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Abstract 

Within mid-to-high elevation conifer forests in the Cascade Range, wildfire 

extent, severity, and frequency are expected to rise due to increasingly drier forest fuels 

under climate change. Considering dominant species composition, existing forests may 

be poorly adapted to absorb stress and recover following altered wildfire patterns. We 

tested the hypothesis that increased fire activity may disrupt the recovery of upper-

montane and subalpine forest types by quantifying post-fire forest structure and conifer 

regeneration after spatially large, severe, and rapidly repeated wildfires in the Central 

Cascade Range. A stratified random sampling design was used to select field plots 

(n=122) and drivers of conifer regeneration were modeled using logistic and negative 

binomial regression models. 

Median conifer regeneration was very poor among sample plots that 

experienced either a single high-severity fire (49 seedlings/ha) or rapid reburn (14-28 

seedlings/ha). Distance to seed source primarily drove seedling abundance, with shade-

tolerant species abundance being most sensitive to increasing seed source distances 

and dry, exposed, post-fire environmental conditions. Rapidly repeated fire increased 

the size of high-severity patches by killing live seed source trees spared during an initial 

fire, with chronological sequence of burn severity promoting regeneration of all conifer 

species or primarily fast growing, fire-adapted pines. Low-seedling densities, a general 

lack of seed source, and future warming trends suggest these forests affected by 

expansive high-severity and/or repeated wildfire will transition into a patchy, low-
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density forest state. This early-seral state ecosystem will be composed of fire-adapted 

pines farther from live seed source and incorporate a patchwork of shrubby 

grassland that in turn, may be more resilient to frequent wildfire than prior forests. If 

future wildfire patterns manifest as expected in the Cascade Range, recovering mid-to-

high elevation forests may begin resembling their drier, lower-elevation mixed-conifer 

counterparts in structure and composition. 
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Introduction 

In the U.S. Pacific Northwest (PNW) region, wildfire is the strongest and most 

pervasive natural disturbance process shaping forest ecosystems. Wildfire promotes 

biodiversity across landscapes by resetting homogenous ecosystems but can also be a 

catalyst for rapid ecosystem change (Agee 1993; Veblen 2017). Greater variability in 

wildfire behavior compared to historical patterns can cause ecosystem state transitions 

instead of recovery and growth, primarily through regenerative failure of prior forest 

communities (Enright et al. 2015; Turner et al. 1993). In the PNW, climates drive the 

long-term spatiotemporal characteristics of wildfire (i.e. fire regime) by shaping forest 

vegetation composition and density, while weather influences individual fire behavior 

by controlling vegetation flammability (Figure 1; Higuera 2015). Hot and dry low-

elevation forests, especially in the Cascades rain shadow, may experience fires 

frequently and thus have limited fuel to burn, lowering fire severity. In contrast, coastal 

and mid-to-high-elevation forests may experience fire infrequently due to cool and wet 

climate conditions, especially on windward slopes, allowing for high abundance and 

connectivity of fuels that can promote higher burn severities when fires do occur. These 

two distinct wildfire regimes are typically considered fuel- and climate-limited systems, 

respectively (McKenzie and Littell 2017). 
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Figure 1: Conceptual model describing the controls of fire across spatial and temporal scales; from 
Higuera 2015. 

Human management of lands, primarily through fire-suppression, has generally 

increased forest density in historically fuel-limited systems, increasing fire-severity and 

extent while decreasing frequency (Collins et al. 2011; Dennison et al. 2014; Hessburg 

and Agee 2005; Naficy et al. 2010). In contrast, fire-suppression is thought to have 

marginally affected climate-limited systems’ fire regime, as wet conditions naturally 

limit the ignition and spread of fire - except during periods of extreme drought (Agee 

1993; Krawchuk and Moritz 2011; Halofsky et al. 2018). Where climate change reduces 

moisture availability in climate-limited systems, however, increased fire activity may 

threaten the resilience of previously wet forest types (Stevens-Rumann et al. 2017; 

Tepley et al. 2018; Halofsky et al. 2018). 

Within the PNW region, significant shifts in temperature and precipitation have 

already been observed. Loss of mountain snowpack and earlier snowmelt, combined 

with longer, hotter, and drier summers, may be reducing summertime moisture 

availability to forests, especially at mid-to-high elevations (Abatzoglou and Williams 
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2016; Abatzoglou et al. 2017; Mote 2006; Gergel et al. 2017; Fyfe et al. 2017; Holden 

2018). Historically, high soil and fuel moisture have kept wildfire frequency low within 

upper-montane and subalpine forests, despite abundant fuels. If forests dry out earlier 

in the year (Westerling 2016), however, it may alter how wildfire behaves in these 

landscapes (Halofsky et al. 2018; Reilly et al. 2018).  

Within mid-to-high elevation zones (> 1200m) in the PNW Central Cascade 

mountain range, an anomalous wildfire pattern has recently emerged. Forests thought 

too wet and cool to facilitate frequent wildfire, have seen multiple, rapidly succeeding 

fires since 2003, known as short-interval fires (SIFs; <15 years between wildfire events; 

Donato et al. 2009b). With historic climate conditions limiting fire occurrence in these 

environments to an expected 30-100+ year range (Rollins 2009; Stine et al. 2014), the 

impacts of substantially increasing fire frequency are currently unknown within wet 

mid-to-high elevation forests of the Central Cascades (Reilly and Spies 2016; Reilly et al. 

2017, 2018 a, b). 

Other research has addressed the impacts of SIFs on forest dynamics and/ or 

postfire forest regeneration but primarily in fuel-limited landscapes, the drier climate of 

which typically facilitates more frequent, low severity wildfire (Prichard et al. 2017). 

These areas include the Sierra Nevada Range (Coppoletta et al. 2016), Klamath-Siskiyou 

mountains (Donato et al. 2009a), the Northern Rockies of central Idaho (Stevens-

Rumann and Morgan 2016), the Bob Marshall Wilderness of Montana (Larson et al. 

2013), and the Jemez mountains of New Mexico (Coop et al. 2016). Generally, these 
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ecosystems host more conifer species with fire-adapted traits, such as Douglas fir, 

ponderosa pine, and lodgepole pine. They additionally facilitate forest structures that 

limit fuel connectivity and therefore the spread and severity of fire, assuming 

management practices (e.g., fire suppression) have not drastically altered forest 

structures, species, and fuels. Conversely, mid-to-high-elevation forests in the Central 

Cascades are structurally dense and primarily composed of shade-tolerant conifer 

species, such as grand fir, subalpine fir, mountain hemlock, and Engelmann spruce, 

which require longer fire-free intervals to regenerate back to typical compositions and 

densities (Agee 1993). Consequently, the dominant species within these environments 

may currently be ill-suited to SIFs. 

In addition to greater fire frequency, drier forest fuels may also increase fire 

severity (Abatzoglou and Williams 2016; Abatzoglou et al. 2017), further compounding 

disturbance effects (Enright et al. 2015; Johnstone et al. 2016). High-severity (“crown-

replacing”) fires can cause 90-100% mortality of existing live trees, leaving few local 

seed sources (legacy trees) in affected patches (Kemp et al. 2016; Haffey et al. 2018; 

Harvey et al. 2016). If seedlings that established after an initial fire are then killed by a 

second SIF before they can develop fire resistant traits or reach sexual maturity, or if 

lone legacy trees are killed by the second fire, then local, live seed sources may be 

nearly or entirely wiped out from affected forest patches (Stevens-Rumann and Morgan 

2016; van Wagtendonk et al. 2012). In this case, a mismatch between species’ adaptive 
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traits and altered wildfire regimes raises serious concerns about post-fire forest 

recovery.  

When disturbance regimes change rapidly in frequency, severity, extent, or any 

combination of dimensions, forest resilience can be threatened (Turner et al. 1993) if 

existing species are not individually resilient or plastic enough to cope. Regenerative 

failure by prior communities that then instigates a positive, self-reinforcing feedback 

(e.g., little conifer legacy → few seeds → little regrowth of same / more regrowth of 

alternative → circular reinforcement) can lead to persisting alternative ecosystem types 

and states (Figure 2; Johnstone et al. 2016). Where conifer regeneration is poor, 

previously dense forests may transition into an open, low-density state primarily 

dominated by shrubs and grasses (van Wagtendonk et al. 2012). Thus, increasingly large, 

frequent, and severe wildfires may be powerful catalysts of rapid ecosystem change 

within affected forests. 

 

Figure 2: Conceptual representation of forest ecosystems (black ball) within a theoretical landscape of 
alternative ecosystem states (valleys separated by peaks). (a) Forests are resilient to disturbances lying 
within the safe operating space, indicated by disturbances that may move the system but not cause it to 
shift to another state. (b) Forests are likely to shift to a different state in response to four hypothesized 
mechanisms (i–iv) that move a system outside its safe operating space and trigger a shift to a different 
forest or non-forest state; from Johnstone et al. 2016. 
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 Beyond ecological change, altered wildfire regimes within the infrequently 

burned mid-to-high elevation forests of the Central Cascades also present substantial 

challenges for the human institutions and stakeholders interacting with them. Area 

burned in the region per fire season has been steadily increasing over the last several 

decades and is expected to continue rise, especially in forests with previously climate-

limited wildfire regimes, as shifting climatic conditions statistically favor drier forest 

fuels, more fire ignitions, and extreme weather conditions (Abatzoglou and Williams 

2016; Balch et al. 2017; Jolly et al. 2015; McKenzie and Littell 2017; Westerling 2016). 

For human infrastructure, which has increasingly pushed further into the wildland-urban 

interface (WUI) creating greater self-imposed risk, future wildfires could mean greater 

loss of property, human life, and further strained resources from entities engaged with 

wildland firefighting (Ager et al. 2014; Fischer et al. 2016; Steelman 2016). 

Geographically affected timber and recreational industries may also be 

economically impacted. Traditionally productive for timber harvest, upper-montane 

forests affected by fires may lose marketable timber or transition into low-density states 

that are less profitable for harvest (Ager et al. 2019; Halofsky et al. 2018). After wildfire, 

burned forests within scenic recreation areas may illicit lower perceived values from 

guests (Hesseln 2004), and post-fire erosion concerns may limit access to sites until 

vegetation can stabilize soils and infrastructure can be repaired for safety (Bawa 2016). 

Ultimately, shifting wildfire regimes may greatly affect the ecology and economy of the 

Pacific Northwest region. 
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Toward such eventual broader nature-society coupled understanding, in this 

study we first specifically sought to understand how SIFs involving a high-severity fire 

have affected post-fire forest structure, composition, and conifer regeneration within 

mid-to-high-elevation forests in the Central Cascade Range. We asked: How does forest 

structure contrast between stands exposed to recent SIFs and those burned only once? 

How do topographic setting, fire history, post-fire forest structure, and post-fire climate 

conditions relate to conifer regeneration? Do SIFs, and specifically the sequence of burn 

severity in SIFs (low-then-high vs. high-then-low severity) appear to influence conifer 

seedling abundance and composition?  

 To address these questions, we collected and analyzed field data from two study 

areas in the Central Cascades. Within study areas, we compared spatially proximate 

forest patches which recently burned once or rapidly reburned (7-11 year interval), 

burned at either a low or high severity, and were set in either a wet or dry topographic 

setting. To understand the impacts of SIFs on wet conifer forests, including identifying 

significant factors related to conifer regeneration, logistic and negative binomial 

regression models were used.  

Assessing SIFs in the Central Cascade Range 

To select appropriate study areas, we mapped and assessed characteristics of 

recent SIFs in the Central Cascade Range by analyzing digitized wildfire delineations 

(perimeters) from the Monitoring Trends in Burn Severity (MTBS) program (Eidenshink 

et al. 2007). MTBS is an interagency program facilitated by the USGS that has mapped 
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fire perimeter and burn severity of large wildfires (> 200 hectares) in the western U.S. 

from 1984 to present. All wildfire perimeters (1984-2016) mapped by MTBS within the 

Central Cascade Range were uploaded into ArcGIS (ESRI 2018) for spatial analysis. The 

Intersect tool was used to locate potential field sites that had experienced SIFs. Sites 

that had experienced more than two recent overlapping wildfires were removed to limit 

sampling complexity, along with those found in designated wilderness areas or that 

were logistically inaccessible by foot (greater than two miles hike from an access road).  

To target forest types with climate-limited wildfire regimes likely to be affected 

by climate change impacts in the Central Cascades, site elevation was limited between 

1200 - 1650m to focus on the transition zone between upper-montane and subalpine 

forest types. This specific gradient was selected by targeting the Mesic Montane Mixed-

Conifer Forest class represented in LANDFIRE’s Existing Vegetation Type (EVT) layer 

(LANDFIRE 2010; Comer et al. 2003). Upper-montane forests in the Central Cascades are 

highly productive, mid-elevation stands that experience less snowpack and warmer 

winters than subalpine forests, allowing for longer growing seasons. Subalpine forests 

occur exclusively at higher elevations and experience substantial snowpack and cooler 

winters, which facilitates slower tree growth than upper-montane stands. At late seral 

stages, both forest types are dominated by a dense assemblage of shade-tolerant 

species (Agee 1993), including grand fir, subalpine fir, mountain hemlock, and 

Engelmann spruce. 
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Two sites stood out as ideal sampling locations based on comparable forest 

types, climates, geographic positions, and large amounts of reburned area to sample. 

Both prominent East Cascade volcanic peaks, Mt. Adams, WA and Mt. Jefferson, OR 

experienced expansive wildfires post-2002 and large subsequent reburns circa 2012, 

2014, and 2015 (7-11 years between fires). These associated wildfire events synchronize 

with increased fire activity and fire-season fuel aridity post-2000 (Abatzoglou and 

Williams 2016). While we identified many potential field sites in the Western Cascades, 

reburned areas were generally spatially small (< 200 hectares), likely a consequence of 

wetter climatic conditions that limited fire extent and/or milder weather conditions 

during fires (Higuera 2015). These substantially smaller fire perimeters would have 

limited our ability to sample a range of topographic settings and moisture gradients and 

so were omitted. 

Study Areas: Geology, Climate and Ecology 

 Mt. Adams and Mt. Jefferson are active stratovolcanoes set in the Central 

Cascade Range, whose last major eruptions were approximately 3,800 and >10,000 

years ago, respectively (USGS 2018). Geographically, the Central Cascades are a north-

south mountain range spanning the southern U.S. state of Washington to central 

Oregon. This range is geologically volcanic, with peaks reaching up to 4,400m in 

elevation (i.e. Mt. Rainier). Soils upon these landscapes are dominantly well draining, 

ashy sandy loam andisols (USDA 2018). Within the Central Cascades, our study areas are 



10 
 

biased towards the east side of the crest and include the southern face of Mt. Adams, 

WA and the eastern face of Mt. Jefferson, OR. 

The Central Cascades experience humid Mediterranean conditions with cool and 

wet winters (-7 to 5°C; 1200 - 2600 mm), while summers can be warm and dry (6 - 26°C; 

40 - 400 mm) 1. A very steep moisture gradient exists west to east along this mountain 

range, where orographic lifting depletes moisture from saturated air masses moving 

east off the Pacific Ocean (i.e. westerly winds) as they pass up the windward (eastern) 

slopes. Mid-to-high elevation areas receive substantial winter precipitation in the form 

of snowfall, which accumulates as seasonal snowpack typically above 1000m in 

elevation. Within our study areas, total annual average precipitation ranges 1800 to 

2300mm for Mt. Adams, and 1600 to 2000mm for Mt. Jefferson1. For Mt. Adams, 

average temperature ranges -5 to 1°C in January and 8 to 21°C in July1. For Mt. 

Jefferson, average temperature ranges -4 to 3°C in January, and 6 to 25°C in July1. 

Climatically, Mt. Jefferson, and specifically its more eastern fire-affected slopes, is 

somewhat warmer and drier than Mt. Adams, a consequence of geographic position.  

As a result of the orographic climate conditions imposed by the Cascades, 

ecological communities follow a very steep west-to-east gradient, ranging from wet 

temperate mixed conifer forest west of the crest, to dry temperate conifer forest east of 

the Cascades, to dry shrub-steppe far east where the range subsides (Agee 1993). In all 

                                                 
1 Climate estimates were extracted from PRISM 30-year normals (1981-2010) at an 800m spatial 
resolution (PRISM 2018). 
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these bioclimatic zones, vegetation must survive the seasonal drought of the 

Mediterranean-like climate, with little precipitation, July through September.  

Upon Mt. Adams and Mt. Jefferson, per our observations, mid-elevation upper-

montane stands were dominated by grand fir, with smaller components of Douglas fir, 

ponderosa pine, lodgepole pine, and pacific silver fir. Subalpine fir specifically replaced 

grand fir as a species component above certain elevations, thus, high-elevation 

(subalpine) stands were dominated by subalpine fir, with smaller components of 

ponderosa pine, lodgepole pine, Engelmann spruce, and mountain hemlock. Mountain 

hemlock generally became more dominant above 1500m and Engelmann spruce in cool, 

wet, shady drainages. Subalpine forest eventually gives way to sparse alpine meadow 

above 1850m in elevation upon these landscapes- with whitebark pine (Pinus albicaulis) 

being the highest elevation conifer species to establish. See Table 1 for a list of the 

conifer tree species we encountered in the study areas.  

Table 1: A list of all conifer species encountered within sampled forests. Cascadian elevation range 
estimates were derived from the USFS Fire Effects System (Abrahamson 2018). 
 

Common Name Scientific Name Shade Tolerance Elevation Range (m) 

Grand fir Abies grandis Tolerant  0 - 1800 

Douglas fir Pseudotsuga menziesii Intolerant 0 - 1500 

Lodgepole pine Pinus contorta Intolerant 1000 - 2000 

Ponderosa pine Pinus ponderosa Intolerant 400 - 1600 

Engelmann spruce Picea engelmannii Tolerant 1200 - 1800 

Mountain hemlock Tsuga mertensiana Tolerant 1500 - 2300 

Western white pine Pinus monticola Intolerant 800 - 2000 

Western larch Larix occidentalis Intolerant 1000 - 2000 

Pacific silver fir Abies amabilis Tolerant 240 - 1800 

Subalpine fir Abies lasiocarpa Tolerant 1200 - 2000 
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Study Areas: Wildfire Regimes and Recent Wildfire Patterns 

Fire history studies within the Cascade Range have noted a great amount of 

complexity and variability concerning fire severity, extent and frequency across 

landscapes (Forrestel et al. 2017; Morrison and Swanson 1990; Wright and Agee 2004; 

see summary table in Reilly et al. 2017). Fire regimes here are primarily related to forest 

elevation, moisture availability, and climate variability (Agee 1993; Agee 1998), with 

subalpine and upper-montane forests typically burning more infrequently, but generally 

at higher severities (Stine et al. 2014; Figure 3). As elevation lowers, especially on the 

east side of the Cascade crest, higher severity regimes transition toward mixed-severity, 

where lower fuel connectivity and higher wildfire frequency facilitate more forest 

burned at low and moderate severities (Hagmann et al. 2014; Merschel et al. 2014; 

Stine et al. 2014).  

 

Figure 3: Continuum of forest types found of the eastern side of the Cascade Range and the relationship 
of forest type to general wildfire regimes. PVT = potential vegetation type. Annual precipitation in our 
study areas ranges from 65 – 90 inches, represented in this diagram as wet mixed conifer and subalpine 
forest. From Stine et al. 2014. 
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Over the past 150 years, Euro-American land-use practices have significantly 

altered vegetation densities and species compositions within dry and some moist mixed-

conifer forests of the PNW (Dennison et al. 2014; Hessburg and Agee 2005; Hessburg et 

al. 2005; Naficy et al. 2010; Stine et al. 2014). Upper-montane and subalpine forests, like 

those in our study areas, are thought to have been minimally impacted by management 

practices (i.e. climate-limited wildfire regimes), although mid-to-high elevation sheep 

and cattle grazing during the 20th century may have altered understory fuel structures 

(Haugo et al. 2010; Stine et al. 2014). Mt. Adams presently has a small, ongoing cattle 

grazing allotment upon the southern face of the mountain.  

Prior to European colonization, Native American tribes frequently used fire in 

lower elevation forests for maintaining hunting and foraging grounds, and in subalpine 

forest to promote huckleberry growth (Boyd 1999). Yakima Nation tribes frequented 

forested lands on Mt. Adams, and Warm Springs Nation tribes Mt. Jefferson; each 

respective tribes’ current lands span roughly half of these mountain landscapes. Boyd 

(1999) summarized that while burning for huckleberries within subalpine forests was a 

common practice in the Cascade ecoregion until recently, the scale of burning (i.e. size 

of burned patches) was generally small, and often centered along hiking trails for ease 

of harvest. 

On Mt. Adams, our studied wildfires include the 2008 Cold Springs, 2012 Cascade 

Creek, and 2015 Cougar Creek fires; on Mt. Jefferson, studied wildfires include the 2003 

Booth & Bear Butte (B&B) Complex, 2007 Warm Springs Area (WSA) Lightning Complex,  
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Figure 4: Map of the geographic study area and sampled wildfire perimeters. Bolded outlines and 
perimeter overlaps indicate where forests have experienced SIFs. 
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and 2014 Bear Butte 2 fires (Figure 4). By focusing on areas which burned no more than 

twice, the time between fire events was either 7 or 11 years in the areas we sampled 

(2008 and 2015; 2003 and 2014; 2007 and 2014). Additional fires beyond these noted 

have occurred in recent history on Mt. Adams and south of Mt. Jefferson - but were 

either spatially small and/ or primarily within wilderness areas. The U.S Forest Service 

owns and manages the western halves of these two volcanic peaks, while indigenous 

tribes own and manage the east sides as reservation lands. 

Within the recent (2003-present) wildfire perimeters affecting forests on and 

near Mt. Adams and Mt. Jefferson, total area burned as percentages show mixed to 

high-severity trends, with a greater percentage burned at high-severity on Mt. Adams 

(Figure 5; Table 2). High-severity fires can remove conifer tree legacies from affected 

forest patches by killing live trees and destroying seed banks of non-serotinous species; 

serotinous species may also be affected in extreme cases (Anderson and Romme 1991; 

Lotan 1976). So long as high-severity patches are limited in spatial extent, however, live 

trees at forest edges or protected in refugia islands within fire perimeters can recolonize 

burned areas (Krawchuk et al. 2016; Meigs and Krawchuck 2018). While the studied 

wildfires host large percentages of forest burned at low and moderate severities, 

contiguous high-severity patches were generally of very large spatial extent, especially 

on Mt. Adams (up to 1000 ha; Figure 5).  
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Figure 5: Forests burned at a high-severity by recent wildfires affecting the study areas. Fire severity was 
classified using remotely-sensed burn severity (RdNBR) from MTBS. Many high-severity patches were 
spatially large in extent (up to roughly 1000ha). Forest burned at high-severity within the Reburned Area 
refers to any event that burned at high-severity; i.e. either first, second, or third burn. 
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  Table 2: Burn severity (RdNBR)* and area burned (hectares) among studied Cascadian wildfires. 

 Area burned (ha & %) by severity class (RdNBR)* 

Mt. Adams Wildfires Low         % Moderate % High % 
Total Area 

 Burned  

Cold Springs: 2008 338 12% 442 16% 1966 72% 2747 

Cascade Creek: 2012 2404 34% 1813 26% 2871 41% 7087 

Cougar Creek: 2015 3684 19% 4779 24% 11392 57% 19855 

Cumulative Area Burned: 6426 22% 7034 24% 16229 55% 29689 

Reburned Area:       6693 
        

Mt. Jefferson Wildfires               

B&B Complex: 2003 11591 36% 12733 39% 8013 25% 32336 

WSA Complex: 2007 1129 22% 1290 25% 2642 52% 5062 

Bear Butte 2: 2014 415 25% 582 35% 685 41% 1682 

Cumulative Area Burned: 13135 34% 14605 37% 11340 29% 39080 

Reburned Area:             2416 

*Burn severity is represented by classified RdNBR values from MTBS raster imagery and pixel 
area in ArcGIS; RdNBR stands for Relative differenced Normalized Burn Ratio (see details below). 
Unburned area within fire perimeters was excluded from these estimates. 
 

Within areas that experienced multiple fires, forest patches which burned at a 

low or moderate severity during an initial fire often reburned at a high-severity. This 

may be due to increased understory vegetation regrowth and fuel connectivity following 

the first lower severity burn. These burn patterns decreased both the connectivity and 

size of unburned forest patches within reburned areas. Conversely, patches that 

originally burned at a high-severity primarily reburned at lower severities – a 

consequence of limited post-fire vegetation, fuel loads, and fuel connectivity 

(Coppoletta et al. 2016; Donato et al. 2016; Grabinski et al. 2018; Stevens-Rumann et al. 

2016). 
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Field Sampling Methodology 

A variety of criteria and filters were used to select field-based sampling plots in 

the two study areas (Mt. Adams and Mt. Jefferson), which broadly involved (1) limiting 

human impacts and insect influence, (2) stratification by fire history, and (3) 

stratification by topographic setting. 

Site Selection: Limiting Human Impacts and Insect Influence 

 To reduce the number of influential variables affecting natural forest dynamics 

outside the scope of this study, several initial criteria were used to filter these factors 

out. Areas that had experienced documented salvage logging or replanting efforts were 

removed from the study using maps provided by associated management entities (USFS; 

Warm Springs Nation). Sampling areas were set back from roads by a distance of at least 

100m, and visual interpretation of 2018 satellite imagery was used to remove areas with 

visible, but undocumented management activity.  

In the PNW, several insect species affecting conifers are known to occur as large-

scale outbreaks, which can lower tree resilience to future disturbance or cause outright 

mortality (Hummel & Agee 2003; Meigs et al. 2015a; Raffa et al. 2008). Two specific 

native insect species have been documented as significantly affecting conifer forests in 

the Cascade Range: Western Spruce Budworm (WSB) and Mountain Pine Beetle (MPB). 

Although insect-affected forest stands are not necessarily more likely to burn than their 

unaffected counterparts, weakened or killed trees likely alter fire dynamics like burn 
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severity, fire temperature, biomass consumed, and subsequent post-fire stand 

composition to some degree (Hart et al. 2015; Meigs et al. 2015a; Meigs et al. 2016).  

Meigs and colleagues mapped tree mortality across the PNW region from MPB 

and WSB outbreaks by combining Aerial Detection Survey (ADS) data 1970-2012 and 

Landsat satellite imagery (LT) 1984-2012 (Meigs et al. 2015b). Cumulative tree mortality 

layers developed from the LT dataset were used to filter out areas of moderate and high 

insect damage from our study. Cumulative insect-caused tree mortality is represented in 

the LT dataset using dead tree basal area per hectare (DTBA; m2ha-1) as units. An initial 

trial was run to remove all insect influence, but the analysis revealed little area left 

available to sample. As insects are likely present even in areas with no observed tree 

mortality, we decided to include only a low level of detected insect-caused tree 

mortality. This threshold was defined as 3.0 (cumulative) DTBA m2ha-1 per WSB and 

MPB infestation, or roughly 5% of the maximum DTBA value observed within the 

datasets. Area with insect-caused tree mortality values beyond this threshold were 

removed from the study.  

Site Selection: Burn Severity and Fire History 

MTBS develops burn severity maps using the Normalized Burn Ratio (NBR) 

equation for application by landscape managers and scientists (Eidenshink et al. 2007). 

The NBR index is a common approach to quantify vegetation change post-wildfire using 

near infrared and short-wave infrared bands from pre-fire and post-fire satellite 

imagery. Two common indices used by scientists are built from the NBR equation and 
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available from MTBS datasets; the delta Normalized Burn Ratio (dNBR) and its 

relativized form (RdNBR) (Eidenshink et al. 2007). Both indices work to effectively 

characterize vegetation change post-fire but come with subtle pros and cons depending 

upon application (Morgan et al. 2014; Parks et al. 2014). Since this study assesses a 

relatively short period of time between successive wildfires, some sites may not have 

experienced much vegetation recovery. Miller and Thode (2007) found that among 

landscapes with low pre-fire vegetation cover, the RdNBR index consistently performed 

better than its dNBR counterpart at quantifying field-verified burn severity. Thus, to 

maximize the accuracy of classifications under those conditions, we used the RdNBR 

index to classify remote burn severity within our field sites.  

In its raw form, the RdNBR product is a continuous value scale that is classified 

by analysts into subcategories that represent brackets of percentile degrees of change. 

We used classes set by MTBS analysts but focused only on low and high-severity fires, 

defined roughly as post-fire overstory tree mortality of <50% and >90%, respectively 

(Whittier and Gray 2016). Forests burned at moderate severity (i.e. 50%-90%) likely 

have their own unique post-fire dynamics and are harder to identify in the field 

(Stevens-Rumann and Morgan 2016). Thus, we chose low and high-severity classes to 

distil the sampling strata by and represent the MTBS boundaries as it might best capture 

full range of current and future potential fire effects.  

To isolate and differentiate the effects of SIFs, reburned areas were compared to 

those recently single-burned (control group) within the same geographic area. This 
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comparison allowed us to examine the influence of the initial vs. the secondary wildfire 

when experienced at varying burn severities (low and high). Our stratification design 

also considered sequence of burn severity (low-high vs. high-low), which has been 

shown to alter post-fire conifer regeneration dynamics (Stevens-Rumann and Morgan 

2016). A smaller number of unburned sites were also selected to sample and represent 

local forest structure in the absence of recent wildfire. To remove all potential fire 

effects from the unburned sample sites, area was selected immediately outside of 

relevant wildfire perimeters, which also matched the elevation gradient of the other fire 

histories sampled. Finally, to ensure and increase the accuracy of remote-sensing 

methods used to delineate fire perimeters, potential sampling areas were buffered 

100m from all fire-perimeter boundaries to help maintain distinct fire histories in the 

field (Stevens-Rumann and Morgan 2016). 

Site Selection: Topographic Setting & Final Selection 

 Within landscapes with complex topography such as the Central Cascade Range, 

topographic setting strongly affects post-fire stand structure and regeneration by 

influencing wildfire behavior, moisture availability, and forest productivity via solar 

radiation (Agee 1993; Franklin and Hemstrom 1981; Morrison and Swan 1990; Tepley et 

al. 2013). At a given latitude and elevation, and across a gradient of solar-radiation 

potential, southwest-facing aspects illicit the hottest and driest conditions in the 

northern hemisphere. In contrast, coolest and wettest conditions are observed in 

northeast-facing aspects. The Heat Load Index (HLI) developed by McCune and Keon 
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(2002) transforms aspect, slope and latitude to represent annual potential solar 

radiation, and therefore the relative wetness or dryness of a location. To capture 

topographic trends, a HLI was derived from a 30m Digital Elevation Model (DEM) using 

the Geomorphometry & Gradient Metrics toolbox for ArcGIS (Evans et al. 2014).  

HLI values range between zero and one, with those closer to zero in a northeast-

facing aspect and one in a southwest-facing aspect. HLI values were extracted from each 

wildfire affected study area using the Intersect Tool in ArcGIS to represent local 

topography. To isolate topographically wet and dry sites, areas with values in the top 

and bottom 25th percentiles were retained for stratification purposes. These 25th 

percentile wet and dry classes were then geographically overlaid upon burn severity 

classes to produce the final field sampling stratification, represented as strata 

delineations or polygons within the study areas (Table 3). Although local topography is 

highly variable on both Mt. Adams and Mt. Jefferson, it’s important to keep in mind the 

positionality or topographic context of the study area on a conic landscape feature at a 

larger scale. For example, the study area on Mt. Adams exists entirely on the southern 

face of a large volcano. One could say plots sampled in this area, regardless of local 

aspect of the micro-topography, are likely to be drier than those on the northeastern 

face. 
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       Table 3: Field sampling stratification per study area (Mt. Adams and Mt. Jefferson). 

Strata Wildfire History Burn Severity Topographic Setting Sample Size (n) 

#1 Single Recent Wildfire Low Wet 8 

#2 Single Recent Wildfire Low Dry 8 

#3 Single Recent Wildfire High Wet 8 

#4 Single Recent Wildfire High Dry 8 

#5 Short-Interval Fire Low-High Wet 8 

#6 Short-Interval Fire High-Low Wet 8 

#7 Short-Interval Fire Low-High Dry 8 

#8 Short-Interval Fire High-Low Dry 8 

#9 Recently Unburned N/A Wet 4 

#10 Recently Unburned N/A Dry 4 

Stratification was designed to compare effects between (1) SIFs vs. single recent fire, (2) 
sequence of burn severity in SIFs, and (3) wet and dry topographic settings.  

 

With preliminary buffering and stratification (described above) completed, field-

plot coordinates were randomly generated from strata delineations using the Sampling 

Design Tool for ArcGIS (Buja and Menza 2013; Figure 6). A stratified random selection 

was used to generate eight plots per stratum, with four random plot locations for strata 

#9 and #10 (Table 3). During the plot generation process, all potential sampling plots 

were buffered a minimum distance of 100m from each other to minimize spatial 

autocorrelation. Additionally, to maintain uniformity of field conditions (i.e. burn 

severity and topographic position), each sampling plot was restricted to a contiguous 

strata delineation polygon of one hectare or greater in size. This final selection resulted 

in a total plot sample size of n = 72 per study area, or n = 144 plots total. Among the 

plots we physically sampled (n=122) within our study areas, forest types varied with  



24 
 

 
Figure 6: Final field plot locations using a stratified random sampling design for Mt. Adams (top) and Mt. 
Jefferson (bottom). Various criteria were used to select potential study areas (see above), while fire 
history and topographic position were used specifically to stratify sampling plots by. 
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elevation due to topographic setting and moisture availability. Forest compositions were 

generally upper-montane at 1215m, mixed around 1350m, and characteristically 

subalpine above 1450m (Franklin and Dyreness 1973; Table 4). 

Table 4: Summary of plot percentages sampled among forest types and fire histories. 

      Fire History (% of plots) 

Forest 
Type 

Elevation 
Range (m) 

% of plots 
(n=122) 

Unburned 
(n=11) 

Low 
(n=28) 

High 
(n=26) 

High-low 
(n=28) 

Low-high 
(n=29) 

Upper-
Montane 

1215 - 1425 30% 55% 32% 15% 25% 38% 

Mixed 1264 - 1488 23% 9% 50% 12% 0% 34% 

Subalpine 1342 - 1662 47% 36% 18% 73% 75% 28% 

Field Sampling Design 

Field data was collected from Mt. Adams, WA and Mt. Jefferson, OR during the 

summer of 2018 (June – August) and include ten variables measured (Table 5). A point 

database of pre-selected plot locations and rasterized maps of strata by study areas 

were uploaded to a Trimble Juno and Garmin GPS for field navigation and reference. 

Plots were accessed by hiking cross-country from the nearest accessible road. Once 

reached, each site was field verified for desired burn severity and topographic position. 

Low burn severity was field classified by the presence of surface fire, limited (but 

present) scorching of tree boles, minor removal of fine woody debris and organic soil, 

and <50% canopy tree mortality within plot; high burn severity was classified by canopy 

tree mortality >90%, significant bole charring, and significant removal of organic soils 

within plot (Key and Benson 2006; Morgan et al. 2014). No known guidelines to us 

currently exist for classifying field conditions for SIFs. Nonetheless, SIFs visually 
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presented fire-effects on forest structure that differed from single high-severity fire 

plots (i.e. increased bole charring and consumption of standing tree biomass, removal of 

fine woody debris, increased soil charring).  

Table 5: Field variables used to quantify forest structure, composition, and regeneration post-wildfire. 

Field Variables Description Equipment Field Method Reference 

Topography 
Field derived elevation, slope and 

aspect 
GPS, compass 

Plot center; Stevens-Rumann 

and Morgan (2016) 

Distance to seed 

source 

Ten closest live trees of cone 

bearing age to plot center; species 
Rangefinder 

Plot center; Stevens-Rumann 

and Morgan (2016) 

Conifer 

regeneration 

Post-fire conifer seedlings; species, 

age, distance to CWD 
Observation 

Variable-width belt transect; 

Harvey et al. (2016) 

Seedling health 
Fv/Fm measurements on dominant 

seedling species in plot 
Fluorometer 

Variable-width belt transect; 

Murchie and Lawson 2013 

Down woody 

debris 

Debris classified by time-lag fuel 

hour along transects at 1m 

intervals 

Logging tape 

Variable width belt transect; 

Stevens-Rumann and Morgan 

(2016) 

Litter and duff 
Depth of litter and duff layer along 

transects at 1m intervals 
Ruler 

Variable width belt transect; 

Stevens-Rumann and Morgan 

(2016) 

Overstory 

canopy 
Percentage of overstory cover Densiometer 

Variable width belt transect; 

Stevens-Rumann and Morgan 

(2016) 

Vegetation & 

ground cover 

Vegetation and ground coverage 

by percentage of class types 
Observation 

Variable width belt transect; 

Stevens-Rumann and Morgan 

(2016) 

Live and dead 

mature trees 

Standing conifers within circle plot; 

species, DBH, charring, 

live/dead/snag 

Logging tape 
Circle plot; Stevens-Rumann and 

Morgan (2016) 

Tree 

establishment 

Increment cores extracted from 

live trees; five per plot 

Handheld 

increment borer 

Circle plot; Schoennagel et al 

(2011) 

 

If the predetermined plot location did not meet desired criteria, the plot was 

moved in 30m intervals, in a random cardinal direction, within the immediate patch, 
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until conditions correctly matched the strata (Stevens-Rumann and Morgan 2016; Table 

6). If no area inside a patch met desired conditions, plots were moved to another nearby 

patch of the same strata using the raster layers uploaded upon GPS unit. If a plot 

showed signs of management influence, the plot was moved appropriately using above 

methods. Although we traversed through areas with management influence present (i.e. 

planted trees, sawed stumps, and salvage logging), we did not encounter any signs of 

management presence within predetermined plot locations. 

Table 6: Number and percentage of plots (n=122) moved in the field due to mismatch between field and 
remotely-sensed conditions. 

Criteria # of Plots % of Plots 

Low burn severity 5 4.1% 

High burn severity 6 4.9% 

Unburned (no recent fire) 0 0% 

Topographic setting (aspect/slope) 9 7.3% 

Management influence (presence) 0 0% 

 

 At each plot location, a 0.07 hectare 15m-radius circle plot was established by 

running two field tapes in cardinal directions (Figure 7). First, elevation, slope, and 

distance from plot center to the ten nearest live conifer trees of cone bearing age (seed 

source) was recorded (Kemp et al. 2016; Stevens-Rumann and Morgan 2016). The 

species of these ten seed source trees was also recorded. Next, seedling density inside 

each plot was estimated to inform choice of the variable width of seedling belt 

transects. Default dimensions of the belt transect were 14x2m (medium) extending 1m 

beyond plot center in cardinal directions, but the width was adjusted to either 14x1m 
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(small) if seedlings were very dense (i.e. >200 seedlings would be captured in default 

[medium] belts) or to the entire 15m-radius circle (large) if seedlings were very sparse 

(i.e. <10 seedlings would be captured in default [medium] belts) following Harvey et al. 

(2016). When using small belt transects, we stopped counting seedlings at 200 stems; 

any number beyond this indicated a very high regeneration response (> 35,708 

seedlings/ha). Seedlings were counted by species, but some inaccuracy may have 

occurred when differentiating among very young true-fir seedlings (grand fir, pacific 

silver fir, subalpine fir), which are difficult to differentiate below three years of age 

(Brown et al. 2013). Thus, the abundance and location of mature parent species in and 

surrounding each plot was considered as guidance when identifying very young true-fir 

seedlings. 

 
Figure 7: Field sampling design diagram. 
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Seedlings were counted only if they established post-fire or post-reburn. For this, 

relative seedling age was estimated by counting bud-scar nodes. Aging by bud scar loses 

accuracy as tree age increases, but it is a relatively minor factor for juveniles (<10 yrs 

old) and is mostly a rapid and noninvasive sampling approach when high accuracy on 

age data is outside of the scope of the study (Hankin et al. 2018; Harvey et al. 2016; 

Millar et al. 2004; Urza and Sibold 2013). The earliest any post-fire seedling could have 

established was post-2003 (15 years of age) based on fire years within our study areas, 

and we did not encounter seedlings exhibiting node counts beyond this range except in 

unburned or low-severity plots. Additionally, time between fires for reburned plots was 

7 or 11 years, which created a relatively large age-gap between seedlings that 

established after the initial fire and then later, post-reburn.  

 As complementary information to seedling abundance, dark-adapted hydraulic 

stress measurements were recorded (Murchie and Lawson 2013). For this, dark-

adapting left clips were applied to south-facing, one-year old needles (i.e. using the 

most recent bud scar as guideline) of the dominant tree species in up to 10 seedlings per 

plot. If fewer than 10 seedlings occurred within the plot, needles on seedlings from all 

present species were clipped. A timer was set for 30 minutes upon clipping the first 

seedling, and each clipped seedling was marked using a numbered survey flag for 

relocation and differentiation. After 30 minutes, optimal quantum yield measurements 

(i.e. Fv/Fm) were taken in the successive order of clipped seedlings using a fluorometer 

(OS5p, OptiSciences). The Fv/Fm test is a common technique to measure plant stress by 
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dark-adapting leaves for photosystem II to reset, then stimulating fluorescence response 

in photosystem II with light pulses and comparing each measured fluorescence value 

(Fv) to a maximum fluorescence value (Fm; theoretical maximum value for C3 

photosynthesis is ca. 0.83; Ritchie 2006). A lower Fv/Fm ratio correlates with higher 

plant stress, which can be caused by lack of moisture availability (Murchie and Lawson 

2013). 

Seedlings were also assessed for their proximity to dead/ down coarse woody 

debris (CWD), to test the hypothesis that CWD provides favorable nursery conditions 

(i.e. shading, moisture, soil nutrients) for seedlings. CWD was identified when downed 

wood had a diameter equal to or greater than 7.6cm (i.e. 1000+ fuel-hour class; 

Anderson 1982) and the proximal area of influence on seedlings was determined by 

CWD’s diameter and distance to each seedling (Figure 8). When the diameter of nearby  

 

Figure 8: Conceptual diagram illustrating the shading effect coarse woody debris (CWD) can provide for 
establishing seedlings. 
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CWD was equal or greater than the horizontal distance to the seedling, CWD diameter 

and distance to seedling were recorded, or otherwise ignored.  

To quantify abundance of fine down woody debris (FWD, <7.6 diameter) and 

CWD, we used the planar intersect method sampling at 1m intervals along each 14m 

cardinal direction tapeline (i.e. skipping plot center; Figure 7; Brown 1974). Debris was 

classified by diameter using time-lag fuel hour notation, including additional categorical 

attributes to describe wood appearance; i.e. sound, rotten, and/or heavily charred 

(Anderson 1982). At each 1m interval the presence and depth of a litter and duff layer 

was also measured using a ruler; litter and duff layers were grouped together to 

represent organic surface material. This sampling protocol resulted in 56 fine/coarse 

woody debris and litter/duff depth data points per plot (14 points x 4 transects).  

Percent ground cover of understory plant communities was recorded in five 

2x1m ground cover quadrats located at plot center and 7m along each cardinal direction 

tapeline (Figure 7). Understory plant cover was recorded by broad functional vegetation 

types (grasses, forbs, and shrubs) and non-vegetation types (bare soil or litter/duff 

cover). Canopy cover density was also assessed at each quadrat location using a 

spherical densiometer (Lemmon 1956). A densiometer measurement was taken facing 

each cardinal direction and the four measurements averaged for each quadrat. The data 

from the five ground and canopy cover quadrats were then averaged to represent mean 

conditions for each circle plot. 



32 
 

 To estimate pre-fire forest composition, all standing trees within each 0.07ha 

circle plot equal to or greater than 7.8cm in diameter at breast height (DBH) were 

identified at species level (but see below) and measured for DBH; decay-stage (live, 

dead or snag) and tree charring was additionally noted. Charring was recorded as a 

binary response, defined as individual tree stems exhibiting black carbon biochar on 

more or less than 50% of their non-bark, woody surface area. In some reburned areas, 

heavily charred stumps were the only indicators of pre-fire tree composition. In such 

situations, stumps were counted as snags, measured for diameter at tree base and 

classified as charred to indicate loss of pre-fire biomass. Working in high-severity burns, 

especially reburns, meant many standing trees were difficult to identify by species as 

indicators had been completely removed by fire (needles, bark, structure, branch 

pattern, cones, etc.) and remaining indicators masked by charring. Where no 

discernable indicators could be identified, tree species was marked as unknown. 

Unknown trees were removed from future species composition analyses. 

Within plots with live trees (low burn severity or unburned), five increment cores 

per plot were extracted by increment borer (Haglöf). Trees were selected randomly by 

flagging every 5th tree measured within the plot until five trees had been selected. Very 

large trees (DBH > 80cm) were avoided to focus on establishment during the past two 

centuries (e.g. recent history) and to improve tree age estimates – which can become 

increasingly convoluted in larger/older trees as pith and the shoot/root boundary 

become more difficult to obtain and identify. Trees were cored at a slight downward 
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angle approximately 20cm above the root collar, to reach the establishment date as 

best as feasible.  

Upon extraction, cores were stored in plastic straws and labeled according to 

plot number and tree data. Once delivered to the lab, cores were mounted to wood 

troughs, sanded, and scanned following standard procedures (Stokes and Smiley 1968; 

Speer 2012). Scanned images were uploaded to CooRecorder V8.1 for ring counting and 

dating (Cybis Dendrochronology 2013). Although coring live trees increases the accuracy 

of potential tree establishment dates, some inherent error exists with regards to years 

missed due to coring height and missed pith. A correction for pith estimation for cores 

where pith was not obtained was implemented in CooRecorder using a function that 

uses the width of the last seven known rings to project a geometric model of the missing 

rings. The projection changes ring dimensions as the user moves the pith location, and 

so the user attempts to match known ring curvature to estimate distance and years to 

pith (Cybis Dendrochronology 2013). For our purposes of broad stand-age 

characterization, only estimated years to pith was necessary.  
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Data Analysis 

All statistical analyses were completed in R version 3.5.2 (R Core Team 2017) using 

standard core packages, unless otherwise noted. 

Post-Fire Forest Structure 

To identify potential differences in post-fire forest structure among sampled fire 

histories (recently unburned, low, high, low-high, and high-low burn severities), 

univariate and multivariate methods were utilized. For both analyses, post-fire forest 

structure was summarized by twelve variables including distance to seed source, 

percent canopy cover, coarse and fine down woody debris abundance, percent ground 

cover (litter/duff layer, exposed bare soil, grass, shrub, forb), and standing tree class 

proportions (live, snag, charred). Many variables had non-normal distributions and 

unequal variance, which informed our choice of nonparametric statistical methods, 

which also allowed for unequal sample sizes among fire histories. For the univariate 

analysis, a Kruskal-Wallis test (non-parametric ANOVA) was used to test for differences 

amongst fire histories. When differences were detected, a Games-Howell post-hoc test 

was used for pairwise comparisons utilizing the “userfriendlyscience” R package (Peters 

2018). Resulting p-values were pre-adjusted using the Holm method to correct for 

increased Type I error introduced by multiple pairwise comparisons (Aickin and Gensler 

1996).  

 For the multivariate (i.e. cumulative) analysis of stand structure, a permutational 

multivariate analysis of variance (PERMANOVA) was used in R with the “vegan” R 
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package (Oksanen et al. 2018). PERMANOVA is a highly flexible “semi-parametric” 

MANOVA design which uses a distribution-free permutation technique and chosen 

dissimilarity measure for detecting cumulative differences amongst groups (Anderson 

2017). For our analysis, number of permutations was set to 999 and dissimilarity 

measure to Bray-Curtis distance (Faith, Minchin, and Belbin 1987). Like the univariate 

analysis, we also used the Holm method to adjust resulting p-values for multiple 

pairwise comparisons. Finally, a non-metric multidimensional scaling (NMDS) plot was 

developed for visual interpretation of the multivariate results among fire histories.  

Post-Fire Seedling Presence and Abundance 

 To identify primary factors influencing conifer regeneration, the presence and 

abundance of post-fire conifer seedlings was modeled as a function of post-fire 

ecological legacies (e.g., distance to seed source, canopy cover), abiotic environmental 

conditions (e.g., heat load index, elevation, slope), temporality (e.g., time since a high-

severity fire), and post-fire climate conditions (e.g., snow water equivalent, vapor 

pressure deficit); see Table 7. Fire history (i.e. burn severity class) was originally 

included in seedling models as a categorical variable - but was removed in favor of 

continuous variables which explained fire effects on forest structure in greater detail 

(i.e. many levels) and to minimize multicollinearity in subsequent models. 

 Two statistical model types were run—one to predict drivers of seedlings 

presence/ absence and another to predict drivers of seedling abundance. Specifically, 

generalized linear regression (GLM) with a logistic function was used for modeling the  
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Table 7: Predictor variables included in all postfire seedling regeneration models and their methods of 
measurement. 

Category Variable Method of measurement Units Type Range 

Fire legacies 
Live seed 

source 
distance 

Field measured (10 closest 
mature trees; averaged) 

m Continuous 
Bounded  
[15 500] 

 
Seed source 

censor 

Censor variable indicating 
whether a seed source was 
noted within 500m of plot 

Unitless Constant 
Discrete  
[0 or 1] 

 
Coarse woody 

debris 
Field measured (abundance) Integer Continuous 

Bounded 
[0 56] 

 Canopy cover 
Field measured (5 plots, 

averaged) 
% Continuous 

Bounded  
[0 100] 

 
Bare soil 

cover 
Field measured (5 plots, 

averaged) 
% Continuous 

Bounded  
[0 100] 

 Shrub cover 
Field measured (5 plots, 

averaged) 
% Continuous 

Bounded  
[0 100] 

 Forb cover 
Field measured (5 plots, 

averaged) 
% Continuous 

Bounded  
[0 100] 

 Grass cover 
Field measured (5 plots, 

averaged) 
% Continuous 

Bounded  
[0 100] 

Biotic  
Pre-fire tree 
basal area 

Field measured (15m radius 
plot); live/dead standing trees 

m2 ha-1 Continuous 
Not Bounded 

[0.6 157.1] 

Abiotic  Elevation Field measured m Continuous 
Bounded 

[1215 1650] 
 Slope Field measured Degrees Continuous Bounded [5 40] 

 
Heat load 
index (HLI) 

Derived from field measured 
slope, aspect and latitude 
(McCune and Keon 2002) 

Unitless Continuous 
Not bounded 

[0.38 1.01] 

 
Topographic 

wetness index 
(TWI) 

Derived from a 30m DEM; 
ArcGIS (Beven and Kirkby 
1979; Evens et al. 2014) 

Unitless Continuous 
Not bounded 
[5.67 14.27] 

Temporality 
Time since a 
high-severity 

fire 

Derived by year of sampling 
minus year of burn 

Years Continuous 
Discrete values 
[3,4,6,10,11,15] 

Post-fire 
climate 

Snow water 
equivalent 

(SWE) 

March - May averaged SWE 
(deviation from 15-year 

normal) 0-3 years after a high-
severity fire; (SnoDAS 1km) 

mm Continuous 
Not bounded 

[-534.16 350.14] 

 
Vapor 

pressure 
deficit (VPD) 

June - Sept averaged VPD 
(deviation from 30-year 

normal) 0-3 years after a high-
severity fire; (METDATA 4km) 

kPa Continuous 
Not bounded 

[0.01 0.18] 

 

Palmer 
drought 

severity index 
(PDSI) 

June - Sept averaged PDSI 
(deviation from 30-year 

normal) 0-3 years after a high-
severity fire; (METDATA 4km) 

Unitless Continuous 
Not bounded 
[-1.57 0.38] 
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presence or absence of seedlings and GLM with a negative binomial distribution (logit-

link) for predicting seedling counts following Kemp et al. (2016). Negative binomial 

models were developed using the “MASS” R package (Venables and Ripley 2002). All 

referenced variables from Table 7 were included within the preliminary full logistic and 

count models, prior to model simplification, except for percent litter/duff cover. 

Litter/duff cover was highly collinear (ρ > 0.70) with canopy cover and seed source 

distance upon inspection with Spearman’s rank correlation. Upon fitting a full model, 

outlier data points were assessed using Cook’s Distance when plotting Pearson’s 

residuals against fitted values. Significant outliers, indicated as having Cook’s Distance > 

0.5, were removed from each model to improve performance and meet assumptions 

(Cook 1979). 

The above preliminary models were reduced to only significant variables (p < 

0.05) using a backward stepwise procedure in which each variable was assessed for 

model improvement through its removal using absolute decreases in AICc and Chi-

Square probability. In a stepwise fashion, variables were removed that contributed the 

largest decrease in AICc and Chi-Square probability until only significant variables 

remained. Multicollinearity was assessed in the reduced models using the variance 

inflation factor (VIF) measure; final explanatory variables displayed VIF values < 3.0, 

indicating minor collinearity detected within models (Zuur et al. 2010). 
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Logistic Regression Models for Seedling Presence/ Absence 

 A total of nine logistic regression models were developed to predict the presence 

or absence of conifer seedlings; i.e. one for each of the eight most abundant conifer 

species (lodgepole pine, grand fir, Douglas fir, subalpine fir, pacific silver fir, mountain 

hemlock, ponderosa pine, and engelmann spruce) and another for all species combined. 

For species specific models, distance to seed source was calculated using only the 

recorded live, mature trees of the same species. Logistic model fit was assessed using 

the deviance residual and Hosmer-Lemeshow test (Hosmer et al. 2013; Zuur et al. 2010). 

These model fit statistics indicate a significant lack of fit to the data if the p-value 

generated from the deviance chi-squared test or Hosmer-Lemeshow statistic is < 0.05 

(alpha; Hosmer et al. 2013).  

Model predictive performance was assessed using K-Fold cross-validation 

(Fushiki 2011), which partitions data into k equally sized segments. One fold is held out 

for validation while the other k-1 folds are used to train the model and then used to 

predict the response variable from testing data. This process is repeated k times and 

prediction performance is recorded as model accuracy. For our models, we used k=10 

and reported mean prediction accuracy with 95% confidence intervals around the mean. 

Additionally, we included the positive and negative predictive rates (PPR, NPR), which 

respectively indicate how well a model predicted seedling presence (positive) or 

absence (negative). 
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Negative Binomial Count Models for Seedling Abundance 

The distribution of our seedling density data was strongly right skewed with 

unequal variances, where variance was always far greater than the mean; this hinted at 

significant overdispersion (Figure 9). For modeling non-normal count data, a GLM with a  

 

Figure 9: A histogram showing the distribution of seedling densities, per hectare, across burned plots 
(n=111). 

type of Poisson distribution is a commonly used approach (Zuur et al. 2012). When data 

displays significant overdispersion and/or a high number of zero responses, a negative 

binomial or zero-inflated negative binomial model can be an appropriate solution (Zuur 

et al. 2012). We originally attempted to develop count models for individual conifer 

species but were unable to successfully fit models for most species using oisson, 

negative binomial, or zero-inflated negative binomial distributions. Models we did fit 

performed poorly when assessing goodness of fit using residual plots and the Pearson’s 

chi-squared test. Kemp et al. (2016) experienced similar issues with their seedling count 
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models, a problem likely stemming from a high number of zeros for individual species 

across plots.  

Thus, to minimize the number of zeros in our data, we grouped individual 

seedling species into two broad functional groups defined by shade tolerance. Three 

count models were developed in total for all species combined, shade-tolerant species, 

and shade-intolerant species. The ten conifer species we encountered were classified as 

shade-tolerant or intolerant using species information from the USFS Fire Effects 

Information System (Abrahamson 2018). Thus, grand fir, mountain hemlock, subalpine 

fir, pacific silver fir, and Engelmann spruce were grouped as shade-tolerant and 

lodgepole pine, Douglas fir, ponderosa pine, western white pine, and western larch as 

shade-intolerant.  

After grouping species, we were successfully able to fit and validate the new 

count models. We found the negative binomial distribution best fit the data without 

sacrificing each model’s ability to predict zeros. To account for the variable seedling 

transect sizes (0.0056ha, 0.0112 ha, 0.0706ha), an offset variable was included within 

model equations (Zuur et al. 2012). In addition to visual assessment of the plotted 

residuals against fitted values, a Pearson’s chi-squared test was performed to assess 

each model’s goodness of fit (Zuur et al. 2009). Prediction performance was assessed by 

comparing predicted and observed values from each model using Spearman’s rank 

correlation (ρ). In this context, correlation indicates how close predicted seedling counts 

were to actual observed counts; a correlation of 1.0 indicates perfect prediction.  
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Seedling Probability Curves: Distance to Seed Source and Fire History 

 To illustrate the impacts of seed source availability and fire history on seedling 

establishment, final reduced logistic and negative binomial GLM models were used to 

model the probability of seedling presence/ absence and abundance as a function of 

increasing distance to seed source. Model terms other than distance to seed source 

which explained fire effects on forest structure (e.g. canopy cover, ground/vegetation 

cover, woody debris, etc.) were kept at their median value for specific fire histories (i.e. 

low, high, low-high, high-low), while model terms which explained static site conditions 

or climate (e.g. elevation, slope, TWI, SWE, etc.) were kept at their median value for all 

plots that experienced recent fire (n=109; Kemp et al. 2016) to avoid introducing bias 

that was not directly connected to fire effects. Since models were reduced to only 

significant terms, fire history probability curves may be biased toward and/or strongly 

influenced by specific forest structure variables. 

Seedling Composition and Establishment Across Fire Histories 

 To broadly evaluate potential shifts in forest compositions and investigate 

impacts of reburns on seedling composition, several analyses were conducted. Pre-fire 

and post-fire conifer species composition, calculated as mean percent of plot density 

(i.e. number of stems), was compared across topographic settings and fire histories. To 

aid in visualizing and interpreting seedling composition results across fire histories, two 

nonmetric multidimensional scaling (NMDS) ordination plots were developed to 

represent species presence/ absence and abundance. 
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NMDS is a highly flexible, iterative, non-parametric ordination technique 

commonly used in ecology for exploration of species composition (Kruskal 1964; 

Minchin 1987). NMDS uses dissimilarity distance measures to plot subjects in 

multidimensional, multivariate space, allowing for visual interpretation of associations 

and locations in space (Faith et al. 1987). Eight out of ten of the most abundant conifer 

species we encountered were included in the analysis; western larch and western white 

pine were excluded due to their lack of abundance across study areas (<1% of trees and 

seedlings encountered). Plots with no seedlings detected (n=21) were additionally 

removed from the analysis (i.e. total of n=90 plots out of n=111 analyzed). Bray-Curtis 

and Jaccard distance measures were used for seedling abundance and 

presence/absence, respectively. NMDS solutions were tried in 2nd and 3rd dimensions 

and the number of dimensions that best minimized NMDS stress scores were chosen. 

The “vegan” and “ggplot2” R packages were used to generate NMDS plot figures 

(Oksanen et al. 2018; Wickham 2016). 

Finally, temporal seedling establishment (all species combined) was compared 

between the two studied reburn severity sequences (i.e. low-high, high-low) to 

determine if sequence of burn severity affects the timing of seedling establishment. 

Temporal seedling establishment was estimated using bud scar node counts to 

determine relative seedling age; seedlings were then sorted to have established after an 

initial fire or after a reburn occurred based on associated fire years within plots. 
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Distance from High-Severity to Lower Severity Patches 

 To relate plot-specific results to the greater landscape, distances were calculated 

from forest patches burned at a high-severity to lower severity patches (e.g. unburned, 

low, moderate) following Kemp et al. (2016) within the extent of wildfire perimeters 

affecting our study areas. Using classified MTBS burn severity (RdNBR) raster datasets 

for each wildfire perimeter in ArcGIS, area burned at a high-severity during an initial 

wildfire and/or reburn was extracted and joined into a single raster layer. All other area 

that did not burn at a high-severity was similarly extracted and joined into a separate 

layer. These two raster layers were converted to point features, and the Near tool was 

used to compute the shortest distance from each high-severity point to a point burned 

at a lower severity (i.e. patches with potential live seed source). Due to the spatial 

resolution of the raster imagery, the minimum distance measured from a high-severity 

patch to lower severity patch was 30m. Patch distance statistics were then computed in 

R using an exported point feature table from ArcGIS. 

Seedling Stress (Fv/Fm) 

 Prior to analysis, plant stress (Fv/Fm) values beyond the interquartile-range (IQR) 

* 1.5 were identified as outliers and removed from the dataset. Thus, we retained 507 

(out of 542) conifer seedling Fv/Fm measurements across all sampled plots for analysis. 

Seedling presence, and therefore number of Fv/Fm measurements, was skewed toward 

low-severity plots where conifer regeneration was abundant. Data distribution of Fv/Fm 

measurements was also notably non-normal (Figure 10). Thus, for comparing Fv/Fm 
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across fire histories and species, we used a permutation ANOVA appropriate for non-

normal, heteroskedastic data and unbalanced designs. Correlations between Fv/Fm 

values and predictor variables were assessed using a correlation matrix and Spearman’s 

Rank tests. In this analysis we considered predictor variables that could conceptually 

influence seedling stress, which included the topographic wetness index (TWI), heat 

load index (HLI), slope, elevation, canopy cover, presence of proximate coarse woody 

debris (CWD), pre-fire basal area (BA), and percent ground and vegetation cover types.  

 

Figure 10: Histogram of the Fv/Fm data. 
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Results 

Fire Effects on Forest Structure 

 Individual components and cumulative forest structure varied across fire 

histories. The multivariate PERMANOVA analysis found that cumulative forest structure 

was significantly different (p = 0.001) when compared between almost all fire histories 

(Table 8; for visual interpretation via NMDS, see Figure 11). Exceptions were that stand 

structure compared between low-high reburns and high-low reburns was not 

significantly different (p = 0.263), nor was comparison between recently unburned and 

low-severity burned areas (p = 0.263) 

Table 8: Results from the multivariate analysis (permutation MANOVA) of forest structure* among 
sampled fire histories. 

Fire History 
Unburned  

(n=11) 

Burned once Reburned 

Low  
(n=28) 

High 
(n=26) 

Low-high 
(n=29) 

High-low  
(n=28) 

Unburned - 0.263 0.001 0.001 0.001 

Low  - 0.001 0.001 0.001 

High   - 0.001 0.001 

Low-high    - 0.263 

High-low         - 

*Twelve forest-structure characteristics include: distance to seed source, percent canopy 
cover, coarse/fine woody debris, percent ground cover (litter/duff, bare soil, grass, shrub, 
forb), live trees, snag trees, and charred trees were assessed. Seedling density was excluded 
from this analysis. P-values are shown for pairwise comparisons of forest structure across 
sampled fire histories. P-values have been corrected for Type 1 error using the Holm 
adjustment method; p < 0.05 is significant. Bolded values show significant pairwise differences 
in overall forest structure between fire histories.  
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Figure 11: Non-metric multidimensional scaling (NMDS) ordination of multivariate forest structure 
amongst sampled fire histories. Dissimilarities measured using Bray-Curtis distance; stress = 0.082, 
dimensions = 3. Ellipses drawn using 95% confidence intervals. Substantially overlapping ellipses indicate 
similar forest structure under fire history effects. 

No live trees were found within plots that experienced a high-severity fire as 

either an individual event or as the first or second fire within a reburned area, and 

median distance to a live seed source more than tripled after a reburn event when 

compared to a single high-severity fire (i.e. from 54m to 180m [high-low reburn] and 

from 54m to 199m [low-high reburn]; Figure 12; Table 9). Eleven reburned plots (19% of 

reburned plots) had seed source distances greater than 500m away, while all high-

severity plots had a seed source less than 500m away. In contrast, low-severity plots 

always had a live seed source within 15m of any location on a plot. 
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Figure 12: Relationship between the average distance to live seed source and sampled fire histories. Seed 
source was always present on low-severity sites, such that any location on the 15m radius plot would 
have a seed tree within that distance. Letters indicate statistical differences between fire histories via 
Games-Howell test. Boxplot constructed using median and IQR; outliers are IQR * 1.5. 

The percentage of standing snags (in relation to all other standing trees within 

the plots) within single high-severity fire plots was 21.3% and in reburned plots 

increased up to 61.8% (low-high) and 70% (high-low). Severely charred trees, exhibiting 

black carbon biochar on more than 50% of their standing surface area, also increased 

from 17% to 53.3% (low-high)/ 74.2% (high-low) between high-severity fire and reburns 

(Figure 13; Table 9). Canopy cover sharply declined after a high-severity fire but was not 

different from a low-high reburn (29.5% vs. 31%). High-low reburns had the lowest 

canopy cover (15%). 
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Table 9: Median ± SE (IQR) forest structure characteristics across sampled fire histories. 

Forest Structure 
Characteristics 

Unburned 
(n=11) 

Burned Once Reburned 

Low 
(n=28) 

High 
(n=26) 

Low-high 
(n=29) 

High-low 
(n=28) 

Standing Canopy      

Live Tree Density 
(trees/ha-1) 

*297a ± 60 
(142 - 460) 

269a ± 28 
(205 - 354) 

0b ± 0 
(0 - 0) 

0b ± 0 
(0 - 0) 

0b ± 0 
(0 - 0) 

Distance to Seed 
Source (m) 

15a ± 0 
(15 - 15) 

15a ± 0 
(15 - 15) 

54b ± 25.4 
(19 - 148) 

 180c ± 27.5 
(133 - 330) 

199c ± 30.9 
(106 - 364) 

Snag (%) 
19.9a, b ± 4.1 
(8.8 - 28.1) 

5.1a ± 1.5  
(2.6 - 9.6) 

21.3b ± 3.5  
(7.4 - 28.6) 

70c ± 5.6  
(35 - 90) 

61.8c ± 5.2  
(37.9 - 85.7) 

Charred (%) 
0a ± 0 
(0 - 0) 

1.9b ± 0.5 
(0 - 3.7) 

17.0c ± 4.6 
(5.4 - 48.0) 

74.2d ± 5.4 
(35.7 - 88.4) 

53.3d ± 5.2 
(32.7 - 76.8) 

Canopy Cover (%) 
85a ± 2.3 
(67 - 87) 

83a ± 1.4 
(76.5 - 86.0) 

29.5b ± 3.1 
(23 - 46) 

31b ± 2.6 
(21 - 36) 

15c ± 1.8 
(8.5 - 21.5) 

Ground Cover      

Bare Soil (%) 
4a ± 2.2 
(0 - 5) 

0a ± 1.8 
(0 - 5) 

56b ± 3.7 
(45 - 70) 

70b ± 2.7 
(60 - 77) 

51.5b ± 4.9 
(30 - 70) 

Litter/Duff (%) 
61a ± 8.4 

(27.5 - 71) 
57.5a ± 4.6 
(49.5 - 78) 

0b ± 0 
(0 - 0) 

0b ± 0 
(0 - 0) 

0b ± 0 
(0 - 0) 

Grass (%) 
1a ± 2.7 
(0 - 4.5) 

0.5a ± 1.8 
(0 - 11.5) 

3a ± 3.1 
(0 - 23) 

0a ± 2.4 
(0 - 11) 

6a ± 4.7 
(0 - 44.5) 

Forb (%) 
9a ± 4.2 

(4.5 - 29) 
9.5a ± 3.1 

(3 - 22) 
7a ± 1.7 
(1 - 15) 

4a ± 1.8 
(2 - 9) 

5.5a ± 1.5 
(3 - 9) 

Shrub (%) 
18a ± 3.9 
(5 - 29) 

5a ± 1.8 
(1.5 - 13.5) 

1a ± 3.9 
(0 - 9) 

3a ± 2.5 
(0 - 14) 

5a ± 2.4 
(0 - 18) 

Down Woody Fuels      

Fine - ≤ 100h (#) 
33a ± 2 

(28.5 - 38.5) 
30.5a ± 1.4 

(28 - 38) 
17b ± 1.7 
(12 - 25) 

9c ± 1.4 
(5 - 14) 

9c ± 1.1 
(6 - 13.5) 

Coarse - 1000+h (#) 
8d, e, g, h ± 0.8 

(5 - 9.5) 
4b, f, g ± 0.5 

(2.5 - 6) 
5a, b, c, d ± 0.6 

(3 - 7) 
4c, f, h ± 0.5 

(2 - 6) 
8.5a, e ± 0.6 
(5.5 - 10) 

Charred Coarse  
      Fuel (%) 

0 ± 0a 
(0 - 0) 

25b ± 7 
(0 - 58.3) 

42.8b, c ± 7.6 
(25 - 100) 

100c ± 4.5 
(100 - 100) 

68.3c ± 5.5 
(47.2 - 88.8) 

No Fuel (%) 
30.3a ± 3.2 
(19.6 - 33) 

33a ± 2.7 
(26.7 - 43.7) 

62.5b ± 3.4 
(42.8 - 71.4) 

76.7c ± 2.6 
(64.3 - 82.1) 

69.6b, c ± 2.2 
(58 - 76.7) 

*Values are expressed as median ± standard error (SE) and interquartile range (IQR) in parenthesis; 
different superscripted letters indicate significant pairwise comparisons in fire history differences. 
Pairwise comparisons were performed using Games-Howell post-hoc test when significant differences 
were detected from Kruskal-Wallis test. The Holm adjustment method was used to control for type 1 
error among multiple pairwise comparisons. 
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The percentage of standing snags (in relation to all other standing trees within 

the plots) within single high-severity fire plots was 21.3% and in reburned plots 

increased up to 61.8% (low-high) and 70% (high-low). Severely charred trees, exhibiting 

black carbon biochar on more than 50% of their standing surface area, also increased 

from 17% to 53.3% (low-high)/ 74.2% (high-low) between high-severity fire and reburns 

(Figure 13; Table 9). Canopy cover sharply declined after a high-severity fire but was not 

different from a low-high reburn (29.5% vs. 31%). High-low reburns had the lowest 

canopy cover (15%). 

 
Figure 13: Black carbon biochar on down woody debris (left) and snag trees (right). 

Functional vegetation groups (shrubs, forbs, and grasses) did not significantly 

differ across fire histories in terms of percent ground cover. While abundant in low-

severity plots, an organic litter/duff soil layer as ground cover was completely removed 

by high-severity and reburn histories. In place of this organic soil, charred bare soil 

represented the majority of ground cover in high-severity and reburn plots (> 50%) and 

did not significantly differ between these histories, but did between these and low 

severity and unburned classes. For fine down woody fuel abundance, high-severity and 
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reburn (low-high or high-low) plots respectively experienced 44% and 71% lower fuel 

loads when compared to low-severity and unburned plots. The percentage of charred 

coarse woody debris did not significantly differ between high-severity and reburn plots, 

although median values were notably higher on reburned plots (42.8%, 100%, and 

68.3% for high, low-high, and high-low histories, respectively). Furthermore, reburns 

had the lowest overall down woody fuel loads, as indicated by total absences of debris 

(i.e. No Fuel; Table 9). See Figure 14 for visual field representations of post-fire forest 

structure among fire histories. 

 
Figure 14: Field plots from the fire histories sampled on Mt. Adams and Mt. Jefferson: (A) low-severity,   
(B) high-severity, (C) low-high severity reburn, and (D) high-low severity reburn. Fires years associated 
with images were (A) 2012, (B) 2014, (C) 2003/2014, (D) 2008/2015. 
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Pre and Post-Fire Species Composition 

 We counted over 4,200 standing trees (i.e. pre-fire composition) and over 4,000 

seedlings (i.e. post-fire composition) of ten different conifer species across 111 recently 

burned plots with varying fire histories and topographic settings. Pre-fire tree densities 

varied between plots in wet and dry topographic settings (derived from HLI); wet sites 

hosted a higher median [IQR] density (609 [403 - 920] trees/ha) than dry sites (382 [269 

- 509] trees/ha). Pre-fire species composition, expressed as the mean percent of plot 

density [± SE] across plots, was also affected by topographic setting (Table 10). 

Lodgepole pine, grand fir, mountain hemlock, and Engelmann spruce trees were most 

abundant on wet plots, whereas Douglas fir and ponderosa pine trees on dry plots both 

prior and following fire. Across all burned plots (n=111), pre-fire composition was 

dominated by subalpine fir (25.7%) and grand fir (20.6%), with smaller components of 

ponderosa pine (11.2%), lodgepole pine (9.7%), and Douglas fir (7.2%). While present on 

the landscape, Engelmann spruce (2.2%), western white pine (0.1%), and western larch 

(0.4%) made up small proportions of the mature trees we encountered (Table 10).  

Across all burned plots, lodgepole pine (22.1%) and grand fir (21.6%) were the 

dominant components of post-fire seedling composition. Post-fire seedlings followed 

similar compositional trends to pre-fire trees with regards to topographic setting. 

Lodgepole pine, grand fir, subalpine fir, and Engelmann spruce seedlings dominated wet 

plots and lodgepole pine, grand fir, Douglas fir and ponderosa pine seedlings dominated 

dry plots. Despite status as a shade-tolerant species, grand fir seedlings were a greater 
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component of dry plots (26.4%) than wet sites (16.1%). Conversely, lodgepole pine 

established on a greater proportion of wet plots (30.6%) than dry sites (12.8%). When 

comparing pre-fire to post-fire composition across all burned plots, there was a 

substantial increase in lodgepole pine (9.7% up to 22.1%) and smaller increases in 

Douglas fir (7.2% up to 10.4%) and Engelmann spruce (2.2% up to 4.1%). A substantial 

decrease in subalpine fir (25.7% down to 8.4%) and smaller decreases in mountain 

hemlock (5.5% down to 2.1%) and ponderosa pine (11.2% down to 7.9%) were also 

observed (Table 10). 

Fire history strongly affected post-fire species composition. Plots that 

experienced low-severity fire were primarily composed of grand fir seedlings (51.1%) 

with smaller components of Douglas fir (19.6%), Engelmann spruce (8.2%), and pacific 

silver fir (7.7%). Across high-severity and reburned plots, lodgepole pine seedlings were 

the most dominant species (high 37%, low-high 24.1%, high-low 26.6%). Subalpine fir 

experienced a lower compositional density in reburns (low-high 5.9%, high-low 7.2%) 

than high-severity plots (15.8%). Alternatively, ponderosa pine was more abundant in 

reburns (low-high 11.4%, high-low 12.3%) than high-severity plots (4.2%).  

Seedling Density and Establishment Across Fire Histories 

Seedling density varied across fire histories with large variance, but a clear 

difference emerged between densities after low-severity vs. those in other fire histories. 

Low-severity plots experienced very high conifer regeneration with a median density of 

11,515 seedlings/ha. In contrast, high, low-high, and high-low histories exhibited very 
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low median seedling densities of 49, 28, and 14 per hectare, respectively (Figure 15; 

Table 10). We were unable to find any conifer seedlings in 20 out of the 83 sites (24%)  

 

Figure 15: Conifer seedling density per hectare among sampled fire histories. Boxplots are identical - but 
are shown at two scales for illustration (35,000, 1,000). Letters indicate statistical differences between fire 
histories via pairwise comparisons using the Games-Howell test.  

that experienced a high-severity fire or reburn. These median-density seedling values 

correspond to ca. 0.1 - 0.4% of those observed within low-severity burned plots, and to 

ca. 3% - 10% of median pre-fire tree density values across all plots (i.e. 467 trees/ ha; 

Table 10). There were no significant differences in seedling densities between recently 
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unburned, high, high-low, and low-high fire histories as indicated by the Games-Howell 

test (Figure 15). 

Temporality, or time since a high-severity fire occurred, did not appear to 

influence seedling density in a linear fashion (Figure 16); seedling density generally 

declined 6-11 years post-fire and increased at 15 years post-fire – the latter of which 

may be biased toward those specific plots having nearer seed source. Additionally, we 

did not detect any significant differences in seedlings densities due to variations in time 

since a high-severity fire occurred (3 - 15 years). 

  

Figure 16: Non-linear relationship between seedling density and time since a high-severity fire occurred 
among plots that experienced a high-severity fire (n=83). Relationship was modeled using a generalized 
additive model (GAM) with smoothing function. Dotted lines are 95% confidence intervals. 

Interpretation of the NMDS ordinations revealed several important observations 

regarding seedling establishment across fire histories, including subtle differences in 
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ordination space distances between species’ abundance and presence/ absence. In the 

ordination plots, fire history space is represented by ellipses (drawn using 95% 

confidence intervals). NMDS stress for both plots was < 0.10, indicating that the 

configuration spaces were close to actual dissimilarities (Clarke 1993). For the presence/ 

absence ordination, shade-tolerant species primarily occurred within low-severity space, 

except for Douglas fir (Figure 17). Lodgepole pine, ponderosa pine, and subalpine fir 

were the furthest from this grouping of shade-tolerant species and notably outside the 

low-severity space, showing a greater likelihood of presence after a high-severity fire or 

reburn. Based on distance proximity, Engelmann spruce and mountain hemlock 

occupied similar post-fire ecological niches, also grand fir and Douglas fir.  

 

Figure 17: NMDS ordination of post-fire seedling presence-absence, by species, amongst sampled fire 
histories. Dissimilarities measured using Jaccard distance; stress = 0.074, dimensions = 3. Ellipses drawn 
using 95% confidence intervals. Sample size (n) among fire histories used in analysis: Low (27), High (22), 
Low-high (23), High-low (18).  
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In the abundance ordination, high and high-low-severity spaces become more 

constrained, with high-low reburns only promoting the abundance of lodgepole pine, 

ponderosa pine, and subalpine fir by a small margin (Figure 18). In contrast, the low-

high reburn space remains the same as the presence/ absence ordination and supports 

the greatest diversity of species. Notably, subalpine fir shifts closer to shade-tolerant 

species in the abundance ordination and becomes contained within the low-severity 

space. Subalpine fir and ponderosa pine develop closer associations, as well as Douglas 

fir and pacific silver fir. 

 

Figure 18: NMDS ordination of post-fire seedling abundance, by species, amongst sampled fire histories. 
Dissimilarities measured using Bray-Curtis distance; stress = 0.088, dimensions = 3. Ellipses drawn using 
95% confidence intervals. Sample size (n) among fire histories used in analysis: Low (27), High (22), Low-
high (23), High-low (18).  
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For sites that experienced repeated fire, sequence of burn severity affected 

whether seedlings established post-fire or post-reburn (Figure 19). In the case of low-

high severity reburns, the vast majority of establishment occurred after the second high-

severity wildfire. By contrast in high-low severity reburns, a large pulse of establishment 

occurred after the first high-severity fire, followed by a lesser pulse of establishment 

after the second low-severity fire. In the case of high-low severity reburns, many 

seedlings (identified primarily as lodgepole and ponderosa pine) were able to survive a 

secondary low-severity fire with 7-11 years between fire events. 

 

Figure 19: Boxplot showing establishment of conifer seedlings post-fire or post-reburn among the two 
reburn histories sampled (high-low, low-high).  

Drivers of Post-Fire Conifer Regeneration: Binary Models 

   Reduced logistic and negative binomial regression models were used to identify 

the significance of predictor variables in explaining the presence/ absence and 

abundance of post-fire conifer seedlings, respectively (Table 11 and Table 13). For 

illustration, the following terms relate to the significance level of predictor variables in 

the associated binary and count models: mild (p < 0.05*), moderate (p < 0.01**), and 

strong (p < 0.001***).  
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For the all species-combined binary model, distance to seed source, slope, and 

canopy cover were moderately important predictors, while CWD abundance and forb 

cover were mildly important; canopy cover had the greatest leverage on establishment 

probability (β = 2.939). Cooler summer climate conditions, indicated by VPD and PDSI, 

mildly increased the presence of lodgepole pine and Engelmann spruce. High snowpack 

and cooler spring conditions - indicated by SWE, mildly and moderately limited the 

presence of Douglas fir, Engelmann spruce, and mountain hemlock. Seedling presence 

decreased mildly to strongly with an increasing distance to seed source for all species 

(Table 11).  

Increasing shrub and grass cover (i.e. competition) moderately decreased grand 

fir, Douglas fir, and Engelmann spruce presence, while forbs respectively facilitated the 

presence of subalpine fir and Engelmann spruce mildly and moderately. Elevation mildly 

limited the presence of grand fir, and moderately increased the presence of subalpine 

fir. Wetter soils - indicated by TWI, moderately and mildly improved the presence of 

subalpine fir and Engelmann spruce, respectively. Steeper slopes strongly decreased the 

presence of lodgepole pine; dense or old-growth pre-fire stands - indicated by tree basal 

area, also moderately decreased its presence (i.e. too shady). CWD abundance was 

mildly important for the presence of grand fir and mountain hemlock.  

Our binary logistic models fit seedling distributions well. P-values associated with 

the deviance residual and Hosmer-Lemeshow tests were well above (> 0.242) the alpha 

threshold of 0.05; p-values below this threshold would indicate a significantly poor fit 
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(Hosmer and Lemeshow 1980). K-fold cross-validation of the models also showed 

relatively strong predictive power (Table 12). Mean predictive accuracy ranged 81.8% to 

94.5%, and models correctly predicted seedling presence (PPR) 50% - 95% of the time, 

and absence (NPR) 83% - 93% of the time. 

Table 12: Performance metrics among the reduced logistic models. 

Logistic GLM (Binary)        

 
Deviance 
Residual 

Hosmer-
Lemeshow 

K-Fold Cross-Validation 

  χ2 p χ2 p Accuracy [95% CI] PPR NPR 

All Species 58.9 0.999 6.0 0.642 0.875 [0.759-0.948] 0.88 0.83 

Lodgepole pine 104.8 0.457 10.3 0.242 0.818 [0.691-0.909] 0.76 0.85 

Grand fir 59.7 0.999 9.0 0.341 0.909 [0.800-0.969] 0.95 0.87 

Douglas fir 72.2 0.992 6.2 0.623 0.875 [0.759-0.948] 0.89 0.84 

Subalpine fir 90.4 0.860 4.1 0.851 0.854 [0.733-0.935] 0.91 0.84 

Pacific silver fir 34.3 1.000 < 0.1 1.000 0.945 [0.848-0.988] 0.71 0.98 

Mountain hemlock 47.2 0.999 3.2 0.921 0.891 [0.777-0.959] 0.50 0.94 

Ponderosa pine 89.6 0.903 2.1 0.976 0.872 [0.755-0.947] 0.71 0.90 

Engelmann spruce 43.9 0.999 1.9 0.985 0.891 [0.777-0.959] 0.75 0.93 

Model fit statistics (Deviance Residual, Hosmer-Lemeshow) indicate a significant lack of model fit to data 
distribution if p-values are < 0.05. Predictive accuracy is represented by K-Fold Cross-Validation. PPR and 
NPR are the positive and negative predictive rates; they respectively indicate how well the model 
predicted seedling presence (positive) or absence (negative). 

 

 Increasing distance to seed source reduced the probability of seedling presence 

among individual species and all species combined, with some notable variations due to 

fire history (Figures 20/21). Post-fire forest structure under low-severity fire effects 

generally improved seedling probabilities - except for lodgepole pine (PICO). Grand fir 

(ABGR) showed the highest probability of seedling presence with increasing distance to 

source, likely indicating strong dispersal ability and environmental adaptability within  
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Figure 20: Probability of seedling presence (individual conifer species) as a function of distance to seed 
source among fire histories. Final reduced species-specific logistic models were used to model 
probabilities when model terms were kept at their median values – respective to fire history (see Data 
Analysis). While seed source was always present within 15m under low-severity conditions, the low-
severity curve illustrates the impacts of forest structure on establishment probability within models. The 
Pacific silver fir (ABAM) model did not have other significant terms beside distance to seed source, thus, 
fire history curves present the same. 
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the moisture gradient of the study areas. Grand fir, however, suffered the most under 

high-low reburn effects on forest structure. 

 
Figure 21: Probability of seedling presence (any species) as a function of distance to seed source among 
fire histories. The final reduced All Species logistic model was used to model probabilities when model 
terms were kept at their median values – respective to fire history (see Data Analysis). While seed source 
was always present within 15m under low-severity conditions, the low-severity curve illustrates the 
impacts of forest structure on establishment probability within the model. 

Drivers of Post-Fire Conifer Regeneration: Count Models 

              For all seedling species combined, distance to seed source (β = -0.018, p = 4.12e-

10) and canopy cover (β = 0.017, p = < 2e-16) were the strongest predictors of seedling 

abundance (Table 13). Although there was some overlap in significant predictors (TWI, 

CWD, and distance to seed source), a clear divergence occurred between shade-tolerant 

and intolerant species. Distance to seed source (β = -0.040, p = 9.94e-15), canopy cover 

(β = 0.030, p = 1.75e-09), and TWI (β = 0.020, p = 5.61e-09) were the most important 

predictors for shade-tolerant species; bare soil cover (β = -0.053, p = 6.75e-12), post-fire 
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SWE (β = -0.054, p = 1.56e-10), and shrub cover (β = -0.029, p = 0.000305) for shade-

intolerant species. Steeper slopes moderately decreased abundance for all seedlings 

combined but was not significant in shade-tolerant and intolerant models (Table 13).  

Table 13: Parameter estimates (β) from the reduced seedling count models. 

 Negative Binomial (Count) 

Predictors All Seedlings  Shade-tolerant Shade-intolerant 

Topographic Wetness Index (TWI) 0.007** 0.020*** 0.017* 

Heat Load Index (HLI) -0.007** -0.010** - 

Slope (°) -0.007** - - 

Distance to Seed Source (m) -0.018*** -0.040*** -0.025** 

Canopy Cover (%) 0.025*** 0.030*** - 

Post-Fire PDSI - -0.013** - 

Post-Fire SWE -0.009** - -0.054*** 

Bare Soil (% cover) - - -0.053*** 

Shrub (% cover) - - -0.029*** 

Pre-fire Basal Area (m2/ha) - 0.013** - 

CWD Abundance 0.008** 0.011** 0.016* 

Estimates are listed if they were significant in the associated model; values are in log-scale. Negative 
binomial GLMs were used to model seedling counts. Asterisks indicate levels of significance: * p < 0.05, ** 
p < 0.01, *** p < 0.001. Sample size (n) for the reduced count models was 109. For a full list of the 
predictor variables included in models and their methods of measurement, see Table 5. 
 

             The abundance of coarse woody debris moderately and mildly improved 

regeneration for shade-tolerant and intolerant species, respectively. Shrub cover 

strongly reduced abundance for shade-intolerant species but did not affect shade-

tolerant; grass and forb cover were not influential in the models. High snowpack and 

cooler springtime conditions - indicated by SWE, strongly reduced abundance of shade-

intolerant species. Meanwhile drier and warmer summertime post-fire climate 

conditions - indicated by PDSI, moderately increased regeneration for shade-tolerant 

species. Pre-fire tree basal area moderately improved regeneration of shade-tolerant 
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species but had no effect on other models. Finally, sites that were in cooler topographic 

positions - as indicated by HLI, moderately improved shade-tolerant regeneration – but 

not shade-intolerant. 

The seedling abundance count models passed model fit validation, as indicated 

by p-values > 0.05 from the Pearson’s goodness of fit chi-squared test (Table 14). 

Observed vs. predicted seedling counts, evaluated using Spearman’s Rank correlation, 

ranged ρ = 0.701 for the shade-intolerant model, ρ = 0.727 for the shade-tolerant 

model, and ρ = 0.745 for the all species model. 

Table 14: Performance metrics among the reduced negative binomial GLM models. 

Negative Binomial GLM (Count)    

 Spearman's Rank Pearson's Statistic 

  ρ χ2 p 

All Species 0.745 150.8 0.079 

Shade Tolerant 0.727 116.1 0.408 

Shade Intolerant 0.701 125.6 0.171 

Model fit (Pearson's Statistic) indicates a significant lack of model fit to data 
distribution if p-values are < 0.05. Predictive accuracy is represented by 
Spearman's Rank, which describes the distance between predicted and 
observed seedling counts; 1.0 represents no difference between predicted 
and observed estimates. 
 

As indicated by count models, seedling abundance declined sharply with 

increasing distances to seed source (Figure 22). Fire history primarily altered abundance 

probability for shade-intolerant species and generally became less influential as seed 

source distance increased. Shade-intolerant species maintained a very low but steady 

abundance up to 450-500m from seed source, while shade-tolerant species abundance 

plummeted past 50m and reached zero abundance at 200m from seed source. This may 
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be indicative of both dispersal abilities and post-fire environmental tolerances between 

shade-tolerant and intolerant species within our study areas. 

 
Figure 22: Seedling abundance probability as a function of distance to seed source (m) among reburn and 
high-severity fire histories. Final reduced negative binomial count models were used to model 
probabilities when model terms were kept at their median values – respective to fire history (see Data 
Analysis). 



67 
 

Distance from High-Severity to Lower Severity Patches 

 The patch distance analysis indicated differences in high-severity patch size 

between the two study areas (Figure 23). The Mt. Adams area experienced a greater 

total percentage of area burned at a high-severity (Table 2; Figure 5) and thus also 

experienced larger high-severity patches than Mt. Jefferson, where the center of such 

patches ranged up to 1400m from a lower-severity patch; up to 600m for Mt. Jefferson. 

Consequently, the Mt. Adams area experienced a larger proportion of area burned at a 

high-severity which was greater than 100m from lower-severity patches (i.e. 

concentrated seed source; Table 15). 

 
Figure 23: Histogram distributions of forest burned at a high-severity and their distance (m) to lower-
severity patches among the two study areas. The area of each datapoint was 900sqm (i.e. the spatial 
resolution [30m] of the burn severity dataset) and the minimum possible distance to lower-severity patch 
30m. 

 

 

 



68 
 

Table 15: Percentage of study areas burned at a high-severity with varying distances to lower-severity 
patches (i.e. seed source).  

 % of High-Severity Patches  

Patch Distance Statistic 
Mt.  

Adams (%) 
Mt.  

Jefferson (%)  Expected Seedling Density 

<100m to Lower-Severity Patch 40% 64% 175 - 500+ Seedlings/ha 

100 - 200m to Lower-Severity Patch 21% 21% 50 - 175 Seedlings/ha 

>200m to Lower-Severity Patch 39% 15% <50 Seedlings/ha 

Percentages were calculated using remotely sensed burn severity (RdNBR) rasters from study area 

wildfires. Expected seedling densities were calculated from the All Species seedling abundance   

probability model (Figure 22). Median pre-fire tree densities across sampled plots was 467 trees/ha. 

Conifer Seedling Stress (Fv/Fm) 

 Over 500 conifer seedlings were measured for plant stress levels (Fv/Fm) within 

sample plots where seedlings existed. No significant differences in Fv/Fm were detected 

between fire histories or among species when a permutation ANOVA was conducted (p 

< 0.05). Two significant, but weak correlations were detected between Fv/Fm data and 

environmental predictor variables. Using Spearman’s Rank correlation, TWI (ρ = 0.095, p 

= 0.032) and slope (ρ = -0.092, p = 0.036) showed a weak influence on seedling stress 

across all plots. An unbalanced sampling design, including variable time of day and year 

when measurements were taken, may have masked more significant or observable 

results. Ideally, measurements would have been taken altogether in late summer 

(September) when plant stress would be at its greatest level from lack of moisture 

availability. 
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Discussion 

Our results highlight the impacts of spatially large, severe, and rapidly repeated 

wildfires on conifer regeneration within mid-to-high elevation temperate forests that 

have, in recent history, experienced climate-limited wildfire regimes. Poor conifer 

regeneration, occurring semi-equally across forests rapidly reburned and single-burned 

involving a high-severity fire, was primarily explained by a lack of live seed-bearing trees 

remaining on the landscape post-fires, and secondarily by unfavorable post-fire 

environmental conditions for locally dominant, shade-tolerant conifer species. Rapidly 

reburned stands exhibited lower woody fuel loads than single-burned stands, indicating 

the potential to act as buffers to future fire spread and/or high-severity fire. 

Chronological sequence of burn severity (i.e. low-high vs. high-low) among reburned 

stands also altered the timing and composition of conifer seedling establishment.  

Overall, our results suggest that wet temperate conifer forest resilience may be 

negatively impacted by increasingly large, severe, and frequent wildfires. Considering 

current seedling densities, lack of seed source, and anticipated shortening of fire-return-

intervals within our study areas, forest patches affected by expansive high-severity and/ 

or repeated fire may transition into a patchy, low-density forest state. By incorporating 

fire-adapted species, lower tree densities, and lower fuel loads, this new state may be 

more resilient to frequent fire and shifting climate conditions than previous forest types. 

If future wildfire patterns manifest as expected in the Cascade Range, recovering mid-
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to-high elevation forests may begin resembling their drier, low-elevation mixed-conifer 

counterparts in structure and composition. 

Fire Severity and Frequency Alter Seed Source Availability, Conifer Regeneration 

The presence of live seed sources and the distance to them can strongly 

moderate conifer regeneration post-wildfire (Donato et al. 2009; Harvey et al. 2016; 

Kemp et al. 2016; Owen et al. 2017). Within forest patches affected by high-severity fire, 

the degree of live tree mortality and geometry of patches may be primary filters on 

regenerative capacity (Donato et al. 2009 a/b; Kemp et al. 2016; Haire and McGarigal 

2010). High-severity fire is generally classified as causing ≥ 90% mortality of live trees 

within affected patches (including this study) but may also range as low as 70% 

mortality (Eidenshink et al. 2007; Morgan et al. 2014, Whittier and Gray 2016). Although 

a 10% range appears small when considering a ≥90% mortality bracket, the degree to 

which live seed tree mortality is closer to 90% or 100% may create substantial 

differences in post-fire conifer regeneration. Within our study areas, fire severity in 

“high-severity” patches was very severe - causing live tree mortality near 100%; we did 

not observe any live trees within field plots that experienced a high-severity fire. The 

90% to 100% contrast is the difference between some legacy trees to serve as seed 

sources, enabling forest regeneration, and no legacy trees leading to complete 

conversion away from forest for a prolonged period. 
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In addition to very high tree mortality in our study areas, the spatial extent of 

forest affected by contiguous high-severity fire was expansive, with patches spanning 

roughly up to 1000-ha (Figure 5). This was especially pronounced for rapidly reburned 

forests, where patches burned during the first fire at low or moderate severities often 

reburned at a high-severity, increasing the contiguity and size of patches with few or no 

live seed sources (Figure 24).  

 

Figure 24: Subalpine forests on Mt. Adams (top) and Mt. Jefferson (bottom) affected by SIFs involving a 
high-severity fire. Vast areas exist on the landscape where only a handful of live trees remain. 
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These fire severity dynamics frequently resulted in live, contiguous tree patches 

(e.g. refugia or forest edges) that were more than 500-1000 meters away from our 

reburned sample plots. Stevens-Rumann and Morgan (2016) also noted that SIFs 

progressively removed seed source from the landscape, although the spatial extent of 

high-severity patches in their case was far more limited ( <150m to seed source), 

generally resulting in more moderate to abundant conifer regeneration among their 

sample plots (200 – 14,000 seedlings/ha).  

In two other recent studies assessing seed source distance as a driver of conifer 

regeneration, mixed-severity fire patterns generally limited high-severity patch sizes in 

the study areas, which resulted in greater conifer regeneration than this study. For 

example, Kemp et al. (2016) reported that 75% of forest burned at a high-severity was 

within 95m of lower-severity patches in dry mixed-conifer forest of the Northern 

Rockies (0-36,000+ seedlings/ha), and Donato et al. (2009 a,b) reported 58% and 81% of 

forest burned at high-severity was respectively ≤ 200m and ≤ 400m from live forest 

edges in coastal evergreen forest of the Klamath-Siskiyou Range (298-6086 

seedlings/ha). The study area of Donato et al. (2009a,b) was less sensitive to seed 

source distances, likely a consequence of (1) very moist coastal forest providing ideal 

environmental conditions for seedling establishment, (2) the way in which seed source 

was calculated (i.e. contiguous tree patches vs. individual trees), and (3) highly complex 

landscape topography.  
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Following methods by Kemp et al. (2016), our analysis of distances from high-

severity to lower severity patches revealed large variations between our studies areas, 

with Mt. Adams having burned more severely and extensively across fire perimeters 

than Mt. Jefferson (Table 15; Figure 23). Over 60% of the area burned at a high-severity 

was >100m from a lower-severity patch for Mt. Adams and 36% for Mt. Jefferson. Our 

seedling regeneration models indicated conifer seedling abundance between 100 – 

200m from seed source was low (50 – 175 seedlings/ha) and seedling abundance was 

very low past 200m (<50 seedlings/ha); median pre-fire tree density across study areas 

was 467 trees/ha. Consequently, widescale conifer regeneration in the Mt. Adams area 

may be much poorer than the Mt. Jefferson due to large sizes of the landscape burned 

at high-severity in one or more recent fires. 

 Despite having a significantly different average distance to a live seed source, 

conifer seedling abundance was not statistically different between our sites that rapidly 

reburned and those that experienced a single recent high-severity fire (Figure 15). 

Seedling abundance was equally poor under these fire histories, with median densities 

ranging 14 - 28 seedlings/ha in reburns and 49 seedlings/ha in high-severity plots. 

Additionally, twenty out of the eighty-three sites (24%) that experienced a high-severity 

fire or reburn had no conifer seedlings. These results suggest that fire effects which 

removed live seed source, whether it be SIFs or simply expansive high-severity fire, were 

the primary control on post-fire conifer regeneration.   
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While distant seed sources ultimately led to poor conifer regeneration among 

our plots that experienced a high-severity fire or reburn, modeled probabilities of 

seedling abundance fell within the expected range of tree dispersal abilities, although 

with important differences between shade-tolerant and intolerant species (Figure 22). 

In high-severity patches, Kemp et al. (2016) found conifer seedling probability declined 

sharply past 95m to seed source in dry mixed-conifer forests, and Harvey et al. (2016) 

found 75% of post-fire seedling establishment occurred within 150m of seed source in 

subalpine forests. Under high-severity fire effects, including reburns, in this study, 

modeled seedling abundance reached the lower end of pre-fire forest densities in our 

study areas between 50-100m from seed source and maintained a low-density state (i.e. 

~50 seedlings/ha) between 200-400m, dropping to complete seedling absence near 

500m from seed source. Shade-tolerant species abundance rapidly declined past 50m, 

reaching near zero probability past 200m. Alternatively, shade-intolerant species 

abundance maintained a low-density state between 200-400m from seed source. 

Secondary Controls on Conifer Regeneration 

Post-fire environmental growing conditions, climate, animal predation, seed 

production, and competition for niche space further compound the issue of poor seed 

source (Agee 1993; Franklin and Hemstrom 1981; Minore and Laacke 1992). While seeds 

may reach a given location with wind or animal assistance, a lack of shade, organic soil, 

or moisture may limit establishment, especially for shade-tolerant species. Successful 

seedling establishment can then be thought of as a probability equation, where more 
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seeds are necessary for establishment when environmental conditions do not favor 

species survival, and vice versa. 

Assuming seed source is available, seedling establishment may fluctuate with 

time since a fire occurred, as species specific seed production, dispersal cycles, and 

climate conditions can dictate pulses of establishment (Agee 1993; Rochefort et al. 

1994; Freund et al. 2014). Within subalpine forest affected by high-severity fire, Harvey 

et al. (2016) noted seedling establishment followed a linear trend of increasing 

establishment over time - peaking between 2-8 years post-fire and then rapidly 

declining. Donato et al. (2016) also noted seedling establishment peaked 5-15 years 

postfire within dry mixed-conifer forest. In our case, we did not detect any significant 

differences in seedlings densities due to variations in time since a high-severity fire 

occurred (3 - 15 years), a linear relationship between these variables (Figure 16), nor 

was time since a high-severity fire ever chosen as a significant predictor in seedling 

abundance or presence/ absence models. This may indicate that under severe fire 

effects and without proximate long-term seed source, regeneration primarily occurs 

after a high-severity fire event, before remaining seed sources are removed from the 

landscape via delayed mortality (Figure 19). 

Beyond seed source availability, our seedling regeneration models suggested 

that topographic, biotic, and abiotic factors which increased site shading and moisture 

availability (i.e. canopy cover, coarse woody debris, aspect/slope, topographic wetness) 

increased shade-tolerant species’ abundance, in addition to warmer post-fire 
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summertime conditions (i.e. PDSI). Alternatively, shade-intolerant species’ abundance 

appeared to be primarily limited by post-fire years with above average spring snowpack 

(i.e. SWE), greater abundance of highly charred bare soils, and competition with shrubs. 

Depending upon geographic location, successful subalpine establishment has been 

climatically linked with warmer spring conditions, lower spring snowpack, and cooler or 

warmer summer conditions (Agee and Smith 1984; Andrus et al. 2018; Little et al. 1994). 

For shade-intolerant species within our study areas, high post-fire snowpack may be 

shortening the temporal period for establishment, disrupting dispersal and germination 

mechanisms, leading to lesser abundance.  

Environmental factors which improve moisture availability, as in the case of our 

shade-tolerant species model, are theoretically and empirically backed by a wide body 

of research (e.g. Agee 1993; Donato et al. 2016; Harvey et al. 2016, Andrus et al. 2018). 

Post-fire climate can also be crucial for seedling establishment by augmenting site 

moisture availability, and in the case of post-fire drought, has recently been shown to 

negatively impact conifer establishment across mixed-conifer and some subalpine forest 

types (e.g. Davis et al. 2019; Harvey et al. 2016; Kemp et al. 2019; Stevens-Rumann et al. 

2017). Our results generally contrast these findings, which may be explained by 

differences in annual precipitation - or moisture gradients between study areas (Figure 

25). With the exception of Donato et al. (2009 a,b), who assessed forest regeneration 

after high-severity fire and SIFs in very wet coastal evergreen forest, our study areas are 

substantially wetter and experience comparable or somewhat cooler summer 
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temperatures than recent studies citing drought as a limiting force (Figure 25). Thus, 

growing season length (constrained by snowpack) and cooler summers may actually be 

limiting establishment within our study areas. Thus, warmer future climate conditions 

may allow for increased conifer regeneration assuming seed source is present, but drier 

forest fuels may create higher burn-severity conditions and shortened fire-return-

intervals (Abatzoglou and Williams 2016; Abatzoglou et al. 2017) prohibitive to 

subalpine forest development (Turner and Romme 1994). 

  

Figure 25: Related recent studies assessing conifer regeneration after high-severity fire and/ or reburns in 
the Western United States. Studies have been placed according to relative moisture gradients (i.e. annual 
precipitation) and forest types identified within study areas. 
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Mechanisms Promoting Persistent Seed Source: Refugia 

Two mechanisms we observed, occurring separately within upper-montane and 

subalpine forest types, may help promote persistent fire refugia and conifer legacies 

(i.e. contiguous live seed trees) on the landscape despite high-severity fires and SIFs. 

Throughout our study area, forests that burned at low severities and thereby 

maintained live seed trees experienced one of two dynamics. First, at lower elevations, 

persistent old-growth grand fir and Douglas fir forest suppressed general seedling 

establishment. High canopy cover and low light availability helped prevent the 

accumulation of ladder fuel trees and mature trees were widely spaced enough to 

prevent canopy fire. Old-growth trees had additionally developed very thick fire-

resistant bark (including grand fir), which further prevented canopy tree mortality. 

Meigs and Krawchuk (2018) found in a study of refugial extent in the PNW that among 

closed-canopy forests, those with the largest trees facilitated lower burn severities than 

those with small or medium tree classes. Widely spaced, closed-canopy, old-growth 

stands should help maintain persistent fire refugia in upper-montane stands despite 

increases in fire frequency – assuming old-growth trees do not experience rapid 

mortality from non-fire effects (Reilly and Spies 2016).  

The second dynamic was observed within higher-elevation stands which, unlike 

our first example, maintained high fuel connectivity and tree densities typical of 

subalpine forests. These stands were commonly located within extremely wet 

floodplains or perennial creek channels, which provided enough year-round moisture to 
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limit the ignition of fuels – resulting in low burn-severity. These locations were easily 

identifiable by their high TWI values in a Geographic Information System (GIS), which 

corroborates findings from recent research assessing predictors of refugial persistence 

(Krawchuk et al. 2016; Rogeau et al. 2018). This suggests a completely different kind of 

refugium, a coupled hydrological-fire refugium 

Across elevation gradients and forest types, rocky ridgeline outcroppings were 

also a common bastion of refugia on the landscape, which primarily hosted large fire-

resistant ponderosa pine (Figure 26). Low fuel connectivity created by these landscape 

features may enable long-term persistence of species whom can handle the exposed 

conditions (Blomdahl et al. 2019; Kolden et al. 2017). These ridges were ideal for seed 

dispersal, where wind and topography could increase dispersal distances beyond normal 

expected ranges. 

 

Figure 26: Rocky ridgelines created small bastions of refugia on an otherwise torched landscape for fire-
resistant ponderosa pine and some other species. 
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Repeated Wildfire Alters Stand Structure, Species Composition 

In terms of individual and overall post-fire forest structure, our results primarily 

agree with and expand upon Stevens-Rumann and Morgan (2016), who compared forest 

structure and conifer regeneration after SIFs using a similar sampling design in dry 

mixed-conifer forests. We found that reburned stands in both severity sequences (i.e. 

low-high, high-low) were structurally different from forest exposed to a single high-

severity fire – but not from each other (Table 8). These differences are best explained by 

lower fine fuel abundance (also supported by Larson et al. 2013), greater percentage of 

heavily charred snags, and further distance to seed source among reburned plots (Table 

9; Figure 13). High-low severity reburns specifically exhibited greater loadings of coarse 

woody debris and lower canopy cover than other fire histories, which may be explained 

by greater time elapsed since a high-severity fire occurred - allowing more time for 

snags to become down woody debris. Post-fire ground cover of functional vegetation 

groups (i.e. grasses, shrubs, and forbs) did not differ between fire histories following 

Stevens-Rumann and Morgan (2016), however, our plots that experienced a high-

severity fire (including reburns) exhibited greater median percentages (6% to 45% more) 

of ground cover as exposed bare ground than the above study. This may indicate that 

general fire behavior within our study areas was more extreme than Stevens-Rumann 

and Morgan (2016), which is not surprising considering forest tree density differences 

between studies (low to moderate vs. high-density) and the general lack of live trees 

within high-severity patches we surveyed. 
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Pre-fire and legacy forests within our study areas were largely dominated by 

shade-tolerant species; grand fir at lower elevations (upper-montane forest) and 

subalpine fir at higher elevations (subalpine forest) with a smaller component of 

lodgepole pine and ponderosa pine mixed across elevation gradients (Table 10). Douglas 

fir was generally restricted to lower elevations and dry aspects, while mountain hemlock 

and Engelmann spruce were more common at higher elevations and in wet shady 

drainages. Tree density characteristically followed variations in topographic moisture 

availability expressed through the HLI and TWI; wetter and shadier sites hosted higher 

pre-fire tree densities primarily composed of shade-tolerant species. 

Plots that experienced a low-severity fire and thereby retained seed source 

regenerated abundantly (median density of 11,515 seedlings/ha) with locally proximate 

shade-tolerant species, mirroring pre-fire composition. In the Western Cascades, Brown 

et al. (2013) found post-fire conifer seedling regeneration respectively on the order of 

60,000 and 14,000 seedlings/ha within pacific silver fir and western hemlock zones 

when seed source was present. Agee and Smith (1984) found seedling regeneration on 

the order of several thousand per hectare within subalpine forest on the Olympic 

Peninsula, with the highest densities closest to forest edges. In terms of temperature, 

elevation, growing season length, and moisture gradients, the regenerative capacity of 

our study areas fit somewhere between the margins of these two studies when seed 

source was present. 
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Post-fire seedling composition within plots affected by a single high-severity fire, 

which were biased toward subalpine compositions (see Table 4), were characteristic of 

some stand-replacing fire regimes in the Western U.S. (i.e. Yellowstone NP; Turner and 

Romme 1994) where lodgepole pine was the dominant species (37%). Pre-fire species 

were present within plots affected by a single high-severity fire – but at lower 

percentages and densities than lodgepole pine (Table 10). Harvey et al. (2016) found 

similar results in subalpine stands affected by high-severity fire with the exception of 

Engelmann spruce, which was dominant in their Glacier NP sites - perhaps a 

consequence of greater pre-fire compositional dominance than in our study areas (i.e. 

Engelmann spruce was only ~2% of the pre-fire trees we encountered). Harvey et al. 

(2016) additionally noted that while pre-fire forests were generally dominated by 

subalpine fir, subalpine fir seedling abundance did not mirror pre-fire composition and 

suffered greatly with increasing distance to seed source. 

We observed notable differences in post-fire species composition between 

single high-severity plots and reburned plots. Although lodgepole pine seedlings largely 

dominated these three fire histories (i.e. high, high-low, low-high), reburns lowered this 

species’ compositional dominance within sample plots from 37% after a single high-

severity fire to about 25% in reburns. Meanwhile, ponderosa pine was more dominant 

among reburned plots, increasing from 4% after a single high-severity fire to 12% in 

reburns. Reburns appeared to negatively affect the dominance of subalpine fir, lowering 

composition from 16% in high-severity plots to about 6.5% in reburns.  
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For serotinous species like lodgepole pine, concerns have been expressed 

around shrinking fire-return-intervals disrupting reproductive strategies (Buma et al. 

2013). We did not check for the presence of serotiny among the mature lodgepole pine 

we encountered (nor were they often still alive to check), and so there is no information 

about the degree of serotinous cones in our study area. Geographically, both the non-

serotinous (var. murrayana) and serotinous (var. latifolia) variations of lodgepole pine 

are understood to be present within the Central Cascade Range (Krugman and Jenkinson 

1974; Atzet and McCrimmon 1990). Var. latifolia is known to have varying levels of 

serotiny based on environment, tree age, and fire history, where high-elevation stands 

with infrequent fire tend to favor the production of open, non-serotinous cones 

(Critchfield 1978; Lotan 1976; Lotan and Perry 1983). While reburns reduced the 

abundance of lodgepole pine in post-fire stands, it remained at a low-density across the 

landscape - indicating some sustained resilience against SIFs. Within several plots that 

experienced a high-severity fire in 2003, followed by a low-severity fire in 2014, 

surviving lodgepole pine saplings greater than 10 years of age were successfully 

developing cones by 2018 (Figure 27). Assuming there was pronounced serotiny within 

mature trees, its possible severe fire conditions destroyed canopy seedbanks – leading 

to lower than normal densities of the species within areas not reburned (Anderson and 

Romme 1991; Lotan 1976).  
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Figure 27: A lodgepole pine sapling that established after a 2003 high-severity fire, whom survived a 2014 
low-severity fire (11 years between events) and was producing cones in 2018. 

 

As indicated by the NMDS ordinations (Figures 17/18), low-high severity reburns 

appeared to the support establishment of the widest diversity of species, while high-low 

reburns primarily supported lodgepole pine and ponderosa pine. Although both reburns 

equally removed live seed sources from affected patches, the sequence of this removal 

may be important – as indicated by Stevens-Rumann and Morgan (2016). Ultimately, a 

low–high-severity reburn mimics a single stand-replacing fire, in contradiction to the 

possible hypothesis that the second fire, although high-severity, might be fuel-limited. 

Instead, some understory is removed during the first fire, but most canopy trees survive; 
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then, when the second fire ensues, mass mortality of live trees and establishing 

seedlings occurs although some trees may experience delayed mortality and disperse 

final offspring post-fire before succumbing. Unless a third fire occurs, those seeds can 

successfully establish and remain relatively undisturbed.  

Alternatively, in a high–low-severity reburn, the stand experiences mass 

mortality and ejects final offspring upon the first, high-severity fire. By the time the 

second fire occurs, delayed mortality has taken its course. The secondary low-severity 

fire kills unprotected or poorly adapted seedlings, and no nearby seed source is left to 

reseed the stand after the fire. Therefore, only the seedlings that grow fast and are large 

or tough enough to survive a low-severity fire remain. In this case, lodgepole pine and 

ponderosa pine appear to be the most successful under a high-low reburn sequence 

with 7-11 years between fires, while grand fir and Douglas fir suffered the most. 

Although Stevens-Rumann and Morgan (2016) saw more extreme differences in 

seedling densities between high-low and low-high reburn sequences within mixed-

conifer forest, the same trend of lower species diversity and abundance under a high-

low sequence was present.  

Across all burned sites, we saw a substantial decrease in subalpine fir (25.7% 

down to 8.4%) and substantial increase in lodgepole pine (9.7% up to 22.1%). These 

patterns of establishment indicate that much of the forest landscape affected by high-

severity and repeated fire is undergoing stand re-initiation at low tree densities, 
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dominated by lodgepole and ponderosa pine at longer distances (i.e. >100m) from live 

seed sources. 

Forest Ecosystem Transitions, Migrations, and Future Resilience 

 Post-fire forest regeneration can take many successional pathways, and 

pathways may shift or emerge decades after a wildfire. For this reason, quantifying 

regeneration shortly after fire events may provide poor snapshots of long-term forest 

development (Tepley et al. 2014; Gill et al. 2017). Several important components 

indicated within this study, however, reinforce the likelihood that regeneration trends 

seen now may not deviate significantly in the future. Conifer legacies stored on the 

landscape as live seed trees have primarily been removed within the high-severity and 

reburned patches we sampled. Without those legacies intact, few mechanisms exist to 

reseed forests beyond marginal wind and animal dispersal – that is until surviving 

seedlings reach sexual maturity. Surviving seedlings could begin to reseed immediate 

areas around them, eventually creating enough shade and moisture to facilitate shade-

tolerant species’ establishment. Left undisturbed, this process could eventually lead to 

the re-establishment of prior forest compositions. 

 If climate change impacts are considered, however, greater forest fuel aridity 

points to more frequent wildfire (Abatzoglou and Williams 2016; Abatzoglou et al. 2017) 

and potentially larger, more severe fires (Cansler and McKenzie 2014). Within the 

subalpine zone, frequent fire (as has occurred recently) would generally prevent the 

reestablishment of characteristically subalpine species like mountain hemlock, 
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Engelmann spruce, and subalpine fir (Hansen et al. 2018; Johnstone et al. 2016; Turner 

and Romme 1994). Frequent fire would also promote the same low forest densities 

presently observed (Tepley et al. 2013). 

Donato et al. (2012) proposed that spatiotemporal wildfire characteristics and 

environmental stress could create multiple successional pathways in temperate forests. 

Within this model, some forests can maintain high structural complexity across seral 

stages, and may even skip traditional developmental stages, such as competitive 

exclusion. This may result in a forest with abnormally low tree density over time, but 

structurally complex attributes, nonetheless. We posit that within our study areas 

affected by expansive high-severity and repeated wildfire, previously high-density 

subalpine and upper-montane forests may have transitioned into now persistently 

altered low-density states in response to the changed climate and fire regimes. Using 

the framework described by Donato et al. (2012), we believe these forests may be 

following a homologous precocity successional pathway (Figure 28).  
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Figure 28: Three alternate successional pathways for forest development, showing the relative levels of 
structural complexity exhibited in each seral stage. In the conventional successional model, both early- 
and mid-seral conditions are dominated by a relatively even-aged tree cohort, and structural complexity 
does not arise until the latest stage of development. In the case of analogous precocity, early-successional 
stands exhibit structural complexity in some ways similar to that in old stands, but canopy closure results 
in reduced complexity during mid-succession. In the case of homologous precocity, the lack of a tree 
canopy-closure phase results in a continuity of complexity throughout forest development. From Donato 
et al. 2012. 

Where prior forests lacked resilience against frequent fire, new compositions will 

have multiple components that reinforce mixed-severity fire regimes. Alternative forests 

will be dominated by fire-adapted species, experience lower fine fuel loads, maintain 

patchier connectivity of fuels, and exhibit lower conifer densities - promoting fewer 

expansive stand-replacing crown fires (Coop et al. 2016; Larson et al. 2013; Stevens-

Rumann and Morgan 2016; van Wagtendonk et al. 2012). If we can expect increasing 
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summertime fuel aridity within the PNW region (Abatzoglou and Williams 2016; 

Abatzoglou et al. 2017; Westerling et al. 2006), altered forest compositions will maintain 

greater resilience in the face of climate change by adapting to new fire regimes 

(Johnstone et al. 2016; Turner et al. 1993).  

Additionally, in response to these changes, we expect forest compositions to 

begin migrating over the next century within the Central Cascade Range (Davis et al. 

2019; Kemp et al. 2019; Stevens-Rumann et al. 2017; Figure 29). As dense forests within 

the upper-montane and  

 
Figure 29: Conceptual diagram of anticipated forest composition shifts due to increased fire frequency 
and climate change impacts within the Central Cascade Range. A general upward shift in forest types is 
anticipated, except where large high-severity fire patches and short-interval fires remove live conifer 
legacies (seed source). Adapted from Cansler et al. 2018. 
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subalpine zones begin to burn more frequently and in greater extent, high-severity 

patches may lack proximate seed sources except at fire perimeter edges or in small 

islands of refugia (Kemp et al. 2016; Harvey et al. 2016; Hansen et al. 2018). At high and 

low elevation points within affected perimeters in upper-montane/ subalpine zones, 

alpine treeline species will push downward into the subalpine zone, and mixed-conifer 

species upward into the upper-montane zone (Cansler et al. 2018). Within large patches 

burned at a high-severity, the center of affected perimeters may have minimal conifer 

replacement, and thereby transition into low-density forests with large patches of grass 

and shrubland (Harvey et al. 2016; Kemp et al. 2016; Serra-Díaz et al. 2018; Tepley et al. 

2018; van Wagtendonk et al. 2012). 

In the short-term, this belt of sparse fuels may act as a barrier to future fire 

spread, protecting the subalpine-treeline transition zone from fires. As summit 

snowlines recede in elevation, an upward migration of forest types will occur, starting 

from dry conifer forests east of the Cascade crest, to alpine treeline species advancing 

on receding snowlines. The speed of such potential forest changes and migrations is 

theorized to be accelerated by the occurrence of large-scale natural disturbances – 

especially wildfires (Enright et al. 2015; Johnstone et al. 2016; Turner et al. 1993). If so, 

post-reburned areas might turn out to adapt more quickly to direct (i.e. warmer and 

drier conditions) and indirect (e.g. increased frequency of fires) climate change impacts 

in these mid-to-high elevation forests. 
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Management Implications 

 For wildfire, forest, timber, and recreation managers operating in the Central 

Cascade Range, altered wildfire regimes and forests present dynamic challenges. 

Productive upper-montane forest stands are ideal for timber harvest, but under climate 

change are at risk of spatially extensive high-severity fires which leave little marketable 

timber left for extraction (Abatzoglou and Williams 2016; Abaztoglou et al. 2017; 

McKenzie and Littell 2017). As forests develop lower densities after experiencing high-

severity and repeated wildfires, affected stands may lose some economic viability for 

harvest (Stine et al. 2014). Meanwhile, human development and recreation lands 

intersecting high-elevation areas may be at greater risk of expansive wildfire until forest 

fuel densities decline. In the aftermath, burned forests in scenic recreation areas may 

illicit lower perceived value from guests – reducing tourism and public access to 

landscapes (Englin et al. 2001; Hesseln et al. 2004; Kline et al. 2004; Loomis et al. 2001; 

Stine et al. 2014). Affected areas may also remain closed until infrastructure can be 

repaired and post-fire erosion concerns addressed.  

 To mitigate forests transitions and control wildfire patterns, fewer effective 

management practices have been identified in forests with climate-limited wildfire 

regimes when compared to fuel-limited regimes (Halofsky et al. 2018; Stine et al. 2014). 

Halofsky et al. (2018) identified climate adaptation options for forests which facilitate 

stand-replacing fire regimes. These options incorporate practices which (1) maintain live 

seed tree legacies on landscapes, (2) minimize high-severity fire extent, and (3) utilize 
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fire suppression to maintain existing forest compositions. In the long-term, fire 

suppression may be a poor management option. Increasingly drier forests with large 

historical, even multi-century, fuel accumulations will stimulate expansive high-severity 

fires sooner or later – unless stands are truthfully wet enough to resist short-term 

climate change impacts.  

If forest ecosystems are fundamentally ill-adapted to frequent fires and a 

warming climate, we would recommend management practices that allow ecosystems 

to begin transitioning - but at fundamentally slower rates than unmitigated wildfire may 

create. This could involve creating systematic firebreak buffers within dense forests to 

limit high-severity fire extent, buffering refugia islands to protect persistent seed 

sources, and/or encouraging wildfires during wetter, cooler climatic periods which limit 

high-severity fire extent. Additionally, planting seedlings in and around live conifer 

legacies and fire refugia may help reinitiate components of prior forest compositions. To 

increase seedling survival, planting efforts may be focused in areas with favorable 

topographic features which increase moisture availability (i.e. TWI, HLI). Such strategies 

could help retain existing conifer legacies within affected forests, preventing potentially 

rapid ecosystem transitions from conifer regeneration failure. 
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Limitations and Future Directions 

Seed Source Distance and Delayed Mortality 

 Distance to seed source has been identified as a primary control on conifer 

regeneration post-disturbance by numerous recent studies (e.g. Donato et al. 2009a,b; 

Donato et al. 2016; Kemp et al. 2016; Harvey et al. 2016) – but the method(s) in which 

seed source distance is calculated varies by study. Common methods involve measuring 

(1) distance to the nearest single live tree, (2) averaged distance to the nearest 10 live 

trees, and (3) distance to the nearest contiguous live tree patch (i.e. forest edge or 

refugia). Since methods vary, interpretations of critical seed source distance thresholds 

may also vary between studies, as individual live trees vs. contiguous live tree patches 

may have differential capacities to reseed burned areas (i.e. greater quantity of seeds 

reaching plots). While we used method (2) in this study, incorporating method (3) may 

have revealed differences in the effectiveness of scattered vs. clumped seed source and 

improved seedling regeneration models. 

Delayed mortality of trees post-fire may additionally confuse seed source 

distance measurements, where seed trees may have been alive post-fire, but not during 

the time of field sampling. When attempting to model seedling regeneration as a 

function of seed source, delayed mortality can confuse results (i.e. seed source was 

present on sample plot, but not detected). Many studies have used iterations of MTBS’ 

remotely-sensed burn severity data to select field sites and/or conduct spatial analyses 

(including this study), which is built on determining fire-severity approximately one-year 
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post-fire (Eidenshink et al. 2007). Thus, forest burned at “moderate-severity” as 

captured by MTBS may experience delayed mortality, resulting in “high-severity” 

conditions within several years. Assuming enough time has passed since a fire occurred 

(~2+ years postfire), future studies may benefit from comparing one-year post-fire 

imagery to several years post-fire imagery (i.e. subtract images) to quantify tree 

mortality from fire effects more accurately. 

Compound Disturbance Interactions: Insect Outbreak 

 As noted in the study methodology section, we attempted to limit the influence 

of recent insect outbreak within our sample plots from Western Spruce Budworm (WSB) 

and Mountain Pine Beetle (MPB). Forests within both study areas (Mt. Jefferson and Mt. 

Adams) have experienced extensive recent insect outbreaks from these species 

(Hummel and Agee 2003; Meigs et al. 2015b), which may kill live trees and/or reduce 

their resilience to future disturbance (Hummel & Agee 2003; Meigs et al. 2015a; Raffa et 

al. 2008). While we minimized effects from insects within our sample plots, we did not 

consider or remove influence from areas surrounding our plots (i.e. where live trees 

providing seed source were often located). Tree mortality from insects may have 

combined with fire effects to limit the amount of live seed source near our plots, both 

within immediate patches which matched plot burn-severity and from clusters of nearby 

live trees burned at lower severities (i.e. refugia).  

While MPB is primarily known for causing tree mortality, WSB can also reduce 

cone and seed production in host trees (Brooks et al. 1987). Considering the compound 
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stress created by insect and fire effects, it’s possible that seed production capacity of 

live trees near our sample plots was negatively affected – resulting in fewer seeds 

reaching sample plots and poorer subsequent conifer regeneration. In the case of an 

alpine treeline environment, Jameson et al. (2015) found insect outbreak reduced 

treeline expansion by limiting viable conifer seeds and cone production. As warming 

climate conditions increase the potential for compound disturbances like repeated 

wildfire and insect outbreaks, future research could assess the impacts of disturbance 

interactions on conifer seed production, dispersal, and establishment – thus improving 

scientific understanding of post-disturbance forest regeneration outcomes. 

Impacts of Woody Charring on Snowmelt 

 Winter snowpack and the timing of snowmelt are important mechanisms 

controlling forest fuel aridity within high-elevation forests (Fyfe et al. 2017; Gergel et al. 

2017; Mote 2006; Westerling et al. 2006). Snowmelt timing may also be important for 

post-fire conifer establishment, where melt timing may facilitate or impede 

establishment of different conifer species – as indicated by our seedling regeneration 

models (Andrus et al. 2018; Little et al. 1994). A lack of canopy cover may increase snow 

deposition, but it might also speed up the melting of snow in the spring. In addition, 

charred forests have been shown to alter the albedo of snow, potentially increasing the 

rate at which snowpack melts (Gleason et al. 2013; Gleason and Nolan 2016; Harpold et 

al. 2014).  
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Among our sample sites, rapidly reburned plots exhibited a significantly greater 

percentage of both heavily charred coarse woody debris and dead, standing trees when 

compared to single high-severity plots (Table 9; Figure 14). Ward et al. (2017) also noted 

that reburned forest exhibited significantly more black carbon charring on down woody 

debris than sites which experienced only a single high-severity fire. With a greater 

cumulative surface area of heavily charred biomass, it’s possible that reburned stands 

may further decrease snow albedo for the duration charred trees remain standing, 

increasing local snowmelt rates over stands affected by a single high-severity fire. 

Consequently, conifer regeneration could be differently impacted within reburned 

stands because of this dynamic. Existing research has assessed snow ablation after high-

severity fires, but not short-interval fires (Gleason et al. 2013; Gleason and Nolan 2016; 

Harpold et al. 2014). Future research could assess the validity of this hypothesis by 

comparing snowmelt rates between forest stands burned once and rapidly reburned at 

a high-severity.  

Soil Moisture and Post-Fire Forest Regeneration 

 Landscape-level ecological assessments often use climate data or modeled 

climate products as a proxy for local bioclimatic conditions, including this research. Field 

measurement of soil hydrology and moisture availability for local flora are often time 

consuming, must be recorded over continuous periods, and corresponding result can be 

very heterogenous over space as soil and vegetation compositions change (Vereecken et 

al. 2015). Conversely, climate data exists widely across the earth at semi-fine spatial 
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resolutions and perhaps most importantly, is available for the late and early 20th/21st 

centuries. Regardless of the inherent difficulties of field sampling and the ease and 

availability of climate data, climate data and modeled products are still only a proxy for 

ground conditions - an important limitation of this study. Within forest stands affected 

by low and high-severity fires, for example, actual soil moisture availability for 

regenerating vegetation may be wildly different – even though climatic data is the same. 

Varying post-fire forest structures facilitate varying levels of moisture retention and 

availability (Boisramé et al. 2018, Cardenas and Kanarek 2014). 

 As remote-sensing techniques for measuring soil-moisture improve, soil-

moisture may be a more accurate measure of climatic effects on post-fire forest 

regeneration than climate data alone at the plot and landscape level (Bourgeau‐Chavez 

et al. 2007; Elsner et al. 2011; Mohanty et al. 2017). Especially during periods of 

drought, soil moisture availability may determine the success of germinating seeds and 

survival of young conifer seedlings (Andrus et al. 2018; Harvey et al. 2016; Kemp et al. 

2019; Stevens-Rumann et al. 2018). Existing methods work effectively for monitoring 

soil moisture over homogenous landscapes (e.g. agricultural crops) but are much less 

reliable over complex terrain and heterogenous vegetation types (Mohanty et al. 2017; 

Zhang et al. 2017). We recommend (1) the promotion of technologies and methods 

which improve the accuracy and accessibility of remotely-sensed soil moisture data over 

topographically complex forested landscapes, and (2) the utilization of this data in 

future studies assessing post-fire forest regeneration or mortality. Linking soil moisture 
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availability to forest regeneration at the plot and landscape level may improve the 

accuracy of ecological models and help decipher the impacts of climate change on 

affected forest systems. 

Improving Seedling Stress Sampling Protocols 

  Although we detected two mildly influential variables (TWI and slope), our 

analysis of conifer seedling stress using the Fv/Fm method yielded mostly inconclusive 

results. When considering the primary factors that influence plant stress, it’s likely that 

our sampling protocol dampened the ability to detect stronger correlations and observe 

differences among groups. In the context of our study area and burned plots, seedling 

stress manifests primarily from a lack of moisture availability to mitigate overexposure 

to sunlight and heat (Pearson et al. 2013). Considering the early-to-mid summer period 

we sampled field plots (late-June to mid-August), it is very possible that seedlings 

generally experienced sufficient moisture availability across fire histories and 

topographic settings – dampening potential differences. To improve the strength and 

effectiveness of an Fv/Fm sampling protocol, field measurements should ideally occur at 

the end of summer (mid-late September) when forests experience the greatest moisture 

deficit. Measurements should also ideally be taken at the same time of day, during the 

same time period (i.e. a single week), and when weather conditions do not fluctuate 

significantly.  
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