
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

Summer 9-13-2019 

Connecting Local-scale Heavy Precipitation to Large-Connecting Local-scale Heavy Precipitation to Large-

scale Meteorological Patterns Over Portland, Oregon scale Meteorological Patterns Over Portland, Oregon 

Using Observations and Climate Models Using Observations and Climate Models 

Christina Marie Aragon 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Meteorology Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Aragon, Christina Marie, "Connecting Local-scale Heavy Precipitation to Large-scale Meteorological 
Patterns Over Portland, Oregon Using Observations and Climate Models" (2019). Dissertations and 
Theses. Paper 5174. 
https://doi.org/10.15760/etd.7050 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5174&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/190?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5174&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5174
https://doi.org/10.15760/etd.7050
mailto:pdxscholar@pdx.edu


Connecting Local-scale Heavy Precipitation to Large-scale Meteorological Patterns 

Over Portland, Oregon Using Observations and Climate Models 

by 

Christina Marie Aragon 

A thesis submitted in partial fulfillment of the 
requirements for the degree of 

Master of Science 
in 

Geography 

Thesis Committee: 
Paul Loikith, Chair 
Andrew Fountain 
Andrew Martin 
Justin Wettstein 

Portland State University 
2019 



  

 

 

 

 

 

 

 

 

 

© 2019 Christina Marie Aragon 

 

 

 

 

 

 

 

 

 

 

 
 



  i 

Abstract 

Precipitation timing and magnitude is essential to human, ecological, and economic 

systems. Climate change may be altering the character of precipitation locally to globally, 

thus it is vital that resource managers, practitioners, and decision makers understand the 

nature of this change. This thesis was conducted in partnership with the City of Portland 

Bureau of Environmental Services (BES), and the Portland Water Bureau (PWB) in order to 

support resiliency planning around precipitation and precipitation extremes.  

This work has two primary phases, which are discussed in chapter 2 and 3 of this 

thesis. The first phase of this research entails characterization of the large-scale meteorological 

patterns (LSMPs) associated with high hourly intensity and heavy daily accumulation of 

precipitation over Portland, OR. Heavy precipitation is associated with a multitude of impacts 

on urban environments, thus it is important to understand the meteorological drivers behind 

these events. This phase of work describes the range of meteorological patterns associated 

with heavy precipitation totals and high intensity precipitation days over the city of Portland, 

Oregon. The range of large-scale meteorological patterns (LSMPs) associated with high 

intensity precipitation days are clustered using the self-organizing map (SOM) approach and 

are defined using sea level pressure, 500 hPa geopotential height, and 250 hPa wind. Results 

show that an array of LSMPs are associated with heavy precipitation days, the majority of 

which occur in fall and winter, usually driven by extratropical cyclones and associated 

atmospheric rivers. Spring and summer heavy and high intensity precipitation days, while less 

common than in fall and winter, are typically related to upper level disturbances. Examination 

of two case studies, one occurring in summer and one in winter, supports the ability of the 

SOMs approach to realistically capture key observed storm types. Methods developed here 
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may be extensible to other locations and results build an observational foundation for 

validating the ability of climate models to simulate the LSMPs associated with local extremes.  

The second phase of this thesis involves evaluation of the fifth phase of the Coupled 

Model Intercomparison Project (CMIP5) to simulate wet season LSMPs and associated 

precipitation in the Pacific Northwest of North America. As in the first phase, LSMPs are 

identified using the self-organizing maps (SOMs) approach, except in this phase all wet 

season days are included, and defined with sea level pressure, 500 hPa geopotential height, 

and 250 hPa wind speed. Using SOMs, the range of LSMPs over the region is constructed 

with reanalysis, providing the target for the multi-model evaluation. Overall, the CMIP5 

models are able to reproduce reference LSMPs with reasonable fidelity, though the low 

pressure LSMPs are generally captured better than the ridging patterns. Furthermore, there is 

a hierarchy in model ability to capture key LSMPs, with some models exhibiting overall 

higher fidelity than others. To further evaluate model fidelity, precipitation associated with 

the LSMPs is evaluated. In general, the observations, reanalysis, and CMIP5 models agree on 

the LSMPs associated with wet and dry days, but wet patterns are captured somewhat better 

than dry patterns. The LSMPs associated with the driest and wettest conditions in the PNW 

are generally overrepresented, while the LSMPs associated with light average daily 

precipitation across the pacific northwest are underrepresented in the models. Results 

provide a mechanistic perspective on model fidelity in capturing synoptic climatology and 

associated precipitation characteristics across the PNW. 

This research focuses on Portland and the Pacific Northwest, but has helped to 

develop methodology that is extensible to any location. The first phase gives us target 

LSMPs to understand future extreme precipitation over Portland, and the second phase of 
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work lays the groundwork for developing projections of future changes to precipitation and 

precipitation extremes.  
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Chapter 1: Characterization of LSMPs associated with extreme precipitation over 

Portland, OR 

1.1 Introduction 

Precipitation extremes are associated with a multitude of societal and environmental 

impacts across a spectrum of spatial and temporal scales. Anthropogenic climate warming is 

projected to alter precipitation extremes, with an overall increase projected at the global scale 

(Hartmann et al. 2013). However, there is considerable uncertainty in the magnitude and even 

sign of change in precipitation extremes at regional to local scales. Further exacerbating this 

uncertainty is the fact that most state-of-the-art climate models do not readily resolve the scales 

that precipitation extremes typically occur on. This limitation is particularly acute in regions of 

meteorologically-influential complex topography like Portland, Oregon. One way to address 

this scale mismatch is to focus on the large-scale meteorological patterns (LSMPs) associated 

with the local scale extremes (Grotjahn et al. 2016). Study of LSMPs provides both a useful 

diagnosis of the meteorological mechanisms that drive the high-impact events by relying on 

large synoptic scale patterns that are resolvable by climate models. As a first step towards 

addressing the above mentioned challenges, here we present a climatology of the LSMPs 

associated with precipitation extremes over Portland in the current climate. 

Portland, the most populous city in Oregon, is within a region of complex topography 

with elevations in the city spanning 0 to over 300 meters above sea level, with higher mountain 

ranges in close proximity. The city lies within the rain shadow of the Coastal Mountain Ranges, 

typically shielding it from the heaviest precipitation associated with Pacific extratropical 

cyclones. Precipitation climatology in Portland and the greater PNW is characterized by a 

distinct seasonal cycle of wet winters and dry summers (Hoerling et al. 2016; Parker and 
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Abatzoglou 2015), with annual rainfall totals as high as 1188 mm in the foothills of the 

Cascades and as low as 916 mm near the Columbia River. Wind flow relative to topography 

has also been shown to influence precipitation climatology. For example, analysis of WSR-

88D radar shows lower tropospheric wind speed and direction relative to the orographic 

gradient plays an essential role in the spatial precipitation distribution in the nearby Cascades, 

with orography approximately perpendicular to winds receiving the most frequent and intense 

precipitation (Yuter et al. 2011). 

Meteorologically, precipitation extremes in the PNW are commonly associated with 

distinct LSMPs (e.g. Loikith et al. 2017; DeAngelis et al. 2013; Warner et al. 2012) with nearly 

all moisture sourced directly from the Pacific Ocean (Bracken et al. 2015). West of the 

Cascades (where Portland is located), extratropical cyclones and associated atmospheric rivers 

(ARs), are the predominant mechanisms behind synoptic scale extreme precipitation (Kunkel 

et al. 2012b; Warner et al. 2012; Parker and Abatzoglou 2015; Rutz et al. 2013; Waliser and 

Guan 2017). Bands of high values of integrated water vapor in the warm sector of an 

extratropical cyclone narrow as the associated cold front progresses cyclonically towards the 

warm front, lifting water vapor as it travels creating an AR (Dacre et al. 2015). When the low 

level moisture within an AR is lifted by local topography, the result can be copious amounts 

of rain and mountain snow (Rutz et al. 2013; Bin et al. 2016).  Along the US west coast as a 

whole, ARs contribute 30-50% of annual precipitation, and are associated with 60-100% of 

extreme storms in the top 2% of the precipitation distribution (Lamjiri et al. 2017; Waliser and 

Guan 2017). Closed lows have been linked to extreme precipitation in the warm season, 

typically producing more localized extreme precipitation than ARs and are an important 

component of the interannual variability of summer precipitation (Parker and Abatzoglou 

2015; Abatzoglou 2016).    
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Hourly-to-daily precipitation extremes can lead to varied local-scale impacts that 

warrant distinct planning strategies. In urban areas, such as Portland, spatially limited impacts 

can have consequences for large numbers of people. At the urban catchment scale, drainage 

systems are vulnerable to overflow and flooding from inundation caused by extreme 

precipitation events (Willems et al. 2012). Combined sewer overflows (CSOs) are a recognized 

urban impact in many cities including Portland that result when heavy rainfall overwhelms 

sewage treatment facility storage capacity in combined systems, ultimately resulting in 

discharge of untreated sewage into receiving waters (Mailhot et al. 2015; Riechel et al. 2016). 

As heavy precipitation events may change under climate warming, it is vital for managers and 

decision makers to have reliable data for infrastructure and resiliency planning.  

Specific to the Portland and the greater PNW, existing assessments of observed change 

in extreme precipitation to date at annual and seasonal scales generally show a low signal 

relative to the dominant interannual-to-decadal scale variability (Abatzoglou et al. 2014). 

Despite this, previous work has found that hourly (Prein et al. 2017) and daily (Kunkel et al. 

2012a) precipitation extremes have increased over the observational past. Looking forward, 

considerable uncertainty exists around projections of future changes in extreme precipitation 

over the region with some studies showing increases in the frequency and severity of extremes 

(Singh et al. 2013; Huang and Ullrich 2017) and others showing little or no change (Wehner 

2013; Janssen et al. 2014). Some of this uncertainty can likely be attributed to disparate 

methodological definitions of extremes, and to differences in model skill at reproducing 

precipitation climatology (Rupp et al. 2017). This uncertainty makes it challenging for 

stakeholders to plan for future climate impacts as they relate to extreme precipitation.  

This work, conducted in partnership with the Portland Bureau of Environmental 

Services (BES), is motivated by a desire to better understand the synoptic meteorology behind 



  4 

urban-scale heavy precipitation days and associated CSOs. Towards this goal, this paper 

presents a novel methodology for linking local-scale heavy precipitation to large-scale 

circulation in Portland, through (1) building a climatology of the range of LSMPs associated 

with local-scale hourly and daily heavy precipitation, (2) characterizing meteorologically 

important variables associated with the different LSMPs, (3) providing context for the LSMP 

climatology through case study analysis, and (4) connecting the LSMPs to local impacts. 

1.2 Data  

The City of Portland Hydrologic Data Retrieval and Alarm (HYDRA) Rainfall 

Network is a high-density precipitation gauge network within the Portland Metropolitan 

Region (Fig. 1).  HYDRA is managed by BES and has a total of 42 stations with nine stations 

dating back to 1977. Precipitation data is provided every 15 seconds, but here we aggregate to 

hourly temporal resolution.   

The Modern-Era Retrospective analysis for Research and Applications, Version 2 

(MERRA-2) is used for SLP, 500-hPa geopotential heights (Z500), 250-hPa wind speed, and 

integrated vapor transport (Gelaro et al. 2017). MERRA-2 is a product of the National 

Aeronautics and Space Administration available from 1979 to present. MERRA-2 data are 

provided on a 0.5° x 0.625° latitude/longitude grid mesh at hourly temporal resolution. The 

Rutz AR Catalog, which is freely available on the web and based on MERRA-2 input data was 

used to identify days with ARs (Rutz et al. 2014). This study maintains the Rutz et al. (2014) 

definition of ARs: narrow corridors of water vapor transport > 2000 km in length with 

integrated vapor transport (IVT) > 250 kg m-1 s-1. For each grid point within the box bounded 

by 45 and 46 north latitude, and -123 and -122 east longitude, the AR catalogue indicates if an 

AR was present at three-hour time intervals. 
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GRIDMET data were used for surface temperature and regional precipitation figures. 

GRIDMET is a University of Idaho product available from 1979 to present. GRIDMET data 

are on a 1/24° x 1/24° latitude/longitude grid mesh, at daily temporal resolution, and are 

freely available via the web (Abatzoglou 2013). GRIDMET combines high temporal resolution 

data from the North American Land Data Assimilation System Phase 2 with high spatial 

resolution data from the Parameter-elevation Regressions on Independent Slopes Model 

(PRISM). 

National Weather Service (NWS) Level II Next Generation Weather Radar 

(NEXRAD) Weather Surveillance Radar-1988 Doppler (WSR-88D) radar reflectivity 

observations for the KRTX radar were obtained from the National Climate Data Center 

(NCDC). Reflectivity data from two days (December 7, 2015, and June 17, 2014) were used 

to verify the spatial precipitation distribution over Portland in our storm case studies. 

Reflectivity images were made using the NOAA Weather and Climate Toolkit. United States 

Geological Survey (USGS) discharge observations for Johnson Creek (Gauge 14211550), an 

urban stream in Portland, were obtained through the National Water Information System Web 

Interface. These observations are available in 15-minute intervals and were used to frame the 

hydrological impacts of our storm case studies.  

1.3 Methodology 

1.3.1 Heavy precipitation event definition 

The nine long-term HYDRA stations (records starting prior to 1980) were used to 

define heavy precipitation days (Fig. 1.1). Heavy precipitation days are defined based on 1-day 

accumulated rainfall total (heavy total events herein) and daily maximum 1-hour precipitation 

intensity (high intensity events herein), where days are defined as starting at 00 UTC. This 
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approach is designed to capture longer-duration heavy events as well as shorter duration high 

intensity events, both of which are associated with urban scale impacts in Portland, such as 

CSOs. Events are defined using the 90th percentile of the frequency distribution of daily rainfall 

totals and daily maximum 1-hour rainfall rate computed over the 37-year period of 1980-2016. 

The 90th percentile threshold was chosen as a compromise between capturing a large enough 

sample of days for robust statistics while still being considered rare in frequency. More 

stringent thresholds were explored, but did not capture as many CSOs which was a detriment 

to the applications aspect of this work. Only days that had measurable precipitation are 

included to define the 90th percentile. In order for a day to be considered in our analysis, at 

least one of the nine HYDRA stations had to surpass its 90th percentile threshold. The 

definition results in 1045 heavy total days and 1569 high intensity days. Analysis is performed 

separately for heavy total days and high intensity events, however results are generally similar 

in that the LSMPs associated with high intensity days largely resemble those associated with 

heavy total days, with some exceptions. This results from a large proportion of heavy total 

days coinciding with high intensity days. Because results are similar between the two types of 

extremes and because high intensity days were found to be associated with a slightly higher 

number of CSO events in Portland, we primarily focus on high intensity days in this paper. 

Analogous results for heavy total days are provided in the Appendix and referenced in the 

results section where noteworthy differences exist. Appendix figures are labeled A1-A13. 

An Empirical Orthogonal Function (EOF) analysis was conducted on the HYDRA 

stations for precipitation accumulation and separately for maximum intensity, to confirm that 

all nine stations usually covary enough to consider them together in the definition of a heavy 

total or high intensity event. Results yielded a dominant EOF 1 pattern showing covariability 



  7 

in heavy total and high intensity precipitation across all stations with all subsequent individual 

EOFs contributing little to the overall explained variability. 

1.3.2 Self-organizing maps 

We employ the self-organizing maps (SOMs) approach to cluster the LSMPs 

associated with heavy precipitation days in Portland into “nodes” such that events with similar 

LSMPS are assigned to the same node. SOMs are a class of unsupervised neural networks that 

organize input data (LSMPs for extreme precipitation days here) into a user-defined matrix of 

output nodes (Sheridan and Lee 2011). The SOMs approach has been demonstrated as a useful 

synoptic climatology analysis tool across an increasingly wide range of applications (e.g. 

Hewitson and Crane 2002; Lennard and Hegerl 2015; Johnson et al. 2008; Johnson and 

Feldstein 2010; Glisan et al. 2016; Kennedy et al. 2016; Mechem et al. 2018) and has been 

employed to elucidate, characterize, and describe LSMPs and for connecting LSMPs with 

other meteorological impacts such as temperature and precipitation extremes (Gibson et al. 

2017; Loikith et al. 2017; Loikith and Broccoli 2014; Cassano et al. 2015; Ford and Schoof 

2017; Liu and Weisberg 2011). SOMs have also been applied to characterize variability in 

patterns of other meteorological phenomena such as ARs (Radić et al. 2015) and sea ice (Chen 

et al. 2016). 

In this study, SOMs are used as a clustering approach to group LSMPs associated with 

heavy precipitation days in Portland into nodes, with each heavy day assignment based on 

which node comprises the most similar LSMPs. We use the MATLAB SOMs Toolbox for 

this analysis. In the SOMs routine, the first step is to seed a user-defined number of nodes 

with daily total field SLP, Z500, and 250 hPa wind, Loikith et al. (2017). Note that here we 

only provide input data for heavy days. The input data is first normalized by the spatial 

standard deviation computed for all input days of the field, so the training is not 
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disproportionately influenced by the inherent magnitude differences of the three variables, and 

weighted by area by multiplying each grid point by the square root of the cosine of its latitude. 

By providing SLP, Z500, and 250 hPa wind simultaneously as input to the SOM we capture 

circulation near the surface and in the mid and upper troposphere, respectively. This trains the 

SOM over a more meteorologically complete set of information than if only one variable were 

provided, but also increase the number of variables to be interpreted. As in Loikith et al. 

(2017), total field is provided as input, as opposed to anomalies, because it increased the 

physical interpretability of the patterns and in our case provides a more intuitive view of heavy 

rainfall weather patterns for use in applications. Next, the first input data, which here is the 

tri-variate LSMP for the first heavy day in the record, is assigned to the node with the shortest 

Euclidean distance between the data in the seeded node and the input data. This “winning” 

node and the surrounding nodes are adjusted towards the input data. This procedure is 

repeated for each input data point until a stable SOM is achieved. A matrix, spanning the range 

of LSMPs associated with heavy precipitation days in Portland results, with each heavy day 

assigned to one of the nodes. The SOMs approach shares commonalities with other clustering 

methodologies, such as k-means, however it has the advantage of being able to capture a 

continuum of patterns via the adjustment of neighboring nodes to the winning node, which is 

advantageous when studying synoptic climatology as it can capture patterns that may fall in 

between clusters. 

There are several user provided decisions that must be made when performing the 

SOMs approach. First, the number of nodes must be chosen. This is often made with some 

level of subjectivity, with efforts to balance the desire for to capture a sufficient level of detail 

in the range of LSMPs while not having so many nodes as to reduce physical interpretability. 

In other words, a larger SOM would give more detail with fewer days assigned to each node, 
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while a smaller SOM would be a more generalized depiction of the range of patterns. An 

optimal SOM configuration will capture the full range of LSMPs with the node pattern in one 

corner of the SOM most different from the pattern at the opposite corner of the SOM. After 

testing a wide range of node configurations and numbers (as in Agel et al. 2018), we found 

that a 12-node SOM organized in a 4x3 node configuration worked optimally for capturing 

the range of LSMPs associated with extreme precipitation in a physically interpretable way. 

Additionally, a single-dimensional lattice with rectangular topology was chosen for the output 

SOM architecture, and a sheet was selected for the global map shape to optimize 

interpretability. The neighborhood radius determines the number of surrounding nodes that 

are adjusted towards the winning node. We use a large initial neighborhood radius (r=4) and 

a small final neighborhood radius (r=1) to ensure that the map topology initially moves to the 

data distribution, but eventually stabilizes to converge on a solution. Additional information 

on the MATLAB SOM Toolbox 2.0 can be found at http://www.cis.hut.fi/somtoolbox/ . 

It is important to note that our implementation of SOMs to address our research 

objectives is somewhat novel compared with more commonly used approaches. Often, studies 

construct a SOM using all days in the data record as input and then identify which patterns 

out of the range of possible patterns are most commonly associated with a feature, such as 

heavy precipitation. These studies also often seasonally stratify the analysis so that the 

influence of the seasonal cycle is reduced on the training of the SOM. This is the approach 

used by Loikith et al. (2017) over the PNW as well as numerous other studies over different 

geographies (e.g. Mechem et al. 2018; Lennard and Hegerl 2015). Here we only provide LSMPs 

from heavy precipitation days defined in Portland across the entire seasonal cycle as a way to 

display a highly detailed view of the full range of LSMPs that are associated with high impact 

precipitation. These two approaches address somewhat different research goals. In our case, 
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the SOMs approach provides a concise and detailed view of the full range of storm types 

(described using LSMPs) that are associated with heavy precipitation days in Portland. This 

provides a high level of utility for applications such as identifying particularly problematic 

storm types for impacts such as CSOs across the annual cycle. The other approach as in 

Loikith et al. (2017) addresses a more fundamental characterization of synoptic climatology 

and informs on where in the continuum of possible patterns heavy precipitation days are most 

likely. This is powerful for understanding synoptic climatology, but would provide a much 

coarser level of detail on the specific storm types associated with heavy precipitation. 

Moreover, nodes identified as being most likely to be associated with heavy precipitation days 

would likely also have non-heavy days assigned to that node. By isolating only heavy days and 

using SOMs to cluster the patterns, we are able to see a more complete picture of the full 

range of LSMPs associated with heavy precipitation.    

1.4 Results  

1.4.1 Climatology  

Fig. 1.2a displays the precipitation climatology across Portland, while Fig. 1.2b,c show 

the heavy total and high intensity climatology, respectively. The frequency of heavy total days 

peaks in December at about five days/month and decreases in frequency each month until 

July (Fig. 1.2b). The highest average daily total magnitude tends to occur between September 

and February (Fig. 1.2b). A different seasonality pattern emerges for high intensity days. High 

intensity days peak in November with about six days/month, comprise about 13% of days per 

month from June to May, and are lowest in July and August (Fig. 1.2c). The fraction of wet 

days that are high intensity events in the warm season between May and September is 

noteworthy in that there are a lower proportion of wet days but a higher proportion of these 
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wet days are high intensity events (Fig. 1.2c). The magnitude of these high intensity events is 

highest between June and September, suggesting precipitation is convective in nature in these 

low frequency, high intensity events. 

1.4.2 LSMPs and associated meteorology 

To achieve a general picture of the LSMPs associated with heavy and intense 

precipitation days over Portland, Fig. 1.3 shows composites of SLP, Z500, and 250 hPa wind 

speed concurrent with all high intensity days. The composites are characterized by an area of 

low SLP to the north and west and an area of relatively high SLP to the south and southwest. 

This results in a pressure gradient implying onshore winds near the surface in the Portland 

region. For Z500, a trough is centered slightly offshore with an apparent negative tilt to the 

trough axis, indicative of upward vertical motion over the Portland area and consistent with 

expectations for heavy precipitation. At 250 hPa, a prominent jet streak is nosing into the 

Oregon coast, putting Portland within the vicinity of the poleward front quadrant of the jet 

streak and therefore a favorable location for upward vertical motion and precipitation. 

Composite patterns are very similar for heavy total days (Fig. A1). Note that while strong 

baroclinic systems often exhibit a vertical tilt to the pressure patterns with height, these 

composites are largely vertically stacked. This is indicative of the fact that landfalling 

extratropical cyclones in the PNW are often more vertically stacked than in other mid-latitude 

locations (e.g. Warner et al. 2012, DeAngelis et al. 2012, Loikith et al. 2017) but may also be 

an artifact of compositing a diverse variety of storm types. Therefore, while these patterns 

provide a broad view of the LSMPs associated with heavy precipitation over Portland, make 

broad meteorological sense, and are physically consistent with synoptic expectations, the 

composite averaging of all heavy days masks the variety of synoptic setups that can lead to 

high intensity precipitation in Portland. Therefore, additional analysis to expose intra-



  12

ensemble pattern variability is necessary to best characterize the range of key LSMPs that drive 

heavy rainfall events over Portland. 

Fig. 1.4 shows the SOMs results to elucidate the range of LSMPs associated with high 

intensity precipitation days in Portland. Panel (a) shows the 12-node SOMs results for SLP, 

panel (b) for Z500, and panel (c) for 250 hPa wind. Corresponding nodes between variables 

are assigned to node one through 12. Each high intensity day is assigned to the node with the 

most similar LSMPs. So, for example, days that are assigned to N1 (we use the notation of 

“N1” to indicate node number herein) are characterized by a strong surface low to the 

northwest of Portland, a sharp Z500 trough, and a strong jet stream just to the south of 

Portland. As is inherent to the SOMs algorithm, similar patterns are closer together in the 

SOMs space while opposite corners of the SOMs space are dissimilar, as illustrated by the 

differences between N1 and N12. The upper SOMs nodes (N1, N2, N3, and N4) are all 

characterized by relatively deep low-pressure patterns and strong jet streams, the left central 

nodes (N5, N6, N7, and N9) have more moderate low-pressure patterns with jet streams that 

are weaker than the top row, and the lower right corner of the SOMs (N8, N10, N11, and 

N12) are higher-pressure patterns with weaker jet streams. The deep low-pressure nodes are 

indicative of westerly or southwesterly surface winds with advection of warm, moist air from 

the Pacific, combined with Z500 troughs and strong jet streams. The deeper low pressure 

patterns here are similar to Node 5 in the DJF SOM in Loikith et al. (2017), which they show 

to be associated with extreme precipitation in Portland. However, results here show more 

nuance to the pattern configurations than is possible in the all days SOM in Loikith et al. 

(2017). High-pressure at the surface (N8, N10, N11 and N12) along with trough at Z500 

suggest that upper level disturbances associated with cool air aloft drive precipitation, likely 
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convective in nature. SOMs for heavy total days show a similar range of patterns with some 

differences in the middle of the SOM (Fig. A3). 

Fig. 1.5 provides insight as to the seasonality and frequency of daily assignments to the 

12 SOM nodes. Note that while most nodes have a seasonal maxima in frequency, all nodes 

span more than one season, and N6 and N12 are found in all seasons. N6 and N12 are the 

most common high intensity patterns (10-11% of days) while N1 and N5 are the least common 

(5-6% of days). Also, N6 and N12 are nearly opposite in synoptic structure and seasonality. 

N6 is a fall-winter low-pressure pattern with a surface low off the coast of Alaska and a 

prominent upper level trough, whereas N12 shows a high-pressure summer pattern with a 

weak jet stream. The least frequent intensity patterns are N1, a deep low-pressure pattern, and 

N5 a moderate low-pressure pattern with a closed low off the coast of British Columbia 

propagating into the middle and upper troposphere. The SOMs show three warm season 

patterns – two predominantly in summer (N7 and N12), and one predominantly in spring 

(N11), while the rest are fall-winter patterns. Most high intensity days occur during the fall and 

winter when the strongest dynamics are present, driven by baroclinicity to facilitate 

extratropical cyclone development, as is seen in the deep SLP low near or upstream of 

Portland. Warm season patterns (N11 and N12) are associated with upper level disturbances 

indicated by a deep Z500 trough associated with cool air aloft promoting instability and 

convective precipitation. The heavy total SOM patterns are largely similar to the high intensity 

SOM patterns, but the heavy total days don’t capture as many warm season days. This suggests 

that the warm season days that are only captured in the high intensity SOM are likely high 

intensity convective events that don’t meet the heavy total accumulation threshold. We note 

that the seasonal cycle is pronounced for Z500 where warm season nodes have higher Z500 

values due to the hypsometric relationship between temperature and Z, however N11 and 
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N12, for example, are not simply warmer versions of predominantly winter patterns and that 

the flow patterns in the Z500 fields are a better diagnostic of the meteorology associated with 

high intensity precipitation. 

1.4.3 Composites 

To get a more complete synoptic view of the meteorology associated with each node, 

Fig. 1.6 shows composites of daily maximum temperature anomalies for all days assigned to 

each node. N2 and N3 stand out as having widespread warm temperature anomalies. These 

predominantly fall and winter nodes show a strong SLP gradient in Fig. 1.4, directing warm 

air north towards the region. This is in conjunction with an upstream Z500 trough and 

downstream ridge, consistent with warm air advection in the mid-troposphere. N1 and N4 are 

characterized by weak anomalies in the Portland area and warm anomalies inland. Western 

cool and eastern warm anomalies are also present in N5 and N6, with inland warm anomalies 

possibly due to a combination of warm air advection and clear skies. The rest of the nodes are 

all associated with widespread cool anomalies, with the warm season nodes of N7, N10, N11, 

and N12 showing large negative temperature anomalies. In these cases, cool anomalies are 

likely the result of the cloud cover during an otherwise relatively sunny time of year and/or 

unseasonably cool air associated with Pacific storms.  

Fig. 1.7 shows composites of daily precipitation anomalies for days assigned to each 

node while Fig. 1.8 shows composites of daily total accumulated precipitation, to put local 

heavy precipitation in Portland into perspective with the larger synoptic environment. 

Widespread, heavy regional precipitation is seen with the deep low-pressure nodes. While the 

heaviest precipitation falls in the higher elevations (Fig. 1.8), precipitation anomalies show that 

high intensity days in Portland tend to be more anomalous in the lower elevations in N1, N2, 

and N5. The more zonal low level flow associated with N4 results in more anomalous 
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precipitation in the north-south oriented mountains surrounding Portland than in lower 

elevations, suggesting that the low level moisture transport intercepting the topography at a 

near right angle is enhancing rainfall rates in the mountains relative to other patterns.  Summer 

and spring nodes show considerably lower precipitation totals that are spatially limited 

compared to the winter precipitation patterns. However, the most anomalous precipitation (~ 

600% of daily normal) is associated with summer nodes N7 and N12. This suggests smaller-

scale mechanisms as the driver behind heavy summer precipitation events. 

1.4.4 Association with atmospheric rivers  

To better understand the role that ARs have on high intensity precipitation in Portland, 

Fig. 1.9 shows composite averages of the IVT for days assigned to each node. Note that there 

are a higher proportion of AR days (75%; Figure A8) associated with heavy total patterns 

compared to high intensity patterns (58%), suggesting ARs are more associated with prolonged 

heavy rainfall than short duration high intensity rainfall in Portland. The highest proportion 

of AR days coincide with the strongest low-pressure patterns while the lowest AR incidence 

occurs in conjunction with higher pressure patterns. AR orientation appears to be key to spatial 

precipitation patterns with peak precipitation amounts coinciding with peak IVT levels over 

land (Fig. 1.8). AR-related precipitation patterns tend to show the highest totals in the 

mountains to the east and west of Portland where orographic enhancement is prominent. 

More zonal AR trajectories tend to show Portland at the southern end of heavy precipitation, 

whereas southwesterly to northeasterly oriented ARs (N1, N2, N3) show Portland in the 

center of heavy precipitation and are associated with the most high intensity days. This is likely 

because as ARs cross the north-south oriented Coastal Mountains at an angle, resulting in a 

weaker rain shadow effect than if the AR were perpendicular to the mountains (N4). This 

supports previous findings that ARs are a key mechanism for heavy precipitation in the Pacific 
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Northwest (Warner et al. 2012; Kunkel et al. 2012b); however not all high intensity days are 

associated with an AR.  

1.4.5 Consecutive high intensity days  

The impacts of high intensity precipitation, such as flooding and loss of life, can be 

exacerbated when multiple high intensity precipitation days occur consecutively (Lorente et al. 

2008; Mahoney et al. 2014; Trigo et al. 2016). To better document under what conditions 

consecutive high intensity days occur, Table 1 shows the fraction of days in each node that 

were part of a string of two or more consecutive high intensity days. More than 40% of days 

in N1, N2, N3, and N7 are part of a string of consecutive high intensity days. N1, N2, and N3 

are all deep low-pressure cool-season patterns with regionally widespread precipitation with a 

high incidence of ARs, indicating that these types of storm events are more likely to be 

associated with impacts resulting from the compounding effect of prolonged periods of heavy 

rainfall. N7 is also a low-pressure pattern with a high incidence of ARs but occurs 

predominantly in spring and fall and has more spatially limited precipitation. N8, N10, N11, 

and N12 have the smallest fraction of assignments that are part of a string of consecutive high 

intensity days. These are all high pressure patterns with the lowest incidence of ARs that tend 

to occur in summer or the transition seasons. This indicates that high intensity days associated 

with these LSMPs are generally brief and are therefore less likely to be associated with impacts 

such as CSOs. 

Fig. 1.10 shows the node assignment for the subsequent day when a high intensity day 

is followed by another. In such cases, the second day is most often assigned to the same node 

as the previous day. In other words, when high intensity days occur back-to-back, it is most 

common for both days to be assigned to the same node.  This is especially true for N8, N11, 

and N12. These nodes are among the least likely to be part of a string of two or more 
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consecutive high intensity days (Table 1), however when they do occur as part of such a streak, 

it is rare that one high intensity day is followed by another that is assigned to a different node. 

This suggests that these warm season patterns don’t often transition to other rainy patterns. 

In other nodes, consecutive high intensity days also tend to be within the same node most 

often, but transition to other nodes is also common. For example, when N1-N4 high intensity 

days are followed by another consecutive high intensity day, N9 is the most common pattern. 

This is dynamically consistent if N1 and N2 are weakening, and if N3 and N4 have low 

pressure centers that are progressing southward.  Similarly, N6 preferentially transitions to 

N10 while other transition probabilities for consecutive days show less of a preferred 

consecutive high intensity day node. 

1.5 Individual Case Studies  

To further examine the accuracy of the SOMs approach for capturing the range of 

storm types associated with heavy rainfall, specifically those that have historically been 

associated with CSOs, we investigate two notable case studies. Each case study was 

associated with a CSO in Portland and met the criteria for a high intensity day (Note that 

93% of CSOs between 2011 and 2016 were concurrent with a high intensity day). The two 

case studies are also chosen to explore very different storm types: an early winter series of 

AR landfalls and a summer event. 

1.5.1 Winter case study 

December 2015 was the wettest December on record in Portland with numerous high 

intensity and heavy total days. The recurrent heavy precipitation events were associated with 

numerous impacts on the urban and natural landscape including landslides, urban and small 

stream flooding, and CSOs. A particularly wet stretch spanned December 5th through 
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December 13th with December 7th setting the one-day precipitation accumulation record at 

Portland Airport. At Johnson Creek, there is a clear concurrent peak in the hydrograph on 

December 7th, when peak flows increase 10-fold compared to the previous two days (Fig. 

A12).  December 7-10th all surpassed the threshold for being considered a high intensity day 

(note that December 6th-10th all surpassed the threshold for being considered a heavy total 

day) and were assigned to N3, N3, N2, and N1 respectively. LSMPs for the individual high 

intensity days are shown in Fig. 1.11 along with the total daily accumulation and maximum 

one-hour rainfall intensity at each of the HYDRA stations. 

All days were associated with deep low-pressures upstream of Portland with the low-

pressure center approaching Portland on December 10th (Fig. 1.11, column a). All days also 

show a deep upstream Z500 trough, approaching the coast with a negative tilt on December 

10th (column b). A strong 250 hPa jet stream is evident on all days (column c), with a southward 

propagation of the core of the jet from December 8th to the 10th as the surface low pressure 

moves towards the coast. Comparing with the node patterns that these days are assigned to 

(Fig. 1.4) shows that the SOMs patterns capture these features well and that these individual 

high impact days fit well into their associated nodes. This supports the efficacy of the SOMs 

approach as employed here for highlighting the range of key storm types associated with high 

intensity precipitation over Portland.  

The IVT maps (Fig. 1.11, column d) show that these days were associated with elevated 

moisture flux and strong ARs on some of the days. The strongest and most prominent AR is 

present on the 7th and 8th. Between December 9th and 10th, it appears that a secondary cyclone 

forms along the AR and develops rapidly as it moves towards the coast on the 10th (Pinto et 

al. 2014). Specific to December 7th, precipitation accumulation associated with this event was 

the greatest in the southeast quadrant of the study area where upwards of 100 mm of rain fell 



  19

over the 24-hour period, while precipitation intensity was highest in the southern half of the 

study area where the maximum one-hour rainfall rate exceeded 14 mm/hr. Precipitation totals 

were lowest over the city center and southwest hills even though these areas generally recorded 

high intensity, suggesting the heaviest precipitation was more prolonged throughout the day 

in the eastern portion of the region (Fig. 1.11, right panel). NEXRAD WRS-88D radar 

reflectivity data provides additional perspective on the spatial characteristics of the 

precipitation intensity (Fig. A10). There is notable, spatially-contiguous high intensity 

precipitation throughout the day, as one might expect with a cool-season AR event. The radar 

frames also show evidence of the widespread high intensity with this event, along with the 

more prolonged rainfall leading to higher totals in the eastern half of the Portland region.   

1.5.2 Summer case study  

        Hourly intensity thresholds capture more heavy precipitation days in the 

summer compared to daily accumulation thresholds. This means that the summer days that 

are captured by the intensity threshold are very intense in nature, but are likely short in 

duration, not producing enough precipitation in a day to exceed the heavy accumulation 

threshold. Although short in duration, these high intensity events can bring impacts. All 

summer CSO events that were captured by the intensity threshold, but not the accumulation 

threshold, are short-duration, high intensity events, suggesting rainfall was convective in 

nature and likely spatially limited in extent. 

One such warm season event occurred on June 17, 2014 (Fig. 1.12). There is a steep 

ascending arm in the hydrograph leading to the daily peak flow at Johnson Creek around 12am 

Z-time (Fig. A13). This is approximately a 4-fold increase in peak flows compared to previous 

days. This day surpassed the high intensity threshold, resulted in a CSO, and was assigned to 

N12 but did not qualify as a heavy total day. The LSMP for the event was characterized by 
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high pressure near the surface to the southwest of Portland, a closed Z500 low overhead and 

to the east, and a notable jet streak to the west and south. It is evident that most of the 

precipitation causing dynamics were aloft, as there is not a discernible surface cyclone present. 

However, the Z500 closed low is indicative of cooler air aloft, which combined with mid-June 

insolation likely resulted in instability and convection. This is combined with some upward 

vertical motion promoted by the nearby jet streak. No AR is present (column d) in Fig. 1.12. 

This synoptic setup matches N12 well and helps confirm that this warm season pattern is 

associated with more subtle synoptic-scale features and smaller scale high intensity convection. 

This is further supported by the isolated nature of the high intensity rainfall across the 

HYDRA Network in Fig. 1.12, bottom panel. Three stations received relatively high 

precipitation totals and only two stations observed relatively high maximum one-hour rainfall 

intensity. Other stations did receive measurable rainfall, however, and the isolated nature of 

the rainfall makes it possible that even the high density HYDRA Network does not capture 

all significant rainfall on days with this meteorology. NWS NEXRAD WRS-88D radar 

reflectivity data for this day confirms this as it shows the highest intensity precipitation around 

12Z and a second bout of lower intensity precipitation around 16Z (Fig. A11). This reflectivity 

illuminates the spatially and temporally limited nature of this event.  

1.6 Summary 

        In this study we comprehensively identify and examine the key LSMPs 

associated with heavy precipitation across seasons over Portland, OR. This study employs 

SOMs in a novel manner, whereby the array of synoptic patterns associated with heavy 

precipitation days are revealed. Analysis is performed for both heavy total and high maximum 

hourly intensity days using a high-density gauge network (Fig. 1.1). This work is motivated in 

part by a desire by the City of Portland’s BES to better understand the meteorological 
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conditions that are associated with CSOs and therefore favors study of high intensity over 

heavy accumulation days as they were more commonly associated with this impact. The 

LSMPs associated with high intensity days are defined as synoptic scale fields of SLP, Z500, 

and 250 hPa wind speed. Composites of these fields for all high intensity days reveal relatively 

low SLP to the northwest of Portland concurrent with a Z500 trough, and a prominent 250 

hPa jet streak with Portland located in the poleward exit region (Fig. 1.3). 

To further highlight the range of LSMPs associated with high intensity days, a 12-node 

Self Organizing Map is employed (Fig. 1.4). SOM node patterns can generally be classified as 

high-pressure or low-pressure patterns, and Fig. 1.5 reveals the seasonality and frequency of 

occurrence for each SOM node. Most heavy precipitation days occur in the cool season and 

are associated with strong low-pressure systems at the surface, while most high-pressure 

LSMPs occur in the spring or summer. Composites of temperature anomalies (Fig. 1.6), 

precipitation anomalies (Fig. 1.7), precipitation totals (Fig. 1.8), and IVT (Fig. 1.9) show that 

low-pressure nodes are generally associated with near zero to positive temperature anomalies, 

anomalously high and regionally widespread precipitation, and a strong association with ARs. 

This contrasts the high-pressure dominated nodes that are linked to positive temperature 

anomalies, more spatially-limited heavy precipitation, and a lower percentage of days 

coinciding with ARs. Subsequent heavy precipitation days can exacerbate impacts and upon 

examination, the deep low-pressure patterns associated with widespread regional precipitation 

and ARs, tend to be the most likely to fall on successive days (Table 1). Examination of two 

case-studies (one winter and one summer) shows that the detailed dynamics of individual high-

impact events are well-captured by the 12-node SOM, supporting the methodology as 

efficacious in studying the range of LSMPs that can lead to high intensity precipitation in 

Portland (Figs. 1.11 & 1.12). 
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Towards supporting the work of resiliency planners, urban-scale impacts can be 

mapped onto SOM nodes so that impactful storm patterns can be identified. This study uses 

CSOs as a reference urban-scale impact and it is evident that there are preferred nodes that 

result in CSOs (Fig. A1). 86% and 93% of CSO events between 2011-2016 were captured by 

the heavy total and high intensity thresholds respectively. Winter CSO events in Portland are 

mostly associated with low pressure LSMPs and ARs. Several spring and summer CSO events 

are captured only using the intensity storm criteria and not the heavy storm total criteria, 

suggesting that intensity may be a better tool for linking CSOs to circulation patterns. While 

CSOs are the urban impact motivating this study, the same methodology could be used to 

explore numerous meteorologically driven local-scale impacts. 

The approach demonstrated here can be extensible to other locations and other 

meteorologically driven phenomena. Furthermore, the approach carries potential for studying 

how climate change may be influencing the frequency of occurrence of extreme events, in this 

case high intensity precipitation, at local, impact-relevant scales. One of the key challenges in 

studying extreme events at local scales in the context of climate change is the scale mismatch 

between what most state-of-the-art climate models can resolve and the resolution necessary 

to capture the extremes. This challenge is particularly acute in places like Portland, where 

complex topography, that cannot be resolved by most climate models, is influential on 

precipitation. The approach demonstrated here is therefore not only useful in aiding in our 

understanding of the large-scale meteorology that is key to a high impact local extreme, but 

carries potential for being used as a way to study local extreme precipitation events in climate 

models without the constraint of needing to resolve small-scale features. Because climate 

models can readily resolve the LSMP scale, these patterns can be used as a proxy for local scale 

extreme precipitation and be applied as a model evaluation target and a way to assess simulated 
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projections of future change in the LSMPs. Extending this methodology into the climate 

model space in this way is the subject of ongoing research. 
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1.7 Tables 

 

Table 1. 1 Fraction of heavy intensity days for nodes that are part of a consecutive string of 
two or more heavy intensity days. 
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1.8 Figures 

 

Figure 1. 1 (Upper left panel) Map of the state of Oregon with elevation shaded and study 
area outlined in red. (Right Panel) Detailed map of study area showing long-term (red) and 
shorter-term (green) HYDRA Network precipitation gauges. 
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Figure 1. 2 (a) Climatology of wet day precipitation (>0 mm) with left y-axis corresponding 
to the bar chart indicating the average fraction of wet days per month, and the right y-axis 
indicating the average wet day precipitation accumulation amount per month corresponding 
to line chart. (b) Climatology of heavy total days with the left y-axis corresponding to the bar 
chart indicating the average fraction of heavy total days per month, and the right y-axis 
indicating the average heavy total daily precipitation accumulation corresponding to line 
chart. Turquoise bars indicate the fraction of days per month that are heavy total days and 
cyan bars indicate the fraction of wet days per month that are heavy total days. (c) Same as 
center, but for high intensity days. 
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Figure 1. 3 Composite averages of (left) SLP [hPa] (contours at 5 hPa spacing), (center) 
Z500 [m](contours at 50 m spacing), and (right) V250 [ms-1](contours at 5 m s-1 spacing) 
concurrent with high intensity days. Portland, OR is indicated by the red dot. 
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Figure 1. 4 12-node SOM for the 1569 days of the high intensity days showing (a) SLP [hPa] 
(contours at 5 hPa spacing), (b) Z500 [m](contours at 50 m spacing), and (c) V250 [ms-
1](contours at 5 m s-1 spacing) concurrent with high intensity days. Portland, OR is 
indicated by the red dot.  
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Figure 1. 5 Histogram showing number of days assigned to each month for each node for 
high intensity days. The fraction of total input days assigned to each node is indicated in red 
above respective histogram. 
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Figure 1. 6 Composites of daily maximum temperature anomaly [oC] for all days assigned to 
each node. Portland, OR is indicated by the red dot. 
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Figure 1. 7 Same as in Fig. 1.6, but for daily precipitation anomaly as percent of climatology 
[%]. Portland, OR is indicated by the red dot. 
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Figure 1. 8 Same as in Fig. 1.6, but for daily precipitation amount [mm/day]. Portland, OR 
is indicated by the red dot. 
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Figure 1. 9 Same as in Fig. 1.6, but for IVT [kg m-1 s-1; contours at 50 kg m-1 s-1 spacing]. 
Bold dashed white contour indicates the 250 kg m-1 s-1 threshold for AR classification. Red 
numbers are the percent of days in each node that are concurrent with an AR over the study 
area and shading visualizes AR strength and orientation.  

.  
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Figure 1. 10 When two high intensity days occur back-to-back, this heatmap shows the 
where in the SOMs space the second day occurs. The x-axis shows the starting node 
assignment and the y-axis shows the node assignment of the consecutive day. Heatmap 
values indicate the percentage of consecutive days assigned to each next-day-node for each 
given starting node. For example, 94% of high intensity days that were initially assigned to 
node 12, were still assigned to node 12 on the second day. 
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Figure 1. 11 LSPMs for December 6, 2015 – December 10, 2015 (top). Synoptic structure of 
winter CSO following shading and contours of Figure 1.4 (SLP (a), Z500 geopotential 
heights (b), and Z250 winds (c)) and Figure 1.6 (IVT (d)). Spatial distribution of precipitation 
across all HYDRA stations with dots proportional to precipitation magnitude (bottom). 
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Figure 1. 12 As in Fig. 1.11, but for June 17, 2014. 
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Chapter 2: Evaluation of CMIP5 fidelity at simulating wet season large-scale 

meteorological patterns and associated precipitation over the Pacific Northwest 

2.1 Introduction 

Precipitation is an essential part of the water cycle that links atmospheric water vapor to 

terrestrial water resources. In the Pacific Northwest (PNW) region of North America, the 

timing, magnitude, and phase of precipitation is vital for addressing questions of municipal, 

agricultural, and ecological water resources and impacts.  Despite the importance of 

precipitation to human and ecological systems, characterization of the timing and magnitude 

of precipitation can be challenging due its inherent temporal variability and uneven spatial 

distribution (Oki and Kanae 2006). Furthermore, the spatial and temporal character of future 

precipitation is expected to change globally under climate warming due to a combination of 

dynamic and thermodynamic mechanisms (Seager et al. 2010; Emori and Brown 2005; 

Dalton et al. 2017). However, projections of future change are associated with considerable 

uncertainty over the Pacific Northwest. For example, Mote and Salathe (2010) used 

projections of change in climate models contributing to the third phase of the Couple Model 

Intercomparison Project (CMIP3) and found a near zero change in annual average 

precipitation in the multi-model ensemble mean by the 2080s, though individual models 

range from a projected 10% decrease to a 20% increase. Similarly, Rupp et all (2017) found 

that while models generally agree on projected increases in winter and spring precipitation, 

and decreases in summer precipitation, some models predicted increases and decreases in all 

seasons. According to the Fourth National Climate Assessment (2014), there is a general 

consensus of a small change relative to interannual variability (May et al. 2018). This range of 

projections motivates further research on understanding model projections of precipitation 

and assessing model fidelity at capturing key climatological features of precipitation.  
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Synoptic-scale dynamical conditions can be linked to local-scale phenomena, such as 

precipitation and precipitation extremes, to bridge the scale-gap (Gao et al. 2014; Collow et 

al. 2016). This scale bridge can be important when considering extremes, which tend to be 

rare and often localized as well as other impacts such as flooding. Several studies suggest that 

analysis of synoptic-scale circulation patterns may better capture mean and heavy 

precipitation frequency and change than model simulated precipitation (Hewitson and Crane 

2006; Gao et al. 2014; DeAngelis et al. 2013). Hewitson and Crane (2006) used synoptic-

scale circulation patterns to optimize precipitation downscaling in climate models. Gao et al. 

(2014) used synoptic-scale circulation patterns to identify heavy precipitation events without 

relying on modeled precipitation. DeAngelis et al. (2013) evaluated daily precipitation 

statistics, extreme precipitation and their associated large-scale physical drivers in CMIP3 

models. Warner et al. (2012) linked extreme precipitation events along the PNW Coast to 

LSMPs and found that these events were associated with negative anomalies in sea level 

pressure and upper-level heights in the central Pacific coinciding with high pressure 

anomalies over the southwestern United States. Widespread precipitation and precipitation 

extremes in the PNW are often associated atmospheric rivers (Warner et al. 2012; Loikith et 

al. 2017), while more localized precipitation have been linked to cutoff lows (Abatzoglou 

2016). Loikith et al. (2017) used self-organizing-maps (SOMs) to elucidate the array of 

LSMPs in each season over the observational record and linked these LSMPs to 

precipitation anomalies and extremes.  

Previous studies have evaluated precipitation in climate models over the PNW and 

western United States (Rupp David E. et al. 2013; Rupp et al. 2017; Abatzoglou et al. 2014; 

Rana and Moradkhani 2016; Huang and Ullrich 2017). Rupp et al. (2013) evaluated monthly 

precipitation data from 41 GCMs and found considerable spread in performance metrics 
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between CMIP5 models. The findings of Rupp et al. (2017) showed that annual precipitation 

in the PNW is expected to increase overall, with seasonal increases in winter precipitation, 

and decreases in summer, although this signal was low relative to projected increases in 

interannual variability. It is of note that the CMIP5 GCMs that better captured the historical 

climate, project greater increases in precipitation (Rupp et al. 2017). Abatzoglou et al. (2014) 

evaluated temperature and precipitation in CMIP5 models and found that while there was 

high skill in producing consistent temperature estimates across models, the same models 

produced inconsistent precipitation estimates and projections. Other studies that used 

downscaling techniques to consider changes in PNW precipitation also found high levels of 

uncertainty related to the character of precipitation change (Rana and Moradkhani 2016; 

Huang and Ullrich 2017). This suggests an incomplete mechanistic understanding of 

precipitation drivers.  

This research evaluates the ability of the models contributing to CMIP5 to simulate wet 

season large-scale meteorological patterns (LSMPs) over the PNW. LSMPs are identified 

using the SOMs approach and defined with sea level pressure, 500 hPa geopotential height, 

and 250 hPa wind speed. SOMs have been shown to be an effective tool for characterizing 

the range of synoptic-scale circulation patterns (Loikith et al. 2017; Lennard and Hegerl 

2015; Hewitson and Crane 2002; Aragon et al. TBD), and are also useful for climate model 

evaluation (Gibson et al. 2016; Cassano et al. 2006; Loikith and Broccoli 2014). This work is 

complimentary to previous studies in two primary ways. First, this study considers the large-

scale circulation mechanisms that drive precipitation rather than just the precipitation itself. 

Second, in places such as the PNW, precipitation often results from the interaction of 

synoptic-scale features and local terrain, but most climate models have too coarse of a 

resolution to resolve synoptically relevant topography. Thus, using LSMPs, which are not 
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scale-limited, as a proxy for precipitation, may help to increase confidence in model 

evaluation and projections. This work has three primary objectives: (1) use SOMs to 

delineate the array of wet season (NDJFMA) synoptic-scale meteorological patterns across 

the PNW, (2) evaluate the ability of CMIP5 models to capture this array of wet season 

patterns, and (3) link these patterns to local to regional precipitation climatology. Results 

provide a mechanistic perspective on model fidelity in capturing synoptic climatology and 

associated precipitation characteristics across the PNW.  

2.2 Data  

Daily mean gridded reference data, specifically for sea level pressure (SLP), 500-hPa 

geopotential heights (Z500), 250-hPa wind speed (V250), and precipitation (PRCP), are from 

the Modern-Era Retrospective analysis for Research and Applications, Version 2 ( MERRA-

2; Gelaro et al. 2017; Reichle et al. 2016). MERRA-2 is a reanalysis product of the National 

Aeronautics and Space Administration (NASA) available from 1979 to present and freely 

available via the web.  

Climate model data are from 24 historical simulations (Table 1) contributing to the fifth 

phase of the Coupled Model Intercomparison Project (CMIP5; Taylor et al. 2012). We include 

all models that provide data for all fields required for our analysis. In the case that there are 

multiple ensemble members contributed by a model, we evaluated the first ensemble member. 

CMIP5 historical simulations end in 2005, while MERRA-2 is available through the present. 

In order to maximize the sample size of days, we utilize a 38-year period for both datasets, 

however this period covers 1980-2018 in MERRA2 and 1967-2005 in CMIP5. Results were 

assessed using a shorter period that had complete overlap between the two datasets with no 

apparent sensitivity suggesting that this temporal offset is unlikely to introduce any bias to our 
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results. All gridded data, MERRA-2 and CMIP5, are regridded to a common 2° longitude by 

2° latitude grid mesh. Only data for the wet season, defined as October through April is 

analyzed. 

In-situ precipitation observations are from the North Fork Snow Telemetry (SNOTEL) 

station in this study and the Portland International Airport Global Historical Climatology 

Network Daily (GHCN-D) station. The Natural Resources Conservation Service (NRCS) 

manages SNOTEL stations across the western United States. The North Fork station is 

located at an elevation of 932 m and daily precipitation observations are available starting in 

1979. National Centers for Environmental Information (NCEI) quality controls data and 

provides access to GHCN-D data. The Portland International Airport station is located at an 

elevation of 5.8m and daily precipitation observations start in 1936. 

2.3 Methodology 

2.3.1 Self-organizing maps 

We use SOMs to illustrate the array of PNW wet season LSMPs following the SOMs 

methodology described in chapter 2. The SLP, Z500, and V250 from MERRA-2 for all wet 

season (November – April) days over our 38-year climatology are used as the input to the 

SOMs algorithm. The resulting SOM serves to delineate the array of key wet season LSMPs 

upon which the CMIP5 models will be evaluated. This MERRA-2 SOM will be referred to as 

refSOM for the remainder of this paper.  

2.3.2 CMIP5 model evaluation 

MERRA-2 defined node patterns in the refSOM are used as the reference patterns for 

evaluation of CMIP5 models. In order to evaluate the climate models, each day in each CMIP5 
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model is mapped to one of the 12 refSOM nodes according to the following procedure as 

outlined in Fig. 2.1. First, the twelve MERRA-2 node patterns are converted into standardized 

anomalies by subtracting the daily climatological mean from each day and then dividing by the 

daily climatological standard deviation, performed separately for each variable. Next, the SLP, 

Z500, and V250 fields for each day are converted to standardized anomalies following the 

same process, except using the standard deviation and climatology of each model. This results 

in 12 standardized anomaly node patterns for three variables from MERRA-2, and a 

standardized anomaly pattern for each day in each model for each of the three variables. This 

puts all data into common units of standard deviation, preventing variables with larger values 

(e.g. geopotential height) from disproportionately influencing the comparison metric 

calculation.  

Next, we employ metric T (MetT) to find the node pattern that each CMIP5 tri-variate 

day is most similar to (Tian et al. 2017). MetT combines both pattern correlation and MSE as 

shown in the equation box in Figure 2.1 and a value of one indicates perfect agreement 

between the two fields being compared. The node with the highest MetT is considered the 

“winning node” and that model day is assigned to that node. This is repeated for all days and 

all models resulting in each CMIP5 day being assigned to one of the 12 MERRA-2 nodes. 

Finally, composites of all days assigned to each node are computed, resulting a “pseudo SOM” 

(or pSOM herein) for the model. The term pseudo is used to distinguish the CMIP5 LSMPs 

which are not constructed using the SOM algorithm, from the MERRA-2 reference SOM (i.e 

refSOM) which is. If a model perfectly reproduced the MERRA-2 synoptic climatology as 

defined by the 12-node SOM, its 12 composites for each of the three variables would be nearly 

identical to the 12-node patterns for each of the three variables in MERRA-2.  
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2.4 Evaluation of LSMPs  

2.4.1 Evaluation of CMIP5 synoptic climatology  

Before evaluating the climatology of LSMPs in the CMIP5 models, we first evaluate 

overall ensemble bias in the three meteorological fields. Figures 2.2a and 2.2b show the wet 

season climatology for SLP, Z500, and V250 in MERRA-2 and the CMIP5 multi-model 

ensemble mean, respectively. The MERRA-2 climatology depicts lower SLP to the 

northwest with higher pressure to the south, a slight ridge inland of the coast of North 

America, and a 250 hPa jet centered on northern Oregon. Figure 2,2c shows the bias in the 

CMIP5 multi-model ensemble relative to MERRA-2. The CMIP5 ensemble captures the 

offshore low pressure to the northwest and the slight inland ridge at Z500, but there is a 

domain-wide negative bias in Z500 that increases in magnitude from north to south. SLP 

values exhibit positive bias inland while values over the ocean are very similar to MERRA-2. 

To ensure that the Z500 negative bias is not an artifact of the temporal offset in the 

climatololgies being compared (with CMIP5 comprising earlier years and, under a warming 

climate, potentially cooler years), the bias was computed using only overlapping years and 

revealed a very similar negative bias. The average climatology associated with V250 in 

CMIP5 is markedly different than the reference dataset with the CMIP5 ensemble showing a 

positive bias to the south and a negative bias to the north, revealing a jet stream that is 

located to the south compared to reference.  

The mean wet season climatologies of SLP, Z500, and V250 from the individual CMIP5 

models are compared to the mean wet season climatologies of the respective fields in the 

MERRA-2 reference dataset using Taylor diagrams (Fig. 2.3). The ensemble mean climatology 

has the highest metT scores for Z500, followed by SLP, and V250. While the spread in model 
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similarity compared with MERRA-2 is considerable for all variables, it is least for Z500 and 

most for V250 with the multi-model ensemble average showing the closest resemblance to 

MERRA-2 for Z500. 

 Figure 2.4 illustrates the 12-node refSOMs results for the (a) SLP, (b) Z500, and (c) 

V250 fields in MERRA-2. Each of the 12 node maps in a given field shows the resulting LSMP 

from all days assigned to a given node. More similar LSMPs are found in adjacent nodes and 

highly different patterns are found at diagonal corners across the SOMs space. In general, high 

SLP patterns are located in the top left corner of the SOMs space, while low SLP patterns are 

in the bottom right corner. For example, N1 (node 1) illustrates a pattern of high pressure 

offshore and over southern Canada, along with an offshore ridge axis at Z500, and a relatively 

weak jet along the northern extent of the region. This is in contrast to N12, which is 

characterized by a deep low pressure to the northwest of the PNW at the surface, an offshore 

trough at Z500, and a strong zonal jet directed at northern California. The LSMPs depicted in 

this SOM are reflective of the LSMPs for the 12-node DJF SOM found in Loikith et al. (2017). 

For example, nearly identical LSMPs as N1 and N12 from the refSOM were also found in the 

Loikith et al. (2017) for DJF except that the patterns occupied opposite corners of the SOM 

space. Similarly, N3 and N6 in the reference SOM reflect N6 and N9 in the Loikith et al. SOM. 

Other patterns (e.g. N8) in the refSOM capture LSMPs at the surface and mid-troposphere, 

but have different upper tropospheric wind patterns. The LSMPs in N8 and N12 mirror the 

LSMPs of Loikith et al. (2017) that were associated with positive temperature anomalies and 

widespread extreme precipitation days over Washington/Oregon and northern 

California/southern Oregon respectively. N9 in the reference SOM is a distinctly unique 

pattern to the refSOM. Relative to the low SLP features in N12 and N8, N9 shows a moderate 
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low SLP center off the coast of Oregon, an offshore Z500 trough, and a relatively weak jet at 

the southernmost edge of the study domain. Since we are including the whole wet season in 

our input data, it is likely that this is a springtime pattern not captured in the DJF SOM in 

Loikith et al. (2017).  

Figure 2.5 depicts the pSOM multi-model ensemble composite patterns of SLP (a), 

Z500 (b), and V250 (c) for all models in the CMIP5 ensemble. These composites are 

constructed by first producing a pSOM for each of the 24 models and then averaging the 24 

individual node patterns. The CMIP5 ensemble pSOM largely captures the refSOM patterns 

qualitatively, although some node patterns are better represented than others. In general, the 

bottom right of the of the refSOM (N6, N7, N8, N9, N10, N11, N12) is better represented 

by the model composites than the upper left corner (N1, N2, N3, N4, N5). The patterns in 

the bottom right corner are largely low SLP patterns, while the patterns in the upper left are 

predominately Z500 ridging patterns. This could have important implications when evaluating 

for future change. Furthermore, the Z500 field patterns appear to best resemble MERRA-2, 

followed by SLP, and the V250 field patterns have the most deviation from the reference 

patterns overall. For example, N3 in the MERRA-2 SOM composites (Fig. 2.5a-c) shows a 

high pressure ridge over the Western US, and a weak southwesterly jet. The CMIP5 ensemble 

(2.5a-c) captures these patterns well at the surface and at Z500, but has a different jet pattern, 

showing jet streaks in the southwest and northeast corner of the node spatial domain, although 

the jet stream orientation is similar to that in MERRA-2. N2 in the MERRA-2 SOM 

composites has a high pressure ridge over the southern node domain and a strong jet over 

southern British Columbia. N2 is better captured by the CMIP5 ensemble than N3, though 

the curvature of the jet is underestimated by the model figures.  
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2.4.2 Overview of individual models 

Figure 2.6 shows portrait diagrams summarizing the metT skill scores for each CMIP5 

models at each node. Figure 2.6a shows the relative skill of each model in capturing each node 

in the refSOM considering SLP, Z500, and V250 simultaneously. The high metTs in Figure 

2.6a illustrate that the CMIP5 models generally capture the refSOM node patterns with 

reasonable skill. In general, all models perform well over the 12 nodes with mean metT scores 

ranging from 0.91 to 0.95. Despite this, the spread of metT scores suggests that there is a 

hierarchy in model ability to capture archetypal LSMPs. The mean metT scores for individual 

nodes range from 0.92 (N1) to 0.96 (N10). The lower node mean metT scores are associated 

with PNW ridging patterns and the higher node mean metT scores are associated with low 

SLP patterns, providing confidence in the qualitative comparison of the refSOM to the 

ensemble mean pSOM.  

The metTs in panel 6a are reflective of how well the pSOM nodes for each model 

resemble the corresponding refSOM nodes from MERRA-2. However, it does not provide 

information on whether some variables are better reproduced by the CMIP5 models than 

others. Panels 6b-6d show the metT values computed by comparing the node patterns for 

each variable individually, using the same node assignments as in panel 6a. This reveals some 

considerable differences across the variables with the highest metT scores associated with 

Z500, followed by SLP, and the lowest scores associated with V250. It is of note that when 

considering the SLP, Z500, and V250 fields independently, the variability in model 

performance appears predominately between nodes, as opposed to between models. This 

suggests that the model ensemble systematically performs better and worse at capturing certain 

node LSMPs. 
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Figure 2.6b shows the metT skill scores for each model at each node for the SLP field. 

The SLP LSMPs of N1, N11, and N12 are not captured as well as other SLP nodes, and the 

SLP of N9 and N10 are captured the best. N1 and N12 are described in the previous section. 

N10 shows high SLP across the southwest corner of the study domain, a trough along the 

North American coast at Z500, and northwest to southeast oriented jet off the coast of 

California in the refSOM. There is an additional high SLP area in the northeast corner of the 

study domain in N10 of the ensemble mean pSOM’s SLP field. Figure 2.6c gives the metT 

scores for Z500. Overall the metT scores are higher for each model at each node than the SLP 

metT scores. Similar to the SLP field, the node mean metT scores are the lowest for N1, and 

N12. Figure 2.6d provides the V250 metT skill scores for each model at each node. N4 and 

N5 have the lowest skill scores for the V250 field. Low wind speeds span from the northwest 

to the southeast corner of the N4 V250 field the refSOM. N4 in the CMIP5 pSOM shows 

much lower wind speeds spanning from the northwest to the east of the study domain and 

hints at a jet along the south boundary of the study domain. The wind field in the refSOM N5 

shows a weak northerly jet along the pacific coast whereas the CMIP5 pSOM shows the 

highest wind speed in the south east corner of the study domain.  

 The portrait diagram in Figure 2.7 shows the occurrence bias of each node in each 

model relative to the number of days assigned to each node in the refSOM. The patterns in 

occurrence bias are largely consistent across models and vary by node. There is an overall 

overrepresentation of N1 (2.3%), N2 (0.6%), N5 (2.3%), N7 (0.6%), N11 (1.6), and N12 

(2.8%), while N3(-1.7%), N4(-1.7%), N6(-2.8%), N8(-0.7%), N9(-0.2%), and N10(-3.1%) are 

underrepresented. 

2.4.3 Individual model examples 
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While all models show generally reasonable skill scores in Figures 2.6 and 2.7, intra-

ensemble variability is still apparent across the CMIP5 suite. Here we provide two examples 

of individual model results from a model with relatively good evaluation scores and a model 

with relatively poor evaluation scores. The MIROC5 model had one of the highest overall 

metT skill scores of the CMIP5 models (Fig 2.6a). Figure 2.8 shows the MIROC5 pSOM with 

the composite LSMPs for all days mapped to each node. The red numbers following the node 

number indicate metT followed by the percent of total days assigned to the respective node. 

The SLP LSMPs from MIROC5 have Tmet scores ranging from 0.77 at N12 – a deep offshore 

closed low pressure to the west of southern British Columbia, to 0.99 at N9 – a closed low 

pressure to the west of Oregon. The pSOM N12 LSMP has a shallower, smaller low pressure 

than the MERRA-2 N12 LSMP. The MIROC5 Z500 field has Tmets that range from 0.91 

(N1) to 1.0 (N9). The V250 field has Tmets as low as 0.66 (N5), and as high as 0.96 (N12). 

N5 had the highest frequency of occurrence in this model, which overestimated the pattern 

occurrence compared to our reference, and N3 had the lowest, which underrepresented the 

node assignment in the MERRA-2 SOM (Fig. 2.7). 

The majority of the MIROC5 node LSMPs resemble the corresponding MERRA-2 

node LSMPs and create a picture that is dynamically consistent across the three atmospheric 

levels. For example, in N7, the lower pressure to the northwest coupled with an offshore Z500 

trough and a strong southwest to northeast oriented jet streak are all consistent based on 

synoptic dynamics. A few exceptions exist in the V250 field where the composite patterns in 

N1, N3, and N5 differ in dynamically important ways. For example, N5 in the V250 field 

shows higher wind speeds in the northwest and southeast corners, and lower wind speeds in 

the northeast and southwest corners, whereas the V250 field in MERRA-2 shows a weak 

northerly jet along the coast of North America (Fig 2.4c).  
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 The IPSL CM5B LR model has the lowest overall metT (0.92) of the CMIP5 models, 

mean metT for SLP, Z500, and V250 are 0.9, 0.96, and 0.77 respectively (Fig. 2.6). The pSOM 

for IPSL CM5B LR is found in Figure 2.11. Unlike MIROC5, there are several model nodes 

that result in LSMPs that are dynamically different than the MERRA-2 LSMPs. The 250 hPa 

wind field shows poor agreement with MERRA-2. For example, the wind field in the refSOM 

N5 shows a weak northerly jet along the pacific coast whereas the IPSL CM5B LR N5 shows 

a westerly jet at the very south of the node domain. This suggest a poor representation of the 

modeled wind field relative to the SLP and Z500 fields in the model.  This is again apparent 

in N1 of the pSOM. The IPSL CM5B LR N1 shows an inland high pressure at the surface, an 

amplified ridge in the mid-troposphere, and a jet that curves southward along the node 

domain.  

2.5 Evaluation of Associated Precipitation 

Here we evaluate the ability of the models to capture broad precipitation patterns 

associated with each node as a way to further evaluate model skill by asking the question: Do 

models produce reasonable precipitation with the right meteorological mechanisms?  

2.5.1 SOM precipitation composites 

In order to link the key circulation patterns indicated in the refSOM to precipitation 

in the PNW, the composites of daily averaged precipitation for all days assigned to each node 

in MERRA-2. Composite figures of daily precipitation for all days assigned to each of the 12 

nodes in the refSOM can be found in Figure 2.5a. N1-N3 receive nearly no average daily 

precipitation while N4, N5, N6, N9, and N10 receive low average daily precipitation, and N7, 

N8, N11, and N12 have the highest average daily precipitation in the PNW.  N1 is the driest 

node over the PNW, characterized by a pronounced ridge centered just off the coast of 
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western North America and only showing precipitation from central to northern British 

Columbia. The ridging patterns N2, and N3 show relatively high precipitation over BC, but 

zero to minimal precipitation over the northwest US. N4 and N5 show minimal precipitation 

along the west coast of North America. Relatively high daily precipitation is located in the 

northeast corner of Washington in N7, with considerable precipitation to the north along the 

coast of BC and to the south to northern California. Spatially, the precipitation in N8 is similar 

to N7, but of a lower magnitude. Moderate daily precipitation is centered over northern 

California in N9, and N10 shows light precipitation along the extent of the west coast. N11 

shows high precipitation from southern BC to norther California. The highest average spatially 

contiguous daily precipitation is visible in N12, spanning from the Canadian border to 

northern California. Considering the precipitation patterns in the context of associated 

refSOM LSMPs, N3, N7, N8, N11, and N12 appear to have dynamics that would be 

conducive to landfalling atmospheric rivers. In each of these nodes, there is a high SLP 

gradient that would likely advect warm, moist air from the Pacific, and a strong jet that helps 

to point the storm track to the region showing precipitation.  

Analogous precipitation composites for the CMIP5 ensemble are illustrated in Figure 

2.5b. There is reasonable qualitative agreement in average daily precipitation with wet nodes 

in MERRA-2 generally being wet in CMIP5, and dry nodes in MERRA-2 also generally being 

dry in CMIP5 suggesting the CMIP5 models are producing precipitation for plausible dynamic 

reasons. Though subtle, the magnitude of average daily precipitation in the CMIP5 composites 

is slightly lower than their MERRA-2 counterparts, and the precipitation extent is shifted 

somewhat south. It is of note that while the MERRA2 composites show no precipitation under 

the ridge in N1, N2, and N3, the model composites show light average daily precipitation.  



  56

Figure 2.12 shows the precipitation composites for the aforementioned MIROC5 

model. As MIROC5 largely captures the LSMPs of the refSOM, it also largely captures the 

location and magnitude of precipitation relative to MERRA-2, though there are a few 

differences. N2, N6 and N7 show moderate coastal precipitation extending further to the 

north than in MERRA-2, while N8, N11, and N12 have lower average precipitation 

magnitude.  

The precipitation composites in Fig. 2.12 help to illuminate how the differing LSMPs 

in IPSL CM5B LR result in distinctive precipitation climatologies for each node compared to 

MERRA-2. Generally, modeled precipitation is shifted to the south and is of greater magnitude 

than the reference precipitation (Fig. 2.5). N8 depicts moderate-high average daily 

precipitation predominately in northern California. This is very different than N8 in MERRA-

2 that shows moderate average daily precipitation climatology along the coast of BC and 

northern Washington.   

2.5.2 Station data 

 In order to emphasize the value of using synoptic-scale patterns to understand 

precipitation, this work will consider two nearby observing stations in Oregon. Figure 2.13 

shows precipitation density plots for each of the 12 nodes at Portland, the largest urban 

center in Oregon, and in Bull Run, the watershed supplying Portland’s water. Each plot 

shows station precipitation observations, MERRA-2 precipitation at the coinciding pixel, the 

CMIP5 ensemble average precipitation at the coinciding pixel, and the spread of CMIP5 

models at the coinciding pixel. The black numbers above each plot indicate the node 

number, and the blue numbers indicate the percent of 99th percentile precipitation events 

that were mapped to a given node. While we do not expect reanalysis or models to fully 
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capture the pdfs of precipitation at a given station since they are constructed using very 

different scales, this analysis serves as an assessment of the models’ ability to capture the 

fundamental shape of the precipitation distribution at each node. There is additional utility in 

this analysis to understand how resolution may influence the qualitative character of mean 

and extreme precipitation. 

 The pdfs of station precipitation in Portland are captured reasonably well in N1, and 

N4, but less well in other nodes. Between N7, N9, N11, and N12, about 88% of 99th 

percentile extreme precipitation extremes are captured. On average, the occurrence of N7, 

N11, and N12 are over-estimated while N9 is slightly overestimated. N7 has the highest 

occurrence (32%) of extreme precipitation events in Portland. While the ensemble mean 

precipitation pdf in N7 is close to the station pdf, there is a large amount of model spread in 

these nodes.  

 The Portland metro region and Bull Run are close enough in space that they fall into 

the same pixel on the 2 degree grid. Despite this, Bull Run has a very different precipitation 

climatology than Portland based on station observations. The Bull Run watershed is located 

approximately 42 kilometers from the city center of Portland and precipitation climatology is 

not well captured by the models or MERRA-2. Fig. 2.13 indicates that the average daily 

precipitation pdfs are far too low in all of the 12 nodes. This is likely because Bull Run is 

located in complex topography on the windward side of the Cascades where orographic 

precipitation enhancement is known to occur (Luce et al. 2013).  

While the coarse model resolution may be inadequate for capturing topographically 

influenced precipitation, the models do a good job of capturing the synoptic-scale circulation 

that results in precipitation. Because of this, we explore the utility of using LSMPs as analogs 
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for extreme precipitation. 82% of 99th percentile precipitation extremes in Bull Run are 

mapped to N6, N7, and N11, with N7 accounting for 47% of events. The occurrence of N6 

is under represented in the models, but N7 and N11 are overrepresented in models. 

Subsequent work will need to consider node occurrence bias when evaluating how these 

patterns may change in the future since some nodes are systematically overrepresented in 

models, while others are underrepresented. Furthermore, it is clear that different nodes are 

important for extreme precipitation at a given geographic location. The LSMP approach to 

extremes could allow us to evaluate patterns that are impactful over a specific location, while 

minimizing concerns of resolution limitations.  

2.6 Summary 

 This study provides a multi-model evaluation of fidelity of CMIP5 models (Table 1) 

in capturing the array of archetypal LSMPs that exist in the wet season over the PNW. LSMPs 

defined as SLP, Z500, and V250 are used to capture circulation at the surface, the mid-

troposphere, and the upper-troposphere. A comparison of mean climatology of these fields in 

the CMIP5 ensemble to the reference dataset (MERRA-2), reveals a clear negative bias in the 

models’ Z500 field, and a jet stream that that is south of the reference jet stream (Fig. 2.2). 

Taylor diagrams showed that individual models varied in their ability to capture the mean 

climatology of SLP, Z500, and V250 (Fig. 2.3).  

A 12-node reference SOM (refSOM) is used to reveal the array of LSMPs that occur 

over the PNW during the wet season (Fig. 2.4). Following the methodology outlined in Figure 

1, the daily LSMPs of all 24 CMIP5 models are assigned to one of the 12 refSOM nodes using 

a metric T skill score. Composite SLP, Z500, and V250 LSMPs are made based on this 

assignment resulting in a pseudo SOM (pSOM) (Fig. 2.5). A qualitative analysis of LSMPs 
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shows that the low pressure patterns in the bottom right corner of the refSOM are better 

represented than the ridging patterns in upper right corner. Portrait diagrams are used to 

evaluate to performance of each CMIP5 model at each node considering SLP, H500 and V250 

fields simultaneously (Fig. 2.6a) and independently (Fig. 2.6b-d). In general, the CMIP5 models 

capture node patterns with reasonable fidelity, but some models perform better than others. 

In considering CMIP5 model fidelity at capturing fields independently, the Z500 field is best 

captured, followed by SLP, and then V250. In each of these fields, the variability in model 

performance appears predominately between nodes, as opposed to between models. This 

suggests that the model ensemble systematically performs better and worse at capturing certain 

node LSMPs. Similarly, certain nodes are systematically overrepresented in the models, while 

other nodes are under represented (Fig. 2.7). 

In order to understand if models produce wet and dry conditions for the right 

underlying circulation, composites of precipitation in are analyzed. In general, we find that 

the CMIP5 models do generally produce precipitation in the right locations for the right 

reasons (Fig 2.10). The LSMPs associated with the driest and wettest conditions in the PNW 

are the most overrepresented pSOM nodes, while the LSMPs that are most 

underrepresented in the CMIP5 models are associated with light average daily precipitation 

across the pacific northwest (Fig. 2.7). Finally, this study compares the precipitation pdfs of 

two stations in Oregon to the spatially analogous precipitation in the CMIP5 models and 

MERRA-2 to link local-scale precipitation to LSMPs (Fig. 2.13). An analysis of the 

precipitation pdfs at these two stations, which are located in the same 2-degree pixel, 

suggests there may be utility in exploring the use of LSMPs as an analogue for extreme 

precipitation when considering projections of future climates. These results provide a 
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mechanistic perspective on model fidelity in capturing synoptic climatology and associated 

precipitation characteristics across the PNW. 

Several considerations should be taken into account when interpreting these results. 

First, this methodology assumes all input fields (SLP, Z500, and V250) are of equal 

importance. While all three field are useful in producing a complete picture of LSMPs through 

the thickness of the troposphere, it is clear from our results that depending on day, lower level 

disturbance or upper level disturbance may be more important to contributing to precipitation 

and precipitation extremes. It is possible that LSMPs are influenced by lower modes of climate 

variability (e.g. ENSO, PDO) and therefore the ability to realistically simulate the climatology 

of LSMPs would be partially contingent on the models’ ability to simulate these 

teleconnections realistically.   

 This work demonstrates a novel methodology for climate model evaluation that uses 

SOMs to identify key LSMPs and metT to evaluate the ability of CMIP5 models to capture 

these key LSMPs. Since most climate model evaluation considers seasonal or longer 

climatologies, this approach is unique in that it evaluates circulation patterns at daily time steps 

to evaluate key patterns. This allows us to evaluate if precipitation is being produced in the 

right regions and for the right reasons. This work supports previous work by Rupp et al. (2017) 

that indicate a hierarchy amongst models to capture climatological trends in the PNW, but is 

unique in that it ranks models in ability to capture the circulation dynamics as opposed to 

precipitation statistics alone. To these authors’ knowledge, this is the first study to evaluate 

climate models in their ability to capture synoptic circulation patterns over the PNW. In 

answering questions of future changes to precipitation, it is vital that the models that capture 

accurate precipitation dynamics are considered.  
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 This study creates many opportunities for further research. The methodology outlined 

in this study can be applied to similar analysis for any spatial domain, or multiple spatial 

domains to compare results. Future studies could also delve deeper into understanding the 

link between precipitation extremes and LSMPs over the PNW. This work lays a foundation 

for the evaluation of future LSMPs under multiple warming scenarios.  
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2.7 Tables 

 
Table 2. 1 CMIP5 models used in this study (left) and the associated native resolution 
(right). 
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2.8 Figures  

 
Figure 2. 1 Workflow of mapping CMIP5 models to the reference MERRA-2 SOM using 
Metric T. Metric T defined in the grey box. 
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Figure 2. 2 Wet season (November-April) climatology of SLP [hPa] (contours at 5 hPa 
spacing), Z500 [m](contours at 50 m spacing), and V250 [ms-1](contours at 5 m s-1 spacing) 
in (a) MERRA-2, and (b) the CMIP5 multi-model ensemble mean. (c) The CMIP5 bias 
computed bias computed by subtracting (a) from (b). SLP [hPa] (contours ar 2 hPa spacing), 
Z500 [m](contours at 5m spacing), and V250 [ms-1](contours at 2 ms-1 spacing). 
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Figure 2. 3 Taylor diagrams of SLP (a), Z500 (b), and V250 (c) climatology fields relative to 
the MERRA-2 reference dataset. Standard deviation and centered RMSD fields normalized 
by reference spatial standard deviation. Grey dashed lines indicate the centered RMSE. 
CMIP5 model indicated in (d). 
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Figure 2. 4 12-node wet season refSOM showing (a) SLP [hPa] (contours at 5 hPa spacing), 
(b) Z500 [m](contours at 50 m spacing), and (c) V250 [ms-1](contours at 5 m s-1 spacing) in 
MERRA-2. 
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Figure 2. 5 12-node wet season pSOM color shaded as in Fig. 2.4, but showing composite 
patterns for all days mapped to each node for the respective field SLP (a), Z500 (b), and 
V250 (c) across the suite of 24 CMIP5 models. 
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Figure 2. 6 Portrait diagrams summarizing the Metric T skill score for each CMIP5 models 
at each node. Heatmap (a) show the skill score when considering all three fields 
simultaneously, as is done to assign each model day to a node. Heatmap (b-d) show the skill 
scores only considering the SLP, H500, and V250 fields respectively. 
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Figure 2. 7 Portrait diagram showing the node occurrence bias in node assignment 
calculated as the percent of days assigned to each node in models - the percent of days 
assigned to each node in MERRA-2. 
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Figure 2. 8 Composites for MIROC5 color shaded as in Fig. 2.4. Red numbers above each 
node indicate the Metric T skill score, and the percent of total days assigned to the respective 
node. 
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Figure 2. 9 As in Fig. 2.8, but for IPSL CM5B LR. 
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Figure 2. 10 Composites of daily average precipitation [mm/day] for all days assigned to 
each node in MERRA-2 (a) and in the CMIP5 ensemble (b). 
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Figure 2. 11 As in Fig. 2.10 but for all days assigned to each node in MIROC5. 
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Figure 2. 12 As in Figure 2.10, but for the IPSL CM5B LR model. 
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Figure 2. 13 PDFs of precipitation at Portland International Airport (PDX) and at the 
North Fork SNOTEL station in Bull Run. Station precipitation observations, MERRA-2 
precipitation at the coinciding pixel, the CMIP5 ensemble average precipitation at the 
coinciding pixel are shown for each node. Black numbers indicate the node number, and 
blue numbers indicate the percent of 99th percentile precipitation events that were mapped 
to a given node.  
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Appendix 

A1. Chapter 1 Supplementary Figures 

 

FIG. A1. CSO distribution by node for heavy total days (left) and high intensity days (right). 
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FIG. A2. Composite averages of (left) SLP [hPa] (contours at 5 hPa spacing), (center) Z500 
[m](contours at 50 m spacing), and (right) V250 [ms-1](contours at 5 m s-1 spacing) 
concurrent with heavy total days. Portland, OR is indicated by the red dot.  
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FIG. A3. 12-node SOM for the 1045 days of the heavy total days showing (a) SLP [hPa] 
(contours at 5 hPa spacing), (b) Z500 [m](contours at 50 m spacing), and (c) V250 [ms-

1](contours at 5 m s-1 spacing) concurrent with heavy total days. Portland, OR is indicated by 
the red dot.  
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FIG. A4. Histogram showing number of days assigned to each month for each node for heavy 
total days. The fraction of total input days assigned to each node is indicated in red above 
respective histogram. 

 



  84

 

FIG. A5. Composites of daily maximum temperature anomaly [oC] for all days assigned to 
each node. Portland, OR is indicated by the red dot. 
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FIG. A6. Same as in Fig. 6, but for daily precipitation anomaly as percent of climatology [%]. 
Portland, OR is indicated by the red dot. 
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FIG. A7. Same as in Fig. 6, but for daily precipitation amount [mm/day]. Portland, OR is 
indicated by the red dot. 

 



  87

 

FIG. A8. Same as in Fig. 6, but for IVT [kg m-1 s-1; contours at 50 kg m-1 s-1 spacing]. Bold 
dashed white contour indicates the 250 kg m-1 s-1 threshold for AR classification. Red numbers 
are the percent of days in each node that are concurrent with an AR over the study area. 
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FIG. A9.  When two heavy total days occur back-to-back, this heatmap shows the where in 
the SOMs space the second day occurs. The x-axis shows the starting node assignment and 
the y-axis shows the node assignment of the consecutive day. Heatmap values indicate the 
percentage of consecutive days assigned to each next-day-node for each given starting node. 
For example, 94% of heavy total days that were initially assigned to node 12, were still assigned 
to node 12 on the second day.  
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FIG. A10. NWS NEXRAD WRS-88D radar reflectivity data for December 7, 2015 shown at 
4-hour time steps, from left to right and top to bottom, starting at 0Z. Portland is in the center 
of the image where the red lines (arterial freeways) intersect.  
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FIG. A11. As in Figure S10 June 17, 2014 shown at 4-hour time steps starting at 2Z.  
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FIG. A12. Hydrograph at USGS station 14211550 on Johnson Creek in Portland for 
December 2017.  
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FIG. A13. As in Figure S12 but for June 2014. 
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