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Abstract

In longitudinal studies, we observe the subjects who are likely to progress to

a new state during the study time. For example, in clinical trials the stage of a

progressing disease is recorded at each follow-up visit. The primary goal is to estimate

the relationship between the attributes and the subject’s progression state. In such

studies, some subjects complete all their follow-up visits and their progression state

are observed without any missingness. However, others miss their follow-up visits

and when they come back, they learn that they have progressed to a new state. In

this case, not only are their progression states at each follow-up interval-censored,

but their time-dependent covariates are incomplete. In such studies, the observations

are missing at random (MAR).

The event of interest, i.e., progression, may have several possible patterns. In some

studies, we might be studying progression to only one new state. For example, we are

interested in studying the attributes that affect an individual’s progression from being

a non-smoker to a frequent smoker. Another example would be the patients who are

believed to have high risk for developing diabetes, are monitored for advancing to type

2 diabetes. In other studies, the event of interest involves multiple stages. Examples

of these studies include several stages of cancer, or different stages of smoking (non-

smoker, light smoker, intermittent smoker, heavy smoker, etc.). These states are

chronological.

The times of observation, i.e., follow-up interview visits, are pre-specified for these

studies. At each time point, the attributes are measured and recorded. Since the
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study continues over time, it is common for some subjects to miss their follow-up

visits. In this case not only the outcome (event of interest) is censored, but their

time-dependent attributes are incomplete. In this case, both outcome and attributes

need to be estimated for the missed visits.

We are interested in studying the time-dependant covariates’ effect on the progres-

sion. Expectation-maximization (EM) algorithm is used for estimating the parame-

ters. The variance-covariance matrix of the maximum likelihood estimator (MLE) is

calculated using the missing information principles. Simulation studies revealed that

the proposed method works well in terms of variance, bias, and power in the samples

of moderate sizes.

When we are estimating the association between longitudinal covariates and an

event, we may run into the large number of attributes, which are explanatory but

could be highly correlated. Using the usual maximum likelihood estimation method

leads to inaccurate parameter estimates. Additionally, the estimators have large

variance. Elliot, et al., [14] proposed Mixed Ridge Regression when the outcome

of the process is continuous. This method applies ridge regression to a linear mixed

effects longitudinal model. In our proposed model, the longitudinal outcome is binary.

We apply ridge penalization (based on the L2 norm) to our model to get more accurate

parameter estimates.

Another important aspect in building a good predictive model is variable selection.

Sometimes there are many attributes in a dataset. These attributes are not necessarily

correlated. We are interested in choosing a smallest best subset of them for inference.

We perform the variable selection by adding the LASSO penalization (based on the L1

norm) to the likelihood to be able to simultaneously choose the appropriate covariates

and estimate the covariate effects.
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Lastly, the preliminary model is extended to the case when there are more than one

progression states in the model. These progressions are chronological and assumed to

be non-time-reversible. Missing pattern is more complex than that for one progression

state case, but the rest of the procedures are pretty similar to those for one progression

state case.

iii



Dedicated to My beloved Mom, Ms. Fariba Maghsoodlou and My late grandparents,

Mr. Manoocher Maghsoodlou and Mrs. Ezat Ebrahimi

iv



Acknowledgments

I would like to thank my advisor, Dr. Jong Sung Kim, for introducing me to

research. Dr. Kim has always been very supportive and helping me with my research

topic and stimulating great discussions. He is a great educator. I have learnt a lot

from him through taking various classes from him and also doing research.

Additionally, many thanks to my dissertation committee, Dr. Robert Fountain,

Dr. Subhash Kochar, Dr. Alexis Dinno, and Dr. Wayne Wakeland for taking the

time to read my work and provide helpful feedback. I specially appreciate Dr. Dinno

for introducing the data.

I would like to thank Dr. Fariborz Maseeh, the donor of the Eugene Enneking

Doctoral Fellowship for providing a great opportunity for me to focus on my research.

I was honored to be the recipient of this award several times.

I thank all of the other faculty that taught me the various aspects of statistical

science.

Lastly, I would like to thank my beloved mom, Ms. Fariba Maghsoodlou who has

always been a role model to me and has supported me all my life. Words are not

enough to appreciate her. I thank my late grandparents, Mr. Manoochehr Magh-

soodlou and Mrs. Ezat Ebrahimi who were very supportive and always emphasized

v



the importance of education. Their help and supports mean a lot to me. I wouldn’t

have accomplished this without my mom and grandparents.

vi



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Longitudinal Data Analysis in Practice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Rao Score Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 CEST for Association of Longitudinal Markers and Interval-Censored

Event Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Pooled Repeated Observations Logistic Regression Model With One

Progression State and Partly Interval-Censored Data . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Parameter Estimation Using the EM Algorithm. . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.2 EM Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Variance Estimation Using Louis’ Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vii



3.5 Right and Left Censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Variable Selection for Pooled Repeated Observations Logistic Regression

Model With Partly Interval-Censored Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Introduction to Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Choice of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 EM Algorithm for Variable Selection Via LASSO and Group LASSO. 26

4.4 Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Pooled Repeated Observations Ridge Logistic Regression Model With

Partly Interval-Censored Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Choice of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Pooled Repeated Observations Logistic Regression Model With Partly

Interval-Censored Data for Two Progression States . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Different Patterns for the Partly Interval-Censored Events . . . . . . . . . . . 43

6.4 Parameter Estimation Using EM Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.5 Variance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.6 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Analysis of NLSY97 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

viii



7.1 Analysis of One Progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Variable Selection in NLSY97. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 NLSY97 Data Analysis Using PRO Ridge Model . . . . . . . . . . . . . . . . . . . . . 59

7.4 Analysis of Two Progression States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ix



List of Tables

Table 3.1 Results for 1-dimensional β, βtrue = 3.6, B:Bias, σ2:variance,

E:exact data, O:observed data, and OC: original complete data. 17

Table 5.1 Simulation Results for Pooled Repeated Observations Ridge Logistic

Regression 38

Table 6.1 Outcomes of the Two Progressions 51

Table 6.2 Simulation Results for Two Progressions Using One Covariate 51

Table 7.1 The Results of NLSY97 Analysis Using the Observed Data 62

Table 7.2 The Results of NLSY97 Analysis Using Only the Exact Data 62

Table 7.3 The Results of NLSY97 Analysis Using LASSO 62

Table 7.4 The Results of NLSY97 Analysis Using Ridge Model 62

Table 7.5 The Results of NLSY97 Analysis for Two States of Smoking 62

x



List of Figures

Figure 3.1 Partly interval-censored data. 17

Figure 3.2 Linear growth curve. 20

Figure 3.3 Power of the test for one-dimensional β. 21

Figure 3.4 Power of the test for multidimensional β. 22

Figure 4.1 The path for LASSO trace and prediction error. 30

Figure 5.1 The ridge trace. 38

Figure 6.1 Contribution of the 2nd progression to the log-likelihood function. 51

Figure 6.2 Complete data for two progressions. 51

Figure 6.3 Both progressions are interval-censored. (Case 3) 53

Figure 6.4 The two events are censored in different intervals. (Case 3.1) 53

Figure 6.5 The two events are censored within the same interval. (Case 3.2) 54

Figure 6.6 Partly interval-censored data for two progressions. 54

Figure 6.7 Power of the test for two peogressions 55

xi



1

Introduction

In the analysis of longitudinal studies, subjects who are likely to progress to a

new state during the study, are monitored over time. For example, in clinical trials,

patients who are at high risk of a certain disease are monitored and have follow-up

visits. Some subjects complete all of their follow-up visits and their failure times are

recorded accurately. But others may miss their follow-up visits and when they come

back, they learn that they have progressed to a new state, i.e., the event of interest

has already occurred. The event for these patients is censored within the person-

specific time interval. This is known as “partly interval-censored failure time data”.

Although there are multiple follow-up visiting intervals, for each subject, researchers

use one particular interval that is only known to contain the true unknown failure

time, unless they had accurately determined the failure time. There are quite a few

research works based on partly interval-censored data such as [18], [46], [26], and [23]

among others.

Another commonly available data type in longitudinal studies is called pooled re-

peated observations (PRO). In such studies, subjects have multiple follow-up visits

as usual. A subject obtains a binary outcome for the event from every visit. All

those repeated binary outcomes are pooled together to develop a model to analyze

the effects of time-dependent covariates on the occurrence of the event. [8] and [9]

pooled such repeated observations with binary outcomes for the event of interest into

a single sample. Then they used logistic regression model to estimate the effects of
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the risk factors to the occurrence of the event. Each observation interval is consid-

ered a mini follow-up study in which the current risk factors are updated to predict

events in the interval. Once an individual has an event in a particular interval, all

subsequent intervals from that individual are excluded from the analysis.

In the present study, we define pooled repeated observations for partly interval-

censored data. We have pooled repeated observations but some binary outcomes are

incomplete, and can only be determined with certain unknown probabilities within

some specific follow-up visits. In this case, the analysis of such data would need a

method that combines some models that handle pooled repeated observations without

censoring and methods that deal with partly or completely interval-censored data.

The main goal of this study is to estimate the effects of the time-dependent covariates

on the occurrence of the event of interest (e.g., progression to a disease, becoming

a frequent smoker, etc.). We extended the work of [16], who employed conditional

expected score test (CEST) to develop a test for association of a longitudinal marker

and an event with missing binary outcomes, to the estimation problem when the

event of interest has a single progression state or double progression states and the

response is pooled, repeated and partly interval-censored.
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2

Longitudinal Data Analysis in Practice

2.1. Rao Score Test

The Rao score test for testing the hypotheses H0 : θ = θ0 against H1 : θ ̸= θ0 is

(1)

[
l′(θ0)√
nI(θ0)

]2

→ χ2
(1)in distribution

where l(θ0) is the log-likelihood function evaluated under the null hypothesis,

l′(θ0) =
∂l(θ0)
∂θ0

, and I(θ0) is the Fisher’s information.

2.2. CEST for Association of Longitudinal Markers and

Interval-Censored Event Times

One of the applications of longitudinal studies of subjects for the occurrence of an

event of interest is in clinical trials. Patients who are at high risk of progressing to a

disease, are monitored over time. These patients may miss their follow-up visits and

the disease has progresses when they return. The progression of the disease is unob-

served and has happened during a time interval (It is interval-censored). For these

patients, the markers, e.g., lab tests are missing during the interval-censored follow-up

visits. [16] proposed a conditional expected score test (CEST) to see whether there

is an association between a longitudinal covariate and patient‘s failure time.

Let Ti be the time that patient i has an event, i = 1, . . . , n. tj is the clinic visits

at which patients are monitored, j = 1, . . . ,M . Let δij be the indicator of whether or

not patient i has had an event (failure) since previous visit at tj−1. Yij is the indicator
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of whether or not patient i was in follow-up (and at risk) at visit tj. zij is patient i’s

covariate, measured at time tj−1 (during the jth interval).

The response variable, δij is modeled using the logit link. It indicates failure

(progression of the disease) as a function of the covariate, zij which was measured at

time tj−1 (during the jth interval).

(2) logitPβ(zij) = log
Pβ(zij)

1− Pβ(zij)
= α + β′zij

where Pβ(zij) is the conditional probability of patient i having an event during

the jth interval and was event-free through tj−1 and zij is the value of covariate at

this time.

The complete log-likelihood is

(3) l =
n∑

i=1

M∑
j=1

[−Yij log(1 + exp(α + β′zij)) + δij(α + β′zij)]

The numerator of score test of H0 : β = 0, assuming that there are no missing (or

censored) observations and the data are complete, is:

(4) U = l′ =
∂

∂β
l =

n∑
i=1

M∑
j=1

(δijzij − Yijzij p̂)

where p̂ is the maximum likelihood estimator(MLE) of P = P0 = exp(α)
1+exp(α)

under

H0 : β = 0 and it is computed by

(5) p̂ =

∑
i

∑
j δij∑

i

∑
j Yij

In order to use the CEST for H0 : β = 0, it is assumed that event’s data could

be censored due to missing visits. Assume that ith subject missed visits after time

4



tLi
and came back at tRi

, where Li is the index of the last time that patient i was

visited and was event-free (did not fail) and Ri is the index of the event’s time. Then

δij is missing during the Li+1 ≤ j ≤ Ri−1. Let δi0 =
∑M

j=1 δij be the indicator

of whether subject has ever failed or left follow-up without having an event. Then

δi0 = 1 indicates that subject i failed while they were in follow-up. This means that

the last time patient i was observed is the event’s time. δi0 = 0 indicates that subject

i has not failed by last visit, i.e., the event’s time is right-censored. Furthermore,

whenever subjects miss a visit, the value of their covariate zij is missing as well. [43]

suggested that zij has linear growth curve with random effects and used the predicted

values that are found using this model to impute missing values [5].

The CEST can be derived from (4) using a principle (noted by [13]) that the

score based on incomplete data is the expected value of complete data, conditioned

on observed data.

(6) ∂Ly(ϕ) = Eϕ(∂L
x(ϕ)|y)

where ∂Lx(ϕ) is the Fisher score function based on complete data x and ∂Ly(ϕ)

is the score function based on the incomplete data y.

The following four steps are required to obtain the score test for incomplete data:

Step 1. Select a model.

Step 2. Find the score test for the complete data.

Step3. Find the conditional expected value of the score test (obtained in step 2)

given the incomplete data, under the null hypothesis.

Step 4. The test statistic obtained in step 3 is the CEST.

To drive the test for H0 : β = 0 using CEST we need:
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E[δij|Y, δ, β = 0]

= P [Ti = tj|tLi
< Ti ≤ tRi

, Y, x̂ij, α, β]

=
p(1− p)j−1∑Ri

k=Li+1 p(1− p)k−1
, k ∈ (Li, Ri]}

= wdij

(7)

wrij = 1−
∑j−1

l=1 wdil is the probability that patient i has had an event on or after

the visit tj given Y ,δ, and β = 0.

The MLE of P = exp(α)
1+exp(α)

under the incomplete data, assuming H0 : β = 0 is

(8) p̂ =

∑
i

∑
j wdij∑

i

∑
j wrij

The test statistic of CEST for H0 : β = 0 can be computed by

(9) U =
n∑

i=1

M∑
j=1

(wdij − p̂wrij)zij

Furthermore, [15] extended this model to the events that have with two progres-

sion states. Assume that the data on progression is completely observed for all the

subjects (i = 1, . . . , n). It is also assumed that the occurrence of progression is before

or at death. One application of such model arises in cancer clinical trials, where the

observed deaths during the follow-up visits are nearly always related to cancer, [15].

Let yij be the indicator of whether patient i is in follow-up at time j. Therefore,

yij = 1 until the patient dies or leaves the follow-up, after which yij = 0. ρij is

the indicator of whether or not patient i has had the first evidence of progression at

time j. It is also assumed that ρi0 = 0, which implies that the patient i showed the

first sign of progression after entering the study and at time j = 0, before the study
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started, he was progression-free. wij is the indicator of whether patient i is at risk

for progression at time j. Note that wij = yij[1 −
∑j−1

k=1 ρik]. wij = 1 implies that

Patient i was at risk for progression at time j. Therefore, at visits k = 1, . . . , j − 1

the patient has not progressed. Therefore, ρik = 0 for k = 1, . . . , j− 1. Also, we have

yij = 1 since the patient has not died until time j and is in follow up at time j.Let

δij be the indicator for whether or not patient i has died at time j. j = 1, . . . ,M

are the times at which a progression was assessed, a death was recorded, or a patient

was censored (all times of clinic visits, deaths, or censoring). Xi is the value of the

covariate (e.g., treatment indicator) for patient i.

[15] used a generalized person-exam risk model and then logistic link was used to

relate the covariates to the events (progression, death, etc.). For generalized person-

exam risk model, the observations that are over multiple times, are combined into a

single sample. The logit link to model progression as a function of covariate x at time

j is

(10) logitPj(x) = log
Pj(x)

1− Pj(x)
= αj + β′x

where Pβ(zij) is the conditional probability of observing progression at jth follow-

up time given that the individual was free of progression through time j − 1 and x is

the value of covariate for treatment.

Additionally, progression is assumed to be non-time-reversible and patients are

only monitored for death after their progression has occurred. Further, it is assumed

that patients who die of the disease, e.g., cancer, progressed before their death. The

hazard function of death at the kth time given that progression has happened at time

j, is modeled by
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(11) logitqjk(x) = log
qjk(x)

1− qjk(x)
= θjk + γ′x

where qjk is the probability of observing death at time k, given that death has

happened after progression at time j.

To test for treatment effect (β) on progression and mortality, it is assumed that

β = γ. When there are short grouping intervals between exams, pooling repeated

observations (PRO) is asymptotically equivalent to grouped proportional hazards

model for a time-dependent covariate. Under the PRO model, the contribution of the

ith subject to the log-likelihood is

li =
M∑
j=1

[−wij log(1 + exp(αj + β′xi)) + ρij(αj + β′xi)]

M∑
j=1

[
M∑
k=j

−yik log(1 + exp(θjk + β′xi)) + δik(θjk + β′xi)]ρij

(12)

Assuming that no one has missed the follow-up visits and the data is fully ob-

served, the numerator of the score test for the hypothesis H0 : β = 0 is obtained

by taking the first derivative of the log-likelihood with respect to β and then letting

β = 0. The test statistic is

(13) U =
n∑

i=1

[
M∑
j=1

[ρij − wij p̂j]xi +
M∑
j=1

(
M∑
k=j

[δik − yikq̂jk])ρij]

where wij = yij[1−
∑j−1

k=0 ρik]. The estimated probability progression at time j is

p̂j =
∑

i ρij∑
i wij

and the estimated probability of death at time k ≥ j is q̂jk =
∑

i ρijδik∑
i yikρij

.

To derive the CEST for this model, consider the case where subject i (who has

an individual risk of progression) has missed the follow-up visits after the time tLi

8



and comes back at time tRi
. Further, assume that the subject did not have evidence

of progression at the last time that they were seen, i.e., ρiLi
= 0. They have come

back, showing that disease has progressed, ρiRi
= 1. In this case, ρij is missing for

Li + 1 ≤ j ≤ Ri. In this case, the progression is censored into intervals by missed

visits. Since the progression is an absorbing state, if a patient misses their follow-up

visits and they are still progression-free when they return at time k, it is assume that

ρij = 0, for j ≤ k.

Similar to [16], CEST can be applied to test for the covariate effect. The CEST

method is based on a principle by Efron: “The score based on incomplete data is the

expected value of the complete data score conditional on the observed data” [12]. The

CEST for the incomplete data is obtained by taking the conditional expected value

of the complete data score (13), conditioned on the observed data. Note that under

H0 : β = 0, (ρij, wij) and (δik, yik) are independent of xi. Therefore, the contribution

of subject i to the score function is:

(14)
M∑
j=1

E[ρij − wij p̂j|(Li, Ri] ]xi +
M∑
j=1

E[
M∑
k=j

(δik − yikq̂jk)xiρij|(Li, Ri] ]

Under H0 : β = 0, the expected values, conditional on observed data are obtained

as:

E[ρij|ρ, y, w, δik = 0, β = 0]

=
pj

∏j−1
r=1(1− pr)× qjk

∏k−1
s=j (1− qjs)∑Ri

m=Li+1 pm
∏m−1

r=1 (1− pr)× qmk

∏k−1
s=m(1− qms)

, j ∈ (Li, Ri]}
(15)

and

(16) E(ρijδik|data) = E(ρij|data)× δik = ρ̂ijδik

9



The test statistic of CEST for the data with interval-censored progression times

under H0 : β = 0 is

(17) U =
n∑

i=1

M∑
j=1

[(ρ̂ij − ŵij p̂j)xi +
M∑
k=j

[δik − yikq̂jk]xiρ̂ij]

where p̂j =
∑

i ρ̂ij∑
i ŵij

, ŵij = yij[1 −
∑

k<j ρ̂ik], and q̂jk =
∑

i ρ̂ijδik∑
i yikρ̂ij

. This is estimated

iteratively by applying EM algorithm.
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3

Pooled Repeated Observations Logistic Regression Model With One

Progression State and Partly Interval-Censored Data

We consider a case of longitudinal studies, where subjects are at risk of an event

of interest (e.g., progression to a new state) and have follow-up visits. Some subjects

make complete follow-up visits, but others miss some of their follow-up appointments

and come back after the event of interest has occurred. Whenever they miss a visit,

both their binary outcome of the event of the interest and covariates are missing.

Our proposed model estimates the effects of time-dependent covariates on the event

of interest.

Since we are interested in modeling a binary outcome, we use a logit link to model

the probability of event as in [16]. Let Ti be the time subject i experiences the event

of interest, i = 1, . . . , n. Each subject i has several visits. Let tj be the time for

follow-up visits, when subjects are monitored; j = 1, . . . ,M . yij is the indicator of

whether or not subject i has had an event since the previous visit at tj−1, and xij is

subject i’s covariate measurement at time tj−1 (to be used for the jth interval).

(18) logit(Pij) = log(Pij/(1− Pij)) = α + β′xij,

where

(19) Pij = P (yij = 1|xij, Ti > tj−1).

11



Pij is the probability of observing an event in the jth interval given a subject was

event-free through tj−1 and xij, the covariate at time tj−1.

We construct the full (complete) log-likelihood, assuming all observations were

exact.

(20) l =
n∑

i=1

Mi∑
j=1

[− log(1 + exp(α + β′xij)) + yij(α+ β′xij)]

3.1. Parameter Estimation Using the EM Algorithm

3.1.1. Notation. Assume that the ith subject has missed their follow-up visits

after time tLi
and came back at tRi

. Then yiLi
= 0 , yiRi

= 1, and yij is missing for

Li + 1 ≤ j ≤ Ri − 1. Li is the index of the last time that subject i made the visit

and was event-free. Ri is the index of the first time subject i was observed with the

event of interest. Mi is the index of the last time subject i was observed. Whenever

subjects miss visits, their corresponding covariate value, xij, is also missing. We use

the EM algorithm [12] to estimate the parameters.

3.1.2. EM Algorithm. E-step: We need to estimate yij and xij in the ex-

pression (20) for j ∈ {Li + 1, . . . , Ri − 1} for individuals whose failure times are

interval-censored.

xij could be continuous or categorical ( [32]). We assume that xij has a linear

growth curve with fixed effects for the sake of simplicity whereas [46] and [16] assumed

random effects.

(21) xij = θ0i + θ1itj−1 + ϵij,
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where ϵij ∼ N(0, σ2
ϵ ) , cov(ϵij, ϵij′) = 0, j ̸= j′.

We estimate xij by x̂ij = θ̂0i + θ̂1itj−1 for Li + 1 ≤ j ≤ Ri − 1, where θ̂0i and θ̂1i

are least squares estimators.

E[yij|Y, x̂ij, α, β, Ti > ti,j−1]

= P [Ti = tj|tLi
< Ti ≤ tRi

, Y, x̂ij, α, β] =

p̂ij

p̂i,Li+1+
∑Ri−1

k=Li+2[p̂ik
∏k−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j = Li + 1,

p̂ij
∏j−1

o=Li+1(1−p̂io)

p̂i,Li+1+
∑Ri−1

k=Li+2[p̂ik
∏k−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j ∈ {Li + 2, ..., Ri − 1},∏j−1
o=Li+1(1−p̂io)

p̂i,Li+1+
∑Ri−1

k=Li+2[p̂ik
∏k−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j = Ri,

(22)

where

(23) p̂ij =
exp(α + β′x̂ij)

1 + exp(α + β′x̂ij)

If xij is ordinal, we can still assume linear growth curve with fixed effects to

estimate the missing xij’s. Let nc be the number of categories for this ordinal variable.

For each individual i, the observed xij’s are used in model 21) to compute θ̂0i and θ̂1i.

Then we compute x̂ij = θ̂0i + θ̂1itj−1 as usual.

Next, we create nc−1 thresholds in order to uniquely assign x̂ij into one of the nc

categories. Note that x̂ij ∼ N(θ0i + θ1itj−1, σ
2
x̂). We use the quantiles of this normal

distribution to define the thresholds. There is limitation in using the linear growth

curve for ordinal data. We need to compute σ̂2
x̂ to define thresholds. This requires at

least three observed covariate values, xij’s for each subject as otherwise, σ̂2
x̂ would be

13



undefined due to the zero degrees of freedom.

M-step: We find the values of α and β that maximize the expected value of

log-likelihood in conditioned on the missing data. Therefore, we have

(24) (α̂, β̂) = argmax lα,β|ŷij, x̂ij.

Expressions (22) - (24) are repeated until convergence. As there are no closed

forms for α̂ and β̂, we used an optimization package optim in R.

3.2. Variance Estimation Using Louis’ Method

Louis‘ method is one of the approaches to obtain the variance of parameters that

are obtained by the EM algorithm. It uses the missing information principle [36]

and [30]. We use the Louis’ method for variance estimation using the notation in [39].

This method uses the missing information principle,

Observed Information = Complete Information - Missing Information.

−∂2 logP (θ|W )

∂θ2
= −

∫
z

∂2 logP (θ|W,V )

∂θ2
P (V |θ,W )dZ

−V ar(
−∂ logP (θ|W,V )

∂θ
),(25)

where W : observed data, i.e., partly interval-censored pooled repeated observa-

tions, V : latent data, the true unknown counterpart of the interval-censored portion

of W , θ|W : observed posterior, and θ|W,V : augmented posterior.
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3.3. Power

We compute the power of the test H0 : β = β0 vs. H1 : β ̸= β0 using the

asymptotic normality of maximum likelihood estimators. Note that for some fairly

strong conditions, θ(t) → θMLE as t→∞ , where θ(t) is the parameter estimate of an

EM algorithm at tth step.

Using the above theorem, we have:

(β̂ − β)′[I(β̂)]−1(β̂ − β)→ χ2
length(β̂)

where β̂ is the maximum likelihood estimator of β.

We compute the power by simulating B copies of this test and power is calculated

by R/B where R is the number of times where H0 was rejected in the B tests [34].

3.4. Simulation Study

For illustrating this method, we considered n = 300 subjects who have M = 7

number of follow-up visits each. We generated two time-dependent covariates as

follows:

x1ij ∼ N(5.8 + 0.3tj−1, 0.1).

x2ij ∼ N(0.4 + 0.15tj−1, 0.1).

x1ij represents a continuous covariate with larger values and faster growth rate

over time, while x2ij represents one with smaller values and slower growth rate over

time.

We first generate n = 300 subjects who have complete follow-up visits. This

makes original complete data (OC). We randomly choose n1 subjects out of these.

This makes exact data (E). For the remaining n2 = n − n1 subjects, we randomly

designate some of their follow-up visits missing. This makes interval-censored data.
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The observed data (O), also known as partly interval-censored data, is the combina-

tion of exact and interval-censored data. We considered several values for n1 and n2

to cover different proportions of exact data.

We randomly sampled Li and Ri for each patient. Note that for exact data we

have Ri = Li + 1 and for interval-censored data Ri ≥ Li + 2. Then for j = 1, . . . , Li

we have yij = 0 and for j = Ri, . . . ,M , yij = 1. yij is missing for j = Li+1, . . . , Ri−1

in the interval-censored data. yij was 1 when the ith subject was in the follow-up visit

and was at risk at the jth visit and it was 0 otherwise. The Figure 3.2 demonstrates

the partly interval-censored data, using yij.

We computed the bias and variance, using the Louis’s method in 3.2 for original

complete data, exact data, and observed data based on B = 1500 replications. In

addition, we investigated the power of our test using 3.3.

We first considered the case where there was only one attribute (x1ij) in the model.

The EM algorithm (Section 3.1) was used for the parameter estimation. The variance

of the parameter estimator was calculated using Louis’ method (Section 3.2).

The results are shown in Table 3.1. For all the different combinations of n1 and

n2, the proposed estimator based on the observed data produce a smaller bias and a

smaller variance than that based on the exact data alone. In particular, for the case

of (250, 50), that is the one that contains 16% interval-censored data; the proposed

estimator produces a smaller bias and a smaller variance than that based on the

exact data of size 250 alone. We also notice that the more exact data we have,

smaller the bias and variance. These results have a quite similar pattern to those

in [26], who employed a proportional hazards model with partly interval-censored

data. D’Agostino et al. (1990) [9] notes that pooled repeated observations logistic

regression is close to the time-dependent covariate Cox regression analysis. Therefore,

this simulation result coincides with what we expected.
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Figure 3.1. Partly interval-censored data.

(n1, n2) BE BO BOC σ2
E σ2

O
σ2
OC

(250,50) 0.559 0.241 0.021 0.043 0.028 0.017
(200,100) 0.624 0.326 0.023 0.056 0.031 0.022
(150,150) 0.769 0.457 0.025 0.059 0.034 0.022
(100,200) 0.812 0.608 0.022 0.065 0.038 0.023
(50,250) 0.838 0.809 0.023 0.078 0.044 0.026

Table 3.1. Results for 1-dimensional β, βtrue = 3.6, B:Bias,
σ2:variance, E:exact data, O:observed data, and OC: original complete
data.
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Next, we computed the power of the test H0 : β = β0 vs. H1 : β ̸= β0. We consid-

ered both one-dimensional covariate and two-dimensional covariates. we considered 3

sample sizes (100, 200, and 300) and for each of these sample sizes we ran B = 1000

replications of the test. The power was calculated as the proportion of times H0 was

rejected at 5% level of significance. Both Figure 3.3 and Figure 3.4 show the powers

for different values of β0 and different sample sizes. The power curves are symmetric

for all the different sample sizes. As a sample size increases or the parameter values

are farther apart from the true parameter value (i.e., an effect size increases), the

corresponding power increases. From Figure 3.3, with a sample of size n = 300, one

can achieve 80% power for the effect size of 0.45. Moreover, for the effect size of 0.55,

a sample of size n = 200 is enough to achieve 80% power. [34] achieved about 80%

power in detecting the effect size of 0.75 for the proportional hazards model with a

sample of size 300 current status data. Considering that pooled repeated observa-

tions partly interval-censored data has more information than current status data,

our better power result is correct.

In summary, even a small amount of interval-censored data portion of an original

partly interval-censored data set does help our statistical inference to be more accurate

and more powerful.

3.5. Right and Left Censoring

In some special cases, the visiting time of some subjects in the data may have right

and/or left censoring. If a subject has not progressed at the last interview (yiLi
= 0)

and does not come back for the proceeding interview visits, then the subject’s time

to the event of interest is right-censored. In this case Li = Mi and Ri =∞. We can

impute the covariates xij using the linear growth curve in Section 3.1 and estimate

yij for the missed visits, j = Li + 1, . . . ,M . The E-step to estimate yij is given by
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E[yij|Y, x̂ij, α, β, Ti > ti,j−1]

= P [Ti = tj|tLi
< Ti ≤ tRi

, Y, x̂ij, α, β]

=
p̂ij

∏j−1
o=Li+1(1− p̂io)

p̂i,Li+1 +
∑M

k=Li+2[p̂ik
∏k−1

o=Li+1(1− p̂io)]
,

(26)

where

p̂ij =
exp(α+ β′x̂ij)

1 + exp(α + β′x̂ij)
.

However, extrapolating the covariates xij for j > Li using the linear growth curve

in Section 3.1 may well increase bias and variance.

If a subject’s first visit is at time k and the subject shows the symptoms of event

of interest, then yij is missing for j = 1, . . . , k−1, and yik = 1 (left censoring). In this

case, the covariate, xij, and response, yij, should be estimated for j ≤ k−1 at E-step.

We merely have Li = 0, Ri = k, and one observed covariate value xij. Therefore,

we cannot fit the subject-dependent growth curve to estimate the covariates at the

missed visits.

In summary, there is no merit to include individuals whose event-times are either

left-censored, or right -censored when fitting a logistic regression model with pooled

repeated observations.

19



Figure 3.2. Linear growth curve.
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Figure 3.3. Power of the test for one-dimensional β.
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4

Variable Selection for Pooled Repeated Observations Logistic Regression

Model With Partly Interval-Censored Data

4.1. Introduction to Variable Selection

When we work with a large data set, there are many variables that can be used for

prediction. However, not all these variables predict the response variable efficiently.

Additionally, having too many predictors decreases the accuracy of our predictions.

Our goal is to choose the best subset of the data to use for prediction and making

inferences. This is done through variable selection techniques. They help us remove

the redundant covariates from the data.

4.2. Model

Consider the problem where there are many covariates in the model and we are

interested in selecting a subset of them (variable selection) and estimating the covari-

ate effects based on this subset model. Selecting meaningful variables in multivariate

models, increases prediction accuracy. There are various techniques for variable se-

lection. However, classical variable selection methods, such as the forward selection

and the backward elimination methods are time-consuming, unstable, and sometimes

unreliable for making inferences, [37]. One of the well-known techniques for variable

selection is the least absolute shrinkage and selection operator (LASSO). It is one of

the well-known shrinkage methods. LASSO was introduced by Tibshirani [40]. The

LASSO estimator for the linear model Y = Xβ + ε is defined by
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β̂LASSO = argminβ(β − β̂)′X ′X(β − β̂)(27)

subject to∥β∥ ≤ λ

(L1norm penalization)

.

∥.∥ is the Euclidean norm (not squared). λ is called the tuning parameter and

it controls the amount of shrinkage that is applied to the β estimates. The main

feature of the LASSO method is that it sets some of the coefficients to 0 and shrinks

the others. This method simultaneously selects variables and estimates parameters

of the model, [37]. Since the LASSO method has good computational properties, its

solution path is predictable. If we are analyzing the complete data (data without any

censoring), the LASSO estimate of the vector of parameters, β is the solution to

(28) β̂LASSO = argmax
β

(l(β) + λ∥β∥).

However, in the case of partly interval-censored data with pooled repeated ob-

servations, some of the response variables, yij are missing. In this case, we need to

use an imputation method, e.g., the EM algorithm to iteratively, impute the missing

observations, yij for the censored times (E-step), and then use the imputed values to

update the expected value of the likelihood, conditioned on the missing data (M-step).

The E-step, when there is only one progression, will be computed similar to Equa-

tion (22) in the previous chapter.
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E[yij|Y, x̂ij, α, β, Ti > ti,j−1]

= P [Ti = tj|tLi
< Ti ≤ tRi

, Y, x̂ij, α, β] =

p̂ij

p̂i,Li+1+
∑Ri−1

k=Li+2[p̂ik
∏k−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j = Li + 1,

p̂ij
∏j−1

o=Li+1(1−p̂io)

p̂i,Li+1+
∑Ri−1

k=Li+2[p̂ik
∏k−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j ∈ {Li + 2, ..., Ri − 1},∏j−1
o=Li+1(1−p̂io)

p̂i,Li+1+
∑Ri−1

k=Li+2[p̂ik
∏k−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j = Ri,

(29)

where

(30) p̂ij =
exp(α + β′x̂ij)

1 + exp(α + β′x̂ij)

However, the optimization on M-step will be updated. We will add the the LASSO

penalty term (L1 norm) to shrink the parameters β. Note that the intercept, α is not

included in the penalty term, [33].

(31) (α̂, β̂) = argmax (lα,β + λ∥β∥)|ŷij, x̂ij.

If there are groups of highly correlated variables in the data, the LASSO method

tends to choose only one variable from each group. When categorical predictors (fac-

tors) are present in the data, the LASSO solution only selects individual dummy

variables instead of whole factors. The group LASSO is an extension of the LASSO

penalty and can overcomes this problem. The group LASSO is used on pre-defined
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groups of variables. Furthermore, the group LASSO estimator for the logistic regres-

sion is shown to be statistically consistent, even if the number of predictors is much

larger than sample size, [33]. The group LASSO estimator for the complete data is:

(32) β̂LASSO = argmax
β

(l(β) + λ
L∑
l=1

∥βl∥).

Instead of setting individual β’s to zero, this method sets a group of coefficients, βl

to zero. However, this method selects a larger number of groups than it is necessary,

which causes some noisy variables to be included in the model, [37]. Additionally,

the groups of coefficients are pre-defined in this method. Therefore, unless there

are reasonable ways (prior information, previous literature, etc.) of grouping the

variables, the usual LASSO can be used for variable selection.

4.2.1. Choice of λ. There are several criteria for choosing the penalty parame-

ter, λ, including the prediction error and cross-validation. We would use the criterion

that was suggested by [40]. The prediction error (PE) is estimated over a grid of

values of λ from 0 to 1. λ is the value that yields the lowest PE, where

(33) PE = E(Y,X)[
n∑

i=1

Mi∑
j=1

(Yij − Ŷij)
2]

The tuning parameter, λ controls the amount of penalization. However, as λ gets

larger, more coefficients, β are set to zero.

4.3. EM Algorithm for Variable Selection Via LASSO and Group LASSO

We will introduce an EM based algorithm that can be used for pooled repeated

partly interval-censored data. This algorithm finds the LASSO estimator, βLASSO

and the tuning parameter, λ, such that the prediction error is minimized.
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EM algorithm for LASSO variable selection in pooled repeated

partly interval-censored data

Step 1 Use the exact data (data without any censoring) to draw the

LASSO trace. Use the plot to get a plausible range for λ.

Step 2 Define the initial value for the parameters, β(0).

Step 3 Run the EM algorithm for all the values in the range of λ from

Step 1

Step 3.1(E Step) Estimate ŷij for Li < j ≤ Ri using (22).

Step 3.2(M Step) Find β̂
(r)
LASSO using (32).

Repeat steps (3.1)-(3.2) until β̂
(r)
LASSO converges.

Step 4 Find the prediction error, PE(r) using β̂
(r)
LASSO.

β̂LASSO is found by

β̂LASSO = min
β̂
(r)
LASSO

PE(r)

Next, we would like to introduce an algorithm for variable selection using the group

LASSO. If there are some reasonable ways for grouping the covariates, one can use

this method. Otherwise, we use the usual method. [33] has introduced an algorithms

for the logistic group LASSO based on block co-ordinate descent minimization. We

have adopted [33]’s algorithm to modify the maximization step of the EM algorithm

in (3.1). This will provide an EM based variable selection algorithm via group LASSO.

Let G be the number of groups for group LASSO. Note that each group, g can

contain one or more covariates and these variables are pre-specified. Additionally,

we do not penalize the intercept. Let β−g be the parameter vector β when setting

βg to 0. For example, let β = (β1, β2, β3, β4, β5)
T and group g be βg = (β1, β3)

T .

Then, β−g = (0, β2, 0, β4, β5)
T . dfg is the degrees of freedom for gth predictor. For

a continuous variable, df = 1 and for a categorical variable with c levels, we have
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df = c− 1. Let s(dfg) = df
1/2
g . Also, ||−→u ||22 =

∑n
i=1 u

2
i and −→u ⊆ IRn.

EM algorithm for group LASSO variable selection in pooled

repeated partly interval-censored data

Step 1 Define the initial value for the parameters, β(0).

Step 2 Run the EM algorithm.

Step 2.1(E Step) Estimate ŷij for Li < j ≤ Ri using (22).

Step 2.2(M Step) β̂ = argmaxβ[l(β)− λ
∑G

g=1 s(dfg)||βg||2].

Loop over groups, for g = 1, . . . , G.

Step 2.2.1 Find p̂ij(β−g) =
exp(α+β̂−gxij)

1+exp(α+β̂−gxij)
.

Step 2.2.2 If ||XT
g (yij − p̂ij(β−g))||2 ≤ λs(dfg) then βg ← 0

else βg ← argmaxβg
[l(β)− λ

∑G
g=1 s(dfg)||βg||2].

Repeat step 2 until β̂ converges.

4.4. Simulation

For illustrating this method, we considered n = 300 subjects who have M = 7

follow-up visits for each subject. The partly interval-censored data is simulated similar

to Section 3.4. For variable selection, we generated five time-dependent covariates as

follows:

x1ij ∼ N(5.8 + 0.3tj−1, 0.1).

x2ij ∼ N(0.4 + 0.15tj−1, 0.1).

x3ij ∼ Binomial(size = 5, prob = 1/2).

x4ij ∼ Gamma(shape = 3, rate = 4).

x5ij ∼ Uniform(0, 1).
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x3ij represents an original covariate, while the rest of simulated time-dependent

covariates are continuous. Note that in NLSY97, we had an ordinal covariate that

represented an individual’s self-evaluation of general state of health and it had 5

levels.

We will use the EM algorithm in Section 4.3 for variable selection via LASSO.

Additionally, we need an estimation of the tuning parameter, λ. This is done by

minimizing the prediction error. In linear models, you can write ŷij as a function of λ.

However, in our model, β̂ does not have a closed form. Therefore, we cannot write the

prediction error in closed form and need to minimize it numerically. Finding a proper

estimation of λ is essential, since overestimating it will cause more coefficients to be

zero than necessary, [45]. The graph of the LASSO trace illustrates the convergence

path for various values of λ, [27] and [1].

Figure 4.1 shows the path for LASSO trace and prediction error for different values

of λ using the simulated data. The simulated data supports the importance of not

shrinking too many covariates for model selection via LASSO.
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5

Pooled Repeated Observations Ridge Logistic Regression Model With

Partly Interval-Censored Data

5.1. Introduction

Often, when one tries to build a regression model with many covariates, they may

find out that there exists a relationship between some of the predicting variables.

This situation is referred to as ”multicollinearity” [35]. In this case, the ordinary

least squares (OLS) estimators of the regression parameters may not work properly.

Consequences of using usual estimators when we have multicollinearity are 1) Esti-

mators may not be very accurate and can be far away from true estimators, and 2)

Large variances for the estimators [31]. (Since we need to compute the inverse of X ′X

matrix where X is the design matrix.) [44] has studied the effects of multicollinearity

considering various collinearity patterns.

There are several methods for parameter estimation in case of multicollinearity.

However, a method that has been used extensively, is called ”Ridge Regression”.

Ridge regression was introduced by Hoerl and Kennard [21] and it is the most com-

monly used method to combat multicollinearity. It adds a L2 norm penalization on pa-

rameters. The ridge estimator, β̂Ridge for the ill-conditioned linear model Y = Xβ+ε

is the solution to
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β̂Ridge = argminβ(β − β̂)′X ′X(β − β̂)(34)

subject to∥β∥2 ≤ λ

(L2norm penalization)

.

The ridge estimator is part of the shrinkage estimators, since it shrinks the least-

squares estimator toward the origin. The resulting estimates from applying ridge

regression, β̂Ridge will reduce the prediction variance, even though they are biased.

Some alternatives to ridge regression have been introduced in literature. Jensen

and Ramirez [24] proposed surrogate regression in 2010. In this method the design

matrix, X is modified to Xλ = P1(Diag(ζ2i + λI)
1
2 )Q′, where P1,Q, and ζi are ob-

tained by applying the singular value decomposition (SVD) on the X ′X matrix. The

surrogate estimator, β̂surrogate is the solution to the normal equation X ′
λXλβ = X ′

λY .

We conducted simulations [10] to compare the performance of the ridge and surrogate

estimators. The results show that surrogate regression model has smaller AIC and

SSE than those of ridge regression model, although the difference is negligible. Ridge

and Surrogate estimators use a constant, λ as the tuning parameter, to modify the

ordinary least square (OLS) estimators to get a better estimate. We would like a

smaller value for λ since a larger λ would lead to a larger bias and also a larger value

of mean squared error (MSE), MSE = V ariance + Bias2. Although [24] showed

that SSE(βridge) < SSE(βsurrogate) and surrogate estimator has a smaller variance

inflation factor (VIF) and condition number, our simulations revealed the SSEs do

not differ significantly for small values of λ.
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Double penalized estimators were introduced by Shen and Gao [38] to simulta-

neously combat separation and multicollinearitry in multiple logistic regression. The

double penalized likelihood function adds a second penalty term to Firth’s penalized

likelihood function [17] by including a ridge parameter which forces the parameters

to spherical restrictions, βDP = argmax[l(β) + 1
2
log | A | −λ∥β∥2], where A is the

Fisher information matrix for the log-likelihood function, l(β). However, the simula-

tion that [38] carried out, did not induce collinearity and it only induced separation

in the data. [20] carried out simulations to investigate the performance of double-

penalized estimator in presence of multicollinearity. Although the differences were

small, the iterative ridge estimator had a better behavior than the Shen and Gao’s

double-penalized estimator, when the problems of collinearity appear in the data.

5.2. Model

Now we consider the case when there are several covariates, xij in the model and

there is high degree of correlation among these predictor variables, i.e., some of these

covariates are correlated. This situation is called ”Multicollinearity” in the literature.

Using the regular method for parameter estimation in this case leads to estimates that

are far from true values and have large variance.

However, since there are large numbers of informative covariates in model, which

have high degrees of correlation, we would like to apply the ridge estimation technique

by adding the L2 norm penalty to the model in Section 3.1. If we have complete data

(no censoring), the ridge estimator is the solution to the equation

(35) β̂Ridge = argmax
β

(l(β) + λ∥β∥2).
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where l(β) =
∑n

i=1

∑Mi

j=1[− log(1+exp(α+β′xij))+yij(α+β′xij)], is the complete

log-likelihood, ∥.∥ is the Euclidean norm of the parameter vector, and λ is the tuning

parameter.

In the above model, we can expect to have partly interval-censored pooled re-

peated observations (PRO) regression model where some subjects’ event of interest

(progression to a new state) and time-varying covariate values were missing within a

time interval due to that fact that these subjects missed their follow-up visits. In this

case, we use the expectation-maximization (EM) algorithm to iteratively, impute the

missing observations, yij for the censored times (E-step), and then use the imputed

values to update the expected value of the penalized likelihood, conditioned on the

missing data (M-step).

The E-step, when there is only one progression, will be computed similar to the

previous sections.

E[yij|Y, x̂ij, α, β, Ti > ti,j−1]

= P [Ti = tj|tLi
< Ti ≤ tRi

, Y, x̂ij, α, β] =

p̂ij

p̂i,Li+1+
∑Ri−1

k=Li+2[p̂ik
∏k−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j = Li + 1,

p̂ij
∏j−1

o=Li+1(1−p̂io)

p̂i,Li+1+
∑Ri−1

k=Li+2[p̂ik
∏k−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j ∈ {Li + 2, ..., Ri − 1},∏j−1
o=Li+1(1−p̂io)

p̂i,Li+1+
∑Ri−1

k=Li+2[p̂ik
∏k−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j = Ri,

(36)

34



where

(37) p̂ij =
exp(α + β′x̂ij)

1 + exp(α + β′x̂ij)

However, the optimization in M-step will be updated. We will add the the ridge

penalty term (L2 norm) to shrink the parameters β. Note that the intercept, α is not

included in the penalty term.

(38) (α̂, β̂) = argmax (lα,β + λ∥β∥2)|ŷij, x̂ij.

The expected value in the above equation does not have a closed form, therefore,

we can use the law of large numbers and Monte Carlo techniques to approximate it.

Furthermore, the above equation does not have a closed form for β. However, we

can use the optimization packages that are available for R software, to solve for the

parameter vector β. To increase the convergence rate of the optimization, we can

provide the Jacobian, and Hessian of the equation.

5.2.1. Choice of λ. The value of the tuning parameter, λ is unknown and

it needs to be estimated in order to perform the analysis. [22]’s criterion was to

choose the value of λ that minimizes the mean squared error of the ridge estima-

tor. Cross validation is another criterion that can be used, however it is very time-

consuming, [6]. [14] also suggested to iteratively update the value of λ at each iteration

by minimizing the mean squared error (MSE) in the M-step of the EM algorithm.

When the response variable is continuous (linear models), the estimated parameters

have a closed form and can be written as a function of λ. In this case, MSE can

be written as a function of λ. However, in the case of binary responses (generalized

linear models), the parameter estimates may not have a closed form and minimizing

MSE becomes very inefficient.
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Besides the traditional methods that are mentioned for choosing the tuning pa-

rameter, λ in ridge regression, another criterion is inspection of the ridge trace plot.

In this method the estimated parameters, β̂Ridge are plotted for various values of λ.

In this method we inspect the ridge trace to find out for what value of λ the ridge

trace starts stabilizing.

5.3. Simulation Study

We conducted simulations to study the proposed model. We considered n = 300

subjects who have M = 7 follow-up visits for each subject. The partly interval-

censored data is simulated similar to Section 3.4. For illustrating covariates in the

presence of multicollinearity, we generated five time-dependent covariates as follows:

x1ij ∼ N(5.8 + 0.3tj−1, 0.1).

x2ij ∼ N(0.4 + 0.15tj−1, 0.1).

x3ij = x1ij + 2 ∗ x2ij + random noise

x4ij ∼ Gamma(shape = 3, rate = 4).

Since some of the covariates are highly correlated, the estimation method in Sec-

tion 3.1 does not work. The optimization in M-step cannot be performed in the

absence of the penalty term and hence, the algorithm does not converge. Therefore,

the starting value of λ for the ridge trace should be greater than zero, for example

λinitial = 0.001. We plot the ridge trace for values of λ > 0. Ridge method uses λ,

to modify the M-step in Section 3.1 to get parameter estimates in presence of mul-

ticollinearity. Note that we would like a smaller value for λ, since a larger λ would

lead to a larger bias and also a larger MSE (MSE = V ariance+Bias2).
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Figure 5.1 shows the ridge trace versus different values of λ for the simulated

data. It suggests that using a value of λ ≈ 0.03 is appropriate. Table 5.1 shows the

parameter estimates for this tuning parameter.
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Figure 5.1. The ridge trace.

Parameter α β1 β2 β3 β4

Estimate -0.18 -0.19 0.31 0.44 -1.55

Table 5.1. Simulation Results for Pooled Repeated Observations
Ridge Logistic Regression
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6

Pooled Repeated Observations Logistic Regression Model With Partly

Interval-Censored Data for Two Progression States

There are situations where the event of interest have several states that are chrono-

logical. Consider the model in Section 3.1. That model accounts for the case, when

we are attempting to predict one progression state from time-varying covariates. We

would like to extend that model to the situation when there are at least two pro-

gression stages. First, consider the model when there are two states. These states

are chronological, which means that the 1st progression occurs before the 2nd pro-

gression. The two events of interest in this model are the first and second pro-

gressions. Some subjects complete all of their follow-up visits and their progression

times are determined accurately and we have completely observed the data for these

subjects.However, since the study is happening over time, others miss some of their

follow-up visits and when they come back, they learn that either one of their events of

interest (or both) has already occurred. The events for the latter subjects is censored

within the person-specific time interval. This is known as partly interval-censored

failure time data.

We define pooled repeated observations partly interval-censored data for two pro-

gression states. We have pooled repeated observations but some binary outcomes are

incomplete. They can only be determined with certain unknown probabilities within

some specific follow-up visits. To analyze this model, we need to combine some mod-

els that handle pooled repeated observations without censoring and methods that

deal with partly or completely interval-censored data.
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The main goal of this study is to estimate the effects of the time-dependent covari-

ates on the occurrence of the events of interest (e.g., different states of progression to a

disease, e.g., different stages of cancer, different stages from being a non-smoker to be-

coming a heavy smoker, etc.). We extend the model in Chapter (3) to the problem of

estimating the covariate effects, when the events of interest consist of two progression

states and the responses are pooled, repeated and partly interval-censored.

[7] proposed a model to estimate the regression coefficients of a multi-state model

where the transition direction is irreversible and [15] proposed a CEST to test for

the treatment effect of a two-state model with binary responses. The treatment effect

in [15] was not time-dependent. Our model extends the model in [15] to estimate the

time-varying covariate effects on the occupance of the first and second progressions.

6.1. Notation

We are using the following notation for the model where there are two chronolog-

ical events of interest, i.e., progressions. Let Yij be the indicator of whether or not

the subject i has had the 1st event of interest at time j. (Assume that the subject i

showed the first sign of the 1st progression after entering the study and at time j = 0,

before the study starts, they were disease-free, i.e., Yi0 = 0). Let Zij be the indicator

for whether or not subject i has had the 2nd event of interest at time j. j = 1, . . . ,M

are the times at which the 1st progression was assessed, the 2nd progression was

recorded, or a subject was censored. xij is the value of the time-dependent covariate

for subject i, during the jth visit.

Li is the index of the last time that subject i was visited and was event-free (did

not experience the first event of interest, YiLi
= 0). Ri is the index of the first event’s

time (first time when subject i is observed with the 1st progression, YiRi
= 1). It is the

index of the first time that subject i was observed with an event. Mi is the index of
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the last time that subject i was observed in the study. L∗
i is the index of the last time

that subject i was visited and did not experience the second event of interest, given

that the first event of interest has happened. i.e., Zik = 0 | Yij = 1,k > j. R∗
i is the

index of the 2nd event’s time (first time that subject i is observed with the 2nd event

of interest, given the first event has previously happened. i.e., Zik = 1 | Yij = 1,k > j.

Let Ti be the time that subject i has experienced the 1st event of interest, i =

1, . . . , n. T ∗
i is the time that subject i has the 2nd event of interest, i = 1, . . . , n. Lastly,

tj is the pre-specified follow-up visits at which subjects are monitored, j = 1, . . . ,M .

6.2. Model

Since we are interested in modeling binary outcomes, we use a logit link to model

the probability of the event as in [11]. We model the first progression by

(39) logit(pij) = log(pij/(1− pij)) = α+ β′xij,

where

(40) pij = P (yij = 1|xij, Ti > tj−1).

pij is the probability of observing the 1st progression at the jth interval, given a

subject was free of progression through tj−1 and xij is the covariate at time tj−1 for

individual i.

The second progression by

(41) logit(qik) = log(qik/(1− qik)) = θ + γ′xik,
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where

(42) qik = P (zik = 1|yij = 1, k > j, xik, T
∗
i > tk−1).

qik is the probability of observing the 2nd progression at the kth visit for subject

i, given the 2nd progression happens after the 1st progression at time j, where k > j

and xij is the covariate at time tj−1.

We construct the full (complete) log-likelihood, assuming all observations were

exact.

(43)

l =
n∑

i=1

Mi∑
j=1

{[− log(1+exp(α+β′xij))+yij(α+β′xij)]+yij[− log(1+exp(θ+γ′xij))

+ zij(θ + γ′xij)]}

We can rewrite the log-likelihood in (43) as

(44) l =
n∑

i=1

Mi∑
j=1

{l(1)ij + yijl
(2)
ij }

where l
(1)
ij is the contribution of subject i at time j to the likelihood for the 1st

progression and l
(2)
ij is the contribution of subject i at time j to the likelihood for the

2nd progression. Note that as long as yij = 0, there is no contribution from l
(2)
ij to

the likelihood. Starting from j = Li + 1, the contribution of l
(2)
ij starts. Figure 6.1

demonstrates the contribution of the second progression to the log-likelihood.
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6.3. Different Patterns for the Partly Interval-Censored Events

We are studying two chronological events and we are dealing with partly interval

censored observations. First thing to consider is that there are particular combina-

tions at which the binary responses are defined. Table 6.1 demonstrates the possible

scenarios. Since the second progression cannot happen prior to the first progression,

Yij = 0 implies that Zik = 0, for k > j. Figure 6.2 demonstrates the outcome for a

subject who has complete observations.

For the subjects, who miss some of their follow-up visits and have incomplete

data, there are several patterns at which the events are censored.

Case 1. The first progression, yij is interval-censored and the second progression

zij is completely observed. In this case yij is missing for j = Li + 1, . . . , Ri − 1,

L∗
i + 1 = R∗

i , and Ri ≤ L∗
i .

Case 2. The second progression, zij is interval-censored and the first progression

yij is completely observed. In this case zij is missing for j = L∗
i + 1, . . . , R∗

i − 1,

Li + 1 = Ri, and Ri ≤ L∗
i .

Case 3. Both progressions, yij and zij are interval-censored. This can happen in

two ways. Figure 6.3 displays the possible scenarios.

Case 3.1. The progressions are censored within two mutually exclusive inter-

vals. In this case yij is missing for j = Li + 1, . . . , Ri − 1 and zij is missing for

j = L∗
i + 1, . . . , R∗

i − 1, where Ri < L∗
i + 1. Figure 6.4 demonstrates these two sepa-

rates intervals.

Case 3.2. The progressions are censored within the same intervals. In this case

yij and zij are missing for j = Li + 1, . . . , Ri − 1. Additionally, we have Li = L∗
i and

Ri = R∗
i . Figure 6.5 demonstrates these two intervals.
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Figure 6.6 shows the partly interval-censored data for two progression, with an

example of all the above patterns for the interval censoring of two events.

6.4. Parameter Estimation Using EM Algorithm

We use EM algorithm [12] to estimate the parameters when we have partly

interval-censored data. Whenever subjects miss their follow-up visits, their covariate

xij is missing as well as the responses, yij, zij, or both. xij could be continuous or

categorical. We assume that xij has a linear growth curve with fixed effects.

(45) xij = η0i + η1itj−1 + ϵij

where ϵij ∼ N(0, σ2
ϵ ) , cov(ϵij, ϵij′) = 0, j ̸= j′. We estimate xij by x̂ij = η̂0i +

η̂1itj−1 for Li + 1 ≤ j ≤ Ri − 1, where η̂0i and η̂1i are least squares estimators.

E-step At E-step, we need to estimate yij and zij for the missed visits. However,

the E-step would be different for each of the interval-censoring patterns in (6.3).
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Case 1. We need to estimate yij for j = Li + 1, . . . , Ri.

E[yij|Y, Z, x̂ij, α, β, θ, γ, tLi
< Ti ≤ tRi

, T ∗
i = tR∗

i
, k = R∗

i > j]

= P [Ti = tj|tLi
< Ti ≤ tRi

, T ∗
i = tR∗

i
, k = R∗

i > j, Y, Z, x̂ij, α, β, θ, γ] =

p̂ij

p̂i,Li+1+
∑Ri−1

w=Li+2[p̂iw
∏w−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j = Li + 1,

p̂ij
∏j−1

o=Li+1(1−p̂io)

p̂i,Li+1+
∑Ri−1

w=Li+2[p̂iw
∏w−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j ∈ {Li + 2, ..., Ri − 1},∏j−1
o=Li+1(1−p̂io)

p̂i,Li+1+
∑Ri−1

w=Li+2[p̂iw
∏w−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j = Ri,

(46)

where

(47) p̂ij =
exp(α + β′x̂ij)

1 + exp(α + β′x̂ij)
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Case 2. We need to estimate zik for k = L∗
i + 1, . . . , R∗

i .

E[zik|Y, Z, x̂ij, α, β, θ, γ, Ti = tRi
, tL∗

i
< T ∗

i ≤ tR∗
i
, , k > j = Ri]

= P [T ∗
i = tk|Ti = tRi

, tL∗
i
< T ∗

i ≤ tR∗
i
, k > j = Ri, Y, Z, x̂ij, α, β, θ, γ] =

q̂ik

q̂i,L∗
i
+1+

∑R∗
i
−1

w=L∗
i
+2

[q̂iw
∏w−1

o=L∗
i
+1

(1−q̂io)]+
∏R∗

i
−1

o=L∗
i
+1

(1−q̂io)

if k = L∗
i + 1,

q̂ik
∏j−1

o=L∗
i
+1

(1−q̂io)

q̂i,L∗
i
+1+

∑R∗
i
−1

w=L∗
i
+2

[q̂iw
∏w−1

o=L∗
i
+1

(1−q̂io)]+
∏R∗

i
−1

o=L∗
i
+1

(1−q̂io)

if k ∈ {L∗
i + 2, ..., R∗

i − 1},∏j−1
o=L∗

i
+1

(1−q̂io)

q̂i,L∗
i
+1+

∑R∗
i
−1

w=L∗
i
+2

[q̂iw
∏w−1

o=L∗
i
+1

(1−q̂io)]+
∏R∗

i
−1

o=L∗
i
+1

(1−q̂io)

if k = R∗
i ,

(48)

where

(49) q̂ik =
exp(θ + γ′x̂ik)

1 + exp(θ + γ′x̂ik)

Case 3.1. When both progressions are censored in mutually exclusive intervals,

we need to estimate yij for j = Li + 1, . . . , Ri and zik for k = L∗
i + 1, . . . , R∗

i , where

k > j. This can be done by using formulae (46) and (48). Figure 6.4 demonstrates

the indices of the responses that need to be estimated at E-step.

Case 3.2. When both progressions are censored within the same interval (Li = L∗
i

and Ri = R∗
i ), due to the time hierarchy between the two progressions (k > j), we

cannot use the same formulae as in (46) and (48) for E-step. In this scenario, yij

needs to be estimated for j = Li + 1, . . . , Ri − 1 and zik for k = L∗
i + 2, . . . , R∗

i . The

E-step in this is as follows.
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E[yij|Y, Z, x̂ij, α, β, θ, γ, tLi
< Ti ≤ tRi

, T ∗
i = tR∗

i
, k = R∗

i > j]

= P [Ti = tj|tLi
< Ti ≤ tRi

, T ∗
i = tR∗

i
, k = R∗

i > j, Y, Z, x̂ij, α, β, θ, γ] =

p̂ij

p̂i,Li+1+
∑Ri−1

w=Li+2[p̂iw
∏w−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j = Li + 1,

p̂ij
∏j−1

o=Li+1(1−p̂io)

p̂i,Li+1+
∑Ri−1

w=Li+2[p̂iw
∏w−1

o=Li+1(1−p̂io)]+
∏Ri−1

o=Li+1(1−p̂io)

if j ∈ {Li + 2, ..., Ri − 1},

(50)

where

(51) p̂ij =
exp(α + β′x̂ij)

1 + exp(α + β′x̂ij)

and

E[zik|Y, Z, x̂ij, α, β, θ, γ, Ti = tRi
, tL∗

i
< T ∗

i ≤ tR∗
i
, , k > j = Ri]

= P [T ∗
i = tk|Ti = tRi

, tL∗
i
< T ∗

i ≤ tR∗
i
, k > j = Ri, Y, Z, x̂ij, α, β, θ, γ] =

q̂ik
∏j−1

o=L∗
i
+1

(1−q̂io)

q̂i,L∗
i
+1+

∑R∗
i
−1

w=L∗
i
+2

[q̂iw
∏w−1

o=L∗
i
+1

(1−q̂io)]+
∏R∗

i
−1

o=L∗
i
+1

(1−q̂io)

if k ∈ {L∗
i + 2, ..., R∗

i − 1},∏j−1
o=L∗

i
+1

(1−q̂io)

q̂i,L∗
i
+1+

∑R∗
i
−1

w=L∗
i
+2

[q̂iw
∏w−1

o=L∗
i
+1

(1−q̂io)]+
∏R∗

i
−1

o=L∗
i
+1

(1−q̂io)

if k = R∗
i ,

(52)

where

(53) q̂ik =
exp(θ + γ′x̂ik)

1 + exp(θ + γ′x̂ik)

Figure 6.5 displays the time intervals for which the 1st and 2nd progressions need

to be estimated at E-step.
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M-step We find the values of α, β, θ, and γ that maximize the expected value of

log-likelihood in equation (44), conditioned on the missing data. Therefore, we have

(54) (α̂, β̂, θ̂, γ̂) = argmax lα,β,θ,γ|ŷij, ẑij, x̂ij.

Expressions for E-step (46), (48), (50), and (52) - (54) are repeated until conver-

gence. As there are no closed forms for α̂, β̂, θ̂, γ̂, we use an optimization package

optim in R.

6.5. Variance Estimation

We use Louis’ method for variance estimation, which is based on the missing

information principle. Using the notation in [39], we have

−∂2 logP (ζ|W )

∂ζ2
= −

∫
z

∂2 logP (ζ|W,V )

∂ζ2
P (V |ζ,W )dZ

−V ar(
−∂ logP (ζ|W,V )

∂ζ
),(55)

where W is the observed data, i.e., partly interval-censored pooled repeated ob-

servations for two progressions, V is the latent data, the true unknown counterpart

of the interval-censored portion of W , ζ|W is the observed posterior, and ζ|W,V is

the augmented posterior.

Since there is no closed form for the missing information, the variance in equa-

tion (55) was computed using Monte Carlo simulation.

Here, there are four parameters, α and β for the first progression, and the param-

eters for the second progression are θ and γ. Let Σ be the variance-covariance matrix

of all the parameters, Σ1 be the variance-covariance matrix of the parameters of the
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1st progression, and Σ2 be the variance-covariance matrix of the parameters of the

2nd progression. Furthermore, let Iobserved be the observed information matrix of all

the parameters, I1,observed be the observed information matrix of the parameters of 1st

progression, and I2,observed be the observed information matrix of the parameters of

2nd progression. We know that Σ = I−1
observed and by applying Louis’ method we can

obtain Iobserved using Iobserved = Icomplete − Imissing. Therefore, we have

(56) Σ = I−1
observed =

 I1,observed 0

0 I2,observed

−1

=

 I−1
1,observed 0

0 I−1
2,observed


since ∂2(.)

∂αθ
= ∂2(.)

∂αγ
= ∂2(.)

∂βθ
= ∂2(.)

∂βγ
= 0 which implies that cov(α, θ) = cov(α, γ) =

cov(β, θ) = cov(β, γ), i.e., the parameters of the first progression are independent of

the parameters of the second progression. Note that the binary responses of the two

progressions are dependent due to the chronological hierarchy between them.

The above result is very computationally efficient, because we can partition the

high dimensional observed information matrix Iobserved and find the inverses of the

two partitioned pieces in order to obtain the variance-covariance matrix Σ.

6.6. Simulation Study

Furthermore, we applied these method to the simulated data. We simulated n =

700 subjects and each of them had M = 10 follow-up visits. We randomly selected

some subjects. Some of the follow-up visits of these subjects were randomly assigned

missing according to the pattern in Section 6.3. We sampled Li, Ri, L
∗
i , and R∗

i using

a discrete uniform distribution over appropriate visit indices. This makes interval-

censored data. The observed data , also known as partly interval-censored data, is the

combination of exact and interval-censored data. We assumed that the simulated data
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only contains interval-censored times. Additionally, we generated x1ij. It represents

a continuous covariate.

x1ij ∼ N(5.8 + 0.3tj−1, 0.1).

We computed the parameter estimates using the EM algorithm in Section 6.4, and

variance using the Louis’s method in Section 6.5 for the observed data. In addition,

we investigated the power of our tests.

6.7. Results

We first simulated the data using Section 6.6. The EM algorithm in Section 6.4

was used for the estimation of the two progressions. The variances of the parameter

estimates were calculated using Louis‘ method, described in Section 6.5. Further-

more, we computed the percent relative bias using | estimate−true
true

| × 100% as in [25].

The results are summarized in Table 6.2. The baseline parameter of the first pro-

gression, α was estimates as α̂ = −22.92 with the standard error of 0.57. The EM

estimate of covariate effect for the first progression, β was β̂ = 3.20. The standard

error was 0.08. The percent relative biases for α and β were 0.36 and 6.62, respectively.

The estimated baseline parameter of the second progression was θ̂ = −16.73 with

S.E. = 3.29. The estimate of covariate effect for the second progression, γ was γ̂ =

2.03 with S.E. = 0.4. Comparing the covariate effect on first and second progression,

shows it has a positive effect on the log-odds of the progressions. However, it affects

the log-odds of the first progression at a faster pace than the second progression.

Additionally, the parameters of the second progression have larger standard deviations

in comparison to the parameters of the first progression. Note that for each individual

i, more observations (follow-up visits) are used for the calculations of the variance.
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Figure 6.1. Contribution of the 2nd progression to the log-likelihood
function.

Yij Zik, k > j Note

0 0

0 1 Impossible

1 0

1 1

Table 6.1. Outcomes of the Two Progressions

Figure 6.2. Complete data for two progressions.

Parameter Estimate S.E. PercentRelativeBias

α -22.92 0.57 0.36

β 3.20 0.08 6.62

θ -16.73 3.29 4.59

γ 2.03 0.40 1.52

Table 6.2. Simulation Results for Two Progressions Using One Covariate
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Next, the power of tests H0 : β = β0 vs. H1 : β ̸= β0 and H0 : γ = γ0 vs.

H1 : γ ̸= γ0. We considered 4 sample sizes (300, 500, 600, and 700)and for each

of these sample sizes we ran B = 1000 replications of these tests. The power was

calculated for each of the sample sizes by R/B, where R is the number of times

when H0 was rejected in the B replications. Furthermore, we considered 5% level of

significance for all of the power simulations. Figure 6.7 shows the power for different

values of β0, γ0, and different sample sizes. As sample size increases, the bias decreases

and the power increases. The power curve was symmetric for all different sample sizes.

Sample size of n = 300 had the largest bias (0.4 for β and 1.7 for γ).Power was the

lowest for this sample size. The power curves of sample sizes of 600 and 700 were very

close to each other. As the sample size increases or the parameter values are farther

apart from the true parameter value (i.e., an effect size increases), the corresponding

power increases. Note that as the number of subjects (n) increases, the parameter

estimates are more accurate and the EM algorithm converges faster.
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Figure 6.3. Both progressions are interval-censored. (Case 3)

Figure 6.4. The two events are censored in different intervals. (Case
3.1)
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Figure 6.5. The two events are censored within the same interval.
(Case 3.2)

Figure 6.6. Partly interval-censored data for two progressions.
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Figure 6.7. Power of the test for two peogressions
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7

Analysis of NLSY97 Data

7.1. Analysis of One Progression

The National Longitudinal Survey of Youth 1997 (NLSY97) is an ongoing study of

subjects who were ages 12-18 in 1997. For the purpose of illustration of our methods,

we use the NLSY97 data from 1997 to 2013 ( [41]). We illustrate how to analyze the

effects of covariates that may affect an adolescent’s risk of progressing in categories

of tobacco smoking.

There are 8984 subjects in the data set. We analyze the 1822 subjects who had

not ever smoked a single cigarette at the beginning of the study (1997) but by the

end of 2013 became frequent smokers (smoking for more than 10 days in a month).

The response variable is defined as

(57) yij =


1, a frequent smoker

0, not a frequent smoker.

Exact observations are available in about 87.5%. The 1st covariate, x1ij, is the

number of days an individual drank alcohol in the last 30 days. The 2nd covariate,

x2ij is an individual’s self-evaluation of “general state of health”. x2ij is defined as:

1 being excellent, 2 being very good, 3 being good, 4 being fair, and 5 being poor.

The covariate effects are estimated by the EM algorithm in Section 3.1. The standard

errors of these estimators are estimated by Louis’ method in Section 3.2. The results

are shown in Table 7.1. Fixing an individual’s self-evaluated health level, as the
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subject drinks alcohol one more day during the past 30 days, the odds of becoming a

frequent smoker increases by 2.72 (s.e.=0.002). Furthermore, by fixing an individual’s

amount of drink, as the subject’s health level rises (i.e., gets worse) by one unit, the

odds of becoming a frequent smoker increases by 1.21 (s.e.=0.015).

Additionally, we analyzed only exact part of the observed data in order to see

how much smaller interval-censored portion of the data can help to make the analysis

more accurate. Also, some practitioners may only analyze the exact data in practice,

due to the unavailability of software. The results are shown in Table 7.2. The

parameter estimates are very close to those from the observed data. However, the

estimated standard errors are much larger than those from the observed data. This

is consistent with the simulation results in Section 3.2. The Wald test statistic for

testing (β1, β2) = (0, 0) is quite large for both the exact part of the data alone and

the entire observed data. Therefore, the p-values are nearly 0. Though both tests tell

us that the covariates have a statistically significant effect on adolescent’s smoking

behavior, the whole (observed) data provides us with a much stronger evidence for the

effect. Therefore, this data analysis reaffirms that using even a small interval-censored

portion of the observed data increases the sensitivity of the test.

7.2. Variable Selection in NLSY97

The National Longitudinal Survey of Youth 1997 (NLSY97) from 1997 to 2013

is used to illustrate how to select covariates that may affect an adolescent’s smoking

behavior. This is the data set that was used in Section 7.1. We analyze 1822 subjects

who did not smoke at the beginning of the study (1997) but by the end of 2013

became frequent smokers (smoking for more than 10 days in a month). The response

variable is defined as
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(58) yij =


1, a frequent smoker

0, not a frequent smoker.

The 1st covariate, x1ij, is the number of days an individual drank alcohol in the

last 30 days. The 2nd covariate, x2ij is an individual’s self-evaluation of “general state

of health”. x2ij is defined as: 1 being excellent, 2 being very good, 3 being good, 4

being fair, and 5 being poor. The 3rd covariate, x3ij is whether an individual has ever

been suspended from school since the last interview. x3ij is binary with 1 being yes

and 0 being no. The 4th covariate, x4ij is whether an individual has ever sold illegal

drugs (marijuana (pot, grass), hashish (hash), etc.) since the last interview visit. It

is a binary covariate with 1 being yes and 0 being no. Lastly, the 5th covariate, x5ij

is whether an individual has ever sold hard illegal drugs (heroin, cocaine, LSD, etc.)

since the last interview. x5ij is binary with 1 being yes and 0 being no. The variable

selection and estimation of covariate effects via LASSO are done by the EM algorithm

in Section 4.3. The results are shown in Table 7.3.

As an individual drinks alcohol one more day during the past 30 days, the odds of

becoming a frequent smoker increases by 2.90, fixing the subject’s other attributes.

Furthermore, as a subject’s health level rises (i.e., gets worse) by one unit, the odds

of becoming a frequent smoker increases by 1.004, fixing the individual’s amount of

drink and other attributes. If an individual has sold hard illegal drugs during a given

year, the odds of becoming a frequent smoker increases by 3.29. The covariate effects

for suspension from school and selling illegal drugs since the last interview visit, were

estimated as 0. Therefore, x3ij and x4ij are excluded from the final model.
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7.3. NLSY97 Data Analysis Using PRO Ridge Model

The National Longitudinal Survey of Youth 1997 (NLSY97) from 1997 to 2013

is used to illustrate how to estimate the covariates that may affect an adolescent’s

smoking behavior in the presence of multicollinearity. We analyze the 1822 subjects

who did not smoke at the beginning of the study (1997) but by the end of 2013

became frequent smokers (smoking for more than 10 days in a month). The response

variable is defined as

(59) yij =


1, a frequent smoker

0, not a frequent smoker.

The 1st covariate, x1ij, is the number of days an individual drank alcohol in the

last 30 days. The 2nd covariate, x2ij is an individual’s self-evaluation of “general state

of health”. x2ij is defined as: 1 being excellent, 2 being very good, 3 being good,

4 being fair, and 5 being poor. The 3rd covariate, x3ij is whether an individual has

ever been suspended from school since the last interview. x3ij is binary with 1 being

yes and 0 being no. The 4th covariate, x4ij is the number of times that an individual

sell illegal drugs since the last interview. x3ij and x4ij are highly correlated.

The estimation of covariate effects using the ridge model are done by the EM

algorithm in Section 5.2. The results are shown in Table 7.4.

As an individual drinks alcohol one more day during the past 30 days, the odds of

becoming a frequent smoker increases by 1.11, fixing the subject’s other attributes.

Furthermore, as a subject’s health level rises (i.e., gets worse) by one unit, the odds

of becoming a frequent smoker increases by 1.002, fixing the individual’s amount

of drink and other attributes. If an individual is suspended from school since the

last interview visit, the log of odds of becoming a frequent smoker increases by 1.16.
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Lastly, if an individual sells illegal drugs for one more day during the past year, the

log of odds of becoming a frequent smoker increases by 1.005.

7.4. Analysis of Two Progression States

The National Longitudinal Survey of Youth 1997 (NLSY97) from 1997 to 2013 is

used to illustrate how to analyze the effects of covariates that may affect an adoles-

cent’s smoking behavior when there are two stages for smoking behavior. We analyze

the 1822 subjects who did not smoke at the beginning of the study (1997) but by the

end of 2013 became frequent smokers (smoking for more than 10 days in a month).

The first state is becoming an intermittent (light) smoker (smoking for more than 6

days in a month). The response variable for the first progression is defined as

(60) yij =


1, an intermittent smoker

0, not an intermittent smoker.

The second state is becoming a frequent smoker (smoking for more than 10 days

in a month) after being an intermittent smoker. The response variable for the second

progression is defined as

(61) zij =


1, a frequent smoker

0, not a frequent smoker.

The 1st covariate, xij, is the number of days an individual drank alcohol in the last

30 days. The covariate effects for the 1st and 2nd progressions are estimated by the

EM algorithm in Section 6.4. The standard errors of these estimators are estimated

by Louis method in Section 6.5. The results are shown in Table 7.5.
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As a subject drinks alcohol one more day during the past 30 days, the log of odds

of becoming an intermittent smoker increases by 1.12 (s.e.=0.002). Furthermore, as

a subject drinks alcohol one more day during the past 30 days, the log of odds of

becoming an frequent smoker, given that the individual was previously an intermittent

smoker increases by 1.02 (s.e.=0.003). Drinking alcohol during the past 30 days has

a larger effect on becoming an intermittent smoker than a frequent smoker. However,

the covariate effects’ variation is larger for the second progression.
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α̂ se(α̂) β̂1 se(β̂1) β̂2 se(β̂2)

-2.36 0.041 0.103 0.002 0.19 0.015

Table 7.1. The Results of NLSY97 Analysis Using the Observed Data

α̂ se(α̂) β̂1 se(β̂1) β̂2 se(β̂2)

-2.35 0.067 0.102 0.004 0.18 0.028

Table 7.2. The Results of NLSY97 Analysis Using Only the Exact Data

α̂ β̂1 β̂2 β̂3 β̂4 β̂5

-1.985 1.064 0.004 4.95×10−07 -5.68×10−08 0.191

Table 7.3. The Results of NLSY97 Analysis Using LASSO

α̂ β̂1 β̂2 β̂3 β̂4

-1.864 0.094 0.002 0.146 0.005

Table 7.4. The Results of NLSY97 Analysis Using Ridge Model

α̂ s.e(α̂) β̂ s.e(β̂) θ̂ s.e(θ̂) γ̂ s.e(γ̂)

-1.71 0.019 0.115 0.002 1.128 0.022 0.019 0.003

Table 7.5. The Results of NLSY97 Analysis for Two States of Smoking

62



8

Discussion

In this dissertation, we focused on developing a method to estimate the regres-

sion parameters and the variance-covariance matrix of those estimators for the pooled

repeated observations logistic regression model with partly interval-censored data un-

der various conditions. The EM algorithm was employed to estimate the parameters;

and missing information principle to estimate the variance-covariance matrix of those

estimators. Monte Carlo simulation demonstrates acceptable levels of bias, standard

error, and power.

In Chapter 3, we introduced the PRO logistic regression model with one progres-

sion state and partly interval-censored data. Maximum likelihood estimation, based

on the EM algorithm was employed to estimate the effects of the time-dependent

covariates. The variance of the MLE’s was computed using the Louis’ method. The

simulation results suggest that in practice, one needs a sample of size around 300

to achieve an 80% power of the test to detect a very small effect size (.45) for the

regression parameter of interest, but needs a much smaller size, only around 200, for

a bit larger effect size (.55).

For the same model, we employed the LASSO method for variable selection. The

tuning parameter was estimated using the minimum prediction error criteria. We

introduced an EM-based algorithm to perform this method in practice. LASSO trace

was used to illustrate the algorithm for a simulated data. Additionally, ridge penalty

was used to estimate the regression parameters in the presence of multicollinear-

ity among the covariates. An alternative to combat multicollinearity is a principle
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components analysis. [2] estimates the parameters of logistic regression using prin-

ciple components. Ridge method shrinks the collinear attributes whereas principle

components just throws them out. Additionally, the tuning parameter, λ can take

on any positive value, but the possible values for the tuning parameter in principle

components analysis are limited.

In Chapter 6, the PRO logistic regression is extended to the model with two

chronological progressions. The interval-censored portion of the data can contain

different patterns of missingness. The EM was used to estimate the effects of the time-

dependent covariates on the first and the second progressions. Missing information

principle was used to estimate the variance-covariance matrix of those estimators. The

Monte Carlo simulations showed a similar pattern to the model with one progression.

The estimated parameters of the second progression have a higher variance compared

to the first progression. We expect this result since there are less observations that

contribute to the second progression’s likelihood. Additionally, for a given covariate,

we need a larger effect size for the second progression to reach a fixed power, compared

to the effect size of the first progression. In simulation studies in Section 6.6 and

analysis of NLSY97 in Section 7.4, we used the same covariates for modeling the

two progressions. However, we do not have to use the same covariates for the two

progressions. One could use additional covariates for the second progression and

estimate them.

A limitation of using these models is that they can only be used when the progres-

sions are not time-reversible. For example, in AIDS studies, once a patient progresses

from being HIV positive to having AIDS, they stay in this new state and cannot go

back to the previous state. However, there are applications when transition states are

time-reversible and progression can happen multiple time during longitudinal studies,

e.g., pregnancy. Our current model. can be easily extended to estimate the effect of

64



the attributes in models with time-reversible progression states. E-step and M-step

would be more complicated.

For those subjects who miss follow-up visits, not only are their event times interval-

censored, but also their time-dependent measurements are incomplete. In Section 3.1,

we used a linear growth curve with fixed effects to estimate the incomplete covariates.

If in certain applications we know that some covariates have a faster growing rates

over time, one may consider other types of growth curves (e.g., exponential growth

curve) to estimate the missing attributes.

The methods in this dissertation were applied to the situation where the visit

times were equally spaced,. However, they can also be used when the predetermined

follow-up visits were not evenly distributed in time. If more specific information is

provided, one can employ a linear growth curve model with random effects and other

models to handle the missing covariates. The model in Chapter (6) can be extended

to multiple progression states by the fact that the likelihood factors into a distinct

term for each interval [3].

Another extension to the PRO logistic regression with partly interval-censored

data is to incorporate prior information of the parameters in the analysis. Making

Bayesian inferences will allow us to have more robust results. Since we are investigat-

ing the binary responses for this model, a logit link was used. Posterior distribution

based on the parameters of a logistic regression model does not have a closed form.

However, it can be derived numerically. [19] gives an example of such derivations

for a logistic regression model. Those ideas can be applied to PRO logistic model

to take a Bayesian approach to the problem. However, this Bayesian data analysis

requires selecting appropriate priors. This is essential to avoid misleading results.

Additionally, the posterior distributions can be heavily affected by the choice of the
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priors. Unless some adequate prior information of the parameters exists, the clas-

sical approach is preferred. The prior information could be obtained from previous

literature describing the subjects, or upon investigator’s knowledge of the subject.

In this dissertation we assumed fixed effects for modeling the binary outcomes

in the log-likelihood, (20) and (43). These likelihoods can be extended in modeling

person-specific random intercept and slopes terms to account for the within person

correlation as in [14]. Repeatedly measuring an outcome on each individual over time

can induce correlation among the observations. We may assume mixed effects model

in the logit link (18). Then the model in Chapter (3) will be updated to

(62) logit(Pij) = log(Pij/(1− Pij)) = α + β′xij + b′izi,

where bi is the person-specific random effects with bi ∼ MVN(0, D and zi is the

corresponding random effects design matrix. The complete log-likelihood, assuming

all observations were exact will be

(63) l =
n∑

i=1

Mi∑
j=1

[− log(1 + exp(α + β′xij + b′izi)) + yij(α+ β′xij + b′izi)]

The parameter estimation for this PRO logistic mixed effects model with partly

interval-censored observations, requires an additional steps to the EM algorithm in

Section 3.1. At E-step we also need to estimate the bi, the parameter of the random

effect and at M-step, D needs to be estimated as well.

This mixed effects model can also be applied to the model in Chapter (4) for vari-

able selection using LASSO. [29] proposes an efficient L1 regulized logistic regression

and [4] applies LASSO to longitudinal logistic model with mixed effects, assuming

that the observations are fully observed. [28] introduces an algorithm for estimating
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the parameters of random effects longitudinal data with continuous response variable.

We may have to add the L1 norm penalty to the likelihood in (63) and modify the

variable selection algorithms.

Lastly, the LASSO variable selection technique does not work in the presence of

multicollinearity in the data, [40]. If there is a group of highly correlated predictors

in the model, LASSO tends to select only one predictor among them. There are

some methods that combine the two techniques, LASSO for variable selection and

ridge for multicollinearity to avoid the drawback of the LASSO and improve the

variable selection. The elastic net (Enet) is a mixture of LASSO and ridge penalty.

The mixture of minimum concave penalty (MCP) and ridge penalty, Mnet, has been

developed for linear regression. Snet is the mixture of smoothly clipped absolute

deviation (SCAD) and ridge penalty. [42] proposed new algorithms for the analysis

of count data regression with highly correlated biomarkers. Such mixture algorithms

can be applied to the PRO logistic regression model with partly interval-censored

data in Chapters (3) and (6). These methods can help to simultaneously, improve

the variable selection method and combat multicollinearity.

67



References

[1] S. ADHIKARI, F. LECCI, J. T. BECKER, B. W. JUNKER, L. H.

KULLER, O. L. LOPEZ, and R. J. TIBSHIRANI, High-dimensional lon-

gitudinal classification with the multinomial fused lasso, Statistics in Medicine,

38 (2019), pp. 2184–2205.

[2] A. M. Aguilera, M. Escabias, and M. J. Valderrama, Using princi-

pal components for estimating logistic regression with high-dimensional multi-

collinear data, Computational Statistics and Data Analysis, 50 (2006), pp. 1905–

1924.

[3] P. D. Allison, Survival analysis using SAS: a practical guide, SAS Institute,

2012.

[4] A. Arribas-Gil, R. D. L. Cruz, E. Lebarbier, and C. Meza, Classifica-

tion of longitudinal data through a semiparametric mixed-effects model based on

lasso-type estimators, Biometrics, 71 (2015), pp. 333–343.

[5] S. B. Bull, C. Mak, and C. M. Greenwood, A modified score function

estimator for multinomial logistic regression in small samples, Computational

Statistics and Data Analysis, 39 (2002), pp. 57–74.

[6] S. L. Cessie and J. C. V. Houwelingen, Ridge estimators in logistic regres-

sion, Applied Statistics, 41 (1992), p. 191.

[7] B. Chen, G. Y. Yi, and R. J. Cook, Analysis of interval-censored disease

progression data via multi-state models under a nonignorable inspection process,

Statistics in Medicine, 29 (2010), pp. 205–218.

68



[8] L. A. Cupples, R. B. DAgostino, K. Anderson, and W. B. Kannel,

Comparison of baseline and repeated measure covariate techniques in the fram-

ingham heart study, Statistics in Medicine, 7 (1988), pp. 1175–1189.

[9] R. B. Dagostino, M.-L. Lee, A. J. Belanger, L. A. Cupples, K. An-

derson, and W. B. Kannel, Relation of pooled logistic regression to time

dependent cox regression analysis: The framingham heart study, Statistics in

Medicine, 9 (1990), pp. 1501–1515.

[10] N. Daneshi and J. S. Kim, A comparison between surrogate and ridge esti-

mators in linear regression, Technical Report, (2015).

[11] N. Daneshi and J. S. Kim, Maximum likelihood estimation for the pooled

repeated observations logistic regression model with partly interval-censored data,

Submitted, (2019).

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from

incomplete data via the em algorithm, Journal of the Royal Statistical Society.

Series B (Methodological), 39 (1977), pp. 1–38.

[13] B. Efron, The two sample problem with censored data, Proc. Fifth Berkeley

Symp. on Math. Statist. and Prob.; Univ. of Calif. Press, (1967), pp. 831–853.

[14] M. Eliot, J. Ferguson, M. P. Reilly, and A. S. Foulkes, Ridge regres-

sion for longitudinal biomarker data, The International Journal of Biostatistics,

7 (2011), pp. 1–11.

[15] D. M. Finkelstein and D. A. Schoenfeld, A joint test for progression

and survival with interval-censored data from a cancer clinical trial, Statistics in

Medicine, 33 (2014), pp. 1981–1989.

[16] D. M. Finkelstein, R. Wang, L. H. Ficociello, and D. A. Schoenfeld,

A score test for association of a longitudinal marker and an event with missing

data, Biometrics, 66 (2010), pp. 726–732.

69



[17] D. Firth, Bias reduction of maximum likelihood estimates, Biometrika, 80

(1993), pp. 27–38.

[18] F. Gao, D. Zeng, and D.-Y. Lin, Semiparametric estimation of the acceler-

ated failure time model with partly interval-censored data, Biometrics, 73 (2017),

pp. 1161–1168.

[19] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari,

and D. B. Rubin, Bayesian Data Analysis, CRC Press, 2013.

[20] F. Godnez-Jaimes, G. Ramrez-Valverde, R. Reyes-Carreto,

F. Ariza-Hernandez, and E. Barrera-Rodriguez, Collinearity and sep-

arated data in the logistic regression model, Agrociencia, 46 (2012), pp. 411–425.

[21] A. Hoerl and R. Kennard, Ridge regression: Biased estimation for

nonorthogonal problems, Technometrics, 12 (1970).

[22] A. Hoerl, R. Kennard, and K. Baldwin, Ridge regression: Some simu-

lations, Communications in Statistics - Simulation and Computation, 4 (1975),

pp. 105–123.

[23] J. Huang, Asymptotic properties of nonparametric estimation based on partly

interval-censored data, Statistica Sinica, 9 (1999), pp. 501–519.

[24] D. Jensen and D. Ramirez, Surrogate models in ill-conditioned systems, Jour-

nal of Statistical Planning and Inference, 140 (2010), pp. 2069–2077.

[25] T. H. Jung, P. Peduzzi, H. Allore, T. C. Kyriakides, and D. Esser-

man, A joint model for recurrent events and a semi-competing risk in the pres-

ence of multi-level clustering, Statistical Methods in Medical Research, (2018),

pp. 1–15.

[26] J. S. Kim, Maximum likelihood estimation for the proportional hazards model

with partly interval-censored data, Journal of the Royal Statistical Society: Series

B (Statistical Methodology), 65 (2003), pp. 489–502.

70



[27] K. Koh, S.-J. Kim, and S. Boyd, An interior-point method for large-scale l1-

regularized logistic regression, Journal of Machine Learning Research, 8 (2007),

pp. 1519–1555.

[28] N. M. Laird and J. H. Ware, Random-effects models for longitudinal data,

Biometrics, 38 (1982), pp. 963–974.

[29] S.-I. Lee, H. Lee, P. Abbeel, and A. Y. Ng, Efficient l1 regularized logistic

regression, American Association for Artificial Intelligence, (2006), pp. 401–408.

[30] T. A. Louis, Finding the observed information matrix when using the em al-

gorithm, Journal of the Royal Statistical Society: Series B (Methodological), 44

(1982), pp. 226–233.

[31] R. L. Mason, R. F. Gunst, and J. T. Webster, Regression analysis and

problems of multicollinearity, Communications in Statistics, 4 (1975), pp. 277–

292.

[32] K. E. Masyn, H. Petras, and W. Liu, Growth curve models with categorical

outcomes, Encyclopedia of Criminology and Criminal Justice, (2014), pp. 2013–

2025.

[33] L. Meier, S. V. D. Geer, and P. Buhlmann, The group lasso for logistic

regression, Journal of the Royal Statistical Society: Series B (Statistical Method-

ology), 70 (2008), pp. 53–71.

[34] S. Mongoue-Tchokote and J.-S. Kim, New statistical software for the pro-

portional hazards model with current status data, Computational Statistics and

Data Analysis, 52 (2008), pp. 4272–4286.

[35] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear

Regression Analysis, Wiley, 2013.

[36] T. Orchard and M. A. Woodbury, A missing information principle: Theory

and applications, Sixth Berkeley Symposium, (1972).

71



[37] J. Ra and K.-J. Rhee, Efficiency of selecting important variable for longitu-

dinal data, Psychology, 05 (2014), pp. 6–11.

[38] J. Shen and S. Gao, A solution to separation and multicollinearity in multiple

logistic regression, Journal of Data Science, 6 (2008), pp. 515–531.

[39] M. A. Tanner, Tools for statistical inference, Springer-Verlag New York, 2012.

[40] R. Tibshirani, Regression shrinkage and selection via the lasso: a retrospective,

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 58

(1996), pp. 267–288.

[41] B. United States Department of Labor Statistics, National Longitu-

dinal Survey of Youth 1997 cohort, 1997-2013 (rounds 1-16), Produced by the

National Opinion Research Center, the University of Chicago and distributed by

the Center for Human Resource Research, The Ohio State University., 2015.

[42] Z. Wang, S. Ma, M. Zappitelli, C. Parikh, C.-Y. Wang, and P. De-

varajan, Penalized count data regression with application to hospital stay after

pediatric cardiac surgery, Statistical Methods in Medical Research, 25 (2016),

pp. 2685–2703.

[43] M. S. Wulfsohn and A. A. Tsiatis, A joint model for survival and longitu-

dinal data measured with error, Biometrics, 53 (1997), pp. 330–339.

[44] W. Yoo, R. Mayberry, S. Bae, K. Singh, U. P. He, and J. W. Lillard,

A study of effects of multicollinearity in the multivariable analysis, International

Journal of Applied Science and Technology, 4 (2014), pp. 9–19.

[45] H. H. Zhang and L. Wenbin, Adaptive lasso for cox’s proportional hazards

model, Biometrika, 94 (2007), pp. 691–703.

[46] X. Zhao, Q. Zhao, J. Sun, and J. S. Kim, Generalized log-rank tests

for partly interval-censored failure time data, Biometrical Journal, 50 (2008),

pp. 375–385.

72


	Estimation of Association Between a Longitudinal Marker and Interval-Censored Progression Times
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1566576367.pdf.oVxjD

