + 1) + 1 if 'P(h) > 'P'(h') 

offset= min(max(first, last), number_of_patterns) 

(3.16) 

Equation 3.17 divides the base pattern offset by the number of base patterns that are 

grouped into a region. In the regular case, C' x 'R base patterns are combined. For 

general transfers this number can vary slightly (see Section 3.3.4). 

offset 
sec= r l 

patterns_per J'egion 
(3.17) 

The following terminology is introduced: single nodes are sources of scatter oper

ations or destinations of gather operations. A cluster is the group of nodes receiving 

scatter messages or sending gather messages. 

Theorem 3 If all clusters consist of at least one node, then base patterns that are {1) 

diagonally aligned or (2) located at the same relative position within adjacent sections 

of (sec_ver x sec_hor) base patterns do not collide. 



E 0 
£ 
~ 
Q. 

~ 

~ 1 

Figure (a) Figure (b) 

G-.-m 
ii 
Figure (c) 

42 

Figure 3.18: Figure (a) presents an example of a scheduled scatter/gather transfer. 
The dotted lines mark the base communication patterns; the solid lines partition the 
source grid into four sections performing the diagonal scheme in parallel. The offset is 
two in both dimensions. Examples (b) and ( c) show communication patterns before 
(top) and after (bottom) the shifts. The squares represent the nodes and the grey 
areas mark the transferred data. In (b) four gather/scatter base patterns with four 
messages of different sizes are transformed to four patterns with 1, 2, 2, and 4 fixed
size messages. Figure ( c) shows a scatter/ scatter base pattern with 9 messages that 
is transformed into a regular 1 -+ 2 x 2 communication. 

Proof: See appendix. 

For the special case of a scatter operation, where both k / s ~ k' / s' and l k / s J < 
rk' / s'l are fulfilled, some cluster might contain no nodes. In this case, an offset of 

q + 1 must be used. Due to the very rare occurrence of this case, this detail is omitted 

in the algorithm. 

With Equation 3.16 and the theorem, the transfer can be partitioned into inde

pendent sections which can be handled concurrently with the diagonal scheduling 

scheme. Figure 3.18a shows an example of the transfer. Similarly to Section 3.2, 

base patterns can be grouped into regions in order to optimize the channel usage. 

Slight adjustments are necessary in the region communication subroutines and the 

definition of the base pattern sizes 'R, 'R', C, and C' (see next section). 



43 

3.3.4 General Scheduling Algorithm 

Algorithm 6 runs in a distributed manner on every processor. It consists of two 

parts: the main program and the region communication subroutine. 

Main Program In the middle part, the diagonal scheduling scheme is applied to 

each section. Before and after that, the node participates in the initial and final shifts 

for each dimension if necessary. The main program calls a subroutine to carry out the 

region communication. The actual implementation of the subroutine does not affect 

the overall scheduling approach as long as it assures that the low level data transfer 

is contention-free and done with high link usage. 

Base Pattern In the regular case, the base pattern size is always fixed but for 

general block distributions, it can vary by one in each dimension. The adjustments 

that have to be made in the region communication subroutine are presented for the 

one-to-one and the local gather/scatter approach. Figure 3.19 repeats the one-to

one example from Figure 3.10. The maximum pattern sizes are the same but some 

patterns are smaller. 

Figure 3.19 repeats the local gather/scatter example from Figure 3.11. Since the 

actual transfer through the bottleneck is done in one step, the region can only have 

one column of base patterns. Otherwise, the messages of neighboring base patterns 

with only one node would conflict (Figure a). Therefore, 'R and C' are set to the 

smaller sizes. 'R' and C do not affect the number of channels between the regions and 

can be defined as in the previous case (see Figure b). 

The only problem remaining is the enumeration of the nodes. For example, the 

nodes in the fourth row of the source region in Figure 3.19a have index 3, but for the 

region communication they must have index 4. Thus, the computation of local..row 

and JocaLcol must be changed to: 

local..row = hase_pattern..row mod C' + row _offset 

JocaLcoJ = base_pattern_col mod 'R+ coLoHset 



~(:) % ~ ~ % ~ 

step 1 

~· step 1 :0 O 

~· step 3 o O 

step 2 

~ 
:.·oo 

0 . 
step 2 . o 

~
00 

step4 •. o 0 

step 3 

(a) 

0 
0 

(b) 

44 

Figure 3.19: One-to-one transfer of a region with varying base pattern sizes. Figure 
(a) contains patterns with sizes (1/2) x 1 ~ 1 x (2/3); Figure (b) shows sizes 1x1--* 
(1/2) x 2. The regions are composed of 3 x 2 and 1 x 2 patterns according to the 
larger sizes of 'R and C'. 

0 

(a) (b) 

Figure 3.20: Local gather/scatter transfer of a region with varying base pattern sizes. 
Figure (a) contains patterns with sizes (1/2) x 1~1 x (2/3); Figure (b) shows sizes 
1 x 1 ~ (1/2) x 2. The regions are composed of 2 x 1 and 1 x 2 patterns according 
to the smaller sizes of 'R and C'. 



45 

Algorithm 6 (Initial and Final Shifts with Diagonal Scheduling) 
Scheduling algorithm for a transfer of an array section. The two parameters row 
and col denote the node's location in the network. Source and dest are flags indi
cating whether the node is a source or a destination node. scatter_ver, gather_ver, 
scatter _hor, and gather ...hor characterize the base pattern for each dimension. 

Main Program 
if (source) /* initial shift * / 

if (scatter_ver) and (not top node) and (common dest with row- 1) 
initiaLshifLup /* use Equation 9.11 * / 

end if 
if (scatterJior) and (not leftmost node) and (common dest with coJ-1) 

initiaLshiftJeft /* use Equation 9.11 * / 
end if /*diagonal scheme */ 
determine base_pattern_row and base_pattern_col/* use Equation 9.19 * / 
regionJ'ow = base_pattern_row div C' /* determine my * / 
region_col = base_pattern_row div 'R /* region number * / 
determine offset sec_ver and secJior /* use Equation 9.16 * / 
section_row = region_row mod sec_ ver /* pattern's position*/ 
section_col = region_col mod secJior /* inside section * / 
diagonaLnum = section_row - section_col + 1 
if diagonaLnum ~ 0 

diagonaLnum = diagonaLnum + max(sec_ver, secJior) 
end if 
for step = 1 to max(sec_ver, secJior) /*sequential transfer needed */ 

if step = diagonaLnum 
region_communication 

end if 
end for 

end if /*final shift * / 
if (gather_ ver) and ( dest) and (common source with row+ 1) 

finaLshift_down /*use Equation 9.12 */ 
end if 
if (gather_hor) and (dest) and (common source with col+ 1) 

finaLshifLright /*use Equation 9.12 */ 
end if 

end Main 



46 

Chapter 4 

Scheduling Solutions for 

Transposed Alignments 

This chapter deals with transfers between array sections that have a transposed 

alignment. Without loss of generality we assume that the first array has its rows 

aligned with the rows of the processor grid whereas the rows of the second array are 

distributed over a column of processors. 1 

Similarly to Chapter 3 the communication pattern can be partitioned into three 

categories. The following two sections describe the changes with respect to the iden

tical alignment case. 

4.1 Identical Distributions 

Definition For 2-dimensional array sections, a transfer is called a transposition if 

the transfers in both dimensions are shifts and the arrays have transposed alignments. 

The offset between the nodes holding the top left element of the source and the 

destination array section is defined similarly to Equation 3.3. Since the alignment 

of the destination array is transposed with respect to the processor grid, P;(l~) and 

P~(l~) are exchanged. The vertkd and horizontal offsets are denoted by r and c: 

r = 1'~(l~) -1'r(lr), C = P;(l~) -1'c(lc) 
1The algorithms can handle the other setting (array with row to processor column alignment 

transferred to array with row to processor row alignment) by swapping the row and column indices 
for all array sections. 



h6rij?ntal bottleneck : .•.• ' . 
·O· 
O· 

47 

Figure 4.1: Transposition of 3 x 2 nodes with offset (3,3). Contention in both hori
zontal and vertical channels might result from messages sent by the nodes of the first 
row. Messages from the same column do not conflict. 

Again we consider the non-overlapping case first where the offset is larger than the 

number of nodes holding the array section in both dimensions. The argument con

cerning the bottlenecks for shifts in Section 3.1 can be applied here as well, but there 

is a difference. The nodes occupying the bottleneck channels are always located in 

the same row. Due to the X-Y routing, the messages from the same column of nodes 

do not conflict with each other since they use disjoint channels (Figure 4.1). The 

lower bound on the number of steps hence is Ne, the number of columns. 

An algorithm reaching this lower bound can be developed easily: simply schedule 

the messages according to their senders' column positions. 

The general case for transposition is more complex: we have to look at each row 

separately. Figure 4.2 shows the transposition of 2 x 3 nodes with an offset of (0,1). 

Using the simple case algorithm (i.e. one step per column), we would need 3 steps. 

Figures (a) and (b) show a better schedule with only two steps. 

4.1.1 Finding a Tight Lower Bound 

A tight lower bound equals the size of the largest conflicting set because messages 

from all nodes of this set have to be transmitted sequentially. First, we find all the 

conflicting sets of nodes for a single row of the source nodes. We make the following 



48 

m ~·~··O·: 
!·O· .. · 
. ' 

·00 

(a) (b) 

Figure 4.2: Conflicting sets of nodes for transposition of 2 x 3 nodes with an offset of 
(0,1). The ovals mark nodes whose messages require the same channel. In the first 
row, the two nodes on the right side both use the channel downward from the middle 
node. In the second row, the two nodes on the left side both require the channel 
to the right of the middle node. Figures (a) and (b) show both steps of an optimal 
contention-free message transmission. 

observation: the most important node in a row is the one where the destination 

column intersects the source row (if the row and the column do not overlap, extend 

them so they do intersect). All messages of that row get routed through this node. 

Looking at Figure 4.3, all nodes to the left of the intersection send their message 

through channel 1 and all nodes to the right transmit through channel 2. The nodes 

above and below the intersection get their message through channel 3 and 4. Thus, 

for this particular row, we have four sets of nodes that might conflict. The sizes of 

those sets is equal to the number of nodes on each side of the intersection node. 

:'6': .Q .. 

( 
[6) channel2 ( {6\ 
... o·:[ :o·: ' ,' . . 
·" · :. · ! channel 3 
0 ·Q/ 

~···~·-· ~.Ii" ~.o.: ~1~ 
channel 1 · .. ·· channel 4 " .. ··'<" 

Figure 4.3: Four critical channels with the corresponding sets of nodes. The pic
tures highlight the nodes transmitting through the same horizontal (left picture) and 
vertical (right picture) channel. The numbers indicate the sending order. 



49 

c c 

r r 

Nr 
N, I I 

N, N, 
all messages get routed through nodes on this line · 

(a) (b) 

Figure 4.4: Obtaining Scmax from the parameters Nr, Ne, r and c. It equals the 
largest number of nodes to either side of one of the intersection nodes, visualized by 
the four thick lines. Figure (a) shows the case where the matrices overlap and (b) 
shows an example with non-overlapping matrices. 

We also observe that the sets of nodes sending their messages through channels 1 

and 2 are aligned to the left and right border of the row. This is also the case for the 

nodes sending messages through channels 3 or 4, which are marked by the ovals. 

Figure 4.4 shows how the size of the largest conflicting set, Scmax, can be obtained 

from parameters Nr, Ne, r and c. All intersection nodes are located on a diagonal 

line. We have: 

Scmax = max( [Nr - r - l]~c' [Nr + c - l)~c' [Ne+ r - l]~c' [Ne - c - l]~c ) (4.1) 

where the four terms in the max function represent the maximum number of nodes 

above, to the left, below, or to the right of an intersection node. 

The above equation applies to all cases, whether the source and destination overlap 

or not since the operator [ Jtc keeps the formula for the cardinality of the sets in the 

range between 0 and Ne. This is visualized by the thick line at the bottom of the 

source area in Figure 4.4b which represents the largest conflicting set of nodes left of 

the intersections (marked by the diagonal dotted line). In this case all columns have 



50 

to be sent sequentially. 

4.1.2 Deriving an Optimal Scheduling Algorithm 

To avoid contention, a scheduling algorithm must make sure that nodes from the 

same conflicting set never send messages at the same step. 

Consider the example in Figure 4.3: the three leftmost nodes form a conflicting set 

(with respect to channel 1) and the four leftmost nodes form another (with respect to 

channel 3). We have to consider the larger set, i.e. sending messages from four nodes 

sequentially. The same observation can be made on the right end of the row. We can 

derive the following schedule: start at both ends of the row and send the messages 

concurrently. Step two repeats this for the inward neighboring nodes. In step three 

we are not allowed to send the middle two nodes' messages in parallel because they 

are in the conflicting set of nodes using channel 3. This yields a scheduling sequence 

which is represented by the numbers in Figure 4.3. It does not matter whether the 

largest conflicting set is aligned to the left or to the right. The scheduling scheme is 

contention-free for both cases. This is important for the application of the scheme to 

other operations, such as counter clockwise rotation and transposition. 

Since we know that messages sent from nodes in different rows do not conflict, 

we can apply this scheme to all the rows in parallel. The important difference be

tween Algorithm 7 and the simple version of sending the columns sequentially is 

that two nodes of one row send at the same time, yielding a speedup of up to 1003 

for a maximal conflict set size of .Ne/2. For the previously discussed case where 

min(lrl, lei) ~ max(.Nr, .Ne), the largest conflicting set has a size of Ne. This means 

that the condition right..sender > Scmax is never satisfied. Thus, the algorithms be

have in the exact same manner. The statement "I have to send a message" checks 

whether the node's destination is different from the node itself. 

Theorem 4 Algorithm 7 transposes .Nr x Ne nodes with an offset (r, c) in Semax 

link-contention-free steps, which is optimal. 

Proof: See appendix. 



51 

Algorithm 7 (Transpose) 
Scheduling algorithm for a transposition. The two parameters row and col denote 
the node 's location in the network 

Main Program 
if this..node is a source node 

determine Scmax 

for step = 1 to Scmax 

left...sender = step 
right..sender = Ne + 1 - step 
if (col - 'Pc( le) = left..sender) 

and (I have to send a message) 

/* use Equation 9. 9 * / 
/*steps needed */ 

/* sending condition 1 * / 

send_message_to(row+ 'P~(l~) - 'Pr(lr), col +'P:(z~) - Pc( le)) 
end if 
if (col - Pc( le) = right..sender) 

and (right..sender > Scmax) 

and (I have to send a message) 

/* sending condition 2 * / 
/* not in same conj. set 

as left...sender * / 

send_message_to(row + 'P~(l~) - 'Pr(lr ), col+ P;(l~) - 'Pc( le)) 
end if 

end for 
end if 

end Main 

4.2 Arbitrary Block-Distributions 

The regular and the general transfer cases can be described with base patterns 

again. The sizes of the destination area are exchanged and the patterns can be 

represented by 'Rx C -t C' x 'R'. Figure 4.5 shows base patterns for the four different 

cases. Similarly to the case with identical alignments, Algorithm 7 can be generalized 

from single nodes to base patterns. The initial and final shifts are applicable for 

general transfers as well. 

Due to the comparably small impact of scheduling on transfers between transposed 

arrays (see Section 5.3) and the fact that all enumeration methods necessary for the 

extension have been presented in Chapter 3 already, this chapter focuses only on the 

main differences. 



en ~ 
66 6 

• •:g·-e:; 

52 

1 
Figure 4.5: The dotted lines show the links available for scatter/scatter, 
gather/ gather, scatter/ gather, and gather/ scatter (left to right). 

••.• ·.:·f~l 
....... "" '" 

:~ . . . ~·6. 
o: 

(a) (b) :o o: 

Figure 4.6: Two 1 x 2 ~ 1 x 3 base patterns combined still have one horizontal and 
three vertical bottlenecks (Figure a). Figure (b) shows how two bottlenecks can be 
used. 

4.2.1 Grouping Base Patterns into Regions 

Since base patterns of different rows are independent of one another it only makes 

sense to group patterns of the same row. However, this does not change the number 

of bottleneck channels, as illustrated in Figure 4.6a. If the base patterns are located 

on different sides of the intersection, then they can be sent in parallel even with both 

destinations being below the intersection (Figure 4.6b ). 

Figure 4. 7 shows how the number of base patterns on each side of the intersection 

is determined. This number is divided by two if there is more than one channel 



all messages get routed through destination regions on this line 

POr) 

P(hr) 

POc) 

P'(l~) 

· P'O'r) 

· · · · P'(h'r) 

P'(h~) 

53 

Figure 4. 7: Determining the size of the largest section in each direction. All messages 
from a region have to pass the intersection of the n. rows where the sources located on, 
and the 7(,' columns where the destinations are located on (grey areas). The largest 
section can be determined similarly to the example in Figure 4.4. 

available to send or receive messages. The size of the largest section is: 

sec = max( secleft, sec;.ight, seeup, secc:town) 

- rr['P'(h~)-'P(lc)]~cl/ . ("f"'J 2)1 . - rr['P(hc)-'P'(l~)]~,l/ . ("f"'J 2)1 secieft - c min 1\..., sec;.,9 ht - c mm 1\..., 

sec;.p = r r [P(h,.)-;,'(l~)J~. l /min('R', 2) l SeCJown = r r[P'(h~)~;(l.)J~. l /min('R', 2) l 
(4.2) 

4.2.2 Communication Subroutine 

Regardless whether the one-to-one, the local gather/ scatter, or the hybrid commu

nication subroutine is considered, the implementation must make sure that the extra 

communication channel is used properly. The following convention assures this: Since 

at most two base patterns of a row can send concurrently the right.sender always uses 

the additional channel. If this channel is not available, then the right..sender must be 

on the other side of the intersection (the size of the conflicting set was not divided 

by two). 



54 

Chapter 5 

Simulation Results for Wormhole 

Routed Networks 

In order to evaluate the performance of Algorithm 1, a network simulator was 

used. Both the algorithm and unscheduled case were tested. 

5.1 The Simulator 

A simulator was developed [12] that models wormhole-routed mesh networks and 

focuses on channel contention. During a shift, all messages are of unit size. There

fore, the time for transmitting one unit message between any pair of nodes without 

contention is one step in the simulations. All participating nodes in the simulator 

work in synchronous steps. The receiving of a message is handled implicitly, i.e. no 

explicit receive step is needed. For simulating a scheduling algorithm, the simulator 

emulates the communication steps produced by the algorithm. In the ith step, the 

nodes that have messages scheduled for the step take action; while the other nodes 

wait. Since the communication schedule is link-contention-free, the number of sim

ulation steps is equal to that of communication steps. Due to the optimality of the 

algorithm, both the lower bound and the transmission steps are represented by the 

dotted line in Figure 5.1. 

In the unscheduled case, every node performs independently. It is assumed that 

any node that has a message to send tries to send it as soon as possible and if there 

are multiple messages competing for the same channel during any simulation step, 



55 

one of them is picked randomly to succeed; the other messages get blocked and have 

to wait for the next step. Since a wormhole-routed network is simulated, a message 

being blocked at a channel occupies all the channels along the path from the blocking 

point back to its source node, until it succeeds in reaching its destination. 

The random conflict-resolution approach described above causes variations in the 

number of steps required for a given communication pattern. By chance, the result 

might be optimal (one that equals the result of an optimal scheduling algorithm), but 

in many cases, the result can be far from optimal. Taking this property into account, 

1000 experiments for each communication pattern were performed and the min, max, 

and average numbers of steps were recorded. In the figures, ·they are represented 

by the vertical bars. The standard deviation for the rightmost bar in all Figures is 

between two and four. The only exception is Figure 5.2 where the standard deviation 

is only 0.82 due to the small average number of steps. 

5.2 Identical Alignment 

First the results for transfers with identically aligned arrays are presented. The 

following sections cover the three levels of complexity. 

5.2.1 Results for Identical Block-Distributions 

Figures 5.la-d and 5.2 show the results for shifting data stored on a square n x n 

processor grid with different offsets. For shifting offsets that are larger than the 

number of source nodes in each dimension (Figure 5.la), the algorithm needs n steps 

to transmit the data. Without scheduling, larger array section cause more network 

traffic (n2 messages) through relatively fewer bottleneck channels (n). The likelihood 

that arbitrary sending orders yield a good resource utilization decreases with an 

increasing number of source nodes. This explains the growing discrepancy between 

the linear behavior of the scheduled case compared to the non-linear behavior of the 

unscheduled case which shows a worsening trend with for an increasing number of 

source nodes. 



100 .----~---~--~----.~~~--~--
steps large offset 

90 f- . 1 async. mm-max t--i 

1 80 f- async. average O 

:: ~ optima! o:ch!duJ~d 0 . t t 1 

:: : if f 1tf oDooD 

20 I- J, ~ ~ 0 0 0 0 0 0 

10 r- ~ 0 0 o 
0 I~ I I I I I I I I I 

n 

0 4 8 12 16 20 24 28 32 
(a) 

70 ----~-----~.......----.,..-----.-~...-----~ 

60 

50 

40 

30 

20 

10 

0 
0 

steps offset ( 8, 8) 

async. min-max t--i f 
async. average O 

optimal one-to-one .Q. • 

1
11 

=scheduled 

11
1 

11H 
ittf 

(f,i.Gl·Gl·9·Gl·Gl·9·Gl·Gl·Gl·9·Gl·Gl·8 
~· n 

~I I I I I I I I 

4 8 12 16 20 24 28 32 
(c) 

56 

90----~-----~----.~---..--------

80 

70 

60 

50 

40 

30 

20 

10 

0 
0 

steps 
offset (16, 16) ± t 

async. min-max t--i 
async. average O 

optimal one-to-one ·GJ· • 
=scheduled 

t1f f 
1tf 

it t t i;;i·Gl·l<l·Gl·G·Gl·B·G·G·B·G 

gi.~.i;;i·Gl· n 
t!l• I I I I I I I I 

4 8 12 16 20 24 28 32 
(b) 

45 ----~------~-----..------.....---.---. 

40 

35 

30 

25 

20 

steps offset ( 4, 4) 
async. min-max t--i 

async. average O 
optimal one-to-one ·GJ· · 

=scheduled t 
Tl~ll 1 

15 r- T 
10 I- 1 f 
5 I- i.g.GJ.GJ.i;;J.GJ.GJ.GJ·9·Gl·Gl·9·Gl·G·Gl 
~ n 0 '-~_....___.. _ _.____,__....____.,_......i--.; 

0 4 8 12 16 20 24 28 32 
(d) 

Figure 5.1: Simulation results for an x n --t n x n shift with different offsets. 



57 

14 r-----r~--r~-r-~-r-~.,--__,~_,..~-.-~ 
steps 

12 

H 
10 

8 

6 
' . . . 

4 

2 ~~- ·D·D·D·D·D·D·D·D·D·D·D·D·D·O 

····~···-0·-0·-0· . . . . 
.... :···O·O·O· 

n 
0 .....__._~_._~----~_._~----~----

0 4 8 12 16 20 24 28 32 

Figure 5.2: Simulation results for a n x n --+ n x n shift with an offset of (2,2). The 
right figure shows the shifting of 4 x 4 nodes by an offset of (2,2). Each node sends its 
message at the same time, resulting in heavy contention. Only one message reaches 
its destination. 

Figure 5.lb shows the behavior for an offset of (16,16). For processor configura

tions up to (16,16) the results are similar to the case with large offset, because the 

source and the destination matrices do not overlap. From then on, the results without 

scheduling are only slightly better compared to Figure 5.la, whereas the algorithm 

exploits the overlap and requires only 16 steps. Similar observations can be made for 

Figures ( c) and ( d) as well. 

Figure 5.2 (left figure) shows the results for a similar experiment. The shifting 

offset was reduced to (2,2). The scheduling algorithm allows all messages to reach 

their destination after two steps. Thus, the optimal number of steps is not affected 

by increasing n. The results without scheduling, however, yield dramatically worse 

results. For example, a configuration of 196 processors has a worst case transmission 

time that is five times higher. The average number of steps increases only slightly 

for configurations with more than 196 processors, but at this point it is already more 

than three times the optimal number of two steps. 



58 

D I 
I I .... I .. .. • l .. · loffsd ==j 

(a) (b) (c) (d) (e) 

Figure 5.3: Figures (a) through (d) show the positioning of the source arrays (solid 
lines) and the destination arrays (dotted lines) during the experiments. The experi
ment in Figure ( d) has a constant vertical shift offset. Figure ( e) shows how contention 
causes one link to be unused. 

Figure 5.2 (right figure) shows the worst case for the first transmission step. A 

4 x 4 processor grid shifts messages with an offset of (2,2). All messages except for 

one are blocked while eight can be transmitted concurrently. This explains the very 

poor behavior of the unscheduled case. Since all paths are short, conflicts only have 

an effect on a smaller region rather than the whole row or column as it is the case for 

large offsets. Therefore, the increase of the average number of steps for large matrices 

has a different character in Figures 5.1 and 5.2. 

5.2.2 Results for Regular Block-Distributions 

In order to examine only the benefit of avoiding contention in the network, the 

one-to-one region-communication subroutine is used since it has the same message 

pattern as the asynchronous transfer. As indicated by the theorem, the algorithm's 

performance can be slightly worse than the optimal times. Therefore, different lines 

visualize the times for the scheduled (solid line) and the optimal transfer (dotted 

line). The minimum, the average, and the maximum times of 1000 test runs of the 

asynchronous case are represented by the vertical bars. 

Figure 5.4a shows the simulation results for the regular transfer from an n x n to 

an 2n x 2n processor grid (scatter/scatter) shown in Figure 5.3.1 The asynchronous 

1 Due to the similar link usage, the gather/ gather transfer yields only slightly different results. 



59 

100 160 
steps n x n -t 2n x 2n 

Tltf 

steps n x 4n -t 2n x 1 n 

t 
90 I-

async. min-max 1---i 140 async. min-max 1---i 

80 f- async. average O async. average O 
optimal one-to-one ·GJ· · 120 optimal one-to-one ·GJ· • 

! 70 I- scheduled ~ scheduled~ 

60 I- T l 1 -1100 

I 
50 I- I~ I -l 80 

40 60 

30 
40 

20 

10 20 

0 
2 4 6 8 10 12 14 16 1 2 3 4 5 6 7 8 

(a) (b) 

70 70 l . . . . . steps 2n x n--+ n x 2n steps 2n x n -t 2n x 2n 

60 I- a.sync. min-max 1--i 60 async. min-max 1--i 
async. average O async. average O 

optimal one-to-one ·GJ· · optimal one-to-one ·GJ · · 
50 I- scheduled ~ 50 scheduled ~ 

40 I- 40 

30 I- 30 ttff 20 I- 20 ,.1t1 
10 I- 10 

,~- n 
I I I I I I 0 

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 
(c) (d) 

Figure 5.4: Simulation results for regular transfers. 



60 

transfer matches the linearly-growing lower bound for small processor configurations, 

but departs when n gets larger. This indicates that with the growing number of 

messages sent, it becomes more and more unlikely for the arbitrary conflict resolu

tion to pick the right message to proceed every time. Consequently, link contention 

occurs and communication bandwidth gets wasted, as shown in Figure 5.3e. The 

performance of the one-to-one scheduling implementation, matches the lower bound 

curve quite well, regardless of the value of n. For even n's, the matches are in fact ex

act. The figure clearly indicates, even without taking full advantage of the multiport 

architecture, the scheduling algorithm improves the performance substantially. 

Figure 5.4b presents results for a scatter/gather operation. Due to the fact that 

only a single link is available for the scatter/ gather pattern, all eight messages of 

the base pattern must be sent sequentially. Conflicts among those messages do not 

negatively affect the performance; a feature that brings the curve of the asynchronous 

transfer mode slightly closer to the lower bound curve. However, the performance 

improvements produced by the scheduling algorithm is still substantial. 

For the gather/ scatter operation from Figure 5.4c, two links are available in each 

direction for the base pattern. Furthermore, the 2n x n source area can be partitioned 

into a square grid of regions. Those two features allow maximum parallelism for the 

transfer. Therefore, almost every collision causes worse link-usage. This explains the 

higher speedup of 3.46 for the largest grid in Figure 5.4c versus the speedup of 2.60 

in Figure 5.4b. 

The horizontal part of the lower bound curve in Figure 5.4d is caused by the 

constant vertical offset of eight. Starting from source configuration 8 x 4, the source 

and the destination overlap. Due to this overlap, the number of messages that must 

cross the vertical links, which are the bottleneck for the operation, is constant from 

this point on. Starting from source configuration 16 x 8, the horizontal links become 

the bottleneck and the lower bound rises linearly again. The asynchronous case does 

not reflect the step-character of the lower bound. 

In general it can be concluded that the performance of the scheduling algorithm 

relative to the asynchronous transfer mode is best when the communication pattern 

bears a high degree of parallelism. In those cases spontaneously sent messages are 



61 

300 600 
time units time units 

250 I- async. min-max t----i f aaync. mm-max ~ f async. average O SOO async. average O 
optimal one-to-one ·GI·· I J optimal one-to-one .GJ.. f 

scheduled~ 1cheduled *- 1 
200 I- T T 400 1 
150 I- I <1> I -i300 f- 1 t 
100 I- - l 1 .L -i200f- ~ 1t1 
so 1- ~ 5E ~ ~.s ~<·-- -uoo I- A: 1 

~E H.~·~· .GJ·G 
~ I ,~ ..... n 

0 
I e.9.e, , , , , , 

0 
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 

Figure 5.5: Simulation results for a gather/scatter transfer from a 1.5n x n to a 
n x l.5n processor grid (left figure) and for a scatter/scatter transfer from an x n to 
a 2n + 1 x 2n + 1 processor grid (right figure). 

unlikely to take full advantage of all available links. The performance is worst if the 

pattern allows no parallelism and all messages must be sent sequentially anyway. 

5.2.3 Results for General Block-Distributions 

In both graphs in Figure 5.5, the dotted line represents the lower bound of any non

combining one-to-one communication pattern, which is the maximum number of mes

sages crossing through a single bottleneck channel (determined by counting). Since 

the main interest is the effect of scheduling, the one-to-one region-communication 

subroutine is used. Thus, the communication pattern is only modified by the initial 

and final shifts. 

The results in Figure 5.5 show that the scheduling solution increases the perfor

mance significantly. Several other simulations showed similar trends. With a growing 

number of processors, the chances increase that a message is blocked in the net

work several times. Therefore, the performance of the asynchronous case shows both 



62 

a steeper increase and a worsening trend. The transmission time of the scheduled 

solution increases linearly. 

In the simulation, the transmission time f3 for the smallest message unit is equal 

to the start-up time a. The source nodes in the first and second simulation hold 9 

and 16 units. With these values, the initial and final shifts cause a constant overhead 

of (a+ 3(3) +(a:+ 4(3) = 9a and 2(a + 4a) = lOo: in the simulations. Figures 3.18a 

and 3.18b show the base patterns of the simulated transfers. With the initial and 

final shifts, the average number of messages sent per node is decreased from 4 to 2.25 

in Figure 3.18b and from 9 to 4 in Figure 3.18c, saving several message start-ups. In 

the examples, the start-up time is small compared to the transmission time (1:9 and 

1:16). Still the scheduling algorithm even performs better than the lower bound for 

some configurations. This indicates both that the schedule's resource usage is close to 

optimal and that the figures reflect mostly the benefit from avoiding link-contention. 

The performance of the algorithm compared to the asynchronous case increases with 

growing start-up latency and smaller message sizes. Base pattern implementations 

other than the one-to-one transfer (e.g. MPI gather/ scatter routines) can further 

optimize the scheduling results. 

5.3 Transposed Alignment 

This section covers simulations for transpositions. Figure 5.6 shows results for 

transposition of a single row (1, Afc) of processors with an offset of (- lAfc/3 J, 2 lAfc/3 J ). 
The average performance of the unscheduled case is slightly worse than the optimal 

number of steps, and the maximum number of steps needed is about 50% higher. 

Since several different sending orders yield optimal transmission times, during 1000 

tries, the optimal number of steps was matched in the unscheduled case for all proces

sor grid sizes. The figure on the right explains how contention slows the transmission 

down. 

The most common case, however, the transposition of an .Ne x .Ne configuration 

with no offset, always yields the optimal number of steps without scheduling. The 

reason for this is that messages that get stuck only block the way for messages of 



63 

35 
steps 

30 l- async. min-max 1--1 
async. average g 

optimal one-to-one · · · 
25 =scheduled 

:" ... ·:· ... ·:· ... ·:· .. -0 .. ·:· ... 
I I I I I I 

~ ... -~- ... -~- ... ·1· .. -0 .. -~- ... 
20 6·-6·-6·•• •• 
15 

$.~.1i.l 10 l-

5 l-

... ·:- ... ·:· ... ·:· .. . . . . . . 
···-~·-···l·····l···-W···:·····: . . . . . . . . . ... . . . •'· .... • ... 

0 I G· 
g·G n 

0 4 8 12 16 20 24 28 32 

Figure 5.6: The figure on the left shows simulation results for transposition of a single 
row with offset. The figure on the right shows the worst case for the transmission: 
the fourth node of the row has to wait until the three right nodes complete their 
transmission, blocking the way for the three left nodes, which could send concurrently. 
Seven rather than four steps are needed. 

the same conflicting set, which have to go sequentially anyway. Therefore, the actual 

transmission dynamics are only a permutation of the sending order imposed by the 

scheduling algorithm. On networks with switching strategies other than wormhole

routing, buffering and message retreat caused by collisions incurs a large overhead. 

Thus, the scheduling still pays off. 



64 

Chapter 6 

Conclusion 

6.1 Summary 

This thesis analyzed communication patterns that are generated by array oper

ations in data-parallel languages. Depending on the array section and distribution 

parameters, the induced communication ranges from simple shifts up to several over

lapping many-to-many patterns with different sizes for the source and destination 

areas. This analysis is helpful for the development of scheduling solutions for other 

platforms. Furthermore, it provides guidelines on how to distribute data in order to 

minimize the communication overhead. 

The diagonal scheduling scheme is a powerful tool to schedule this type of commu

nication. For the more complicated patterns, this approach was augmented by with 

region communication subroutines. This modularity allows convenient fine tuning 

to optimize the performance for different hardware parameters, message sizes, and 

transfer patterns. The hybrid subroutine allows doing this even at run-time. The 

algorithms support the generation of efficient code for data-parallel languages which 

is a major problem in the field of parallel processing. The general concepts such as 

the diagonal scheduling scheme, bottleneck channels, and conflicting sets can be used 

to analyze and schedule other patterns. 

The generated communication schedule was proven to be either optimal or very 

close to optimal with respect to the number of steps. The for loops in the algorithm 

perform one iteration per sending step along with some initial arithmetic operations. 

Since more complicated operations are necessary anyway in order to determine the 



65 

local address sequence and the set of destinations, the algorithm's runtime overhead 

does not play a significant role in the overall process. 

The algorithms were compared to the asynchronous transfer case, meeting the 

evaluation requirements suggested by Panda[33). Several test cases showed that the 

scheduled transfer increases the performance significantly, especially for large proces

sor configurations. Since the one-to-one region communication subroutine was used 

in the simulations, the pure benefit of avoiding link-contention was demonstrated. 

Further improvements are possible with the hybrid algorithm. 

6.2 Related Work 

This section gives a brief overview of the field of communication algorithms and 

points out the differences as well as useful concepts and ideas that were used in this 

work. 

Ranka and Wang(34, 35, 42, 43] proposed communication scheduling algorithms 

which produce node-contention-free schedules. Due to the assumption that no knowl

edge about the structure of the communication pattern and the underlying network is 

known, each node has to collect and evaluate the entire global communication pattern 

before starting the data transfer. This approach would also be considered dynamic, 

however, it is no longer distributed since information local to each node needs to be 

exchanged in the scheduling process. In the setting of this thesis, knowledge about the 

operation to be performed and the network architecture is encoded in the algorithm 

a priori. Giving up some :flexibility makes it possible to speed up array operations by 

selecting communication schedules with low overhead and high resource utilization. 

Chatterjee et al. and Kennedy et al. provide complementary work for this thesis 

by addressing the problem of determining source/ destination pairs and generating 

communication sets for arbitrary array section parameters and alignments. Further

more, they provide solutions to the problem of whether to perform a binary array 

operation at the location of the first or the second operand [5, 6, 23]. In this thesis, 

those issues were omitted, but for an actual implementation those algorithms are 

inevitable. 



66 

Barnett et al. examine the performance of collective communication algorithms[l, 

2, 3] for varying parameters such as message size, channel bandwidth, and startup 

latency. The objective is to determine which algorithm should be applied for a spe

cific environment. Some of their methods were used to determine the optimal degree 

of message combination for the hybrid region-communication subroutine implemen

tation. 

One-to-many communication patterns on meshes have been thoroughly studied 

by several research groups, and different algorithms that implement contention-free 

schedules for those patterns have been suggested [28, 11, 41]. Concepts and solutions 

from those papers[l, 31] can be used to for the implementation of the local scatter 

and gather operations. McKinley et al. as well as Ho and Kao show how architectural 

features allow speedups for those operations[21, 36, 40]. Those papers show interesting 

solutions besides recursive halving and doubling that allow further optimizations. 

Publications by Scott [38] and Sundar et al. [39) cover all to all communication on 

meshes which is particularly important once scheduling algorithms are developed for 

cyclic and multidimensional distributions. 

6.3 Future Work 

The work presented is applicable to the problem of optimizing the communication 

for array operations on a specific hardware platform. In this section, some ideas on 

how the concepts and basic ideas should be extended. 

Array section operations are commonly used in data parallel programs. How

ever, the algorithms could be extended to schedule some similar patterns with a high 

message density, such as those occurring during the simulation of an artificial neural 

network on a MPP system. 

An important goal is to extend the algorithms to different topologies such as 

hypercubes, fat trees, or even clusters of workstations with an ATM network(22]. 

Routing strategies other than X-Y could be considered as well. The approach to avoid 

node contention from Section 3.1.4 needs to be extended to the general transfers. 

One solution to the problem of a worm blocking a whole channel is the concept 



67 

of virtual channels [8, 9, 10]. This allows several messages to share a single link. 

Virtual channels are used by several previously suggested algorithms[32, 41]. Differ

ent implementations of virtual channels have been suggested. Two or three virtual 

channels might be used to avoid deadlock in mesh networks with wraparound chan

nels (torus) [37]. In [30] virtual channels allow several messages to share links. This 

concept would prevent some messages from getting stuck in the network. But this 

concept is also not without drawbacks: if two paths share only one physical link, 

the bandwidth of both paths is only half of the original bandwidth, even though all 

other channels are not shared. The bottleneck of one shared channel slows the whole 

transmission down, wasting resources. Furthermore, the number of virtual channels is 

limited, so there still is the possibility of contention. The exact effects of different im

plementations of virtual channels have to be analyzed carefully, but again scheduling 

will pay off in most cases. 

The effects of link contention in networks with virtual cut through and circuit 

switching have to be examined, in order to predict the benefit of the scheduling. The 

conflict resolution of these switching strategies (buffering and retreat-retry) has a 

much higher latency compared to wormhole routing. This indicates that the unsched

uled transfer will take much longer for these strategies compared to the unscheduled 

transfer with wormhole routing. 



68 

Appendix A 

Proofs of the Theorems 

A.1 Proof of Theorem 1 

Theorem 1 Algorithm 1 shifts the data of Nr x Ne source nodes in max(sec_ver, 

sec..hor) link-contention-free steps, which is optimal. 

Proof: Define the row and column index of nodes relative to the node holding the 

upper left array section element: 

arr_row = row- 'Pr(lr) 

arr_col = col - 'Pc( le) 

First it is shown that the communication steps are contention-free. Define: dia = 
section_row- section_col + 1. The set of sender nodes for the ith step can be described 

as: 

Si= { 
{ (arr _row, arr _col) : i = dia} if dia > 0 

{(arr_row, arr_col) : i = dia + max(sec_ver, sec...hor)} if dia ~ 0 

Since conflicts can only occur among nodes of the same row or column, two cases 

are considered. In Case 1, the row is fixed, i.e. the nodes in Si which have the 

same arr _row are examined. Given this condition, it can be inferred that for these 

nodes, the section_row is also fixed. Furthermore, according to the definition of Si, 

section_col must also be a constant. Since 

section_col = arr _col mod sec..hor, 



69 

arr _col must have values in the form of x · sec..hor + section_col. In other words, 

the senders from the same row must appear in columns that are sec..hor steps apart. 

Therefore, collisions in horizontal channels are impossible. Analogous argument can 

be applied to Case 2, where the column is fixed, resulting in a conclusion that collisions 

in vertical channels are not possible, either. 

Each node's diagonaLnum is between 1 and max(sec_ver, sec..hor) and therefore, 

the sending condition is fulfilled for each node exactly once duing the algorithm 

execution. Since no contention occurs, all messages reach their destination without 

delay. This proofs the first part of the theorem. 

Now only the optimality of max(sec_ver, sec..hor) must be proven. Consider all the 

possible values for the offset off:= 1'~( l~) - Pc( le) in Equation 3.3, (1) if 0 < off< Ne, 
then the rightmost off nodes of each row have to send through the bottleneck channel 

to the right of the rightmost node; (2) if off~ Ne, all Ne nodes use one channel; (3) 

if off< 0, the situation is symmetrical; and ( 4) if off= 0, no conflicts occur. Thus, 

for each of these cases, sec..hor steps are necessary. Analogous analysis shows that 

sec_ ver steps are necessary as well. The larger of these two values hence is a lower 

bound for the number of steps. The algorithm is optimal since it matches this lower 

bound. D 

A.2 Proof of Theorem 2 

Theorem 2 If the largest quotient (one of sec-1eft, sec_right, sec_up, or sec_down) 

determining max_section_size in Equation (9. 7} has no remainder, then the schedule 

generated by the algorithm is optimal with respect to the number of data transfer steps. 

If the quotient has a remainder, then the algorithm wastes fewer than reg steps. 

Proof: The quotient n/r with n nodes and region sizer determines max_section_size. 

Case 1: Due to the definition of sections and the condition rln, all n nodes require 

a common bottleneck channel c to send or receive their data. The n nodes are 

partitioned into n/r regions, one of them always performing a one-to-one region

communication subroutine that must use c. Thus, the schedule is optimal since 



70 

the bottleneck is permanently used for data transfer. Case 2: In the worst case, 

n mod r = 1 and the algorithm sends or receives the data from r - 1 nodes sequen

tially that could have been handled concurrently with other nodes (in Figure 3.9b, 

for example, section right is one node larger than it has to be). The loss is smaller 

than reg, the time to send one region (r nodes). D 

A.3 Proof of Theorem 3 

Theorem 3 If all clusters consist of at least one node, then base patterns that are 

{1) diagonally aligned or {2) located at the same relative position within adjacent 

sections of (sec_ver x sec..hor) nodes do not collide. 

Proof: (1) Since base patterns do not overlap, all sending nodes must be in disjunct 

rows and receiving nodes must be in disjunct columns. Thus, with X-Y routing no 

conflicts can occur. (2) Single nodes that send or receive concurrently are offset 

columns apart (they belong to some base patterns i and i +offset and are located 

in columns c + i and c + i + offset). Since all clusters consist of at least one node, 

the clusters belonging to these two base patterns are at least offset columns apart. 

Therefore, collisions can only occur if a message from the left base pattern in column 

c + i travels further than column c + i + offset or if a message from the right base 

pattern travels further than column c + i. Assume the second option takes place 

(Figure A.l). Then a message of base pattern offset must travel further than column 

c, the location of the leftmost base pattern's single node. This is a contradiction to 

the definition of offset which is the maximum of first and last, the pattern offsets on 

each side. Analogously, conflicts for the second option can be excluded. The proof is 

completed by repeating the arguments for the vertical dimension. D 



71 

column c c+i c+offset c+i+off set 

pattern 0 i offset i+off set •••••••• 
0 0 010 010 010 0 010 010 0 010 010 0 010 0 0 

first contains 6 base patterns 

offset= 6 

Figure A.l: The definition of offset guarantees that no message crosses more than 6 
base patterns. 

A.4 Proof of Theorem 4 

Theorem 4 Algorithm 7 transposes Nr X Ne nodes with an offset (r, c) in Scmax 

link-contention-free steps, which is optimal. 

Proof: First it is shown that the communication steps are contention-free. Assume 

the contrary, that two messages collide in horizontal channels. Then the two sending 

conditions in Algorithm 7 must be satisfied for two nodes of the same row. These 

two nodes must also be located on the same side of the intersection of that row with 

its destination column. Since Semax is the size of the largest conflicting set, it must 

be greater than number of nodes to the left of the intersection. With the sending 

condition right..sender > Semax, it can be concluded that righLsender cannot be on 

the left side. Furthermore, with 

left_sender = step = Ne + 1 - right_sender ~ Ne - Semax 

it can be seen that left_sender cannot be on the right side of the intersection. Anal

ogous arguments exclude contention in the vertical channels. Thus, the algorithm is 

link-contention-free. 

If S emax ;::: ~ then 

{1, 2, ... , Scmax} = {values of Jeft_sender} 



72 

{Scmax + 1, Scmax + 2, ... ,Ne}= {values of right..sender} 

and all columns get to send to their destination. Only one constellation remains, in 

which Scmax can be smaller. Equation 4.1 shows that N,. must be as small as possible 

(A!,. = 1) to obtain a minimal Scmax· Thus, a single row gets transposed. If r and c 

are not between 0 and Afc - 1, then the largest conflicting set automatically has size 

Afc· Thus, the offset must be between those bounds in order to get a minimal Scmax· 

Now Equation 4.1 can be rewritten for this case: 

Scmax = max(-r, c,Afc + r - 1,Afc - c - 1) ~ 
> -r±c±Ns+r-ltN,-c-1 = Ns-1 
- 4 2 

(A.l) 

Equality can only be achieved if all four arguments of the max operator are equal. 

This yields -r = c = Nrl. Since the offset must be an integer, Afc also has to be odd. 

In this situation the sending conditions for node (1, N',l1) are not fulfilled. However, 

it does not need to send a message because its data must remain in the same location 

anyway: ( N',l1 - N'r1, 1 + N'r1) = (1, N',l1 ). Since no contention occurs all messages 

reach their destination without delay. This proofs the first part of the theorem. 

Nowonlytheoptimalityofmax( [N,.-r-l]~c' [Af,.+c-l]~c' [Afc+r-l]~c' [Afc

c - 1 ]~c ) remains to be proven. The four terms reflect numbers of nodes on each side 

of the intersection of some source rows and their destination columns. Since messages 

to or from those nodes must be sent sequentially each term is a lower bound. The 

algorithm matches the tightest lower bound and therefore, it must be optimal. D 



73 

Appendix B 

The WARP Simulator 

Wormhole-routed mesh ARchitecture simulation Program (WARP) is a tool to 

model the message flow on a message-passing multicomputer [12]. Each virtual node 

runs its copy of the node program that generates messages (Multiple Instruction 

Multiple Data - MIMD). 

WARP models bidirectional 2D mesh networks with physical bidirectional inter

connections. Messages crossing the same link in opposite directions do not collide or 

share bandwidth. The network is a multiport architecture, which means that nodes 

can receive and send messages at the same time. 

Time Model WARP uses a discrete time model to simulate the message flow in the 

network. The transmission process is partitioned into equal time-intervals of length 

8. All participating nodes in the simulator work in synchronous steps. A message can 

only be sent at some time n · 8 where n E N. The message remains in the network 

for some f:::::.t ·§,with f:::::.t EN. 

Communication Model Messages are sent with start-up cost (latency) and band

width. WARP uses a simple model that assumes the time to send a message of L 

units to be: a+ Lf3. Links are occupied during the whole transmission time, including 

the latency. 

Latency-Transmission Time Ratio Both the latency a and the pure transfer Lf3 
must be incorporated in the total time specified for a message. If all messages are of 



74 

unit size, then the time can always be one. If two message types are used, one twice 

as large as the other and a= /3, then the times should be a+ {3 = 2 and a+ 2/3 = 3 . 

.!.. 3 .!.. 3 

9 I 2 

¢ .. ... 
4 4 4 4 

2 -
-

step 1 step 2 

Figure B.l: Transmission dynamics of four messages in the network. Message 1 
(dashed line) occupies the channel from the second to the third node blocking message 
2 (solid line). Message 2 blocks message 3 (dotted line). Message 4 does not interfere 
with other messages because it crosses the third node horizontally. In the second step 
message 1 left the network, message 2 proceeds in the network while message 3 is still 
blocked. 

Conflict Resolution If there are multiple messages competing for the same channel 

during any simulation step, one of them is picked randomly to succeed; the other 

messages get blocked and have to wait for the next step. Since a wormhole-routed 

network is simulated, a message being blocked at a channel occupies all the channels 

along the path from the blocking point back to its source node, until it succeeds in 

reaching its destination (Figure B.l). 

network memory 

Figure B.2: WARP's module tree. 



75 

Implementation WARP is written in C. The simulations were performed on the 

Computer Science Department's Workstations. Figure B.2 shows the module tree of 

the program. The individual modules are: 

• The Network Module is responsible for the representation of the network with 

its channels. It provides functions to acquire and release channels. 

• The Router Module handles the router of each node where messages are buffered 

until they enter the network. 

• The Statistics Module contains all the functions and variables to evaluate the 

performance of the simulation process. 

• The Node Program Module contains the node program which is a C-function. 

This function is called for every source node in every simulation step. The index 

of the node and the number of the current step are passed as parameters. With 

this information, the body of the node program can generate messages. 

• The Memory Module contains functions supporting additional local memory for 

each node to support the node programs and simulate real data transfer. 

• The Main Module holds the simulation control. 

Performance The time to simulate a complete message transfer depends on the 

number of source nodes, the number of messages sent by each node, the length of the 

message paths, and the number of time steps it takes to complete the transfer: 

run-time= O(sources ·messages· pathlength ·steps) 

The number of steps obviously must be somewhere between one (all messages are 

sent in parallel) and sources· messages (all messages are sent sequentially). On a Sun 

Spare 2 workstation, simulating 1000 unscheduled shifts of 32 x 32 source nodes by 

offset (32, 32) on a 64 x 64 mesh takes about 1 hour 28 minutes. The same simulation 

with 16 x 16 source nodes and offset (16, 16) only takes 10 minutes. 



76 

Bibliography 

[1] M. Barnett, S. Gupta, D. G. Payne, L. Shuler, R. A. van de Geijn, and J. Watts. 

Building a high-performance collective communication library. In Proceedings of 

Supercomputing '94, pages 107-116, 1994. 

[2] M. Barnett, R. Littlefield, D. G. Payne, and R. A. van de Geijn. Global combine 

algorithms on mesh architectures with wormhole routing. In 7th International 

Parallel Processing Symposium, Newport Beach CA, pages 156-162, April 1993. 

[3] M. Barnett, D. G. Payne, R. A. van de Geijn, and J. Watts. Broadcasting 

on meshes with worm-hole routing. Technical report, University of Texas, De

partment of Computer Sciences, 1993. submitted to Journal of Parallel and 

Distributed Computing. 

[4) B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Sci

entific Programming, 1(1):31-50, Fall 1992. 

[5] S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber, and S. Teng. Gen

erating local addresses and communication sets for data-parallel programs. In 

Proceedings of the Forth ACM SIGPLAN Symposium on Principles and Practice 

of Parallel Programming, pages 149-158, 1993. 

[6) S. Chatterjee, J. R. Gilbert, R. Schreiber, and S. Teng. Optimal evaluation of 

array expressions on masssively parallel machines. In Proceedings of the Second 

Workshop on Languages, Compilers, and Runtime Environments for Distributed 

Memory Multiprocessors, 1992. 

[7) Thinking Machines Corporation. CM-5: the connection machine CM-5 tech

nical summary. Technical report, Thinking Machines Corporation, Cambridge, 

Massachusetts, November 1992. 



77 

[8] W. J. Dally. Virtual-channel :Bow control. IEEE Transactions on Parallel and 

Distributed Systems, 3(2):194-205, March 1992. 

[9] W. J. Dally and C. L. Seitz. The torus routing chip. Distributed Computing, 

1(3):187-196, 1986. 

[10] W. J. Dally and C. L. Seitz. Deadlock free message routing in multiprocessor in

terconnection networks. IEEE Transactions on Computers, 36(5):547-553, May 

1987. 

[11] D.F.Robinson, P. K. McKinley, and B.H.C.Cheng. Optimal multicast commu

nication in wormhole-routed torus networks. IEEE Transactions on parallel and 

distributed systems, 6(10):1029-1042, October 1995. 

(12] A. Eberhart. The WARP simulator for wormhole-routed 2D mesh networks. 

Technical report, Portland State University, Department of Computer Science, 

1995. 

[13] Message Passing Interface Forum. Document for standard message-passing in

terface. Technical Report CS-93-214, University of Tennessee, November 1993. 

[14] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving 

Problems on Concurrent Processors. Prentice Hall, 1988. 

(15] G. C. Fox, S. Hiranandani, K. Kennedy, C. Koebel, U. Kremer, C.-W.Tseng, 

and M.-Y. Wu. Fortran D language specification. Technical report, Department 

of Computer Science, Rice University, Houston, TX, 1990. 

(16] D. V. Hall. Hardware for fast global operations on distributed memory multicom

puters and multiprocessors. PhD thesis, Portland State University, 1994. 

[17] D. V. Hall and M. A. Driscoll. Hardware for fast coordination of distributed 

memory multicomputers. In Proc. of the 9th Int. Parallel Processing Symp., 

pages 673-679, April 1995. 



78 

[18] D. V. Hall and M.A. Driscoll. Hardware for fast global operations on workstation 

cluster multicomputers. In Proc. of the 15th Int. Con/. on Distributed Computing 

Systems, pages 475-482, May 1995. 

[19] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D for MIMD 

distributed-memory machines. Communications of the ACM, 35(8):66-80, 1992. 

[20] C.-T. Ho and S. L. Johnsson. Distributed routing algorithms for broadcast

ing and personalized communication in hypercube. In Proceedings of the 1986 

International Conference on Parallel Processing, 1986. 

(21] C. T. Ho and M. Y. Kao. Optimal broadcast in all-port wormhole-routed hy

percubes. In IEEE Transactions on Parallel and Distributed Systems, pages 

200-204, 1995. 

[22] C. C. Huang and P. K. McKinley. Communication issues in parallel comput

ing across ATM networks. Technical Report MSU-CPS-94-34, Department of 

Computer Science, Michigan State University, East Lansing, Michigan, 1994. 

[23] K. Kennedy, N. Nedeljkovic, and A. Sethi. A linear-time algorithm for computing 

the memory access sequence in data-parallel programs. In Proceedings of the Sixth 

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, 

pages 102-111, 1995. 

(24] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communi

cation switching technique. Computer Networks, 3:267-286, 1979. 

[25] C. Koelbel. Compile-time generation of regular communications patterns. In 

Proceedings of Supercomputing '91, Minneapolis, MN, November 1991. 

[26] R. K. Koeninger, M. Furtney, and M. Walker. A shared memory MPP from Cray 

Research. Digital Technical Journal, 6(2), Spring 1994. 

[27) J. Li and M. Chen. Compiling communication-efficient programs for massively

parallel machines. IEEE Trans. on Parallel and Distributed Systems, 2(3), July 

1991. 



79 

[28] X. Lin and L. Ni. Multicast communication in multicomputer networks. Techni

cal Report MSU-CPS-ACS-19, Department of Computer Science, Michigan State 

University, East Lansing, Michigan, August 1990. 

[29] D. B. Loveman. High Performance Fortran. In IEEE Parallel and Distributed 

Technology, vol. 1, pages 25-42, December 1993. 

[30] P. K. McKinley and Christian Trefftz. MultiSim: A simulation tool for the 

study of large-scale multiprocessors. In Proceedings of the 1999 International 

Workshop on Modeling, Analysis, and Simulation of Computer and Telecommu

nication Networks (MASCOTS), pages 57-62, San Diego·; California, January 

1993. 

(31] P. K. McKinley, Y. Tsai, and David F. Robinson. A survey of collective com

munication in wormhole-routed massively parallel computers. Technical Report 

MSU-CPS-94-35, Department of Computer Science, Michigan State University, 

East Lansing, Michigan, June 1994. 

[32] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques in direct 

networks. IEEE Computer, 26(2):62-76, February 1993. 

[33] D. K. Panda. Issues in designing efficient and practical algorithms for collective 

communication on wormhole-routed systems. In Proceedings of the 1995 ICPP 

Workshop on Challenges for Parallel Processing, August 1995. 

[34] S. Ranka and J. Wang. Static and runtime scheduling of unstructured communi

cation. Technical report, University of Texas, Department of Computer Sciences, 

July 1993. 

(35] S. Ra~ka, J. C. Wa.ri.g, and Manoj Kumar. Static and Runeime Algorithms 

for All-to-Many Personalized Communications on Permutation Networks. In 

Proceedings of the 1992 International Conference on Parallel and Distributed 

Systems, HsinChu, Taiwan, pages 211-218, December 1992. 



80 

[36] D. F. Robinson, D. Judd, P. K. McKinley, and B. H. C. Cheng. Efficient collec

tive data distribution in all-port wormhole-routed hypercubes. In Proceedings of 

Supercomputing'99, pages 792-801, Portland, Oregon, November 1993. 

[37] D. F. Robinson, P. K. McKinley, and B. H. C. Cheng. Optimal multicast commu

nication in torus networks. In Proceedings of the 1994 International Conference 

on Parallel Processing, St. Charles, lliinois, August 1994. 

(38] D. Scott. Efficient all-to-all communication patterns in hypercube and mesh 

topologies. In Proceedings of the Symposium on Parallel and Distributed Pro

cessing, pages 398-403, 1991. 

[39] N. Sundar, D. N. Jayasimha, D. K. Panda, and P. Sadayappan. Complete ex

change in 2D meshes. In Scalable High Performance Computing Conference, 

pages 406-413, 1994. 

[40] Y. Tsai and P. K. McKinley. A broadcast algorithm for all-port wormhole routed 

torus networks. In Proceedings of Frontiers '95: Symposium on the Frontiers of 

Massively Parallel Computation, McLean, Virginia, February 1995. 

[41] Y.-C. Tseng, D. K. Panda, and T.-H. Lai. A trip-based multicasting model 

in wormhole-routed networks with virtual channels. In IEEE Transactions on 

Parallel and Distributed Systems, 1995. 

[42] J. C. Wang. Load Balancing and Communication Support for Irregular Problems. 

PhD thesis, Syracuse University, December 1993. 

[43] J. C. Wang, T. H. Lin, and S. Ranka. Distributed Scheduling of Unstructured 

Collective Communication on the CM-5. In Proceedings of the 27th Hawaii In

ternational Conference on System Sciences, Maui, Hawaii, Volume II, pages 

483-492, January 1994. 


	Contention-free Scheduling of Communication Induced by Array Operations on 2D Meshes
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1565645785.pdf.38_18

