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Abstract 

Concrete is widely used for civil infrastructure structures and they experience deterioration 

and degradation due to aging, increases in the traffic loads, harsher environmental 

conditions, use of deicing chemicals, etc. Therefore, evaluating the integrity of reinforced 

concrete structures has become of increasing interest for infrastructure owners and 

managers. A number of non-destructive testing (NDT) and structural health monitoring 

(SHM) methods have been developed in recent decades to aid in evaluating structures and 

provide input for asset management. One family of these methods uses the dynamic 

response of a structural member: stress waves (high frequency) and structural vibrations 

(low frequency). Both the high and low dynamic response frequencies were studied in this 

PhD dissertation for NDT and SHM purposes resulting in three novel tools. 

First, an ultrasonic coda wave comparison (CWC) method was developed, which is a new 

method to monitor stresses in reinforced concrete members. An ultrasonic wave, 

representing the high frequency dynamic response (stress wave), was used in this method. 

Magnitude-squared coherence (MSC) was used to estimate the similarity between two 

recorded ultrasonic waveforms: a reference waveform under initial stress and one taken at 

a certain level of applied stress. Through a series of laboratory experiments and an in-

service bridge test, the method was found capable of capturing minute changes in the 

internal stresses in a concrete member. 

Second, the modal parameters of the structural vibration response (low frequency) of a 

reinforced concrete girder was investigated as a means to detect service-level flexural 
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cracking. In addition, this investigation emphasized the important effects of elastic support 

conditions on the modal parameters. The experimental testing of a large-scale reinforced 

concrete girder suggests that elastic supports have a significant effect on modal parameters. 

Also, natural frequencies of higher modes (higher that three) can be used to detect flexural 

cracks, unlike the natural frequency of the first and second modes that might give a wrong 

indication of cracking.  

Finally, a nonlinear vibration index (NVI) method is proposed to detect degradation and 

delaminations in a reinforced concrete bridge deck. The novelty of this method is that it is 

reference-free, i.e. no measurements from the undamaged state are required. The approach 

was simulated numerically using a finite element model and evaluated on an in-service 

concrete bridge deck. The results show that the proposed NVI method has the ability to 

detect degradation and delaminations. The availability of visual inspection data, concrete 

cores, and depth of removed concrete from ultra-high-pressure hydro-blasting provided 

further confirmation of the method. 
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1. Chapter One: Introduction 

1) Introduction and Background 

Structures such as buildings and bridges begin to deteriorate as soon as they are built and 

taken into service [1]. In addition to deterioration due to aging and environmental effects, 

they can also experience fatigue and overloading from natural hazards like earthquakes, 

tornadoes, and hurricanes, which can introduce both small and large-scale damage. 

Generally, the term “damage” can be defined as a change in the structure that adversely 

affects its performance in the present or future [2]. Therefore, evaluating a structure’s 

integrity, without further damaging it, is of greatest importance. This process is called non-

destructive evaluation (NDE). NDE has been employed for many decades and researchers 

have developed a variety of methods and techniques for assessing structural integrity [1]. 

These techniques may be further sub-categorized: Non-destructive testing (NDT) and 

structural health monitoring (SHM). Subsequently, NDT and SHM are defined in detail, as 

used in this dissertation. 

1.1. Non-Destructive Testing 

Non-destructive testing (NDT) includes the in-situ testing, examination, or evaluation 

performed of a test object in order to determine internal damage (or changes thereof) that 

may have an effect on its performance or serviceability. NDT is an active process whereby 

the test equipment is deployed temporarily to perform the test. A known source is used as 

the stimulus, e.g. an ultrasonic pulse, hammer impact, or vibration generator. The response 

of the system is measured using a sensor. The measured signals are then digitized, stored, 
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and analyzed using digital signal processing (DSP) techniques. Some common NDT 

methods for concrete include visual inspection, infrared thermography, impulse response 

testing, impact echo testing, ultrasonic testing, ground penetrating radar (GPR), half-cell 

potential, and electrical resistivity [3]. NDT on concrete is mainly employed to locate steel 

reinforcing bars and tendons, locate voids, cracks, and honeycombing, determine member 

thickness, estimate the level of corrosion, but it can also be used to estimate material 

properties such as modulus of elasticity, Poisson’s ratio, and strength [4]. 

1.2. Structural Health Monitoring 

Structural health monitoring (SHM) can be defined as a process of monitoring and 

predicting structural integrity [2] at frequent intervals during the life (or partial life) of a 

structure [1]. Also, it is used to assess the nature of damage in a structure by determining 

the location and severity of the damage [1]. SHM is a passive process whereby the response 

of the structure is monitored over time using fixed sensors, often due to unknown and 

uncontrollable stimuli. Generally, the concept of comparison between two different states 

is used in structural health monitoring by comparing the current state with an initial (often 

undamaged, reference) state [2]. 

1.3. Dynamic Response 

The dynamic response of structures is widely used for NDE purposes. Generally, an 

external stimulus (or excitation) is applied on structures and the dynamic response of the 

structure is measured using displacement, velocity, or acceleration sensors. According to 
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the excitation frequency, the dynamic response can be divided into two classes: structural 

vibrations and stress wave propagation, as illustrated in Figure 1-1 [5][6][7]. 

Both structural vibrations and stress waves can be described as the vibrational motion of 

particles due to an external excitation. This motion is initiated by displacing particles from 

their static equilibrium position [8]. The velocity at which particles oscillate and propagate 

are a function of the system’s geometry, boundary conditions, and material properties such 

as modulus of elasticity, Poisson’s ratio, and mass density. 

 

Figure 1-1. Illustration of the frequency range of structural vibration and stress waves [8].  

1.3.1. Stress Wave Propagation 

Stress wave propagation is the result of high-frequency input excitation where its frequency 

content is within the range of a kilohertz (kHz) or higher [6]. Moreover, the dynamic 

response of this type of motion causes oscillations in material by particles around their 

equilibrium positions [9], and as a result, an elastic wave is initiated, propagating radially 

away from the source through the material (see Figure 1-2). In a solid medium, two so-

called modes exist for stress waves: compression and shear waves. For compression waves, 

the particle oscillation is parallel to the direction of wave propagation; conversely, the 

https://en.wikipedia.org/wiki/Transverse_wave
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particle oscillation of shear waves is perpendicular to it. A third wave mode exists that 

propagates at a surface that is called surface wave. Stress waves in the ultrasonic range 

have been widely used for NDT purposes and is known as ultrasonic testing (UT). Since 

material properties directly affect wave characteristics, changes in the recorded waveforms 

can be associated with changes in the material. 

 

Figure 1-2. Snapshot of a stress wave with its three modes propagating in a solid [8]. 

Generally, a piezoelectric ultrasonic transducer is used as a transmitter to send a pulse that 

propagates through the structure. Selecting an appropriate pulse frequency depends on the 

material properties and the necessary propagation wavelength relative to the size of the 

material sample. For example, a 1 MHz (or higher) pulse frequency is used for steel 

members, but for concrete, the typical pulse frequency is within a range of 30 to 150 kHz, 

because concrete is a highly scattering material due to its heterogeneity. Finally, one or 

more receiving transducers are used to record the response (propagated wave). Further 

details about UT and a novel methodology of analyzing and interpreting ultrasonic waves 

for stress monitoring are presented in Chapter 2. 

Compression 
wave 

Shear wave 

Surface wave 

https://en.wikipedia.org/wiki/Transverse_wave
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1.3.2. Structural Vibrations 

Structural dynamics is associated with a low frequency dynamic load where the frequency 

content of an excitation is in range of few hundred Hertz (Hz) [6]. Additionally, in this type 

of response, all parts of the system move sinusoidally with the same frequency and with a 

fixed phase relation as shown in Figure 1-3. Typically, for NDE applications to civil 

structures, a force impact or harmonic force is used as excitation in order to initiate 

vibrations. Based on the dynamic response of the structure, measurements such as natural 

frequencies, mode shapes, and damping ratios can be extracted, which are called modal 

parameters. Any damage or abnormality in the structure has an influence on these 

parameters. Generally, the modal parameters of the lower modes are used since exciting 

the structure in the higher modes requires significant energy [5]. Moreover, the wavelength 

of the lower modes is on the order of the length of the structural member and thus much 

larger than the size of the aggregates in the concrete. Therefore, the interaction between 

the waves and the local cracks is mostly negligible [10]. Structural vibrations in this 

dissertation research are divided into two categories: linear and nonlinear response. Further 

details about structural vibrations and two studies looking at modal properties and the 

nonlinear response characteristics are presented in Chapters 3 and 4, respectively. 

 

Figure 1-3. Modal properties for the first four modes of a bridge [11]. 

https://en.wikipedia.org/wiki/Sinusoidal
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1.4. Frequency Domain Analysis of Sig4nals 

A signal is defined as a physical quantity that varies over an independent variable such as 

time or space [12]. Generally, data acquisition systems sample and digitize analog signals 

in the time domain. Discrete signals are discrete signals and can be decomposed into a 

series of sines and cosines that, when appropriately scaled and shifted, represent the 

original signal. The tool used to compute the scaling and shifting parameters is called the 

discrete Fourier transform (DFT) [13]. Sines and cosines are used in this analysis because 

they represent orthogonal and Eigen functions [13]. Figure 1-4 shows an example of a 

discrete signal in both the time and frequency domains. The scaling parameter of the 

frequency domain (Figure 1-4.b) has useful information regarding frequency content, 

which would not be possible to observe looking only at hte time domain. 
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Figure 1-4. Example of a synthetic discrete signal in the: (a) time domain and (b) the 

frequency domain (only scaling parameter shown for simplicity). 

Transform of the signal into the frequency domain is widely used in engineering and 

science applications, especially for periodic signals. Because of the interpretability of the 

frequency domain, the DFT is at the core of all analyses in this PhD dissertation research. 

1.5. Outline of Dissertation 

This dissertation research evaluates the use of the high and low frequency dynamic 

response of reinforced concrete structures to lay the foundation for novel non-destructive 

evaluation (NDE) tools. Advanced signal processing techniques are used to analyze and 
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interpret the recorded response in the frequency domain. This dissertation follows the 

multi-paper format per PSU OGS guidelines and is organized as follows: 

Chapter One: Introduction 

Chapter Two: Monitoring of Stresses in Concrete Using Ultrasonic Coda Wave 

Comparison Technique. Abstract: Condition or health monitoring of concrete structures 

has experienced increasing interest over the last decade. While conventional sensors such 

as strain gauges are accurate and reliable, they only allow for surface observations. In 

contrast, ultrasonic waves propagate through the thickness of a member and can thus detect 

internal changes. In this paper we present an ultrasonic monitoring approach that uses a 

coda wave comparison (CWC) technique, which makes use of the highly sensitive diffuse 

(or coda) portion of a recorded ultrasonic waveform. In this study, the changes in the 

applied stress were correlated to the changes observed in the ultrasonic waveforms, which 

were estimated using magnitude-squared coherence (MSC). The CWC technique was 

evaluated by investigating key influence parameters that affect the relationship between 

MSC and the applied stress. First, two concrete cylinders were cast and tested to study the 

effect of maximum aggregate size. Second, two concrete prisms were used to study the 

effect of the frequency of the transmitted pulse. Finally, we discuss a field test involving a 

prestressed concrete bridge girder and a column. The results show that MSC is capable of 

discriminating minute stress changes in a laboratory as well as a field setting. 

This paper is published and can be found using the following citation: 
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Hafiz, A. and Schumacher, T. (2018). Monitoring of Stresses in Concrete Using Ultrasonic 

Coda Wave Comparison Technique. Journal of Nondestructive Evaluation. Vol. 37(73). 

DOI: https://doi.org/10.1007/s10921-018-0527-8. 

Chapter Three: Effects of Elastic Supports and Flexural Cracking on Low and High 

Order Modal Properties of a Reinforced Concrete Girder. A number of nondestructive 

evaluation (NDE) methods are available to detect cracks and damage in reinforced concrete 

structures. Methods such as ultrasonic, impact echo, or X-ray testing have high resolution 

but are time consuming to perform and therefore only used locally. Since the early 1970s, 

researchers have also studied the modal properties of structures for damage detection and 

identification. In this paper, we discuss the effects of elastic supports and flexural cracking 

on the dynamic response of a large-scale laboratory reinforced concrete girder. For this 

purpose, an instrumented hammer used for impulse response testing was employed to 

initiate vibrations and to subsequently estimate the natural frequencies and modes of a 

large-scale laboratory concrete girder. Natural frequencies up to the 13th mode were 

successfully extracted from the frequency response function (FRF). In addition, the mode 

shapes were extracted up to the 6th mode due to the limitation of the linearity of the FRF 

response. These modal properties were determined from the measured accelerations of two 

points on the girder using a roving hammer. The test procedure was performed on the 

uncracked beam and repeated after the beam had been cracked. The experimental 

measurements were verified with a finite element (FE) model consisting of one-

dimensional beam elements that consider both flexural and shear deformations. Support 

flexibility was modeled as linear-elastic springs, and was found critical in order to explain 

https://doi.org/10.1007/s10921-018-0527-8
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experimentally-obtained measurements. The effects of cracking were found to be most 

obvious in the higher modes. Additionally, utilizing the modal flexibility method on the 

first mode (natural vibration frequency and mode shape) was an accurate predictor of 

flexural crack locations. 

This paper is published and can be found using the following citation: 

Hafiz, A. and Schumacher, T. (2019). Effects of Elastic Supports and Flexural Cracking 

on Low and High Order Modal Properties of a Reinforced Concrete Girder. Engineering 

Structures. Vol. 178, pp. 573-585. DOI: https://doi.org/10.1016/j.engstruct.2018.10.041. 

Chapter Four:A Reference-Free Non-Destructive Testing Method to Detect 

Deterioration in Concrete Bridge Decks Based on Non-Linear Vibration 

Characteristics.  A number of non-destructive evaluation (NDE) methods have been 

developed in recent decades to detect deterioration such as delaminations in concrete 

bridge decks. These methods, namely visual inspection (i.e. hammer sounding and chain 

drag), impulse response testing, impact echo testing, ultrasonic (array) echo testing, and 

under certain conditions ground penetrating radar (GPR) can be used to detect and estimate 

the extent of delaminations. Since the early 1970s, researchers have also investigated using 

the dynamic response properties of a structure, which is generally referred to as the 

vibration-based method. For damage detection, the vibration-based method requires a 

comparison with reference data, which is unavailable in most cases. Generally, the 

vibration response due to an impact force can be measured using accelerometers. The 

frequency response function (FRF) is computed by dividing the measured response by the 
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input force, both in the frequency domain. In this paper, we present a simple reference-free 

method based on impulse response (IR) testing to detect deterioration in concrete bridge 

decks using non-linear vibration characteristics. The hypothesis is that for an undamaged 

deck, varying the impact force does not affect the corresponding FRFs for frequencies that 

lie within the accelerometer’s operating range. On the other hand, the FRFs of a 

deteriorated slab change when the impact force is increased with the delamination resulting 

a non-linear vibration response. Finite element modeling was first used to demonstrate that 

the method will work in theory. We then evaluated its performance on an in-service bridge 

deck. Finally, ultra-high-pressure hydro-blasting was performed on the deck for 

rehabilitation, providing an opportunity to compare results.  

This manuscript will be submitted to the Journal of Mechanical Systems and Signal 

Processing. 

Chapter 5: Conclusion and Outlook. 
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2. Chapter Two: Monitoring of Stresses in Concrete Using Ultrasonic Coda 

Wave Comparison Technique 

 Ali Hafiz and Thomas Schumacher 

Abstract: Condition or health monitoring of concrete structures has experienced 

increasing interest over the last decade. While conventional sensors such as strain gauges 

are accurate and reliable, they only allow for surface observations. In contrast, ultrasonic 

waves propagate through the thickness of a member and can thus detect internal changes. 

In this paper we present an ultrasonic monitoring approach that uses a coda wave 

comparison (CWC) technique, which makes use of the highly sensitive diffuse (or coda) 

portion of a recorded ultrasonic waveform. In this study, the changes in the applied stress 

were correlated to the changes observed in the ultrasonic waveforms, which were estimated 

using magnitude-squared coherence (MSC). The CWC technique was evaluated by 

investigating key influence parameters that affect the relationship between MSC and the 

applied stress. First, two concrete cylinders were cast and tested to study the effect of 

maximum aggregate size. Second, two concrete prisms were used to study the effect of the 

frequency of the transmitted pulse. Finally, we discuss a field test involving a prestressed 

concrete bridge girder and a column. The results show that MSC is capable of 

discriminating minute stress changes in a laboratory as well as a field setting. 

Keywords: ultrasound; coda wave comparison; concrete; stress; magnitude-squared 

coherence.  
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2.1. Introduction 

Concrete is the most widely used building material in the world [1]. Monitoring the 

performance of concrete structures has increased in the last two decades [2] due to aging 

and deterioration and limited funds available for maintenance and repair. Structural health 

monitoring provides a range of useful information related to the short and long-term 

performance of a structure such as changes in stress, ongoing cracking, chloride levels, 

corrosion potential, etc. This information can support maintenance and repair decisions and 

may also help improving design and construction standards.  

Overloading and fatigue are the most common causes of cracking in concrete structures 

and may lead to deterioration such as rebar corrosion. Therefore, monitoring the stress 

conditions in concrete members provides important information regarding structural 

performance. A number of sensors have been developed to monitor stress conditions, such 

as strain gauges, accelerometers, or displacement sensors, etc. All of these sensors are 

attached to the surface and, therefore, they only represent a surface observation. Another 

limit of these sensors is that they can measure stress only at the point of their location. 

While distributed sensors exist, they are still bound to the surface. Ultrasonic stress waves 

have also been found to be sensitive to changes in stress and an advantage over traditional 

sensors as they travel through the thickness of a member. The challenge lies in the 

interpretation of the signals, i.e. how changes in the recorded signals are related to changes 

in stress. 

Hughes and Kelly [3] established a relationship between the p-wave velocity of ultrasonic 

waves and the applied stress inside a solid material , after third-order elastic constants were 
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introduced by Murnaghan [4]. In concrete, this theory is not directly applicable since the 

variation in time of flight (TOF) (or the propagation velocity) is extremely minute and, 

thus, difficult to measure [4,5]. For example, our previous experiment on a small concrete 

cylinder did not show any change in p-wave velocity until the applied stress reached 60% 

of ultimate stress [7]. This represents a significant level of stress and is well above a typical 

service-level or cracking stress. Therefore, we have been further investigating the 

evaluation of the diffuse portion of the ultrasonic signals. 

Concrete is a heterogeneous material and is made up of different sizes of materials, such 

as gravel, sand, and cement paste. Due to this heterogeneity, the ultrasonic stress wave 

experiences multiple scattering during propagation, making the signal more complex [8]. 

Generally, an ultrasonic signal can be divided into two portions: the coherent (early portion 

containing p-wave arrival) and the diffuse (late portion or coda wave) portion. As discussed 

earlier, the coherent portion is not sensitive to a change in the applied stress. On the other 

hand, any small change in the material has an effect on the coda wave, such as amplitude, 

energy, and the local phase [9]. 

The term coda wave originates from the field of geophysics [10], and has been used in 

materials science for the last decade. A common technique used in this field is called coda 

wave interferometry (CWI). A number of applications based on CWI for monitoring 

changes in concrete have been reported [5]. In addition to using CWI for monitoring stress, 

it has been used to monitor cracking [8, 10, 11, 12] , temperature changes [13, 14], and 

ASR [16]. Typically, the time lag between coda wave signals is estimated by applying 

cross correlation [5]: 
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 𝐶𝐶(𝑡, 𝛿𝑡) =
∫ 𝑌0[𝑡]𝑌𝑖[𝑡+𝛿𝑡]𝑑𝑡

𝑡2
𝑡1

√∫ 𝑌0
2𝑑𝑡 ∫ 𝑌𝑖

2𝑑𝑡
𝑡2

𝑡1
𝑡2

𝑡1

   (1) 

where Y0 and Yi is the waveform in the initial and final state, respectively, and (t1, t2) is the 

time window in the coda wave. CWI is much more sensitive than TOF to stress changes in 

concrete [17]. In addition, the sensitivity of CWI velocities relates to direction of the load 

respect to direction of wave propagation where the parallel situation shows greater 

sensitivity [18]. CWI has been successfully used for monitoring stresses in a concrete beam 

tested under a four-point bending load [1]. In addition, CWI was used to determine the 

non-linear constants for concrete by obtaining the relative velocity change for a concrete 

cylinder [19]. Stähler et al. [6] estimated the stress changes in an existing bridge by using 

CWI. Zhang et al. [2] used the CWI to correlate the velocity change in coda wave with the 

applied tensile stress in a concrete cylinder. Moreover, CWI and nonlinear acoustic waves 

can provide potential field applicability for in-situ measurements because of their 

sensitivity to the microstructural changes in concrete [20]. Questions exist regarding 

sampling frequency and the type of windowing technique to employ when performing 

CWI. Since the relative change in velocity is small, a high sampling frequency is required. 

Sometimes, a sampling frequency of 10 MHz is still not enough to detect a change in stress. 

The location, length, and number of time windows vary from study to study and no 

recommendations exist for using a specific time window. Liu et al. [21] applied the Taylor 

series expansion method on coda waves of a concrete cylinder to avoid signal resampling 

and time consuming calculations in the traditional CWI analysis. 

Over the last decade, the interest in quantifying the similarity between signals has 

increased.  Larose et al. [22] proposed a decorrelation coefficient (K) by using the 
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correlation coefficient as shown in Eq. (2). The decorrelation coefficient was used to 

measure the change in the similarity of the coda wave due to the evolution of cracks inside 

concrete. Based on the decorrelation coefficient and CWI, the researchers developed the 

LOCADIFF technique for crack imaging[23]. 

                                              𝐾 = 1 −  
∫ 𝑌0[𝑡]𝑌𝑖[𝑡]𝑑𝑡

𝑡2
𝑡1

√∫ 𝑌0
2𝑑𝑡 ∫ 𝑌𝑖

2𝑑𝑡
𝑡2

𝑡1
𝑡2

𝑡1

                       (2) 

Niederleithinger et al. [24] applied the squared correlation coefficient (R2) on a time 

window in the coda wave and related it with applied stress. The authors of this paper also 

correlated the R2 with applied stress, but they used the entire (or full) waveforms [7]. They 

also used magnitude-squared coherence (MSC) to compute the similarity between full-

waveforms, where MSC was correlated with applied stress in concrete cylinders [25]. 

Grosse [26] originally proposed the use of MSC to compare acoustic emission (AE) signals. 

Finally, Chen and Schumacher [27] applied MSC on the coda wave to correlate it with the 

length of a notch in a steel plate. 

Environmental parameters such as temperature and humidity have been found to have a 

significant effect on the coda wave portion, and structures such as bridges are fully exposed 

to environment [28]. Yuxiang Zhang et al. [29] proposed a thermal bias control technique 

by using a second (reference) specimen. They concluded that their technique could reduce 

the bias from both stress effects and environmental temperature fluctuations [29].  Fröjd 

and Ulriksen [28] used the Mahalanobis distance to distinguish between signal changes 

stemming from damage and the environment. 
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2.2. Research Significance 

This paper proposes a coda wave comparison (CWC) technique based on magnitude-

squared coherence (MSC) of ultrasonic signals for monitoring internal stresses in concrete. 

In this technique, the entire recorded ultrasonic waveform is used, not relying on an 

arbitrary window. Through a series of laboratory experiments, the proposed technique was 

found capable of discriminating minute changes in the internal stress in concrete. 

Additionally, the methodology was evaluated during an in-service bridge load test where 

the MSC value correlated directly with the internal forces of the tested members. In 

conclusion, ultrasonic monitoring in conjunction with CWC represents a promising 

technique to monitor internal stresses. In this study, the environmental effects were 

minimal and therefore not considered since the testing time was only on the order of a few 

minutes. 

2.3. Methodology 

2.3.1. Monitoring Methodology 

Our proposed monitoring methodology is based on ultrasonic stress wave measurements, 

which are taken at selected intervals. Figure 2-1 illustrates the fundamental idea on a simple 

setup with one transmitting (T) and one receiving (R) piezoelectric transducer. The option 

exists to employ a network of sensors, which would allow for spatial discrimination of 

changes. While the transmitted pulse is selected by the operator and thus assumed to be 

constant, the received (or recorded) waveforms will change if the material experiences an 

internal change. This approach is different from the acoustic emission (AE) monitoring 
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technique in that it is an active process. AE monitoring is passive and records stress waves 

released due to sudden processes such as cracking or friction. 

Subsequently, a mathematical framework is presented for our proposed monitoring 

approach and a waveform comparison technique that allows monitoring for minute and 

slowly varying changes in concrete. 

 

Figure 2-1.  Illustration of proposed ultrasonic monitoring methodology. Only one 

transmitting (T) and one receiving (R) transducer are shown for simplicity. 

2.3.2. Coda Wave Comparison 

Our proposed coda wave comparison (CWC) technique attempts to correlate observed 

changes in recorded ultrasonic signals with internal structural changes that develop in 

concrete. This paper focuses on the changes that manifest due to changes in the interior 

stresses. In this technique, the entire waveform, including both the first arrival and the coda 

portion of the wave, is used in order to avoid having to select an arbitrary window. The 

measurements performed in this technique can be mathematically described using a signals 

and system’s framework as a measurement chain of the following form [30]: 

 ( ) ( ) ( ) ( ) ( )* * *
G T DAQ

R t S t TF t TF t TF t=  (2) 
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where R(t) is the recorded digitized signal, S(t) describes the transmitted pulse (i.e. source), 

TFG(t) is the Green’s function describing stress wave propagation effects in the medium, 

and TFT(t) and TFDAQ(t) are the impulse responses of the transducers and the data 

acquisition unit, respectively. The four elements are linked in the time domain via 

convolution, which is denoted as “ * ”. When high-fidelity components are used that have 

a flat response over the range of frequencies of interest, the respective element in the 

measurement chain has a theoretical value of TFx(t) = 1, which means it can be neglected. 

Assuming that high-fidelity system components are used, and the coupling of the 

transducers does not change over time, Eq. (2) reduces to: 

 ( ) ( ) ( )*
G

R t S t TF t=  (3) 

In the case of our proposed ultrasonic monitoring approach, S(t) does not change over time, 

and we can therefore attribute the observed differences between measurements, R(t), solely 

with changes in the Green’s function, TFG(t), and hence with changes occurring in the 

material. The changes in the interior stresses cause minute relocations of the aggregates 

and eventually micro cracking, which affect the propagation of stress waves through the 

concrete. This has a particular influence on the coda portion due to the multiple scattering 

effect seen in concrete, resulting in a change of amplitudes, time shifts, and alteration of 

frequency content. Mathematically, these changes may be presented as follows: 

 Δ𝑇𝐹𝐺(𝑡)  ∝  Δ𝜎  (4) 

where ∆TFG(t) represents the changes inside the concrete resulting from changes in the 

interior stress, ∆σ. Although micro cracks are randomly generated, we can assume they 

follow a normal distribution in the propagation path of the stress wave. Also, a change in 
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the location of an aggregate is assumed to linearly correlate with interior stress. Therefore, 

we can assume the changes in concrete vary linearly with stress. Using this assumption and 

substituting Eq. (4) into Eq. (3) we get: 

 Δ𝑅(𝑡) ∝  Δ𝜎 (5) 

where ∆R(t) is the change in the recorded signal. In our proposed CWC technique, 

magnitude-squared coherence (MSC) is used, which estimates the strength of the 

relationship between two random variables in the frequency domain. In our case, MSC is 

used to describe the similarity between two waveforms recorded at different levels of 

stress: Y0 is the reference waveform recorded at the initial stress condition of the material 

and Yi is a waveform recorded at a certain level of interior stress, σi. The cross-spectrum 

[RY0Yi (e jω)] of any two signals is a complex function of ω, and the normalized cross-power 

spectrum is known as the coherence function [31]: 

 MSC = |𝐶𝑌𝑜𝑌𝑖(𝑒𝑗𝜔)|
2

=  
|𝑅𝑌0𝑌𝑖(𝑒𝑗𝜔)|

2

𝑅𝑌0(𝑒𝑗𝜔)𝑅𝑌𝑖(𝑒𝑗𝜔)
  (6) 

By assuming ∆R(t) can be represented by MSC at the pulse wavelength, λ, Eq. (6) can be 

reformulated as: 

 MSC(𝜆) ∝ 𝑀(𝜆, 𝐴) 𝛥𝜎 (7) 

where M is a constant that represents the slope of the linear relationship between the MSC 

and Δσ. This constant is also function of the wavelength (λ) of the source and the aggregate 

effect (A) for a specific specimen or member. Small wavelengths are more sensitive to 

micro cracks and relocation of the aggregates and the maximum size of the aggregate 

influences the interaction of the ultrasonic wave with the aggregates, which is discussed in 

section “Laboratory Experiments”. MSC takes values between one and zero. If Y0 is equal 
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to Yi, the MSC value is equal to one, which implies there is no difference between the 

signals; otherwise, it is less than one and greater than or equal to zero. In other words, a 

value of one indicates a perfect match while decreasing values correspond to decreasing 

similarity between signals. Also, the M value has always a negative sign because the MSC 

decreases from one at the initial condition with increasing internal stress [25]. 

For comparison, the change in the recorded ultrasonic signal, ∆R(t) can be estimated by 

using the coefficient of determination, R2, which is also referred to as the squared 

correlation coefficient, ρ2. The correlation coefficient is also known as the Pearson 

correlation coefficient and represents a measure of the strength of the relationship between 

two random variables by using linear regression [32]. It can be calculated by using: 

 𝜌𝑌0,𝑌𝑖
= 𝜌 =

𝐶𝑂𝑉(𝑌0,𝑌𝑖)

𝜎𝑌0𝜎𝑌𝑖

=
𝜎𝑌0,𝑌𝑖

𝜎𝑌0𝜎𝑌𝑖

   (8) 

 𝑅2 = 𝜌2 = 𝑀(𝜆, 𝐴) Δ𝜎     (9) 

Since the coefficient of determination estimates the difference between the signals in the 

time domain, estimating the time lag between the signals is critical. For this purpose, cross 

correlation was applied on the full waveform signals by using Eq. (1). The waveforms were 

adjusted by shifting each signal by its time lag before calculating R2, resulting in what we 

refer to as the adjusted coefficient of determination, R2’. 

2.4. Laboratory Experiments 

For all experiments, we utilized two Panametrics V103 normal-wave transducers, using 

one as a transmitter (T) and the other one as a receiver (R), as illustrated in Figure 2-1. The 

transmitter was connected to a BK Precision 4053 arbitrary waveform generator, which 

produced a 100 or 50 kHz Morlet-type pulse (see Figure 2-6) at 20 Vpp. These frequencies 
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have been reported in the literature (see e.g., Fröjd and Ulriksen [33]) and were found 

suitable for our experiments as well. Both transducers were coupled to the concrete using 

hot glue and connected to a high-speed data recorder (Elsys TraNET FE) to record both 

the transmitted and recorded waveforms. The recorder triggered on the transmitted signal 

in order to record 32,768 samples at a sampling rate of 10 MHz (with 500 kHz low-pass 

anti-aliasing filters), which ensured that both the coherent as well as the coda portions of 

the recorded waveforms were fully captured. The number of pre-trigger samples equaled 

10% of the total number of samples. All laboratory specimens were loaded using a 

programmable 1112-kN-capacity (250-kip-capacity) hydraulic concrete cylinder 

compression-testing machine (Forney LP) with a loading rate of 0.156 kN/s (35 lb/s). 

2.4.1. Test Specimens and Loading Protocols 

2.4.1.1.Test 1: Monotonically-Loaded Cylinder 

The goal of this test was to evaluate if the proposed CWC technique is able to capture an 

applied compressive stress and to investigate the aggregate effect on the results by varying 

maximum aggregate size. For this purpose, two concrete cylinders (152 x 305 mm (6 x 12 

in)) were cast and tested, and found to exhibit a similar ultimate stress. However, each 

cylinder had a different maximum aggregate size. These cylinders were named as 

Specimen C1 and C2. In this test, the cylinders were monotonically loaded in compression 

up to failure. A pitch-catch setup (illustrated in Figure 2-1) was used during loading and is 

shown in Figure 2-2. The transducers were attached at mid-height of the cylinders. A pulse 

with a 100 kHz central frequency was used with a pulse repetition frequency (PRF) of 
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31.74 Hz to ensure high-resolution continuous monitoring and compatibility with the data 

acquisition unit on the compression machine. 

 

Figure 2-2.  Photo of experimental test setup for Test 1. 

2.4.1.2.Test 2: Stepwise-Loaded Prism 

The goal of this test was to investigate the effect of pulse frequency (or wavelength, λ) on 

the results of the CWC, as well as to show the ability of the CWC technique to detect 

changes in internal stresses when the transducers are attached to an unstressed surface. In 

this test, two concrete prisms with the same dimensions of 152 x 152 x 533 mm (6 x 6 x 

21 in) were used, coming from the same batch. They were partially loaded about the 

centerline on a 152 x 152 mm (6 x 6 in) loading area and the same pitch-catch and setup as 

used in Test 1 was employed, as illustrated in Figure 2-3. The result of a finite element 

(FE) simulation for this specimen showed that the stresses at the location of the transducers 

are near zero at the ultimate load level, as shown in Figure 2-3. The first prism (P1) was 

loaded up to 40% of ultimate stress by four loading steps where each load increment 

equaled 10% of ultimate stress. During each loading step, the load was held and six pulses 



27 

 

were transmitted: three at 50 kHz and three at 100 kHz. The second prism (P2) was loaded 

up to 80% of ultimate stress. Like the first prism, the load was increased in steps and each 

step equaled 10% of ultimate stress. Three pulses at 100 kHz were transmitted during load 

holding. 

 

Figure 2-3. Illustration of experimental setup for Test 2 and the results of FE simulation 

at an applied load, P = Pult. 

2.4.2. Results 

2.4.2.1.General Observations 

As expected, the recorded waveforms were found to be longer and more complicated than 

the transmitted pulse due to the heterogeneity of the concrete and specimen size. Figure 2-

4a shows three waveforms recorded at different levels of applied stress for Specimen C2. 

It can be observed that not all portions of the wave are affected the same way by an applied 

stress. The earlier (coherent) portion of the waveform (Figure 2-4b) is less affected by 

changes in applied stress than the later (coda) portion (Figure 2-4c). The coherent portion 

does not show any noticeable change due to the increase of the applied stress in low stress 

cases (up to 40% of ultimate stress). A phase shift is only apparent at the 80% of ultimate 

stress level. Figure 2-5 confirms that there is no change in the time of flight (TOF), which 
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considers only the coherent portion of the waveform, until approximately 70% of ultimate 

stress (vertical dashed line) is reached. This explains why traditional techniques, for 

instance the pulse velocity test [34], are not capable of capturing changes in applied stress 

under service-level conditions. 

 

Figure 2-4. Three samples of recorded waveforms from Specimen C2 for different levels 

of applied stress. (a)  Entire recorded waveforms. (b) Sample window from the coherent 

portion.(c) Sample window from the coda portion. 
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Figure 2-5. ΔTOF vs. normalized stress for Specimen C2. 

On the other hand, the coda wave portion shows high sensitivity to changes in applied 

stress for any level (Figure 2-4c) where these changes appear as changes in amplitude, 

frequency, and time shift. Figure 2-6, in addition to showing the transmitted pulse in the 

time domain (Figure 2-6a), also shows examples in the frequency domain (Figure 2-6b) of 

the three recorded signals presented in Figure 2-4. Although the recorded waveforms 

contain the same range of frequencies as the transmitted pulse, each recorded wave showed 

an uneven attenuation in this range of frequencies due to the nonlinearity of concrete 

response as shown in Figure 2-6b. In addition, this attenuation was influenced by the load 

(stress) level, but the relationship between the load level and amount of the attenuation 

could not be extracted directly. Therefore, MSC was used to determine and evaluate the 

changes in the recorded wave (in the frequency domain) due to the stress effects. 

In order to evaluate the noise of the system on the MSC calculations, 100 pulses were 

transmitted at the zero stress level in all specimens and evaluated. The error in the MSC 

value was found to be 0.0003; therefore, the system’s noise can be neglected. This also 

proved that the decrease in the MSC value is a result of the change of applied stress. 
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Figure 2-6. (a) Transmitted pulse in the time domain. (b) Waveforms in frequency 

domain: transmitted pulse and three recorded waveforms at different levels of applied 

stress. The recorded waveforms were normalized according to the maximum spectra 

amplitude of the reference signal (blue curve). 

2.4.2.2.Test 1: Monotonically-loaded Cylinder 

Results of Different Waveform Comparison Parameters 

The ultimate stress of Specimen C1 was 24.1 MPa (3500 psi), which is a typical concrete 

strength used in reinforced concrete structures. For correlating the applied stress and the 

changes in the recorded waveforms, Eqs. (7) and (9) were applied and the results are 

presented in Figure 2-7a. The results show that both R2 and MSC() are a function of 

applied stress, and exhibit a linear relationship up to 30% of ultimate stress. After this limit, 

the time shift between the full waveforms has a large influence on the results of R2, since 

the R2 compares between signals in the time domain. This time shift was calculated for full 

waveforms by using Eq. (1), and the results are presented in Figure 2-7b. To conclude, the 

R2 is more sensitive at higher stress levels compared to MSC() due to its sensitivity to the 

observed time shift in the recorded waveforms. In order to exclude the effect of time shift, 

the signals were shifted in the time domain, to produce the adjusted coefficient of 
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determination (R2’). The results of R2’ match the MSC() curve almost perfectly, as can be 

seen in Figure 2-7a. In conclusion, the results of MSC() and R2 are the same after 

excluding the time shift in the signals.  

Some recorded signals showed a superposition between the pulse response and 

spontaneous acoustic emissions due to the imposed loading, which had an unwanted 

influence on the results of R2. In order to exclude the signals that contained the acoustic 

emission (AE) hits, the energy filter presented in [7] was applied to all recorded signals. 

On the other hand, AE hits did not affect the MSC()’s results. Therefore, only the MSC() 

results are presented and discussed subsequently. 

 

Figure 2-7. Different waveform comparison parameters vs. normalized applied stress for 

Specimen C2. (a) R2, MSC() and R2’ vs. normalized stress. (b) Time shift and dv/v vs. 

normalized stress. 

Influence of Mechanical Properties 

The ultimate stress of concrete cylinder Specimens C1 and C2 was 25.3 and 24.1 MPa 

(3670 and 3500 psi), respectively. Figure 2-8a shows the relationship between MSC() and 

normalized applied stress for these two concrete cylinders and one specimen from tests 

described in [25]. These specimens were tested using the same experimental setup, pulse 
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frequency, and reached approximately the same compressive strength, but had different 

maximum aggregate sizes. The results show a linear relationship between MSC() and 

applied stress up to approximately 55% of ultimate stress. In addition, each specimen has 

a particular slope M, for the linear portion of the MSC()-applied stress relationship. In 

Figure 2-8b it can be observed that the MSC() curves were similar in the linear portion 

for specimens (up to 55% of ultimate) with the same aggregate size and for varying 

compressive strengths ranging from 22.6 to 29.1 MPa (3280 to 4220 psi). To conclude, the 

slope of the linear portion is mainly influenced by the maximum aggregate size and not by 

compressive strength. 

 

Figure 2-8. MSC() vs. normalized applied stress. (a) Varying maximum aggregate size. 

(b) Varying compressive strength [25]. 

Effect of Sampling Frequency 

A relatively high sampling frequency is required when working with ultrasonic waves in 

concrete since typical pulse frequencies are in the range of 20 to 150 kHz. As discussed 

earlier, this pulse frequency range is suitable for monitoring the changes of the diffuse 

portion of signals from concrete [33]. Using a high sampling frequency, however, increases 

the amount of data and requires high-speed data acquisition systems, thus increasing the 



33 

 

overall computational cost, which can become prohibitive in a field setting. Decreasing the 

sampling frequency from 10 MHz to 500 kHz using by numerical downsampling does not 

influence the MSC() results as shown in Figure 2-9, which is demonstrated by the perfect 

match between them. To conclude, CWC is able to capture changes with relatively low 

sampling frequencies, without the need for post-acquisition oversampling. 

 

Figure 2-9. The effect of decreasing the sampling frequency on the CWC results for 

Specimen C2. 

Linear Regression 

A linear regression curve-fit with 95% confidence intervals was applied to the results of 

Specimens C1 and C2 over the range of 0 to 55% of ultimate stress, as shown in Figure 2-

10. It can be observed that all data points are in range of the prediction intervals. The 

confidence intervals are not shown because the large number of samples, which effectively 

collapses them onto the fitted line. It can be observed that a moderate linear relationship 

exists between MSC() and applied stress where the R2 for the linear fit for Specimens C1 

and C2 is equal to 0.987 and 0.993, respectively. In addition, the root-mean-square error 
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(RMSE) was negligible for both specimens and the p-value was zero for all specimens, as 

shown in Table 2-1, which indicates the high statistical relationship. 

 

Figure 2-10. Results of the linear regression for MSC() vs. normalized applied stress. 

(a) Specimen C1. (b) Specimen C2. 

This demonstrates that Eq. (9) is applicable for relating the changes in applied stress with 

changes in the coda wave for the stress range of approximately 0 to 55% of ultimate stress. 

Beyond that value, the time shifts have an over-proportional effect on the changes in the 

recorded waveform. Table 2-1 shows the results of using the CWC technique by applying 

Eq. (9), and presents the computed test coefficient, M. 

Table 2-1. The regression results for Specimens C1 and C2. 

Specimen 
Max. Size of 

Aggregate (in) 
M R2 p-value RMSE SE 

Numbers of 

Samples 

C1 1/2 -0.3963 0.987 0 0.00683 0.00116 1692 

C2 7/16 -0.2513 0.993 0 0.00283 0.00055 1500 

 

2.4.2.3.Test 2: Stepwise-Loaded Prism 

For the concrete prisms, nine MSC() values were obtained at each load level, consisting 

of three pulses with the same wavelength. The variance of these values was found very 

small, as shown in Figure 2-11. Also, there was no noise effect from either inside or outside 
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the system since the calculation of MSC() depends on the frequency of the recorded 

waveforms. This test demonstrates that changes in the interior stress can be detected using 

our proposed CWC technique when the changes are within the propagation path of the 

wave. Changes in the interior stress do not have to extend to the surface to which the 

transducers are attached (see Figure 2-3), which is an advantage compared to sensors that 

are attached to the surface such as strain gauges. The results of the first prism (P1) show 

that the sensitivity of the MSC() values was influenced by the wavelength, which is a 

function of pulse frequency assuming a p-wave velocity of3600 m/s (141000 in/s). The 

pulse with the smaller wavelength was more sensitive to changes in interior stress than the 

larger wavelength, as shown in Figure 2-11a and 11b. When the applied load increased 

from 10 to 40% of ultimate stress, the MSC() decreased from 0.88 to 0.6 for λ = 36 mm 

(1.41 in), where decrease for λ = 66 mm (2.62 in) was from 0.88 to 0.85. Moreover, the R2 

of the linear fit for the results of the MSC() for the shorter wavelength was higher, as 

shown in Table 2-2.  

For Specimen P2 (see Figure 2-11c), the results show the high sensitivity of the MSC(). 

Increasing the applied load from 10 to 80% from ultimate stress, the MSC() decreased 

from 0.78 to 0.2. The sensitivity of this test is very close to the sensitivity of Specimen P1 

due to wavelength similarity in both cases. The results also show that the relationship is 

linear between the change in the MSC() value and the change in the applied stress, as 

shown in Figure 2-11c. Although the linear fit for the results shows one slight deviation at 

a load of 60% of ultimate, R2 = 0.988, as shown in Table 2-2. The relationships are 

statistically highly significant with near-zero p-values. 
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Figure 2-11. MSC() vs. normalized applied stress for Specimens P1 and P2. (a) 

Specimen P1, λ = 66 mm (2.61 in). (b) Specimen P1, λ = 36 mm (1.41 in). (c) Specimen 

P2, λ = 36 mm (1.41 in). 

Table 2-2. The regression results for concrete prisms. 

Specimen 
Wavelength 

(in) 
M R2 p-value 

P1 2.61 -0.06991 0.62 1.24e-08 

P1 1.41 -0.9496 0.99 1.12e-35 

P2 1.41 -0.7895 0.988 2.07e-68 

 

2.4.2.4.Final Remarks Regarding Laboratory Tests 

The MSC() curves typically show a sharp drop at the initial loading phase. This 

phenomenon appears only in a laboratory setting when a hydraulic machine is used to apply 

the load. It is likely associated with the initial contact of the loading cap and settling and 

in some regard another testament to the sensitivity of our proposed approach. 

2.5. Field Test 

2.5.1. Description of Load Test 

The objective of the field test was to demonstrate our proposed CWC technique’s 

sensitivity to capturing internal changes in tensile and compression stresses in real 
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structural concrete members. A prestressed concrete bridge located on the I-84 Highway 

near Echo, Oregon undergoing in-service load testing was selected for this purpose. The 

bridge consists of three non-continuous spans with lengths of 12.2, 24.4, and 12.2 m (40, 

80, and 40 ft.). The superstructure of the bridge is made of prestressed concrete girders and 

a reinforced concrete deck slab as shown in Figure 2-12a and 12b. This bridge is part of 

the FHWA Long-Term Bridge Performance (LTBP) program where 42 sensors were 

already mounted for monitoring the long-term performance of the bridge. In July 2017, 

FHWA calibrated the monitoring system by performing an in-service load test (see Figure 

2-12c) and invited us to participate. 

 

Figure 2-12. In-service load test on I-84 Bridge near Echo, Oregon. (a) Photo from road 

under the bridge showing bent and girders. (b) Elevation view with test truck. (c) Photo 

of deck with approaching test truck. (d) Photo of girder with ultrasonic transducer. 

Loaded water tank and dump trucks were used and weight information are listed in Table 

2-3. During the loading process, a pitch-catch setup was used to capture changes in applied 

stress in one interior girder (Figure 2-12d) that was a part of the external span. Additionally, 

the stress in one of the bent’s columns was monitored (see Figure 2-12a). Consistent with 

the type of structural member, the tests are subsequently referred to as girder test and 
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column test. The same data acquisition setup used for the laboratory tests was used. Power 

was provided by large uninterruptable power supply (UPS) device battery connected to a 

fuel-powered generator. The UPS device also ensured a clean power signal. 

Table 2-3. Weight information for test trucks. 

Truck 

Axle 

Steer Tandem 

 Front Axle Rear Axle 

Weight  

(kN) 

(lbs) 

Distance  

(m) 

(in) 

Weight  

(kN) 

(lbs) 

Distance  

(m) 

(in) 

Weight  

(kN) 

(lbs) 

Distance  

(m) 

(in) 

ODOT Water Truck 
77.8 

17,500 

0 

0 

81.0 

18,200 

5.28 

208 

79.2 

17,800 

6.66 

262 

ODOT Dump Truck 
71.8 

16,150 

0 

0 

75.2 

16,900 

4.47 

176 

72.7 

16,350 

5.79 

228 

 

For the girder test, the transmitting and receiving transducers were attached to the mid-

thickness of the bottom flange at the centerline of the girder (see Figure 2-12d). A water 

tank truck crossed the bridge starting from the beginning of the right exterior span with 13 

stop points, as shown in Table 2-4. Throughout the loading process, which consisted of 

moving and stopping of the truck, a 50 kHz Morlet-type pulse was sent from the transmitter 

every 20 ms and recorded at a sampling frequency of 10 MHz. This test was performed 

twice. 

Table 2-4. Truck stop locations for girder test (see Figure 2- 2b). 

Stop Case 1 2 3 4 5 6 7 8 9 10 11 12 13 

Steer Axle 

Position, x 

(m) (ft) 

36.6 

120 

37.8 

124 

39.0 

128 

39.6 

130 

41.5 

136 

42.7 

140 

44.5 

146 

45.7 

150 

47.5 

156 

48.8 

160 

50.6 

166 

53.6 

176 

54.9 

180 

 

For the column test, the transducers were located at the mid-height of the column in the 

short direction, which was 0.91 m (36 in), as illustrated in Figure 2-12a. A water tank truck 
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and dump truck side-by-side crossed the interior span (24.4 m (80 ft span)) nine times and 

the exterior span (12.2 m (40 ft)) eight times as shown in Table 2-5. Because of the 

difficulty of making the trucks moving and stopping together, the dump truck was moved 

first and stopped at a stopping point and waiting for the water tank truck to catch up. In this 

test, a 50 kHz Morlet-type pulse was used as well. The pulse repetition frequency and 

sampling frequency was 3 Hz and 3.3 MHz, respectively. 

Table 2-5. Truck stop locations for column test (see Figure 2-12b). 

Stop Case (Interior 

Span) 
1 2 3 4 5 6 7 8 9 

Steer Axle Position, x 

(m) 

(ft) 

12.2 

40 

15.2 

50 

18.3 

60 

20.1 

66 

23.2 

76 

25.0 

82 

28.7 

94 

32.3 

106 

36.0 

118 

Stop Case (Exterior 

Span) 
10 11 12 13 14 15 16 17 

Steer Axle Position, x 

(m) 

(ft) 

39.0 

128 

39.6 

130 

41.5 

136 

44.5 

146 

45.7 

150 

48.8 

160 

50.6 

166 

53.6 

176 

 

2.5.2. Results and Discussion 

The results of the MSC() of these tests as a function of test time are presented in Figure 

2-13. The thirteen and the seventeen stops of the trucks can be distinguished in this figure 

for both girder and column tests, respectively. In addition, several sharp drops in the 

MSC() curve (highlighted with red circles) can be observed that occur when the truck 

arrives at a stop location. This phenomenon is likely related to the transient vibrations 

induced by the truck when the driver hits the brakes to stop. Using a pulse with 50 kHz 

central frequency was found suitable to monitor the change in applied stress due to the 

weight of the trucks, where the MSC() varied between 1.0 (unloaded) to 0.57 and 0.3 
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(maximum load) for column and girder tests, respectively. The column test and previous 

tests presented in this paper demonstrate the capability of the proposed CWC technique to 

monitor minute changes in compression stresses. Additionally, the girder test shows the 

same the capability to sense a change in tension stresses. Unfortunately, no deformation 

measurements were available for direct comparison. An estimate of the maximum tensile 

strain in the girder during loading is 10 µε. This was confirmed as a reasonable value with 

the bridge owner and based on readings available at other locations. 

 

Figure 2-13. MSC() vs. test time. (a) Girder test. (b) Column test. Red circles indicate 

drops in the MSC() curve when the test trucks arrived at a stop location. 

Since the truck is a moving load, the influence line can be used to correlate changes in the 

internal force and corresponding stresses at that location of the bridge with respect to the 

truck position. Therefore, the influence line for the bending moment in the girder and the 

axle force in column for each truck stop location were computed using a conventional 

moving load analysis. From the influence line for the bending moment, the influence line 

of the change in tensile force in the bottom flange of the girder was obtained. The influence 

line of the change in compression force in in the column was determined from the influence 

line for the steer truck axle load. Figure 2-14 shows the normalized change in stress 

(column and girder bottom flange) and the normalized change in MSC(). The results show 
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that the MSC() values correlate very well with changes in the internal stresses, which 

demonstrates the ability of the proposed CWC technique to capture minute changes in 

internal stress. The MSC() results for the two girder tests were in excellent matching, as 

shown in Figure 2- 4a, indicating robustness of the CWC’s results. Moreover, CWC can 

monitor the unloading cases, when the truck passes the maximum stress location. Finally, 

for the girder test, it can be observed that the MSC() value returns to the original value as 

shown in Figure 2-13a and 14a, indicating that no residual stress or damage has occurred 

due to the loading. For the column test, the residual stress could not be investigated because 

the DAQ ran out its storage memory capacity to complete the test.  

  

Figure 2-14. Normalized MSC() vs. steering axle position. (a) Girder test. (b) Column 

test. 

Linear regression curve-fits with 95% confidence intervals were applied to the results to 

estimate the accuracy of the CWC technique. Figure 2-15. shows that all MSC() results 

for the column and girder tests are located in the confidence interval limits except for two 

points of the column test. However, these two points are still located within the prediction 

intervals. Additionally, a linear relationship between the MSC() results and applied stress 
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can be assumed, since the coefficients of determination R2, are equal to 0.996 and 0.999 

for column and girder tests, respectively, and the root mean square error RMSE, for the 

column and girder tests are equal to 0.0249 and 0.0129, respectively. Finally, the p-values 

were found to be near zero, indicating that statistically significant relationship exists. 

 

 

Figure 2-15. Normalized MSC() vs. normalized ∆σ. (a) Girder test. (b) Column test. 

2.6. Conclusions 

The results presented in this paper demonstrate the ability of our proposed CWC technique 

to relate changes in an ultrasonic stress wave to changes that occur in concrete due to 

internal stresses. In the proposed technique, a wave similarity parameter based on 

magnitude-squared coherence evaluated at a specific wavelength, MSC() is used to 

measure the similarity between recorded ultrasonic waveforms in their frequency domain. 

Similarly, the time-shift-adjusted squared correlation coefficient, R2’ produces the same 

results as MSC(). Both MSC() and R2’ show a linear relationship with the applied stress 

up to a specific limit which depends on a number of variables but can be assumed to be at 

least 50% of ultimate stress. Linear regression produced a test constant, M, which 
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represents the slope of the MSC() vs. applied stress relationship, and can thus be 

interpreted as a measure of sensitivity. The results showed that M depends on the maximum 

size of the aggregate more than the compressive strength of concrete, in addition to the 

dependence on the wavelength of the transmitted pulse. The sensitivity of the MSC() 

parameter increased with decreasing wavelength. The proposed CWC technique was also 

validated in a field setting where it was found to correlate extremely well with the internal 

stresses at the sensor locations. The CWC technique exhibits two advantages over the more 

established coda wave interferometry (CWI) approach and traditional deformation 

measurements such as strain gauges. First, no arbitrary windows need to be selected for 

CWC since the entire waveform is used. Second, using a sampling frequency equal to five 

times the pulse frequency is good enough to produce accurate relations between MSC() 

and applied stress. Finally, compared to traditional deformation sensors, ultrasonic 

monitoring using the CWC technique can measure changes in the internal stress that are 

not observable on the surface of a member. Future work includes evaluating the technique’s 

ability to measure residual stresses and other changes such as deterioration mechanisms. 
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3. Chapter Three: Effects of Elastic Supports and Flexural Cracking on Low 

and High Order Modal Properties of a Reinforced Concrete Girder 

Ali Hafiz and Thomas Schumacher 

Abstract 

A number of nondestructive evaluation (NDE) methods are available to detect cracks and 

damage in reinforced concrete structures. Methods such as ultrasonic, impact echo, or X-

ray testing have high resolution but are time consuming to perform and therefore only used 

locally. Since the early 1970s, researchers have also studied the modal properties of 

structures for damage detection and identification. In this paper, we discuss the effects of 

elastic supports and flexural cracking on the dynamic response of a large-scale laboratory 

reinforced concrete girder. For this purpose, an instrumented hammer used for impulse 

response testing was employed to initiate vibrations and to subsequently estimate the 

natural frequencies and modes of a large-scale laboratory concrete girder. Natural 

frequencies up to the 13th mode were successfully extracted from the frequency response 

function (FRF). In addition, the mode shapes were extracted up to the 6th mode due to the 

limitation of the linearity of the FRF response. These modal properties were determined 

from the measured accelerations of two points on the girder using a roving hammer. The 

test procedure was performed on the uncracked beam and repeated after the beam had been 

cracked. The experimental measurements were verified with a finite element (FE) model 

consisting of one-dimensional beam elements that consider both flexural and shear 

deformations. Support flexibility was modeled as linear-elastic springs, and was found 
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critical in order to explain experimentally-obtained measurements. The effects of cracking 

were found to be most obvious in the higher modes. Additionally, utilizing the modal 

flexibility method on the first mode (natural vibration frequency and mode shape) was an 

accurate predictor of flexural crack locations.  

Keywords: modal analysis; high order modal properties; natural vibration frequencies and 

modes; mode shape; elastic support; flexural cracking; reinforced concrete girder; 

flexibility method; roving hammer technique.  

3.1. Introduction 

A number of non-destructive evaluation (NDE) methods have been developed in the recent 

decades to detect cracks and other kind of damage in reinforced concrete girders. Some of 

these methods, namely visual inspection, ultrasonic testing, and X-ray can be used to detect 

and locate cracks [1]. Since the early 1970, researchers have also investigated using the 

modal properties of a structure, which is generally referred to as the vibration-based 

method [2]. While this approach is able to detect the presence of damage and cracks, 

challenges remain locating them. 

The fundamental idea of the vibration-based method is that local damage causes an local 

increase in the flexibility (or decrease in stiffness) of a member [3], which in turn changes 

the properties of modal parameters, namely the natural vibration frequencies, natural 

modes, and modal damping values [1]. These properties can be obtained by measuring the 

dynamic response due to an external stimulus, such as an excitation force. An low-energy 

impact-type force is typically used to make the structural member vibrate and produce a 
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measurable response [4]. Considering the effects of cracks on both natural vibration 

frequencies and modes, this method can be further divided into frequency-based and mode 

shape-based methods [1]. 

In the frequency-based method, a change in the natural vibration frequencies is the basic 

feature used to detect damage. Using this method is attractive because the natural vibration 

frequencies can be extracted from the dynamic response from only a few accessible points 

on the structure [1]. However, the change in the natural vibration frequencies may be not 

sufficient for a unique identification of the damage location in the structure because the 

amount of change may be the same for a similar crack length at a different location [4]. 

Moreover, there are two additional limitations in using this method. First, the structure may 

exhibit a small change in the natural frequencies due to significant damage, especially for 

large structure [5]. Additionally, these changes cannot always be detected because of 

measurement restrictions or processing errors [2]. Farrar et al [6] found that there is no 

significant reduction in natural frequencies when the stiffness of the overall bridge cross-

section decreased by 21%. The experimental results of Eccles [7] showed that increases in 

the natural frequencies were observed for some mode when introducing damage. Secondly, 

environmental and operational conditions can also affect the natural vibrations frequencies 

[1]. Generally, the environmental effects on the frequency response can be as high as 5-

10% [4]. As a result, this method can only be used to estimate the global condition of a 

member. 
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The mode shape-based method is based on the idea that any damage changes the natural 

mode shapes of a structure. The mode shapes are much more sensitive to local damage than 

the natural vibration frequencies [2] and are less sensitive to environmental effects [1]. 

However, there are some drawbacks to using the mode shape-based method. First, the 

mode shapes of the lower modes may not be significantly influenced by local damage [2]. 

Second, the mode shapes are subject to noise contamination [1]. Finally, using this method 

requires a series of sensors in order to adequately capture the mode shapes [2]. 

Frequency Response Function (FRF) usually is used to extract the mode shapes from 

experimental measurements in two ways. Means to initiate natural vibrations to reliably 

extract mode shapes include: (a) loading the structure with a harmonic vibration generator 

or (b) imposing an impact force. The impact force can be created using an instrumented 

hand-held hammer [8] or, for the case of bridges, a falling weight deflectometer (FWD) 

[9]. Impact forces can be employed in two ways. First, a hammer impact force (roving 

hammer) can be employed at multiple locations with an acceleration sensor located at one 

location (= roving hammer technique) [10]. Second, a hammer impact at a fixed location 

can be used with multiple acceleration sensors placed in different locations (= single 

excitation point technique)  [10]. This method is called single excitation point impact test 

technique. Theoretically, both approaches should produce the same result; however, there 

is a small percentage of error between them experimentally [8]. The roving hammer 

technique has the advantage that it requires only a few accelerometers to extract most 

modes. Therefore, only a small number of recording channels are required. Additionally, 

in order to increase the resolution of the measured modes, increasing the number of the 
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excitation points can be achieved easily. On the other hand, a large number of sensors and 

hence recording channels, are required when using the single excitation point technique. 

One disadvantage of the roving hammer technique is that accessibility to some members 

for sensor installation is more difficult than accessibility for imposing the impact force. 

In addition to the mechanical properties of the structure (i.e., stiffness, mass, and damping), 

support conditions, or the degree of restraint offered by the support, has an influence on 

the modal parameters [11]. A number of researchers have investigated the effect of the 

support condition on the dynamic response. Thomas and Dohrmann [12] studied the effect 

of support stiffness on the measured natural vibration frequencies and concluded that the 

support condition must be considered in the model, unless a free-free test is performed. 

Therefore, some researchers have used the free-free test in their work. For example, Lin 

and Ng [13] used soft nylon ropes to suspend their beams in order to simulate the free-free 

test. Wei-Ren and Roeck [14] also used the technique of suspending a beam. This technique 

has been used to avoid any imperfections in support behavior [15]. 

Elastic bearings are often used to support bridge girders [11] because they allow for 

horizontal thermal deformations [16]. Fayyadh and Razak [17] investigated the effect of 

elastic bearing deterioration on the modal parameters using reinforced concrete girders 

with different levels of deterioration of the elastic bearing pads. They extracted the natural 

vibration frequencies up to the 6th mode and mode shapes up to 3rd mode. However, they 

did not use a numerical model to validate their experimental results. They found that the 

natural vibration frequency of the 3rd mode gave a good indication for deterioration while 
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the first mode showed higher sensitivity to changes in support conditions. Dai et al. [16] 

used a three-dimensional structural model with various rubber pad stiffness and found that 

the natural vibration frequency decreases with decreasing stiffness of the rubber pad. 

Additionally, they extracted natural vibration frequencies up to the 5th mode and did not 

study the mode shapes and effect of cracking. Analogously, Lin and Ng [13] found the 

natural vibration frequency increased when the stiffness of the support increased. They 

investigated the effects of elastic supports on the first five natural vibration frequencies and 

mode shapes. However, they did not study these effects for reinforced concrete beams or 

cracked beams. Aydin [18] used the effect of the support’s characteristic on dynamic 

response to optimize the stiffness and location of the springs while minimizing the tip of a 

cantilever beam supported by springs. The researcher used only a numerical model in his 

investigation and did not simulate a beam with two elastic supports. Also, he did not 

investigate the effects of cracking on modal parameters. Hamad et al. [19] presented an 

improved crack model for reinforced concrete beams by incorporating non-linearity of 

flexural damage. They found that the changes in the natural vibration frequencies were 

more sensitive for stiffer than softer supports. However, they investigated the effects of 

flexural cracking and elastic supports on only the first four natural vibration frequencies 

without studying the effects on the mode shapes. Dilena et al. [20] investigated damage 

identification in a single-span reinforced concrete bridge. In their numerical model, they 

considered longitudinal flexibility from the supports by inserting a linear elastic spring. 

They found the fundamental mode to be most sensitive to spring stiffness, while changes 
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in the higher modes were almost negligible. However, they did not study the vertical 

flexibility of the supports in their study. 

For damage detection, both the frequency-based as well as the mode shape-based method 

require a comparison with baseline data. These data can be obtained from the experimental 

dynamic response of the reference (or undamaged, intact) structure [1]. When experimental 

baseline data are not available, a numerical (e.g., FE-based) model of the baseline structure 

can be established. Usually, Euler-Bernoulli beam theory is employed for modeling beam-

type structures [1]. For short beams, Lele and Maiti [21] took in their model the effect of 

shear deformations by employing Timoshenko beam theory. Dilena and Morassi [22] 

investigated steel–concrete composite beams with partially degraded connections using 

both theories. They found that by using the Timoshenko beam model, improved accuracy 

in representing the experimental data was achieved. Finally, Hamad et al. [19] ignored the 

effect of the shear deformations in their model but ultimately identified that as a weak point 

in their model. 

To locate damage, a number of methods have been presented including modal strain energy 

based on damage index [23] and modal flexibility method [24]. In this paper, the modal 

flexibility method is discussed and was applied to the experimental data (see Section 5.2.3). 

The influence of both the mode shapes and the natural vibration frequencies can be studied 

using this method, as shown in Eq. (1). Theoretically, structural deterioration manifests in 

a local increase in the flexibility of a member, which is used as the indicator [25]. One of 

the advantages of the modal flexibility method is that it requires only lower mode data to 

detect and locate damage [24]. The governing equations are as follows: 
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                                                       𝐹 = ∑
1

𝑓2  𝛷𝑖 𝛷𝑖
𝑇

𝑛

𝑖=1
                                                              (1) 

                                                        ∆ 𝐹 = 𝐹ℎ − 𝐹𝑑                                                                      (2) 

where F is modal flexibility; f is the natural vibration frequency at mode n; Φ is the mode 

shape; Fh and Fd are modal flexibilities for the healthy and damaged case, respectively. 

3.2. Research Significance and Objectives  

The objective of this research were to study the effects of elastic supports and flexural 

cracking on the modal properties of a large-scale reinforced concrete girder. Typically, 

civil engineering researchers investigate modal properties up to the 5th mode. In this paper, 

we consider natural vibration frequencies up to the 13th mode and mode shapes up to the 

6th mode, which were extracted and investigated from the frequency response function 

(FRF). The roving hammer technique with two fixed sensors was employed to induce 

structural vibrations, even though most researchers employ multiple sensors with a moving 

hammer. Additionally, a numerical model was created and their parameters estimated to 

explain the experimental results of the baseline (i.e., uncracked) girder. The numerical 

model was used to investigate the effect of varying support stiffness from the free-free to 

the simply-supported beam case. Finally, the modal flexibility method was used to locate 

cracking after the girder had been loaded to induce flexural cracks.  

Different levels of damage and presence of shear cracks were not investigated. Also, 

environmental effects such as temperature and humidity changes were assumed to be 

negligible since the test was conducted in a laboratory. Finally, while the effect of varying 
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elastic support stiffnesses on the modal parameters was only investigated numerically, but 

not experimentally. 

3.3. Experimental Setup and Data Processing  

3.3.1. Experimental Test Setup 

The reinforced concrete T-girder used for this study was simply-supported with a span 

length of 15 ft (4.57 m). Cuboid ends were used to increase the support areas to ensure 

stability during loading, as shown in Figure 3-1. Ultra-high strength Neoprene rubber strips 

(width x thickness = 2 x 0.5 in (50.8 x 12.7 mm), tensile strength = 2500 psi (17.2 MPa)) 

were placed between the steel supports and the concrete girder representing bearing pads 

commonly used beneath precast bridge girders. The concrete had an average cylinder 

compressive strength, f´'c = 4 ksi (27.6 MPa) and Grade 60 (fy = 414 MPa) steel reinforcing 

bars were used. A monotonic load to produce service-level type cracking was applied at 

the girder’s mid-span location. Impacts using an instrumented impulse response hammer 

were used for the dynamic testing, before (= intact, baseline condition) and after cracking 

(= cracked condition). 
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Figure 3-1. Test setup showing loading configuration to induce flexural cracking. 

Units: 1 ft = 12 in = 0.305 m. 

3.3.2. Vibration Tests 

Vibration tests were performed on the girder before and after the beam was cracked to 

service-level conditions (see Section 3.3). The hydraulic ram as well as the steel beam 

shown in Figure 3-1 were removed for the dynamic tests. To induce vibrations, an impact 

was generated by hitting the girder with a 1.5 lb (0.68 kg) hammer (PCB-Model-086D20) 

using a medium plastic hammer tip (1500 Ib pk (6.67 kN pk)), as illustrated in Figure 3-2. 

The girder was hit with the hammer at fifteen different locations, starting from xˊ = 1 to 15 

ft (0.305 to 4.57 m) from the left support in 1 ft (0.305 m) increments. Each hit was repeated 

three times to evaluate measurement repeatability. The hammer is used for impulse 

response tests [8] and has a piezoelectric sensor that measures the generated impact force. 

The signal from the hammer impact was amplified and sampled by the data acquisition 

system. 
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Figure 3-2. The setup of dynamic test. Units: 1 ft = 12 in = 0.305 m. 

The girder’s vibration response due to the hammer impact was captured by a capacitive 

accelerometer (Silicon Designs-Model-2260-010), which was fixed at the girder soffit. The 

accelerometer has a flat frequency response within 3 dB over the range of 0 to 1 kHz, which 

was deemed adequate for this study. For this study, a total of three accelerometers were 

available; therefore, five separate location configurations were used to cover the fifteen 

measurement locations. Hence, for each impact location, measurements of the dynamic 

response from fifteen different locations were available. This test procedure allows 

extracting modal properties via two techniques. First, the single excitation point technique 

uses a fixed  hammer impact location and the measured vibration response from multiple 

locations along the girder. Second, the roving hammer technique uses the measured 

vibration response from one location with multiple impact locations along the girder. 

Both signals, one from the hammer and the other from the accelerometer, were sampled 

and stored by a high-speed data acquisition system (Model: Elsys TraNET 204s). The 

sampling frequency was set at 100 kHz with a low-pass anti-aliasing filter at a cutoff 



58 

 

frequency of 2 kHz. A constant threshold trigger was defined to start data sampling for a 

duration of 1.5 ms. Figure 3-3 shows sample time histories for both impact force (a) 

acceleration response (b). 

  

Figure 3-3. Sample: (a) Impact force and (b) Acceleration response. 

3.3.3. Loading to Induce Flexural Cracking 

Following the initial vibration test (see Section 3.2) to collect baseline data, the girder was 

loaded in a four-point bending test configuration to introduce flexural cracking 

representative of typical in-service conditions. The setup for this test is shown in Figure 3-

1. A 100-ton (224-kip) capacity hydraulic ram with hand-pump-control was used to apply 

the load to the steel spreader beam (see Figure 3-1). The girder was loaded monotonically 

up to 156 kN (35 kip), which was sufficient to generate service-level-type cracking at the 

girder mid-span location. Flexural tension cracks appeared around mid-span. The applied 

load corresponds to approximately 56% of the ultimate load, which was estimated 

theoretically since the girder has not been loaded to failure. 

  



59 

 

3.3.4. Data Processing 

3.3.4.1. Windowing 

In order to reduce unwanted discontinuity effects on the discrete Fourier transform (DFT) 

response of a discrete time signal, a window function with smooth transitions can be 

multiplied point-wise with the discrete signal  [26], [27]. In this study, a Hanning window 

was employed as part of the computation of the frequency response function (FRF), 

producing acceptable results. The Hanning window is named after its originator (Julius von 

Hann) [27] and is characterized by the highest side lobe level and side lobe roll-off ratio, 

compared to rectangular (= original discrete signal), triangular, and sine lobe windows [26]. 

The Hanning window function is defined in the time domain as [27]: 

                                              𝑤(𝑛) = {
1

2
(1 − 𝑐𝑜𝑠

2𝜋𝑛

𝑀
) , 0 ≤ 𝑛 ≤ 𝑀

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
                                  

 (3) 

3.3.4.2.Frequency Response Function (FRF) 

The frequency response function (FRF) was utilized to enable a direct comparison between 

the measured vibration responses. The FRF is also called transfer function, H(f) and 

completely describes the response of a system in the frequency domain due to a unit 

impulse force [28]. H(f) can be computed by dividing the measured system response, Y(f) 

by the measured impact force, X(f) as follows [10]: 

 𝐹𝑅𝐹 = 𝐻(𝑓) =
𝑌(𝑓)

𝑋(𝑓)
=

𝐺𝑥𝑦(𝑓)

𝐺𝑥𝑥(𝑓)
 (4) 
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Y(f) and X(f) are the frequency domain representations of the time domain signals, y(t) and 

x(t), respectively, obtained by the forward DFT. In order to directly compare the measured 

vibration responses to hammer impacts with variable amplitudes, the FRF was used, since 

it represents the response of the system itself. A comparison between DFT and FRF results 

for a select impact and measurement location is shown in Figure 3-4. The main difference 

between DFT and FRF is that DFT represents the vibration response of the girder due to a 

given impact force, but FRF represents the true system response (or impulse response) of 

the girder, which is independent of the type of impact. As such, it excludes the bias a force 

introduces on the vibration response [29]. It can be observed that the FRF differs in two 

significant ways from the DFT: first, the FRF shows strong peaks around 750, 1200, 1400, 

1700, and 1900 Hz compared to small peaks of present in the DFT. Note that each peak 

represents a natural vibration frequency. Figure 3-4 also shows that peak amplitudes in the 

FRF for higher frequencies are much larger than for low frequencies (less than 200 Hz). 

To conclude, the vibration response of this girder is dominated by the higher natural 

vibration frequencies, which can also be seen qualitatively in Figure 3-3 (b) where the first 

portion of the response showed large amplitudes having high frequency content. Therefore, 

this research focused on studying the higher frequencies. 
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 Figure 3-4. Sample measured vibration response in the frequency domain for x = xˈ= 8 ft 

= 2.44 m. 

Next, the importance of using the FRF rather than the DFT is discussed for the case when 

a fixed measurement location is used in conjunction with a moving impact having variable 

force amplitudes, which is the case in this study. Figure 3-5 shows the FRF for three 

different hammer impacts, all measured at the same location. Figs. 5 (b) and 5 (c) show 

that, although the hammer impacts were not the same, there is excellent match between 

their frequency magnitudes. For frequencies higher than 750 Hz, the FRF starts to show 

some discrepancies, as is shown in Figure 3-5 (d). This may be attributed to loss of linearity 

in the higher frequency response. Linear regression was utilized in order to estimate the linear 

frequency limit. The coefficient of determination (R2) from linear regression was used to 

evaluate the similarity between the FRF’s responses of the three impacts, as shown in Figure 

3-6. A sharp reduction in the R2 value after 750 Hz can be observed, indicating a deviation 

from linear behavior. Therefore, the FRF of the girder was divided into a linear and a non-

linear regime with 750 Hz assumed as the separating frequency. To conclude, mode shapes 
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can be extracted for natural vibration frequencies within the linear regime, i.e. below 750 

Hz. 

 

Figure 3-5. Three sample FRF for x = xˈ = 3 ft = 0.914 m.

 

Figure 3-6. Coefficient of determination (R2) vs. vibration frequency. 
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3.4. Numerical Model 

The numerical model was utilized in this study to model the intact girder in order to gain a 

better understanding of the experimental results as well discriminate spurious results. 

Model parameters were estimated using a pattern search algorithm. The frequency response 

function (FRF) for the acceleration showed a number of peaks, as discussed in Section 

3.4.2 Not all of these peaks are of interest to this study because some of them represent 

non-flexural modes. Finally, the experimental data is compared to the numerical model and 

is presented Section 5.1. 

The finite element (FE) method, implemented using MATLAB [30], provided the  

numerical model in this study. In this model, the girder was modeled as a beam having two 

elastic supports, which were modeled as elastic springs, as shown in Figure 3-7. The girder 

was divided into 192 finite elements for high accuracy. The beam elements used also 

account for shear deformations, i.e. using Timoshenko beam theory. The girder properties 

used in this study were: mass per unit length, 𝑚̅ = 6.04 x 10-4 kip*s2/in2 (0.396 kN*s2/m2) 

and moment of inertia, I = 14,806 in4 (6162 x106 mm4), which was computed using gross 

section properties. In addition, the shear area,  As was determined to be 171.8 in2 = 0.11 m2 

based on the following equation [31]:  

 𝐴𝑠 =
𝐼2

∫[
𝑆2(𝑧)

𝑏2(𝑧)
]𝑑𝐴

 (5) 

where b(z) is the width of the cross-section at position z from the principal y-axis, and S(y) 

is the elastic section modulus , determined according to the principal y-axis [31]. 
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Analogous to finite element (FE) model updating, system parameters in the model were 

estimated to match the experimental data to a sufficient degree of accuracy [32]. In this 

study, the system parameters included shear modulus (G), modulus of elasticity (E) and 

elastic spring stiffness (Kl and Kr). A pattern search algorithm [33] was used to minimize 

the difference between experimental data and the system parameters used in the numerical 

model, where bounds for E and G were set to [3,467 to 3,832] ksi ([23904 to 26420] 

N/mm2) and [1,444 to 1,569] ksi ([9956 to 10817] N/mm2), respectively. These limits 

represent the mean ± 5% of initially estimated values. The mean value of (E) was calculated 

by using the ACI 318 equation [34] (Ec = 57,000√𝑓´𝑐). Moreover, the estimated value of 

the shear modulus was calculated by assuming a Poisson's ratio,  = 0.2. Finally, the elastic 

spring stiffnesses were bound to initial values of [100 to 900] kip/in ([17512 to 157614] 

kN/m) where these limits are reasonable values according to the observed mode shape of 

the second mode. This point is discussed in detail in the Results and Discussion section. 

The correlation coefficient (R) between experimental and theoretical natural vibration 

frequencies was used to estimate the error in the theoretical model. In addition to the 

correlation coefficient, the maximum error percentage was set in the optimization 

algorithm to minimize the difference between numerical model and experimental data. The 

optimization algorithm produced the following parameters: Kl = 627 kip/in (109,801 

kN/m), Kr = 612 (107,177 kN/m), E = 3644 ksi (25.12 GPa) and G= 1469 ksi (10.12 GPa). 

The results of the optimization process and the estimated model parameters are discussed 

in detail in the Results and Discussion section. 
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Figure 3-7. FE model of girder supported by elastic springs. 

3.5. Results and Discussion 

3.5.1. Effect of Elastic Supports  

Figure 3-8. shows two sample FRF of the acceleration response for the reference girder, 

where (a) and (b) show the response for x = x’ = 8 ft (2.438 m) and x = x’ = 3 ft (0.914 m), 

respectively. Each peak represents a natural vibration frequency for a specific mode. For 

this girder, natural frequencies up to the 13th mode could be identified. It can be observed 

that additional peaks caused by non-flexural vibration modes are present. Non-flexural 

vibration modes could include compressional or torsional vibration modes of the girder as 

well as the steel beam supporting the girder. Typically, compression modes have high 

frequencies (higher that 800 Hz) that match the additional observed peaks. 
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Figure 3-8. Two sample FRF for the reference girder at (a) x= xˈ= 8 ft (2.438 m) and (b) 

x= xˈ= 3 ft (0.914 m), the highlighted peaks are discussed in Section 5.1.4. 

The numerical model helped identify the natural vibration frequencies associated with the 

flexural response of the girder. The results from the numerical model are compared with 

the measured vibration response through the natural frequencies and mode shapes in detail 

in the following two sub-sections. 

3.5.1.1.Natural Vibration Frequencies 

The experimentally-determined natural vibration frequencies for both the linear and non-

linear regime are listed in Table 3-1. The frequency resolution is ±1.25 Hz. In addition, this 

table shows the values obtained from the numerical model. The results show that a strong 
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match exists between experimental and numerical values with a maximum absolute error 

ranging between 0.01 and 2.8% for all modes, except for the second and fifth mode where 

the error was 3.2%. Additionally, a linear regression curve-fit with 95% confidence 

intervals was applied to the results, and it is shown in Figure 3-9. This figure shows all data 

points, linear fit, confidence intervals, and prediction intervals. It can be observed that all 

data points are in the range of the confidence interval limits. Moreover, the coefficient of 

determination, R2 = 0.999 and root mean squared (RMS) error was 19.6 Hz. 

Table 3-1. Comparison of natural vibration frequencies for modes, n = 1 to 13. 

FRF regime Experimental Numerical model 

f #(Hz) n f (Hz) n Error (%) 

Linear 

35.0 1 35.3 1 0.8 

77.5 2 80.0 2 3.1 

132 3 129.3 3 -2.1 

232 4 236.9 4 2.1 

412 5 399.5 5 -3.1 

595 6 582.6 6 -2.1 

Non-linear 

757 7 773.1 7 2.1 

982 8 964.7 8 -1.8 

1170 9 1155.2 9 -1.3 

1382 10 1343.8 10 -2.8 

1530 11 1530.3 11 0.0 

1675 12 1714.9 12 2.3 

1892 13 1897.7 13 0.3 

f # is the natural frequency. 
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Figure 3-9. Experimental vs. numerically-predicted natural vibration frequencies.  

3.5.1.2.Mode Shapes 

The linearity of the FRF response plays a crucial role in extracting the mode shapes by 

using the roving hammer technique because it is based on the assumption that the impact 

force is the same for all measurements. Additionally, this assumption is needed for using 

the single excitation point technique, since only three accelerometers were available in this 

research.  As discussed in Section 3.4.2, the FRF was linear until approximately 750 Hz. 

Therefore, only the first six mode shapes could be extracted from experimental data. Figure 

3-10 shows the FRF response for accelerometer were located at 3 ft (0.914 m) and 8 ft 

(2.438 m) where the hammer was roving along the girder. From this figure, it can be 

observed that the accelerometer cannot capture the mode shape that has a node at the 

location of the accelerometer. Therefore, the accelerometer at 8 ft can be used to extract 
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mode shapes of n = 1, 2, 3 and 5. On the other hand, the 4th and 6th mode shapes can be 

extracted from the response of the accelerometer at 3 ft.    

 

Figure 3-10. FRF for roving hammer: (a) Accelerometer at 3 ft (0.914 m) and (b) 

accelerometer at 8 ft (2.44 m). 

For roving hammer technique, the mode shape for each natural frequency was extracted 

from the magnitudes of FRF response at different location of the hammer. The shape 

function of the first mode was extracted by both techniques (roving hammer and the single 

excitation point) as shown in Figure 3-11 (a). It can be observed that a negligible difference 

exists between the results of the two techniques. As a result, only the results of the roving 

hammer are presented and discussed in this paper. The effect of elastic support conditions 

on these mode shapes are evident: first, the value of the mode shape function at the supports 

was greater than zero because the support did not prevent vertical deformation. Second, the 

mode shapes of the 2nd and 3rd modes showed the largest value of amplitude at the support 

and this would not happen for supports that restrain vertical deformation. 
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In addition to the verification of the natural vibration frequencies (as shown in Section 

5.1.1), the results for the mode shapes are a second verification. The numerical and 

experimental results offered an acceptable match. The numerical model successfully 

predicted the experimental measurements. In addition, the model showed the ability to use 

the numerical model to investigate the effect of support flexibility on the dynamic response 

characteristics. The numerical model can also be used to extract the mode shapes of the 

non-linear regime as shown in Figure 3-12, which cannot be extracted experimentally. 

 

Figure 3-11. Comparison of experimental and numerical results for first sixth modes. 
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Figure 3-12. Numerical model results of mode shapes of the non-linear regime. 

3.5.1.3.Parametric Study: Elastic Support Stiffness 

After the numerical model was validated, as shown previously presented in Sections 5.1.1 

and 5.1.2, it was used to study the effect of elastic support stiffness by changing the elastic 

stiffness of the supports on the natural vibration frequency response. This investigation 

allows us to get better understanding about how the elastic support effect the modal 

parameters. For this purpose, the stiffness of the supports were varies varied from zero 0 

to 1,000,000 kip/in (0 to 175 x 106 kN/m), i.e. from the free-free case up to the rigid simply-

supported, i.e. pinned case, respectively. In this new model, the same stiffness was assumed 

for both girder’s supports. All other material properties and constants were unchanged from 

the numerical model (see Section 4.). Figure 3-13 shows natural vibration frequency 

against support stiffness for the first 13 modes. It can be observed that the natural vibration 

frequency of each mode exhibits three phases. The first phase is between free-free case and 

the point when the natural frequency starts to increase, which are highlighted by red circles 

in Figure 3-13. The second phase is between the point of increase and when the support 
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stiffness plateaus, referred to as maximum stiffness. In this second phase, the natural 

frequency increases with increasing support stiffness. The third phase is between the 

maximum stiffness and rigid case, which is when the frequencies reach a final constant. It 

can be observed that both the threshold stiffness and the maximum stiffness increase with 

increasing mode number. Finally, the relationship between the natural vibration frequency 

and support stiffness follows an S-shape curve. 
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Figure 3-13. Natural vibration frequency for the first 13 modes vs. support stiffness; (a) 

non-linear regime, (b) linear regime and (c) normalized response including both regimes. 

The black dashed vertical line denotes the support stiffnesses estimated for the reinforced 

concrete girder used in this study. Note that the x-axis is on a log scale. 
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Furthermore, the ratio of the reduction in natural frequency due to change the support’s 

stiffness from rigid to free-free case, is related to mode number where this ratio decreases 

with increasing mode order, as shown in Figure 3-13.c. This is true for all modes except 

the second mode, which is most effected by the stiffness of support. The effect of support 

stiffness on the shape of the second mode is selected for further discussion. Figure 3-14 

shows the shape of the second mode for a range of support stiffnesses. It is evident that the 

mode shape changes from a three-node case for rigid supports to a two-node case for free 

(= no) supports. The two-node mode shape represents the case where the girder vibrates 

freely, i.e. the girder does barely deform compared to the deflections experienced at the 

supports. This situation appears when the stiffness of support is much lower than the girder 

stiffness. The three-node mode shape is exhibited for rigid supports. 

 

Figure 3-14. Mode shape of second mode for varying support stiffness. The black sold 

line represents the reinforced concrete girder used in this study. 
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3.5.1.4.Discussion 

The numerical model was a useful tool to help distinguish the natural vibration frequencies 

from the vibration response. However, there were some additional frequency peaks that 

appeared in the FRF as highlighted by the black circles in Figure 3-8. These frequencies 

are not related to the flexural vibration modes since the numerical model could not predict 

them. Additionally, they are not related to the compression modes of the steel support 

because they were affected by the stiffness of the girder. In other words, they decreased 

with the decreasing stiffness of the girder due to cracks (as discussed in Section 5.2). As a 

result, these frequencies can be associated with torsional modes. These frequencies did not 

appear in the used numerical model since it is two-dimensional and can thus not exhibit 

torsional behavior. 

In the numerical model, including the effect of shear deformations had a significant effect 

on improving the model’s accuracy. When the model did not consider shear deformations 

of the girder, its results revealed a large error as compared with the experimental results. 

The results of that model are not presented in this paper for brevity. 

On the other hand, the effect of support stiffness had a significant influence on the dynamic 

response of the girder by adding new natural modes and affecting the natural vibration 

frequencies of the other modes. The most accurate way to study the effects of support 

stiffness is by comparing the experimental results with the numerical model of simply 

supported beam case (see Section 5.1.3) where this model is named “2nd  numerical model” 

in this study.  The results of comparison are listed in Table 3-2. The mode shapes were 
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compared to the number of nodes in each mode. Below are some key points observed by 

comparing experimental and 2nd numerical model results: 

1- The experimental first and fourth modes are associated with the first and second 

modes of the 2nd numerical model based on the similarity between their mode 

shapes. Their natural frequencies were substantially lower due to the effect of 

elastic supports. 

2- The elastic supports introduce two new modes (i.e., 2nd and 3rd modes) that can be 

observed in both the experimental results as well as the numerical model. However, 

the 2nd numerical model is unable to predict those. 

3- After the 3rd mode, the number of the nodes in the mode shapes evenly increased 

in both the experimental and in the 2nd numerical model regardless of their 

frequency. 

Table 3-2. Comparison of natural vibration frequencies between experimental and 2nd 

numerical model results. 

Experimental 2nd  numerical model 

f #(Hz) n f (Hz) n Error (%) 

35 1 44 1 20 

85 2 - - - 

132 3 - - - 

232 4 517 2 55 

412 5 714 3 42 

595 6 913 4 35 
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3.5.2. Effect of Cracking  

3.5.2.1.Natural Frequency   

During performing the static test, as described in Section 3.3, flexural tension cracks 

appeared around mid-span. The applied load corresponds to approximately 56% of the 

ultimate load, which was estimated theoretically since the beam never loaded to failure. 

Figure 3-15 shows the acceleration response in the frequency domain for the cracked girder 

side by side with the reference (= uncracked) girder. In addition, their natural frequencies 

are listed in Table 3-3. It can be observed that an unexpected increase in the natural 

frequency of the first two modes occurred. Although these cracks are clearly visible, they 

do not have a large influence on the vibration response for the first two modes since the 

frequency-based method has a limitation with regard to crack size, as discuss in Section 1. 

In addition, this increase in the natural vibration frequencies of these modes could be 

related to the effect of the elastic supports. As shown previously, support flexibility exerted 

a large influence on the natural frequency of the first mode and introduced a new second 

mode of vibration. 
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Figure 3-15. Four sample FRF for reference and cracked girders: (a) x = xˈ = 8 ft (2.438 

m) and (b) x = xˈ = 3 ft (0.914 m). 

On the other hand, the results demonstrate that there is a significant decrease in the natural 

frequencies for modes, n > 3. This is expected since cracks decrease the stiffness of the 

girder locally. The reduction in the natural frequencies was observable for all of these 

modes and they can be clearly distinguished with reduction values between 12 and 45 Hz. 

Therefore, for the linear regime, the natural frequencies of the higher order modes (between 

3rd and 6th) were found to be sensitive to localized cracking. Also, all modes in the nonlinear 

regime can be used for this purpose as they were found to be more sensitive to cracking. 
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3.5.2.2.Mode Shapes 

For the mode shapes, only the 1st mode is presented and discussed here since all other mode 

shapes behaved in the same manner. In addition, the results from the mode shapes are 

reflected by the same results of earlier research [1],[36] and [37]. Figure 3-16 shows the 1st 

mode for reference and the cracked girder in the actual and normalized response. It can be 

observed that the cracked girder exhibits higher flexibility compared to the reference one 

since the cracks reduce the girder’s stiffness locally. Generally, both modes have the same 

shape function. Finally, the first mode shape can be used to detect cracking if reference 

data is available. 

 

Figure 3-16. First mode shape for reference (red dots) and cracked (green dots) girders: 

(a) actual and (b) normalized response. 
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Table 3-3. Natural frequencies of reference and cracked girders. 

FRF regime n 
Frequency (Hz) 

Change  
Reference Cracked 

Linear 

1 35.0 40.0 5.0 

2 77.5 87.0 9.5 

3 132 113 -19.5 

4 232 220 -12.0 

5 412 378 -34.5 

6 595 570 -25.0 

Non-linear 

7 757 730 -27.0 

8 982 950 -32.0 

9 1170 1145 -25.0 

10 1382 1340 -42.0 

11 1530 1500 -30.0 

12 1675 1630 -45.0 

13 1892 1850 -42.0 

 

3.5.2.3.Damage localization 

The modal flexibility method (see Introduction section) was utilized to locate damage in 

form of concrete cracking using Eq. 1 and 2. Figure 3-17 shows the flexibility change of 

the girder after introducing the flexural cracks where only the model parameters (mode 

shapes and natural frequency) of the first mode was used. It can be observed that the 

flexibility change varies by approximately 20% over the length of the girder with a 

significant increase around the mid-span location of the girder, which is where the cracking 
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is located. The shape of this curve qualitatively matches the results presented by the 

researcher that introduced the flexibility method [24]. 

 

Figure 3-17. Flexibility change in mode 1 between undamaged and cracked girder. 

 

3.5.2.4.Discussion 

As demonstrated in the previous sections, using only the natural vibration frequency of the 

first mode gave the wrong indication for cracking. The shape of the first mode alone did 

also not indicate cracking correctly. This problem was stated in a number of previous 

research studies, e.g. [5] [6] and [7], and it presented as one of limitations of using a 

frequency-based approach. The modal parameters of the first mode are still useful when 

combining them as demonstrated by the results from the modal flexibility method. 

However, this method requires the full mode shapes, which can be challenging in the field, 

especially for large structures. On the other hand, using the natural vibration frequencies 

of the higher modes is effective to indict the presence damage for the case of exposed 

reinforced concrete members that are part of e.g. bridges or parking structures.  
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3.6. Conclusions 

By using the frequency response function (FRF), the natural vibration frequencies could 

be extracted from the experimental measurements up to the 13th mode, but the mode shapes 

could be only extracted up to the 6th mode because of the linearity limit in the FRF. These 

natural vibration frequencies and modes matched the numerical model predictions. In the 

numerical model, both support flexibility and shear deformations were considered. The 

numerical model provided a useful tool to help distinguish the natural frequencies from the 

experiential frequency response since there were additional frequencies that were not 

related to flexural modes. 

Support flexibility influenced the dynamic characteristics of the reinforced concrete girder 

significantly. The effect was revealed by decreasing the natural frequency of the 1st and 4th 

mode from the experimental response where these modes were associated with the 1st and 

2nd modes of the 2nd numerical model for a simply-supported beam. Moreover, the elastic 

supports introduced two new intermediate modes, which can be completely associated to 

support flexibility because their mode shapes showed maximum amplitude at supports.  

The first two natural frequencies could not be used to detect the significant flexural 

cracking in the reinforced concrete girder. This was due to governing effect of the elastic 

supports. However, their mode shapes could be used for this purpose. Additionally, the 

modal flexibility method could predict the location of flexural cracks by using the results 

of the first mode (vibration natural frequency and the mode shape). Finally, the natural 
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vibration frequencies of the non-linear regime were sensitive to cracking as they exhibited 

a significant reduction. 
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4. Chapter Four: A Reference-Free Non-Destructive Testing Method to Detect 

Deterioration in Concrete Bridge Decks Based on Non-Linear Vibration 

Characteristics 

Ali Hafiz1,*, Anis Raad2, and Thomas Schumacher3 

Abstract 

 A number of non-destructive evaluation (NDE) methods have been developed in recent 

decades to detect deterioration such as delaminations in concrete bridge decks. These 

methods, namely visual inspection (i.e. hammer sounding and chain drag), impulse 

response testing, impact echo testing, ultrasonic (array) echo testing, and under certain 

conditions ground penetrating radar (GPR) can be used to detect and estimate the extent of 

delaminations. Since the early 1970s, researchers have also investigated using the dynamic 

response properties of a structure, which is generally referred to as the vibration-based 

method. For damage detection, the vibration-based method requires a comparison with 

reference data, which is unavailable in most cases. Generally, the vibration response due 

to an impact force can be measured using accelerometers. The frequency response function 

(FRF) is computed by dividing the measured response by the input force, both in the 

frequency domain. In this paper, we present a simple reference-free method based on 

impulse response (IR) testing to detect deterioration in concrete bridge decks using non-

linear vibration characteristics. The hypothesis is that for an undamaged deck, varying the 

impact force does not affect the corresponding FRFs for frequencies that lie within the 

accelerometer’s operating range. On the other hand, the FRFs of a deteriorated slab change 

when the impact force is increased with the delamination resulting a non-linear vibration 
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response. Finite element modeling was first used to demonstrate that the method will work 

in theory. We then evaluated its performance on an in-service bridge deck. Finally, ultra-

high-pressure hydro-blasting was performed on the deck for rehabilitation, providing an 

opportunity to compare results. 

Keyword: Bridge deck; concrete; delamination; deterioration; impulse response testing; 

non-linear vibration; nonlinearity index. 

4.1. Introduction and Background 

Highway infrastructure in the United States and around the world experience deterioration 

due to environmental conditions and increasing traffic volume [1]. Additionally, 

deterioration is caused by degradation in structural materials due to aging. The corrosion 

of steel bars and gradual degradation in concrete are the most common causes of 

deterioration in reinforced concrete structures. Accordingly, bridge engineers are typically 

concerned about four primary deterioration mechanisms: rebar corrosion, deck 

delamination, vertical cracks, and concrete degradation [2]. This project specifically 

focuses on deck deterioration and delamination. 

Delamination is an advanced form of deterioration in reinforced concrete bridge decks 

resulting from corrosion of the embedded reinforcing steel bars (rebars), which is initiated 

by the presence of cracks in the concrete and sufficient moisture [3]. The rebars expand 

due to corrosion, leading to cracking and subsurface fracture planes within the concrete. A 

delamination is a crack parallel to the concrete surface. While they can exist at different 

planes between the reinforcing steel and the top surface of the concert deck, they are 
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typically located at or just above the steel reinforcement layer [2]. With advancing 

corrosion, delaminations can progress to open spalls [2]. 

In recent decades, many non-destructive evaluation (NDE) methods have been developed 

to detect delaminations in concrete bridge decks. An ultrasonic stress pulse is used in 

techniques aiming for a high-frequency dynamic response (wave propagation), which 

include impact echo (IE), ultrasonic pulse echo (UPE), and ultrasonic surface wave (USW) 

testing. On the other hand, a low-frequency dynamic response is used in impulse response 

(IR) testing. In the latter method, specific characteristics of the dynamic response to a given 

impulse are evaluated to detect delaminations. In IR testing, an instrumented hammer is 

struck against the concrete surface to generate local vibrations, and the dynamic response 

is measured at a nearby location using a geophone or accelerometer. ASTM Standard 

C1740 provides guidance for evaluating the condition of concrete plates such as bridge 

decks using the IR method [4]. The frequency response function (FRF) is obtained by 

dividing the dynamic response by the impact force, where both signals are expressed in the 

frequency domain. The typical frequency range used to evaluate delamination ranges from 

0 to 1 kHz [4] 

In structural dynamics, modal analysis is the most popular approach for performing linear-

elastic structural system identification, where the modal parameters, i.e. natural vibration 

frequencies, mode shapes, and damping ratio, can be extracted and monitored over time 

[5]. Since these parameters are a function of the structural and material properties, they can 

be related to the initiation and propagation of damage [6]. Samman and Biswas 

[7][8]presented waveform-recognition techniques to detect damage in bridges and they 
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applied these techniques to both laboratory and real-world conditions by detecting damage 

in a laboratory-sized bridge and a highway bridge. These techniques depend on a 

comparison between two dynamic signatures: one from an intact (= reference) state and 

the other from a state with a certain level of degradation. Zhou et al. [9] utilized vibration-

based damage detection (VBDD) methods to detect and localize low levels of damage in 

the deck of a two-girder, simply-supported bridge. They conducted their study using 

laboratory-based experimental and finite element analysis. The methods evaluated 

included the mode shape curvature method, the change in flexibility method, the damage 

index method, the change in uniform flexibility curvature method, and the change in mode 

shape method. They concluded that VBDD methods have excellent potential as structural 

health-monitoring tools for bridge decks. However, these methods require extracting the 

mode shapes, a process requiring multiple sensors. Additionally, there is difficulty in 

extracting the mode shapes for bride decks in the field. Kee et al. [10] used impact-echo 

(IE) testing in order to improve interpretation of the flexural vibration modes of 

delaminations detected in concrete bridge decks. This model was more accurate than 

conventional binary images for detecting the areal sizes of shallow delaminations. On the 

other hand, for deep delaminations, the conventional IE approach was more accurate. 

Finally, there are two challenges in using modal analysis methods for damage detection: 

first, it requires the dynamic response for the reference case, which is unavailable in most 

cases. Second, temperature variations can have a significant effect on the frequency 

response of the structure [11], and there is significant difficulty in distinguishing between 

the effects of temperature and damage. 
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Generally, if a structural system fails to follow the principle of superposition, then it can 

be considered nonlinear [5][12][13], and linear-elastic modal analysis cannot be used to 

analyze the dynamic response. In reality, most structural systems show a certain level of 

nonlinear behavior [13]. The sources of nonlinearly can be summarized as [5]: (1) 

Geometric nonlinearity, when the structure exhibits large displacements, (2) material 

nonlinearity, when a material exhibits a nonlinear stress-strain response, (3) nonlinear 

boundary conditions, where imperfect boundary conditions cause nonlinear vibration, and 

(4) energy dissipation due to damping. This last phenomenon is still not fully understood.  

For nonlinear vibrations, identification of a nonlinear structural system includes three steps. 

The first step is “Detection,” where the excitation of nonlinearity in structural behavior is 

investigated. “Characterization” is the second step, where the source and location of 

nonlinearity is investigated, and how the source of nonlinearity behaves. The final step is 

“Parameter estimation.” In this step, the coefficients of the nonlinearity are calculated, and 

their uncertainty quantified [5]. There are many identification methods that have been 

established in the preceding three decades, such as the restoring force surface method and 

NARMAX modeling [5][12]. 

Nonlinearity is important for damage detection of cases where damage changes the 

behavior of the structural form (initially) from linear to nonlinear [14]. Underwood et al. 

[15] investigated using nonlinear behavior for detecting and locating subsurface damage in 

composite materials by determining the frequency response function (FRF) of different 

input amplitudes without reference to previous historical reference measurements. Idriss et 

al. [16] found that nonlinear vibration parameters are much more sensitive to deboning 
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damage in sandwich beams than linear vibration parameters. Zhao et al. [17] presented a 

new transmissibility analysis method for the detection and location of damage using the 

characteristics of nonlinear vibrations of structural multi-degree-of-freedom (MDOF) 

systems. Based on the nonlinear vibration response to an impact, Liu et al. [18] presented 

a new nondestructive testing method to predict the pretension force in membrane 

structures. 

4.2. Research Significance and Objective 

In this study, a Nonlinear Vibration Index (NVI) method is presented to detect damage in 

a reinforced concrete bridge deck using nonlinear vibration characteristics. This method 

does not require reference measurements for undamaged condition such as vibration base 

method. Therefore, it is considered as reference-free method. Additionally, this method 

does not require processing the data in a completed algorithm. Also, a frequency window 

is used in this method in order to reject the unwanted frequencies. Finally, although tests 

setup of Impulse Response (IR) is used NVI method, the data processing in NVI method 

is different. 

In this study, a numerical model was used in order to explain the nonlinear vibration 

concept theoretically. The proposed method was applied to an in-service bridge deck slab. 

The deck had been visually inspected for delaminations prior to IR testing. The results 

shows the capability of the proposed method to detect deterioration in reinforced concrete 

bridge deck.   
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4.3. Proposed Nonlinear Vibration Index (NVI) Method 

The proposed method is based on the vibration response of a reinforced concrete deck in 

order to detect the deterioration or delamination. The same instruments that are used for 

impulse response (IR) testing and vibration-based methods are utilized here: A hammer 

impact is applied to the top surface of a bridge deck using an instrumented hammer and the 

vibration response at a nearby location measured with an accelerometer, as shown in Figure 

4-1. Additionally, this approach requires applying at least two impact forces with varying 

magnitude at the same test location and measuring their vibration responses separately. 

Using the FRFs of these measurements, nonlinear behavior can be detected, which is 

indicative of damage. We refer to our proposed method as nonlinear vibration index (NVI) 

method. 

 

Figure 4-1. Illustration of impulse response (IR) test setup. 

The principle of superposition plays a key role in investigating the excitation of the 

nonlinear vibration response of a concrete bridge deck, where only an undamaged linear 

structural system follows this principle. In other words, for an undamaged linear structural 
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system, increasing the magnitude of the impact force does not change the FRF. In the case 

of a damaged system, which behaves nonlinear, the FRF is different for different impact 

forces. This feature was used to distinguish between undamaged linear and damaged 

nonlinear behavior. 

In the proposed method, a bridge deck without deterioration or delamination is assumed to 

be a linear structural system, i.e. its FRF does not show any change due to an increase in 

the magnitude of the impact force. This is illustrated in Figure 4-2, where the FRFs of four 

increasing impact forces are shown from a select location on the bridge deck with no 

damage. Section 5 provides details about the bridge deck and data. From this figure, it can 

be observed that increasing the applied impact force, even doubling it, does not have a 

significant effect on the corresponding FRF, indicating linear behavior, which in turn 

indicates that no damage is present in the system. 

 

 

Figure 4-2. Sample for test location A1 (see Figure 4-9) on the selected bridge deck; (a) 

Impact forces and (b) FRFs. 

In contrast, our hypothesis that if any area of a bridge deck fails to follow the principle of 

superposition, deterioration or delamination can be assumed to be present. The observed 

nonlinearity is assumed to be caused by crack boundary interaction. 
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A number of methods exist to determine a parameter that represents the nonlinearity effect, 

see e.g. Idriss et al. [16] , Zhao et al. [17] and Liu et al. [18].  For linearization identification 

methods, the correlation coefficient or root mean square are typically used to estimate the 

nonlinearity parameter. Assuming two different impact forces (i.e. soft and strong), the 

proposed NVI is computed as follows: 

 𝐹𝑅𝐹 = 𝐻(𝑓) =
𝑌(𝑓)

𝑋(𝑓)
=

𝐺𝑥𝑦(𝑓)

𝐺𝑥𝑥(𝑓)
 (1) 

 𝐶𝑂𝑉 (𝐻0, 𝐻𝑖)(𝑓) =
1

𝑓−1
∑ (𝐻0 − µ𝐻0

)(𝐻𝑖 − µ𝐻𝑖
)

𝑓
𝐽=1  (2) 

 𝜌𝐻0,𝐻𝑖
(𝑓) = 𝜌(𝑓) =

𝐶𝑂𝑉 (𝐻0,𝐻𝑖)(𝑓)

𝜎𝐻0𝜎𝐻𝑖

=
𝜎𝐻0,𝐻𝑖

𝜎𝐻0𝜎𝐻𝑖

 (3) 

 𝑅2(𝑓) = 𝜌 (𝑓)2 (4) 

 𝑁𝑉𝐼 =
∑ 𝑅2(𝑓)

𝑓2
𝑓1

𝑓2−𝑓1
 (5) 

where Y(f) and X(f) are the frequency domain representations of the response of the system 

and the impact force, respectively, H0 and Hi are the FRFs due to soft and strong impact 

forces, respectively, COV (H0 and Hi ) is the covariance between H0 and Hi, ρ is the 

correlation coefficient, f1 and f2 are the lower and upper limits of the selected frequency 

window, respectively, and NVI is the nonlinear vibration index, which is a scalar indicating 

the level of nonlinearity of the structural system. NVI takes values between one and zero. 

When H0 is equal to Hi, then NVI = 1, implying the structural system is linear; otherwise, 

the structural system shows a certain level of nonlinearity. 

Figure 4-3 shows an example coefficient of determination, R2 as a function of the 

frequency. This coefficient was determined by comparing the FRFs of the very soft and 
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very strong impact forces introduced in Figure 4-2. Finally, the normalized area under the 

coefficient of determination- frequency curve represents the nonlinear vibration index 

(NVI), which for this case is 0.98. 

 

Figure 4-3. Example R2 for FRFs very soft and very strong vs. frequency.  

4.4. Numerical Study 

4.4.1. Modeling 

A finite element model was created to simulate the dynamic response of concrete bridge 

decks with and without delaminations theoretically. The objective was to study the effect 

of delaminations on the dynamic response and how they cause a nonlinear response. A 

concrete bridge deck was modeled as a simply-supported 2D beam using ABAQUS  [19]. 

The model was created using quadrilateral elements, as shown in Figure 4-4. The span 

length is 1000 mm (39.4 in) and the depth is 240 mm (9.45 in). The material assigned for 

the deck is concrete with a modulus of elasticity, Ec, = 23,520 MPa (3,410 ksi) and a mass 

density,  = 2400 kg/m3 (150 lb/ft3). An impact force modeled after one observed in the 
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field measurements (see Section 5) was applied as a distributed impact load over a length 

of 40 mm, which corresponds to the diameter of the hammer tip. The acceleration response 

was measured at a point located 45 mm (1.77 in) from the applied impact force. 

Two separate beams were modeled, referred to as Model 1 and 2: Model 1 represents the 

reinforced concrete beam without delaminations, i.e. an intact (or reference) beam. Model 

2 represents the same beam as in Model 1 but with a delamination, which was modeled as 

a gap with the following dimensions: 0.5 mm (0.02 in) width and 800 mm (31.54 in) length, 

located in the center of the beam at a depth of 15 mm (0.59 in) (see Figure 4-4). In both 

models, eight impact forces were applied to the beams where the peak value of the impact 

force varied from 0.5 to 15 kN (0.11 to 3.37 kip). This range was selected based on the 

actual forces measured in the field (see Section 5). A dynamic explicit step routine with a 

simulation time of 1 second was used. The dynamic response of all 16 simulations was 

analyzed and is discussed in the following section.    

 

Figure 4-4. Illustration of the finite element model. The red line indicates the 

delamination (gap). The red point at the surface indicates the acceleration measurement 

point. The purple arrows indicate the distributed load applied on the deck. 
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4.4.2. Results and Discussion 

Figure 4-5 shows the FRF of the beam with and without delamination, i.e. Model 1 and 

Model 2), respectively, due to an impact force with a magnitude of 4 kN (0.9 kip).  Natural 

frequencies of the beam decrease because the delamination reduces the stiffness of the 

beam. Therefore, it can be observed that the delamination has a significant effect on the 

FRF.   

 

Figure 4-5. Two samples of FRFs for decks with and without delaminations; Magnitude 

of impact force = 4 kN (0.9 kip). 

The FRF response of the beam without delamination does not change due to increasing the 

impact force value ranging from 0.5 to 15 kN (0.11 to 3.37 kip), as shown in Figure 4-6.a. 

On the other hand, increasing the value of the impact force has an influence on the FRF of 

the beam with delamination. This influence appears as a change in the magnitude of the 

FRF where the magnitude of the select peak decreased with increasing impact force, as 

shown in Figure 4-6.b.  
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Figure 4-6. Three samples of FRF (first peak) for impact force magnitude = 0.5, 4 and 15 

kN: 

(a) Model 1 (reference) and (b) Model 2 (with delamination). 

Figure 4-7 shows a comparison of the first peak in the FRF for both models as a function 

of the normalized impact force magnitude. For Model 1 (reference) it can be observed that 

there is a minor increase in the peak response, which might be associated with certain 

geometric nonlinearities associated with the boundary conditions or the uncertainty of the 

numerical solution by ABAQUS. Model 2 (with delamination), however, shows a clear 

decrease in the peak response after the load exceeds approximately 4 kN. This behavior 

can be associated with the contact interaction of the lower and upper boundaries of the gap, 

where the relative vibration deformations of these boundaries is larger than the gap width. 

These numerical simulations proof that changes of the FRF are sensitive to the presence of 

delaminations. It can be speculated that other types of deterioration and cracking will have 

a similar but smaller effect. 
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Figure 4-7. Maximum peak value of FRF corresponding to first peak frequency for both 

models vs. peak impact force value. 

4.5. Field Study 

4.5.1. Description of Selected Bridge  

A 25 year old bridge in Branchport, NJ was selected to evaluate the proposed NVI method’s 

ability to detect deteriorated areas in reinforced concrete bridge decks. The bridge, 

presented in Figure 4-8, has a total length of 216 ft (65.83 m) and is 37 ft (11.28 m) wide. 

The superstructure consists of six 36 ft (10.97 m) long two-span sections with steel girders 

carrying an 8.5 to 12 in (216 to 305 mm) thick reinforced concrete deck, as shown in Figure 

4-8.c. Due to the harsh environment combined with exposure of chlorides from seawater 

and deicing, the bridge deck exhibited severe visual distress. Five deck sections were 

severely deteriorated, showing visible signs of spalling, potholes, and in some locations 

exposure of the steel reinforcing bars. The deck selected for this study (see Figure 4-8.a 

and b) showed no visual distress and hammer sounding revealed only two small areas with 

delaminations.  
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Figure 4-8. Bridge in Branchport, NJ: (a) Google map image showing selected slab (#2) 

used as part of this study, (b) photo from a driver’s perspective, and (c) cross-section with 

dimensions in (in). 

Since the county had planned to rehabilitate the bridge deck, this represented an 

opportunity to evaluate a variety of NDT methods by comparing their results with the 

removed concrete. Some of the work is reported in [20]. The NDT surveys were completed 

in July 2011, hydro-blasting to remove surface as well as deteriorated concrete was 

performed in March 2013. Before new concrete was placed in July 2013, the depth of the 

removed concrete was measured on a 2 x 2 ft (0.61 x 0.61 m) grid. 

4.5.2. Test Setup and Procedure  

A typical impulse response (IR) test setup was used, as illustrated in Figure 4-1. The used 

hammer (PCB, Model 086D20) weighs 1.5 lb (0.67 kg) and has a 2 in (51 mm) diameter hard-
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plastic hammer tip (1500 lb-peak (6.67 kN-peak)). It is equipped with a piezoelectric load cell 

connected to a signal amplifier/conditioner to measure the generated impact force. The 

vibration response was measured using a capacitive MEMS accelerometer (Silicon 

Designs-Model-2260-010) that has a flat frequency response within 3 dB over the range of 0 

to 1 kHz. Both input (force) and output (acceleration) signals were recorded using a high-

speed transient recorder (Elsys, Model TraNET 204s) at a sampling frequency of 500 kHz.  

The two-lane traffic portion of Deck #2, measuring 30 x 36 ft (9.14 x 10.97 m), was divided 

into a 2 x 2 ft (610 x 610 mm) test grid, resulting in 270 test locations, as shown in Figure 

4-9.a. Two locations were selected for coring and are highlighted by solid black circles. 

Hammer impacts were applied at each test point manually four times with different intensities, 

referred to as very soft, soft, strong, and very strong, as illustrated in Figure 4-9.b. 

 

Figure 4-9. (a) Plan view photo of Deck #2 with test grid (red ‘+’), sample results (A1, 

B1, B2, C1, C2), and cores (full black circles) and (b) peak impact forces for all 270 test 

locations. 
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Figure 4-10 shows sample time histories of impact forces with different levels of magnitude 

and the corresponding acceleration responses. 

 

Figure 4-10. Samples of: (a) Four impact forces and (b) four corresponding acceleration 

responses for one select test point. 

4.5.3. Results and Discussion 

4.5.3.1.Sources of Nonlinearity 

A structural member may exhibit nonlinear vibrations due to a number of causes. For the 

type of structural system investigated in this study, the causes may be limited to two: 

material nonlinearity and crack boundary interaction. There are two causes that lead to 

concrete behaving nonlinearly under a static or dynamic loads. First, the nonlinear 

relationship between the applied stress and resulting strain. In order to ensure that this is 

not the case in this study, the stresses generated from the impact forces were calculated and 

compared with the stress-strain relationship of the concrete. The generated stress for each 

impact force was calculated by dividing the peak of the force by the hammer tip area. Since 

the actual stress-strain relationship of the tested bridge was not available, the empirical 

Carreira and Chu equation was used [21]. Figure 4-11 shows this stress-strain relationship 
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by assuming a conservative concrete compressive strength, fc’ = 3,000 psi (20.7 MPa). It 

can be observed that all generated stresses lie within the linear limit, which is typically 

assumed to lie at 40% of fc’ (shown as black dashed line). The ranges of generated stresses 

for very soft and very strong impact forces are provided for reference. As a conclusion, in 

this study, the effect of the nonlinear stress-strain relationship of concrete can be excluded 

as a cause of nonlinear vibration. 

 

Figure 4-11 Empirical Stress-Strain relationship [21] and generated stress ranges due to 

very soft (grey) and very strong (green) impact forces. The black dashed line represents 

the assumed linearity limit for this concrete. 

Concrete degradation is the second factor in leading the concrete to respond nonlinearly to 

a load (static or dynamic). Due to the effects of aging, the environment, exposure to 

chlorides, and live loads, distributed micro cracks can form inside the concrete. These 

cracks open and close during vibrations, which is referred to as crack breathing. Although 

the cracks are small in this case, they can still cause a nonlinear vibration response. 

Very strong 

Very soft 
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Therefore, the proposed NVI method should theoretically be able to detect degradation of 

this type in a concrete bridge deck. 

A shallow delamination in a concrete bridge deck is a discrete horizontal macro crack 

located between the top rebar mesh and the top surface. While a delamination is distinctly 

different from distributed micro cracks, the crack breathing model still applies; in fact, it 

can be hypothesized that it is much more pronounced for this case. 

4.5.3.2. Select NVI Results 

As shown in numerous investigations, the crack-boundary interaction of delamination can 

cause nonlinear vibrations due to the effects of the crack breathing phenomenon [22]. In 

this section, results from six test locations on Deck #2 were selected and are discussed in 

detail to evaluate the proposed NVI method. These six test locations were divided into 

three groups (A, B, and C) according to the observed results from the proposed method, 

cores and visual inspection. and each group consists of two test locations (see Table 4-1). 

Note that “very soft” serves as the reference case for the three other impact forces (soft, 

strong, and very strong). In order to estimate the nonlinearity of test locations using the 

proposed method, a frequency range of 225 to 500 Hz was selected. The lower limit of this 

window was chosen to exclude low-frequency noise caused by traffic, wind, etc. The upper 

limit was selected to minimize the effect of nonlinearity of the used accelerometer. In a 

previous study the authors used the same instrumentation and found this type of nonlinear 

vibration response to start at approximately 600 Hz [23]. Therefore, the upper limit was 

conservatively set to 500 Hz. 
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Table 4-1. Six selected test location coordinates and their NVI values.  

Group Location 

(see Figure 

4-9.a) 

X 

(ft (m)) 

Y 

(ft (m)) 

NVI value (-) 

Soft Strong Very 

strong 

A A1 1 (0.30) 1 (0.30) 0.99 0.98 0.98 

A2 19 (5.79) 9 (2.74) 0.98 0.98 0.97 

B B1 19 (5.79) 23 (7.01) 0.63 0.49 0.44 

B2 17 (5.18) 29 (8.84) 0.96 0.91 0.98 

C C1 29 (8.84) 17 (5.18) 0.38 0.25 0.05 

C2 17 (5.18) 17 (5.18) 0.89 0.88 0.86 

 

Group A represents two test locations that were not found to have any form of degradation 

by visual inspection. Figure 4-2 shows the FRF of test location A1, as well as the peak 

impact forces. Recall from the discussion in Section 3, although the impact force was more 

than doubled, this only had a very minor effect on the FRF, which means the system is 

linear. The FRF of test location A2 is also not significantly affected by the increase of the 

impact force, as can be observed in Figure 4-12. Since any structure will demonstrate a 

certain level of nonlinearity, 3% can be interpreted as the uncertainty in the NVI value for 

non-degraded locations in this study. The concrete core taken near test location A2 was 

further proof that this location is in healthy condition, as shown in Figure 4-12.a. In 

conclusion, areas on the bridge deck that do not show signs of nonlinear vibration behavior 

can be considered healthy, i.e. free of degradation or delaminations, which supports the 

hypothesis of our proposed method. 
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Figure 4-12. (a) FRF response of test location A2 and (b) R2- frequency relationship.  

 

Figure 4-13. Photos of extracted concrete cores: (a) Cr1 (near A2) and (b) Cr2 (near B1). 

Group B represents two test locations that were marked having delaminations according to 

visual inspection. The FRFs for the Group B locations are presented in Figs. 14 and 15. It 

can be observed that the FRFs are significantly affected with increasing impact force, 

leading to low R2 functions. Additionally, along with increases in the intensity of the impact 

force, the change in the FRF increases resulting in a decrease in the NVI value, as shown 

in Table 4-1. This behavior is distinctly different from the one of Group A. These results 

also match the core taken near test location B1, which shows a horizontal crack, as shown 

in Figure 4-13.b. As a final conclusion, the Group B results are consistent with the 

hypothesis of our proposed method, which means it can be used to detect delaminations. 
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The NVI values for test location B2 are not as low as for B1, which is where visual 

inspection found a small delaminated area. 

 

Figure 4-14. (a) FRF response of test location B1 and (b) R2- frequency relationship.  

 

Figure 4-15. (a) FRF response of test location B2 and (b) R2- frequency relationship.  

Group C represents two test locations that exhibited nonlinear vibration behavior, but 

where the visual inspection did not find any degradation or delaminations. The two 

associated test locations showed strong nonlinear vibration behavior, as shown in their 

FRFs (see Figs. 16 and 17). Unfortunately, no cores were available for the Group C test 

locations. However, the NVI results could be compared with the depth of the removed 

concrete after hydro-blasting was performed, which is discussed in more detail in Section 
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5.3.3. The depth of removed concrete for these locations was approximately 1.6 in (40 mm) 

for C1 and C2, which can be considered relatively high. Assuming that hydro-jetting 

removes more depth when the concrete is degraded, they hypothesis that the NVI method 

can detect degradation is also supported. 

 

Figure 4-16. (a) FRF response of test location C1 and (b) R2- frequency relationship.  

 

Figure 4-17. (a) FRF response of test location C2 and (b) R2- frequency relationship.  

Since only two cores were available for the entire deck, a comparison between the NVI 

results and depth of removed concrete was the only way to evaluate the proposed method 

for all 270 test locations, which is discussed in the subsequent section. 
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4.5.3.3.Comparison of NVI and Removed Concrete for Entire Deck #2 

Figure 4-18 shows a contour plot of the NVI values (a) and depth of concrete removed by 

hydro-blasting (b) across the entire Deck #2. NVI values were computed between the very 

soft (= reference) and very strong impact forces. Both NVI results and depth of the removed 

concrete agree that there is a large degraded or delaminated area as highlighted by black 

boxes. Additionally, both figures show that the area highlighted by gray dashed boxes are 

in healthy condition. On the other hand, the NVI method missed a literal hole in the deck 

found after hydro-blasting, as highlighted by the red box. Also, the NVI values predicted 

degradation or delaminations in four areas (highlighted by blue boxes) that are not 

associated with a high depth of removed concrete. The discrepancies between NVI values 

and depth of removed concrete is likely due to the fact that removed concrete is not 

necessarily always an accurate predictor of degradation and delaminations. At the same 

time, total removed concrete is the likely the single most important quantity determining 

rehabilitation cost. 
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Figure 4-18. (a) NVI values and (b) depth of removed concrete for Deck #2. 
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4.6. Conclusions 

The presented results demonstrate the potential for our proposed NVI method to detect 

degradation and delaminations in a reinforced concrete bridge deck. The NVI method is 

based on the concept of linear and nonlinear vibration response, which is determined by 

computing the frequency response functions (FRFs) for a set of increasing impact forces 

and comparing them. The hypothesis was that if the FRFs remain constant and change, this 

can be associated with healthy and degraded deck sections, respectively. A numerical study 

using a finite element model showed that nonlinear behavior was indeed exhibited for a 

deck with a delamination. 

The proposed method was applied to an in-service bridge deck using impulse response 

testing equipment. The results of this field study are consistent with the proposed 

hypothesis. A comparison between NVI results and visual inspection and concrete cores 

for six test locations  showed that: 

1. NVI results were able to distinguish areas in the bridge deck that did not have 

degradation or delaminations. Additionally, NVI results were in excellent 

agreement with visual inspection and core test results. 

2. A strong match was found between the results of the NVI method and visual 

inspection and cores for detecting areas that could have degradation or 

delaminations. 

3. The NVI technique could detect degraded or delaminated areas that were missed 

by visual inspection. 
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4. A comparison between NVI values and depth of the removed concrete showed 

acceptable agreement in terms of areas of degradation or delaminations. 

It should be noted that the proposed method cannot distinguish the type of degradation. 

Also, it cannot predict the depth of delaminations or removed concrete. However, ongoing 

research is studying these limitations and trying to reduce the uncertainty of the predictions. 
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5. Chapter Five: Conclusions and Outlook  

5.1. Summary and Conclusion 

Condition evaluation of reinforced concrete members is the focus of this PhD dissertation 

research, as concrete is widely used as construction material for civil infrastructures. The 

dynamic response of reinforced concrete members was used to evaluate or monitor 

condition changes. Both the low and high frequency ranges of the dynamic response of 

reinforced concrete members were investigated assuming that both are essentially wave 

phenomena. While it is commonly understood that the capability to sense damage is limited 

by the investigated wavelength, this research shows that this is only true for conventional 

linear approaches such as time-of-flight ultrasound and linear vibrations. By studying 

diffuse (or coda) ultrasonic waves and non-linear vibration responses, new techniques 

capable of sensing minute internal changes in a material or low-level stiffness changes, 

respectively, can be developed. Digital signal processing (DSP) was employed throughout 

this dissertation research, in particular operating in the frequency domain of the recorded 

data. Thus, employing Fourier analysis is a core component in the mathematical procedures 

used in this work in order to calculate frequency response functions (FRFs) and magnitude-

squared coherence (MSC). While researchers have developed many NDE methods and new 

sensors in the recent decades, developing more sensitive, accurate, and quantitative 

methods and tools is still in demand. In this PhD dissertation, two novel NDE techniques 

are proposed:   

-  Ultrasonic coda wave comparison (CWC) technique: This SHM technique makes use 

of the highly sensitive coda wave portion of a recorded ultrasonic signal to monitor 
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condition changes in reinforced concrete members. Traditionally, only the time-of-

flight (TOF) has been considered (e.g. ultrasonic pulse velocity method) but this is not 

sensitive to minute and slowly-varying changes in concrete. Since the entire recorded 

signal is used for analysis, changes that are not in the direct wave travel path can also 

be detected. This dissertation developed a theoretical framework and demonstrated the 

technique’s ability to monitor and characterize minute internal stress changes both in 

the laboratory as well as in the field. This study resulted in one published peer-reviewed 

journal paper and is presented in Chapter 2. 

-  Nonlinear vibration index (NVI) method: This reference-free NDT technique is based 

on the idea that internal degradation in a concrete member such as cracking results in a 

nonlinear dynamic response. A new test is proposed where an instrumented hammer is 

struck against the concrete surface with increasing levels of magnitude and both the 

impact force as well as the response of the system are recorded. The hypothesis was 

that if the system is undamaged, the frequency response function (FRF), should remain 

constant and independent of the impact force. With the introduction of degradation, 

however, the FRF changes. The proposed NVI method was explored numerically first, 

then evaluated on an in-service concrete bridge deck. This study resulted in one peer-

reviewed journal paper (to be submitted) and is presented in Chapter 4. 

Additionally, the natural vibration response of a large-scale reinforced concrete beam was 

studied in the laboratory by means of a simple impulse response test using only one sensor 

location on the beam. This study showed that the elastic supports have a crucial influence 
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on the modal parameters of the reinforced concrete girders, especially on the modal 

parameters of the lower modes. The natural frequencies of the higher modes were found to 

be much more sensitive to flexural cracking but might be difficult to distinguish without a 

numerical model. Finally, flexural cracking was detected by looking at the function of the 

mode shape and by means of the flexibility method. This study resulted in one published 

peer-reviewed journal paper and is presented in Chapter 3. 

5.2. Outlook and Recommended Future Work 

This PhD dissertation research established the fundamental basis for several new NDE 

techniques, which still have limitations before they can reliably be used in a real-world 

setting. One major aspect that should be studied in depth is the effects of temperature and 

humidity variations on the dynamic response. The presented work has either been based on 

short-term measurements where these environmental effects do not vary considerably or 

they have been limited due to a laboratory setting. The ultimate goal should be to evaluate 

the performance of any NDE method in a real-world setting. The author of this PhD 

dissertation can think of many useful applications for concrete structures that would help 

agencies make better decisions regarding maintenance and repair, for example: 

• Monitoring for alkali-silica reaction (ASR) and carbonation. 

• Estimation of residual and creep stresses after structural load testing. 

• Rapid post-earthquake condition assessment tools 

One way to minimize environmental effects and provide long-term durability of the 

monitoring system is by using embeddable sensors. Commercial embeddable sensors will 
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be available soon and will open new avenues for research and development. Temperature 

and humidity should be monitored in conjunction with the dynamic response. Finally, new 

data analytics approaches such as machine learning should be explored and validated to 

help distinguish sensor measurement components and assign them to certain causes. This 

will require additional controlled and carefully planned laboratory experimentation to 

ensure accuracy and reliability of any advanced data analytics tools used. 

 


	Evaluation of Low and High Frequency Dynamic Response for Condition Assessment of Reinforced Concrete Structures
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1568923107.pdf.qP72a

