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ABSTRACT 

An abstract of the thesis of David Shapiro for the Master of Science in Computer 

Science presented January 30, 1996. 

Title: Compiling Evaluable Functions in the Gooel Programming Language 

We present an extension of the Gooel logic programming language code generator 

which compiles user-defined functions. These functions may be used as arguments in 

predicate or goal clauses. They are defined in extended Gooel as rewrite rules. A 

translation scheme is introduced to convert function definitions into predicate clauses 

for compilation. This translation scheme and the compilation of functional 

arguments both employ leftmost-innermost narrowing. As function declarations are 

indistinguishable from constructor declarations, a function detection method is 

implemented. 

The ultimate goal of this research is the implementation of extended Gooel using 

needed narrowing. The work presented here is an intennediate step in creating a 

functional-logic language which expands the expressiveness of logic programming 

and streamlines its execution. 



COMPILING EVALUABLE FUNCTIONS IN THE GODEL PROGRAMMING 

LANGUAGE 

by 

DAVID SHAPIRO 

A thesis submitted in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 
in 

COMPUTER SCIENCE 

Portland State University 
1996 



ACKNOWLEDGMENTS 

Sergio Antoy, for overall guidance and answering my questions, and 

answering my questions, and answering my questions, over and over and over 

again. 

Janet Vorvick, for a parser well done, a compiler well presaged, and both 

well explained. 



Table of Contents 
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
2 Background .......................................................................... 3 

2 .1 wgic Programming ...................................................... 3 
2. 2 Functional Programming ................................................ 9 
2.3 Narrowing .. ~ .............................................................. 11 

3 Gooel ................................................................................. 18 
3 .1 Introduction to Gooel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
3. 2 Extended Gooel ........................................................... 20 

4 Compiler Design .................................................................... 23 
4.1 Evaluation of functional arguments .................................... 24 
4. 2 Rule translation ........................................................... 25 
4. 3 Function detection ........................................................ 27 

5 Implementation Overview ......................................................... 28 
5 .1 Parsed Program Structure ............................................... 30 
5 .2 Build Process .............................................................. 35 
5. 3 Rule translation by tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 7 

6 Implementation Details ............................................................ 39 
6.1 Compiler invocation ...................................................... 39 
6. 2 Predicate compilation .................................................... 40 
6. 3 Rule compilation .......................................................... 42 
6. 4 Function detection ........................................................ 46 
6. 5 Building constraints ...................................................... 4 7 
6.6 Making ..................................................................... 50 
6.7 wading .................................................................... 51 

7 Conclusion ........................................................................... 52 
7 .1 Feasibility of functional-logic programming language .............. 52 
7 .2 Narrowing ................................................................. 53 
7. 3 Compiler Design .......................................................... 54 
7 .4 Versions .................................................................... 55 

8 Other functional-logic programming languages ................................ 61 
8.1 ALF ........................................................................ 61 
8.2 K-LEAF .................................................................... 64 

Bibliography ............................................................................. 67 
Appendices ............................................................................... 69 



1 Introduction 

Logic programming offers the programmer the opportunity to create programs using 

the powerful, familiar tool of mathematical logic. A programmer can translate a set 

of logic axioms directly into a computer source program. The programmer need not 

be concerned with control details of program execution, but only with the correct 

statement of that program. 

Unfortunately, logic programming languages do not include the ability to compute 

using functions. Functions are a natural way to express many relations. Their 

unavailability in logic programming languages leads, at the least, to less clarity and 

expressiveness in logic programs. 

A combined functional-logic programming language could offer such increased 

clarity and expressiveness. What is more, depending on the implementation of 

function evaluation, other gains may be achieved. Programs may run more 

efficiently. Programs which would otherwise be non-terminating can be successfully 

executed to termination. Thus, a functional-logic programming language is a very 

desirable goal. 

This thesis represents part of an attempt [ ASV] to integrate functional and logic 

programming using needed na"owing. Specifically, I have extended the Gooel logic 

programming language code generator to accept and evaluate terms which contain 

functions. Of course, it is impossible to generate compiled code without any input. 
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Janet Vorvick [JV] has modified the front-end of the Gooel compiler to parse 

functions defined as rewrite rules in an extended Gooel source program. The parsed 

Godel program output by her parser provides the input for my code generator. 

Taken together, our work represents an integrated functional-logic programming 

language. 

I have implemented leftmost-innermost na"owi,ng to evaluate functional terms. 

Na"owi,ng is a functional computational method compatible with logic programming 

languages. It is the most popular computation method in use today for the 

integration of functional and logic languages [Hanus]. 

Narrowing requires that functions be defined in a manner known as rewrite rules. 

Rather than narrowing terms directly, my implementation of narrowing requires the 

translation of rewrite rules into clauses. Thus, one major addition I have made to the 

Gooel compiler is the inclusion of a rule-to-clause translator for rewrite rule 

compilation. 

The other major changes I have made concern the detection and evaluation of 

functional arguments within clauses and goals. I have greatly expanded Gooel's 

primitive pre-defmed function evaluation system to permit the evaluation of user­

defined functions. I have added a narrowing mechanism for evaluating functional 

arguments during clause and goal compilation. 
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Due to the way functions are declared in this extension of Gooel, they are 

indistinguishable from constructors in the parsed code. I have implemented a method 

of function detection for user-defined functions. 

Technically speaking, the Gooel compiler comprises the front-end parser and the 

back-end code generator. I will refer to the front-end as the parser and to my back­

end code generator as the compiler. This corresponds to the division made in the 

Gooel source code. 

The structure of this paper is as follows. Chapter 2 explains some theoretical 

undetpinnings--logic and functional programming and narrowing. Chapter 3 

introduces both the standard and extended Gooel logic programming languages. 

Chapter 4 discusses the compiler design changes and additions necessitated by 

extended Gooel. Chapter 5 examines the implementation of extended Gooel from a 

broad perspective, while Chapter 6 does so in finer detail. Chapter 7 draws some 

conclusions from the work done. Chapter 8 looks briefly at two other functional­

logic programming languages. 

2 Background 

2.1 Logic Programming 
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This section introduces basic logic programming terminology used throughout the 

paper. For a full treatment of logic programming, see [Art]. It concludes with a 

motivation for choosing narrowing as the computational method for integrating 

functions into a logic programming language. 

"A logic program is a set of axioms ... defining relations between objects. A 

computation of a logic program is a deduction of consequences of the program." 

[Art, p. 9]. The classic logic programming example of a relation is the family 

relations program 

Father(Abraham, Isaac). 
Father(Abraham, Ishmael). 

Male (Isaac). 
Male(Abraham). 
Male ( Ishmael) . 

The first statement states that Abraham is the father of Isaac, the second that he is 

Ishmael's father. The last three state that they're all men. 

Another example is 

Plus(2, 3, 5). 

A more complex relation may be of the form 

Son(x, y) <- Father(y, x) & Male(x). 

which means that x is the son of y if y is the father of x and x is a male. 

The relations Father, Son and Plus are known as predicates. They, and all tenns 

comprising a name and arguments, are known as functors. "A functor is 

characterized by its ruune ... and its arity or number of arguments. Constants are 
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considered functors of arity 0 .... A functor f of arity n is denoted fin. Functors with 

the same name but different arities are distinct." [Art p. 27]. Accordingly, the 

predicates we have defined above are denoted by the functors Father/2, Son/2 and 

Plus/3. 

The above relation statements are known as clauses. The head of the clause is an 

indivisible term known as an atom. Plus(2, 3, 5) and Son(x, y) are heads of their 

respective clauses. A clause consisting of a head only is also referred to as afact. 

The Plus clause is a fact. The body of a clause is an optional, possibly complex 

series of atoms appearing to the right of the < - arrow. A logic program consists of 

one or more of these clauses. 

A logic program executes through the evaluation of goals. A goal resembles a clause 

head or body, but is a query which is answered positively or negatively by 

examination of the program clauses during execution. For example, the goal 

Father(Abraham, Isaac) 

would be answered positively, or succeed, whereas the goal 

Father(Abraham, Sarah) 

would be answered negatively, or fail. 

Another type of goal is an existential query. Given the facts above, we expect the 

goal 

Son(w, Abraham) 

to succeed with answers 
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w = Isaac. 
w = Ishmael. 

whereas we expect the goal 

Son(w, Isaac) 

to fail. 

Goals are solved using resolution. Goals are repeatedly replaced by sub-goals until 

each sub-goal can be solved. Replacement of goals by sub-goals is accomplished 

through unification. Two terms are unifiable if performing substitutions on variables 

of one or both of the terms makes the terms identical. To resolve a goal, we attempt 

to unify the goal with the head of a program clause, resolving any sub-goals in the 

clause body as necessary. For example, the goal 

Son(w, Abraham) 

binds y in Son/2 to Abraham. The first body clause of Son/2 becomes 

Father(Abraham, w). 

which becomes our first sub-goal. If we substitute Isaac for w, we can unify this 

sub-goal with the program fact 

Father(Abraham, Isaac). 

The second body atom of Son/2 now becomes 

Male( Isaac). 

due to the substitution, and our goal 

Son(w, Abraham) 

succeeds as 

Son( Isaac, Abraham). 
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Note that we need not stop evaluation there. We may also attempt the substitution of 

Jshma,el for w, and our goal also succeeds with this value. This backtracking 

mechanism is a key element of logic programming, and enables us to :find multiple 

correct solutions to a query, if they exist. 

It also enables us to continue evaluation after discarding incorrect solutions. For 

example, suppose our program contains the fact 

Father(Abraham, Deborah). % Forgive the blasphemy 

When executing the query 

Son(w, Abraham). 

our newest fact will allow x in the 

Father(y, x) 

subgoal of Son/2 to succeed as 

Father(Abraham, Deborah). 

But 

Male(Deborah) 

will fail, causing Deborah to be rejected as a son of Abraham. Nevertheless, due to 

backtracking, our computation can continue and successfully return Isaac and 

Ishmael as sons of Abraham. 

Note further that we are not guaranteed in which order our solutions will be returned 

to us. Deborah may be attempted before or after the boys. Nor is the order of body 

formula evaluation guaranteed. The program may evaluate the Male sub-clause 

before the Father sub-clause. In these two ways, a logic program is non-
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deterministic. That is, the declaration of a program does not indicate the order of 

execution of clauses or sub-clauses. 

* * * * 

A logic program states what to do, but not how to do it. Otherwise said, a logic 

program states the logic, but not the control, of the program [Escher, p. 3]. This 

implies, as previously noted, that the execution of a logic program is non­

deterministic; i.e., the order of statement evaluation at execution time is unknown. 

Consequently, it is quite possible that some statement variables will be uninstantiated 

when that statement is executed. 

Consider, for example, a trivial example where the predicates addl and add2 mean, 

respectively, add one and add two to the first argument to obtain the second: 

add2(x, z) <- addl(y, z) & addl(x, y). 

If the body sub-clauses are evaluated in left-to-right order when solving a goal like 

add2 (1, w), y will be uninstantiated at the first call to addl. 

Evaluation with partial information, the ability to proceed with program execution in 

the face of uninstantiated predicate variables [Escher p. i], is a requirement of a 

viable logic programming language. Narrowing is a functional computational model 

which proceeds, via unification, when faced with partially-instantiated terms. The 

concept of narrowing is thus quite compatible with the logic programming paradigm. 
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2.2 Functional Programming 

In this section, several advantages reaped by adding a functional component to a 

logic programming language are discussed. The lack of a mechanism in logic 

programming to handle functions is noted, a lack we will fill using narrowing. 

Many relations are most naturally expressed as functions. For example, the Father 

relation expressed above as a predicate may also be expressed functionally as 

Father(Isaac) --> Abraham. 
Father(Ishmael) --> Abraham. 

In fact, this method of expression is clearer than its logic counterpart in denoting 

exactly who is the father and who is the son. Arithmetic operations are also much 

more easily understood as functional operations; e.g., it makes more sense to think 

of 2 + 3 returning the value 5 than it does to think of a Plus predicate with 

arguments 2, 3, and 5. Naturalness of expression is one of the main goals of logic 

programming. The addition of functions to logic language aids in that goal. 

There are other implementation-dependent benefits to adding a functional component 

to logic programming. As opposed to predicates, functions expressed as rewrite 

rules do not necessarily require choice points. That is, a compiler may demand that 

rewrite rules defining a function be mutually exclusive, or it may so inteipret them. 

In either case, there will be only one rule which can be chosen for execution, given 

ground arguments. This implies there will be no time-consuming backtracking 

during function evaluation. 
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For example, if we are trying to find the father of Isaac using the predicate version 

of Father, we have to create a choice point when selecting Abraham as the father to 

account for the possible existence (?!) of another fact defining a second father for 

Isaac. If we use the functional version of Father, we immediately have the unique 

result 

Father(lsaac) = Abraham 

and no choice point need be created for future backtracking. 

Functions also afford the possibility of implementing lazy evalua.tion. An expression 

is not evaluated until it is actually needed. One benefit of this is to increase the 

number of programs that successfully terminate. 

For example, consider the following functions from [Antoy] for printing the first n 

prime numbers: 

primes --> 
sieve([AIBJ) --> 

filter([AjB],C) --> 

ints from(A) 
show(O, [Al B]) 

show(succ(A),[B C]) 

--> 
--> 
--> 

sieve(ints from(2)) 
[Ajsieve(f1lter(B,A))] 
if factor(C,A) then filter(B,C) 

else [Ajfilter(B,C)] 
[Ajints from(succ(A))] 
[ 1 -
[Blshow(A,C)] 

A call such as show(50, primes) will never finish if eagerly evaluated, since primes 

is a non-terminating function. If lazily evaluated, this call can succeed, since show 

can terminate after it has received fifty prime numbers from primes. 
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Integrating functions into a logic programming language may be a great idea, but 

logic languages are equipped neither to compile function definitions nor to evaluate 

functional predicate arguments. A mechanism must be installed in the language for 

this puipose. Narrowing is the mechanism we will use for this putpose. 

2.3 Narrowing 

In order to implement narrowing, functions must be defined as rewrite rules. Here 

we define rewrite rules (also referred to simply as rules), as well as terms and 

substitutions. We then show how narrowing consists of: 1) applying a substitution to 

a term; and 2) applying a rewrite rule to that substituted-for term. 

Terms 

A symbol is an arbitrary item. We typically enumerate a set of symbols which we 

will find useful. For example, the set of symbols 

S = {Zero, Succ, Plus, True, False, &, I , < } 

will be useful for defining some basic arithmetic and boolean operations. 

A son defines the type of a symbol. For our example, natural and boolean are likely 

sorts. 
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A typing function, denoted tf, associates a symbol with a non-empty list of sorts. We 

type our set of symbols as follows: 

tf{Zero) = natural 
tf{Succ) = natural, natural 
tf{Plus) = natural, natural, natural 
tj{True) =boolean 
tj{False) = boolean 
tf{&) = boolean, boolean, boolean 
tf{ I ) = boolean, boolean, boolean 
tf{ <) = natural, natural, boolean 

As we can see, each symbol resembles a function whose output type is the last 

element in its type list and whose inputs types are all the preceding elements. 

A term is an expression made up of validly typed symbols. Some tenns from our 

example are 

Succ(Zero) 
Plus(Zero, Zero) 
True & (Zero < Zero) 

and some expressions which are not terms are 

Plus(Zero) 
True I Zero. 

Substitutions 

Symbols for unknown values are called variables. In the following examples, we 

will denote them as w, x, y, or z. They take no arguments, but assume the sort of 

the value for which they stand. 
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A substitution maps the elements of a finite set of variables to a set of terms, which 

can themselves contain variables. For example, if we apply the substitution 

{ x 1--> Zero, y 1--> Succ(z)} 

to the term 

Plus(z, Succ(Plus(x, y))) 

we obtain 

Plus(z, Succ(Plus(Zero, Succ(z)))). 

Rewrites 

A rewrite system is a set R of pairs of terms, called rewrite rules, with the following 

requirements: if l -- > r is in R, then l and r have the same sort, l is not a variable, 

and each variable of r is a variable of l. The set R for our example might contain, in 

part, these rules 

Plus(Zero, x) -- > x Rl 
Plus(Succ(x), y) --> Succ(Plus(x, y)) R2 
True & x -- > x R3 
False & x -- > False R4 

If a substitution applied to the left side of a rewrite rule yields some subterm of a 

term, the rewrite operation consists of replacing that subterm with the result of 

applying the same substitution to the right side of the rule. For example, if we have 

the term 

Plus(Succ(Zero), Succ(Zero)) 

then the substitution 
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{ x 1-- > Zero, y 1--> Succ(Zero) } 

applied to the left side of R2 yields our entire tenn. Thus, we may rewrite the whole 

tenn by applying the substitution to the right side of R2 to get 

Succ(Plus(Zero, Succ(Zero))) 

We may continue rewriting by applying the substitution 

{ x 1-- > Succ(Zero) } 

to Rl to yield the subtenn 

Plus(Zero, Succ(Zero)) 

Again, we rewrite the whole tenn by applying the substitution to the right side of 

Rl, yielding 

Succ(Succ(Zero)) 

In sum, we have applied two consecutive rewrites to simplify 

Plus(Succ(Zero), Succ(Zero)) 

to 

Succ(Succ(Zero)) 

A broader view reveals that we have used rewriting to compute 

1 + 1 = 2. 

As a second example, the tenn 

Zero < Plus(Zero, Zero) 

rewrites to 

Zero< Zero 

by applying the substitution 

{ x 1--> Zero} 

to Rl. 
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Narrowing 

Narrowing is rewriting with a more generalized substitution method used. Rewriting 

can be seen as employing a pattern-matching type of substitution, where the 

substitutions are one-way. That is, variables in the rule are replaced by symbols in 

the subtenn. Narrowing employs unification, which, as explained previously, is a 

two-way substitution. Variables in the rule may be replaced by symbols in the 

subtenn, or vice versa--symbols in the subtenn may be replaced by rule variables. 

For example, the term 

Plus(w, z) 

may be narrowed by applying the substitution 

{ w 1--> Zero, x 1--> z} 

to w of the term (the subterm and term are one and the same in this case) and x of 

Rl to yield the unified term 

Plus(Zero, z) 

Applying rewrite rule Rl yields 

z. 

As a second example, the term 

Plus(w, z) 

unifies with the left side of R2 as 

Plus(Succ(Zero), Zero) 

when the substitution 

{ w 1--> Succ(Zero), z 1--> Zero, x 1--> Zero, y 1--> Zero} 
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is applied to w and z of the (sub )term and x and y of R2. Completing the narrowing 

operation by applying rewrite rule R2 yields 

Succ(Plus(Zero, Zero)) 

Further rewriting is possible using Rl to yield 

Succ(Zero) 

Function evaluation using narrowing 

We will use narrowing to simplify functional terms which we encounter as we 

process the arguments of a predicate clause. Specifically, we use repeated rewrites, 

and the more general narrowing process when we are unable to rewrite, until we've 

rewritten and narrowed the functional subterm out of existence. We will be left with 

variables and constructors (unevaluable, irreducible functor terms). 

As an example, let's define a predicate to test whether a number is equal to one: 

lsOne(Succ(Zero)). 

Now let's attempt to solve the goal 

IsOne(Plus(Succ(Zero), x)) 

Using rule R2, we rewrite the expression to 

lsOne(Succ(Plus(Zero,x))) 

Then we use rule Rl to rewrite this as 

lsOne(Succ(x)) 

As we see in the example, we have applied repeated rewrites to the function call 

until it is reduced to constructor terms. This is as simplified a term as we can hope 

for. 
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Where does narrowing enter into the picture? Consider an example where we are 

solving the following goal: 

IsOne(Plus( w, z)) 

In this case, there is no substitution we can apply to the variables on the left side of 

any of our rewrite rules which will produce the subterm Plus(w, z). In order to 

continue the computation, we must narrow by applying a unifying substitution to a 

rule and the term. We can choose to unify with Rl with the substitution 

{ w 1-- > Zero, x 1-- > z } 

and then apply the rule to yield 

IsOne(z). 

Or we can unify with R2 using the substitution 

{ x 1--> Zero, w 1--> Succ(Zero), y 1--> z} 

yielding 

IsOne(Succ(Plus(Zero, z))) 

which can be rewritten using Rl to 

IsOne(Succ(z)) 

In essence, we have made a 'guess' as to an appropriate value for w that allows us to 

continue rewriting. In practice, we will make the most general unification, i.e., a 

unification from which all other unifications can be derived. 

What if we 'guess' wrong? If a choice point exists, we backtrack and try a different 

unifier. Otherwise, we fail. The ability to backtrack is another distinguishing factor 

between narrowing and rewriting. The latter does not require backtracking. 
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Partially-instantiated terms are a fact of life in logic programming. The allure of 

narrowing resides in its ability to carry out computations in the face of such terms. 

3 GOdel 

Rather than create a functional-logic programming language from scratch, we have 

chosen to integrate functions into an existing logic programming language. This 

integration is a much more tractable project than the creation of an entirely new 

language. The obvious drawbacks are the potential constraints contained in that 

language and the obstacles it presents when altering it. 

We chose the Gooel logic programming language as our starting point. Gooel has 

many desirable features that make it a sensible choice. It is publicly and freely 

distributed along with its compiler's source code. It has good documentation. With 

the exception of input/output, it is nearly free of non-declarative predicates. 

The Gooel compiler, implemented in Prolog, run as an application above the 

underlying Prolog system (SICStus in our case). It compiles a Gooel source file into 

Prolog. The Prolog system then executes the Prolog code. 

Except where noted, all the logic programming language examples included in this 

paper thus far are valid Gooel fragments. 
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In the following sections, we introduce first the Gooel language as it presently 

exists, and then our extension to it. 

3.1 Introduction to Godel 

A brief description of the Gooel language follows. (For more details, see [Gooel].) 

A Gooel source program is contained in one or more modules. A module declares 

all the symbols of the language of that module. A module may impon other modules 

in order to avail itself of their symbols. 

Symbols begin with upper-case letters and variables begin with lower-case letters. 

Every symbol is declared as one of six categories: BASE, CONSTRUCTOR, 

CONSTANT' FUNCTION' PROPOSmON' or PREDICATE. 

BASE declarations enumerate the types (sorts) of the module language. Constants of 

any type are declared under the CONST ANT category. Predicates are declared using 

the PREDICATE category. The name of the predicate is listed followed by the type 

of each argument. One or more clauses defining the predicate may appear anywhere 

in the module following the predicate' s declaration. PROPOSITION declares a 

proposition; i.e., a predicate with no arguments. 
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Unfortunately for our discussion, the meanings of the CONSTRUCTOR and 

FUNCTION categories are not the same as the meanings we have given them 

throughout this paper. What we have heretofore referred to as a constructor is 

declared in Gooel under the FUNCTION category. What we have been calling a 

function--an evaluable functor tenn--barely exists in Gooel. Gooel contains a few 

pre-defined evaluable functions--the basic arithmetic operations, and some 

operations on strings. 

We will continue to refer to functions as functions, or evaluable functions, and to 

constructors as constructors. When we wish to refer to the Gooel meaning, we will 

either preface it with the word GOdel or denote it using upper-case letters. 

A CONSTRUCTOR is declared, along with its arity, to construct new types from a 

BASE. For example, if we have declared a BASE Day and a CONSTRUCTOR List 

of arity one, then the types of the module language are: Day, List(Day), 

List(List(Day)), etc. [Gooel, p. 17]. 

Godel is polym01phic. A single FUNCilON or PREDICATE may be declared to 

accept different types as its arguments. For example, the declaration 

PREDICATE Append : List(a) * List(a) * List(a). 

declares Append to be a predicate which accepts three list arguments. The type of 

elements contained within the list may vary from predicate call to predicate call. 

3.2 Extended Godel 
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Our extension to Godel consists of allowing users to define functions. These 

functions may be employ&I as arguments to predicates in definitions or goals. 

Our extension to integrate functions into Gooel requires one syntax change, the 

addition of the reserv&I, binary, infix operator symbol = > . A function is declared 

identically to a constructor as the category FUNCTION. Its definition is 

accomplished similarly to a predicate definition, but with the left arrow < - being 

replaced by = > . So, our Father predicate could be declared and defined in standard 

Gooel as 

BASE Guy. 
CONSTANT Abraham, Isaac, Ishmael : Guy. 
PREDICATE Father : Guy * Guy. 
Father(Abraham, Isaac). 
Father(Abraham, Ishmael). 

Or, Father could be declared and defined as a function in extended Gooel as 

BASE Guy. 
CONSTANT Abraham, Isaac, Ishmael : Guy. 
FUNCTION Father : Guy -> Guy. 
Father(Isaac) => Abraham. 
Father(Ishmael) => Abraham. 

Note that a rewrite rule may have a conditional clause, much like a predicate has a 

body. For example, the rule 

Plus(x, y) => y <- IsZero(x). 

can be understood as 
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If IsZero(x), then Plus{x, y) = > y. 

Rule definitions must observe certain restrictions to insure that extended Gooel 

possesses desirable qualities such as confluence and consistency. They must be left­

linear [Klop]. That is, variables may not be repeated on the left side. They must be 

constructor-based. In other words, the outermost left side symbol must be a 

function, and no functions may appear in left side subterms. Extra variables, those 

appearing in the right side or condition but not in the left side of a rule, must satisfy 

several technical conditions discussed in [SMI]. For an extensive discussion of the 

restrictions on extended Gooel rewrite rules, see [JV]. 

Here is a simple example module, first in standard Gooel and then in extended 

Gooel: 

MODULE 
BASE 
CONSTANT 
FUNCTION 
PREDICATE 

Nat. 
Nat. 
Zero. 
Succ: Nat -> Nat. 
Plus: Nat * Nat * Nat; 
IsZero: Nat. 

IsZero (Zero) . 
Plus(Zero, x, x). 
Plus(Succ(x), y, Succ(z)) <- Plus(x, y, z). 

MODULE 
BASE 
CONSTANT 
FUNCTION 

Nat. 
Nat. 
Zero. 
Succ: Nat -> Nat; 
+ : yFx(SlO): Nat* Nat-> Nat. 

PREDICATE IsZero: Nat. 
IsZero(Zero). 
Zero + x => x. 
Succ(x) + y => Succ(x + y). 
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Whereas Plus must be declared as a predicate in standard Godel, + is declared as an 

infix function in extended Godel, which allows for a more natural mode of 

expression. For example, to test whether the sum of two numbers is zero using the 

standard Gooel module, we would have to write the goal 

Plus(x, y, z) & IsZero(z). 

Extended Gooel allows us the more natural expression 

IsZero(x + y). 

4 Compiler Design 

Extending Gooel to include functions required additions or alterations to the Gooel 

compiler in the areas of rule translation, function detection, and function evaluation. 

The design decisions underlying these additions and alterations are discussed below. 

(In the following discussion, I have adopted some of the terminology used within the 

Gooel compiler. Thus, when I refer to a 'predicate' or 'statement', I am really 

referring to a clause which defines a predicate. Likewise, I refer to a 'rule' to mean 

a formula which defines a function. Thus, when I write about predicate (or 

statement) or rule compilation, I am referring to the compilation of a clause or 

formula which defines a predicate or function.) 

Recall that the Godel compiler compiles Gooel source code into Prolog source code, 

then relies on the Prolog compiler for compilation and evaluation of predicates and 

goals. Implicit in the Prolog compilation process is the unification of goals with 
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clause heads using substitution, backtracking upon failure to unify; i.e., all the 

processes we have mentioned in our discussion of computation using narrowing. 

The extended Gooel compiler takes advantage of these Prolog facilities. In effect, all 

we need do is re-package functions in a form palatable to the Prolog compiler. That 

done, the standard Gooel compilation process passes them to the Prolog compiler, 

which performs the bulk of the narrowing process. 

This re-packaging is accomplished via a simple implementation of narrowing. This 

implementation is leftmost-innermost, not needed narrowing. Consequently, it does 

not permit lazy evaluation. Its overriding virtue is simplicity, a major concern in this 

first functional-logic implementation. 

4.1 Evaluation of functional arguments 

When a functional expression is encountered as an argument of a predicate, rule, or 

goal during compilation, it must be evaluated by narrowing. The standard Gooel 

compiler provides a narrowing-like implementation for its pre-defined arithmetic and 

string functions. The technique converts the functional argument into predicate form 

for subsequent standard Gooel compilation. We extend this technique to user-defined 

functions. The extended technique conforms to the method expounded in [vEY, p 

281] for reducing terms and goals. 
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4.2 Rule translation 

Since the narrowing process for evaluating functional expressions appearing as 

arguments to predicates has converted the functional argument into predicate form, 

we must do the same to the function definition. Otherwise, the Prolog compiler will 

be unable to find a unifying clause head during evaluation of the functional 

argument. 

Recall that user-defined functions are denoted in extended Gooel source programs as 

rewrite rules. Accordingly, we have created a rule translation scheme which 

translates the rule into predicate form. The former rule (now a predicate) is then 

compiled via the standard Gooel compilation method. 

The rule translation scheme is consistent with that demonstrated in [ vEY]. It 

translates all rules of a constructor-based rewrite system; that is, rules of the form 

f(tl, ... ,tk) --> t 

where f is a function and no functions appear in arguments tl, ... , tk. 

tau algorithm 

The tau algorithm [ AFM] is the basis of the rule translation scheme. It translates a 

function into a predicate by flattening the rewrite rule representing the function and 
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recursively flattening any functional expressions found among the arguments within 

the rule. On its initial invocation, tau processes the whole rewrite rule. Recursive 

calls to tau handle arguments of the rule, which may be variables, constructor 

terms, or function terms. 

In order to understand the tau algorithm, it is necessary to introduce some special 

notation, dot and bar. "If f is a function whose range is a set of non-null strings, 

then dotf(x) is the last element of f(x), and barf(x) is f(x) without its last element." 

[AFM]. Using a comma to denote the separation of string elements, we have/(xJ = 

dotf(x), barf(x). We will use dottau and banau to define tau algorithmically. 

First consider how tau processes a rewrite rule argument. In the simplest case, 

where the argument is a variable, tau returns that variable. That is, 

tau(X) = X, if Xis a variable. 

Thus, banau of a variable is empty and dottau of a variable is the variable itself. 

If the argument is a constructor term, tau returns a list of elements consisting of 

banau of each constructor term argument and the constructor term itself with new 

arguments dottau of each of its old arguments: 

tau(c(tl, ... ,tk)) = bartau(tl), ... ,bartau(tk), c(dottau(tl), ... ,dottau(tk)) 
where c is a constructor. 

banau is empty for constructor term arguments which are variables, so nothing is 

extracted from the constructor term. dottau of a variable constructor term argument 

is the variable itself, so the constructor term argument remains unchanged. If the 
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constructor term argument is itself a constructor term, it produces an empty banau 

and itself as dottau, with the proviso that its arguments will be recursively 

processed. If the constructor term argument is a functional term, it will be extracted 

and processed further, and a simple, new variable left in its place, thus 

accomplishing flattening. 

A functional term argument must itself be given a predicate 'look'. This means an 

extra variable (denoted as T below) must be created and every functional term 

argument processed. Thus: 

tau(f(tl, ... ,tk)) = bartau(tl), ... ,bartau(tk), f(dottau(tl), ... ,dottau(tk),T), T 
where f is a function. 

Now consider how tau behaves when first invoked. tau invoked on a rewrite rule 

returns one of two possible values. If the right side of the rule--that is, the value of 

the function--is a simple variable or constructor term, it becomes the new variable in 

the predicate clause being created. This predicate clause will have only a head. 

Otherwise, the right side must be further processed, and the predicate clause will 

have a head and a body: 

tau(f(tl, ... ,tk) --> t) = f(tl, ... ,tk, dottau(t)) 
if bartau(t) is null. 

tau(f(tl, ... ,tk) --> t) = f(tl, ... ,tk, dottau(t)) :- bartau(t) 
otherwise. 

4.3 Function detection 
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Since the Gooel parser does not differentiate between functions and constructors, 

functional expressions used as predicate arguments must be detected by the compiler 

in order to be compiled correctly. The standard Gooel compiler detects pre-defined 

functions such as arithmetic functions. But this ability needs to be greatly augmented 

in order to handle user-defined functions. 

Function detection is accomplished by furnishing a list of names of rules, both local 

and imported, to any predicate which needs to do such detection. This list is 

contained in a file created by the parser. It includes the names of all rules declared 

in the local module and in modules imported by the local module. The names are the 

parsed name structures of the rules. They include the module name and arity of the 

rule, thereby guaranteeing uniqueness. 

5 Implementation Overview 

The parser hands the compiler a fully parsed Gooel program. The extended Gooel 

parser also creates a rule file, <module_ name> . ef, which contains a list of names 

of rewrite rules. 
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The standard Gooel compiler extracts a body of code containing predicate clauses 

from this parsed program. It then processes the clauses one-by-one, compiling them 

into equivalent Prolog clauses and writing them out to a Prolog code 

file, <module_name> .pl, as a side effect. This Prolog file is further processed to 

create a compiled Prolog file, <module_ name> . ql, used by the Gooel loader to 

quickly load the module. In addition, a language, or symbol table file, 

<module_ name> . lng, is created. 

The extended compiler also extracts the body of code from the parsed program. The 

code contains predicate clauses, among which are the rewrite rules parsed as 

predicates. The compiler separates the predicate clauses and the rewrite rules into 

two structures known as the statement code and the rule code. 

Predicate compilation does not differ from standard Gooel to extended Gooel. The 

rules are compiled analogously to the predicate clauses, with one major exception: 

each rule is converted from a functional form into a predicate form which can be 

compiled in standard Gooel fashion into a Prolog clause. 

The compiler comprises rule, statement (predicate), and goal compilation. Goal 

compilation follows the statement compilation path; it will not be described 

separately. 

The compiler's work consists of two main functions. The first is to dissect the 

complex parsed program structure to obtain the statement or rule to be compiled. 

The second is to compile (or build, as it is termed by the Gooel compiler) the rule, 
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statement, or goal into a Prolog predicate or goal. The build process includes rule 

translation and function detection and evaluation. The narrowing process which we 

have implemented is initiated during the build process. 

5.1 Parsed Program Structure 

The parsed program is a complex bundle of multiply-nested structures. The compiler 

must unravel this complex structure and extract the desired parts in order to 

accomplish its tasks. Since the parsed program is a Prolog object, the structures are 

not typed. They do, however, have a functor-like composition consisting of a name 

and arguments. The name contains three parts. The first part indicates the meta-type 

of the object. The second part is the name of the structure. The third part is a letter­

number combination. The letter F stands for FUNCTION, which is best understood 

in the Gooel sense; that is, as a constructor. The number indicates the arity of the 

structure. 

Program 

The program handed to the Gooel compiler by the parser is structured as follows: 

ProgDefs.Program.F4(module name, module definition tree, language tree, code). 
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Its four arguments are: the name of the main module in string form; the module 

structure (the main module and imported modules) in tree form (all trees in the 

program are A VL trees); the language (symbol table) of the program in tree form; 

the program code in tree form. 

Code 

The program code is the program structure of most interest to the compiler: 

ProgDefs. Code.F2(integer, code tree). 

The first argument is an integer, used as a version number, which is not significant 

for our purpose. The second argument is the code itself in tree form. 

Code tree 

AVLTrees.Node.F5( left tree -- predicates and rules, 
predicate name (the name = > indicates a rule), 
list of predicate definitions, 
balance state of tree, 
right tree -- predicates and rules 

) 

Each node of the tree contains, in standard Gooel, a list of predicate definitions. The 

list contains all predicate definitions for a given predicate name. Each element of the 

list is itself a list containing all the definitions for a given predicate name and arity. 

In extended Godel, the node may alternatively contain all the definitions for the 
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predicate = > ; i.e., a list of all rewrite rule definitions for the module undergoing 

compilation. 

Predicate Definition 

ProgDefs.PredDef.F4(arity, definition list, import delays, export delays) 

The structure of the predicate definition is as follows. Its first argument is its arity. 

Its second argument is a list of the predicate clauses comprising its definitions. The 

third and fourth arguments are delay declarations which affect when the predicate is 

evaluated. 

If the predicate definition contains rewrite rules, its arity is always two, its two 

arguments being the left and right sides of the rule. Delay declarations are not 

allowed in rule definitions, so they will always be empty, or a compile error will 

occur. 

Predicate 

MetaDefs. < -.F2(head, body) 

The individual elements of the predicate definition list are identified as MetaDefs. < -

.F2. Each one is one predicate clause. The two arguments represent the head and the 
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body of a predicate. The predicate head is an atom identified as MetaDefs.Atom.F2, 

and the body is labeled a term, MetaDefs. Term.F2. The head is a two-part structure 

consisting of the predicate name and a list of terms representing its arguments. The 

body term is a list of terms comprising the body. It is referred to by the compiler as 

a formula. 

If the predicate clause is a rewrite rule definition, its predicate head name always is 

= >. The head contains two arguments, the left hand side and the right hand side 

of the rule. The name of the first argument is the actual rule name. The arguments 

of the first argument are the arguments of the left hand side of the rule. The second 

head argument is the right hand side of the rule. If the rule has a conditional clause, 

it is represented as the clause body. 

Name 

The standard Gooel symbol name is a four-part structure: 

MetaDefs.Name.F4(module name, symbol name, symbol type, symbol arity) 

Its arguments are: the name of the module in which the symbol is declared; the 

name of the symbol itself; the type of the symbol; its arity. The type is identified as 

MetaDefs. <X>. CO. Xis Predicate for a predicate, Function for a Gooel 

FUNCTION or rewrite rule, Constant for a constant, etc. The only symbol which 

does not use this name form is a variable. A variable is identified as 
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MetaDefs. Var.Fl, where the first argument is the variable identifier (e.g., 'x'), and 

the second argument an integer index for generating unique variables. 

To illustrate the use of these structures, here is an example of a parsed rule: 

Example rule: Plus(Succ(x), y) => Succ(Plus(x, y)). 

MetaDefs.<-.F2( 
MetaDefs.Atom.F2( 

MetaDefs.Name.F4(", 

% predicate 
% head 

"=>, % rule 
MetaDefs.Predicate.CO., 
2) I 

( MetaDefs.Term.F2( 
MetaDefs.Name.F4("Nov7, 

% rule lbs 

"Plus, % rule name 
MetaDefs.Function.CO, 
2) I 

[ MetaDefs.Term.F2( 
MetaDefs.Name.F4("Nov7, 

% rule args 

"Succ, % 1st arg 
MetaDefs.Function.CO, 
1) I 

MetaDefs.Var.F2("x, O)]), 

MetaDefs.Var.F2("y, O)]), 
MetaDefs.Term.F2( 

MetaDefs.Name.F4("Nov7, 

% 1st arg's 
arg 

% 2nd arg 
% rule rhs 

"Succ, % rhs name 
MetaDefs.Function.CO, 
1) I 

MetaDefs.Term.F2( 
MetaDefs.Name.F4("Nov7, 

% rhs args 

"Plus, % arg name 
MetaDefs.Function.CO, 
2 ) I 

[ MetaDefs.Var.F2("x, 0), % arg's 1st 
arg 

MetaDefs.Var.F2("y, 0) ])])]), % arg's 2nd 
arg 

MetaDefs.Empty.CO) % no condition 
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To clarify the predicate structure of a rule as shown above: a rule such as 

Plus(Succ(x), y) => Succ(Plus(x, y)). 

is parsed as the bodyless predicate clause 

= > (Plus(Succ(x), y), Succ(Plus(x, y)). 

To get to the rule itself, it is necessary to extract the predicate = > head arguments, 

which represent the left and right hand sides of the rule. 

If the rule contains a condition; for example 

Plus(x, y) => y <- IsZero(x). 

It is parsed as the predicate 

= > (Plus(x, y), y) <- IsZero(x). 

where the parsed condition becomes the predicate body. 

5.2 Build Process 

Once the compiler has extracted a rule or predicate from its enclosing structure, the 

essence of the compile process is to convert the rule or predicate to a Prolog 

predicate clause. The compiler terms this process the build process. Each rule or 

predicate is converted to a flat form; i.e., changed from a complex to a single-level 

structure which can be used as a Prolog identifier. The rule or predicate name is 

converted from a Gooel structure to a flat form. Then each term (argument) of the 

rule or predicate is built. 
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How this is done depends on the type of the tenn. Variables are added to a variable 

dictionary, so that they will be recognized if they re-occur in the clause. The values 

of primitive system types such as integers, floats, and strings are extracted from 

their Gooel structural representation; e.g., the integer 1 is represented 'l'. Constants 

are also converted from the Gooel structure to a flattened fonn. Finally, terms 

which are functors (functions or constructors) are built recursively: the functor name 

is flattened, and each argument is built. 

Here is an example of the build process, using the predicate clause 

IsZero (Zero) . 

from the example module lz shown previously. The parsed Gooel predicate clause 

structure extracted by the compiler for input into the build process is 

MetaDefs.Atom.F2( 
MetaDefs.Name.F4("Iz, "IsZero, MetaDefs.Predicate.CO, 

1) I 

(MetaDefs.CTerm.Fl( 
MetaDefs.Name.F4("Iz, "Zero, MetaDefs.Constant.CO, 

O))]). 

The built predicate clause looks like this: 

'Iz.IsZero.Pl '('lz.Zero.CO') 

Each symbol has been given a flat fonn. The meta-type of the symbol (e.g., 

MetaDefs.Atom.F2 or MetaDefs.Name.F4) has been discarded. The symbol's flat 

Prolog identifier contains three parts: the module name, the symbol name, and a 

one-letter, one-number combination in which the letter represents the symbol type (P 

for predicate and C for constant in this example), and the number represents the 

symbol arity. For example, the Gooel structure for the symbol Zero: 

36 



MetaDefs.CTerm.Fl( 
MetaDefs.Name.F4("Iz, "Zero, MetaDefs.Constant.CO, 0)) 

is converted to the Prolog: 

Iz.Zero.CO. 

The head and the body of a predicate clause are built separately and then combined 

into a Prolog clause. Any functions in the head and/ or body are transformed into 

what are known as constraints. Constraints also undergo a build process and are then 

inserted into the Prolog clause as part of the body. The constraint-building process is 

described later in detail. 

5.3 Rule translation by tau 

Rule building is the same as for predicates, except that the rule must first be 

translated into predicate form before being built. This is accomplished by the tau 

predicate. tau translates rewrite rules into predicate clauses to begin the narrowing 

process that is finished by the Prolog compiler. Conceptually, tau works by 

flattening. The rule representing a function definition is converted into predicate 

form by adding an extra variable argument to the function's argument list. This new 

argument receives the value that results from applying the function to its original 

arguments. Functional expressions found as arguments in the right hand side of the 

rewrite rule are lifted from the argument list and replaced by the extra argument. 
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They are placed back down, in predicate form, as part of the body of the clause 

being created. 

Let's look at some examples. Consider the rewrite rule 

Plus(Succ(x), y) => Succ(Plus(x,y)) 

Since Plus is binary, a third, extra argument is created for it. Now calls to Plus will 

be of the form 

Plus(x, y, z) 

where z takes on the value of the function call Plus(x, y). 

Calls to the function Plus must be removed from any argument lists it appears in--in 

this case, the argument list of Succ on the right hand side of the rule--and placed 

back down in predicate form as part of the predicate body. So the Plus predicate 

takes the form 

Plus(Succ(x), y, n) <- Plus(x, y, z) & n = Succ(z). 

But Succ is a constructor, hence unevaluable, so there is no reason to represent it 

with the extra variable n. In practice, the above intermediate step never occurs. 

Instead, we represent Plus directly as: 

Plus(Succ(x), y, (Succ(z)) <- Plus(x, y, z). 

Consider, for a second example, the rewrite rule for summing a list of numbers 

Swnlist([ajb]) => Plus(a, Sumlist(b)). 

Create a second argument, z, for Sumlist. Lift Sumlist from the argument list of Plus 

and place it back down in predicate fonn in the predicate body. Since Plus is also a 

function, create a third argument for it. The result is 
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Sumlist([alb], z) <- Sumlist(b, n) & Plus(a, n, z). 

6 Implementation Details 

6.1 Compiler invocation 

The predicates compile _program and compile _program_ aux are called to invoke 

the compiler. The program received from the parser is the four-part structure 

containing the module name and the tree structures representing the module 

structure, the language (symbol table), and the code. The standard Gooel compiler 

code contains only predicate definitions, whereas the extended Gooel code also 

contains all rewrite rules. 

The compiler at this point also dumps the language tree into a language file for use 

during program loading. Here we also read the rule list from the rule list file. 

Just prior to initiating the compilation of the statements and rules, the two are 

separated by a call to separate_ statements_ and_ rules, a new predicate. This 

predicate steps through the program code examining each node to determine whether 

it contains a rule or a statement (predicate). The two are distinguished by the 

predicate name, which in the case of a rule is = > . Two new structures, one 

containing only rule code, and one containing only statement code, are created. 
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These two structures are handed to general_ compile_ module, which calls a series of 

predicates which effect the compilation of each predicate clause and rewrite rule. 

6.2 Predicate compilation 

The series· of predicate calls responsible for predicate compilation is essentially 

unchanged from standard Gooel to new. general_ compile_ module calls 

outer_ compile_ module, a new predicate created to split predicate compilation from 

rule compilation, which in tum calls the newly-named p _compile_ module (formerly 

compile_module) to compile the predicates. This predicate calls 

compile _predicates to extract all the statements for one predicate and pass them to 

compile_ statement_ list, which extracts one statement and passes it to 

compile_ statement. 

compile_ statement is the workhorse predicate. It compiles each predicate statement 

into Prolog which is written to the Prolog code file. Each Gooel statement is divided 

into a head and a body, which are processed separately. The predicate build_head is 

called to convert the predicate name and arguments found in the head into Prolog 

names. Each argument must be checked to see whether or not it contains functions, 

which must be converted into constraints. After this is done, each argument is built 

as described previously. The built head is returned along with a (possibly empty) list 

of constraints. The latter are built into Prolog by build_ constraints and its auxiliary 
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predicates. These constraints will be merged with the built body when the final 

Prolog clause is created. 

Analogous processing is done on the body by compile_ formula. compile_ formula, 

like build_ head, checks for functions in the body terms' arguments and replaces 

them with constraints. It then builds all tenn names and arguments into Prolog 

equivalents and combines them into a Prolog predicate formula. build_ constraints 

is called, and any built constraints are concatenated with the built predicate formula 

into a comma-separated sequence of goals which is the Prolog clause body. If the 

original Gooel body is a compound clause, each clause functor is compiled 

separately by compile_ formula, and the results are sequenced. 

When the head, head constraints, and body have all been built, they are combined 

into a Prolog clause as follows: 

BuiltHead :- BuiltConstraints, BuiltBody. 

The built constraints and/or body may be empty. Alternatively, either or both may 

be comma-separated sequences. 

As an example of a built predicate, consider this predicate from the Sumlist module 

which sums a list of integers: 

PREDICATE SumList : List(Integer) * Integer. 
SumList( [], 0). 
SumList([xjxs], x + y) <- SumList(xs, y). 
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The pre-defined function + is converted to a constraint and prepended to the body. 

The built Prolog equivalent clauses are 

'Sumlist. SumList. P2' (0, 0). 
'Sumlist. SumList. P2' ([A I B], C) :­

'Integers' :plus(A, D, C), 
'Sumlist. SumList. P2' (B, D). 

6.3 Rule compilation 

The rule compilation path, modeled after predicate compilation, is entirely new 

code. outer_ compile_ module calls r _compile_ module, handing to it the tree 

structure which contains the module's rule code. r compile module hands - -
compile_ rules a node containing a list of PredDef structures defining the = > 

predicate. compile_ rules extracts an element of this list. compile_ rules passes it to 

compile_rule_list, which in tum extracts one rule from the list and passes it to 

compile_ rule. The rule is extracted from the head arguments of the = > predicate. 

The optional rule conditional clause is extracted from the = > predicate body. The 

rule and condition are passed as separate arguments to compile_ rule. 

compile_ rule performs the actual rule compilation. It is very similar to 

compile_ statement, with one notable difference and one huge difference. 

Compilation of conditional clauses 
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The first difference between compile_ statement and compile_ rule is the 

compilation of conditional clauses. Rewrite rules may contain a conditional clause. 

For example, in the conditional rewrite rule 

Plus(x, y) => y <- x = 0. 

if x has been instantiated to 0, then Plus(x, y) rewrites toy. 

In the general conditional rewrite rule 

X => Y <-Z. 

Z , the conditional clause, may be any legitimate Gooel clause, although confluence 

of rules can only be guaranteed when the conditional clause contains only equations. 

This conditional rewrite rule is compiled as follows: X and Y are treated as the left 

and right hand sides, respectively, of the rewrite rule. Z is compiled separately by 

compile_ formula, just as would be done for the body of a Gooel predicate. The 

output of compile_ formula is then prepended to the sequence of compiled right 

hand side tenns to fonn the complete Prolog predicate body. 

Consider, for example, the recursive rule for factorial from the SFact module: 

FUNCTION Fact : Nat -> Nat. 
Fact(x) => Mul(x, Fact(y)) <- x = Succ(y). 

The condition x = Succ(y) is prepended to the body of the built Prolog clause. The 

Fact(y) argument to the multiplication function and Mul itself are also processed as 

described in the next section, yielding the built Prolog clause 

43 



'SFact.Fact.F2'(A, B) :-
A = 'SFact.Succ.Fl '(C), 
SFact.Fact.F2'(C, D), 
SFact.Mul.F3'(A, D, B). 

tau implementation details 

The major distinction between compile_ rule and compile_ statement is the former' s 

use of tau to translate rules into predicate form. tau is implemented as follows. If 

tau is called on a variable or a non-evaluable constant, it will return that variable or 

non-evaluable constant unchanged as a one-element list. 

tau called on a constructor term invokes tau_ loop on the constructor term's 

arguments. tau _loop calls tau recursively on each of the arguments and returns the 

processed arguments in a list which becomes the new argument list for the 

constructor. 

If tau is working on a functional term, it calls tau _loop to construct a new argument 

list. Then, the function's arity is increased, and a new variable appended to the new 

argument list to give the function the predicate 'look'. tau checks the rule list to 

detect a function. Thus, it only detects user-defined functions. Pre-defined functions 

are treated like constructors. 

During its work, tau_ loop has employed tau recursively to flatten the arguments. 

This means that the new argument list contains no functional terms. Any such terms 

have been lifted from inside the argument list and placed down in predicate form in 
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the body of the clause being created. The whole sequence of new predicates and new 

'predicate-style' functions is now returned by tau. 

tau called on a CONST ANT function acts similarly to tau called on a function. The 

main difference is that the constant function has no arguments on which to recurse. 

In its initial invocation, tau called on a rewrite rule, the left hand and right hand 

sides of the rewrite rule are passed into tau as a two-element list. tau is called 

recursively on the right hand side of the rule, resulting in one of the cases described 

above. This recursive call returns, first of all, the new variable which is the new 

argument placed in the left hand side of the rewrite rule, now become the clause 

head. The recursive call also returns a list of statements. This list is converted to a 

conjunctive clause which becomes the clause body. 

Completion of rule compilation 

When tau has finished its processing, the result looks comparable to a Gooel 

statement. Since tau treats pre-defined functions (e.g., +) like constructors, it 

places these functions in the head arguments of the clause it returns. Consequently, 

when build head is called on the translated left hand side, it may return constraints, 

and build constraints must be called. 

Subsequently, compile_ rule completes its work similarly to compile_ statement. 
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6.4 Function detection 

The decision to use the list of rule names to detect functions leads to the necessity of 

passing the rule list all over the compiler code. It is passed throughout the predicates 

responsible for the compilation of predicates, rules and goals. It is also passed 

throughout Gooel' s top-level command-execution sequence to enable program makes 

and loading of the rule list for goal compilation. This passing of the rule list 

throughout the compiler is fairly primitive, but straightforward to implement. 

compile _program passes the rule list through all the predicates responsible for 

compilation. For rule compilation, the rule list used by tau to differentiate between 

functions and constructors. Elsewhere, it is used by the building predicates. These 

predicates include build_head, where it is used for detecting functions within a 

clause head or rewrite rule left hand side; compile_formula, where it is used for 

detecting functions within a clause body or rewrite rule right hand side or condition; 

build constraints, where it is used for detecting functions found as arguments to 

another function. 

The method used to detect user-defined functions follows from the method used for 

pre-defmed functions. The predicate replace_ evaluatable is called by every 

predicate that needs to do function detection. replace_ evaluatable checks every 

functor argument. If the argument is not a Gooel FUNCTION or CONSTANT, the 

argument is not modified. If an argument is declared as a Gooel FUNCTION or 
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CONSTANT, evaluatable_functor is called to determine whether it is evaluable (a 

function) or not. A FUNCTION is evaluable under both standard and extended 

Gooel if it is a member of one of the following modules: Integers, Rationals, Sets, 

Strings. Standard Godel provides hard-coded Prolog predicates to replace functions 

of these modules. In extended GOdel, evaluatable _functor also checks the rule list 

to see whether the FUNCTION or CONSTANT in question is a member of the list. 

If it is a member, it is evaluable. 

Once replace_ evaluatable has determined it is dealing with an evaluable function, it 

creates a new variable which is returned to the caller as the built term. This variable 

represents the 'result' of the function-soon-to-be-predicate. It also creates a pair 

consisting of the variable and the function. This pair is called a constraint and is also 

returned to the calling predicate. 

If the FUNCTION or CONST ANT is not evaluable, it is returned untouched as the 

evaluated term, and any arguments are recursively checked for evaluable functions 

by replace_ evaluatable. 

6.5 Building constraints 

When a functional argument is detected during compilation, it is reported out as a 

constraint pair as described above. This constraint must be built into a Prolog clause 

just as is done to the predicate. 
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The narrowing technique used to build constraints is a simple, recursive flattening 

technique similar in concept to that performed by tau. Essentially, the functional 

argument is made to look like a predicate. This is done by adding one more 

argument to it. This extra argument represents the value of the erstwhile function. 

Then the functional argument is removed from the argument list in which it is 

embedded and promoted to become one more predicate in the clause. It is replaced 

in the argument list by the extra argument. 

For example, the clause 

IsOne(Plus(Succ(Zero), Zero)). 

where Plus is a function is flattened to 

Plus(Succ(Zero), Zero, a) & IsOne(a). 

where a is the extra argument and Plus is no longer a function, but is now a 

predicate. 

The flattening of functional terms is done recursively, in case one of the function's 

arguments is itself a function. 

build_ constraints and several auxiliary predicates of varying arities accomplish 

constraint building. build_ constraints extracts the first constraint from a list of 

constraints and breaks the variable/function constraint pair into separate arguments 

which it hands to build constraints aux. build constraints then calls itself - - -
recursively on any remaining constraints in the list. 

48 



build constraints aux breaks the evaluable function structure into a functor name - -
and arguments and passes these components to build_ constraints_ aux of a higher 

arity. In the case of pre-defined binary Gooel functions (e.g., +, -; + + for 

strings; etc.), there is a hard-coded build_ constraints_ aux clause for it. All of these 

clauses are alike. replace_ evaluatable is called on each of the arguments to detect 

nested functions. Both evaluated arguments are then built. The new argument, the 

variable obtained from the constraint pair, is also built. These three arguments form 

the argument list for the Prolog clause being created. The new Prolog functor name 

is hard-coded in the clause (e.g., plus for+, minus for-, etc.). 

If replace_ evaluatable detected any nested functions and returned them as 

constraints, build_ constraints is recursively called to build them. The original call 

to build_ constraints sequences the clause it creates with any created recursively to 

form the final clause. 

User-defined evaluable FUNCTIONs are handled by a new build_constraints_aux 

clause. Its operation is very similar to the already-existing clauses. In contrast to 

those clauses, however, the new clause does not know the arity of the function it 

will be processing, so it calls build_term on an argument list, rather than on each of 

two arguments separately. Also, the predicate make_ flat_ name is called to create a 

new Prolog predicate name which reflects the increased arity of the former function. 

User-defined functions defined as CONST ANT are also handled by a new 

build_ constraints_ aux clause. Since a constant function has no arguments, the extra 
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constraint variable is built and becomes the sole argument to the built constraint. 

The arity of the constant function is incremented to one. 

6.6 Making 

Making a multi-module program necessitates access not only to the rewrite rules 

defined within the module being compiled, but also to the rules in modules imported 

by the module being compiled, since local predicates may have imported functions 

among their arguments. The rule list contains the names of all needed rules, both 

local and imported. Loading the rule list file at the beginning of the make procedure 

allows all modules to avail themselves of the rule list. 

A program consisting of multiple modules is created using the Gooel make, rather 

than the Gooel compile command. This invokes the predicate make _program. In 

standard Gooel, this predicate breaks the code tree out of the program and hands it, 

along with the whole program structure, to make _program_ aux. 

make _program_ aux parallels the actions of compile _program on the head of the 

code tree, extracting the module language and module definition from the program, 

and then calling compile _program_ aux to compile the module. 

make _program_ aux subsequently calls itself recursively on the left and right sub­

trees of the code in order to compile the code of the imported modules. 
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As mentioned above, the problem faced in extended Godel when making a multiple 

module program is one of having access to a list of all rules. This is done by loading 

the rule list, which does contain all the needed rules, at the beginning of the make 

process and passing it to make _program_ aux, which passes it to the module 

compile process via compile _program_ aux, and to subsequent modules via 

recursive calls to itself. 

6.7 Loading 

The command-processing sequence of Gooel is a loop of reading, parsing, 

intetpreting and executing the command entered, then returning to the top of the 

loop for the next command. In particular, the command-processing sequence must 

keep track of which program, if any, is loaded, and which symbol table (language), 

if any, is being accessed. These arguments are passed down through the entire 

sequence of command-processing predicates. 

In order to enable the detection of functions during the compilation of goals under 

extended Gooel, the rule list for an extended Gooel program must be loaded at the 

same time the program and its language are loaded. Subsequently, the command­

processing sequence must keep track of the loaded rule list. 

This is accomplished as for the language and the program. top_ loop is initially 

called with an empty rule list argument. It will be filled by an eventual load 
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command, as explained below. top_ loop calls next_ command, which calls 

pro~ command, which calls build command, which calls - -
command_ execution, which finally calls the predicate which will execute the 

desired command. The rule list is passed down through each predicate. If the 

command does not involve loading a new module, the rule list is passed unchanged 

all the way back up to next_ command. If the command involves loading, the load 

procedure will modify the rule list. The modified rule list will be returned up to 

next_ command, which will re-start the command-processing sequence with a call to 

top_ loop using the modified rule list. 

load_ cmd and two auxiliary predicates are responsible for loading. load_ cmd passes 

the parsed program to the initial invocation of load_ cmd _aux. This predicate loads 

the language, Prolog, and compiled Prolog files into memory. It also builds a list of 

imported modules which will be recursively loaded using load_cmd_aux2, which 

calls load_ cmd _aux to load the first of a list of imported modules, and then calls 

itself recursively to load the rest of the list of modules. The extended Gooel load-

- cmd predicate also loads the rule list file into memory for subsequent use by goal 

evaluation. 

7 Conclusion 

7. 1 Feasibility of functional-logic programming 
language 

52 



This thesis demonstrates the feasibility of creating an integrated functional-logic 

programming language. The language is usable. Given the slightness of the syntax 

change to accommodate functions, a knowledgeable Gooel programmer can learn in 

it minimal time. The addition of functional compilation to the Gooel compiler was 

accomplished in a reasonable amount of time. 

7 .2 Narrowing 

Leftmost-innermost narrowing is a simplistic narrowing implementation, and 

deficient in comparison to needed narrowing. Since it converts functions into 

predicates, the code it generates is no different than that which would be generated 

were the functions written as standard Gooel predicates. It precludes the use of lazy 

evaluation, which, as previously shown, allows the execution of many programs 

which do not terminate when arguments are eagerly evaluated. The main benefit of 

this functional-logic implementation is the expressiveness gained from the use of 

functional arguments. 

Nevertheless, this implementation creates a code framework in which to create a 

functional-logic Gooel which employs needed narrowing. The isolation of rules and 

the detection of function calls, as well as the creation of predicates to implement 
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narrowing, have all been done. While it remains to be seen how much help this will 

be to the implementor of needed narrowing, it certainly should serve as a guide. 

7 .3 Compiler Design 

Function Evaluation 

The method for function evaluation is a generalization of the method already used by 

GOdel for its pre-defined functions. It is a straightforward implementation of 

leftmost-innermost narrowing. No other method was considered. 

Rule translation 

The tau predicate is a concise translation algorithm to flatten rules into predicates. 

Its implementation is terse, yet not intuitive nor easy to comprehend. On the other 

hand, given the flattening technique we are using to narrow functional arguments, 

this type of translation is required for rules. A different narrowing implementation 

might avoid the need for rule translation as done in this thesis. 

Function detection 
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As stated before, passing a list of rules throughout the code is a primitive yet simple 

and effective way of facilitating function detection. That the parser furnishes a 

complete list of local and imported rules only increases its simplicity. 

There are alternative methods of function detection. The most obvious would be to 

declare user-defined functions differently from constructors; i.e., not in the 

FUNCTION category. (Or better yet, re-name CONSTRUCTOR category items, 

move standard Gooel FUNCTION items to the CONSTRUCTOR category, and 

reseive the FUNCTION category for functions.) From a programming language 

point of view, this makes eminent sense. It would obviate the need for function 

detection by the compiler. However, we deemed it desirable to make as few changes 

as possible to the standard Gooel syntax. (For further discussion on this syntax 

change, see [JV].) 

Another alternative would be to flag evaluable functions in the language file. This 

would avoid creation of the rule list file. But it would entail altering the structure of 

the language, which has already been created by code generation time. Nor does this 

address the question of how to use the language file for detection puiposes. The 

rule information contained therein would still have to be passed throughout the code. 

7 .4 Versions 

Version 1 

55 



Two versions of the extended Gooel parser and compiler were implemented. The 

version described in this paper is the second implementation. The ways in which the 

first version differs are described below. 

In the first version, the parsed structure of a rule differs from that of a predicate. 

More precisely, the two structures are analogous, but a rule definition structure is 

labeled a RuleDef, whereas a predicate definition structure is labeled a Pred.Def. As 

a result, several parsed structures are different: 

Code tree 

AVLTrees.Node.F5( left tree -- predicates and rules, 
predicate or rule name in string form, 
list of predicate or rule definitions, 
balance state of tree, 
right tree -- predicates and rules 

) 

In extended Gooel version 1, a node containing a list of rewrite rules defines one 

function only. 

Rule Definition 

ProgDefs.RuleDef.F4(arity, definition list, import delays, export delays) 

The rule definition exists only in version 1. Other than its name, it is identical in 

structure to a predicate definition. 
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Rule 

MetaDefs. = > .F2(left hand side, right hand side) 

The version 1 compiler contains a rule formula, MetaDefs. = > .F2. The two 

arguments represent the left and right hand sides of a rule. The structure of the rule 

and predicate clauses are almost identical, the only difference being that predicate 

heads are atoms identified as MetaDefs.Atom.F2, whereas the left hand side of a rule 

is labeled a term, MetaDefs. Term.F2. The two-part left side structure consists of the 

rule name and a list of terms representing its arguments. 

The version 1 parser does not create a rule list file. The version 1 compiler saves 

the local module rule code by writing it to a rule code file, <module_ name> .re. 

This is done after the parsed code has been separated into statement code and rule 

code. An imported module's rule code may be accessed by reading in its rule code 

file. The rule code is used instead of the rule list to detect functions. A new 

predicate, function_ has_ rules, is called by evaluatable _functor to search through 

the rule code for a rule matching the term being tested for evaluability. 

In version 1, r _compile_ module hands compile_ rules a node containing a list of 

RuleDef, not PredDef, structures. The series of predicate calls down to 

compile_ rule is as for version 2. However, the structure passed to compile_ rule is a 

single rule structure, declared as MetaDefs. = > .F2. No extraction of the rule from 
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the head arguments as described for version 2 need take place. This rule structure is 

passed by compile_rule to tau. 

compile_ rule's call to build_ constraints to build pre-defined functions does not 

exist due to a version 1 parsing problem with numerical types. The numerical types 

Integer, Rational, and Float are the types for which Gooel pre-defined functions 

exist; i.e., the types for which constraints exist. In version 1, they are all parsed as 

type Num, for reasons which remain a mystery to this day. No operations 

(constraints) are defined for type Num. Consequently, no numerical operations can 

be used in rules in version 1. 

As stated before, making a multi-module program necessitates access not only to the 

rewrite rules defined within the module being compiled, but also to those in modules 

imported by the module being compiled, since local predicates may have imported 

functions among their arguments. The version 1 solution is to join the rule code of 

the module undergoing compilation with that of modules which have already been 

compiled during the make and pass that throughout the make process. 

This is done by passing the rule code of already-compiled modules into each 

invocation of make_program_aux, and by adding the local module's rule code to it 

for subsequent recursive invocations. make _program calls make _program_ aux 

initially with an empty tree for the rule code. make_program_aux, like 

compile _program, calls separate_ statements_ and_ rules to divide the code into its 

two parts. The newly-separated rule code is joined with the existing rule code tree 

(which is empty during the first pass through make_program_aux). Both the local 
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rule code and the combined rule code are passed to compile _program_ aux, and 

through it, to the series of predicates responsible for statement and rule compilation. 

Recursive calls to make _program_ aux will be passed the combined rule code, and 

join it with the rule code of the next module to be compiled, and so on. 

A problem created by this solution is that a multi-module program must be made; its 

component modules cannot be separately compiled. In the latter case, modules will 

not have access to the rule code of imported modules. Detection of imported 

functions will fail. This is a bug. 

At the time of goal compilation, the rule code retained during program compilation 

is no longer in memory. It must be re-obtained during the load process or goals 

containing functional arguments will be incorrectly compiled. In version 1, the rule 

code is obtained by reading in all rule code files from the local and imported 

modules. An empty tree for the rule code is passed to the initial invocation of 

load_ cmd _aux. load_ cmd _aux reads into memory the rule code of the module 

being loaded, and then joins this rule code with the rule code passed into this 

predicate, which represents the already-read rule code. It calls load_ cmd _ aux2 and 

passes the augmented rule code to the latter predicate, which in tum adds to the 

loaded rule code during its execution and returns the again-augmented rule code to 

its caller. 

Version 1 does not accept CONSTANT functions. 
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Comoarison between versions 

In both versions, rule code and statement code are separated at the top level of the 

compiler. While this seemed an obvious step in version 1, since rules and predicates 

are different structures, it was not a necessity in version 2, since rules are parsed as 

predicates. Rules could conceivably be sent down the same compilation path as 

predicates. However, since rules require extra processing before they can be 

compiled, it is desirable to separate them from standard predicates before 

compilation. Several advantages are reaped from this decision. First, the rule­

processing code created in version 1 can be re-used in version 2 with slight 

modification. Second, the standard Gooel predicate-processing code may be used 

unchanged in both version 1 and version 2. 

Separating the rule and statement code is comparable in version 1 and version 2. 

Version 1 keys on the RuleDef structure to distinguish a rule, while version 2 keys 

on the predicate name = > . 

The fact that rules are parsed as predicates in version 2 makes dissecting the rule 

structure prior to building somewhat more difficult than in version 1. In addition, all 

rules in version 2 are mingled in one PredDef structure. In version 1, each RuleDef 

contains all rules for one function only. This does not have an effect on this 

compiler, but may have an impact on future implementations. 

Version 2 function detection employs the list of rule names, which is a much smaller 

structure than the parsed rule code which is used in version 1. This undoubtedly 
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saves memory. Detection may be faster with the smaller version 2 list, although this 

has not been tested. 

The most significant advantage of version 2 over version 1 is the existence of the 

rule list file, which contains the names of all local and imported rules, prior to 

compilation. Loading the rule list from the rule list file is a one-step process. 

Obtaining the rule code for version 1 module making and loading is a much more 

complex process. In addition, there exists the version 1 make bug when compiling 

modules separately, as mentioned previously. 

In addition, version 2 permits the definition of CONSTANT functions, whereas 

version 1 does not. 

8 Other functional-logic 
programming languages 

Two other currently existing functional-logic languages are briefly examined as a 

contrast to extended Gooel. The languages are ALF and K-LEAF (Kernel-LEAF). 

8.1 ALF 
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ALF (Algebraic Logic Functional programming language) [ALF] combines a clause­

based logic programming language with functions. Its overall design is in many 

ways similar to our implementation of extended Gooel. It employs leftmost­

innennost narrowing to evaluate functional expressions. It attempts to simplify terms 

as much as possible through rewriting before narrowing is applied. Like the Prolog 

system underlying Gooel, it uses resolution to solve goals. Also like Gooel and the 

underlying Prolog, it uses a backtracking strategy to evaluate queries. 

ALF uses a module system, like Gooel, which allows both the importation of other 

modules and the exportation of the local module. ALF has a renaming feature, not 

found in Gooel, which allows imported objects to be renamed in order to prevent 

clashes with local object names. For example, if importing a function/from module 

m when a function/already exists locally, the declaration 

use m with fm for £. 

associates the name fm with the function/ imported from module m. 

The program structure of ALF is slightly different from Gooel in that the goals to be 

proved are included in the main module, as opposed to the Gooel interactive 

method. The execution methods also differ. ALF is not based on Prolog. Rather, it 

compiles programs into instructions for an abstract machine based on the Warren 

Abstract Machine which is currently implemented by an emulator written in C. 

ALF avoids the major syntactic pitfall encountered when extending Gooel; that is, 

the conflict between constructors and functions. ALF constructors are declared along 

with the type. Functions are declared separately. For example, 

62 



datatype nat = { 0 ; s(nat) }. 
func + : nat, nat -> nat infixleft 500. 

defines two constructors of type Mt and one operation on Mt. 

Like Gooel, ALF supports polymorphic parameters. For example, a type stack can 

be defined to take elements of any sort. 

Semantic restrictions placed on ALF evince some similarities and some differences 

with Godel. Rewrite rules, as in Gooel, must be confluent and terminating. Unlike 

Gooel, ALF does not allow functional arguments in the head of a predicate. Like 

Gooel, ALF permits extra-variables (variables appearing in the right side or 

condition but not the left side of a rule), but disregards the confluence of the system 

if they exist. 

In general, ALF' s computation method is like this implementation of extended 

Gooel. But ALF goes a bit further by trying to evaluate terms which include partial 

functions (functions not reducible on all ground terms). Such functions are evaluated 

using innermost reflection. This is essentially a lazy evaluation method, where 

evaluation of the partial function is avoided unless necessary to the evaluation of the 

whole term. 

ALF also permits specifying that certain equations should be used only for 

narrowing or only for rewriting. For example, the declaration 
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N * 0 = 0. 
0 * N = 0 onlyrewrite. 

allows for the computation of terms where N is unevaluable, while avoiding re­

computation of the same value in the case that a term can unify with both rewrite 

rules. 

8.2 K-LEAF 

The salient features of the K-LEAF [KLEAF] logic and functional programming 

language are: 1) the use of flattening rather than narrowing; 2) its ability to handle 

non-terminating functions; 3) its acceptance of weakly orthogonal (or weakly non­

ambiguous) rewrite systems. 

Its computation technique is to flatten K-LEAF programs into an intermediate 

language called Flat-LEAF, and then apply resolution to the resulting Flat-LEAF 

program. The concept of flattening and resolving is similar to that used in this 

implementation of extended Gooel, save the lack of an explicit intermediate 

language in Gooel. 

Where K-LEAF's computation technique differs from Godel is in its handling of 

partially-defined functions and non-strict functions, those functions which terminate 

on input from non-terminating functions. In order to handle such functions, K-LEAF 

64 



uses an outermost computation method, similar to lazy evaluation of functions. K­

LEAF first attempts to resolve goals essential for computation. It delays evaluation 

of non-terminating functions until absolutely necessary. 

For example, a function 

nats(x) = cons(x, nats(s(x))) 

which generates a list of the natural numbers beginning from x is a non-terminating 

function. The function 

first(cons(x, l)) = x 

is defined as a non-strict function which returns the first element of a list. To solve 

the goal 

jirst(nats(2)) 

K-LEAF first tries to evaluate the outermost function, first. To do so, it must 

evaluate nats, yielding 

jirst(cons(2, nats(3))). 

K-LEAF now attempts once again to compute the value of first, and succeeds with 

the value 2. At this point, the overall computation is finished, even though the 

evaluation of nats has barely begun. 

K-LEAF has some of the usual restrictions on function definitions--left linearity and 

constructor-based functions. In addition, it allows for weak non-ambiguity in its 

rewrite rules. A term may unify with more than one rule left side so long as 

confluence is maintained. 

That is, two rules may have similar left-side structures such that applying some 

substitution to both left sides unifies them. The resulting apparent ambiguity is not a 
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problem if applying the substitution to the rules' right sides (known as a critical 

pair) makes them equal. The existence of such trivial critical pairs in a rewrite 

system renders it weakly orthogonal. 

For example, the rewrite system 

N+O=N 
O+N=N 

is weakly non-ambiguous, since 0 + 0 unifies with both rules' left sides, but 

rewrites to the same value regardless of which rule is applied. 

K-LBAF, like ALF, is implemented on the Warren Abstract Machine. 
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Appendix A 

Differences between version 1 and version 2 

Issue Version 1 Version 2 
code contains RuleDeft and contains PredDeft only 

PredD~fs 

basis for rule and RuleDef structure PredDef name = > 
predicate 
differentiation 
where rule and compiler top level compiler top level 
predicate separation 
occurs 
predicate structure < -<head, body) <-(head, body) 
rule structure = > (lbs term, rhs term) <-

(headAtom(= > ,[lhs,rhs 
]) , condition) 

rule file . re contains parsed rule . ef contains list of rule 
code--created by compiler name--created by parser 

detector function_ has_ rules(f, member(f, RuleList) 
RuleCode) 

rule structure passed to =>(lbs, rhs) [lbs, rhs] 
tau 
tau's handling of pre- not applicable handled as constructors. 
defined functions caller must call 

build constraints 
function detection in join rule code module-by- use rule list from rule 
make module. Doesn't permit list file 

single module compile of 
multi-module Pf01mllll 

function detection in read rule code module- read rule list from rule 
load by-module list file 
CONSTANT functions no yes 
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Appendix B 

Sample extended Godel module 

This module demonstrates the clarity of expression gained by adding a functional 

component to Gooel. It contains functional declarations and definitions for many of 

the Gooel built-in List predicates. Most of these predicates are more naturally 

conceived of as functions, as shown here. 

Where a functional implementation is not possible, the reason is noted. 

EXPORT My lists. 

IMPORT Integers. 

CONSTRUCTOR MyList/1. 

CONSTANT MyNil : MyList(a). 

% Constructor Cons 
FUNCTION MyCons: a* MyList(a) -> MyList(a). 

% Member cannot be implemented as a function due to lack of Boolean type. 

% Permutation implemented using functions 
PREDICATE MyPermutation : MyList(a) * MyList(a). 

FUNCTION MyAppend: MyList(a) * MyList(a) -> MyList(a). 

% Delete one occurrence of the first argument from the second argument. 
FUNCTION MyDelete: a* MyList(a) -> MyList(a). 

FUNCTION MyReverse : My List( a) - > MyList(a). 
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% Return the first N elements of a list. 
FUNCTION MyPrefix: MyList(a) *Integer-> MyList(a). 

% Return the last N elements of a list. 
FUNCTION MySuffix: MyList(a) *Integer-> MyList(a). 

% FUNCTION MyLength : MyList(a) - > Integer 
% Length function cannot be implemented because it is not transparent 
% [Gooel, p. 21]; i.e., every parameter in the domain types must appear in the 
% range type. 'a' does not appear in range. 

% Sorted cannot be implemented as a function due to lack of Boolean type. 

FUNCTION MySort: MyList(Integer) -> MyList(lnteger). 

FUNCTION My Merge : MyList(Integer) * MyList(lnteger) - > MyList(lnteger). 

LOCAL My Lists. 

% Permutation predicate implemented with functions 
MyPermutation(MyNil, My Nil). 
MyPermutation(xs, MyCons(z, zs)) <- MyPermutation(MyDelete(z, xs), zs). 

% Append function 
MyAppend(MyNil, ys) = > ys. 
MyAppend(MyCons(x,xs), ys) = > MyCons(x, MyAppend(xs, ys)). 

% Delete function 
MyDelete(_, MyNil) = > MyNil. 
MyDelete(x, MyCons(x, xs)) = > xs. 
MyDelete(x, MyCons(y, ys)) = > MyCons(y, MyDelete(x, ys)). 

% Reverse function 
MyReverse(MyNil) = > MyNil. 
MyReverse(MyCons(x, xs)) = > MyRev(MyCons(x, xs), MyNil). 

% A niftier reverse implementation 
FUNCTION MyRev : MyList(a) * MyList(a) - > MyList(a). 
MyRev(MyNil, ys) = > ys. 
MyRev(MyCons(x, xs), ys) = > MyRev(xs, MyCons(x, ys)). 

% Prefix function 
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MyPrefix(MyNil, _) = > MyNil. 
MyPrefix(_,O) = > MyNil. 
MyPrefix(MyCons(x, xs), n) = > MyCons(x, MyPrefix(xs, n - 1)). 

% Suffix function 
% Inefficient?, but effortless implementation 
MySuffix(xs, n) = > MyReverse(MyPrefix(MyReverse(xs), n)). 

% Sort function 
MySort(MyNil) = > MyNil. 
MySort(MyCons(x, xs)) = > Mylnsert(x, MySort(xs)). 

% Insert function 
FUNCTION My Insert : Integer * MyList(lnteger) - > MyList(lnteger). 
Mylnsert(x, MyNil) = > MyCons(x, MyNil). 
Mylnsert(x, MyCons(y, ys)) = > MyCons(x, MyCons(y, ys)) <- x = < y. 
Mylnsert(x, MyCons(y, ys)) = > MyCons(y, Mylnsert(x, ys)) <- x > y. 

% Merge function 
MyMerge(xs, MyNil) = > xs. 
MyMerge(MyNil, ys) = > ys. 
MyMerge(MyCons(x, xs), MyCons(y, ys)) = > 

MyCons(x, MyMerge(xs, MyCons(y, ys))) <- x = < y. 
MyMerge(MyCons(x, xs), MyCons(y, ys)) = > 

MyCons(y, MyMerge(MyCons{x, xs), ys)) <- x > y. 
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Appendix C 

Predicate Call Sequences 

The following diagrams illustrate the series of predicate calls and data flow of the 

major sections of the extended Gooel compiler. Not all predicates in each sequence 

are shown. Nor are all arguments of each predicate included. The intent of the 

diagrams is to facilitate understanding, rather than provide completeness. 

Key 

ExplodedStruct 

Struct 

lswm 
Pred(Arg, Arg, ••. ) 

Pred 

la 
Pred 

J~~ 
ltalicizedStruct 

Struct and ExplodedStruct are the same structure 

Struct and SameStruct are the same structure 

Predicate call showing arguments of interest 

Call to Pred instantiates Struct 

Pred calls NextPred 

ItalicizedStruct is uninstantiated at time of call 
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oomplle_program(,ram, j 

I I 
'ProgDefs. Program. F4' L _, _, StatementsAndDelays) 

I 
I 

'AVLTrees.AVLSeardl.P3'(StatementsAndDelays, _, _J 

~ 
'ProgDefs.Code.F2'L, 

oomplle_program_aux(~ 

C!oncH'me statements and rules'Code) _... ... -, I - - , 

1 1 
general_ compile_module(StaleintCode, RuICode) 

outer_oompile_module(lenlCode, Rul 

p _ complle_module(StatementCode) r _complle_module(RuleCode) 

Compiler Invocation 

76 



p_compile_module(Node(LeftTree, __, f>reclDef. _, RlghtTree)) 

complle_predlcates(['ProgDefs.PredDef.F41L. S1lJnts, _. _) I PredlcateDef]) 

compile_statement_listQSr ill~]) 

I 
compile_statement('Meta0efs.<-.F2'(Hr, T)) l 

l 
build_h~(Head) compile_1qrmula(Body) 

build constraints1Constraints' - I ' i _____ ........_______} 
portray_clausa( (BulltHead :- BulltConstralnts, BulltBody)) 

Predicate Compilation 
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r_oomplle_module(Node(LeftTree, _J Predr, __, RightTree)) 

I I 
compile _rules(rProgDefs.PredDef.F4'L.RullPreds, _J _) I PredicateDef]) 

-J/ 
I 

oomplle_rule_llst(llRulePredsD 

I 
'MetaDefs.<-.F2'('MetaDefs.Atorn.F2• L Rule). Cond) 

I 
j/ 

compile_rule(~le. Cqnd) 

(Rule) complle_formula(Cond) 

bulld_hea~(LHS) complle_fomn:1la(RHS) 

bulld_ constralrits(Constralnts) 

portray_clause( (BulltLHS :- Bui d, BulltConstralnts. BulltRHS)) 

Rule Compilation 
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..,;.-. ........................................................................................................................................................................................... ~~ 

replace_evaluatablef MetaDefs.Term.F2'(Functor, Argus), Ru~Ust, 
NewT91m, Constrs/nts) I 

l 
evallf8table _functor(Fu11C1or. RuleUst) 

l . -------------·-r--·--·-------------------·--·--·----------
.. , ... 

NO YES ...: ... · 

1 
raplaca_evaluatable(Argus, Rulelist, Argus2) 

. 1 
NewTenn = 'Meta0efs.Term.F2'(Functor, Argus2) 

New Tenn = 'MetaDefs. VIF2'(Sb1ng, 0) 

Constraints= palrfMetaDefs.Var.F2'(String, 0), 
'MetaDefs. Tenn.F2'(Functor, Argus)) 

Function Detection 
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build_constraints((pair(V~. ~r)], Goal) 

build_constraints_aux('MetaDefs.Tenn.F2'( 
'Meta0efs.Name.F4'L Furictor, _,, _J, Expr), Vr Gosl) 

'1/ 
I _, VE4f, _, (Joa/, _. _J 

~plac;e-1uatable.~~(Exp~~-ra_)~~~~~~~~~---

id~~wD 

make_flat_nar:ne(Functor) bulld_t~(Args) 

bulld_constralnts(Constralnts, _, ~s, _, _J 

Goal = (Goals, Goal1) 

Constraint Building 
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make _program(Progr) 

,~ ~___._~~~~~~~~~~~~~--., 

'ProgDefs.Program.F4'L _, _, StatementsAnd Delavs) 

make_program_aux(Node(LeftTree, _. 'Prog0efs.Code.F2' 
L Code), _. RightTree)) 

compile _program_ aux(Code) 

make_program_aux{LsftTree) 

make_program_aux(RlghtTree) 

Make 
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k>ad_T(Program) 

load_crnct _ aux(MainModule) 

l 
load_and_aux2([1mport~Modulef lmportedMod1.tlesD 

load_cmd_aux(lmportedModule) 

load_and_aux2(1mportedModules) 

Load 
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