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Abstract 

 

Nitrous oxide (N2O) is the third most important greenhouse gas (GHG) behind 

carbon dioxide (CO2) and methane (CH4). Sulfur hexafluoride (SF6) does not add 

significantly to climate forcing by itself due to the low concentration in the atmosphere; 

however, it is one of the most powerful GHG known. Measurements of atmospheric N2O 

made prior to mid-1990 have larger uncertainties than later periods due to advancements 

made in gas chromatography (GC) methods. Few atmospheric SF6 measurements pre-

1990 exist, especially in the northern hemisphere. Archived samples may be analyzed 

using updated measurement techniques to reduce uncertainty in past periods. 

Additionally, measurements of the isotopic composition of N2O (15N/14N and 18O/16O) 

can address questions regarding how specific sources contribute to the observed 

atmospheric composition and changes in time. This information also has been used to 

identify changing contributions of nitrification versus denitrification processes to the 

global N2O budget, determined by the rate of change in the site preference (SP, defined 

as δ15Nα - δ15Nβ) of 15N. Here, we present the findings of 159 measurements of N2O and 

SF6 mixing ratio and N2O isotopic composition from the OHSU-PSU air archive, 

containing samples collected from Cape Meares, Oregon between 1978 and 1997.  

Based on these analyses, N2O mole fraction at Cape Meares in 1980 is found to be 

301.5 ppb and rises to 313.5 ppb in 1996. The average growth rate over this period is 

0.78 ± 0.03 ppb yr-1 (95% CI). Seasonal amplitude maximum and minimum is 0.34 ppb 

near April and -0.42 ppb near November respectively and are statistically different from 

one another (p<0.005). Measurements of N2O were found to match well with previously 
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reported values for Cape Meares from AGAGE and other comparable locations, 

suggesting that the N2O in archived samples has stored well.  

 For SF6, the mole fraction in 1980 was found to be 1.06 ± 0.05 ppt and increased 

to 3.91 ± 0.07 ppt in 1996. The average growth rate over this period is 0.17 ± 0.01 ppt yr-

1 (95% CI). Seasonality shows peak amplitude of 0.04 ppb near January and minimum 

amplitude of -0.03 ppt near July. There are no previous reported measurements of SF6 

from Cape Meares to compare against directly; however, comparisons against archive 

measurements from Cape Grim, Tasmania suggest these results are accurate.  

 Isotopic composition measurements of N2O are made by cryogenically 

concentrating N2O before analysis using an isotope ratio mass spectrometer operated in 

continuous flow (CF-IRMS). From replicate analysis of the working standard, precision 

in measurement of the measured isotopologues is 0.05‰, 0.10‰, and 0.28‰ for δ45, δ46, 

and δ31, respectively. When calculating the desired isotopic composition, these translate 

to 0.05‰, 0.10‰, 0.37‰ and 0.39‰ for δ15Nbulk, δ18O, δ15Nα, and δ15Nβ, respectively. 

For archived samples from Cape Meares, no distinguishable seasonality is found 

in δ15N or δ18O while δ15Nα, δ15Nβ, and SP show statistically significant amplitudes. 

δ15Nα and δ15Nβ show nearly opposite phases to one another, with SP matching the phase 

of δ15Nα. These results suggest processes that contribute air enriched in N2O mole 

fraction at Cape Meares in the spring also contribute enriched δ15Nα and depleted δ15Nβ, 

causing a positive SP. During the fall, processes that contribute air depleted in N2O mole 

fraction also contribute depleted δ15Nα and enriched δ15Nβ, causing a negative SP.  

Secular trends (except δ15Nβ) calculated by applying a linear fit to the 

deseasonalized data show negative trends statistically significant at high levels of 
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confidence. Secular trends for δ15N and δ18O match well with previously reported values 

while secular trends for δ15Nα and δ15Nβ for Cape Meares are significantly different than 

those reported by other groups, appearing to be nearly inverted for δ15Nα and δ15Nβ. To 

address this inversion, the sensitivity of the numerically calculated δ15Nα and δ15Nβ on the 

scrambling coefficient was investigated and ruled out. We also investigated the 

possibility of an error in the numerical algorithm used to convert measured 45R, 46R, and 

31R values into δ15N, δ18O, δ15Nα, δ15Nβ and found this too was not responsible for the 

inverted results.  

A 2-box model of the atmosphere was used to investigate changes in measured 

atmospheric composition to characterize source isotopic composition. From the results of 

the box model, the magnitude of the pre-industrial natural source match well with 

previous literature. The isotopic compositions of the natural source match well with 

previously reported values, as do the modeled anthropogenic δ15N, δ18O, and δ15Nα. 

However, our modeled δ15Nβ is significantly enriched compared with previously reported 

values. Additionally, the modeled anthropogenic SP is significantly depleted than 

previously reported values. Assuming the laboratory measurements of intramolecular SP 

are globally relevant, these results suggest there have not been significant changes to the 

balance between contributions from nitrification and denitrification to the observed 

isotopic composition of N2O during this period (1978 – 1996). However, a more 

sophisticated model maybe needed to investigate this hypothesis.  
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Chapter 1 

Introduction 

 

1.1 Long-lived greenhouse gases 
 

Anthropogenic sources of greenhouse gases (GHG) have greatly increased the 

burden of these gases in the Earth’s atmosphere and continue to increase the observed 

climate forcing. Nitrous oxide (N2O) is the third most important greenhouse gas behind 

carbon dioxide (CO2) and methane (CH4). From measurements of ice core air, the pre-

industrial concentration of N2O was near 270 ppb (Khalil and Rasmussen, 1988; 

MacFarling Meure et al. 2006). Today the concentration of N2O is close to 330 ppb with 

an increasing trend of ~0.75 ppb/year over the last 30 years (Prinn et al. 2000; Ciais et al. 

2013). N2O has a large global warming potential of 298 times that of CO2 over a 100 year 

period and a global radiative forcing value estimated to be 0.17 Wm-2 (Myhre et al. 

2013). The lifetime of N2O is estimated to be between 118 and 132 years (Ciais et al. 

2013). This means that most of it will reach the stratosphere where photooxidation of 

N2O is the major source of stratospheric NOX ("active nitrogen"), the main natural 

catalyst of ozone (O3) destruction (Crutzen 1970).   

 
Table 1.1. Concentration and radiative forcing since 1750 of CO2, CH4, N2O, and SF6 (Myhre et al. 2013). 
 
 Concentration  Radiative forcing (Wm–2) 

Species 2011 2005 2011 2005 

CO2 (ppm) 391±0.2 379 1.82±0.19 1.66 

CH4 (ppb) 1803±2 1774 0.48±0.05 0.47 

N2O (ppb) 324±0.1 319 0.17±0.03 0.16 

SF6 (ppt) 7.28±0.03 5.64 0.0041 0.0032 
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N2O is produced by natural and anthropogenic sources, mostly through microbial 

nitrification and denitrification processes. The imbalance between the sources and the 

sinks of N2O is mostly due to the increased fertilizer use in crop production (Kroeze et al. 

1999; Park et al. 2012). Models project that future climate change will amplify N2O 

production, meaning a linear extrapolation of the current rate of change may under-

project future concentrations (Khalil and Rasmussen 1983; Stocker et al. 2013). 

Therefore, to minimize uncertainty in model projections, many precise measurements of 

current and past atmospheric conditions from multiple locations around the globe are 

needed. Measurements of atmospheric N2O made prior to mid-1990 have larger 

uncertainties than later periods due to advancements made in gas chromatography (GC) 

methods (Prinn et al. 2000; Jiang et al. 2007).  

 

1.2 N2O Global budget  

Defining the global budget for N2O is a challenging task. Methods used to 

calculate the global budget can be described as “top-down” or “bottom-up” methods. 

Top-down methods involve observations of atmospheric N2O concentrations, then using 

the observations to constrain model source emissions. The bottom-up method quantifies 

N2O sources through measurements at the source, then calculates the global emissions 

and concentrations by scaling up through modeling. Using either method, large errors can 

occur when calculating the size of the sources or sinks due to the challenge of quantifying 

their effects. The strongest constraint on the total source magnitude is based on observed 

annual trends and model calculations of N2O lifetime (Prather et al. 2012). A N2O budget 
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calculated by combining bottom-up scaling with top down constraints provides the most 

complete picture of the true global budget (Ciais et al. 2013).  

One estimate for the total contribution from natural and anthropogenic sources as 

well as the size of the sink was calculated by Prather et al. (2012) using the top-down 

method with bottom-up scaling, shown in figure 1.1. For the year 2011, the natural 

sources of N2O make up more than 60% of all N2O sources, estimated at 9.1 ± 1.0 TgN 

(N2O) yr-1 while the anthropogenic source is 6.7 ± 1.0 TgN (N2O) yr-1. The atmospheric 

sink is estimated to be 11.9 ± 0.9 TgN (N2O) yr-1. This estimate provides relatively tight 

constraints around the magnitude of the total sources and sink, but does not break down 

individual source contributions to the whole.   

 

 

Figure 1.1. Natural, anthropogenic, and atmospheric loss of N2O in TgN (N2O) yr-1 in 2011 (Prather et al. 

2012; Ciais et al. 2013). Error bars are 68% CI.  
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1.2.1 N2O Sources 
 

The magnitudes of anthropogenic and natural sources of N2O depend on the 

amount of biologically available N to microbes. This is because most N2O is produced 

microbially through nitrification and denitrification processes. Nitrification is the main 

source of N2O under aerobic conditions where ammonium (NH4
+) is oxidized into nitrate 

(NO3
-) and produces N2O as a by-product in the process. Denitrification reduces nitrate 

into nitrogen gas (N2) and dominates under anoxic conditions, producing N2O as an 

intermediate in the process. These biologically controlled production processes are 

dependent on factors such as oxygen concentration, temperature, N substrate availability, 

gas transport, soil type, soil texture, and water content (Perez et al. 2001; Goldberg et al. 

2008; Park et al. 2011). These factors result in large uncertainties when calculating the 

magnitude of an individual source. Biological nitrogen fixation, the conversion of N2 to 

ammonia (NH3), also plays an important role in the production of N2O for both 

anthropogenic and natural sources (Galloway et al. 1995). N fertilizer is produced by 

industrial N fixation, utilizing the Haber-Bosch process to convert unreactive N2 to NH3. 

This increases the biologically available N for microbial nitrification and denitrification 

and is the main contribution to anthropogenic N2O production. 

The largest natural source of N2O is soils, producing 6.6 (3.3-9) TgN (N2O) yr-1. 

Natural soil production of N2O is governed by biological nitrogen fixation, nitrification, 

and denitrification processes. Soils with higher nitrogen content, water content, and 

temperatures such as tropical soils or riparian zones are the largest contributors to natural 

soil N2O production (Ciais et al. 2013).  
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Figure 1.2. Natural and anthropogenic N2O sources in 2011 (Ciais et al. 2013). Units are TgN (N2O) yr-1. 

Natural sources in shades of blue, anthropogenic in shades of yellow and red. Error bars represent best low 

and high estimates.  

 

Production of N2O in the oceans is achieved through microbial nitrification and 

denitrification (Popp et al. 2002; Nevison et al. 2003) producing 3.8 (1.8-9.4) TgN (N2O) 

yr-1 (Ciais et al. 2013). Ocean N2O is produced primarily in the top 500 m, where surface 

conditions promote N2O production (Freing et al. 2012). Most of the sampling of ocean 

N2O production has taken place in “hot spots” such as the Arabian Sea or the tropical 

Pacific, leaving much of the oceans unmeasured. The very large range in uncertainty is 

due to the fact that the majority of the oceans are unmonitored and the constantly 

changing conditions (dissolved O2, temperature, pressure, nitrogen content of organic 

matter) that influence the amount of N2O produced through microbial processes and are 

difficult to model with high certainty (Nevison et al. 2003).  
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Atmospheric chemistry amounts to 0.6 (0.3-1.2) TgN (N2O) yr-1 (Ciais et al. 

2013). The main reaction that contributes to natural N2O production in the atmosphere is 

ammonia oxidation. While this is a small source compared to the production from soils or 

the oceans, it is considered to impact the global total source. 

With nearly 40% of N2O production attributed to anthropogenic origins, it is 

important to fully understand the impacts humans have on N2O. By far, the largest 

anthropogenic source is agriculture, producing 4.1 (1.7-4.8) TgN (N2O) yr-1 (Ciais et al. 

2013). Food production contributes up to 80% of the observed increase in N2O since 

1860 (Galloway et al. 1995; Davidson and Kanter 2009,).  

The nitrogen in fertilizers also contributes to reactive nitrogen in rivers, estuaries, 

and coastal systems through runoff and nitrogen leaching (Seitzinger and Kroeze 1998). 

While the calculated production of N2O is small at 0.6 TgN (N2O) yr-1, the relative 

uncertainty is one of the largest for any single source, 0.1-2.9 TgN (N2O) yr-1 (Ciais et al. 

2013). This uncertainty is due to the spatial and temporal variations in land use which 

affects the amount of nitrogen in these systems. Recent studies suggest rivers could be 

more important sources of N2O than previously thought (Rosamond et al. 2012).  

Industrial and fossil fuel sources contribute 0.7 (0.2-1.8) TgN (N2O) yr-1 (Ciais et 

al. 2013). N2O is formed as an intermediate during the combustion processes (Ogawa and 

Yoshida, 2005a). The amount of N2O produced is related to fuel characteristics, air-fuel 

mixes, combustion temperatures, and the use of pollution control equipment. Industrial 

production of adipic acid and nitric acid also contributes to the production of N2O (Oliver 

et al. 1998).  
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 Biomass burning produces 0.7 (0.2-1) TgN (N2O) yr-1. Emission of N2O from 

biomass burning can occur during the combustion process or by increasing the available 

nitrogen in the soil after combustion. In areas where biomass burning is common, N2O 

emissions from this source can be very large (Gutierrez et al. 2005).  

The last anthropogenic sources that influence the global budget are atmospheric 

deposition and human excreta. Atmospheric N-deposition on land amounts to 0.4 (0.3-

0.9) TgN (N2O) yr-1 while the atmospheric deposition on ocean amounts to 0.2 (0.1-0.4) 

TgN (N2O) yr-1 (Suntharalingam et al. 2012). N fertilizers and fossil fuel combustion 

increase the amount of nitrogen oxides (NOy) and ammonia species (NHx) in the 

atmosphere which eventually fall back down to the Earth's surface and provide 

ecosystems with an extra source of available nitrogen. Human sewage amounts to 0.2 

(0.1-0.3) TgN (N2O) yr-1 (Ciais et al. 2013). Facilities designed to take in human waste 

provide good conditions for N2O producing bacteria, which are used as a means to break 

down sewage.  

 

1.2.2 N2O Sinks 

Land and ocean sinks for N2O are considered to be negligible on the global scale, 

leaving the stratosphere the only sink that impacts the global budget. Once N2O has 

reached the stratosphere, it is destroyed predominantly (90%) by photo-disassociation 

into N2 and O atoms (eq. 1.1). Approximately 4% of stratospheric N2O reacts with 

electronically excited oxygen atoms (formed by the photolysis of ozone to form NO (eq. 

1.2)) while the remaining 6% forms N2 and O2 (eqs. 1.3 and 1.4) (Minschwaner 1993).  

(1.1)  N2O + hν → N2 + O(1D)       90%  λ = 185-230 nm 
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(1.2)  O3 + hν → O(1D) + O2         λ < 320 nm 

(1.3)  O(1D) + N2O → N2 + O2  6%           

(1.4)  O(1D) + N2O → 2 NO 4% 

 The magnitude of these reactions is known well compared to individual source 

uncertainties and thus provide a means for a top-down constraint when calculating the 

global budget of N2O (Nevison et al. 1999; Prather et al. 2012).   

Equation 1.4 supplies the main source of NOy in the stratosphere. The production 

of NO is important in stratospheric ozone chemistry, since NO reacts catalytically to 

destroy ozone (eqs. 1.5 and 1.6). 

(1.5)  NO + O3 → NO2 + O2 

(1.6)  NO2 + O → NO + O2 

The net reaction is given in equation 1.7.  

(1.7)  O3 + O → 2 O2 

 

1.3 N2O Distribution and trends 

 The global distribution of tropospheric N2O is fairly uniform due to its long 

lifetime, though small variations do exist. A north-south gradient in concentration is 

detectable when comparing measurements from different latitudes, with 30°N and greater 

at the highest concentrations. The mean difference between the hemispheres is 0.8-1.0 

ppb (Khalil and Rasmussen 1983; Ishijima et al. 2009). This difference can be used to 

calculate the emission ratio for the northern and southern hemisphere when also taking 

into account the inter-hemispheric exchange time (~1 year). The generally accepted 

emission ratio between hemispheres is ~1.5 (Hirsch et al. 2006; Ishijima et al. 2009). 
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Emissions in the northern hemisphere are greatest between 0-30°N driven by soil 

emissions in the tropics (Prinn et al. 1990; Prinn et al. 2000). 

 The average global trend in N2O over the last several decades is 0.73 ± 0.03 ppb 

yr-1. Variability in the observed trend is greatest before 1995 with values ranging between 

0.3-0.9 ppb yr-1 (Ciais et al. 2013). This variability is linked to interannual variations in 

transport processes. However, fewer measurements using less precise measurement 

methods during this time may contribute to observed variability (Prinn et al. 2000).  

 The seasonality of N2O is determined by a combination of stratosphere-

troposphere exchange (STE), interhemispheric transport, and surface fluxes (Jiang et al. 

2007; Ishijima et al. 2009; Nevison et al. 2011). How impactful a specific driver is to 

seasonality depends on location. The stratosphere has a large influence in both northern 

and southern hemisphere seasonality while out-gassing from the ocean surface has been 

linked to the observed seasonality in the mid-tropics and southern hemisphere (Jiang et 

al. 2007). It is important to note that interannual variability can vary strongly year to year 

at some locations, which makes a “mean” seasonal cycle difficult to distinguish (Nevison 

et al. 2011).  

Seasonal phasing and magnitude are dependent on latitude. The observed seasonal 

magnitude at the South Pole (90°S, 102°W) is ±0.29 ppb with maximum and minimum 

amplitude in November and April, respectively, where as the observed magnitude at 

Alert, Canada (82°N, 62°W) is 1.15 ppb with maximum and minimum amplitude in 

March and September, respectively (Jiang et al. 2007). High latitude minimums in late-

summer months are related to the influx of N2O depleted air from the stratosphere during 

the spring (Liao et al. 2004; Nevison et al. 2004). 
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1.4 Isotopic composition of N2O   

Isotopic composition measurements of atmospheric samples have the potential to 

greatly reduce the uncertainty for individual source emissions as well as to inform how 

regional N2O sources contribute to observed concentrations and trends. Different sources 

of N2O have distinct isotopic compositions due to the fractionation effects in sources. 

These unique characteristics in isotopic composition can reduce the uncertainty of N2O 

sources when calculating the global budget by adding further constraints.  

To measure the isotopic composition of N2O in an air sample, measurements of 

each isotopic species (nitrogen: 14N, 15N and oxygen: 16O, 17O, and 18O) are compared 

against a standard reference with a known isotopic composition. The most common way 

to express this comparison is using the δ notation: 

(1.8)  δ(‰) = [Rsa/Rstd – 1]1000 

Where R is the ratio of: 

(1.9)  R = 15N/14N; 17O/16O; 18O/16O 

Rsa represents the ratio in the sample where Rstd represents the ratio in the 

standard. Atmospheric N2 is the standard for 15N abundance (15Rstd = 3676.5±4.1 ppm, 

Junk and Svec, 1958) while VSMOW (Vienna Standard Mean Ocean Water) is used for 

comparing against 17O and 18O in this work (17Rstd = 379.9±1.6 ppm, li et al. 1988, 18Rstd 

= 2005.20±0.43 ppm, Baertschi, 1978). The δ term is expressed in per mil (‰) out of 

convenience because the change in isotopic composition is generally very small, of order 

parts per thousand.  

Samples that are found to have more of the heavy isotope than the standard have 

positive δ values and are sometimes referred to as “heavy” or “enriched”. Samples that 
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have less of the heavy isotope than the standard have negative δ values and are 

sometimes referred to as “light” or “depleted”.  

Because N2O is a linear molecule with the oxygen atom on the end, it is also 

possible to determine which position the 15N atom is in if present in the molecule. The 

placement of the 15N atom can be determined using isotope ratio mass spectrometry 

(IRMS) when measuring the correct masses. Two different notations distinguishing the 

difference between the terminal (15N14NO) or central position (14N15NO) are commonly 

used (Toyoda and Yoshida 1999; Rockmann et al. 2003). In this work, 15Nα represents the 

central position and 15Nβ represents the terminal position. The bulk 15N for a sample is the 

linear sum of the two positions.  

Another useful way to differentiate sources is by site preference (SP), defined as: 

(1.10)  SP = δ15Nα - δ15Nβ 

Often a SP value will be reported for sources instead of δ15Nα or δ15Nβ. Isotopic analysis 

can be a very powerful tool to reduce the uncertainty in source emissions of N2O, but an 

understanding of the isotopic signatures of sources and isotopic fractionation 

accompanying sink processes affecting atmospheric N2O is needed. 

 

1.4.1 Source composition 

Due to the many controlling factors that determine the isotopic composition, 

measured values of δ15N, δ18O, and SP can vary greatly, even within the sources 

themselves. Commonly reported values of δ15N, δ18O, and SP for N2O sources are given 

in table 1.2. Large ranges exist for source types due to the difficulty in measuring source 

compositions and variance in conditions at a given location.  
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For agricultural soils, isotopically depleted values for δ15N are reported ranging 

from -41‰ to -9.6‰ (Perez et al. 2001; Rock et al. 2007; Park et al. 2011). Natural soils 

are also depleted in δ15N, ranging from -18‰ to -5.5‰. However, agricultural soils are 

much more depleted than the natural soils (Bol et al. 2003; Tilsner et al. 2003; Goldberg 

et al. 2008; Park et al. 2011). This is because the nitrogen in fertilizers is isotopically 

light, increasing the amount of 14N available for microbial processes. Kinetic isotope 

effects (KIEs) are also expected as nitrogen availability increases because microbial 

processes are no longer N-limited. The δ18O value for agricultural soils has a range 

between 23.3‰ and 41.3‰. Natural soils report an even greater range for δ18O between 

12.1‰ and 47‰. Because nitrification and denitrification processes can both contribute 

significantly to soil N2O, the range in isotopic composition is observed to be large for 

both δ15N and δ18O. 
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Table 1.2. Published δ15N, δ18O, and SP values for different sources of N2O. δ15N is referenced against air 

N2, δ18O is referenced against VSMOW. If given, ± is 1σ.  

 

Study: 1. Park et al. 2011; 2. Perez et al. 2001; 3. Rock et al. 2007; 4. Ogawa & Yoshida 2005b; 5. Ogawa 

& Yoshida 2005a; 6. Toyoda et al. 2008; 7. Toyoda et al. 2009; 8. Bol et al. 2004; 9. Tilsner et al. 2003; 10. 

Park et al. 2011; 11. Bol et al. 2003; 12. Goldberg et al. 2008; 13. Popp et al. 2002; 14. Yamagishi et al. 

2007; 15. Yoshida & Toyoda 2000; 16. Kim & Craig 1993; 17. Park et al. 2012; 18. Toyoda et al. 2004; 19. 

Park et al. 2004. 

 

 

 Source  Study δ15N(‰) δ18O(‰) SP(‰) δ15Nα(‰) δ15Nβ(‰) 

A
n

th
ro

p
og

en
ic

 

Ag. Soil  1 -34±12 26.3±4.4 1.5±21 -33±17.5 -34±41 
  2 -41±4 23.3±2.6 9±2.9 -37±18 -46±21 
  3 -9.6±18 41.3±12.3     
Bio. Bu. 4 -1.05 23.5 0.40 -0.85 -1.25 
Coal  5 9.2±5.3 45±8.9 13.3±4.9    
Car  6 -4.9±8.2 43.5±13.9 12.2±9.1    
River  7 -6.7±5.7 36±24.7 14.5±14    
Estuary 8 -5.4±0.9 30.9±1.3 15.6±3 2.4±2.4 -13±1.1 
  8 -12±2 25.1±5.6 36.3±6.6 6.4±2.7 30±4.6 

N
at

u
ra

l 

Soils 9 -6.4 35.6       
  10 -18±4 12.1±5.9 9.7±7.9 -12.4±6.6 -22±4.3 
  11 -6±6 26±4.5 2.2±0.8 -5±6.2 -7.1±6 
  12 -6±10 47±7     
  12 -10±11 27.5±17.5     
Ocean 13 4±1 37.2±1.9 24±2    
  14 3.2±0.1 47.6±0.3 11±1.2 8.7±0.6 -2.3±0.6 

A
tm

os
p

h
er

e 

Trop. 15 6.5±0.6 43.7±0.9 18.7±2.2     
  16 7 44.7     
  17 7±0.2 44.5±0.3 19.5±1.2 16.8±0.8 -2.6±0.9 
Low Strat. 18 10±0.6 46.8±0.6 21±1.1 20.5±1.1 -0.5±0.2 
  18 12.4 48.8 22.2 23.4 1.2 
  19 16±7 52.8±6 10±7 15±10 4.7±3.6 



 

14 

Nitrification and denitrification have been shown to produce different SP for N2O. 

Generally, nitrification produces a positive SP (33‰ - 37‰) while denitrification results 

in no SP (Sutka et al. 2006; Opdyke et al. 2009). The reasoning for this is due to the 

bonds formed or broken in nitrification and denitrification. Depending on the reaction 

pathway involved, fractionation at the nitrogen atom that is bound to the oxygen atom is 

observed (Yoshida and Toyoda 2000; Sutka et al. 2003; Toyoda et al. 2005).  

The δ15N for rivers and estuaries is also depleted, ranging from -11.8‰ to -5.4‰ 

(Bol et al. 2004; Toyoda et al. 2009). This is a similar range for what has been measured 

for natural soils; however, the SP for rivers and estuaries ranges between 14.5‰ to 

36.3‰ while the SP for natural soils is between 2.2‰ and 9.7‰. This difference in SP 

has the potential to distinguish source contributions from rivers and estuaries from natural 

soils.   

The isotopic signature of δ15N from biomass burning is measured to be close to 

N2 (0‰) at -1.05‰ (Ogawa and Yoshida 2005b). The SP is 0.4‰. Measurements of car 

exhaust δ15N were reported to be -4.9‰ while the SP was observed to be 12.2‰. The 

δ15N measured for coal is isotopically heavy at 9.2‰ with a SP of 13.3‰; however, the 

isotopic composition of coal has shown a dependency on the exact method used for 

combustion (Ogawa and Yoshida 2005a). Coal and automotive SP measurements show 

that there does appear to be some fractionation effects that occur during the combustion 

process. It has been theorized that there is insignificant fractionation for industrial 

sources of N2O between 15Nα and 15Nβ positions because industrial sources are not carried 

out enzematically (Yoshida and Toyoda 2000).   
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Ocean measurements of δ15N values show a slight isotopic enrichment between 

3.2‰ and 3.7‰ (Popp et. al. 2002; Yamagishi et. al. 2007) while the SP ranges between 

11‰ and 24‰. The ocean is one of the few sources with a positive δ15N value, making 

its isotopic signature unique. 

 

1.4.2 Sink effects 

Measurements of stratospheric N2O have shown an enrichment of 15N (Kim and 

Craig 1993; Park et al. 2004; Toyoda et al. 2004). From the research done by Young and 

Miller (1997), it was suggested that this enrichment was due to the preferential photolysis 

of isotopically light N2O (14N14N16O). Further experimental verification has confirmed 

this explanation (Miller and Young 2000; Kaiser et al. 2003a; Kaiser et al. 2006). From 

the quantum mechanical view point, the heavier isotopologue shifts the zero-point energy 

(ZPE) lower which blue shifts the absorption cross section (σ), resulting in more energy 

needed to break the bonds formed with the heavier isotopologue.  

To model the atmospheric chemistry and transport that takes place in the 

stratosphere requires knowledge about the photolysis rate constants (J) that determine 

how quickly reactions take place for a specific species. These isotope effects are given as 

either the fractionation factor (α) or the fractionation constant (ε). Equation 1.11 

describes the relationship between α and J while equation 1.12 describes the relationship 

between ε and α. 

 

(1.11) α = J’ / J 
 
(1.12) ε = 1000(α - 1) 
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Where J’ represents the photolysis rate constant of the heavy isotopologue. If the lighter 

isotopologue reacts faster than the heavy isotopologue, then α will be less than 1 and ε 

will be negative. In this case, as the reaction proceeds, enrichment of the heavy 

isotopologue in the reactant takes place while the product will be depleted of the heavy 

isotopologue.   

Modeling isotopic enrichment of the reactant in a closed system can be 

accomplished by using Rayleigh fractionation, which describes how the composition 

changes after some fraction of the original N2O concentration: 

(1.13) ln(R/Ri) = (α-1)ln([N2O]/[N2O]i) 

Where [N2O] represents the mixing ratio of N2O, R represents the ratio of heavy to light 

molecules, α represents the photolysis fractionation factor for the species, and subscript i 

denotes initial values (Kaiser et al. 2002a; Butenhoff and Khalil 2007).  

 Isotope effects in N2O photolysis has been studied by many groups (Table 5.1). 

Results from experiments show that the value of ε depends on several factors including 

temperature, wavelength, and the fractionating species itself (Rockmann et al. 2000; 

Turatti et al. 2000; Kaiser et al. 2002b; Kaiser et al. 2003a). Between wavelengths of 190 

nm and 215 nm, ε has values that follow the relationship: εα < ε18 < εβ, where εα 

represents the ε value for N15NO, ε18 represents the ε value for NN18O and εβ represents 

the ε value for 15NNO. All of the ε values are negative. This relationship represents that 

15Nα is enriched the most in the stratospheric N2O, followed by 18O and then 15Nβ 

(Butenhoff and Khalil 2007). 
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 The reaction of N2O with O(1D) (eqs. 1.3 and  1.4) has also been studied. Kaiser 

et al. (2002a) found that all of the ε values during the reaction with O(1D) were smaller in 

magnitude than for photolysis, meaning less enrichment for the heavy isotopologues. The 

order of the ε values also changed: ε18 < εβ < εα. While this reaction only makes up 10% 

of the total sink, its effects may be important because the reaction is strongest in the 

lower stratosphere (Butenhoff and Khalil 2007).  

 Anomalous oxygen isotope fractionation has been observed in samples of 

stratospheric N2O. Mass-independent isotopic fraction is defined as isotopic fractionation 

that does not scale with the difference in mass from one isotope to another. These effects 

are quantified using the equation: 

(1.14) Δ17O = δ17O – γδ18O 

Where γ represents the “three isotope exponent” for oxygen. The γ value has a small 

range dependent on temperature, though most often has a value of 0.516 verified 

experimentally (Cliff and Theimens 1997; Kaiser et al. 2004).  

 The Δ17O anomaly is non zero for the troposphere and stratosphere and increases 

with altitude (Cliff and Theimens 1997). This result was unexpected due to the fact that 

the sources and sink processes of N2O are mass dependent processes. While possible 

explanations have been proposed and reviewed (Miller and Young 2000; Estupiñán et al. 

2002) the most accepted explanation is the transfer of heavy oxygen from O3 to N2O in 

the reaction with O(1D) (Butenhoff and Khalil 2007).  

 

1.4.3 Atmospheric composition 
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Troposphere measurements of δ15N have values close to 7‰ and SP ~19‰ (Park 

et al. 2004; Toyoda et al. 2004; Park et al. 2012). δ15N measurements from the 

stratosphere are more enriched than the troposphere, ranging from 10‰ to 16.4‰. These 

values are also enriched compared with the sources discussed previously (Table 1.2). The 

troposphere has isotopically heavier δ15N values compared to the sources due to sink 

effects that occur in the stratosphere which enrich stratospheric N2O (15N, 17O, 18O) and 

enrich the troposphere through STE. 

The historical trend in troposphere isotopic N2O has been considered in several 

studies. Park et al. (2012) measured the isotopic composition of 11 firn air samples 

collected between 1997 and 2004 from Law Dome, Antarctica 67°S, 113°E and 50 

archived air samples collected between 1978 and 2005 from Cape Grim, Tasmania 41°S, 

145°E. Results of these measurements show that as the N2O mixing ratio in the 

atmosphere increases, the δ15N decreases. This can be explained by the fact that many 

anthropogenic sources of N2O have lighter δ15N values than natural sources (Table 1.2).  

Park et al. (2012) also evaluated how the δ18O value has changed over time. From 

their results, as the atmospheric concentration of N2O increases, the δ18O values become 

lighter, though to a smaller degree than seen in the bulk isotopic composition of N2O. 

This is expected since the oxygen source for both anthropogenic and natural sources is a 

combination of molecular O2 and oxygen bound in water (Rahn and Whalen 2000). 

Finally, seasonal cycles in the isotopic composition were also observed in 

southern hemisphere samples from the Cape Grim archive by Park et al. (2012). Both 

δ15N and δ18O show enrichment during the summer months and depletion during the 

winter. N2O mole fraction had maximum and minimum mixing ratios during late fall and 



 

19 

late spring, respectively. The minimum in late spring was found to coincide with the 

maximum in STE bringing isotopically heavy N2O to the surface (Nevison et al. 2005; 

Nevison et al. 2011).  

 

1.5 Sulfur hexafluoride 

SF6 is an extremely potent GHG with a GWP (over 100 years compared to CO2) 

of 22800. Until recently, the commonly reported lifetime of SF6 was ~3200 years 

(Ravishankara et al. 1993); however, newer estimates have greatly reduced the 

atmospheric lifetime to 580-1475 years (Kovács et al. 2017; Ray et al. 2017). While SF6 

is one of the strongest GHG controlled under emission regulations, it also has a small 

global concentration (7.28 ppt in 2011), so it does not add significantly to climate forcing 

by itself (Myhre et al. 2013).  

 Sources of SF6 are anthropogenic, with main uses being high voltage insulation, 

magnesium production and semiconductor manufacture (Maiss & Brenninkmeijer 1998; 

Olivier et al. 2005). With a very low solubility, the only known sink for SF6 is loss to the 

mesosphere. Almost all of the SF6 that has been emitted since the industrial revolution is 

still present in the atmosphere. Atmospheric observations of concentration are used to 

accurately determine global emissions. Due to its long lifetime and anthropogenic 

origins, SF6 is used as a validity check for atmospheric transport models (Levin and 

Hesshaimer 1996; Patra et al. 2009).  

 Reported atmospheric measurements of SF6 from atmospheric air before the year 

1987 are rare. In the southern hemisphere, Cape Grim (Tasmania) archive measurements 

date back to 1978 (Levin et al. 2010). Eight northern hemisphere measurements are 
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reported that date between 1973 and 1990 from Trinidad Head, CA (Rigby et al. 2010). 

Few other measurements pre-1990 are available or reported for either hemisphere. 

 

1.6 SF6 Global budget 

 Estimating the global production of SF6 is less complex than for N2O due to the 

fact SF6 is only produced through anthropogenic means in significant quantities. The 

Emissions Inventory for Global Atmospheric Research (EDGAR) has the emissions of 

SF6 broken down by country and year. Figure 1.3 shows the SF6 emissions from EDGAR 

V4.2 for the year 2010 in Gg grouped by continent. 

 

Figure 1.3. 2010 SF6 emissions in Gg by continent (EDGAR 2013).  

 

  The three top producing countries are China (2.4 Gg), USA (1.7 Gg), and Korea 

(0.3 Gg), showing that the emissions of SF6 are heavily dominated by the United States 

and China. The total emission of SF6 for 2010 in EDGAR is 7 Gg.  
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Top-down calculations by Levin et al. (2010) estimate global production in 2008 

to be 7.16 Gg yr-1. This number is very close to the EDGAR database and shows how 

verification of global emissions using very few globally distributed atmospheric 

background sampling stations is possible. For GHGs with well-defined sinks, the top-

down calculations are one of the strongest constraints for verifying global budgets. 

 

1.7 SF6 Distribution and trends 

Observations of SF6 background mixing ratio shows a latitudinal dependence in 

the northern hemisphere (Geller et al. 1997), with the highest mole fraction observed at 

mid-northern latitudes. For the year 1994, measurements from Fraserdale, Canada (50°N, 

82°W) are reported to be 0.14 ppt higher than samples measured from Izaña, Tenerife 

(28°N, 16°W) (Maiss et al. 1996). Southern hemisphere mixing ratios are more consistent 

across latitudes.  

The mean tropospheric SF6 concentration reported in 1990 in the north and south 

hemisphere is 2.67 ppt and 2.34 ppt, respectively (Maiss et al. 1996). It is estimated that 

~94% of all SF6 emissions come from the northern hemisphere (see fig. 1.3, Maiss et al. 

1996; EDGAR), which explains why northern hemisphere samples are higher in SF6 

concentration than southern hemisphere samples by 0.3-0.4 ppt (Levin et. al. 2010). 

Variability in the SF6 trend has been observed over the last 30+ years. While the 

exact value of the growth rate differs slightly between sample locations, several features 

are prominent (Levin et al. 2010; Rigby et al. 2010; Hall et al. 2011). From initial 

measurements in the 1970s the trend steadily increased until the mid-1990s, where it 
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peaked near 0.26 ppt yr-1. The trend then slowly declined to ~0.20 ppt yr-1 until the early 

2000s, when it began to increase once again.  

 Although small in magnitude, SF6 has been observed to have seasonality at select 

locations. The driving force behind the observed seasonality in SF6 is considered to be 

atmospheric transport (Patra et al. 2009). Processes such convection, boundary layer 

mixing, stratosphere-troposphere exchange (STE), and shifts in the ITCZ all can 

potentially influence the observed seasonality at a location. In general, seasonal 

amplitude in the northern hemisphere is ~0.05 ppt while southern hemisphere amplitude 

is ~0.01 ppt (Nevison et al. 2007; Patra et al. 2011). The seasonal phase depends on 

location and is not consistent within a hemisphere. At Cape Grim, Tasmania (41°S, 

145°E), the phase in the minimum is near February and maximum near October. Barrow, 

AK (71°N, 157°W) and Alert, Canada (82°N, 62°W) show strong minimums in the fall, 

though maximums are not clearly defined (Wilson et al. 2014). Continental sites such as 

Niwot Ridge, CO (40°N, 106°W) show large influences from interannual variability 

(IAV) and have no distinguishable seasonality (Patra et al. 2009)  

 

1.8 Dissertation overview 

There many questions remaining concerning the changing contribution of 

individual sources to the global budget of N2O as well as seasonality in northern 

hemisphere sources. There is also limited atmospheric air samples of SF6 from the late 

1970s and 1980s, especially in the northern hemisphere. The work presented in this 

dissertation presents a valuable contribution towards addressing these questions by 

examining the Oregon Health & Science University–Portland State University (OHSU-
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PSU) air archive consisting of archived air samples collected from Cape Meares, Oregon 

(45.5°N, 124°W). Chapter 2 presents in detail the high precision methods developed at 

Portland State University to analyze the air archive. Mole fraction results of N2O and SF6 

analyses are presented and discussed in chapter 3. The N2O isotopic analysis of the 

OHSU-PSU air archive is presented and discussed in chapter 4. In chapter 5, a simple 2-

box model of the atmosphere is used to evaluate total source contributions to the 

observed measurements and compared with previous literature. Finally, chapter 6 

discusses what conclusions can be made from this work. 
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Chapter 2 

Experimental Methods 

 

 This chapter discusses the measurement and analytical methods used in this 

research. The first section (2.1) gives information regarding the air archive samples 

collected from Cape Meares. The second section (2.2) discusses the measurement 

techniques used to analyze samples for their N2O and SF6 mole fraction content using gas 

chromatography. The third section (2.3) discusses how samples were measured for their 

N2O isotopic composition using isotope ratio mass spectrometry. The fourth section (2.4) 

explains the analytical techniques used to process the data.  
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2.1 Air archive samples 
  
 Using past concentrations from the last several decades can help constrain global 

budget uncertainties as well as shed light on recent changes to source and sink processes. 

When projecting future GHG concentrations, many factors must be included such as 

climate feedback effects and possible changes in transport processes. Uncertainties in 

model results can be minimized if GHG measurements span many years, are precise, and 

cover many different latitudes. Past atmospheric conditions can be evaluated using either 

archived air samples or by analyzing ice core and firn air.  

 The major advantage of using ice core or firn air for measuring past atmospheric 

concentrations of GHG is that samples may be collected today. However, samples are 

difficult to obtain due to the remoteness of the locations where the samples are collected 

(Greenland and Antarctica). This also limits spatial resolution as polar regions may not 

accurately represent mixing ratios at more central latitudes. Temporal uncertainties also 

must be evaluated when measuring ice core and firn samples. Therefore, these samples 

are better represented by a mean age of the air rather then an exact date.  

 Archived air samples are discrete in time and space. This makes them very 

valuable for evaluating past atmospheric conditions at unique periods in time, but few 

archived samples are available today. Archive samples may also become contaminated or 

lost if not stored properly.  

 The Oregon Health & Science University–Portland State University (OHSU-PSU) 

air archive consists of archived air samples collected from Cape Meares, Oregon (45.5°N, 

124°W) by Dr. Rasmussen (Department of Environmental and Bimolecular Systems, 

Oregon Graduate Institute of Science and Engineering (currently OHSU)) and Dr. Khalil 
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(Physics Department, Portland State University). The samples were collected by air 

liquefaction, where ~1000L of air (STP) is compressed to 30bar into 33L electropolished 

stainless steel canisters. The air archive consists of 210 samples with sample dates 

ranging from 1978 to 1998 (Rice et al. 2016). Of the 210 samples, 156 were analyzed in 

this work, with sample dates ranging from 1978 through the end of 1996.   

 

2.2 Gas chromatography 
 

The gas chromatography (GC) analytical system was based on the configuration 

used by Hall et al. (2007) and uses an Agilent 6890N gas chromatograph fitted with a 

micro-electron capture detector (μECD, Agilent Technologies, Santa Clara, CA). Peak 

separation of N2O and SF6 from air is achieved by two Poropak Q 80/100 mesh columns 

(6 ft long, 2 mm i.d. pre-column, 12 ft long, 2 mm i.d. analytical column). The carrier gas 

is P5 (Airgas, Portland, OR) equipped with O2 and hydrocarbon traps (Restek, Bellefonte, 

PA) to improve baseline signal stability. Two six-port switching valves (V1 and V2) are 

controlled through Chemstation (V1.A, Agilent Technologies Inc., Santa Clara, CA). A 

schematic of the GC system is given in figure 2.1. 

A 16-port multiposition valve (Valco Instrument Company Inc., Houston, TX) 

controlled by the GC interface is used to introduce pressurized samples into the system. 

A 2-way electric valve (Clippard, Cincinnati, OH) is used to halt sample introduction and 

prevent sample loss when not flushing the sample loop. Samples initially pass through a 

nafion-tube/desiccant trap (Perma Pure, Toms River, NJ), before flushing the 10ml 

sample loop to help remove water from samples. Once flushed, the sample loop is placed 
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in line with the pre-column by rotating V1, when the P5 carrier carries the air aliquot onto 

the pre-column.  

To rotate between back-flush and front-cut, a 4-port valve is used (V3). In back-

flush, carrier gas flushes the pre-column (in the opposite direction sample travels) to 

remove the build up of water and other late-eluting compounds on the column that would 

otherwise elute to the μECD and affect signal baseline. In front-cut, carrier gas carries 

sample from the sample loop to the pre-column. Once the O2 elutes through the pre-

column to vent, V2 rotates and places the pre-column in line with the main-column 

allowing N2O and SF6 to transfer to the analytical column. Once the sample has reached 

the analytical column, V1, V2, and V3 rotate, back-flushing the pre-column while the 

analytes are carried to the detector.  

The oven and detector temperatures are held isothermally at 56°C and 310°C 

respectively. Carrier gas flow rates are 40 ml min-1. The N2O peak retention time is 6.1 

minutes; the SF6 peak retention time is 7.0 minutes. Peak integration is accomplished via 

Chemstation via peak height (peak area was also considered but was found to be less 

precise). Measurements of N2O and SF6 are made relative to a calibrated whole air 

sample on the NOAA-06A scale (NOAA Tank CB11406-A, 328.71 ppb N2O, 8.76 ppt 

SF6). Each sample is analyzed 6 times and bracketed by 6 reference gas runs used to track 

signal drift. A detailed description of a typical run with pressure settings and timing is as 

follows: 

Time (min) Description 

0.00 - 1.50 System starts a run in “back-flush”. The starting pressures for Carrier 1 

and Carrier 2 are 62.1 and 67.4 psi, respectively. The stream selection 



 

28 

multi-position valve rotates to the desired position and the solenoid 

(on/off) valve switches on (open). Sample flows through a water trap then 

to a 10 ml sample loop and finally to vent. The sample loop is flushed with 

sample for 1.5 minutes at 60 ml min-1. Then the on/off valve switches off 

(closed), stopping the flow of sample.  

1.50 – 1.75 Sample remains in the sample loop for 15 seconds to equilibrate with 

atmospheric pressure. At 1.75 minutes, Valve 3 rotates, switching from 

“back-flush” mode to “front-cut” mode.  

1.75 - 3.00 Valve 1 rotates, allowing Carrier 2 to take the sample from the sample 

loop to the pre-column and then to vent. 

3.00 - 3.05 Valve 2 rotates, placing the pre-column in line with the analytical column. 

N2O and SF6 in the sample is carried by Carrier 1 from the pre-column 

into the analytical column. Carrier 1 pressure is increased to 76 psi to 

maintain constant flow to the detector. Carrier 2 pressure decreased to 20 

psi to reduce loss to vent. Valve 1 rotates back to its initial position.  

3.05 - 4.25  Sample flows through the main column. 

4.25 - 4.30  Valve 2 switches back to its initial position (“back-flush” mode). Carrier 2 

begins to back-flush the pre-column. Carrier 1 pressure decreases to 67.4 

psi and Carrier 2 pressure increases to 62.1 psi.  

4.30 - 8.00   The sample is carried through the main column. The maximum intensity 

for N2O occurs at 6.1 minutes while SF6 has maximum intensity at 7.0 

minutes. At ~8 minutes, the signal baseline has returned to normal.  
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Figure 2.1. Schematic of the system for sample evaluation on GC. The system is shown in “back-flush” 

mode. V1 = Valve 1, V2 = Valve 2, V3 = Valve 3. 

 

 Test runs were performed with and without the “heart-cut” technique. 

Chromatogram output without venting O2 before reaching the detector is shown in figure 

2.2a. A very large O2 peak is seen at ~2.75 minutes. The peak at 4 minutes is the N2O 

peak and no SF6 peak is visible. Inflections before 2.5 minutes and near 5.5 minutes are 

due to pressure fluctuations from valve rotations. Chromatogram output using the  

“heart-cut” technique is shown in figure 2.2b. The large peak at 6.1 minutes is the N2O 

peak followed by the SF6 peak at 7.0 minutes. Inflections before the N2O peak are due to 

pressure fluctuations due to valve rotations. 
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Figure 2.2. GC Chromatogram output. Chromatogram without “heart-cut” technique shown in (a). Visible 

peaks are O2 peak ~ 2.75 minutes and N2O ~4 minutes. Chromatogram in Figure (b) shows with “heart-cut” 

technique. Visible peaks are N2O peak at 6.1 minutes and SF6 peak at 7.0 minutes.  

 

2.3 Isotope ratio mass spectrometry 

 Over the time period that archived samples were collected from Cape Meares 

(1978 – 1998), the change in atmospheric N2O isotopic composition is small. The mixing 

ratio of N2O in the atmosphere is also low (300 - 315 ppb between 1978 and 1996), 

making it is necessary to concentrate samples before they reach the IRMS detector array 

to produce a sufficient signal. Additionally, in atmospheric samples CO2 is in excess by 

over 1000 times, which causes interference with N2O in the detector due to interfering 

isotope masses 44/45/46, so CO2 must be dramatically reduced. The preconcentration 

system shown in figure 2.3 is based on designs by Toyoda and Yoshida (1999), Kaiser et 

al. (2003b), Rockmann et al. (2003), and Potter et al. (2013) and preconcentrates N2O 

from whole air samples before transferring to the GC-IRMS system.  
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Figure 2.3. Preconcentration system and GC-IRMS schematic for N2O isotopic analysis. V1 = valve 1, V2 

= valve 2, V3 = valve 3, V4 = valve 4, T1 = large LN cooled trap, T2 = cryofocus LN cooled trap. Valves all 

shown in “off” position.  

 

The isotopic analysis system is composed of 3 primary sections: the 

preconcentration section, the GC, and the IRMS. The preconcentration section was 

designed and fabricated at PSU and uses four 6-port switching valves (Valco Instrument 

Company Inc., Houston, TX), two liquid nitrogen (LN) traps, one chemical trap (70% 

NaOH, 30% MgClO4) to remove CO2, and one H2O trap (steel loop and dry ice). A 

Thermo Scientific Trace Ultra GC contains the pre-column and the analytical column, 

held isothermally at 35°C in the oven. The GC (fitted with electronic flow control) is also 

used to regulate the He low flow carrier and is where the open-split interface is located. 

The final piece, the IRMS, is a Thermo Scientific Delta V Isotope Ratio Mass 

Spectrometer fitted with a 5-feraday cup collector system. GC-IRMS runs are controlled 

and recorded through Thermo Scientific Isodat v2.5.   

This system is designed for the analysis of both high concentration samples 

(above 10 ppm) using valve 1 (V1) as well as atmospheric concentration samples (~300 
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ppb) using sections connected through valves 2-4 (V2, V3, V4). High concentration 

samples are injected using a syringe through a septa and flush a sample loop. Rotating V1 

allows low flow He carrier gas to take the sample to the main column and to the IRMS. 

For the work presented in this dissertation, the low concentration sections are used.  

Pressurized sample canisters containing low concentration samples of N2O are 

connected to a mass flow controller (OMEGA Engineering, Inc., Norwalk, CT) that 

regulates the flow rate at 40 ml min-1 through the chemical and water traps. The sample 

then flows into the first cold trap (T1, -196°C) cryogenically separating N2O and 

remaining condensable components from bulk air. A pump downstream of T1 prevents 

the condensation of O2 by ensuring that the pressure in T1 stays well-below atmospheric 

pressure. When V2 rotates, the sample in T1 is warmed to 90°C by submerging in water, 

then cryofocused into the second cold trap, T2 (-196°C) carried by the He high flow 

carrier. Once the sample has transferred from T1 to T2, V2 rotates back to its initial 

position with T1 held at 90°C so that residual water may be flushed out using the He high 

flow carrier.  

The rotation of V3 and V4 allows the transfer of sample from T2 to the pre-column 

(Supel-Q PLOT, 30m by 0.53mm, Supelco) once T2 is submerged in water heated to 

90°C. V3 is rotated back to its initial position when the entire sample has reached the pre-

column and flushed with carrier gas to remove any compounds still present in the trap. A 

pre-column with backflush is necessary due to heavier, late eluting compounds that can 

affect subsequent analyses, particularly on mass 31 (Toyoda and Yoshida 1999, 

Rockmann et al. 2003, Kaiser et al. 2003b).  
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Samples are introduced to the IRMS ion source using an open split design (figure 

7). This admits a fraction (~1/3) of the eluted gas from the analytical column (HP-PLOT 

Q, 30m by 0.53mm, Agilent Technologies) onto the ion source through capillary tubing. 

The design consists of a glass sealed tube on one end with the open end admitting 

capillary tubings carrying reference gas, sample, and He.  

 

Figure 2.4. Open split interface.  
 
 

The transfer capillary to the mass spectrometer will admit the different gas 

streams or combinations of them, to the ion source depending on the position of the 

capillary tubings. When the sample gas is introduced to the ion source, molecules are 

ionized under vacuum by bombarding them with electrons which come from a heated 

filament and creates positively charged ions. 

A detailed description of a typical run with flow rates, temperatures, and timing is 

as follows: 

Time (min) Description 

-1.00 - 0.00 Pressurized sample purges ascarite/H2O traps and T1. Flow rate is 40 ml 

min-1 controlled by the MFC. Low Flow Carrier is set at 1 ml min-1. High 
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Flow Carrier and Backflush Carrier are set at 10 ml min-1. GC oven set at 

35°C. 

0.00 - 9.50 T1 is submerged in LN at -196°C. N2O sample is trapped in T1 while the 

vacuum pump prevents liquid O2 from condensing.  

9.50 - 10.00 T2 is submerged in LN at -196°C.  

10.00 - 11.50 V2 rotates on. T1 removed from LN and placed in a hot bath at 90°C. 

Sample is carried by the High Flow Carrier from T1 and cryofocused to T2.  

11.50 - 11.75 V4 rotates on. Low Flow Carrier increased to 3 ml min-1.  

11.75 - 12.00 T1 removed from hot bath.  

12.00 - 17.00 V3 rotates on. T2 removed from LN and placed in a hot bath at 90°C. V1 

rotates off. Sample begins transfer to the pre-column and analytical 

column. 

17.00  Isodat run begins.  

17.50 - 17.67 V4 rotates off. Low Flow Carrier reduced to 1 ml min-1. V3 rotates off. T2 

removed from hot bath. 

25.33  Isodat run ends.  

 

A typical chromatogram output for the whole N2O (m/z 44, 45, 46) molecule and 

NO (m/z 30, 31) fragment are shown in figure 2.5a and 2.5b, respectively. The sample 

N2O and NO peaks ~300 seconds are sandwiched between 5 square reference peaks 

(UHP N2O, Praxair, Portland, OR) (3 before, 2 after) to monitor within-run drift. Peak 

integration is accomplished via Thermo Scientific IRMS software (Isodat v2.5). Each 
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sample is analyzed 4-6 times (2-3 whole N2O measurements, 2-3 NO fragment 

measurements).  

 

Figure 2.5.  IRMS chromatograms. Whole N2O molecule results are shown in (a). Peaks 1, 2, 3, 6, and 7 

are square reference peaks, peak 4 is CO2 and peak 5 is N2O. NO fragment results are shown in (b). Peaks 

1, 2, 3, 5, and 6 are square reference peaks while peak 4 is the NO fragment peak. 

 

The ionized molecules are accelerated towards a magnetic field by a high voltage 

potential. Molecule trajectory is then forced into an arc due to the Lorentz force: 

(2.1) FB = zνB = mν2/r 

So the resulting radius of curvature r is: 
 
(2.2)  r = mν/zB  
 
Where m is the mass of the molecule (kg), ν is the velocity (m/s), z is the electric charge 

(C), and Β is the magnetic field (T). This results in heavier ions having a larger arc than 

smaller ions.  
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Figure 2.6. Example IRMS schematic (Rice et al. 2001).  

 

 Once passed through the magnetic field, the molecular ions reach the analyzer and 

are collected in an array of 3 Faraday cups (triple collector) which accumulate charge. 

The larger the charge and current accumulation, the more of a particular ion in a sample. 

To resolve the 15N and 18O N2O isotopomers, five ion currents (I) are measured (N = 14N 

and O = 16O):  

(2.3)  I44 = NNO 

(2.4)  I45 = 15NNO + N15NO + NN17O 

(2.5)  I46 = NN18O + 15NN17O + N15N17O + 15N15NO 

(2.6) I30 = NO 

(2.7)  I31 = 15NO + N17O 

The normalized molecular ion current ratios are then calculated as: 

(2.8)  45R = I45/I44 = 15Rα + 15Rβ + 17R 

(2.9)  46R = I46/I44 = 18R + (15Rα + 15Rβ) 17R + 15Rα 15Rβ  

(2.10) 31R = I31/I30 = 15Rα + 17R 
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 The geometry of the Thermo Delta-V IRMS does not allow for simultaneous 

monitoring of all 5 desired ion configurations, so the isotopic ratio of 31R is determined 

using subsequent samples from 45R and 46R. The cup configuration alters between 

monitoring the whole N2O+ molecule (m/z 44, 45, and 46) and the NO+ fragment (m/z 30, 

31, and 32) on independent IRMS runs.  

 The NO+ fragment formed during the ionization process would ideally have only 

the nitrogen atom that was originally bound to the oxygen atom (N15NO, or the α-

portion). However, there is a known isotope “scrambling” effect that takes place within 

the ion source whereby some N from the β-portion (15NNO) ends up in the NO+ fragment 

and is measured as part of the m/z 30 and 31 ion currents. The exact percentage that is 

scrambled is unique to each instrument. The most commonly accepted value is roughly 

8.5% of the 15NO+ fragment will be formed from 15NNO (Toyoda and Yoshida 1999; 

Kaiser et al. 2003b; Rockmann et al. 2003; Potter et al. 2013). The corrected equation 

provided by Kaiser et al. (2003b) for equation 2.10 is: 

 

(2.11)    

 

Where s is the scrambling coefficient (0.00 – 1.00) and is empirically derived.  

The last term in equation 2.11 comes from the fact that the double-substituted 

isotopomers 15N15NO contributes to the scrambled and unscrambled NO+ fragment. 

However, unless working with artificially enriched 15N isotopes, the correction provided 

by this term is negligible.  
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 Solving for 15Rα, 15Rβ, and 18O is accomplished by using equations 2.8, 2.9, and 

2.11 (excluding the last term), and by taking advantage of the fixed relationship between 

variations of 17O and 18O: 

(2.12) 17R/0.0003799 = (18R/0.0020052)0.516 

The values 0.003799 and 0.0020052 are from the accepted natural abundance of 17O and 

18O in the oxygen standard VSMOW. The exponent 0.516 is the “three isotope exponent” 

for oxygen (discussed in section 1.4.2) derived from kinetic isotope fractionation laws 

and has been verified experimentally (Cliff and Thiemens 1997; Kaiser and Rockmann 

2003). Together, equations 2.8, 2.9, 2.11, and 2.12 are solved numerically (from 45R, 46R, 

31R) to find the four unknowns δ15N, δ15Nα, δ15Nβ, and δ18O. 

 

2.3.1 Isotope calibration 

 All isotopic measurements are made relative to an internationally recognized 

calibration scale (N2 in air for 15N and VSMOW for 18O, discussed in section 1.4). The 

N2O isotopic community accepted scale for 15N site preference measurements is the 

Tokyo Institute of Technology (TITech) scale, at least until an official site specific N2O 

isotope calibration standard exists. Portland State University was very fortunate to have 

four electropolished stainless steel 3L canisters filled with samples at Swiss Federal 

Laboratories for Materials Science and Technology (EMPA) by Dr. Joachim Mohn. All 

of the samples were calibrated by Sakae Toyoda at TITech. Table 2.1 provides 

information on the EMPA standards.  
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Table 2.1. EMPA standard information.  

EMPA Tank # δ15N 1σ δ15Nα 1σ δ15Nβ 1σ δ18O 1σ 

90575 2.02 0.10 2.06 0.05 1.98 0.20 36.12 0.32 
CA08214 6.85 0.06 17.11 0.12 -3.43 0.17 35.39 0.17 

90454 25.58 0.14 25.73 0.24 25.44 0.36 35.86 0.22 
CB08976 6.24 0.11 15.7 0.31 -3.21 0.37 35.16 0.35 

 
  

The standards are ~90 ppm N2O balanced in synthetic air at ~28 psi. To measure 

the EMPA standards using the same method as an archive sample, it is necessary to dilute 

the standards to ~300 ppb so they may be run through the preconcentration system in a 

manner identical to samples. This is achieved by evacuating new 3L canisters down to 

~10 microns (monitored by capacitance manometers, MKS Instruments, Andover, MA) 

with precision of 0.1 torr. A 20 ml volume is then pressurized to ~28 psi and allowed to 

expand into the evacuated 3L canister. Finally, ultra-pure air (Airgas, Radnor, PA) 

confirmed to have N2O below detection limits (via GC-µECD) is used to bring the final 

pressure of the canister to ~50 psi. Special care is taken to prevent fractionation during 

the dilution process by allowing equilibration to occur in each step.  

The diluted 3L canisters at ~300 ppb N2O are used to calibrate the reference gas 

used in all isotopic measurements as well as a working reference gas of dried air 

(CC2854, Breathing Air, Airgas, Portland, OR). The working reference is measured 

every 2 hours to monitor instrument drift. Equation 2.13 is used to calculate the deviation 

in measured values from accepted (“True”) values: 

(2.13)  Δ(δ45)CC2854 = True(δ45)CC2854 - Measured(δ45)CC2854 
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where True(δ45)CC2854 is calculated from measurements against the EMPA standards. 

Sample mean measured value equal to Measured(δ45)sample are drift corrected to the “true” 

value True(δ45)sample: 

(2.14)  True(δ45)sample = Measured(δ45)sample + Δ(δ45)CC2854 

The standard deviation of the sample is calculated as: 

(2.15)  σ[(δ45)sample]= {(σ[Measured(δ45)sample])2 + (σ[Measured(δ45)CC2854])2}0.5 

The same approach is used when measuring δ46 and δ31. 

 

2.4 Data analysis techniques 

 To analyze the data for statistically significant trends, LOWESS regression 

(smoothing) and bootstrapping are used. A description of each method and how they are 

applied to the data is described in the following subsections. 

 

2.4.1 LOWESS 

 LOWESS regression is a locally weighted regression technique that gives more 

weight to data points closer to the evaluation point (Cleaveland and Devlin 1988). We 

define the collection date as the independent variable, xi, and the measured value as the 

corresponding variable, yi, for i = 1 to n; where n is the total number of measured data 

points. We then define a smoothing window span to smooth over. In MATLAB, the span 

has a value between 0 - 1 and is defined as q/n where 1<q<n. As the smoothing window 

approaches 1, more data points are included in the smoothing and the regression becomes 

smoother. A smoothing window closer to 0 will show more variability.  
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 A smoothing span defined by the ratio of data points to include works well when 

the data points are evenly spaced in x. This is not the case for the archived air samples as 

there are periods when samples are not available. So instead, the span is defined as the 

number of data points within a fixed window in time. For example, when calculating the 

seasonality, a 30 day (30/365) window is used; when calculating the annual trend, a 3 

year window is used (3/total range). The spans value, between 0 - 1, depends on how 

many data points are within the window and can be different for every data point.  

 Once the span has been calculated, the next step is to define the weight (wi) of 

each data point within the smoothing window. LOWESS uses a tri-cubic function: 

 

(2.16)   

 
Where xi are the nearest neighbors of x defined by the span and d(x) is the distance along 

the abscissa from x to the most distant predictor value within the span. Weights are 

largest for values closest to the evaluation point and have the most influence over the fit. 

As the distance to the evaluation point increases, the weights become smaller. Data points 

outside of the smoothing window are assigned 0 weight and have no influence when 

calculating the fit. A weighted linear regression can now be performed:  

 

(2.17)   

 

(2.18) 
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(2.19)   

 

(2.20)  

 

(2.21)  

 

(2.22)  

 

2.4.2 Bootstrapping 

 The bootstrap resample technique was introduced in 1979 (Efron, 1979). The 

method is used to calculate the sampling distribution of an estimator by re-sampling from 

the original dataset to create multiple datasets.  

 Bootstrapping is used after the LOWESS technique is applied to the data by re-

sampling from a normal distribution at every data point where the mean equals the 

measured value and the standard deviation fixed as the mean standard deviation of the 

residuals to the LOWESS fit. This is repeated 1000 times to create 1000 randomized data 

sets. LOWESS is then applied to each data set and a 95% confidence interval is then 

determined at each data point. The technique has been applied by numerous research 

groups to find the uncertainty in trends derived from data (Dlugokencky et al. 2001; Rice 

et al. 2016). 

 The bootstrap technique is also used to quantify the uncertainty in δ15N, δ15Nα, 

δ15Nβ, and δ18O values numerically calculated from 45R, 46R, and 31R (Potter et al. 2013). 
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The procedure calculates 1000 re-sampled values from a normal distribution with mean 

and standard deviation equal to the measured R values for each sample. 
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Chapter 3 

Results of Mole Fraction Analysis 

 
 This chapter discusses the characterization of the gas chromatography system and 

the results of archive N2O and SF6 mole fraction measurements. Precision and 

reproducibility of the GC system are discussed in 3.1 followed by an explanation of how 

we addressed linearity in the detector response in section 3.2.  N2O and SF6 mole fraction 

results are discussed in section 3.3. 
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3.1 GC precision and reproducibility 
 
 The precision of the gas chromatography measurement is determined by 

comparing residuals from sets of 6 reference gas measurements. Histogram distributions 

in figure 3.1 show 180 residuals (expressed as a percent relative standard deviation) 

collected from 30 sets of 6 measurements for N2O (Fig. 3.1a) and SF6 (Fig. 3.1b) mole 

fraction. The black dashed lines represent normal distribution curves with mean (μ) and 

standard deviation (σ) equal the residual dataset. Typical 1σ precision from a set of 6 

measurements for N2O and SF6 is 0.16% and 1.13%, respectively. This corresponds to an 

uncertainty of 0.52 ppb for N2O and 0.10 ppt for SF6 for a measured concentration of 

328.71 ppb and 8.76 ppt for N2O and SF6, respectively.  

 

 
 
Figure 3.1. Percent Relative Distribution of 180 residuals from 30 sets of 6 measurements for N2O (a) and 

SF6 (b). Black dashed lines represent a normal distribution curve with the same mean and standard 

deviation as distributions. For N2O, μ = 0.010% and 1σ = 0.16%. For SF6, μ = 0.11% and 1σ = 1.13%. 

  

Measurement reproducibility was evaluated by repeatedly measuring an air 

sample (CC2854, Breathing Air, Airgas, Radnor, PA) against the reference gas and 
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evaluating consistency from the standard deviation of the results. Figure 3.2 shows the 

results of 18 discrete measurements of N2O (Fig. 3.2a) and SF6 (Fig. 3.2b) from the dry 

air sample (CC2854) completed over two weeks. Error bars are combined uncertainty, 

representing the uncertainty in both the sample (n = 6) and reference gas (n = 12) 

measurements. The standard deviation in the N2O and SF6 measurements is 0.46 ppb 

(0.12%) and 0.11 ppt (0.8%) respectively (red dotted lines), which is ~1σ for a set of 6 

standard measurements.  

 
 
Figure 3.2. Measurement reproducibility for N2O (a) and SF6 (b) from 18 discrete measurements of a dry 

air sample made over a two week period. Error bars are combined uncertainty from sample and surrounding 

reference gas measurements. Black dashed and red dotted lines are mean and standard deviation, 

respectively. N2O mean and standard deviation are 390.87 ppb and 0.46 ppb (0.12% RSD), respectively. 

SF6 mean and standard deviation are 13.20 ppt and 0.11 ppt (0.8% RSD), respectively.  

  

3.2 GC response linearity 
 
 To ensure accurate results in archive samples for this work, it is important to 

correctly characterize the detector response over the mole fraction range measured. The 

range in northern hemisphere N2O mole fraction between 1978 and 1997 is between 295 
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and 314 ppb, or roughly an increase of 7% in 20 years (Prinn et al. 2000; Ciais et al. 

2013). Northern hemisphere SF6 mole fraction in the late 1970s is expected to be below 1 

ppt based off results from Rigby et al. (2010) and rise to nearly 4 ppt in 1997. This is 

similar to southern hemisphere measurements from Cape Grim, Tasmania, where the 

range measured is from below 1 to just under 4 ppt over the same period (Levin et al. 

2010; Rigby et al. 2010; Hall et al. 2011).  

A series of manometric dilutions were prepared from the NOAA reference gas at 

Portland State University to evaluate the μECD response over historical N2O and SF6 

mole fraction sample range. Electropolished stainless steel canisters (Summa, 3 L) were 

connected to a vacuum system and evacuated to <1 Pa. To characterize the N2O response, 

ultra-pure air (zero grade, Airgas, Portland, OR) confirmed to have N2O and SF6 

concentrations below detection limits was used as a dilution gas and measured 

monometrically using capacitance manometers (MKS Instruments, Andover, MA) with a 

precision of ± 13 Pa (0.1 torr). The range of N2O concentrations produced in 3 L canisters 

was 32.2 - 321.4 ppb. Error introduced from the manometric process is small (maximum 

1σ error of ± 0.07 ppb for N2O) when compared to measurement uncertainty. 

To characterize the SF6 response, it is necessary to consider the interference 

caused by the N2O peak in the chromatogram output. To properly account for this 

interference, SF6 at low concentrations (0.6 - 6.0 ppt) must have a N2O peak that reflects 

expected concentrations in archived samples (~300 ppb). Prepared dilutions of SF6 

included an aliquot of 1 ppm N2O (± 5%) balanced with He (Scott Specialty Gases, St. 

Louis, MO) into the canister prior to dilution with ultra-pure air. A high precision 

capacitance manometer (MKS Instruments, Andover, MA) with a precision of ± 0.13 Pa 
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(0.001 torr) monitored the introduction of the 1 ppm N2O. The maximum 1σ error in SF6 

introduced from the manometric process is small (0.001 ppt) compared to measurement 

uncertainty. However, if the 1 ppm N2O aliquot or ultra-pure air contains SF6 below our 

detection limits (~0.1 ppt), this would contribute to uncertainty in the prepared samples. 

All dilution samples were measured at PSU on the GC-μECD system over several weeks 

to account for instrument drift. Table 3.1 provides dilution sample pressures, expected 

and observed μECD response, and measured N2O mole fractions with the error in 

measurement used to characterize the N2O linearity. Table 3.2 provides dilution sample 

pressures, expected and observed μECD response, and measured SF6 mole fractions with 

the error in measurement used to characterize the SF6 linearity.  

 

Table 3.1. Manometrically prepared standards for N2O linearity. 

Canister  
ID 

a. PRef  
(torr) 

b. PTotal  
(torr) 

c. Expected 
N2O  

Response 

d. Measeured 
N2O  

Response 

e. Measured 
N2O (ppb) 

f. N2O 1σ 
(ppb) 

1.7 727.3 992.7 0.7327 0.7673 252.21 0.78 
1.14 274.4 991.6 0.2767 0.3262 107.22 0.45 
1.5 461.2 996.7 0.4627 0.5157 169.52 0.51 

2.14 157.6 994.4 0.1585 0.1941 63.79 0.27 
2.7 97.2 993.4 0.0978 0.1239 40.73 0.44 
2.5 604.0 991.3 0.6092 0.6535 214.80 0.52 
3.7 952.3 996.2 0.9559 0.9618 316.15 0.83 
3.5 877.8 996.1 0.8813 0.8981 295.20 0.87 

3.14 928.2 995.3 0.9326 0.9423 309.75 0.85 
4.5 973.0 995.1 0.9778 0.9813 322.56 0.96 

4.14 893.1 996.9 0.8959 0.9085 298.62 0.71 
4.7 907.0 993.5 0.9129 0.9226 303.26 0.80 

NOAA Ref - - 1.0000 1.0000 328.71 0.52 

 
a. PRef is the NOAA reference gas pressure (in torr) introduced to the canister. 

b. PTotal is the final pressure (in torr) of the canister after balancing with ultra-pure air. 

c. Expected response is calculated from the PRef/PFinal fraction. 

d. Measured N2O response of the μECD. 

e. Measured N2O in ppb.  
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f. N2O 1σ (ppb) is from combined uncertainty of sample and surrounding NOAA reference. 

 

Table 3.2. Manometrically prepared standards for SF6 linearity. 

Canister  
ID 

a. PRef  
(torr) 

b. PScotty  
(torr) 

c. PTotal  
(torr) 

d. Expected  
SF6 

Response 

e. Measured  
SF6 

Response 

f. Measured 
SF6 (ppt) 

g. SF6 1σ 
(ppt) 

1.14 727.4 - 992.8 0.7327 0.7476 6.55 0.12 
3.5 877.9 - 996.2 0.8812 0.8943 7.83 0.24 

3.14 928.3 - 995.4 0.9326 0.9414 8.25 0.10 
1.1 221.9 232.8 994.9 0.2230 0.2443 2.14 0.06 

1.18 89.4 276.7 997.5 0.0896 0.1199 1.05 0.07 
1.28 66.9 282.4 992.5 0.0674 0.1153 1.01 0.06 
2.1 140.3 261.1 989.3 0.1418 0.1644 1.44 0.08 

2.18 569.2 119.9 991.7 0.5740 0.5879 5.15 0.15 
2.28 396.7 176.1 991.2 0.4002 0.4110 3.60 0.12 

NOAA Ref - - - 1.0000 1.0000 8.76 0.10 
 
a. PRef is the NOAA reference gas pressure (in torr) introduced to the canister. 

b. PScott is the 1 ppm N2O balanced with He (in torr) introduced to the canister.  

c. PTotal is the final pressure (in torr) of the canister after balancing with ultra-pure air. 

d. Expected SF6 response is calculated from the PRef/PFinal fraction. 

e. Measured SF6 response of the μECD. 

f. Measured SF6 in ppt.  

g. SF6 1σ (ppt) is from combined uncertainty of sample and surrounding NOAA reference.  
 

A visual representation of the detector response linearity for N2O over the full 

range of manometricly prepared standards is shown in figure 3.3, displaying measured 

difference from expected (measured - expected) mole fraction plotted against expected 

mole fraction. The black line is a 3rd degree polynomial fit. The red dashed line is a linear 

fit to the last 7 data points, which span the N2O concentration range in the archive. Error 

bars are total measurement uncertainty. R2 for the poly-3 fit is 0.9976.  
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Figure 3.3. N2O measured difference from expected over the full range of manometrically prepared 

standards. Black fit curve is a 3rd degree polynomial. Red dashed line is a linear fit to the standards that 

span the archive range. Error bars are total measurement uncertainty.  

 

The 3rd degree polynomial equation is: 

(3.1)  f(x) = a1x3 + a2x2 + a3x + a4 

(3.2)   a1 = 1.36e-06 ± 4.18e-07 (95% CI) 

(3.3)  a2 = -1.28e-03 ± 2.32e-04 (95% CI) 

(3.4)  a3 = 0.2707 ± 0.0368 (95% CI) 

(3.5) a4 =  1.063 ± 1.489 (95% CI) 

The results for N2O show that as the prepared standard concentrations become 

smaller, the measured difference from expected increases until the sample is ~200 ppb 

smaller than the reference (328.71 ppb), where the maximum deviation in measurement is 

17.6 ppb. After this point, the measured deviation from expected begins to decrease. 

While it is not necessary to characterize the detector response over this full range for the 

archive measurements, the 3rd degree polynomial fit would be needed if measuring N2O 
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concentrations that have a large difference (80 ppb or greater) to reference gas. Figure 3.4 

displays the measured versus expected concentration for standards that better span the 

N2O archive concentrations (285 – 330 ppb).  

 

 

Figure 3.4. μECD N2O response for manometrically prepared standards over the archive range. Red dashed 

line is a linear fit to the standards that span the archive range. Error bars are total measurement uncertainty. 

 

The response is linear over the archive range with a slope of 0.8747 ± 0.028 (95% 

CI) and R2 value of 0.999. This results in a deviation from expected of ~0.14 ppb ppb-1 

difference from the reference when measuring samples. All N2O samples are adjusted for 

a linearity correction of the form: 

(3.6)  [N2O]X = b1 * [N2O]Y + b2 

(3.7) b1 = 1.143 ± 0.037 (95% CI) 

(3.8)  b2 = -47.24 ± 11.49 (95% CI) 
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Where [N2O]X is the corrected mole fraction and [N2O]Y is the measured mole fraction. 

While not explicitly stated, a similar non-linear response is reported in the data of Hall et 

al. (2007) with a deviation from expected of ~0.18 ppb ppb-1 difference from the 

reference when measuring N2O.  

Detector response non-linearity is also characterized for SF6. Figure 3.5 displays 

the measured deviation from expected (measured - expected) mole fraction plotted 

against expected mole fraction. The black line is a 3rd degree polynomial fit and the red 

dashed line is a linear fit to the measurements. Error bars are total measurement 

uncertainty. The maximum difference between the Poly 3 fit and the linear fit over the 

range in the prepared standards is ~ 0.10 ppt.  

 

 

Figure 3.5. SF6 measured difference from expected over the full range of manometrically prepared 

standards. Black fit curve is a 3rd degree polynomial. Red dashed line is a linear fit to the standards. Error 

bars are total measurement uncertainty. 
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The 3rd degree polynomial equation is: 

(3.9)  f(x) = c1x3 + c2x2 + c3x + c4 

(3.10)   c1 = -0.004096 ± 0.002689 (95% CI) 

(3.11)  c2 = 0.06187 ± 0.03788 (95% CI) 

(3.12)  c3 = -0.285 ± 0.1481 (95% CI) 

(3.13) c4 =  0.5052 ± 0.6396 (95% CI) 

 The SF6 calibration curve shows there is an immediate deviation from expected as 

the SF6 concentration decreases until near 6.5 ppt (~ 2.2 ppt difference from the NOAA 

standard with a measurement deviation of ~ 0.14 ppt) where the deviation begins to 

decrease slightly. At ~ 3.7 ppt (~5 ppt difference from the NOAA standard), the deviation 

begins to increase again. This type of 3rd degree polynomial behavior of the detector 

response is not reported in previous ECD linearity characterizations (Leven et al. 2010). 

The shape of the curve is likely due to the peak integration methods used in the analysis 

of the chromatograms. While the linear fit has a relatively large (~0.1 ppt) difference 

compared to the 3rd degree polynomial fit when the expected concentration is at 0.6 ppt 

and ~ 3.0 ppt, 1σ error bars of data points overlap with the linear model. This suggests 

differences between the 3rd degree polynomial correction and linear correction are near 

measurement precision. 

Figure 3.6 shows the measured concentration versus expected concentration for 

SF6 in ppt for the prepared standards. The slope of the SF6 linear fit is 0.9728 ± 0.017 

(95% CI) with R2 of 0.9995. This results in a deviation from expected of ~0.03 ppt ppt-1 

difference from the reference gas when measuring samples. All SF6 measurements are 

adjusted for a linearity correction of the form:   
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Figure 3.6. μECD SF6 response for manometrically prepared standards. Red dashed line is a linear fit to the 

standards. Error bars are total measurement uncertainty. 

   

(3.14) [SF6]X = d1*[SF6]Y + d2 

(3.15) d1 = 1.03 ± 0.018 (95% CI) 

(3.16)  d2 = -0.294 ± 0.099 (95% CI) 

Where [SF6]Y is the measured SF6 mole fraction and [SF6]X is the corrected value. 

 

3.3 Air archive mole fraction results 

The following subsections discuss the results of the mole fraction analysis from 

the air archive samples. Measurements of N2O and SF6 mole fraction from 159 samples 

from the Cape Meares archive (supplemental Table 1) were initially filtered for analysis 

using a 7 median absolute deviation (7MAD) noise filter to remove far outliers. 

Polynomial fits (1st degree for N2O and 2nd degree for SF6) were then applied to the data 
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sets. Residual values outside of 2σ for N2O and 3σ for SF6 were removed. The entire 

process removed 17 data points for N2O and 4 data points for SF6.  

Seasonality is calculated from the residuals of observed data points to a LOWESS 

regression fit with a large smoothing window (33.3% of the data). Residuals are then 

plotted against their fractional date where a second LOWESS fit is applied using a 30 day 

smoothing window. Once the seasonality is established, the dataset is deseasonalized to 

remove intra-annual variability, then plotted against the collection date. A third LOWESS 

fit is applied using a 3-year smoothing window, which is used to find the annual trend. 

The trend is calculated by applying a SPLINE fit to the de-seasonalized LOWESS to 

interpolate a concentration for every month in a year. The first derivative of the SPLINE 

fit then provides a trend at monthly resolution. The process is completed for both N2O 

and SF6 datasets.  

 

3.3.1 N2O Seasonality 

Figure 3.7 shows the seasonality observed as residuals to the secular trend for 

N2O. The black line is the LOWESS fit to the residuals. Data points represent the average 

residual binned by month with error bars representing the standard error of the binned 

data within the month. The shaded region is the 95% CI in the LOWESS fit calculated 

from 1000 bootstrapped LOWESS fits after including observed variability in the 

residuals to the secular trend.  
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Figure 3.7. N2O seasonality for Cape Meares, OR. Data points are mean monthly residuals with error bars 

equal to the standard deviation. Shaded region is 95% CI calculated from 1000 bootstrapped LOWESS 

regressions from observed variability.  

 

N2O seasonality shows peak amplitude near April of 0.34 ppb and a wide trough 

from September through November with a minimum of -0.42 ppb in late November. The 

95% CI in the bootstrapped seasonality has the smallest range in April (± 0.3 ppb) and 

the largest range in November (± 0.7 ppb). Figure 3.8 shows seasonal QQ-plots of N2O 

with Tables 3.1 and 3.2 providing statistical information binned by meteorological 

season. 
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Figure 3.8. N2O seasonal QQ-plots. 

Table 3.3. N2O seasonal statistics. 

 Winter Spring Summer Fall 

Count 31 45 33 33 

St. Dev. (ppb) 0.79 0.81 0.82 1.16 

Mean (ppb) 0.00 0.33 -0.05 -0.37 

 χ2 p-value 0.228 0.175 0.572 0.056 
 

χ2 is the chi-squared goodness of fit statistic that tests if the data comes from a normal distribution with the 

same mean and standard deviation.  



 

58 

Table 3.4. N2O seasonal Kolmogorov-Smirnov test comparisons. 

 Fall Summer Spring 

Winter 0.199 0.428 0.528 

Spring 0.003 0.126  

Summer 0.249   
 

 Results of grouping the residual data points into seasonal bins is given in table 

3.3. The standard deviation of the residuals is very similar for winter, spring, and summer 

at ~0.8 ppb. Fall however has a larger variation of 1.16 ppb. This is reflected in the larger 

95% CI in the fall months in figure 3.7. The mean residual value in spring and fall is 0.33 

ppb and -0.37 ppb, respectively. This matches well with the N2O seasonality calculated 

from LOWESS regression.  

 The p-values in table 3.4 are Kolmogorov-Smirnov test statistics comparing the 

seasonal test statistics. A p-value of 0.05 suggests the two samples come from different 

distributions with 95% significance level. The only seasonal comparison that meets this 

threshold of significance is spring (peak) and fall (trough), with a p-value of 0.003. So, 

though there is considerable uncertainty in N2O seasonality, the spring maximum is 

statistically different from the fall minimum at high levels of confidence.  

 Previously reported northern hemisphere seasonality in N2O mole fraction has 

similar amplitude and phase compared to Cape Meares (figure 3.7) at comparable 

observational sites. N2O seasonality reported at Mace Head, Ireland has a peak near April 

and a trough near August/September (Nevison et al. 2004; Jiang et al. 2007; Nevison et 

al. 2007). Trinidad Head, CA seasonality has a maximum near late May, but no local 

minimum near any single month (Nevison et al. 2007). The mean magnitude reported for 
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the northern hemisphere is ± 0.4 ppb (Liao et al. 2004), comparable with the Cape 

Meares record. 

 

3.3.2 Annual N2O mole fraction  

 
 

Figure 3.9. Deseasonalized measurements of N2O mole fraction versus date of collection. Error bars are 

total measurement uncertainty. Solid black line is the LOWESS fit to the data using a smoothing window 

of 3 years. Shaded region is 95% confidence interval in the LOWESS fit calculated from bootstrapping the 

observed residuals 1000 times. 

 

 Figure 3.9 shows the deseasonalized N2O mole fraction plotted against the 

collection date. In 1980, the N2O mole fraction is 301.5 ± 0.6 ppb. The concentration 

increases roughly linearly to 313.5 ± 0.6 ppb in 1996. These observations match well 

with previously published measurements of N2O from Cape Meares during the same 

period (Prinn et al. 1990; Prinn et al. 2000; Khalil et al. 2002).   
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Measurements by the Advanced Global Atmospheric Gases Experiment 

(AGAGE) on the SIO-98 N2O scale and NOAA/ESRL on the NOAA-06 N2O scale are 

reported from comparable sample locations. Trinidad Head, CA (41° N, 121° W), Mace 

Head, Ireland (53° N, 10° W), and Niwot Ridge, CO (40° N, 106° W) all measure ~313 

ppb in 1996. The difference between the SIO-98 and NOAA-06 N2O scales is negligible 

at the concentrations measured here (Hall et al. 2007). These measurements are within 

the range of Cape Meares measurements reported here and suggest that the N2O in the 

archived samples has stored well.  

 

3.3.3 N2O Trend 

 The mean secular trend between 1978 and 1996 for N2O is 0.78 ± 0.03 ppb yr-1 

(95% CI), calculated by applying a linear fit to deseasonalized N2O mole fraction data. 

The annual trend for N2O at Cape Meares, Oregon is shown in figure 3.10. The plot is 

created by finding the trend in time for 1000 bootstrapped datasets. Data points represent 

the mean year trend with error bars equal to one standard deviation of the trend over the 

year.  

An indistinguishable secular trend of 0.74 ± 0.02 ppb yr-1 is reported between 

1978 and 1998 for Cape Meares (Prinn et al. 2000). The global trend of N2O between 

1985 and 1996 reported by Khalil et al. (2002) is 0.69 ± 0.03 ppb yr-1, also compatible 

with the trend determined here for Cape Meares. The 95% confidence in the annual trend 

in the early 1980s is ± 0.15 ppb yr-1, where a large concentration of data points is located 

(~50% of samples are between 1980 and 1985). After 1985, the 95% confidence in the 

annual trend becomes roughly ± 0.5 ppb yr-1. 
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Figure 3.10. N2O trend in time. Mean annual trend is shown with error bars representing 1σ of the trend 

over the year. Shaded areas represent 95% confidence interval calculated from the standard deviation of 

1000 bootstrapped residual uncertainties to the observed data. 

 

3.3.4 SF6 Seasonality 

Figure 3.11 shows the seasonality in SF6 calculated from the Cape Meares data. 

The black line is the LOWESS fit to residuals from the secular trend. Data points 

represent the average residual binned by month with error bars representing the standard 

error of the binned data within the month. The shaded region is the 95% CI in the 

LOWESS fit calculated from 1000 bootstrapped LOWESS fits after including observed 

variability in the residuals to the secular trend.  

SF6 seasonality has a maximum between December and February of 0.04 ppt and 

a minimum near July of -0.03 ppt. The 95% CI of the LOWESS regression is smallest in 
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April (± 0.03 ppt) and largest in November (± 0.06 ppt). Figure 3.12 shows seasonal QQ-

plots of SF6 with tables 3.3 and 3.4 providing statistical information about each season. 

 

Figure 3.11. SF6 seasonality for Cape Meares, OR. Data points are mean monthly residuals with error bars 

equal to the standard deviation. Shaded region is 95% CI of the LOWESS calculated from 1000 

bootstrapped LOWESS fits after including measurement uncertainty. 

 

Results of grouping the residual data points into seasonal bins is given in table 

3.5. The standard deviation is largest for the winter and fall seasons and smallest during 

the summer season. This is reflected in the bootstrapped 95% CI in figure 20. The 

maximum mean residual occurs during the winter season at 0.05 ppt with the minimum 

during the summer at -0.04 ppt. This matches well with the LOWESS seasonality in 

figure 3.11.  
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Figure 3.12. SF6 seasonal QQ-plots. 

Table 3.5. SF6 seasonal statistics. 

 

 

 

 

Here, χ2 is the chi-squared goodness of fit statistic that tests if the data comes from a normal distribution 

with the same mean and standard deviation.  

 

 Winter Spring Summer Fall 

Count 33 49 32 40 

Stdev (ppt) 0.12 0.08 0.05 0.12 

Mean (ppt) 0.05 -0.01 -0.04 -0.01 

χ2 p-value 0.062 0.405 0.059 0.152 
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Table 3.6. SF6 seasonal Kolmogorov-Smirnov test comparisons. 

 

 

 

The p-values in table 3.6 are Kolmogorov-Smirnov test statistics comparing 

seasonal test statistics. A p-value of 0.05 suggests the two samples come from different 

distributions at the 95% significance level. From table 3.6, there is high statistical 

confidence in the difference between summer and winter SF6 residual values. The 

summer and fall comparison also suggests there is a statistically significant difference 

between the seasons, though the means of each season are similar (-0.04 ppt in summer 

and -0.01 ppt in fall).  

Some northern hemisphere observations of SF6 seasonality have been reported in 

the literature. Barrow, AK has a minimum in September and October with a broad 

maximum from December to June (Patra et al. 2009). Alert, Canada shows a strong 

minimum in October, though a maximum is not clearly defined (Wilson et al. 2014). 

Continental sites such as Niwot Ridge show large influences from interannual variability 

(IAV) and have little distinguishable seasonality (Patra et al. 2009).  

The SF6 seasonality at Cape Grim has been reported to have amplitude of ± 0.01 

ppt with a maximum in September and October and a minimum in near February 

(Nevison et al. 2007; Wilson et al. 2014). The seasonality phase of Cape Grim is nearly 

anti-phase of Cape Meares reported here, though the scale is a factor of 4 smaller at Cape 

Grim. Similar to N2O, seasonal amplitude is expected to be larger in the northern 

 Fall Summer Spring 

Winter 0.149 0.004 0.114 

Spring 0.573 0.099  

Summer 0.036   
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hemisphere than in the southern hemisphere due to transport (Jiang et al. 2007; Nevison 

et al. 2007).  

 

3.3.5 Annual SF6 mole fraction 

 

Figure 3.13. Deseasonalized measurements of SF6 mole fraction versus date of collection. Error bars are 

total uncertainty. Solid black line is the LOWESS fit to the data using a smoothing window of 3 years. 

Shaded region is 95% confidence interval in the LOWESS fit calculated from bootstrapping observed 

residuals 1000 times. 

 

Figure 3.13 shows SF6 mole fraction plotted against the collection date of the 

sample for 155 samples. The SF6 concentration is measured to be 0.85 ± 0.03 ppt (1σ) in 

1980 and increases to a concentration of 3.83 ± 0.03 ppt (1σ) in 1996. Cape Meares does 

not have previously reported measurements of SF6 to compare with directly. 

Measurements of SF6 from Trinidad Head, CA are reported to be ~0.85 ppt in 

1980 and ~3.73 ppt in 1996 on the SIO-2005 SF6 scale (Rigby et al. 2010). A conversion 
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factor of 0.9991 is used to convert from the SIO-2005 SF6 scale to the NOAA-06 SF6 

scale (Hall et al. 2014). In 1996, values of 3.87 ppt, 3.87 ppt, and 3.78 ppt are reported 

for Alert, Canada (82° N, 62° W), Barrow, AK (71° N, 157° W), and Niwot Ridge, CO 

respectively on the NOAA-06 SF6 scale (Hall et al. 2011). The scale difference shifts 

values by +0.01 ppt to -0.05 ppt when converting from NOAA-06 to NOAA-14. Cape 

Meares SF6 measured values match well with these comparable sample locations. 

Southern hemisphere measurements of SF6 from archived atmospheric samples 

from Cape Grim, Tasmania (41° S, 145° E) and Neumayer, Antarctica (70° S, 8° W) are 

~0.6 – 0.7 ppt in 1980 and ~3.4 – 3.5 ppt in 1996 on SIO-2005 and University of 

Heidelberg SF6 scales (Levin et al. 2010, Rigby et al. 2010). As with the SIO-2005 SF6 

scale, the NOAA-06 and University of Heidelberg scale differences are small. To convert 

to the NOAA-06 SF6 scale, values measured on the University of Heidelberg SF6 scale 

are divided by a conversion factor of 0.9954 (Hall et al. 2014). Including a scale 

correction, Cape Meares SF6 measurements are higher than Cape Grim and Neumayer 

during this period by 0.2 - 0.4 ppt. Much or all of this difference can be explained by an 

interhemispheric north-south difference of 0.3 – 0.4 ppt (Levin et al. 2010).  

 

3.3.6 SF6 Trend 

The secular trend between 1978 and 1996 for SF6 is 0.17 ± 0.01 ppt yr-1 (95% CI), 

calculated by applying a linear fit to the deseasonalized data. The annual trend for SF6 at 

Cape Meares, Oregon is shown in figure 3.14. Data points represent the mean annual 

trend with error bars equal to one standard deviation of the trend over the year. 
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Figure 3.14. SF6 annual trend. Mean yearly trend is shown with error bars representing 1σ of the trend over 

the year. Shaded areas represent 95% CI calculated from the standard deviation of 1000 bootstrapped 

residual uncertainties to the observed data. 

 
The SF6 annual trend increases from 0.08 ppt yr-1 in 1980 to 0.26 ppt yr-1 in 1994. 

The average rate of change in the growth rate (second derivative of mole fraction vs. 

time) over this period is 0.014 ppt yr-2. The increase in growth rate over this period is 

statistically significant at high levels of confidence (95%). After 1994, we measure a 

decrease in the growth rate, though this decline is not statistically significant at high 

levels of confidence over this short time interval. 

Comparable trends in SF6 measured at other locations are available for the mid-

1990s. The average global growth rate of SF6 in 1994 was reported at 0.23 ppt yr-1 in the 

northern hemisphere (Maiss et al. 1996). Alert, Canada and Izaña, Tenerife are observed 

to have maximum trends of 0.26 ppt yr-1 in mid-1994 and at the beginning of 1995 (Levin 

et al. 2010), respectively, compatible with results presented here. The localized maximum 
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in growth rate in 1994 observed here is present in some southern hemisphere 

observations of SF6 at a similar time as well; Neumayer, Antarctica shows a maximum 

trend in 1995-1996 of 0.25 ppt yr-1 (Levin et al. 2010). This finding is consistent with a 

peak in SF6 emissions as reported by the European Database for Global Atmospheric 

Research (EDGAR, v4.2).   

Another feature observed in the SF6 trend from Cape Meares is a local maximum 

in the growth rate near 1987. Notably however, not all data sets agree. The growth rate 

reported from Neumayer, Antarctica has this feature during a similar period (Levin et al. 

2010), but the trend reported at Cape Grim, Tasmania does not show this local maximum 

(Rigby et al. 2010). Due to the large uncertainty from the few archived samples available 

during that time period, this local maximum is not statistically distinguishable from 

surrounding years at high levels of confidence in the Cape Meares analysis and this result 

is merely suggestive. Additional evidence is needed to corroborate this finding.  
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Chapter 4 

Results of Isotopic Analysis 

This chapter discusses the results from method development using IRMS and 

from the isotopic analysis of the OHSU-PSU air archive. Measurement precision and 

reproducibility are presented in section 4.1 followed by an analysis of the theoretical 

maximum precision of the system in 4.2. The measurement dependence on sample size is 

presented in 4.3. Section 4.4 discusses the methods used to determine the scrambling 

coefficient and the results. Precision in the isotopic composition is presented and 

discussed in section 4.5. In section 4.6, results of the isotopic analysis of the OHSU-PSU 

air archive are presented.  
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4.1 IRMS precision and reproducibility 

 Measurements made on the IRMS are completed in duplicates or triplicates. 

Precision of measurement is determined by compiling residuals of these replicate 

measurements. Table 4.1 gives statistical information about the measurement precision of 

δ45, δ46, and δ31 of the working standard CC2854 (Breathing Air, Airgas, Radnor, PA) 

while histograms of measurement residuals are shown in figures 4.1 – 4.3. The results 

show that the residual distributions are normal with typical 1σ measurement precision of 

0.05‰, 0.10‰, and 0.28‰ for δ45, δ46, and δ31, respectively. The chi-squared statistic 

suggests the distributions are not statistically different from a normal distribution at high 

levels of confidence.   

Table 4.1. IRMS measurement precision of the working standard CC2854. 

Category  δ45 δ46 δ31 

Count 178 178 186 

Mean (‰) 0.00 0.00 0.00 

Stdev (‰) 0.05 0.10 0.28 

χ2 p-value 0.1 0.2 0.6 

 
χ2 is the chi-squared goodness of fit statistic that tests if the data comes from a normal distribution with the 

same mean and standard deviation. 
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Figure 4.1. δ45 precision from 178 measurements of a whole air sample, 1σ = 0.05‰.  

 

Figure 4.2. δ46 precision from 178 measurements of a whole air sample, 1σ = 0.10‰. 
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Figure 4.3. δ31 precision from 186 measurements of a whole air sample, 1σ = 0.28‰. 
 
 
 Because the OHSU-PSU archive measurements are made over the course of 

several weeks, it is important to verify the reproducibility of measurements during the 

measurement process. The long-term precision, or measurement reproducibility, is 

calculated by evaluating the consistency of measurements from a secondary standard 

(CB11406-A). This standard is measured at least once every two weeks. Individual 

measurements of δ45, δ46, and δ31 are shown in figures 4.4 – 4.6 along with the mean 

(black line) and standard deviation (red dashed line) of the measured values.  
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Figure 4.4. Reproducibility of δ45 as determined using 9 measurements of reference CB11406 with mean = 

6.99‰ and 1σ = 0.04‰ (red-dashed lines). 

 

 

Figure 4.5. Reproducibility of δ46 as determined using 9 measurements of reference CB11406 with mean = 

43.80‰ and 1σ = 0.17‰ (red-dashed lines). 
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Figure 4.6. Reproducibility δ31 as determined using 11 measurements of reference CB11406 with mean = 

13.56‰ and 1σ = 0.29‰ (red-dashed lines). 

 
 Results of the long-term 1σ reproducibility (δ45 = 0.04‰, δ46 = 0.17‰, and δ31 = 

0.29‰) show similar standard deviations compared to individual measurement precision. 

Based on this analysis, we conclude that long-term measurement reproducibility is 

comparable to short term precision.   

 

4.2 Shot-noise limit 

 The shot-noise limit is the theoretical best precision achievable for a measurement 

on a mass spectrometer. The value is determined through the statistics of ion collection 

and represents the precision assuming the ion beam is the only noise source. From Merritt 

and Hayes (1996), assuming the reference isotopic ratio is about the same as the sample 

ratio, the shot-noise limit can be written as: 

(4.1)  

where R = isotope ratio, E = IRMS efficiency, and M = number of molecules introduced.  
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 The product EM represents the number of ions collected, which is equal to the 

integrated peak ion current divided by the charge of an electron (qe = 1.6*10-19 C). The 

area of a peak, A, has units in volt seconds (Vs). If we divide the area by the feedback 

resistor of the ion channel (Rf = 3*108 Ω), this gives us the integrated peak ion current. 

We can then rewrite equation 4.1 as: 

 

(4.2)   

 

 The shot-noise limit depends on the area of the sample peak, or the number of 

molecular ions detected by the system. To evaluate the sensitivity of the measurement 

precision to the number of molecules introduced, the working standard CC2854 was 

concentrated in T1 for 4, 6, 8, and 10 minute intervals at a flow rate of 40 ml min-1, 

concentrating 2.8 – 7.0 nmol N2O. Measurements were repeated five times each. Table 

4.2 contains the measured precision and theoretical shot-noise values calculated using eq. 

4.2 for each sample size. Figures 4.7 – 4.9 show the measured precision for different 

sample volumes of the working standard (CC2854) with the shot-noise limit represented 

by the red dashed lines. 

 

Table 4.2. Working standard CC2854 measurement precision for N2O sample size.  

T1 Time (min) N2O (nmol) δ45 σ δ45 σsnl δ46 σ δ46 σsnl δ31 σ δ31 σsnl 

4 2.784 0.115 0.045 0.260 0.086 0.542 0.143 
6 4.176 0.066 0.036 0.123 0.069 0.540 0.115 
8 5.568 0.053 0.031 0.101 0.059 0.275 0.098 

10 6.960 0.063 0.028 0.155 0.053 0.220 0.088 
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Figure 4.7. δ45 precision at 4 sample quantities (blue) and shot-noise limit (red).  

 

Figure 4.8. δ46 precision at 4 sample quantities (green) and shot-noise limit (red). 
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Figure 4.9. δ31 precision at 4 sample quantities (orange) and shot-noise limit (red). 

 The measurement uncertainty in δ45 and δ46 is similar for sample sizes greater than 

4.2 nmoles of N2O, with the achieved precision ~ 2x the theoretical shot-noise limit. In 

δ31, a significant gain in precision is seen when increasing the sample size from 4.2 

nmoles N2O to 5.6 nmoles N2O, with the achieved precision ~ 3x the theoretical shot-

noise limit at 5.6 nmoles. For this reason and to minimize sample use during analysis, a 

N2O sample size of ~5.6 nmoles is chosen as the sample size for all OHSU-PSU archive 

sample measurements.  

 In this work, we adapt sample processing volumes to account for sample 

concentration differences in order to optimize precision. The concentration of the 

working reference (CC2854) is ~390 ppb N2O while the concentration of samples in the 

air archive range between 300 and 315 ppb N2O. Therefore, to trap the desired nmoles of 

N2O in T1 using a constant flow rate of 40 ml min-1, the working standard is trapped for 8 

minutes while archive samples are trapped for 10 minutes.  
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4.3 IRMS sample size linearity 

 Sample size linearity issues have been reported when measuring the isotopic 

composition of N2O (Rockmann et al. 2003). To evaluate the relationship between the 

measured isotopic composition of a sample and the sample size volume, different 

concentrations of the working standard (CC2854) spanning 2.78 – 6.98 nmol N2O were 

analyzed. This corresponds to samples with N2O mole fractions spanning 156 – 390 ppb 

N2O with a flow rate of 40 ml min-1. Each quantity was evaluated 5 times for statistical 

purposes. Results from this analysis are shown in figures 4.10 – 4.12.  

 

Figure 4.10. δ45(N2O) sample size linearity.   
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Figure 4.11. δ46(N2O) sample size linearity. 

 

Figure 4.12. δ31(N2O) sample size linearity. 

 

 Results of the sample size linearity show that there is little deviation over the 

range evaluated in δ45(N2O) and δ46(N2O) within the level of measurement precision. The 

95% confidence interval in the slope for both δ45(N2O) and δ46(N2O) overlap significantly 
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with 0.00‰ nmol-1. Because sample N2O mole fraction ranges from 300 – 315 ppb, 

concentrating samples for 10 minutes at a flow rate of 40 ml min-1 results in trapping 5.35 

– 5.62 nmol N2O. Applying the slope corrections for δ45(N2O) and δ46(N2O) shifts values 

a maximum of 0.007‰. As a result, no sample linearity correction is applied to 

measurements of δ45(N2O) and δ46(N2O). However, because this analysis only includes 3 

datapoints, more measurements of different sample sizes may be needed to determine the 

effect of sample size linearity at higher levels of confidence.  

 The sample size linearity while measuring δ31(N2O) displays a positive linear 

relationship with a slope and y-intercept of 0.193 ± 0.063 and 7.39 ± 0.32, respectively. 

Archive samples have N2O concentrations ranging 300 – 315 ppb. Using a 10 minute T1 

trap time with the MFC regulating the flow rate of samples at 40 ml min-1, the archive 

sample size ranges 5.35 – 5.62 nmol N2O. From the slope and y-intercept in this analysis, 

δ31(N2O) measures ~0.1‰ higher in samples with 5.711 nmol N2O compared to samples 

with 5.265 nmol N2O. Because this shift is about 1/3 the measurement precision for 

δ31(N2O), a linear correction is not applied to the archive measurements. If future isotopic 

measurements have a greater range in N2O concentration, a linear correction will be 

necessary unless adjusting the T1 concentration time to trap a consistent N2O sample size.  

 

4.4 Determination of the scrambling coefficient 

 Correctly defining the scrambling coefficient, s (eq. 2.11), is necessary to solve 

for the intramolecular isotopic composition. This is typically accomplished through 

measurements of the working standard after doping with pure 15NNO and/or N15NO 

(purity > 99%) (Rockmann et al. 2003; Park et al. 2004; Westley et al. 2007). If there is 
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no scrambling during ionization, then doping the working standard with pure 15NNO 

should result in a slope of 0 when plotting the measured 31R versus 45R. If doping with 

N15NO and no scrambling is expected, then the slope should be equal to 1 when plotting 

measured 31R versus 45R. Likewise, if doping with 15NNO and no scrabbling were to 

occur, then the slope of 31R versus 45R will be 0. 

 During the summer of 2018, work completed by Rebecca Xie and Andrew Rice at 

Portland State University through the Research Experience for Undergraduates (REU) 

program investigated the scrambling coefficient within the Delta V IRMS while running 

in dual inlet mode. Using > 98% pure 15NNO (Cambridge Isotope Labs, Tewksbury, 

MA), 3 calibration gases were prepared by initially adding a small amount of 15NNO to 

evacuated canisters (130 mL) which were then each filled with pure N2O (reference gas). 

The manometric dilution process was completed in a vacuum line system with 10.000 ± 

0.001 torr and 1000.0 ± 0.1 torr pressure gauges (MKS Instruments, Andover, MA). 

Table 4.3 provides pressures of the gases added to the canisters, manometrically 

determined (expected) 45R, IRMS (measured) 45R and 31R with measurement uncertainty. 

Uncertainty (1σ) in measurement (~2e-07) and introduced from the manometric process 

(~2e-06) is small compared to the magnitude of the R values. 

The linear fit from plotting measured 45R vs. expected 45R (fig. 4.13) can be used 

to evaluate the accuracy and precision of the manometric process when preparing the 

standards. Results show the slope (1.014 ± 0.025) and y-intercept (-0.0001 ± 0.0003) 

have 95% confidence intervals that overlap well with 1.0 and 0.00, respectively. This 

suggests the manometric process is accurate and precise. 
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Table 4.3. Manometrically prepared standards for determination of scrambling coefficient (Xie and Rice, 

2018). 

Canister 
ID 

a. PCambridge 
(Torr) 

b. PFinal 
(Torr) 

c. 45R 
Expected 

45R 
Measured  

45R 1σ 
Measured  

31R 
Measured 

31R 1σ 
Measured  

spike 1 9.559 980.2 0.0175059 0.0176335 2.91E-07 0.0048927 2.70E-07 

spike 2 4.509 774.9 0.0135727 0.0135926 2.13E-07 0.0045603 4.19E-07 

spike 3 1.811 669.5 0.0104589 0.0104290 1.67E-07 0.0042972 2.61E-07 

N2ORef - - 0.0077539 0.0077539 1.61E-07 0.0040729 2.51E-07 

 
a. Pressure added to 130 ml volume from 15NNO. 

b. Final pressure of 130 ml volume after adding N2ORef. 

c. Expected 45R calculated from PCambridge/PFinal + 45RRef. 

   

 

Figure 4.13. Measured 45R vs. expected 45R. Error bars representing 1σ are too small to appear in the plot. 

Values in parenthesis are 95% CI around the slope and y-intercept.   
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Figure 4.14. Measured 31R vs. measured 45R. Error bars representing 1σ are too small to appear in the plot. 

Values in parenthesis are 95% CI around the slope and y-intercept.   

 
From figure 4.14, the scrambling coefficient of the IRMS can be identified. The 

slope from the plot of 31R measured vs. 45R measured has a value of 0.08296 (± 0.0011). 

This represents a scrambling coefficient of 8.3% within the IRMS.  

The scrambling coefficient was also calculated independently through taking 

advantage of the fact that two of the EMPA standards calibrated on the TITech N2O 

isotopic scale have SP (δ15Nα - δ15Nβ) ~0‰ (see Table 1.3). This derivation begins with 

the definition of the elemental isotope ratio R when measuring the NO+ fragment:  

(4.3)  

(4.4)  

The values in equations 4.3 and 4.4 are treated as exact. We also define the scrambled 

isotope ratio using the simplified version of eq. 2.11: 

(4.5)  
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For EMPA 90575 and EMPA 90454, the scrambled ratio (31RS) is indistinguishable from 

the non-scrambled ratio (31R). We now define the ratio of EMPA and our reference gas:  

(4.6)  

(4.7)  

From here, we now define the measured peak area ratio of EMPA to our reference gas: 

(4.8)  

Where 31/30A represents the measured peak area ratio. Solving equation 4.8 for Rref gives: 

(4.9)  

Equation 4.9 is true for any EMPA standard measured, therefore, we can set 

31RS
ref calculated from EMPA 90454 or EMPA 90575 (where 31RS = 31R) equal to 31RS

ref 

calculated from EMPA CA08214 and EMPA CB08976. 

(4.10)  

 

Where the ratio on the right-hand side of equation 4.10 is measured and 31R90454 is already 

known. Combining equation 4.10 with equation 4.5, we can now solve for the scrambling 

coefficient s. 

(4.11)  
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Results of this method for calculating s are given in table 4.4.  

 

Table 4.4. Scrambling coefficient calculations from 2 EMPA standards. 

EMPA # CA08214 CB08976 

90575 0.144 0.124 

90454 0.094 0.070 
 

 

The mean and standard deviation of the calculated scrambling coefficients, s, is 

0.108 and 0.033, respectively. Uncertainty in the mean value overlaps with the commonly 

reported scrambling coefficient value of 0.085 (Kaiser et al. 2003; Westley et al. 2007; 

Potter et al. 2013) as well as the value reported from the method above of 0.083.  

From the two independent methods used to find the scrambling coefficient, 

doping the reference gas with labeled 15NNO produces a more precise and reliable value 

due to the large range of SP produced in synthetic mixtures. The second method is 

theoretically correct; however, because the EMPA standard 31R values are all near the 

same value, the scrambling coefficient is calculated around a point rather than from a 

slope that spans a large range (as the first method does).  

 

4.5 Isotopic composition precision 

 Solving for δ15N, δ18O, δ15Nα, and δ15Nβ is accomplished numerically 

using equations 2.8, 2.9, 2.11 (ignoring the last term), and 2.12 (Appendix B). The 

uncertainty in each value is found through bootstrapping 1000 values generated from a 

normal distribution centered at the mean measured values (δ45, δ46, and δ31) with standard 

deviations equal the total measurement uncertainty for the sample (equation 2.15). The 
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typical standard (CC2854) and sample (OHSU-PSU air archive) uncertainty for δ15N, 

δ18O, δ15Nα, and δ15Nβ using a scrambling coefficient s = 0.083 are given in table 4.5 as 

well as previously reported isotopic composition precisions by other laboratories.  

 

Table 4.5. N2O isotopic composition 1σ uncertainty using continuous flow IRMS. 

Study δ15N δ18O δ15Nα δ15Nβ 

Potter et al. 2013 0.05 0.10 0.11 0.14 
Rockmann and Levin 2005 0.06 0.09 0.30 0.30 
Yoshida and Toyoda, 2000 0.10 0.10 0.50 0.50 

Park et al. 2012 0.20 0.20 0.80 0.80 
This work (Standard) 0.05 0.10 0.37 0.39 
This work (Sample) 0.07 0.15 0.57 0.60 

 
  

 The isotopic composition precision achieved in this work is comparable with that 

achieved by other groups. IRMS measurement precision is impacted by external (e.g., 

pre-concentration process, flow rates, gas purity, room temperature) and internal (ion 

source, voltage, vacuum pressure, internal temperature) factors. Maintaining a rigorous 

attention to detail in the method is important to achieve reproducible results. 

 

4.6 Cape Meares isotopic results 

 The following subsections present and discuss the results of the OHSU-PSU Air 

Archive N2O bulk and intramolecular isotopic analysis. Following calculations of δ15N, 

δ18O, δ15Nα, and δ15Nβ, 159 sample measurements (Table A.1) were initially filtered for 

analysis using a 6 median absolute deviation (6MAD) noise filter to remove far outliers. 

Polynomial fits (1st degree) were then applied to the data sets. Residual values outside of 

2σ to the polynomial fits were removed from further analysis. The entire process 
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removed 5 samples from δ15N, 15 samples from δ18O, 10 samples from δ15Nα, 4 samples 

from δ15Nβ, and 6 samples from SP. 

 Seasonality is calculated from the residuals of observed data points to a LOWESS 

regression with a large smoothing window (33.3% of the data). Residuals are then plotted 

against their fractional date where a second LOWESS regression is applied using a 30-

day smoothing window. Once the seasonality is established, the dataset is deseasonalized 

to remove seasonal variability, then plotted against the collection date. A LOWESS 

regression is applied using a 3-year smoothing window, which is used to find the annual 

trend. The trend is calculated by applying a SPLINE fit to the LOWESS regression to 

interpolate the isotopic composition for every month in the time series. The first 

derivative of the SPLINE fit then provides a month to month trend. 

 

4.6.1 Cape Meares N2O isotopic seasonality 

 N2O isotopic seasonality is shown in figure 4.13. The black line is the LOWESS 

fit to the residuals. Data points represent the average residual binned by month with error 

bars representing the standard error of the binned data within the month. The shaded 

region is the 95% CI in the LOWESS fit calculated from 1000 bootstrapped LOWESS 

fits after including observed variability of the residuals to the secular trend. 
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Figure 4.15. N2O isotopic seasonality for Cape Meares. Panels show δ15N (a), δ18O (b), δ15Nα (c), δ15Nβ (d), 

SP (e), and N2O mole fraction (f). Data points represent the month mean residual with error bars equal to 

the standard error for the month. Shaded regions are 95% CI around the LOWESS fits.  

    

No distinguishable seasonality is found in δ15N or δ18O (fig. 4.15 (a) and (b)). The 

95% CI around the LOWESS fit for δ15N and δ18O is ± 0.05‰ and ± 0.1‰, respectively. 
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These are slightly smaller than the average uncertainty in sample δ15N and δ18O. A 

possible explanation for why no seasonality is present in δ15N and δ18O is that the  

magnitude of seasonal δ15N and δ18O at Cape Meares during the time the archive samples 

were collected is smaller than our current measurement precision. This result is 

unexpected due to the observed seasonality in N2O mole fraction (fig. 4.15 (f)).  

The seasonality of δ15Nα and δ15Nβ (fig. 4.15 (c) and (d)) show statistically 

significant amplitudes with nearly opposite phases. δ15Nα has a maximum amplitude of 

0.2 ± 0.2‰ (1σ) near April and a minimum amplitude of -0.3 ± 0.3‰ (1σ) near 

November. δ15Nβ has a maximum amplitude of 0.2 ± 0.2‰ (1σ) near November and a 

minimum amplitude of -0.2 ± 0.2‰ (1σ) near April. The resulting SP also shows a 

statistically significant seasonality, with a maximum of 0.3 ± 0.2‰ (1σ) near April and a 

minimum of -0.4 ± 0.2‰ (1σ) near November.  

Results of grouping residual data into meteorological seasonal bins is given in 

table 4.6, providing seasonal statistics. The seasonal means for δ15N and δ18O are 

~0.00‰, again indicating that there is no significant seasonality present in the archive 

measurements for these values. Seasonal mean values and phasing for δ15Nα, δ15Nβ, and 

SP are similar to the LOWESS minimum and maximum values discussed earlier.   
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Table 4.6. Cape Meares isotopic N2O seasonal statistics.  

 Statistic 
Winter 
(D, J, F) 

Spring 
(M, A, M) 

Summer 
(J, J, A) 

Fall 
(S, O, N) 

δ15
N

 Count 35 48 35 36 
Mean (‰) 0.01 0.00 0.00 -0.02 

1σ (‰) 0.08 0.09 0.06 0.10 

δ18
O

 Count 33 45 34 32 
Mean (‰) -0.01 0.00 0.00 0.01 

1σ (‰) 0.10 0.10 0.12 0.13 

δ15
N

α
 Count 32 48 32 37 

Mean (‰) -0.07 0.20 0.00 -0.18 
1σ (‰) 0.44 0.48 0.36 0.45 

δ15
N

β  Count 35 49 35 36 
Mean (‰) 0.01 -0.16 0.05 0.14 

1σ (‰) 0.50 0.58 0.43 0.46 

S
P

 Count 34 48 33 38 
Mean (‰) -0.04 0.32 -0.10 -0.25 

1σ (‰) 0.94 1.01 0.79 1.00 
 

 

The p-values in table 4.7 are Kolmogorov-Smirnov test statistics comparing 

paired seasonal statistics. The results for δ15N and δ18O indicate there is no statistical 

difference between seasons. For δ15Nα, δ15Nβ, and SP, there is high confidence that spring 

is statistically different from the other three seasons, meaning the spring maximum for 

δ15Nα and SP is statistically robust as well as the spring minimum in δ15Nβ. 
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Table 4.7. Isotopic N2O Kolmogorov-Smirnov p-value test statistics. 

  Fall Summer  Spring 

δ15
N

 Winter 0.39 0.28 0.88 
Spring 0.84 0.40  

Summer 0.20   
     
  Fall Summer  Spring 

δ18
O

 Winter 0.54 0.97 0.99 
Spring 0.48 0.84  

Summer 0.85   
     
  Fall Summer  Spring 

δ15
N

α
 Winter 0.24 0.44 < 0.001 

Spring < 0.001 0.004  
Summer 0.02   

     
  Fall Summer  Spring 

δ15
N

β  Winter 0.32 0.64 0.09 
Spring 0.007 0.009  

Summer 0.33   
     
  Fall Summer  Spring 

S
P

 Winter 0.42 0.87 0.02 
Spring 0.01 0.004  

Summer 0.28   
 

 

N2O isotopic seasonality has not previously been reported in the northern 

hemisphere. Archived air samples from Cape Grim, Tasmania (41° S, 145° E) dating 

between 1978 and 2005 are reported to display seasonality in δ15N, δ18O, and δ15Nα with 

amplitudes of 0.04‰, 0.07‰, and 0.4‰, respectively (Park et al. 2012). The phase of the 

seasonal signal is similar for all three reported delta values with maximums observed 

near June (southern hemisphere winter) and minimums observed near December 

(southern hemisphere summer). These isotopic seasonal phases are nearly opposite that of 

the seasonal N2O mole fraction, which has a maximum near December and a minimum 

near July. For the southern hemisphere, the conclusions from that work are that the 
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maximum influence of STE near May brings in N2O depleted, isotopically enriched air 

from the stratosphere to the Cape Grim background while in October, the maximum in 

ocean ventilation produces N2O enriched, isotopically depleted air.  

Comparing N2O isotopic seasonality for Cape Meares with observations from 

Cape Grim, we can conclude there are different influential processes occurring at each 

location. At Cape Meares during the spring, the processes that contribute air enriched in 

N2O mole fraction also contribute enriched δ15Nα and depleted δ15Nβ. During the fall, the 

processes that contribute air depleted in N2O mole fraction also contribute depleted δ15Nα 

and enriched δ15Nβ. The phases of δ15Nα and δ15Nβ destructively interfere with one 

another at Cape Meares, resulting in no seasonal behavior in δ15N bulk.  

The maximum influence of STE at Cape Meares is expected to occur during Fall, 

bringing in air that is enriched in isotopic composition and depleted in N2O mole fraction 

(Jiang et al. 2007, Park et al. 2012). This driver of seasonality is sufficient to explain the 

observations of N2O mole fraction, δ15Nα, and SP, but does not explain the behavior of 

δ15N bulk, δ18O, or δ15Nβ. If STE was the only seasonal forcing process, then these 

isotopic compositions should also show observable seasonality matching the influence of 

STE.  

Coastal upwelling along the Pacific Northwest coastline has a strong seasonality 

and has been suggested as a possible driver of N2O seasonality (Lueker et al. 2003). 

Measurements of coastal upwelling along the Oregon coast by NOAA (PFEL) show that 

peak magnitude occur during July and a minimum during January. Coastal upwelling is 

expected to bring in isotopically depleted, N2O enriched air (Nevison et al. 2005, Park et 
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al. 2012). However, N2O concentrations are decreasing in the summer months at Cape 

Meares, reaching a minimum in fall, inconsistent with an upwelling-driven effect.  

Comparing the expected influence of STE and ocean upwelling at Cape Meares 

suggests that the dominant driving influence of N2O at Cape Meares is STE. However, 

STE alone is not enough to explain the observed seasonality in δ15N bulk, δ18O, or δ15Nβ. 

Two conclusions that can be made from these observations are:  

1) Coastal upwelling must be less influential on the seasonality compared to STE at 

Cape Meares because the concentration of N2O is decreasing during the summer 

into the fall months. 

2) At least one other seasonal forcing process or source must be present at Cape 

Meares to explain the lack of seasonality in δ15N bulk and δ18O while maintaining 

a robust observed seasonality in δ15Nα, δ15Nβ, and SP.  

Further investigations of specific seasonal forcing processes at Cape Meares would be 

helpful to quantify the relative importance of different seasonal sources and transport 

effects.  

 

4.6.2 Cape Meares N2O isotopic composition 1978 - 1997 

Deseasonalized measurements of the N2O isotopic composition from Cape 

Meares archived samples are shown in figure 4.16 in panels (a) – (e) along with N2O 

mole fraction shown in panel (f). In 1980, the isotopic composition of δ15N, δ18O, δ15Nα, 

δ15Nβ, and SP measure 7.61 ± 0.03‰, 44.64 ± 0.03‰, 16.4 ± 0.1‰, -1.0± 0.1‰, and 

17.6 ± 0.2‰, respectively, with ± representing 1σ uncertainty. In 1996, the isotopic 

composition of δ15N, δ18O, δ15Nα, δ15Nβ, and SP measure 6.99 ± 0.02‰, 44.34 ± 0.03‰, 
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15.3 ± 0.1‰, -1.3 ± 0.1‰, and 16.5 ± 0.2‰, respectively, with ± representing 1σ 

uncertainty.  

Measurements from the OHSU-PSU Air Archive compare well to most 

previously reported values from northern and southern hemispheres measurements. 

Ishijima et al. (2007) measured firn air samples from Greenland (75°N, 42°W; collected 

in 2001) and Antarctica (77.3°S, 39.7°E and 69.2°S, 41.1°E; collected in 1998). 

Prokopiou et al. (2017) also measured firn air samples from Greenland (77°N, 51°W; 

collected in 2008 and 2009) and Antarctica (75°S, 65°E and 75°S, 123°E; collected in 

1998 and 1999, respectively). Rockmann and Levin (2005) analyzed 23 archived air 

samples collected from Neumayer, Antarctica (71°S, 8°W) between 1990 and 2002. Park 

et al. (2012) analyzed 50 whole air samples collected at Cape Grim, Tasmania (41°S, 

145°E) between 1978 and 2005. Data from these studies was digitized from plots in their 

respective publications to evaluate over the same time period as the Cape Meares data 

set. Table 4.8 gives N2O isotopic measurements on the TITech scale for the years 1980 

and 1996 measured from northern and southern hemisphere firn air and air archive 

measurements after applying linear fits to each dataset. Figure 4.17 shows a visual 

comparison of the datasets.  
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Figure 4.16. Deseasonalized isotopic N2O measurements from Cape Meares, Oregon. Panels show δ15N 

(a), δ18O (b), δ15Nα (c), δ15Nβ (d), SP (e), and N2O mole fraction (f).  Error bars are total uncertainty. Solid 

black lines are LOWESS fits to the data using a 3-year smoothing window. The shaded regions are 95% 

confidence interval in the LOWESS fit calculated from 1000 bootstrapped fits.  
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Table 4.8. Literature atmospheric N2O isotopic measurements.  

Study 
Sample Type 
(Hemisphere) 

δ15N (‰) δ18O (‰) δ15Nα (‰) δ15Nβ (‰) 
1980 1996 1980 1996 1980 1996 1980 1996 

1. firn (N&S) 7.9 7.2 44.8 44.5 n/a n/a n/a n/a 
2. firn (N&S) 7.4 6.9 44.9 44.7 16.3 15.9 -1.5 -2.2 
3. archive  (S) n/a 7.0 n/a 44.8 n/a 16.0 n/a -2.0 
4. archive  (S) 7.2 6.6 44.8 44.5 16.9 16.5 -2.4 -3.0 
5. archive  (N) 7.6 7.0 44.7 44.4 16.4 15.3 -1.0 -1.3 

 
Study: 1. Ishijima et al. 2007; 2. Prokopiou et al. 2017; 3. Rockmann and Levin 2005; 4. Park et al. 2012; 5. 

Cape Meares, Oregon (this work). 

 

Cape Meares measurements of δ15N are similar to comparable measured values 

with the exception of δ15N measurements from the Cape Grim air archive by Park et al. 

(2012), which measures ~0.4‰ lower than Cape Meares. This is likely due to instrument 

calibration differences between laboratories as isotopic measurements from the same 

period are expected to be heavier in the southern hemisphere by 0.0‰ - 0.1‰ (Ishijima et 

al. 2007).  

Measurements of δ18O at Cape Meares are on average ~0.1‰ lower when 

compared to measurements by the other groups, with the exception of Rockmann and 

Levin (2005). While spatial differences could contribute to this offset, the uncertainty in 

measurement of δ18O is also 0.1‰. Therefore, the difference is not statistically robust at 

high levels of confidence.  

The intramolecular isotopic composition of δ15Nα at Cape Meares matches well 

with mean δ15Nα firn air for 1980 measured by Prokopiou et al. (2017, red); however, in 

1996, δ15Nα at Cape Meares is depleted compared to Prokopiou et al. (2017) and 

measurements from Neumayer, Antarctica (Rockmann and Levin, 2005) by ~0.6‰. 

Although the Cape Grim air archive (blue, Park et al. 2012) shows considerable 
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variability in δ15Nα, Cape Meares data is depleted in δ15Nα by 0.5‰ in 1980 and 1.2‰ in 

1996 relative to the Cape Grim measurements.  

 

Figure 4.17. Isotopic N2O measurement comparison plots. Panels show δ15N (a), δ18O (b), δ15Nα (c), and 

δ15Nβ (d). Data from Park et al. 2012 (blue), Prokopiou et al. 2017 (red), Rockmann and Levin, 2005 

(cyan), and Ishijima et al. 2007 (pink) is digitized from plots in their respective publications.  

 

By contrast, the composition of δ15Nβ at Cape Meares remains nearly constant 

between 1980 and 1996, only changing from -1.0‰ to -1.3‰. With sample variability of 

~0.6‰, the uncertainty overlaps with both Prokopiou et al. (2017) and Rockmann and 
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Levin (2005). Mean values from Cape Grim from Park et al. (2012) are significantly 

more depleted by -2.4‰ and -3.0‰ in 1980 and 1996, respectively.   

 

4.6.3 Cape Meares N2O isotopic secular trend 1978 - 1997 

Annual trends for N2O isotopic composition are shown in figure 4.18. The 95% 

confidence intervals are created by determining the temporal trend in time for 1000 

bootstrapped datasets (fig. 4.18 shaded regions). Data points represent the mean annual 

trend with error bars equal to one standard deviation of the trend over the year. Aside 

from δ15N, annual trends calculated for an individual year are indistinguishable from 0‰ 

yr-1 for isotopic composition. This is due in part to the larger measurement uncertainty 

and noise in the intramolecular isotopic composition data.   

Isotopic secular trends with 95% confidence intervals between 1978 and 1996 at 

Cape Meares, Oregon are given in table 4.9 calculated by applying a linear fit to the raw 

and deseasonalized data. Secular trends for all isotopic compositions are statistically 

different from 0‰ yr-1 with the exception of δ15Nβ. From table 1.2, most anthropogenic 

sources of N2O are isotopically depleted relative to the atmosphere. The decreasing 

isotopic composition of the troposphere reflects the increased influence of anthropogenic 

sources of N2O to the atmosphere.  

Table 4.10 gives secular trends for N2O isotopic composition reported in the 

literature as well as the date range the trend is calculated over. The secular trends for δ15N 

and δ18O at Cape Meares compare well to previously reported values, though the 

temporal spans the trends are calculated over are different. However, the secular trend in 

δ15Nα and δ15Nβ at Cape Meares are significantly different compared to previously 
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reported values.  The δ15Nα and δ15Nβ trends reported by Rockmann and Levin (2005), 

from Neumayer, Antarctica archived air samples are close to the δ15Nβ and δ15Nα trends 

found here for Cape Meares, respectively. In other words, observations at Cape Meares 

are nearly opposite of what Rockmann and Levin (2005) report for intramolecular trends 

from Neumayer, Antarctica. 

 

Table 4.9. N2O isotopic secular trends (‰ yr-1) for Cape Meares, Oregon. 

δ Value Raw Data R2 Deseasonalized R2 

δ15N -0.041 ± 0.003 0.86 -0.041 ± 0.003 0.86 

δ18O -0.019 ± 0.004 0.45 -0.020 ± 0.003 0.48 

δ15Nα -0.070 ± 0.014 0.40 -0.067 ± 0.013 0.43 

δ15Nβ -0.010 ± 0.015 0.01 -0.013 ± 0.014 0.02 

SP -0.072 ± 0.029 0.14 -0.064 ± 0.028 0.14 
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Figure 4.18. Isotopic N2O annual trends from Cape Meares, Oregon. Panels show δ15N (a), δ18O (b), δ15Nα 

(c), δ15Nβ (d), SP (e), and N2O mole fraction (f).  Error bars are annual trend standard deviation. The shaded 

regions are 95% confidence interval calculated from 1000 bootstrapped fits. 
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Table 4.10. Literature atmospheric N2O isotopic secular trends with 95% CI.  

Study 
Date 

Range 
δ15N (‰ yr-1) δ18O (‰ yr-1) δ15Nα (‰ yr-1) δ15Nβ (‰ yr-1) 

1. 1994-1998 -0.042 ± 0.004 -0.026 ± 0.005 -0.042 ± 0.007 -0.044 ± 0.005 
2. 1952-2001 -0.039 ± 0.003 -0.022 ± 0.003 n/a n/a 
3. 1940-2008 -0.032 ± 0.004 -0.014 ± 0.008 -0.019 ± 0.015 -0.041 ± 0.020 
4. 1990-2002 -0.040 ± 0.003 -0.021 ± 0.003 -0.014 ± 0.016 -0.063 ± 0.014 
5. 1978-2005 -0.035 ± 0.002 -0.022 ± 0.004 -0.026 ± 0.013 -0.046 ± 0.015 
6. 1978-1996 -0.041 ± 0.003 -0.020 ± 0.003 -0.067 ± 0.013 -0.013 ± 0.014 

 
Study: 1. Rockmann et al. 2003; 2. Ishijima et al. 2007; 3. Prokopiou et al. 2017; 4. Rockmann and Levin 

2005; 5. Park et al. 2012; 6. Cape Meares, Oregon (this work). 

 

4.6.4 Sources of error 

We tested the sensitivity of δ15Nα and δ15Nβ under several different scenarios 

which might explain the difference in trend in intramolecular compositions when 

comparing to other groups. One possibility is error in the scrambling coefficient (s = 8.3 

± 0.01) used in the numerically solved isotope ratios. The value of the scrambling 

coefficient helps contributes to the final δ15Nα and δ15Nβ values of each sample. To 

evaluate the sensitivity of the intramolecular isotopic composition on the scrambling 

coefficient, δ15Nα and δ15Nβ values were solved for using different values of s (0.04 – 

0.18). The results of the scrambling sensitivity shown in table 4.11 give mean isotopic 

values and secular trends for different scrambling coefficients using the raw values (non-

deseasonalized).  

As the scrambling coefficient increases from 0.04 to 0.18, the mean δ15Nα value 

becomes enriched (15.1 - 18.5‰) while the mean δ15Nβ becomes depleted (-0.3‰ - -

3.7‰). The secular trend in δ15Nα becomes more negative as the scrambling coefficient 

increases while the secular trend in δ15Nβ becomes more positive.  However, even 
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adjusting the mean scrambling coefficient by a significant amount still produces secular 

trends for δ15Nα and δ15Nβ within their original respective 95% confidence intervals (table 

4.7 and 4.11). This indicates that uncertainty of the scrambling coefficient is not 

responsible for the intramolecular trend differences to previously reported measurements.  

 

Table 4.11. Intramolecular isotopic dependence on the scrambling coefficient. 

 Category s = 0.04 s = 0.08 s = 0.11 s = 0.14 s = 0.18 

δ15
N

α
 

Mean (‰) 15.1 15.9 16.5 17.3 18.5 

Trend (‰ yr-1) -0.065 -0.068 -0.070 -0.073 -0.077 

δ15
N

β  Mean (‰) -0.3 -1.1 -1.7 -2.5 -3.7 

Trend (‰ yr-1) -0.015 -0.012 -0.010 -0.007 -0.003 

 

A second possibility could be the incorrect application of the numerical solving 

algorithm (Appendix B) used to convert the measured isotope ratios (45R, 46R, 31R) to the 

desired isotopic composition ratios (15R, 18O, 15Rα, 15Rβ). To validate the numerical 

method, we used the reported scrambling coefficient (8.5%) and the measured isotope 

ratios (δ45, δ46, and δ31) reported in Rockmann and Levin, 2005 (found through digitizing 

plotted data). We then applied our numerical solver sub-routine used with the Cape 

Meares dataset to calculate the intramolecular isotopic composition ratios reported in 

Rockmann and Levin (2005). The difference between resulting calculated δ15Nα and 

δ15Nβ values and those reported in Rockmann and Levin (2005) is less than 0.05‰ (error 

introduced through the data digitization process). This experiment effectively excludes 

error in the numerical solving algorithm from observed trends in δ15Nα and δ15Nβ. 

 Directly comparing the measured isotopic composition values reported in 

Rockmann and Levin (2005) to the Cape Meares measurements reveals a large difference 
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in trend δ31 while δ45 and δ46 are similar (table 4.12). After ruling out scrambling within 

the ion source and sample size linearity (section 4.3) as possible reasons for the measured 

difference, we conclude the datasets represent different trends. 

 

Table 4.12. Measured isotopic composition trends.  

Study Date Range δ31 (N2O) (‰ yr-1) δ45 (N2O)  (‰ yr-1) δ46 (N2O)  (‰ yr-1) 

1. 1990-2002 -0.016 ± 0.011 -0.039 ± 0.004 -0.020 ± 0.004 
2. 1978-1996 -0.060 ± 0.011 -0.041 ± 0.003 -0.020 ± 0.005 

 
Study: 1. Rockmann and Levin, 2005; 2. Cape Meares, Oregon (this work).  

 

A final way to definitively rule-out analytical differences between laboratories is 

to have several samples measured at another laboratory capable of high precision 

intramolecular N2O isotopic measurements.  
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Chapter 5 

N2O Box Modeling 

 This chapter uses the results of the N2O isotopic composition to infer how N2O 

source changes have occurred over the years spanning samples measured for the OHSU-

PSU Air Archive (1978-1996).  To accomplish this, we apply a box modeling approach 

of atmospheric N2O sources and sinks. Section 5.1 introduces the mathematics and 

physics of the box model and derives the equations used. Section 5.2 discusses the results 

and what conclusions may be made based on this modeling approach. 
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5.1 N2O Box model method 

Combining the measured concentration and isotopic composition of N2O with 

simple modeling can be used to estimate the magnitude of source categories and their 

changes in time as well as infer contributions between nitrification and denitrification 

processes. Analysis of 1-box and 2-box models of the atmosphere have been used by 

several groups incorporating N2O isotopic composition (Rahn and Wahlen, 2000; Sowers 

et al. 2002; Park et al. 2004; Rockmann and Levin, 2005; Park et al. 2012; Prokopiou et 

al. 2017). In this work, a 2-box model of the atmosphere is used with one box 

representing the troposphere and the second box representing the stratosphere.  

The atmospheric budget for N2O can be expressed using three main terms: the 

source, S; the sink, L; and the exchange of air between the troposphere and stratosphere, 

Fx. Mass conservation is preserved by defining the total number of molecules in the 

atmosphere as M = 1.77×108 Tmol (Trenberth and Guillemot, 1994). Equations 

representing the change in N2O concentration in each box are written as: 

(5.1)  

(5.2)  

Where N2O concentrations (in ppb) are represented by [N2O] with subscripts T and S 

indicate the troposphere and stratosphere, respectively. MT and MS represent the portion 

of the atmosphere in the troposphere and stratosphere (taken to be 0.85×M and 0.15×M), 

respectively (Rockmann et al. 2003).  
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 All N2O sources, S, are in the troposphere as far as the global budget is concerned. 

Following the modeling method in Sowers et al. (2002), we can break the sources into 3 

categories: ocean, terrestrial, and anthropogenic. While several groups combine the ocean 

and terrestrial sources into a single natural source category (Rockmann and Levin, 2005; 

Park et al. 2012; Prokopiou et al. 2017), these two natural sources have distinct isotopic 

compositions. If the natural sources are assumed constant in time, then splitting the 

natural source into separate categories offers no analytical insight. For simplicity, we will 

assume the natural sources remain constant. 

The exchange of air between the troposphere and stratosphere is represented by Fx 

in equations 5.1 and 5.2. Estimates of the troposphere-stratosphere flux range between 

1.4-2.8×1011 Tg yr-1 (Warneck, 1988; Holton et al. 1995; Appenzeller et al. 1996), or 

0.22 Tmol s-1 (Rockmann et al. 2003). The only sink that affects the global budget takes 

place as loss in the stratosphere and is represented in the last term of equation 5.2. The 

atmospheric lifetime of N2O (assumed constant at 123 years) is represented by τ.  

 Equations 5.1 and 5.2 are used to solve for the pre-industrial natural source terms 

by fixing the expected natural ocean source at 4.0 TgN yr-1 (Sowers et al. 2002) and 

solving the equations for the natural terrestrial source assuming the expected pre-

industrial N2O troposphere concentration of ~272 ppb (Sowers et al. 2002; Park et al. 

2012; Ciais et al. 2013). This results in a natural terrestrial source of 6.6 TgN yr-1 and a 

total pre-industrial natural source of 10.6 TgN yr-1. While our total pre-industrial source 

is higher than the estimated natural source of 9.0 ± 1.1 TgN yr-1 by Prather et al. (2012), 

our natural terrestrial source is identical to the value reported in the IPCC 2013 of 6.6 

TgN yr-1 (Ciais et al. 2013).  
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 The anthropogenic term is included starting in the year 1850 and is modeled as an 

exponential of the form:  

(5.3)   

Where a and b are model fit parameters adjusted to fit the N2O mole fraction observed at 

Cape Meares, Oregon after including firn air and ice core measurements used to match 

pre-industrial atmospheric concentrations (Macfarling-Meure et al. 2006; Ciais et al. 

2013). The parameters are optimized using chi-square minimization. Chi-square 

minimization is found using: 

(5.4)  

Where Oi and Ei are the observed (measured) and expected (model) N2O concentrations, 

respectively, and σi is the observed variance.  

 To estimate the uncertainty around the model, a confidence interval is found by 

applying the Chi-square minimization technique to the high and low bootstrapped 

LOWESS model values calculated in section 3.3.2. This provides a reliable range for the 

model that fits within the observed variability in the data.  

 Once the troposphere and stratosphere N2O concentrations have been found, the 

equations are adjusted to solve for the different isotopic species. Equation 5.5 relates the 

bulk concentration, [N2O], to that of a specific species, [N2O]*, where R is the heavy to 

light isotopic ratio of the species in the atmosphere. Equation 5.6 relates the mean 

lifetime of the molecule, τ, to that of a specific isotopic species through the reaction time 

constant α.  

(5.5)  
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(5.6)  

Using equations 5.5 and 5.6, we can now rewrite equations 5.1 and 5.2 as:  

(5.7)  

(5.8)  

From here, the left-hand side of equations 5.7 and 5.8 are expanded using the 

calculus chain-rule: 

(5.9)  

For the troposphere, the last term in equation 5.9 is simply equation 5.1 times RT 

while for the stratosphere, the last term in equation 5.9 is equal to equation 5.2 times RS. 

Once we make these substitutions, we can solve for how R change in time:  

(5.10)  

(5.11)  

The equations in 5.10 and 5.11 are coupled differential equations that can be 

solved together to model how the composition of different isotopomers of N2O change in 

time. If we assume that the natural terrestrial and ocean source isotopic composition 
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remain constant in time, we can relate observed changes in the tropospheric composition, 

RT, to the anthropogenic source magnitude and changes in the mean anthropogenic source 

composition, RAnth.  

 

5.2 N2O Box model results 

 Box model results of the N2O concentration at Cape Meares, Oregon are shown in 

figure 5.1. Firn air and ice core measurements are used to match pre-industrial 

atmospheric concentrations (Macfarling-Meure et al. 2006, Ciais et al. 2013). The model 

is optimized around three sets of data: the observations from Cape Meares, the model 

output of Prokopiou et al. 2017 prior to 1978 (40 data points), and measurements of firn 

air from Park et al. 2012 prior to 1978 (5 data points). This is done to provide a best 

match during the period of 1978 to 1997 while also preserving a realistic growth rate. 

This allows for some data-modeling mismatch in the spin-up period prior to 1950 

compared to long-term data from Ciais et al. 2013 (fig. 5.1 (a), IPCC N2O). The result is 

the model under-estimates the atmospheric concentration of N2O between 1875 and 1950. 

This mismatch improves as the model approaches the period of study. Because we are 

only using the ice core and firn air measurements as our model initialization, the model 

results post 1950 should be sufficient to simulate the period of optimization (1978 to 

1997).  

From figure 5.1 (b), the box model is similar to that of the LOWESS fit (section 

3.3.2). For the year 1980, the box model provides a N2O concentration of 301.6 ± 0.3 

ppb, while the LOWESS fit is 301.5 ± 0.3 ppb. For the year 1996, the box model N2O 

concentration is 312.0 ± 0.5 ppb, while the LOWESS fit is 313.5 ± 0.3 ppb.  
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The total anthropogenic source calculated by the model for the years 1980 and 

1996 is 3.8 ± 0.1 and 5.3 ± 0.1 TgN yr-1, respectively. Figure 5.2 shows the total 

anthropogenic source calculated from the 2-box model as well as the total anthropogenic 

source calculated from EDGAR v4.3.2 (2017) (see Table A.4 in appendix). EDGAR 

gives a significantly larger global anthropogenic source for all years of interest (1978 to 

1996), with a difference of 2.2 – 2.9 TgN yr-1. This large difference is partly due to the 

optimization of our 2-box model around the observations from Cape Meares as well as 

the mismatch to data in the spin up period from firn air results (fig. 5.1a).  

When modeling the isotopic composition of atmospheric N2O, it is important to 

use the correct fractionation factor (α) that governs the rate of stratospheric loss for each 

isotopomer. Table 5.1 lists various fractionation factors reported by various studies as 

well as the values used in this study. 

 

 

Figure 5.1. Box model results of atmospheric N2O. Panel (a) shows the initial atmospheric conditions from 

ice core and firn air samples from Law Dome, Antarctica. Panel (b) displays the observation record at Cape 

Meares, Oregon.  
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Figure 5.2. Global N2O anthropogenic source (TgN yr-1) between the years 1978 and 1996 calculated by 

EDGAR v4.3.2 (2017) and the 2-box model used in this study.  

 

Table 5.1. Reported fractionation factors in the literature.  

Study α - 15N α -15Nα α -15Nβ α -18O 

Rahn and Wahlen, 2000 0.9855 - - 0.9871 

Rockmann et al. 2003 0.9829 0.9787 0.9871 0.9860 

Park et al. 2004 0.9851 0.9775 0.9929 0.9867 

Toyoda et al. 2001, < 24.1 km 0.9841 0.9771 0.9912 0.9885 

Toyoda et al. 2001, > 24.1 km 0.9714 0.9591 0.9845 0.9754 

Kaiser et al. 2002, O(1D) 0.9944 0.9978 0.9911 0.9876 

Prokopiou et al. 2017  0.9838 0.9770 0.9906 0.9866 

This Study 0.9838 0.9770 0.9906 0.9866 

 

The isotopic compositions of the natural sources are kept constant over the run 

time of the model. Therefore, it is important that the pre-industrial atmospheric 

composition in the model reflects that of the observed composition from ice core 

measurements. Natural isotopic compositions reported in the literature are listed in table 
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1.2. The mean and standard deviations of the terrestrial and ocean sources are given in 

table 5.2. The values used in the model are presented in table 5.2 as well. The model’s 

total natural source is calculated from the weighted sum of the ocean and terrestrial 

source, with 4.0 out of 10.6 TgN yr-1 contributed from the ocean and 6.6 out of 10.6 TgN 

yr-1 contributed from the terrestrial source. 

A comparison of the total natural source used by two previous studies is given in 

table 5.3. The values used for the total natural sources of δ18O and δ15Nα are comparable 

to those used by Prokopiou et al. (2017) and Park et al. (2012), δ15N and δ15Nβ are 

roughly 1‰ enriched.  

 

Table 5.2. Natural source isotopic compositions given in the literature and used in the model. Uncertainty 

represents 1σ of the reported values for the source category. The Total Natural source is flux weighted. 

 
From Table 1.2 

 
 Model Values 

 
Category 
(Natural) 

Ocean  
(‰) 

Terrestrial  
(‰) 

Ocean  
(‰) 

Terrestrial  
(‰) 

Total Nat.  
(‰) 

δ15N 3.6 ± 0.6 -9.2 ± 5.2 4.0 -12.3 -6.1 

δ18O 42.4 ± 7.4 30 ± 13 31.9 31.9 31.9 

δ15Nα 8.7 -8.7 ± 5.2 3.0 -8.1 -3.9 

δ15Nβ -2.3 -14.6 ± 10.5 5.0 -17.4 -8.9 

 

 

Table 5.3. Natural source isotopic compositions reported by other groups and this study.  

Category 
(Natural) 

Prokopiou 
et al. 2017 

Park et al. 
2012 

This 
Study 

δ15N (‰) -5.2 ± 0.2 -5.3 ± 0.2 -6.1 

δ18O (‰) 33.1 ± 0.2 32 ± 0.2 31.9 

δ15Nα (‰) -1.9 ± 1.0 -3.3 ± 1.0 -3.9 

δ15Nβ (‰) -8.3 ± 1.1 -7.5 ± 1.1 -8.9 
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The modeled atmospheric compositions for the different isotopes of N2O are 

shown in figure 5.3. A comparison of the box model results to that of the LOWESS fits 

calculated from the observed measurements from Cape Meares is provided in table 5.4. 

 

 

Figure 5.3. Box model results of the isotopic composition of atmospheric N2O. Panels show δ15N (a), δ18O 

(b), δ15Nα (c), and δ15Nβ (d). Shaded regions represent the best fit of the box model to the 95% confidence 

interval estimates of the bootstrap fit calculations to the measured data.  
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The box model results closely reflect that of the LOWESS regression to the 

measured data for δ15N, δ18O, δ15Nα, and δ15Nβ (fig. 4.16 and Table 5.4). This helps 

confirm that the model is working as intended by producing a good match with 

observations and trends. The close match between box model results and observations 

(LOWESS regression) also indicates the chi-square function is finding the best fit to the 

data based on model input parameters.  

 

Table 5.4. Atmospheric isotopic composition for the years 1980 and 1996 calculated from box modeling 

and LOWESS fitting to observed atmospheric conditions at Cape Meares, Oregon. Box model uncertainty 

represents the model fit to the 95% confidence interval around the LOWESS fit. 

Category 1980 (‰) 1996 (‰) 

δ15N (‰) 
Box Model 7.59 ± 0.03 6.96 ± 0.04 
LOWESS 7.61 ± 0.03 6.99 ± 0.02 

δ18O (‰) 
Box Model 44.61 ± 0.05 44.35 ± 0.06 
LOWESS 44.64 ± 0.03 44.36 ± 0.03 

δ15Nα (‰) 
Box Model 16.2 ± 0.2 15.4 ± 0.2 
LOWESS 16.3 ± 0.1 15.3 ± 0.1 

δ15Nβ (‰) 
Box Model -1.0 ± 0.2 -1.4 ± 0.3 
LOWESS -1.0 ± 0.1 -1.3 ± 0.1 

 

 The flux weighted isotopic composition of the anthropogenic source found 

through chi-square minimization of the model to the observed measurements is given in 

table 5.5 as well as values reported in Park et al. (2012) and Prokopiou et al. (2017) for 

comparison. The model results of anthropogenic source δ15N, δ18O, and δ15Nα for Cape 

Meares match reasonably well with results from Prokopiou et al. (2017) and Park et al. 

(2012). However, our modeled anthropogenic source δ15Nβ is 6.6‰ and 12.2‰ enriched 

compared with Park et al. (2012) and Prokopiou et al. (2017), respectively.  
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The simple box models used by Park et al. (2012) and Prokopiou et al. (2017) 

assume a constant isotopic composition for both the anthropogenic and natural sources 

over the entire time span (as does this model). While this makes the calculations more 

simplistic, it does not accurately capture variability from individual source categories 

over the period of interest. If the measurements of intramolecular isotopic composition 

presented here are correct, these results suggest that increases in N2O sources may not be 

linear despite the observed linear increase in N2O mole fraction.  

 

Table 5.5. Anthropogenic source isotopic compositions reported by other groups and this study.  

Category 
(Anthropogenic) 

Prokopiou 
et al. 2017 

Park et al. 
2012 

This  
Study 

δ15N (‰) -18.2 ± 2.6 -15.6 ± 1.2 -15.0 ± 0.3 

δ18O (‰) 27.2 ± 2.6 32.0 ± 1.3 33.3 ± 0.4 

δ15Nα (‰) -8.1 ± 1.7 -7.6 ± 6.2 -12.8 ± 1.5 

δ15Nβ (‰) -26.1 ± 8.4 -20.5 ± 7.1 -13.9 ± 1.7 

 

 Finally, we can calculate the SP of both the flux weighted natural and 

anthropogenic sources from the model and compare to previously published values. Table 

5.6 gives the SP of the natural and anthropogenic sources from Prokopiou et al. (2017), 

Park et al. (2012), and this study. Box modeling of Cape Meares results shows the natural 

and anthropogenic sources to have a SP of 4.9‰ and 1.1 ± 2.3‰ respectively. The 

natural source SP from our box model is similar to that of Prokopiou et al. (2017) and 

Park et al. (2012) while the anthropogenic source SP is significantly depleted (16.9 – 

12.0‰). This result is similar to that of the secular trends discussed in section 4.5.3. A 

positive secular trend indicates the anthropogenic SP is greater than the natural SP where 

a negative secular trend indicates the anthropogenic SP is less than the natural SP. From 
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table 4.9, the deseasonalized secular trend of SP at Cape Meares is -0.064 ± 0.028‰. 

While the model represents the Cape Meares dataset well, this result is very different than 

observed previously. It should also be noted that the modeling time periods used in 

Prokopiou et al. 2017 (1940 – 2008) and Park et al. 2012 (1940 – 2005) are different than 

the model used for Cape Meares (optimized between 1978 – 1997). This time difference 

may explain some of the difference between results.  

 

Table 5.6. SP for natural and anthropogenic sources reported by other groups and this study.  

Category 
Prokopiou 
et al. 2017 

Park et al. 
2012 

This  
Study 

SP (Nat. ‰) 6.4 ± 1.5 4.2 ± 1.5 4.9 

SP (Anth. ‰) 18.0 ± 8.6 13.1 ± 9.4 1.1 ± 2.3 

 

The results from the box modeling presented here are uncertain as the model used 

does not represent changes in time to individual source categories (i.e. changing 

contributions from fossil fuels, biomass burning, agriculture, etc.). While improvements 

can be made to the model, the results suggest the SP of the anthropogenic source is 

similar to that of the natural source. This result is important to our understanding of 

contributions from nitrification and denitrification processes to the observed atmospheric 

N2O composition. If laboratory measurements of SP are globally relevant, a small 

positive trend in SP is associated with an increasing influence from nitrification processes 

(Sutka et al. 2006; Park et al. 2012; Prokopiou et al 2017). These results would suggest 

there has not been significant changes to the balance between contributions from 

nitrification and denitrification to the observed isotopic composition of N2O at Cape 

Meares during the 1978 – 1996 period. 
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Chapter 6 

Conclusions 

Presented here are 159 samples from the OHSU-PSU Air Archive from Cape 

Meares, Oregon (45.5° N, 124.0° W) measured for N2O and SF6 mole fraction (using 

GC-μECD) and N2O intramolecular isotopic composition (using continuous flow IRMS) 

spanning April 1978 to December 1996.  

The GC-μECD system designed through this work is fully automated, capable of 

running multiple pressurized samples per run. Measurement precision of N2O and SF6 is 

0.16% and 1.1% respectively. Sample concentrations were corrected for detector 

response non-linearity when measured against our reference gas. The linearity correction 

was found to be 0.14 ppb ppb-1 and 0.03 ppt ppt-1 for N2O and SF6, respectively.  

 Analysis of archived air samples finds the mole fraction of N2O in 1980 to be 

301.5 ± 0.3 ppb (1σ) and rises to 313.5 ± 0.3 ppb (1σ) in 1996. The average growth rate 

over this period is 0.78 ± 0.03 ppb yr-1 (95% CI). Seasonality shows peak amplitude of 

0.3 ppb near April and minimum amplitude of -0.4 ppb near November and is statistically 

robust. Our measurements of N2O were found to match well with previously reported 

values for Cape Meares and other comparable northern hemisphere mid-latitude 

locations.  

 For SF6, the concentration in 1980 is found to be 0.85 ± 0.03 ppt (1σ), increasing 

to 3.83 ± 0.03 ppt (1σ) in 1996. The average growth rate over this period is 0.17 ± 0.01 

ppt yr-1 (95% CI). Seasonality shows peak amplitude of 0.04 ppb near January and 

minimum amplitude of -0.03 ppt near July. There are no previous reported measurements 

of SF6 from Cape Meares to compare against directly. SF6 measurements compare well to 
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other northern hemisphere measurements from Levin et al. (2010), Rigby et al. (2010), 

and Hall et al. (2011) over similar time periods when including spatial variability. From 

these N2O and SF6 measurements, we can conclude the sample integrity is robust within 

the OHSU-PSU Air Archive from Cape Meares, Oregon. Resulting dataset of SF6, in 

particular, contributes to a better characterization of historic SF6 growth rate and its 

atmospheric variability over this period of dramatic growth.  

 A GC-IRMS in combination with a preconcentration system was designed and 

used to evaluate the intramolecular composition of N2O for this work. In the isotopic 

analysis, repeated measurements of a working standard (CC2854) results show that the 

residual distributions of the measured isotopologues are normal with typical 1σ 

measurement precision of 0.05‰, 0.10‰, and 0.28‰ for δ45, δ46, and δ31, respectively. 

For the sample size range used, the achieved measurement precision is ~2x (δ45 and δ46) 

and ~3x (δ31) the theoretically maximum achievable precision of the instrument. There 

was no sample size linearity correction needed over the sample size range used.  

The typical isotopic composition precisions (1σ) for a standard are 0.05‰, 

0.10‰, 0.37‰, and 0.39‰ for δ15N, δ18O, δ15Nα, and δ15Nβ, respectively. Typical 

measurement precisions for OHSU-PSU archive samples are 0.07‰, 0.15‰, 0.57‰, and 

0.60‰ for δ15N, δ18O, δ15Nα, and δ15Nβ, respectively. Isotopic results from the Cape 

Meares archive add significantly to timeseries data during the 1980 and 1990 time 

periods.  

 No distinguishable seasonality is found in δ15N or δ18O while δ15Nα and δ15Nβ 

show statistically significant amplitudes with nearly opposite phases to one another. 

δ15Nα has a maximum amplitude of 0.2 ± 0.2‰ (1σ) near April and a minimum amplitude 
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of -0.3 ± 0.3‰ (1σ) near November. δ15Nβ has a maximum amplitude of 0.2 ± 0.2‰ (1σ) 

near November and a minimum amplitude of -0.2 ± 0.2‰ (1σ) near April. The SP also 

shows a statistically significant seasonality, with a maximum of 0.3 ± 0.2‰ (1σ) near 

April and a minimum of -0.4 ± 0.2‰ (1σ) near November. These results suggest that at 

Cape Meares during the spring, processes that contribute air enriched in N2O mole 

fraction also contribute enriched δ15Nα and depleted δ15Nβ, causing a positive SP. During 

the fall, possesses that contribute air depleted in N2O mole fraction also contribute 

depleted δ15Nα and enriched δ15Nβ, causing a negative SP.  

All annual trends, besides δ15N, are indistinguishable from 0‰ yr-1 for isotopic 

compositions. This is due in part to the larger measurement uncertainty in the 

intramolecular isotopic compositions. All secular trends, besides δ15Nβ, calculated by 

applying a linear fit to the deseasonalized data show negative trends statistically different 

from 0. The secular trend values for δ15N, δ18O, δ15Nα, δ15Nβ, and SP are -0.041 ± 

0.003‰ yr-1, -0.020 ± 0.003‰ yr-1, -0.067 ± 0.013‰ yr-1, -0.013 ± 0.014‰ yr-1, and -

0.064 ± 0.028‰ yr-1, respectively. Secular trends for δ15N and δ18O match well with 

previously reported values (Rockmann et al. 2003; Rockmann and Levin 2005; Ishijima 

et al. 2007; Park et al. 2012; Prokopiou et al. 2017). Secular trends for δ15Nα and δ15Nβ 

for Cape Meares are significantly different than those reported by other groups, appearing 

to be nearly inverted for δ15Nα and δ15Nβ compared with one group. 

To address this difference compared to previous published results, the sensitivity 

of the numerically calculated δ15Nα and δ15Nβ on the scrambling coefficient was 

investigated and found to not be a possible cause. We also investigated the possibility of 

an error in the numerical algorithm used to convert measured 45R, 46R, and 31R values 
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into δ15N, δ18O, δ15Nα, δ15Nβ. To validate the numerical method, we used the reported 

scrambling coefficient (8.5%) and the measured isotope ratios reported in Rockmann and 

Levin (2005) (found through digitizing plotted data). The difference between the script 

calculated and Rockmann and Levin (2005) reported δ15Nα and δ15Nβ values is less than 

0.05‰, matching within variability in the data digitization process. This excludes error in 

the numerical solving algorithm as a possible reason for the observed difference. 

Directly comparing the measured isotopic composition values reported in 

Rockmann and Levin (2005) to the Cape Meares measurements reveals a difference in 

trend in 31δ while 45δ and 46δ are similar (table 4.12). After ruling out scrambling within 

the ion source and sample size linearity (section 4.3) as possible reasons for the measured 

difference, we conclude the datasets represent different trends. One possibility to further 

confirm this result is to have several samples measured at another laboratory capable of 

high precision intramolecular N2O isotopic measurements, of which there are only a 

handful of laboratories in the world.  

Finally, a 2-box model of the atmosphere was used to investigate changes in 

measured atmospheric composition to characterize source isotopic composition. For 

simplicity, the natural source was assumed to remain constant in magnitude and isotopic 

composition since the pre-industrial age. We also assumed the anthropogenic source had 

a constant isotopic composition over the span of the model. While these assumptions do 

not accurately reflect how the average source can change in composition over time, the 

results are still useful to determine a broad characterization of source isotopic 

composition and compare with previously published values.  
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From the results of the box model, the magnitude of the pre-industrial natural 

source is 10.6 TgN yr-1 (4.0 TgN yr-1 from ocean, 6.6 TgN yr-1 from terrestrial) while the 

anthropogenic source in 1996 contributes 5.3 ± 0.1 TgN yr-1. These values are within the 

ranges of expected source magnitudes given by the IPCC (Ciais et al. 2013) and suggest 

the model represents reasonable estimates. 

 The isotopic compositions of the natural source for δ15N, δ18O, δ15Nα, δ15Nβ that 

best match expected atmospheric compositions was found to be -6.1‰, 31.9‰, -3.9‰, -

8.9‰, respectively. These are similar to natural source compositions previously reported 

(Park et al. 2012; Prokopiou et al. 2017). The isotopic compositions of the anthropogenic 

source for δ15N, δ18O, δ15Nα, δ15Nβ was found to be -15.0 ± 0.3‰, 33.3 ± 0.4‰, -12.8 ± 

1.5‰, and -13.9 ± 1.7‰, respectively. The modeled anthropogenic δ15N, δ18O, δ15Nα 

match reasonably well with results from Prokopiou et al. (2017) and Park et al. (2012). 

However, our modeled δ15Nβ is significantly enriched compared to the previously 

reported values.  

 Box modeling at Cape Meares shows the natural and anthropogenic sources to 

have a SP of 4.9‰ and 1.1 ± 2.3‰, respectively. While the natural source SP resembles 

the results from Prokopiou et al. (2017) and Park et al. (2012), the anthropogenic SP is 

significantly depleted. Assuming the laboratory measurements of intramolecular SP are 

globally relevant, these results suggest there were not significant changes to the balance 

between contributions from nitrification and denitrification to the observed isotopic 

composition of N2O during the period of interest (1978 – 1996).  
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Appendix A 

Tables 

Table A.1. Linearity corrected, OHSU-PSU air archive N2O and SF6 mole fraction 

measurements. N2O relative to NOAA-2006A N2O scale. SF6 relative to NOAA-2014 

SF6 scale. 

Sample Collected  SF6 (ppt) SF6 1σ (ppt) N2O (ppb) N2O 1σ (ppb) 

O-031 04/03/78 0.608 0.04 303.26 0.89 

O-029 04/04/78 0.752 0.05 303.55 0.66 

O-026 04/06/78 0.668 0.06 303.68 0.77 

O-017 04/07/78 0.992 0.07 301.93 0.57 

O-020 04/07/78 0.623 0.04 340.01 0.99 

O-021 10/05/78 0.873 0.05 299.90 0.74 

O-022 10/05/78 0.711 0.05 305.07 0.58 

O-041 11/03/78 0.918 0.05 611.82 1.14 

O-044 11/03/78 0.747 0.04 331.27 0.69 

O-045 11/22/78 0.802 0.08 367.39 1.02 

O-046 11/22/78 0.655 0.05 298.88 0.81 

O-052 12/20/78 0.930 0.06 436.39 0.89 

O-084 01/17/80 0.745 0.05 301.69 0.50 

O-086 01/21/80 1.008 0.06 302.09 0.84 

O-089 02/07/80 0.908 0.04 302.07 0.67 

O-090 02/08/80 0.925 0.05 301.41 0.87 

O-091 03/25/80 0.873 0.05 303.30 0.61 

O-093 04/15/80 0.851 0.06 308.78 0.80 

O-096 04/15/80 0.863 0.04 302.77 0.82 

O-099 04/18/80 0.868 0.04 302.76 0.73 

O-102 04/22/80 0.873 0.05 301.31 0.69 

O-087 04/29/80 0.795 0.07 302.22 0.80 

O-104 04/29/80 0.903 0.09 301.92 0.62 

O-110 06/10/80 0.823 0.03 301.68 0.58 

O-114 07/08/80 0.845 0.04 301.44 0.64 

O-115 07/17/80 0.844 0.05 300.27 0.58 

O-109 10/01/80 0.910 0.06 301.19 0.79 

O-124 10/15/80 0.899 0.06 301.93 0.65 

O-127 11/12/80 0.989 0.08 301.66 0.62 

O-132 12/31/80 0.875 0.08 301.98 0.55 

O-133 01/15/81 0.962 0.05 303.45 0.70 
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O-136 02/25/81 0.913 0.05 302.22 0.45 

O-138 03/11/81 1.051 0.03 301.75 0.81 

O-140 03/18/81 1.005 0.06 302.75 0.65 

O-158 04/17/81 0.943 0.07 301.06 0.72 

O-160 04/29/81 1.022 0.06 301.92 0.63 

O-163 05/13/81 0.944 0.06 302.33 0.61 

O-170 07/15/81 0.974 0.04 304.64 0.78 

O-171 07/29/81 0.872 0.07 302.84 0.75 

O-174 08/19/81 1.365 0.06 310.40 0.65 

O-176 09/02/81 0.668 0.07 301.84 0.55 

O-179 09/16/81 1.030 0.05 300.97 0.76 

O-183 10/14/81 1.125 0.06 303.53 0.79 

O-184 10/14/81 1.178 0.05 303.80 0.52 

O-185 10/28/81 0.999 0.04 302.91 0.73 

O-190 12/02/81 0.956 0.05 301.75 0.62 

O-194 12/30/81 1.066 0.06 303.38 0.89 

O-196 01/13/82 1.065 0.02 304.26 0.75 

O-199 02/03/82 1.087 0.05 303.64 0.54 

O-200 02/03/82 1.117 0.08 303.41 0.68 

O-205 03/24/82 1.051 0.05 301.35 0.88 

O-206 03/24/82 1.070 0.09 302.41 0.85 

O-207 04/07/82 1.056 0.05 303.45 0.69 

O-210 04/21/82 1.053 0.06 303.07 0.54 

O-215 06/02/82 1.050 0.06 303.80 0.81 

O-218 06/30/82 1.109 0.05 304.01 0.76 

O-220 07/14/82 1.074 0.06 303.25 0.61 

O-222 07/28/82 1.168 0.07 302.25 0.66 

O-223 08/11/82 1.069 0.04 303.72 0.72 

O-228 09/08/82 1.497 0.08 305.48 0.58 

O-235 11/30/82 1.269 0.08 302.44 0.57 

O-236 11/30/82 1.018 0.07 299.37 0.84 

O-238 12/08/82 1.174 0.06 302.18 0.52 

O-239 12/29/82 1.244 0.07 302.35 0.85 

O-243 01/31/83 1.139 0.05 303.77 0.76 

O-246 02/11/83 1.292 0.08 303.12 0.59 

O-249 03/09/83 1.116 0.06 304.19 0.66 

O-253 04/06/83 1.222 0.08 303.73 0.88 

O-254 04/06/83 1.234 0.04 305.43 0.70 

O-256 04/20/83 1.262 0.06 303.93 0.77 

O-258 05/24/83 1.153 0.04 303.33 0.56 

O-261 06/01/83 1.235 0.08 302.73 0.46 

O-262 06/01/83 1.256 0.08 304.26 0.85 
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O-265 06/29/83 1.226 0.09 301.24 0.44 

O-269 08/03/83 1.149 0.06 302.48 0.72 

O-270 08/03/83 1.308 0.07 303.67 0.84 

O-272 08/31/83 1.186 0.03 303.49 0.93 

O-274 09/14/83 1.170 0.06 303.87 0.70 

O-277 10/12/83 1.357 0.05 302.26 0.70 

O-279 10/26/83 1.285 0.09 302.83 0.80 

O-285 12/14/83 1.306 0.06 304.56 0.86 

O-286 12/14/83 1.693 0.10 305.06 0.74 

O-287 01/25/84 1.108 0.05 303.30 0.73 

O-288 01/25/84 1.277 0.09 304.86 0.74 

O-289 02/10/84 1.495 0.08 305.09 0.49 

O-302 06/27/84 1.367 0.07 304.88 0.73 

O-303 07/11/84 1.374 0.03 304.10 0.92 

O-308 09/26/84 1.322 0.10 291.69 0.62 

O-316 01/17/85 1.467 0.11 305.46 0.67 

O-317 01/17/85 1.795 0.08 305.09 0.82 

O-323 10/24/85 1.553 0.10 305.84 0.64 

O-330 08/04/86 1.613 0.04 304.79 0.48 

O-331 10/14/86 1.668 0.03 310.10 0.85 

O-332 10/28/86 1.815 0.08 307.09 1.12 

O-333 12/04/86 2.143 0.06 310.36 0.72 

O-335 01/23/87 2.013 0.07 307.58 0.70 

O-338 04/23/87 1.890 0.07 307.69 0.71 

O-339 04/23/87 1.800 0.04 307.61 0.39 

O-340 04/28/87 1.928 0.06 307.74 0.62 

O-341 04/28/87 1.948 0.11 306.60 0.65 

O-344 06/16/87 1.927 0.08 306.56 0.82 

CORSP 355 09/16/87 2.136 0.10 307.35 0.61 

O-361 03/17/88 2.124 0.08 307.54 0.89 

O-369 08/29/88 2.125 0.08 308.49 0.69 

R-348B 12/28/88 2.462 0.12 307.62 0.56 

R-346B 01/17/89 2.222 0.05 309.00 0.58 

RSP 371 03/21/89 2.181 0.08 305.07 0.70 

RSP 373 03/29/89 2.218 0.08 308.61 0.85 

RSP 379 04/11/89 2.166 0.09 309.78 0.75 

RSP 380 04/12/89 2.429 0.11 309.05 0.61 

RSP 381 04/12/89 2.419 0.07 308.86 0.88 

RSP 383 05/03/89 2.193 0.06 310.08 0.55 

RSP 384 05/03/89 2.285 0.05 309.73 0.88 

RSP 386 06/06/89 2.273 0.08 309.10 0.66 

CORSP 387 08/04/89 2.353 0.08 309.08 0.74 
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CORSP 388 08/25/89 2.376 0.08 308.77 0.41 

CORSP 389 09/01/89 2.217 0.07 308.45 0.50 

RSP 390 09/14/89 2.496 0.10 313.99 0.94 

CORSP 391 09/29/89 2.502 0.15 309.69 0.73 

RSP 392 10/06/89 2.261 0.06 308.41 0.79 

RSP 393 10/12/89 2.340 0.10 308.70 0.43 

CORSP 397 11/10/89 2.360 0.08 310.70 0.61 

CORSP 399 11/21/89 2.301 0.12 307.26 0.65 

CORSP 402 03/20/90 2.342 0.06 309.85 0.61 

CORSP 403 03/27/90 2.531 0.05 310.05 0.67 

CORSP 405 04/14/90 2.382 0.08 310.07 0.78 

CORSP 406 08/09/90 2.478 0.08 309.63 0.70 

CORSP 407 08/15/90 2.461 0.12 309.89 0.87 

CORSP 408 09/25/90 2.578 0.05 306.95 0.79 

CORSP 409 04/22/91 2.741 0.08 310.31 0.80 

CORSP 417 04/02/92 2.811 0.10 311.07 1.01 

SPO 298 06/02/92 17.14 0.24 311.11 0.67 

CO 420 12/29/92 3.077 0.08 311.48 0.85 

CO 426 05/06/93 3.040 0.07 311.79 0.74 

CO 427 05/21/93 3.176 0.08 312.45 0.66 

CO 428 06/17/93 3.107 0.06 311.80 0.68 

CO 433 10/08/93 3.224 0.08 311.66 0.52 

CO 434 10/15/93 3.238 0.07 312.36 0.69 

CO 435 10/25/93 3.320 0.13 312.17 0.55 

CO 438 12/08/93 3.261 0.10 310.11 0.80 

CO 442 05/10/94 3.520 0.12 314.79 0.59 

CORSP 443 06/22/94 3.421 0.08 311.33 0.61 

CORSP 444 07/20/94 3.357 0.09 313.64 0.82 

CO 445 08/12/94 3.491 0.08 312.26 0.92 

CO 447 11/11/94 4.233 0.08 314.59 0.89 

CO 448 11/14/94 3.618 0.12 312.41 0.72 

CO 450 03/30/95 3.663 0.11 313.23 0.64 

CO 452 06/16/95 3.707 0.11 314.06 0.78 

O-027 07/25/95 4.140 0.11 314.61 0.79 

CO 453 10/11/95 3.652 0.09 312.77 0.73 

CO 454 12/28/95 4.013 0.11 313.32 1.14 

CO 455 01/10/96 3.846 0.12 312.85 0.58 

CO 456 02/16/96 5.07 0.08 313.31 0.66 

CO 457 02/29/96 4.018 0.12 313.49 0.71 

CO 459 04/29/96 3.829 0.08 313.41 0.61 

CO 460 05/31/96 3.839 0.08 313.98 0.70 

CO 462 07/31/96 3.912 0.09 313.76 0.83 



 

133 

CO 463 09/05/96 3.905 0.08 314.16 0.73 

O-051 12/17/96 4.036 0.11 334.75 0.90 
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Table A.2. Raw OHSU-PSU air archive N2O IRMS measured isotopic compositions. 

Values are relative to N2 in air for nitrogen and VSMOW for oxygen with units in per 

mille (‰).   

Sample Collected δ31 δ31 1σ δ45 δ45 1σ δ46 δ46 1σ 

O-031 04/03/78 16.10 0.57 8.41 0.06 44.75 0.11 

O-029 04/04/78 15.75 0.56 8.62 0.07 44.61 0.25 

O-026 04/06/78 15.41 0.36 8.58 0.05 44.49 0.13 

O-017 04/07/78 15.97 0.57 8.44 0.07 44.40 0.13 

O-020 04/07/78 16.01 0.30 8.94 0.05 45.54 0.11 

O-021 10/05/78 15.26 0.30 8.41 0.09 44.50 0.15 

O-022 10/05/78 15.85 0.48 8.59 0.07 44.88 0.10 

O-041 11/03/78 17.08 0.35 8.91 0.08 52.37 0.17 

O-044 11/03/78 15.41 0.31 8.51 0.06 46.75 0.21 

O-045 11/22/78 15.03 0.64 7.38 0.06 45.98 0.10 

O-046 11/22/78 15.53 0.35 8.30 0.07 44.70 0.10 

O-052 12/20/78 15.34 0.48 7.92 0.05 51.39 0.11 

O-084 01/17/80 16.26 0.41 8.43 0.11 44.38 0.11 

O-086 01/21/80 15.14 0.48 8.30 0.05 44.28 0.12 

O-089 02/07/80 15.94 0.30 8.49 0.07 44.42 0.14 

O-090 02/08/80 15.41 0.31 8.28 0.05 44.36 0.18 

O-091 03/25/80 16.26 0.37 8.29 0.05 44.49 0.18 

O-093 04/15/80 15.21 0.31 8.10 0.08 44.15 0.10 

O-096 04/15/80 15.63 0.32 8.42 0.11 44.44 0.13 

O-099 04/18/80 16.01 0.33 8.30 0.07 44.40 0.10 

O-102 04/22/80 16.06 0.58 8.48 0.06 44.45 0.13 

O-087 04/29/80 15.43 0.31 8.40 0.06 44.93 0.14 

O-104 04/29/80 15.80 0.39 8.45 0.07 44.48 0.10 

O-110 06/10/80 15.93 0.44 8.39 0.09 44.48 0.10 

O-114 07/08/80 14.73 0.52 8.27 0.07 44.47 0.11 

O-115 07/17/80 15.49 0.44 8.33 0.08 44.55 0.10 

O-109 10/01/80 15.48 0.38 8.32 0.06 44.39 0.11 

O-124 10/15/80 15.21 0.55 8.41 0.08 44.42 0.20 

O-127 11/12/80 15.14 0.33 8.31 0.07 44.32 0.11 

O-132 12/31/80 15.71 0.38 8.41 0.06 44.44 0.14 

O-133 01/15/81 15.24 0.43 8.46 0.05 44.34 0.15 

O-136 02/25/81 15.60 0.34 8.42 0.08 44.33 0.21 

O-138 03/11/81 15.77 0.36 8.21 0.08 44.39 0.12 

O-140 03/18/81 15.10 0.49 8.29 0.07 44.30 0.10 

O-158 04/17/81 16.08 0.46 8.31 0.05 44.33 0.10 
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O-160 04/29/81 15.41 0.33 8.38 0.05 44.34 0.17 

O-163 05/13/81 16.29 0.31 8.32 0.12 44.43 0.23 

O-170 07/15/81 15.84 0.34 8.36 0.10 44.31 0.12 

O-171 07/29/81 15.38 0.53 8.31 0.05 44.76 0.15 

O-174 08/19/81 18.18 0.40 9.81 0.07 46.19 0.15 

O-176 09/02/81 15.19 0.35 8.34 0.06 44.67 0.30 

O-179 09/16/81 16.02 0.30 8.07 0.09 44.24 0.13 

O-183 10/14/81 15.50 0.33 8.27 0.09 44.24 0.13 

O-184 10/14/81 15.38 0.38 8.13 0.10 44.24 0.10 

O-185 10/28/81 15.26 0.36 8.24 0.06 44.28 0.10 

O-190 12/02/81 16.40 0.51 8.40 0.06 44.48 0.14 

O-194 12/30/81 15.74 0.30 8.30 0.10 44.08 0.16 

O-196 01/13/82 15.39 0.52 8.28 0.05 44.53 0.10 

O-199 02/03/82 16.31 0.42 8.32 0.05 44.34 0.11 

O-200 02/03/82 14.62 0.40 8.20 0.05 44.25 0.15 

O-205 03/24/82 15.66 0.39 8.38 0.10 44.45 0.18 

O-206 03/24/82 14.70 0.38 8.19 0.05 44.47 0.11 

O-207 04/07/82 15.99 0.32 8.14 0.06 44.08 0.23 

O-210 04/21/82 15.91 0.34 8.30 0.07 44.45 0.19 

O-215 06/02/82 15.75 0.40 8.26 0.05 44.68 0.20 

O-218 06/30/82 15.47 0.34 8.27 0.05 44.30 0.17 

O-220 07/14/82 15.31 0.35 8.21 0.05 44.21 0.11 

O-222 07/28/82 15.46 0.51 8.17 0.10 44.33 0.11 

O-223 08/11/82 15.42 0.30 8.46 0.07 44.58 0.18 

O-228 09/08/82 15.53 0.38 8.36 0.06 44.54 0.15 

O-235 11/30/82 16.48 0.34 8.23 0.08 44.59 0.23 

O-236 11/30/82 15.61 0.35 8.26 0.06 44.40 0.13 

O-238 12/08/82 15.04 0.50 8.17 0.08 44.34 0.17 

O-239 12/29/82 15.46 0.36 8.36 0.05 44.42 0.23 

O-243 01/31/83 15.29 0.30 8.36 0.06 44.35 0.13 

O-246 02/11/83 15.23 0.37 8.22 0.09 44.15 0.12 

O-249 03/09/83 15.54 0.34 8.28 0.05 44.37 0.15 

O-253 04/06/83 15.69 0.35 8.34 0.06 44.47 0.36 

O-254 04/06/83 16.11 0.41 8.36 0.06 44.30 0.13 

O-256 04/20/83 16.03 0.31 8.17 0.07 44.37 0.18 

O-258 05/24/83 14.90 0.39 8.26 0.05 44.50 0.25 

O-261 06/01/83 15.74 0.34 8.25 0.05 44.12 0.10 

O-262 06/01/83 15.71 0.31 8.24 0.05 44.18 0.10 

O-265 06/29/83 16.44 0.31 8.33 0.06 44.33 0.21 

O-269 08/03/83 15.74 0.43 8.30 0.05 44.34 0.10 

O-270 08/03/83 15.60 0.37 8.34 0.07 44.34 0.13 

O-272 08/31/83 15.33 0.30 8.28 0.05 44.48 0.14 
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O-274 09/14/83 16.07 0.43 8.22 0.05 44.58 0.35 

O-277 10/12/83 14.77 0.45 8.18 0.12 44.39 0.20 

O-279 10/26/83 15.54 0.33 8.29 0.05 44.78 0.19 

O-285 12/14/83 15.35 0.32 8.24 0.05 44.47 0.10 

O-286 12/14/83 15.46 0.36 8.16 0.05 44.37 0.19 

O-287 01/25/84 15.70 0.30 8.30 0.08 44.51 0.25 

O-288 01/25/84 15.39 0.31 8.26 0.08 44.16 0.12 

O-289 02/10/84 14.92 0.34 8.30 0.07 44.31 0.10 

O-302 06/27/84 15.55 0.30 8.25 0.05 44.34 0.10 

O-303 07/11/84 15.20 0.34 8.16 0.08 44.24 0.12 

O-308 09/26/84 15.29 0.32 8.36 0.05 44.38 0.26 

O-316 01/17/85 16.02 0.40 8.35 0.08 44.33 0.10 

O-317 01/17/85 15.31 0.31 8.26 0.05 44.25 0.27 

O-323 10/24/85 14.90 0.60 8.20 0.05 44.20 0.12 

O-330 08/04/86 15.30 0.40 8.18 0.10 44.27 0.11 

O-331 10/14/86 15.28 0.48 8.13 0.08 44.91 0.14 

O-332 10/28/86 14.94 0.38 8.05 0.06 44.13 0.15 

O-333 12/04/86 15.06 0.30 8.21 0.05 44.39 0.17 

O-335 01/23/87 14.99 0.30 8.03 0.09 44.33 0.13 

O-338 04/23/87 15.50 0.57 8.22 0.07 44.31 0.14 

O-339 04/23/87 14.89 0.53 8.11 0.08 44.41 0.11 

O-340 04/28/87 14.90 0.46 8.15 0.05 44.18 0.17 

O-341 04/28/87 15.64 0.38 8.06 0.05 44.36 0.17 

O-344 06/16/87 15.76 0.41 8.05 0.07 44.42 0.16 

CORSP 355 09/16/87 14.60 0.52 8.02 0.06 44.17 0.10 

O-361 03/17/88 15.37 0.39 7.93 0.07 44.23 0.13 

O-369 08/29/88 15.26 0.30 8.14 0.05 44.27 0.11 

R-348B 12/28/88 14.89 0.42 8.10 0.06 44.17 0.10 

R-346B 01/17/89 14.93 0.34 7.97 0.06 44.32 0.20 

RSP 371 03/21/89 15.50 0.55 7.97 0.05 44.16 0.11 

RSP 373 03/29/89 15.44 0.45 7.97 0.08 44.38 0.24 

RSP 379 04/11/89 15.05 0.54 7.97 0.06 44.08 0.10 

RSP 380 04/12/89 15.24 0.45 7.93 0.05 44.16 0.11 

RSP 381 04/12/89 15.33 0.40 8.10 0.08 44.24 0.21 

RSP 383 05/03/89 14.66 0.32 7.99 0.13 44.24 0.18 

RSP 384 05/03/89 15.27 0.39 7.87 0.07 44.20 0.18 

RSP 386 06/06/89 15.02 0.35 8.02 0.07 44.13 0.15 

CORSP 387 08/04/89 15.34 0.30 8.07 0.08 44.29 0.10 

CORSP 388 08/25/89 14.31 0.43 7.98 0.09 44.19 0.10 

CORSP 389 09/01/89 15.49 0.46 7.89 0.05 44.33 0.16 

RSP 390 09/14/89 14.97 0.31 7.85 0.09 44.39 0.11 

CORSP 391 09/29/89 14.84 0.35 7.86 0.09 44.43 0.17 
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RSP 392 10/06/89 14.53 0.37 7.97 0.08 43.98 0.12 

RSP 393 10/12/89 14.41 0.33 8.01 0.08 44.15 0.12 

CORSP 397 11/10/89 15.28 0.55 8.13 0.08 44.42 0.23 

CORSP 399 11/21/89 14.90 0.41 7.93 0.06 44.16 0.13 

CORSP 402 03/20/90 14.78 0.36 7.97 0.06 44.35 0.20 

CORSP 403 03/27/90 14.48 0.42 8.06 0.06 44.24 0.19 

CORSP 405 04/14/90 15.38 0.45 7.86 0.05 44.33 0.15 

CORSP 406 08/09/90 14.57 0.45 7.97 0.06 44.24 0.16 

CORSP 407 08/15/90 14.99 0.63 7.99 0.09 44.28 0.15 

CORSP 408 09/25/90 15.17 0.30 7.98 0.11 44.28 0.11 

CORSP 409 04/22/91 14.52 0.40 7.93 0.08 44.07 0.10 

CORSP 417 04/02/92 15.12 0.58 7.86 0.07 44.17 0.10 

SPO 298 06/02/92 14.78 0.56 7.87 0.05 44.05 0.11 

CO 420 12/29/92 15.56 0.30 7.88 0.05 44.08 0.24 

CO 426 05/06/93 14.98 0.39 7.97 0.08 44.05 0.10 

CO 427 05/21/93 15.28 0.30 7.79 0.05 44.12 0.24 

CO 428 06/17/93 14.87 0.41 7.84 0.09 44.15 0.15 

CO 433 10/08/93 15.15 0.33 7.99 0.06 44.25 0.12 

CO 434 10/15/93 14.67 0.56 7.86 0.09 44.13 0.16 

CO 435 10/25/93 15.05 0.39 7.88 0.06 44.11 0.10 

CO 438 12/08/93 14.56 0.32 7.84 0.09 44.22 0.11 

CO 442 05/10/94 15.19 0.32 8.05 0.09 44.59 0.13 

CORSP 443 06/22/94 15.17 0.43 7.82 0.08 44.05 0.13 

CORSP 444 07/20/94 14.63 0.36 7.75 0.05 44.13 0.17 

CO 445 08/12/94 14.78 0.56 7.95 0.06 44.35 0.11 

CO 447 11/11/94 14.37 0.54 7.81 0.05 44.27 0.19 

CO 448 11/14/94 14.40 0.38 7.70 0.06 44.19 0.10 

CO 450 03/30/95 15.16 0.57 7.76 0.06 44.15 0.23 

CO 452 06/16/95 14.65 0.30 7.74 0.05 44.12 0.24 

O-027 07/25/95 14.56 0.51 7.74 0.11 44.14 0.19 

CO 453 10/11/95 14.79 0.49 7.89 0.06 43.97 0.10 

CO 454 12/28/95 14.43 0.30 7.66 0.07 44.13 0.16 

CO 455 01/10/96 14.97 0.69 7.85 0.07 44.10 0.29 

CO 456 02/16/96 14.86 0.33 7.69 0.10 44.19 0.10 

CO 457 02/29/96 15.00 0.31 7.80 0.10 44.07 0.17 

CO 459 04/29/96 14.83 0.31 7.79 0.08 44.20 0.13 

CO 460 05/31/96 14.47 0.41 7.72 0.09 44.31 0.17 

CO 462 07/31/96 14.02 0.56 7.73 0.10 44.10 0.10 

CO 463 09/05/96 14.93 0.55 7.68 0.06 44.11 0.12 

O-051 12/17/96 14.67 0.74 7.73 0.13 46.39 0.11 
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Table A.3. OHSU-PSU air archive isotopic N2O composition after numerically solving 

for intramolecular composition. Nitrogen values (δ15N, δ15Nα, and δ15Nβ) are relative to 

N2 in air, δ18O is relative to VSMOW. Units are in per mille (‰). 

Sample Collected δ15N δ15N 1σ δ15Nα δ15Nα 1σ δ15Nβ δ15Nβ 1σ δ18O δ18O 1σ 

O-031 04/03/78 7.66 0.06 17.57 0.76 -2.25 0.77 44.96 0.11 

O-029 04/04/78 7.84 0.05 16.57 0.53 -0.88 0.53 44.70 0.13 

O-026 04/06/78 7.88 0.07 17.02 0.79 -1.26 0.80 44.82 0.25 

O-017 04/07/78 7.70 0.07 17.40 0.79 -2.00 0.80 44.62 0.13 

O-020 04/07/78 8.20 0.05 17.26 0.42 -0.86 0.43 45.76 0.11 

O-021 10/05/78 7.67 0.09 16.39 0.45 -1.05 0.50 44.72 0.15 

O-022 10/05/78 7.85 0.07 17.17 0.66 -1.47 0.69 45.09 0.10 

O-041 11/03/78 7.98 0.08 18.34 0.51 -2.38 0.55 52.65 0.17 

O-044 11/03/78 7.71 0.06 16.45 0.45 -1.02 0.47 46.97 0.21 

O-045 11/22/78 6.54 0.06 16.29 0.88 -3.21 0.89 46.23 0.10 

O-046 11/22/78 7.54 0.07 16.79 0.50 -1.71 0.54 44.93 0.10 

O-052 12/20/78 6.97 0.05 16.23 0.68 -2.30 0.68 51.67 0.11 

O-084 01/17/80 7.69 0.11 17.78 0.60 -2.40 0.65 44.59 0.11 

O-086 01/21/80 7.56 0.05 16.27 0.68 -1.15 0.69 44.49 0.12 

O-089 02/07/80 7.75 0.07 17.33 0.43 -1.84 0.47 44.64 0.14 

O-090 02/08/80 7.53 0.05 16.64 0.44 -1.58 0.45 44.59 0.19 

O-091 03/25/80 7.54 0.05 17.87 0.53 -2.79 0.54 44.70 0.18 

O-093 04/15/80 7.35 0.08 16.45 0.47 -1.74 0.51 44.37 0.10 

O-096 04/15/80 7.67 0.11 16.92 0.46 -1.57 0.54 44.65 0.13 

O-099 04/18/80 7.55 0.08 17.49 0.48 -2.39 0.50 44.61 0.10 

O-102 04/22/80 7.74 0.06 17.53 0.82 -2.05 0.83 44.67 0.13 

O-087 04/29/80 7.64 0.06 16.61 0.43 -1.33 0.45 45.15 0.15 

O-104 04/29/80 7.71 0.07 17.16 0.57 -1.74 0.60 44.70 0.10 

O-110 06/10/80 7.64 0.09 17.36 0.62 -2.08 0.65 44.69 0.10 

O-114 07/08/80 7.52 0.07 15.69 0.73 -0.65 0.75 44.69 0.11 

O-115 07/17/80 7.58 0.08 16.75 0.63 -1.60 0.66 44.77 0.11 

O-109 10/01/80 7.57 0.06 16.76 0.55 -1.62 0.57 44.61 0.11 

O-124 10/15/80 7.67 0.08 16.34 0.78 -1.01 0.80 44.64 0.19 

O-127 11/12/80 7.56 0.08 16.27 0.46 -1.15 0.49 44.53 0.12 

O-132 12/31/80 7.67 0.06 17.07 0.52 -1.74 0.54 44.66 0.14 

O-133 01/15/81 7.72 0.05 16.39 0.60 -0.94 0.61 44.55 0.15 

O-136 02/25/81 7.68 0.09 16.90 0.50 -1.54 0.55 44.54 0.21 

O-138 03/11/81 7.46 0.08 17.19 0.51 -2.27 0.55 44.61 0.12 

O-140 03/18/81 7.54 0.07 16.21 0.71 -1.12 0.73 44.52 0.10 

O-158 04/17/81 7.57 0.05 17.58 0.65 -2.45 0.66 44.55 0.10 
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O-160 04/29/81 7.64 0.05 16.60 0.49 -1.33 0.50 44.56 0.17 

O-163 05/13/81 7.57 0.13 17.88 0.45 -2.74 0.54 44.64 0.23 

O-170 07/15/81 7.62 0.11 17.25 0.49 -2.02 0.55 44.53 0.12 

O-171 07/29/81 7.55 0.05 16.56 0.77 -1.45 0.77 44.98 0.15 

O-174 08/19/81 9.10 0.07 19.99 0.57 -1.79 0.58 46.39 0.16 

O-176 09/02/81 7.59 0.06 16.32 0.51 -1.15 0.52 44.88 0.31 

O-179 09/16/81 7.31 0.09 17.58 0.42 -2.95 0.48 44.47 0.13 

O-183 10/14/81 7.52 0.10 16.80 0.47 -1.76 0.52 44.46 0.13 

O-184 10/14/81 7.38 0.11 16.68 0.52 -1.92 0.57 44.46 0.10 

O-185 10/28/81 7.49 0.06 16.46 0.52 -1.48 0.55 44.50 0.10 

O-190 12/02/81 7.66 0.06 17.99 0.72 -2.68 0.74 44.69 0.14 

O-194 12/30/81 7.56 0.11 17.13 0.42 -2.02 0.49 44.29 0.16 

O-196 01/13/82 7.53 0.05 16.64 0.75 -1.59 0.76 44.75 0.10 

O-199 02/03/82 7.57 0.05 17.92 0.59 -2.78 0.60 44.56 0.11 

O-200 02/03/82 7.45 0.05 15.56 0.55 -0.66 0.57 44.47 0.15 

O-205 03/24/82 7.63 0.10 16.95 0.56 -1.69 0.61 44.66 0.18 

O-206 03/24/82 7.43 0.05 15.62 0.52 -0.76 0.54 44.69 0.11 

O-207 04/07/82 7.39 0.06 17.52 0.45 -2.74 0.47 44.28 0.23 

O-210 04/21/82 7.55 0.07 17.34 0.49 -2.23 0.51 44.67 0.19 

O-215 06/02/82 7.50 0.05 17.12 0.57 -2.12 0.59 44.90 0.21 

O-218 06/30/82 7.52 0.05 16.75 0.48 -1.71 0.49 44.51 0.17 

O-220 07/14/82 7.46 0.05 16.49 0.49 -1.57 0.50 44.43 0.11 

O-222 07/28/82 7.41 0.10 16.76 0.73 -1.93 0.78 44.55 0.11 

O-223 08/11/82 7.72 0.07 16.61 0.42 -1.18 0.45 44.79 0.18 

O-228 09/08/82 7.61 0.06 16.80 0.54 -1.58 0.56 44.75 0.16 

O-235 11/30/82 7.47 0.08 18.18 0.49 -3.23 0.53 44.81 0.24 

O-236 11/30/82 7.51 0.06 16.93 0.49 -1.92 0.50 44.62 0.13 

O-238 12/08/82 7.41 0.09 16.17 0.74 -1.34 0.76 44.55 0.17 

O-239 12/29/82 7.61 0.05 16.71 0.52 -1.48 0.54 44.64 0.23 

O-243 01/31/83 7.62 0.06 16.46 0.42 -1.23 0.44 44.56 0.13 

O-246 02/11/83 7.47 0.10 16.44 0.51 -1.50 0.56 44.38 0.12 

O-249 03/09/83 7.53 0.05 16.84 0.48 -1.78 0.50 44.59 0.15 

O-253 04/06/83 7.59 0.07 17.04 0.50 -1.85 0.51 44.68 0.35 

O-254 04/06/83 7.61 0.06 17.63 0.60 -2.40 0.62 44.52 0.13 

O-256 04/20/83 7.41 0.07 17.56 0.43 -2.73 0.45 44.59 0.18 

O-258 05/24/83 7.51 0.05 15.93 0.55 -0.92 0.55 44.74 0.25 

O-261 06/01/83 7.51 0.05 17.16 0.50 -2.15 0.51 44.33 0.10 

O-262 06/01/83 7.50 0.05 17.10 0.45 -2.11 0.46 44.40 0.10 

O-265 06/29/83 7.59 0.07 18.10 0.43 -2.93 0.46 44.55 0.21 

O-269 08/03/83 7.55 0.05 17.12 0.60 -2.01 0.62 44.55 0.10 

O-270 08/03/83 7.59 0.07 16.91 0.53 -1.73 0.56 44.55 0.13 

O-272 08/31/83 7.53 0.05 16.51 0.43 -1.45 0.45 44.70 0.14 
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O-274 09/14/83 7.46 0.05 17.59 0.60 -2.66 0.61 44.80 0.37 

O-277 10/12/83 7.42 0.13 15.78 0.65 -0.93 0.71 44.61 0.20 

O-279 10/26/83 7.53 0.05 16.81 0.49 -1.74 0.51 45.01 0.19 

O-285 12/14/83 7.49 0.05 16.56 0.46 -1.58 0.48 44.69 0.10 

O-286 12/14/83 7.41 0.05 16.75 0.50 -1.94 0.52 44.58 0.19 

O-287 01/25/84 7.55 0.09 17.05 0.42 -1.96 0.46 44.74 0.25 

O-288 01/25/84 7.52 0.08 16.62 0.44 -1.59 0.47 44.37 0.12 

O-289 02/10/84 7.56 0.07 15.94 0.48 -0.83 0.51 44.52 0.10 

O-302 06/27/84 7.50 0.05 16.85 0.43 -1.85 0.45 44.56 0.10 

O-303 07/11/84 7.41 0.08 16.38 0.48 -1.56 0.51 44.45 0.12 

O-308 09/26/84 7.62 0.05 16.48 0.45 -1.24 0.47 44.60 0.26 

O-316 01/17/85 7.61 0.08 17.47 0.57 -2.26 0.60 44.54 0.10 

O-317 01/17/85 7.51 0.05 16.54 0.44 -1.52 0.45 44.47 0.27 

O-323 10/24/85 7.45 0.05 15.93 0.85 -1.03 0.86 44.42 0.13 

O-330 08/04/86 7.43 0.11 16.53 0.55 -1.68 0.60 44.49 0.11 

O-331 10/14/86 7.36 0.08 16.49 0.69 -1.76 0.72 45.14 0.14 

O-332 10/28/86 7.30 0.06 16.08 0.53 -1.49 0.54 44.35 0.15 

O-333 12/04/86 7.46 0.05 16.16 0.41 -1.24 0.43 44.61 0.18 

O-335 01/23/87 7.27 0.09 16.13 0.41 -1.60 0.46 44.55 0.14 

O-338 04/23/87 7.47 0.07 16.78 0.77 -1.84 0.79 44.53 0.14 

O-339 04/23/87 7.35 0.08 15.95 0.75 -1.25 0.77 44.63 0.11 

O-340 04/28/87 7.40 0.05 15.98 0.67 -1.18 0.68 44.40 0.17 

O-341 04/28/87 7.30 0.05 17.03 0.53 -2.44 0.55 44.59 0.17 

O-344 06/16/87 7.29 0.07 17.21 0.57 -2.63 0.59 44.64 0.16 

CORSP 355 09/16/87 7.26 0.06 15.62 0.74 -1.09 0.76 44.39 0.10 

O-361 03/17/88 7.17 0.08 16.72 0.56 -2.39 0.58 44.45 0.13 

O-369 08/29/88 7.39 0.05 16.50 0.44 -1.72 0.45 44.49 0.11 

R-348B 12/28/88 7.35 0.06 15.98 0.57 -1.28 0.59 44.39 0.11 

R-346B 01/17/89 7.21 0.06 16.07 0.49 -1.66 0.50 44.53 0.19 

RSP 371 03/21/89 7.21 0.05 16.89 0.77 -2.46 0.78 44.38 0.11 

RSP 373 03/29/89 7.21 0.09 16.82 0.64 -2.40 0.68 44.59 0.25 

RSP 379 04/11/89 7.21 0.06 16.30 0.75 -1.87 0.77 44.29 0.10 

RSP 380 04/12/89 7.17 0.05 16.52 0.64 -2.18 0.65 44.38 0.11 

RSP 381 04/12/89 7.35 0.08 16.59 0.55 -1.90 0.59 44.46 0.21 

RSP 383 05/03/89 7.23 0.13 15.68 0.47 -1.22 0.56 44.46 0.18 

RSP 384 05/03/89 7.11 0.07 16.61 0.54 -2.40 0.57 44.41 0.18 

RSP 386 06/06/89 7.26 0.07 16.20 0.48 -1.68 0.51 44.35 0.15 

CORSP 387 08/04/89 7.31 0.08 16.62 0.42 -2.00 0.46 44.51 0.10 

CORSP 388 08/25/89 7.22 0.09 15.19 0.61 -0.74 0.65 44.41 0.10 

CORSP 389 09/01/89 7.12 0.05 16.89 0.65 -2.65 0.66 44.55 0.16 

RSP 390 09/14/89 7.08 0.09 16.18 0.44 -2.02 0.49 44.61 0.11 

CORSP 391 09/29/89 7.09 0.09 15.98 0.48 -1.81 0.52 44.65 0.17 
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RSP 392 10/06/89 7.22 0.08 15.50 0.52 -1.06 0.56 44.20 0.12 

RSP 393 10/12/89 7.25 0.09 15.34 0.46 -0.84 0.50 44.36 0.12 

CORSP 397 11/10/89 7.37 0.08 16.52 0.77 -1.77 0.80 44.63 0.24 

CORSP 399 11/21/89 7.17 0.06 16.04 0.59 -1.70 0.60 44.38 0.13 

CORSP 402 03/20/90 7.21 0.06 15.85 0.52 -1.44 0.53 44.57 0.21 

CORSP 403 03/27/90 7.31 0.06 15.40 0.56 -0.79 0.58 44.46 0.20 

CORSP 405 04/14/90 7.09 0.05 16.74 0.64 -2.56 0.65 44.56 0.15 

CORSP 406 08/09/90 7.21 0.06 15.58 0.64 -1.16 0.66 44.45 0.16 

CORSP 407 08/15/90 7.23 0.09 16.15 0.89 -1.68 0.92 44.51 0.15 

CORSP 408 09/25/90 7.22 0.12 16.41 0.43 -1.97 0.51 44.50 0.11 

CORSP 409 04/22/91 7.17 0.09 15.52 0.58 -1.18 0.60 44.29 0.10 

CORSP 417 04/02/92 7.10 0.07 16.38 0.84 -2.18 0.86 44.39 0.10 

SPO 298 06/02/92 7.11 0.05 15.93 0.80 -1.71 0.81 44.27 0.11 

CO 420 12/29/92 7.12 0.05 16.98 0.43 -2.75 0.45 44.31 0.23 

CO 426 05/06/93 7.21 0.08 16.14 0.54 -1.71 0.58 44.27 0.10 

CO 427 05/21/93 7.02 0.05 16.64 0.42 -2.59 0.44 44.34 0.24 

CO 428 06/17/93 7.07 0.09 16.02 0.57 -1.88 0.60 44.38 0.15 

CO 433 10/08/93 7.23 0.06 16.37 0.47 -1.92 0.49 44.47 0.12 

CO 434 10/15/93 7.10 0.09 15.72 0.77 -1.53 0.80 44.35 0.16 

CO 435 10/25/93 7.12 0.06 16.30 0.56 -2.06 0.58 44.33 0.10 

CO 438 12/08/93 7.07 0.09 15.58 0.47 -1.44 0.52 44.44 0.12 

CO 442 05/10/94 7.28 0.09 16.41 0.45 -1.84 0.50 44.82 0.14 

CORSP 443 06/22/94 7.06 0.09 16.49 0.61 -2.37 0.65 44.27 0.13 

CORSP 444 07/20/94 6.98 0.05 15.72 0.52 -1.76 0.53 44.36 0.18 

CO 445 08/12/94 7.19 0.06 15.90 0.81 -1.52 0.83 44.57 0.11 

CO 447 11/11/94 7.04 0.05 15.31 0.78 -1.23 0.80 44.50 0.20 

CO 448 11/14/94 6.92 0.06 15.43 0.55 -1.58 0.57 44.42 0.10 

CO 450 03/30/95 6.99 0.06 16.48 0.82 -2.50 0.84 44.36 0.24 

CO 452 06/16/95 6.97 0.05 15.72 0.42 -1.78 0.43 44.35 0.23 

O-027 07/25/95 6.97 0.12 15.65 0.75 -1.70 0.79 44.36 0.19 

CO 453 10/11/95 7.13 0.06 15.91 0.70 -1.64 0.72 44.20 0.10 

CO 454 12/28/95 6.89 0.07 15.48 0.43 -1.71 0.45 44.36 0.16 

CO 455 01/10/96 7.09 0.08 16.19 0.99 -2.02 1.00 44.33 0.29 

CO 456 02/16/96 6.91 0.11 16.06 0.47 -2.24 0.53 44.42 0.10 

CO 457 02/29/96 7.03 0.10 16.23 0.43 -2.17 0.49 44.29 0.17 

CO 459 04/29/96 7.02 0.09 16.00 0.41 -1.97 0.46 44.42 0.13 

CO 460 05/31/96 6.94 0.09 15.50 0.59 -1.62 0.62 44.53 0.17 

CO 462 07/31/96 6.96 0.11 14.82 0.78 -0.90 0.80 44.32 0.10 

CO 463 09/05/96 6.91 0.07 16.17 0.76 -2.35 0.78 44.33 0.12 

O-051 12/17/96 6.89 0.14 15.69 1.04 -1.91 1.09 46.63 0.11 
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Table A.4. Total annual N2O anthropogenic source in TgN yr-1 between 1978 and 1996 

for EDGAR v4.3.2 and the results of the 2-box model.  

 

Year 
EDGAR 
v4.3.2 

2-Box 
Model 

1978 6.63 3.81 
1979 6.8 3.88 
1980 6.81 3.96 
1981 6.81 4.03 
1982 6.75 4.10 
1983 6.88 4.18 
1984 7.06 4.26 
1985 7.04 4.34 
1986 7.09 4.42 
1987 7.19 4.50 
1988 7.26 4.58 
1989 7.35 4.66 
1990 7.21 4.75 
1991 7.17 4.84 
1992 7.22 4.93 
1993 7.19 5.02 
1994 7.33 5.11 
1995 7.56 5.21 
1996 7.71 5.30 
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Appendix B 

Matlab Scripts 

B.1. Sub-routine to solve for N2O isotopic composition from measured isotope ratios. 

% Initial processing script for n2o isotopic results 
% 
 
% 
% We are beginning with the values in iVals brought in from Excel 
% iVals columns are: 
% Col 1 = ddate,    Col 2 = fdate,      Col 3 = N2O mole fraction (ppb) 
% Col 4 = N2O +/-   Col 5 = d31,        Col 6 = d31 1sig,    
% Col 7 = d45,      Col 8 = d45 1sig,   Col 9 = d46,     
% Col 10 = d46 1sig 
% 
 
% 
% First step is to transform d values into R values 
% 
% The equation for d: 
% d = [(R_sample / R_std) -1] * 1000 
% 
% So, solving for R_sample: 
% R_sample = [(d/1000)+1] * R_std 
 
% R_std values are derived from the exact known R values in the 15N Air 
% and 17O and 18O VSMOW standards 
% R31_std = R15 + R17 
% R45_std = 2(R15) + R 17  
% R46_std = R18 + 2*(R17+R15) + (R15)^2 
% where R15 = 0.0036765, R17 = 0.0003799, R18 = 0.0020052 
 
% We define R_std as: 
R15_std = 0.0036765; 
R17_std = 0.0003799; 
R18_std = 0.0020052; 
R31_std = 0.00405640;      
R45_std = 0.00773290; 
R46_std = 0.00202151; 
 
% Now define arrays for the values to go into 
 
D_31 = zeros(length(iVals(:,1)),1); 
D_45 = zeros(length(iVals(:,1)),1); 
D_46 = zeros(length(iVals(:,1)),1); 
 
% Loop to solve for R values (Col 1) along with 1-sigma in R (Col 2) 
for i = 1:length(iVals(:,1)) 
    D_31(i,1) = ((iVals(i,5)/1000)+1)*R31_std; 
    D_31(i,2) = ((((iVals(i,5)+iVals(i,6))/1000)+1)*R31_std)-D_31(i,1); 
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    D_45(i,1) = ((iVals(i,7)/1000)+1)*R45_std; 
    D_45(i,2) = ((((iVals(i,7)+iVals(i,8))/1000)+1)*R45_std)-D_45(i,1); 
     
    D_46(i,1) = ((iVals(i,9)/1000)+1)*R46_std; 
    D_46(i,2) = ((((iVals(i,9)+iVals(i,10))/1000)+1)*R46_std)-D_46(i,1); 
end 
 
% From here, we need to calculate 1000 values for each data 
% point, using Col 1 as the mean and Col 2 as the stdev  
 
r1 = zeros(length(iVals(:,1)),1000); 
r2 = zeros(length(iVals(:,1)),1000); 
r3 = zeros(length(iVals(:,1)),1000); 
 
for i = 1:length(iVals(:,1)) 
    r1(i,:) = normrnd(D_45(i,1),D_45(i,2),[1,1000]); %45R  
    r2(i,:) = normrnd(D_46(i,1),D_46(i,2),[1,1000]); %46R 
    r3(i,:) = normrnd(D_31(i,1),D_31(i,2),[1,1000]); %31R 
end 
 
% 
% Define initial guess points for the variable fsolve is to solve for 
% x0 = [15Ra; 15Rb; 17R; 18R]; 
% 
 
x0 = [0.0037416; 0.0036661; 0.0003868; 0.0020762];  
 
% 
% Create vectors for solved values to be placed in 
% 
 
R15a = zeros(length(iVals),1000); 
R15b = zeros(length(iVals),1000); 
R17 = zeros(length(iVals),1000); 
R18 = zeros(length(iVals),1000); 
 
% 
% Loop that will solve the equations for R15a, R15b, R17, and R18 
% 
 
for j = 1:length(iVals(:,1)) 
    for i = 1:1000 % solve equations 1000 times     
     
        x = fsolve(@(x)root4d(x,r1(j,i),r2(j,i),r3(j,i)),x0); % Call fsolve 
     
        R15a(j,i) = x(1); % Places solved values in their correct vector  
        R15b(j,i) = x(2); % without overwriting previous solution 
        R17(j,i) = x(3); 
        R18(j,i) = x(4); 
    end 
end 
%% 
 
%  
% From here, we need to find the mean and stdev of each row for each 
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% variable, then convert to d values  
%  
 
d15Na = zeros(length(iVals(:,1)),2); 
d15Nb = zeros(length(iVals(:,1)),2); 
d17O = zeros(length(iVals(:,1)),2); 
d18O = zeros(length(iVals(:,1)),2); 
 
for i = 1:length(iVals(:,1)) 
    x(1,1) = mean(R15a(i,:)); 
    x(1,2) = std(R15a(i,:)); 
    d15Na(i,1) = ((x(1,1)/R15_std)-1)*1000; 
    d15Na(i,2) = ((((x(1,1)+x(1,2))/R15_std)-1)*1000)-d15Na(i,1); 
     
    x(1,1) = mean(R15b(i,:)); 
    x(1,2) = std(R15b(i,:)); 
    d15Nb(i,1) = ((x(1,1)/R15_std)-1)*1000; 
    d15Nb(i,2) = ((((x(1,1)+x(1,2))/R15_std)-1)*1000)-d15Nb(i,1); 
     
    x(1,1) = mean(R17(i,:)); 
    x(1,2) = std(R17(i,:)); 
    d17O(i,1) = ((x(1,1)/R17_std)-1)*1000; 
    d17O(i,2) = ((((x(1,1)+x(1,2))/R17_std)-1)*1000)-d17O(i,1); 
     
    x(1,1) = mean(R18(i,:)); 
    x(1,2) = std(R18(i,:)); 
    d18O(i,1) = ((x(1,1)/R18_std)-1)*1000; 
    d18O(i,2) = ((((x(1,1)+x(1,2))/R18_std)-1)*1000)-d18O(i,1); 
end 
 
%% 
 
% Now we need to find 15R-bulk 
 
% Define initial guess points for the variable fsolve is to solve for 
% x0 = [R15-bulk; R17; R18]; 
 
 
x0 = [0.0037022; 0.0003868; 0.0020762]; 
 
% 
% Create vectors for solved values to be placed in 
% 
 
R15_bulk = zeros(length(iVals),1000); 
 
% 
% Loop that will solve the equations for 15R-bulk, R17, and R18 
% 
 
for j = 1:length(iVals(:,1)) 
    for i = 1:1000 % solve equations 1000 times     
     
        x = fsolve(@(x)root3d(x,r1(j,i),r2(j,i)),x0); % Call fsolve 
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        R15_bulk(j,i) = x(1);   
 
    end 
end 
 
%% 
 
d15N_bulk = zeros(length(iVals(:,1)),2); 
y = zeros(1,1000); 
 
for i = 1:length(iVals(:,1)) 
    x(1,1) = mean(R15_bulk(i,:)); 
    x(1,2) = std(R15_bulk(i,:)); 
    d15N_bulk(i,1) = ((x(1,1)/R15_std)-1)*1000; 
    d15N_bulk(i,2) = ((((x(1,1)+x(1,2))/R15_std)-1)*1000)-d15N_bulk(i,1); 
end 
 
% Now, we create an array for all of our important values to go in 
 
fVals(:,1) = iVals(:,1); 
fVals(:,2) = iVals(:,2); 
fVals(:,3) = iVals(:,3); 
fVals(:,4) = iVals(:,4); 
fVals(:,5) = d15N_bulk(:,1); 
fVals(:,6) = d15N_bulk(:,2); 
fVals(:,7) = d15Na(:,1); 
fVals(:,8) = d15Na(:,2); 
fVals(:,9) = d15Nb(:,1); 
fVals(:,10) = d15Nb(:,2); 
fVals(:,11) = d17O(:,1); 
fVals(:,12) = d17O(:,2); 
fVals(:,13) = d18O(:,1); 
fVals(:,14) = d18O(:,2); 
fVals(:,15) = iVals(:,5); 
fVals(:,16) = iVals(:,6); 
fVals(:,17) = iVals(:,7); 
fVals(:,18) = iVals(:,8); 
fVals(:,19) = iVals(:,9); 
fVals(:,20) = iVals(:,10); 
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B.2. 2-box model for N2O concentration.  

% Start by defining the change in concentration in time within each box 
% 
% d/dt C_T = S_T + F_S-T - F_T-S    Troposphere  
% d/dt C_S = F_T-S - F_S-T - L      Stratosphere 
%  
% C is the concentration in each box defined by 
% C = [N2O]  
% Let X_S and X_T represent the ratio of the mass within each box 
% Using Kaiser 2002, and Rockmann 2003, we can say 
% X_S = 0.15 and X_T = 0.85  
% 
% F represents the flux of air between the boxes 
% F_S-T = flux FROM the Strat TO the Trop 
% F_T-S = flux FROM the Trop TO the Strat 
% 
% Assume that the Total Flux in Tg/yr is the same in both directions 
% Fx = 1.4 to 2.8 * 10^8 Tg/yr      % Warneck, 1988 and Holton, 1995  
% F_S-T = Fx*[N2O]_S 
% F_T-S = Fx*[N2O]_T 
% 
% L = total sink, which we define as: 
% L = (M_T*[N2O]_T + M_S*[N2O]_S) / tau  
% where tau = lifetime  
% 
% Troposphere equation is: 
% d/dt M_T*[N2O]_T = S_T + Fx*[N2O]_S - Fx*[N2O]_T 
%  
% Stratosphere equation is: 
% d/dt M_S*[N2O]_S = Fx*[N2O]_T - Fx*[N2O]_S - ... 
%   (M_T*[N2O]_T + M_S*[N2O]_S)/tau 
 
% Define the constants and variables  
M = 1.77*10^8;  % Total mol of the atmosphere (Tmol) 
X_S = 0.15;     % Fraction of mass in Stratosphere (Rockmann et al. 2003) 
X_T = 0.85;     % Fraction of mass in Troposphere 
M_S = M*X_S;    % Mass in Stratosphere (Tmol) 
M_T = M*X_T;    % Mass in Troposphere (Tmol) 
Fx = 6937920;       % Avg-Estimate of Trop-Strat Flux (Tmol/yr) 
tau = 120;      % Lifetime of N2O (yr)  
 
% We need to have initial conditions, then perturb the system from there 
% We do not have [N2O]_S values, so we will need to initially solve for it 
% Define what the Steady-State concentration is and the supposed S_nat  
 
% pre-industrial sources 
 
% S_oce in TgN/yr 
S_oce = 4.2;  
S_oce = S_oce/28;    % convert TgN to Tmol  
 
% S_terr in TgN/yr 
S_terr = 6.6; 
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S_terr = S_terr/28;  % convert TgN to Tmol 
 
% name a1 and a2 the ocean and terr source  
a1 = S_oce; 
a2 = S_terr; 
 
% set the dates to solve between  
tspan = (0:10:3000); 
 
% set the initial concentrations 
x0 = [0 0]; 
 
% exponential parameters 
b = 0.0202; 
s = 0; 
 
% solve system using ode23s 
[t,x] = ode23s(@(t,x) Box_Model_Eq1_Revised(t,x,Fx,M_T,M_S,a1,a2,s,b,tau),tspan,x0); 
 
% plot figure 
figure 
plot(t(:,1),x(:,1),'k-'); 
 
% take the last values in x as pre-industrial natural concentrations  
N2O_Ti = x(end,1); 
N2O_Si = x(end,2); 
%% 
% using these values, solve Box_Model_Eq2 
 
% set the dates to solve between 0 and 150 (really 1750 to 2000) 
tspan = (0:1:250); 
 
% set the initial concentrations 
x0 = [N2O_Ti N2O_Si]; 
 
% exponential parameters 
% These are mannually adjusted for the moment, should try to find a better 
% way to define these values in the future 
b = 0.0183;          % High = 0.0185, Mid = 0.0183, Low = 0.0186 
s = 0.0021;          % High = 0.0020, Mid = 0.0021, Low = 0.0020 
 
% solve system using ode23s 
[t,x] = ode23s(@(t,x) Box_Model_Eq2_Revised(t,x,Fx,M_T,M_S,a1,a2,s,b,tau),tspan,x0); 
 
% Create an array for year between 1750 and 2000 counting by 1  
time = 1750:1:2000; 
time = time'; 
 
% Create an array for the concentration between 1750 and 2000 
concentration = zeros(251,2); 
for i = 1:1 
    concentration(i,1) = N2O_Ti; 
    concentration(i,2) = N2O_Si; 
end 
for i = 1:250 
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    concentration(i+1,1) = x(i,1); 
    concentration(i+1,2) = x(i,2); 
end 
 
% plot figure 
figure 
plot(time(:,1),concentration(:,1),'k-'); 
hold on 
 
% include AR5 longterm N2O and CM measured values on plot  
% Note: these need to be loaded in from excel  
% AR5 = []; 
% CM_N2O = []; 
% CM_d15N = []; 
% CM_d15Na = []; 
% CM_d15Nb = []; 
% CM_d18O = []; 
 
% figure  
plot(AR5(:,1),AR5(:,2),'bx'); 
% figure 
% hold on 
plot(CM_N2O(:,1),CM_N2O(:,2),'c+'); 
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B.3. 2-box model, equation 1, for N2O concentration. 
 
% Start with our 2-Equations 
% x(1) = [N2O]_T or troposphere N2O concentration 
% x(2) = [N2O]_S or stratosphere N2O concentration 
% X_T = Ratio of air in troposphere over total(Tg) 
% X_S = Ratio of air in stratosphere over total (Tg) 
% a1 = natural ocean sources 
% a2 = natural terrestrial sources 
% b = anthropogenic growth rate constant 
% Fx = trop-strat mass exchange (Tg/yr) 
 
function dxdt = Box_Model_Eq1_Revised(t,x,Fx,M_T,M_S,a1,a2,s,b,tau) 
 
a3 = s*exp(b*t);      % exponential anthropogenic source 
 
dxdt = zeros(2,1); 
 
dxdt(1) = ((a1 + a2 + 0*a3)/M_T)*10^9 - ((Fx/(M_T))*(x(1) - x(2)));  
dxdt(2) = ((Fx/M_S)*(x(1) - x(2))) - ((M_T)*x(1)... 
    + (M_S)*x(2))/(M_S*tau); 
 
end 
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B.4. 2-box model, equation 2, for N2O concentration. 
 
% We are going to use the same model as Box_Model_Eq, but we already have 
% solved for the initial conditions and found N2O_Ti and N2O_Si 
% 
% Use these values as starting points when adding in anthropogenic 
% emissions starting at the year 1750 = t(0) 
 
% 
% x(1) = [N2O]_T or troposphere N2O concentration 
% x(2) = [N2O]_S or stratosphere N2O concentration 
% X_T = Ratio of air in troposphere over total(Tg) 
% X_S = Ratio of air in stratosphere over total (Tg) 
% a1 = natural ocean sources 
% a2 = natural terrestrial sources 
% b = anthropogenic growth rate constant 
% Fx = trop-strat mass exchange (Tg/yr) 
 
function dxdt = Box_Model_Eq2_Revised(t,x,Fx,M_T,M_S,a1,a2,s,b,tau) 
 
a3 = s*exp(b*t);      % exponential anthropogenic source 
 
dxdt = zeros(2,1); 
 
dxdt(1) = ((a1 + a2 + a3)/M_T)*10^9 - ((Fx/M_T)*(x(1) - x(2)));  
dxdt(2) = ((Fx/M_S)*(x(1) - x(2))) - ((M_T)*x(1)... 
    + (M_S)*x(2))/(M_S*tau); 
 
end 
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B.5. 2-box model for N2O isotopic composition. 
 
% Iso Box Model Solve 
% 
% We start by assuming Box_Model_Solve has been run and values for modelled 
% N2O concentration have been found and fit decently to observations 
%  
% Now we want to solve for the isotopic composition 
% 
% From Park et al. 2012, the pre-industrial background deltas are: 
% d15N_nat = 9.3;    (‰) 
% d15Na_nat = 18.8;   (‰) 
% d15Nb_nat = -0.6;   (‰) 
% d15Nsp_nat = 19.4;   (‰) 
% d18O_nat = 45.5;    (‰) 
% 
% If the model work correctly, these are the values we want to get when 
% solved in steady-state  
%  
% To solve our equation, we need to assume the mean pre-industrial deltas 
% of the natural ocean and terrestrial sources 
 
d15N_ocean = 4.0;   % Sowers 2002 used 5.8, Park 2004 ranges +2 to +10 
d15Na_ocean = 3.0;            % 2.7 
d15Nb_ocean = 5.0;            % 5.3 
d18O_ocean = 31.9;  % Sowers 2002 used 38.9, Park 2004 ranges +14 to +32 
 
d15N_terr = -12.3;    % Sowers 2002 used -15, Park 2004 ranges -34 to +2 
d15Na_terr = -8.1;         % -7.3 
d15Nb_terr = -17.4;        % -17.0 
d18O_terr = 31.9;   % Sowers 2002 used 23.5, Park 2004 ranges -4 to +18 
 
% these are initially adjusted manually to fit the observed data when  
% plotted, then Chi2_Fit is used to optimize the fit to CM data 
d15N_anth = -15.3;      % -15.6 , -15.3 , -15.0 
d15Na_anth = -12.2;     % -13.6 , -12.2 , -10.8 
d15Nb_anth = -15.2;     % -16.8 , -15.2 , -13.6 
d18O_anth = 33.9;       %  33.5 ,  33.9 ,  34.3 
 
% Standard R values to convert R values to deltas 
R18_VSMOW = 0.0020052;  
R15_N2 = 0.0036765; 
 
% equation for delta is d = (R/Rst - 1)*1000, so  
R15N_ocean = ((d15N_ocean/1000)+1)*R15_N2; 
R15Na_ocean = ((d15Na_ocean/1000)+1)*R15_N2; 
R15Nb_ocean = ((d15Nb_ocean/1000)+1)*R15_N2; 
R18O_ocean = ((d18O_ocean/1000)+1)*R18_VSMOW; 
 
R15N_terr = ((d15N_terr/1000)+1)*R15_N2; 
R15Na_terr = ((d15Na_terr/1000)+1)*R15_N2; 
R15Nb_terr = ((d15Nb_terr/1000)+1)*R15_N2; 
R18O_terr = ((d18O_terr/1000)+1)*R18_VSMOW; 
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R15N_anth = ((d15N_anth/1000)+1)*R15_N2; 
R15Na_anth = ((d15Na_anth/1000)+1)*R15_N2; 
R15Nb_anth = ((d15Nb_anth/1000)+1)*R15_N2; 
R18O_anth = ((d18O_anth/1000)+1)*R18_VSMOW; 
 
% we need the fractionation factor (alpha) for each species 
alpha_15N = 0.9838;     % Rahn and Wahlen 2000 used 0.9855 
                        % Rockmann used 0.9829 
                        % table in Park 2004 has 0.9851 
                        % Prokopiou 2017 used 0.9838 
alpha_15Na = 0.9770;    % Rockmann et al. 2003 used 0.9787 
                        % table in Park 2004 has 0.9775 
                        % Prokopiou 2017 used 0.9770 
alpha_15Nb = 0.9906;    % Rockmann et al. 2003 used 0.9871 
                        % Park 2012 1-box solution works with 0.9929 
                        % Prokopiou 2017 used 0.9906 
alpha_18O = 0.9866;     % Rahn and Wahlen 2000 used 0.9871 
                        % Rockmann used 0.986 
                        % table in Park 2004 has 0.9867 
                        % Prokopiou 2017 used 0.9866 
 
% Delta Sink alpha values reported in Toyoda 2001 
% alpha_15N = 0.9767;     % 0.9767 in Rockmann, others have 0.9806 - 0.9577 
% alpha_15Na = 0.9591;    % 0.9643 in Rockmann, others have 0.9429 - 0.9743 
% alpha_15Nb = 0.9845;    % 0.9891 in Rockmann, others have 0.9686 - 0.9925 
% alpha_18O = 0.9754;     % 0.9827 in Rockmann, others have 0.9540 - 0.9871 
                         
% Now we have enough info to plug into our model and solve for steady-state 
 
% Define concentrations in each box during pre-industrial period 
N2O_T = N2O_Ti; 
N2O_S = N2O_Si; 
 
% First solve for d15N 
% define R1, R2, R3, and alpha to their d15N values 
R1 = R15N_ocean; 
R2 = R15N_terr; 
R3 = R15N_anth; 
alpha = alpha_15N; 
 
% set the dates to solve between 0 and 5000 
tspan = (0:100:5000); 
 
% set the initial R values of the troposphere and stratosphere 
x0 = [0 0]; 
 
% solve system using ode23s 
[t,x] = ode23s(@(t,x) Iso_BM_Eq1_Revised(t,x,Fx,N2O_T,N2O_S,M_T,M_S,a1,a2,s,b,... 
    R1,R2,R3,tau,alpha),tspan,x0); 
 
% values in x are R values, we need to convert to deltas  
% x(:,1) = ((x(:,1)/R15_N2)-1)*1000; 
% x(:,2) = ((x(:,2)/R15_N2)-1)*1000; 
 
% plot figure 
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% figure 
% plot(t(:,1),x(:,1),'k-'); 
 
% Now assign the last values in x as the pre-industrial background 
R15N_Ti = x(end,1); 
R15N_Si = x(end,2); 
 
% Solving the system while including the anthropogenic source has to be 
% done in a loop. This is because each year, the concentration is 
% different. The array "concentration" contains the N2O_T (col 1) and N2O_S 
% values (col 2) from 1750 to 2000, with each row representing 1 year.  
 
% Create array for solved values to go in 
d15N_T = zeros(251,2);  % troposphere d15N 
d15N_S = zeros(251,2);  % stratosphere d15N 
 
for i = 1:251 
    d15N_T(i,1) = R15N_Ti; 
    d15N_S(i,1) = R15N_Si; 
end 
 
tspan = (1:1:251); 
     
x0 = [R15N_Ti R15N_Si]; 
 
% The solver doesn't like that the concentration N2O_T and N2O_S changes in 
% time when it isn't in an equation format, so we will need to fit the data 
% and use the fit as a means around this problem 
% The matrix "concentration" contains the N2O_T and N2O_S values matching 
% the year in the array "time" - 1750 
 
year = []; 
year(:,1) = time(1:1:end,1) - 1750; 
f1 = fit(year(:,1),concentration(1:1:end,1),'poly4');    % N2O_T function 
coef_1 = coeffvalues(f1);   % values are a, b, c, and d from exp2 fit 
f2 = fit(year(:,1),concentration(1:1:end,2),'poly4');    % N2O_S function 
coef_2 = coeffvalues(f2);   % values are a, b, c, and d from exp2 fit 
 
% solve Iso_BM_Eq3 using ode23s 
[t,x] = ode23s(@(t,x) Iso_BM_Eq3_Revised(t,x,Fx,coef_1,coef_2,M_T,M_S,a1,a2,s,b,... 
    R1,R2,R3,tau,alpha),tspan,x0); 
     
d15N_T(1:1:251,1) = x(1:1:end,1); 
d15N_S(1:1:251,1) = x(1:1:end,2); 
 
% values in d15N_ are R values, we need to convert to deltas  
d15N_T(:,1) = ((d15N_T(:,1)/R15_N2)-1)*1000; 
d15N_S(:,1) = ((d15N_S(:,1)/R15_N2)-1)*1000; 
 
% plot figure 1750 to 2000 
figure 
plot(time(:,1),d15N_T(:,1),'k-'); 
hold on 
plot(CM_d15N(:,1),CM_d15N(:,2),'c+'); 
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% plot figure 1975 to 2000 
% figure 
plot(time(226:1:251,1),d15N_T(226:1:251,1),'k-'); 
hold on 
% plot(CM_d15N(:,1),CM_d15N(:,2),'c+'); 
 
%% 
% Now repeat the process for d15Na 
% define R1, R2, R3, and alpha to their d15Na values 
R1 = R15Na_ocean; 
R2 = R15Na_terr; 
R3 = R15Na_anth; 
alpha = alpha_15Na; 
 
% set the dates to solve between 0 and 5000 
tspan = (0:100:5000); 
 
% set the initial R values of the troposphere and stratosphere 
x0 = [0 0]; 
 
% solve system using ode23s 
[t,x] = ode23s(@(t,x) Iso_BM_Eq1_Revised(t,x,Fx,N2O_T,N2O_S,M_T,M_S,a1,a2,s,b,... 
    R1,R2,R3,tau,alpha),tspan,x0); 
 
% values in x are R values, we need to convert to deltas  
% x(:,1) = ((x(:,1)/R15_N2)-1)*1000; 
% x(:,2) = ((x(:,2)/R15_N2)-1)*1000; 
 
% plot figure 
% figure 
% plot(t(:,1),x(:,1),'k-'); 
 
% Now assign the last values in x as the pre-industrial background 
R15Na_Ti = x(end,1); 
R15Na_Si = x(end,2); 
 
% Solving the system while including the anthropogenic source has to be 
% done in a loop. This is because each year, the concentration is 
% different. The array "concentration" contains the N2O_T (col 1) and N2O_S 
% values (col 2) from 1750 to 2000, with each row representing 1 year.  
 
% Create array for solved values to go in 
d15Na_T = zeros(251,2);  % troposphere d15Na 
d15Na_S = zeros(251,2);  % stratosphere d15Na 
 
for i = 1:251 
    d15Na_T(i,1) = R15Na_Ti; 
    d15Na_S(i,1) = R15Na_Si; 
end 
 
tspan = (0:1:250); 
     
x0 = [R15Na_Ti R15Na_Si]; 
 
% solve Iso_BM_Eq3 using ode23s 
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[t,x] = ode23s(@(t,x) Iso_BM_Eq3_Revised(t,x,Fx,coef_1,coef_2,M_T,M_S,a1,a2,s,b,... 
    R1,R2,R3,tau,alpha),tspan,x0); 
     
d15Na_T(1:1:251,1) = x(1:1:end,1); 
d15Na_S(1:1:251,1) = x(1:1:end,2); 
 
% values in d15N_ are R values, we need to convert to deltas  
d15Na_T(:,1) = ((d15Na_T(:,1)/R15_N2)-1)*1000; 
d15Na_S(:,1) = ((d15Na_S(:,1)/R15_N2)-1)*1000; 
 
% plot figure 1750 to 2000 
figure 
plot(time(:,1),d15Na_T(:,1),'k-'); 
hold on 
plot(CM_d15Na(:,1),CM_d15Na(:,2),'c+'); 
 
% plot figure 1975 to 2000 
% figure 
% plot(time(226:1:251,1),d15Na_T(226:1:251,1),'k-'); 
% hold on 
% plot(CM_d15Na(:,1),CM_d15Na(:,2),'c+'); 
 
%% 
% Repeat for d15Nb 
 
% define R1, R2, R3, and alpha to their d15Nb values 
R1 = R15Nb_ocean; 
R2 = R15Nb_terr; 
R3 = R15Nb_anth; 
alpha = alpha_15Nb; 
 
% set the dates to solve between 0 and 5000 
tspan = (0:100:5000); 
 
% set the initial R values of the troposphere and stratosphere 
x0 = [0 0]; 
 
% solve system using ode23s 
[t,x] = ode23s(@(t,x) Iso_BM_Eq1_Revised(t,x,Fx,N2O_T,N2O_S,M_T,M_S,a1,a2,s,b,... 
    R1,R2,R3,tau,alpha),tspan,x0); 
 
% values in x are R values, we need to convert to deltas  
% x(:,1) = ((x(:,1)/R15_N2)-1)*1000; 
% x(:,2) = ((x(:,2)/R15_N2)-1)*1000; 
 
% plot figure 
% figure 
% plot(t(:,1),x(:,1),'k-'); 
 
% Now assign the last values in x as the pre-industrial background 
R15Nb_Ti = x(end,1); 
R15Nb_Si = x(end,2); 
 
% Solving the system while including the anthropogenic source has to be 
% done in a loop. This is because each year, the concentration is 
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% different. The array "concentration" contains the N2O_T (col 1) and N2O_S 
% values (col 2) from 1750 to 2000, with each row representing 1 year.  
 
% Create array for solved values to go in 
d15Nb_T = zeros(251,2);  % troposphere d15Nb 
d15Nb_S = zeros(251,2);  % stratosphere d15Nb 
 
for i = 1:1 
    d15Nb_T(i,1) = R15Nb_Ti; 
    d15Nb_S(i,1) = R15Nb_Si; 
end 
 
tspan = (1:1:251); 
     
x0 = [R15Nb_Ti R15Nb_Si]; 
 
% solve Iso_BM_Eq3 using ode23s 
[t,x] = ode23s(@(t,x) Iso_BM_Eq3_Revised(t,x,Fx,coef_1,coef_2,M_T,M_S,a1,a2,s,b,... 
    R1,R2,R3,tau,alpha),tspan,x0); 
     
d15Nb_T(1:1:251,1) = x(1:1:end,1); 
d15Nb_S(1:1:251,1) = x(1:1:end,2); 
 
% values in d15N_ are R values, we need to convert to deltas  
d15Nb_T(:,1) = ((d15Nb_T(:,1)/R15_N2)-1)*1000; 
d15Nb_S(:,1) = ((d15Nb_S(:,1)/R15_N2)-1)*1000; 
 
% plot figure 1750 to 2000 
figure 
plot(time(:,1),d15Nb_T(:,1),'k-'); 
hold on 
plot(CM_d15Nb(:,1),CM_d15Nb(:,2),'c+'); 
 
% plot figure 1975 to 2000 
% figure 
% plot(time(226:1:251,1),d15Nb_T(226:1:251,1),'k-'); 
% hold on 
% plot(CM_d15Nb(:,1),CM_d15Nb(:,2),'c+'); 
 
%% 
% Repeat for d18O 
 
% define R1, R2, R3, and alpha to their d18O values 
R1 = R18O_ocean; 
R2 = R18O_terr; 
R3 = R18O_anth; 
alpha = alpha_18O; 
 
% set the dates to solve between 0 and 5000 
tspan = (0:100:5000); 
 
% set the initial R values of the troposphere and stratosphere 
x0 = [0 0]; 
 
% solve system using ode23s 
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[t,x] = ode23s(@(t,x) Iso_BM_Eq1_Revised(t,x,Fx,N2O_T,N2O_S,M_T,M_S,a1,a2,s,b,... 
    R1,R2,R3,tau,alpha),tspan,x0); 
 
% values in x are R values, we need to convert to deltas  
% x(:,1) = ((x(:,1)/R18_VSMOW)-1)*1000; 
% x(:,2) = ((x(:,2)/R18_VSMOW)-1)*1000; 
 
% plot figure 
% figure 
% plot(t(:,1),x(:,1),'k-'); 
 
% Now assign the last values in x as the pre-industrial background 
R18O_Ti = x(end,1); 
R18O_Si = x(end,2); 
 
% Solving the system while including the anthropogenic source has to be 
% done in a loop. This is because each year, the concentration is 
% different. The array "concentration" contains the N2O_T (col 1) and N2O_S 
% values (col 2) from 1750 to 2000, with each row representing 1 year.  
 
% Create array for solved values to go in 
d18O_T = zeros(251,2);  % troposphere d18O 
d18O_S = zeros(251,2);  % stratosphere d18O 
 
for i = 1:1 
    d18O_T(i,1) = R18O_Ti; 
    d18O_S(i,1) = R18O_Si; 
end 
 
tspan = (1:1:251); 
     
x0 = [R18O_Ti R18O_Si]; 
 
% solve Iso_BM_Eq3 using ode23s 
[t,x] = ode23s(@(t,x) Iso_BM_Eq3_Revised(t,x,Fx,coef_1,coef_2,M_T,M_S,a1,a2,s,b,... 
    R1,R2,R3,tau,alpha),tspan,x0); 
     
d18O_T(1:1:251,1) = x(1:1:end,1); 
d18O_S(1:1:251,1) = x(1:1:end,2); 
 
% values in d15N_ are R values, we need to convert to deltas  
d18O_T(:,1) = ((d18O_T(:,1)/R18_VSMOW)-1)*1000; 
d18O_S(:,1) = ((d18O_S(:,1)/R18_VSMOW)-1)*1000; 
 
% plot figure 1750 to 2000 
figure 
plot(time(:,1),d18O_T(:,1),'k-'); 
hold on 
plot(CM_d18O(:,1),CM_d18O(:,2),'c+'); 
 
% plot figure 1975 to 2000 
figure 
plot(time(226:1:251,1),d18O_T(226:1:251,1),'k-'); 
hold on 
plot(CM_d18O(:,1),CM_d18O(:,2),'c+'); 
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B.6. 2-box model, equation 1 for N2O isotopic composition 
 
% Start with our 2-Equations 
% x(1) = R_T or troposphere isotope ratio 
% x(2) = R_S or stratosphere isotope ratio 
% N2O_T = troposphere N2O concentration (ppb) 
% N2O_S = stratosphere N2O concentration (ppb) 
% X_T = Ratio of air in troposphere over total 
% X_S = Ratio of air in stratosphere over total 
% a1 = natural ocean source (ppb/yr) 
% a2 = natural terrestrial source (ppb/yr) 
% s = anthropogenic exponential source parameter 
% b = anthropogenic exponential source parameter 
% R1 = natural ocean source isotope ratio  
% R2 = natural terrestrial source isotope ratio 
% R3 = anthropogenic source isotope ratio 
% Fx = trop-strat mass exchange (Tg/yr) 
% conv = Tg/yr to ppb/yr conversion for N2O 
% tau = atmospheric lifetime of N2O (yr) 
% alpha = fractionation factor for specific isotopomer 
    % this is called Delta Sink in Sowers and they use values reported from 
    % Toyoda 2001 and Rockmann 2001 
 
% This equation is for solved for steady-state, so 0*anthropogenic source 
 
function dxdt = Iso_BM_Eq1_Revised(t,x,Fx,N2O_T,N2O_S,M_T,M_S,a1,a2,s,b,... 
    R1,R2,R3,tau,alpha) 
 
a3 = s*exp(b*t);      % exponential anthropogenic source 
 
dxdt = zeros(2,1); 
 
dxdt(1) = ((a1/M_T)/N2O_T)*(R1 - x(1))*10^9 + ... 
    ((a2/M_T)/N2O_T)*(R2 - x(1))*10^9 + ... 
    0*((a3/M_T)*N2O_T)*(R3 - x(1))*10^9 + ... 
    (Fx/M_T)*(N2O_S/N2O_T)*(x(2)-x(1)); 
 
dxdt(2) = (Fx/M_S)*(N2O_T/N2O_S)*(x(1) - x(2)) + ... 
    (x(2)/N2O_S)*(1/(M_S*tau))*(M_T*N2O_T + M_S*N2O_S) - ... 
    (alpha/(tau*N2O_S*M_S))*(M_T*N2O_T*x(1) + M_S*N2O_S*x(2)); 
 
end 
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B.7. 2-box model, equation 3 for N2O isotopic composition 
 
% Start with our 2-Equations 
% x(1) = R_T or troposphere isotope ratio 
% x(2) = R_S or stratosphere isotope ratio 
% N2O_T = troposphere N2O concentration (ppb) 
% N2O_S = stratosphere N2O concentration (ppb) 
% X_T = Ratio of air in troposphere over total 
% X_S = Ratio of air in stratosphere over total 
% a1 = natural ocean source (ppb/yr) 
% a2 = natural terrestrial source (ppb/yr) 
% s = anthropogenic exponential source parameter 
% b = anthropogenic exponential source parameter 
% R1 = natural ocean source isotope ratio  
% R2 = natural terrestrial source isotope ratio 
% R3 = anthropogenic source isotope ratio 
% Fx = trop-strat mass exchange (Tg/yr) 
% conv = Tg/yr to ppb/yr conversion for N2O 
% tau = atmospheric lifetime of N2O (yr) 
% alpha = fractionation factor for specific isotopomer 
    % this is called Delta Sink in Sowers and they use values reported from 
    % Toyoda 2001 and Rockmann 2001 
 
% This equation is for solved including the anthropogenic source 
 
% We need to include the changing N2O_T and N2O_S concentration this time 
% To do this we want to use the coefficients found by fitting the data to a 
% 2 exponential fit where N2O = a*exp(b*t) + c*exp(d*t) 
 
function dxdt = Iso_BM_Eq3_Revised(t,x,Fx,coef_1,coef_2,M_T,M_S,a1,a2,s,b,... 
    R1,R2,R3,tau,alpha) 
 
a3 = s*exp(b*t);      % exponential anthropogenic source 
 
% N2O_T = coef_1(1,1)*exp(coef_1(1,2)*t) + coef_1(1,3)*exp(coef_1(1,4)); 
% N2O_S = coef_2(1,1)*exp(coef_2(1,2)*t) + coef_2(1,3)*exp(coef_2(1,4)); 
 
N2O_T = coef_1(1,1)*t^4 + coef_1(1,2)*t^3 + coef_1(1,3)*t^2 + ...  
    coef_1(1,4)*t + coef_1(1,5); 
N2O_S = coef_2(1,1)*t^4 + coef_2(1,2)*t^3 + coef_2(1,3)*t^2 + ...  
    coef_2(1,4)*t + coef_2(1,5); 
 
dxdt = zeros(2,1); 
 
dxdt(1) = ((a1/M_T)/N2O_T)*(R1 - x(1))*10^9 + ... 
    ((a2/M_T)/N2O_T)*(R2 - x(1))*10^9 + ...  
    ((a3/M_T)/N2O_T)*(R3 - x(1))*10^9 + ... 
    (Fx/M_T)*(N2O_S/N2O_T)*(x(2)-x(1)); 
 
dxdt(2) = (Fx/M_S)*(N2O_T/N2O_S)*(x(1) - x(2)) + ... 
    (x(2)/N2O_S)*(1/(M_S*tau))*(M_T*N2O_T + M_S*N2O_S) - ... 
    (alpha/(tau*N2O_S*M_S))*(M_T*N2O_T*x(1) + M_S*N2O_S*x(2)); 
 
end 
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