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Abstract 

This thesis looks at the modeling and simulation of linear and nonlinear magnetic gear 

dynamics in a wind turbine drivetrain.  The objective is to lay the groundwork for 

analysis, modeling and optimization of control structures focused on pole-slip prevention. 

A classical mechanical two-mass torsion spring model is used as the basis for developing 

the dynamic system equations and Simulink models. The wind turbine torque input to the 

low speed rotor is modeled as a disturbance input, the generator torque is modeled as a 

controlled input, and the high-speed rotor speed is the only measured output. The 

nonlinear dynamics are linearized; and a state space model is built that utilizes both gear 

rotor speeds and the load angle as states. A state space feedback compensation controller 

is designed using pole placement techniques; and the sensitivity of the selected poles is 

tested across the full range of rated load angles. A full order observer is combined with 

state feedback compensation and the performance is evaluated with and without load 

angle speed regulation and integral action.  A reduced order observer is designed with 

load torque estimation as an additional ‘metastate’, which is then used to calculate the 

load angle, providing a better estimate than what the observer directly provides.  Finally, 

the accuracy of the reduced order observer to is tested using real torque data from a wind 

turbine. 

This work was in part supported by the National Science Foundation under award 

1636704 and award number 1827801.
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1 Introduction 

 

1.1 Background 

 

Magnetic gears show promise as an alternative to mechanical gears, providing a 

way to increase or decrease speed without any mechanical contact between gears.  

Torque is transmitted by a magnetic gear utilizing magnetic field space modulation.  The 

benefits of contact-less torque transmission include a reduction in wear and tear resulting 

in less maintenance requirements, elimination of the need for lubrication and the risk of 

lubrication leaks, and quieter operation than mechanical gears [1]. These features make 

them a good option for use in wind turbines and ocean wave energy generators. The arc 

of their development shows continued improvements in torque density and power 

conversion efficiency that may eventually allow them to surpass their mechanical 

counterparts [2].  As energy demand increases, so does the need for gearboxes with 

increasing volumetric torque density. This is because increased capacity wind turbines 

have longer blades and sit on top of taller towers (Figure 1.1, [3]), creating a need to 

reduce the weight of the gearbox.   Another potential benefit of magnetic gears is the fact 

that overload torque will cause the rotors to break contact without rotor damage. This 

overload torque feature, known as pole slipping, could make them a particularly good 

replacement in wind turbines, where mechanical gearbox failures account for 

approximately 20% of downtime [4].   
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Figure 1.1. Tower height, swept rotor diameter and rated capacity of existing onshore 

and offshore wind turbines [3]. 

 

Magnetic gears could generally be considered as being in the technology 

development phase more than application development.  There are far more papers being 

published on gear design and optimization than on control. Much work has been and 

continues to be done to optimize different magnetic gear typologies in terms of peak 

torque, efficiency, torque density, vibration reduction, as well as developing them with 

variable transmission capabilities and integrating them into permanent magnet machines 

[5].  While these developments are all key to making magnetic gears a viable replacement 

for mechanical, the dynamic control of magnetic gears in a stiff mechanical drivetrain 

needs to be addressed as well.  The most common control objectives for a mechanical 

gear in a mechanical drivetrain are to: 

• Track the speed or position of the load to a desired setpoint, with 

minimal overshoot and fast response time. 
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• Reject load torque disturbances while tracking the setpoint, also 

known as regulation [6]. 

• Minimize torsional vibrations or resonance. 

A control system designed for a magnetic gear replacing a mechanical gear must also 

satisfy these objectives, but there are some unique characteristics of magnetic 

transmission that need to be considered and addressed in the design.  Initially, however, 

the dynamic model of a magnetic gear in a drivetrain can be (and frequently has been) 

approximated by a well-known mechanical model - two rotating mass/inertias connected 

through a torsion spring.  

1.2 Two-Mass Model of a Mechanical Coupling 

 

It has been frequently proposed [7-14] that, for the purpose of control system 

design, elements that are mechanically coupled in a drivetrain where coupling flexibility 

is a factor can be modeled as two mass/inertias coupled by a torsion spring. Common 

examples include rolling mills, machining tools, flexible joint robots, and ball screw 

positioning systems [14] where two rotating masses represent a load coupled to a driving 

motor through a compliant, flexible shaft or joint.  Figure 1.2 shows a model of this 

system, where TEM is the electromagnetic torque developed by the motor and , ,M M MJ B  , 

and M are the lumped inertia, damping, speed, and angular position of the motor, 

respectively. The torque transferred through the shaft, TS, is a function of the shaft/spring 

stiffness, KS and the angular difference between the motor angular position, M , and the 

load angular position, L , such that 



4 

 

 
D M L  = −   (1.1) 

 where the transmission torque is then 

 S S DT K = .  (1.2) 

The inertia, speed and torque developed by the load are ,L LJ  , and LT  respectively. 

Because the coupling is compliant, changes in speed or position commanded from the 

motor side and/or disturbance torque changes on the load side will result in a transient 

period where the speed and position of the motor are different from that of the load. 

Another negative consequence of shaft compliance is that torque changes on either the 

motor or load sides can lead to torsional vibrations or resonance, which can make 

speed/position control difficult and cause mechanical stress or even failure [15]. 

 

 
Figure 1.2. Two mass model of a compliant mechanical coupling 
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1.3 Two-Mass Model of a Magnetic Gear 

 

In order to use the two-mass model of a mechanical coupling for a magnetic gear, 

the following things must be considered.  First, while a magnetic gear has a gear ratio, 

that does not preclude it from being modeled as a 1:1 magnetic coupling.  Magnetic 

torque transmission can be effectively modeled according to [16] as a 1:1 coupling 

connecting two geared mass/inertias. A representation of this can be seen in Figure 1.3. 

The gear, with gear ratio 2 1/n n , is separated into two gearboxes, a step up and a step 

down.  In this way the stiffness component of the transmission dynamics is separated 

from the gearing component. 

 
Figure 1.3. Equivalent model of a magnetic gear [16] 

 

The second thing that should be noted is that the stiffness or compliance of 

magnetic gear rotors is non-linear, whereas it is generally considered to be linear in 

mechanical couplings. This concept was illustrated nicely by [16], repeated here in Figure 

1.4. 
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Figure 1.4. Comparison of torque transferred through an ideal torsion spring and a magnetic coupling 

[16] 

 

The dashed line depicts torque transferred through an ideal torsion spring/mechanical 

coupling, as a function of angular displacement (1.1) between the motor and the load.  As 

the angular displacement increases, the transmitted torque increases, but the relationship 

is linear. In the context of the two-mass model, the slope of this line is the spring 

constant, KS shown in Figure 1.2, with typical units of [Nm/rad].  Here, the angle is given 

in electrical radians to illustrate an important point. The peak torque transferred through a 

magnetic gear always occurs at +/- 90 electrical degrees or +/- π/2 radians. This is the 

stable operating region for torque transfer, but it is also clear from Figure 1.4 that the 

transfer is not linear over this entire operating range. The torque transferred through a 

magnetic gear is, in fact, sinusoidal, as shown in (Figure 1.5), accordingly  

 sin( )t m M LT T  = −   (1.3) 

for a 1:1 magnetic coupling, and  
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1 2sin( )t m M LT T n n = −   (1.4) 

for a magnetic gear with the gear ratio shown in Figure 1.3. mT  is the peak or pullout 

torque of the gear; and the parameter defined by 

 
1 2M Ln n −   (1.5) 

is called the load angle,  .  This will be discussed in more detail in Chapter 2. Referring 

to Figure 1.5, there are stable and unstable regions of torque transmission.  Note the rate 

of torque transfer decreases approaching peak torque, which could influence the actual 

peak torque achievable.  Also, if the load angle reaches an unstable region, pole slipping 

will occur.  

 
Figure 1.5. Stable and unstable regions of torque transmission. 

 

The phenomenon of pole slipping in magnetic gears is frequently pointed to as 

beneficial torque overload protection. Part of what makes mechanical gears prone to 

failure, particularly in wind turbine generators, is that when they are subject to large load 
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transients, they maintain physical contact until the transient passes, or they fail 

catastrophically. Magnetic gears do not operate through physical contact and the 

magnetic field connection will break rotor contact if the transient torque is beyond the 

rated torque of the gear.  This phenomenon is known as pole slipping. When this 

happens, the rotors spin freely, slowing down to 0 or maintain speed in accordance with 

the dynamics on each side.  An example of pole slipping, from experiments performed by 

[16] using a 1:1 magnetic coupling, is shown in Figure 1.6.  The speed responses of the 

motor and load side rotors are shown, following an overload torque at t = 2 s. Contact 

between the coupling rotors is broken and the speed on both sides eventually drops to 0.  

The fact that the speed of both sides goes to 0 indicates that there are no torque inputs to 

either side following the overload event. 
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Figure 1.6. Motor and load side rotor speed response of a 1:1 magnetic coupling. Starting at 0 Nm 

of load torque (A), the load torque increases at t = 1 s (B). An increase again at t = 2s (C) leads to 

pole slipping [16]. 

 

The gear rotors of the magnetic gear will eventually re-engage, given the right conditions, 

essentially allowing it to serve the function of a torque ‘breaker’. While it is clear how 

this can be a benefit, it also represents a loss of control of the drivetrain. A sudden loss of 

contact at high speeds could have damaging oscillatory effects on the drivetrain [17].  If a 

control system were in place to monitor, detect, and remediate pole slipping, preventative 

schemes could be employed to reduce occurrences; and protocols could be set for 

bringing the gear rotors back into synchronism as quickly as possible. Non-linear 

stiffness and pole-slipping are the key features of magnetic transmission that this thesis 

will examine as a part of the control system design. 
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1.4 Review of Magnetic Gear Control  

 

At the time this thesis was written, there were less than 10 published papers or 

theses discussing pole-slip prevention and recovery for magnetically geared drivetrains 

[16, 18-23]; and they were all published by the same two groups of authors.  All the 

magnetic gear control techniques presented in these papers were developed for 

mechanical servo drive systems, like the one shown in Figure 1.2. Speed control of a 

drivetrain incorporating a magnetic gear integrated with a permanent magnet machine 

(pseudo direct drive) was investigated by Bouheraoua [18]. Speed and position control of 

a drivetrain incorporating a 1:1 magnetic coupling was investigated by Montague [16]. 

Several control techniques were explored for the purposes of tracking, regulation, and 

reduction of torsional oscillations, a summary of which is given below. 

Controllers were developed for a single output system, meaning the assumption 

was made that only one of the system states could be measured.  In general, it is assumed 

that in servo drive systems, only the motor-side states are available for measurement [18]. 

Conventional Integral (I), Proportional Integral (PI) and Proportional Derivative (PD) 

control structures were explored, utilizing motor-side feedback (speed or position) to 

track a setpoint. The overall findings were that I and PI control did not sufficiently damp 

torsional oscillations with the pseudo direct drive; and that PI and PD control did not 

adequately regulate load torque disturbances with the magnetic coupling. Full state 

feedback compensation gave better performance across all metrics.   
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A few techniques were evaluated for tuning the state feedback compensator gains.   

The simplest was pole placement design, where pole locations were selected to minimize 

the integral of the time-weighted absolute error (ITAE) performance index [16]. The 

most complex, and best performing, was a genetic algorithm, which used ITAE as a 

performance criterion, but optimized it further through iterative evaluations. This was 

presented by Bouheraoua, along with a Linear Quadratic Regulator (LQR) design, the 

latter of which performed poorly because no way was found to map the Q and R matrices 

to the desired performance index.  

With full state feedback compensation identified as the best controller structure, 

and only one state available for measurement, steps were taken to integrate state feedback 

with state estimation. Linear full and reduced order observers were evaluated by both 

authors [16, 18]. A key finding from using linear state estimators on a nonlinear system 

was that the estimation was only accurate when the load angle that the observer was 

linearized around was close to the load angle at which the system was operating.  There 

was more flexibility in the linear regions of operation (Figure 1.4), but the accuracy was 

still compromised in systems where the load torque/angle was fluctuating, if there was 

not a method established to update the linearization point in real time.  One solution 

proposed, and successfully tested by Bouheraoua, was a non-linear observer in the form 

of an extended Kalman filter, which dynamically updated the load angle in real time. 

Having a linearized state estimator that can track and respond to changes in the 

system, particularly with regards to the load angle, is a key component of control 

techniques for pole slip detection, prevention and recovery. Both authors developed slip 
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detection and prevention control schemes, both of which relied on measurements from 

the high-speed rotor to detect pole slipping. Montague [16] noted that pole slip conditions 

imposed a modulating signal on the speed feedback signal, which could be used as a 

detection variable.  Bouheroaou [18] used an estimate of the load angle as a slip detection 

variable; and with the increased estimation accuracy provided by the extended Kalman 

filter, this was shown to be reliable. To implement slip prevention and recovery, both 

authors proposed control structures that utilized the feedback from slip detection to 

modify the speed of the motor so that synchronism with the load could be maintained. 

1.5 Objectives and Scope 

 

This thesis looks at the application of the mechanical two-mass model and some of 

the control techniques discussed in Section 1.4 to model the dynamics and control of a 

Halbach magnetic gear for a wind turbine drivetrain application.  While a lot of work has 

been done to develop models for control of magnetic gears in mechanically stiff 

drivetrains, they have all been servomechanisms for motor-driven loads.  The orientation 

of the magnetic gear in a wind turbine drivetrain is similar in that the disturbance still 

comes from the load side, but now it is also the driving input to the system.  The main 

objective of this thesis is to lay the groundwork for modeling, analysis, and optimization 

of magnetic gear controls, specifically for pole-slip prevention in wind turbine 

drivetrains.  The focus will be on control of the magnetic gear dynamics without 

integration into pitch angle control, generator control, or any other control structures that 

are typical for wind turbine systems.  Since wind turbine speed is controlled by pitch 



13 

 

angle [24], the approach taken here is to focus on pole-slip prevention by using the 

generator input to avoid load angle overshoot conditions that cause the magnetic gear to 

pole slip. The magnetic gear used for simulations is modeled on an experimental 

prototype being developed in the Laboratory for Electromechanical Energy Conversion 

and Control at Portland State University.  
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2 Dynamic Model of a Coaxial Halbach Magnetic Gear in a Wind Turbine Drivetrain 

 

2.1 Characteristics and Operation of a Coaxial Magnetic Gear 

 

A prototype Halbach rotor coaxial magnetic gear was designed and constructed by 

Wong et al [25], a cross-sectional view of which is shown in Figure 2.1. 

 

 

Figure 2.1. Prototype coaxial Halbach rotor magnetic gear [25] 

 

The gear consists of three rotors, an outer permanent magnet (PM) rotor with
op =14 pole 

pairs, an inner PM rotor with
hp =3 pole pairs and a cage rotor with ln =17 ferromagnetic 

segments. In addition, a partial Halbach array (two PM segments per pole) has been 

added to both the outer and inner rotors. The Halbach PM array, first introduced by [26], 

utilizes PM pieces with a selected magnetization direction to help sinusoidally shape the 

air gap flux density distribution, potentially leading to increased torque and other benefits 
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[27].  The operation of the gear is as follows. The outer rotor is kept fixed (according to 

this design, other designs may choose to fix the cage rotor) while the inner and cage 

rotors are attached to separate drive shafts. The cage rotor rotates at speed l and the inner 

rotor rotates at speed
h  [1]. The angular speeds are related by 

 l

h l

h

n

p
 =   (2.1) 

The rotation of the ferromagnetic cage rotor with respect to the PM rotor creates 

magnetic fields in the air gaps between them.  The cage rotor modulates the magnetic 

field flux density in the air gaps, the dominant space harmonics of which can be tuned to 

produce continuous torque transmission. If the number of pole pairs and ferromagnetic 

segments are selected such that: 

 
l h on p p= +   (2.2) 

the cage rotor will modulate the magnetic field so that each PM rotor interacts with a 

dominant space harmonic having an equal number of poles, thereby allowing for stable 

torque transmission through the gear while the rotors rotate at different speeds [27].  The 

gear ratio is then defined as: 

 5.67l

r

h

n
G

p
= =   (2.3) 

If losses are neglected, the power transmission relationship between rotors is given by 

 l l h hT T =   (2.4) 
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From (2.1), (2.3) and (2.4) it is clear that when the outer rotor is fixed, the cage rotor is 

the low speed, high torque side and the inner rotor is the high speed, low torque side of 

the gear. 

2.2  Dynamic Operation in a Wind Turbine Drivetrain 

 

If the Halbach magnetic gear replaces a mechanical gearbox in a wind turbine 

drivetrain, the aerodynamic wind turbine torque will rotate an input drive shaft to the 

gearbox, which will be attached to the magnetic gear cage or low speed rotor (LSR). 

Rotating wind turbine blades have a large amount of torque but do not rotate at the speed 

necessary to maintain grid frequency [28]. The power transmitted from the LSR to the 

inner, high speed rotor (HSR) constitutes a decrease in torque and an increase in speed. 

The shaft attached to the HSR provides the input speed to a generator. The torque 

transmitted to the LSR side is given by: 

    
m( ) sin( )tT T =   (2.5) 

and referred to the HSR side it is given by: 

         

m( ) sin( )

( )

th

r

t

r

T
T

G

T

G

 



=

=

  (2.6) 

where 

 
l l h hn p  = −   (2.7) 
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is the angular displacement between the rotors, or load angle, mT  is the pullout torque of 

the gear referred to the LSR, 
rG is the gear ratio defined in (2.3), and l  and h are the 

angular positions of the LSR and HSR respectively.  Combining (2.5) and (2.7) gives a 

more developed expression for magnetic torque 

 
m( ) sin[ ]t l l h hT T n p  = −   (2.8) 

Now, at initial time t=0, the load angle between rotors is assumed to be  

 
0(0) l l h h0n p  = −   (2.9) 

where 0l and 0h  are the initial angular positions of the high and low speed rotors at time 

t=0. This initial (steady state) load angle will also be defined as  

 0(0) =   (2.10) 

Then, defining: 

 l l =   (2.11) 

 h h =   (2.12) 

the change in load angle, or load angle speed is given by 

 l l h hn p  = −   (2.13) 

In steady state  

 0 =   (2.14) 

and we can define steady state load angle speed as 

 0 0 0 0l l h hn p  = − =   (2.15) 
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where 
0l  and 

0h  are the steady state angular speeds at time t = 0. The complete non-

linear dynamic operating equations for the magnetic gear in a wind turbine drivetrain, 

with sign definition given by [28] are [18]:                                                                    

 ( )l l l t l l r dJ T T B G k   = − − +   (2.16) 

 
( )t

h h g h h d

r

T
J T B k

G


  = − − −   (2.17) 

where
lT  is the aerodynamic torque, gT is the electromagnetic braking torque developed by 

the generator, lJ is the low-speed side lumped inertia of the magnetic gear and hJ is the 

high-speed side lumped inertia. There are two sources of damping in (2.16) and (2.17). 

lB and
hB are viscous damping of the LSR and HSR respectively [16]. The other source of 

damping, dk , is a function of the angular speed between the rotors, due to eddy current 

and iron losses. It will be assumed, moving forward, that the losses in the magnetic gear 

are small and so these sources of damping will be negligible compared to the damping 

introduced by the controller; they will generally be neglected.  If damping is neglected, 

(2.16) and (2.17) reduce to 

 ( )l l l tJ T T = −   (2.18) 

 
( )t

h h g

r

T
J T

G


 = −   (2.19) 

Taking the Laplace transforms and rearranging, (2.18) and (2.19) become 

 
1

( ( ))l l t

l

T T
sJ

 = −   (2.20) 
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( )1

( )t

h g

h r

T
T

sJ G


 = −   (2.21) 

While aerodynamic load torque, 
lT , is an input, it is not one that can be 

controlled, which makes it a disturbance. There are ways to control wind torque input, 

through pitch angle control, for example, but this thesis is only focused on the magnetic 

gear dynamics and pole slip prevention/recovery. The only input we will assume we can 

directly measure, and control is the generator torque. Figure 2.2 gives a state-flow 

diagram of the dynamics described in (2.20) and (2.21), when damping is neglected. The 

flow diagram is rearranged to show the generator torque input to the magnetic gear and 

the disturbance torque, 
lT  from the wind. 

 
Figure 2.2. State flow diagram of (2.18) and (2.19), where damping is neglected 

 

Table 2.1 gives a summary of the parameters for the Halbach magnetic gear and 

laboratory setup that will be used in the dynamic modeling. The inertia values presented 

are lumped parameters, where lJ  is the combined inertia of the LSR and DC motor; and 



20 

 

hJ  is the combined inertia of the HSR and PM generator.  The lumped inertia of the HSR 

given in Table 2.1 is taken from the prototype design [25], further broken out in Table 

2.2. The lumped inertia of the LSR is calculated using the following steps.  If we first 

note that 

 
h r lG =   (2.22) 

we can rearrange (2.19) so that 

 ( )h r h t g rJ G T T G = −   (2.23) 

Then substituting (2.22) into (2.23) gives 

 
2 ( )h r l t g rJ G T T G = −   (2.24) 

In steady state,  

 0h =   (2.25) 

and  

 0l =   (2.26) 

which means that, in steady state, substituting (2.25) and (2.26) into (2.18) and (2.19) 

yields 

 ( )t lT T =   (2.27) 

 ( )t g rT T G =   (2.28) 

which makes it easy to see that 

 l

g

r

T
T

G
=   (2.29) 

Now, substituting (2.29) into (2.24) gives 
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 2 ( )h r l t lJ G T T = −   (2.30) 

and substituting (2.30) into (2.18) gives 

 2

l l h r lJ J G − =   (2.31) 

From here, we can cancel l  from both sides, giving us the following expression for LSR 

inertia in terms of HSR inertia 

 2

l h rJ J G− =   (2.32) 

 

Table 2.1. Summary of Magnetic Gear Parameters [25] 

Parameter Value Units Source 

mT  147.8 N·m Measured 

rG  5.67 - Design 

hp  3 - Design 

ln  17 - Design 

hJ  2.9x10-2 kg·m2 Design (Table 2.2) 

lJ  93.1x10-2 kg·m2 (2.32) 

 

Table 2.2. Inertia data 

Parameter Value Units Description 

HSRJ  1.88x10-3 kg·m2 HSR assembly 

PMJ  27.3x10-3 kg·m2 

Rexroth MSK100C PM 

generator, attached to 

the HSR 

 

 

 

 



22 

 

2.3 Linearized Model 

 

If damping is neglected, (2.13), (2.18), and (2.19) describe the dynamics of the 

non-linear system.  As ( ) sin[ ( )]t mT T t = is the only non-linear term we can linearize 

around 
0 0 0( , , )h l   , which gives 

 0

)0 0( ,,

( ) ( ) ( ) ( )t t o t

h lo

T T T
  

    


 
 + −  

 
  (2.33) 

Evaluating 

 
0 0 0( ) sin( ) ( ) cos( )t m mT T T     + −   (2.34) 

and substituting (2.34) into (2.18) gives 

 0 0 0[sin( ) ( )cos( )]l m

l

l l

T T

J J
    = − + −   (2.35) 

expanding (2.35) gives 

 0 0 0 0cos( ) sin( ) cos( )l m m m

l

l l l l

T T T T

J J J J
     = − − +   (2.36) 

Substituting (2.34) into (2.19) gives 

 0 0 0[sin( ) cos( )( )]
gm

h

h r h

TT

J G J
    = + − −   (2.37) 

expanding (2.37) gives 

 0 0 0 0cos( ) sin( ) cos( )
gm m m

h

h r h h r h r

TT T T

J G J J G J G
     = − + −   (2.38) 

The last two terms in (2.36) and (2.38) are related to the initial condition torque values. 

Equation (2.13) is not non-linear, but the initial condition must still be accounted for  
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 0 0( ) ( )l l l h h hn p    = − − −   (2.39) 

Now, if we define the equivalent stiffness of the magnetic torque transferred at the load 

angle linearization point as 

 
0(cos( ))m mK T =   (2.40) 

and substitute into (2.36), (2.38) and (2.39), then in state space matrix form, these 

equations are 

 

m

m

m

0

m

0

0

0 0
1 0

1
0 0

0

00 0

1
0 0 0

1
0 0 0

0 0 0

h r

h h

h

l l g l

l l

h l

h r h

h m

l

l l

h l

K

J G

JK
T T

J J

p n

K

J G J
T

K

J J

p n

 

 

 







 
  −            −       = + +                    −     

−   
   
    
 −   

− −    
        − 

 
 

0

0

sin( )

sin( )

r

m

G

T





 
 
 
  

  (2.41) 

From (2.41) it can be seen that, at the linearized operating point (at steady state) the 

magnetic torque is 

 
0 0sin( )t mT T =   (2.42) 

and referred to the high-speed rotor side: 

 0

0

t

th

r

T
T

G
= .  (2.43) 

From (2.42) we can define the following expression for steady state load angle 
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 1 0

0 sin ( )t

m

T

T
 −=   (2.44) 

The matrices on the second line of (2.41) account for the linearization around the 

operating point 
0 0 0( , , )h l    that do not have to be (0,0,0) at the initial simulation 

condition.  This is a good starting point for designing a linear controller, but care must be 

taken when applying it to the non-linear magnetic gear system.   

As we saw in Figure 1.4, there is a range of load angles where the transmitted 

torque is linear.  In this region, control laws based on linearized dynamics can work, but a 

few things must be considered.  The steady state load angle, 0 , around which the 

dynamics are linearized must match the load angle at which the system is operating. 

Linearization is only accurate at the point it is linearized and a small deviation around it.  

How large that deviation can be and still provide a good approximation depends on how 

stiff the coupling is. If the magnetic gear is operating in the linear region and there is a 

significant load increase, the controller will not be responding accurately to the system if 

the load angle, 0 , is not updated in real time.  Figure 2.3 shows an updated state-flow 

diagram for the linearized magnetic gear dynamics given by (2.34). 
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Figure 2.3 State flow diagram for linearized magnetic gear dynamics 

 

2.4 Transfer Function Development 

 

Using the model that is linearized around 0 , we can solve for the HSR speed as a 

function of generator torque (input transfer function), and the response for HSR speed as 

a function of load torque (load transfer function), by first taking the Laplace transforms 

of (2.36), (2.38) and (2.39).  In this section, , , , andl h l gT T   are all functions of s, 

though for notation purposes it is not explicitly stated. If we assume initial conditions are 

0 0 0( , , )h l   , the Laplace transforms are 

 0 0 0( ) sin( )l m m

l l

l l l

T K T
s

J J J
    − = − − −   (2.45) 

 0 0 0( ) sin( )
gm m

h h

h r h h r

TK T
s

J G J J G
    − = − − +   (2.46) 

 
0 0 0( ) ( )l l l h h hs n p     − = − − −   (2.47) 
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Solving (2.47) for   gives 

 0 0 0( ) ( )l l l h h hn p

s s

    


− − −
= + .  (2.48) 

If we substitute (2.42) into (2.45) and (2.46) then we can write 

 0

0 0( )l m t

l l

l l l

T K T
s

J J J
   − = − − −   (2.49) 

 0

0 0( )
gm t

h h

h r h h r

TK T
s

J G J J G
   − = − − + .  (2.50) 

Substituting (2.48) into (2.49) and (2.50) gives 

0 0 0 0 0

0

( ) ( )
( )l m l l l h h h m t

l l

l l l l

T K n p K s T
s

J J s J s J

     
 

− − − −
− = − − −   (2.51) 

0 0 0 0 0

0

( ) ( )
( )

gm l l l h h h m t

h h

h r h r h h r

TK n p K s T
s

J G s J G s J J G

     
 

− − − −
− = + − +   (2.52) 

From here we can solve (2.51) for l  

0 0 0 0 0

2

( ) ( ( ))l m h h l m l l m h h t

l

l m l

sT K p sJ K n K p s sT

s J K n

    


+ + + − + − −
=

+
  (2.53) 

which can also be written as 

0 0 0 0 0

2 2

( ) ( ( ))
( )l m h l m l l m h h t

l h

l m l l m l

sT K p sJ K n K p s sT

s J K n s J K n

   
 

+ + − + − −
= +

+ +
  (2.54) 

Now, taking the Laplace transform of (2.15) and substituting into (2.54) simplifies the 

expression for l  further 

 0 0 0

2 2

( )
( )l m h l l m t

l h

l m l l m l

sT K p sJ s K T

s J K n s J K n

 
 

+ + −
= +

+ +
.  (2.55) 



27 

 

The first term in (2.55) is known as the zero-state response. The second term is known as 

the zero-input response [29]. Likewise, we can solve (2.52) for
h and rearrange to form 

the zero-state and zero-input equations for the HSR speed 

 0 0 0

2 2

( )m l l r g t h r h m

h

h r m h h r m h

K n sG T s T J G sK

s J G K p s J G K p

  


− + −
= +

+ +
  (2.56) 

From here we could cross substitute  (2.55) and (2.56) to express (2.55) only in terms of 

l and (2.56) only in terms of
h . But to simplify the analysis in the frequency domain 

we will proceed from here assuming 0 0 0( , , ) 0h l   = . This allows us to rewrite (2.45)-

(2.47) as: 

 l m

l

l l

T K
s

J J
 = −   (2.57) 

 
gm

h

h r h

TK
s

J G J
 = −   (2.58) 

 
l l h hs n p  = −   (2.59) 

Substituting (2.59) into (2.57) and (2.58) gives 

 l m l l h h

l

l l

T K n p
s

J J s

 


−
= −    (2.60) 

 
gm l l h h

h

h r h

TK n p
s

J G s J

 


−
=  −   (2.61) 

From here we can solve (2.60) for l  

 
2

l m h h

l

l m l

sT K p

s J K n




+
=

+
  (2.62) 
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Then, setting 0gT =  and substituting (2.62) into (2.61) gives 

 
2

gm h h m l l m h h

h

h r h r hl m l

TK p K n sT K p
s

sJ G sJ G Js J K n

 


− +
= +  −

+
  (2.63) 

 

Grouping
h terms

2 2 2 2

2 2

( ) ( )
( )

( ) ( )

h r l m l m h l m l m l h l m l

h

h r l m l h r l m l

s J G s J K n K p s J K n K n p sT K n

sJ G s J K n sJ G s J K n


+ + + −
=

+ +
 (2.64) 

Simplifying 

2 2 2( ) ( )

l m l

h

h r l m l m h l m l m l m h

sT K n

s J G s J K n K p s J K n K n K p
 =

+ + + −
  (2.65) 

Simplifying further 

 
2 2 2( )

l m l

h

h r l m l m h l

sT K n

s J G s J K n s K p J
 =

+ +
  (2.66) 

From here, we can see a pole-zero cancellation and the load transfer function is 

 
0

2( )
g

m l

h l

load T
m l m hl

h r

l r h

K n

J
H

K n K pT
sJ G s

J G J


=

=

+ +

  (2.67) 

this can be simplified further if we define [20] 

 m l

a

l

K n

J
 =   (2.68) 

 m l m h

r

l r h

K n K p

J G J
 = +   (2.69) 

then (2.67) becomes 
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2

2 20 ( )g

h a

load T
l h r r

H
T sJ G s

 

=
=

+
  (2.70) 

where 
a  and 

r  are the anti-resonant and resonant frequencies, respectively.  

To solve for the input transfer function we set Tl=0, in (2.62) and substitute it into (2.61), 

which gives 

 
2

gm l m h h m h h

h

h r h r hl m l

TK n K p K p
s

sJ G sJ G Js J K n

 
 =  − −

+
  (2.71) 

Grouping 
h  terms 

2 2 2

2

( ) ( )
( )

( )

gh r l m l m h l m l m l m h

h

hh r l m l

Ts J G s J K n K p s J K n K n K p

JsJ G s J K n


+ + + −
 = −

+
  (2.72) 

Simplifying 

2

2 2 2

( )

( ) ( )

g h r l m l

h

h h r l m l m h l m l m l m h

T sJ G s J K n

J s J G s J K n K p s J K n K n K p


+
= − 

+ + + −
  (2.73) 

Canceling the common factors of s in the numerator and denominator as follows, 

 
2

2

( )

( ( ) )

h r l m l

g h r l m l m h l

G s J K n

T s J G s J K n K p J

 +
= −

+ +
  (2.74) 

is also referred to as a pole-zero cancellation.  The input transfer function then simplifies 

to 

 

2

0
2

( )

( )
l

m l

h l

input T
m l m hg

h

l h r

K n
s

J
H

K n K pT
sJ s

J J G


=

+

= −

+ +

.  (2.75) 

This can be simplified further if we substitute (2.68) and (2.69) into (2.75) 
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2 2

2 20 ( )l

h a

input T
g h r

s
H

T sJ s

 

=

+
=

+
.  (2.76) 

If 0 0o = , 

 147.8 /mK Nm rad= .  (2.77) 

Using this and the values from Table 2.1, (2.68) and (2.69) are  

 
51.9 /

495.6

a rad s

rpm

 =

=
  (2.78) 

and 

 
73.4 /

701

r rad s

rpm

 =

=
  (2.79) 

The bode plot for the input transfer function (2.76) is shown in Figure 2.4, which 

shows both the resonant and anti-resonant frequencies for 0 0o = . The bode plot for the 

load transfer function, equation (2.70), is shown in Figure 2.5. 
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Figure 2.4. Bode plot for input transfer function (2.76) when 

o

o
0 =  

 



32 

 

 
Figure 2.5. Bode plot for load transfer function, equation(2.70), when

o

o
0 =  

The pole-zero plot for the input transfer function, when 0 0o = is shown in Figure 2.6; 

and for the load transfer function, Figure 2.7. 
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Figure 2.6. Pole-zero plot for input transfer function (2.76) when 

o

o
0 =  

 
Figure 2.7. Pole-zero plot for load transfer function (2.70) when 

o

o
0 =  

 

The open loop poles from the pole-zero plots in Figure 2.6 and Figure 2.7 are 
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0

0 73.5

0 73.5

s

s i

s i

=

= +

= −

  (2.80) 

As 
mK  is a function of load angle, the anti and resonant frequencies shift with load angle. 

This is shown in Figure 2.8. The poles and zeros are also a function of load angle.  Pole-

zero plots for 00 90   are shown in Figure 2.9 and Figure 2.10, for the input and 

load transfer functions respectively. 

 
Figure 2.8. Antiresonant and resonant frequencies as a function of load angle 
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Figure 2.9. Pole-zero plot for input transfer function (2.76) as a function of load angle 

 
Figure 2.10. Pole-zero plot for load transfer function (2.70) as a function of load 

angle 

 

In open loop, without any feedback control, the system is marginally stable, undamped, 

with all poles and zeros on the complex axis, including one oscillator pole at the origin. 
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As the load angle approaches the pullout angle of 0 90o =  all the poles (and zeros in the 

case of the input transfer function) converge to the origin; and the dynamics become 

purely oscillatory. While the inclusion of damping terms would impact the pole-zero 

locations to a degree, it was deemed insignificant after the evaluation of the magnetic 

gear damping parameters presented in the next section.  

2.5 Finite Element Modeling to Determine Damping Parameters 

 

At the time this thesis was written, the damping parameters for the Halbach 

magnetic gear were not available.  In order to justify the decision to exclude damping 

from the magnetic gear model used in this thesis, damping parameters were assessed, 

using finite element analysis (FEA) data available for a different coaxial magnetic gear 

produced in the laboratory. The parameters for the coaxial magnetic gear can be found in 

Table 2.3. In this design, the cage rotor is kept fixed, making the outer PM rotor the low 

speed rotor with 40lp = pole pairs.  The inner PM rotor is the high-speed rotor, with 

6hp =  pole pairs. The gear ratio, /r l hG p p= −  is negative because the outer and inner 

PM rotors spin in opposite directions. 
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Table 2.3. Magnetic Gear Parameters 

Parameter Value Units 

mT  1702 N·m 

rG  -6.67 - 

hp  6 - 

lp  40 - 

hJ  0.22 kg·m2 

lJ  0.51 kg·m2 

In order to evaluate the damping parameters for the inner and outer rotors, 

simulations using FEA were conducted in JMAG to produce data on power loss vs. rotor 

speed for each of the rotors. In one set of simulations, the inner rotor was kept fixed with 

the cage rotor and the outer rotor was rotated at varying electrical frequencies.  The rotor 

was kept at each frequency until steady state power loss data was collected.  The steady 

state power loss values were averaged at each frequency (  Hzf ) and plotted against 

rotor speed (ω [rad/s]), which was calculated from frequency using 

 
40 f

p


 =   (2.81) 

 where p is the number of pole pairs. The relationship between power loss and rotor speed 

can be given by 

 [Nm rad/s]P T=    (2.82) 

noting that  

  T B Nm=   (2.83) 

where B is the damping coefficient with units of  Nm s/rad . Substituting (2.83) into 

(2.82); and solving for B gives 
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  
2

Nm s/rad
P

B


=    (2.84) 

 this shows us that we can solve for B by calculating the slope of a second-degree 

polynomial fit to the power loss vs. rotor speed curve. The same procedure was repeated 

for the inner rotor, holding the outer rotor fixed.  The resulting damping parameters were 

  0.577 Nm s/radhB =    (2.85) 

  0.0316 Nm s/radLB =  .  (2.86) 

It is important to note that this method of approximating the damping coefficient 

is going to be less accurate if the polynomial that best fits the data has significant first 

degree and/or constant terms.  In this case, those terms would be 3-5 orders of magnitude 

smaller, and could be considered negligible. Figure 2.11 - Figure 2.12 show plots of 

power loss as a function of outer rotor and inner rotor speed, respectively. Figure 2.13 - 

Figure 2.14 compare FEA and state space simulated outer rotor torque over shorter and 
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longer time intervals (when the outer rotor damping is 0.0316 [Nms/rad]. It is clear that 

the damping is negligible. 

 
Figure 2.11. Outer rotor power loss as a function of rotor speed 
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Figure 2.12. Inner rotor power loss as a function of rotor speed 

 

 

Figure 2.13. Outer rotor torque when BL =0.0316 [Nms/rad], 1 s time interval 
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Figure 2.14. Outer rotor torque when BL =0.0316 [Nms/rad], 0.2 s time interval 

  



42 

 

3 State Space Controller Design – Full State Feedback 

 

The full state space model, when 0 0o = , is given by: 

 

 

 

m 0

m 0

cos
0 0 1

0

cos 1
0 0 0

0
00

h r

hh h

l l g l

ll

h l

T

J G
J

T
T T

JJ

p n



 


 

 

 
   

−     
        −      = + + 
        
          

−   

  (3.1) 

which is a state equation of the form 

 
lu d+u lx = Ax + B B .  (3.2) 

It is assumed that only the HSR speed is the plant output, therefore the output, y, is given 

by 

  1 0 0

h

l







 
 

=
 
  

y   (3.3) 

which is an output equation of the form 

 y = Cx .  (3.4) 

We can then individually define our states 

  
T

h l  =x   (3.5) 

state matrix 
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 

 

m 0

m 0

cos
0 0

cos
0 0

0

h r

l

h l

T

J G

T

J

p n





 
 
 
 −
 =
 
 
− 

A   (3.6) 

input matrix 

 
1

0 0

T

hJ

 
= − 
 

uB   (3.7) 

input 

 gu T=   (3.8) 

disturbance matrix 

 
1

0 0

T

l

lJ

 
=  
 

B   (3.9) 

disturbance input 

 l ld T=   (3.10) 

and output matrix 

  1 0 0=C .  (3.11) 

The first step in designing state feedback control is evaluating whether the 

matrices we have selected for the controller are fully controllable by evaluating the rank 

of 

 2 1... .nB AB A B A B− =  OC   (3.12) 
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Substituting (3.6)-(3.7) into (3.12) and evaluating using parameters from Table 2.1, the 

controllability matrix when the generator torque is the input is 

 

4

4

34.5 0 9.3 10

0 0 1.64 10

0 103.4 0

x

x

 −
 

= − 
  

OC   (3.13) 

By swapping rows, multiplying through by constants and adding rows in (3.13) together, 

the reduced row echelon form is 

 

1 0 0

0 1 0 .

0 0 1

 
 

=
 
  

OC   (3.14) 

This has a rank of 3, which is equal to the size of the A matrix. Therefore, the state space 

model as we have defined it is fully state controllable, at least when there is no load.  

When the load angle is at the peak pullout value of 0 90o = , the controllability matrix, in 

reduced row echelon form is 

 
12

1 0 0

0 1 0 .

0 0 1 10x −

 
 

=
 
 − 

OC   (3.15) 

The bottom row is effectively zeros, which means the rank of the controllability matrix at 

the maximum load the magnetic gear can handle is 2.  This is less than the size of the A 

matrix, which means the system is no longer fully state controllable. For scenarios where 

the system is fully state controllable, the following state feedback control development 

was guided by examples from [30]. The control law for full state feedback control is 

 =u -Kx   (3.16) 
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where K is a vector of gains for each state in the state space model 

 

h

h l lK K K  







 
 

=     
  

u - .  (3.17) 

Substituting (3.16) into (3.2) gives 

 
ld− +u lx = Ax B Kx B .  (3.18) 

Combining terms gives the state equation with full state feedback 

 ( ) ld− +u lx = A B K x B .  (3.19) 

The state flow diagram for the magnetic gear state space model defined in (3.4) and 

(3.19) with full state feedback control is given in Figure 3.1. An alternative presentation 

of the state flow detailing the signals and routing is in Figure 3.2. 

 
Figure 3.1. Full state feedback control block diagram 
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Figure 3.2. Full state feedback control, linearized dynamics 

 

The closed loop state matrix is 

 0 0

0

h l m

h h h r h

m

l

h l

KK K K

J J J G J

K

J

p n

 
 

+ 
 
 −

− =    
 
 − 

u
A B K .  (3.20) 

The closed loop poles are the roots of the characteristic polynomial for the closed-loop 

system given by 

 ( )CL s = − − uI A B K .  (3.21) 

Solving (3.21) using Matlab, the characteristic polynomial is 

3 2 ( ) ( )
hh m h m l m h l m l h

cl

h r h l h l h l h

K pK K p K n K K n K K p
s s s

J G J J J J J J J

   = − + + + − + .  (3.22) 
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Typically, poles are selected based on the desired closed-loop system performance. 

The ideal poles can be multiplied to produce a polynomial equation that is compared to 

the characteristic polynomial (3.22) [6].  From there it may be straightforward to see what 

the individual state feedback gain terms need to be in order to have the polynomials 

match.  If it is not straightforward, place or acker commands can be used in Matlab to 

generate the gains needed to achieve the desired closed loop poles. 

3.1 Pole Placement Design  

 

For this closed-loop system, initially a second order dominant pole approximation 

[12] will be used to determine pole placement. With this method, ideal pole locations for 

a third order system are selected such that the characteristic equation factors into one real 

pole, and two complex poles. The real pole is chosen far enough to the left of the 

complex poles in the pole-zero plane that the dominant complex poles determine the 

system response. The zero must also be moved far enough to the left of the complex 

poles so that it does not affect system performance. A common criteria [12] for selecting 

a dominant complex pole pair is the following 

 
2

1,2 1r rs j  = −  −   (3.23) 

where  is the desired damping ratio and 
r  is the resonant or natural frequency.  Where 

peak overshoot, OS, is related to damping by 

 
2/ 1

OS e
 − −

= .  (3.24) 
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Ideally, we would like our overshoot to be 0, but a balance must be struck between 

acceptable overshoot and acceptable control action, among other things. The pole 

placement design approach often requires some trial and error. If we select a damping 

ratio of 0.6 and substitute (2.79) into (3.23) our dominant poles are 

 1,2 44 58.72s i= −  .  (3.25) 

When we look at setting the real pole further to the left, we are comparing it to the real 

part of the complex pole. If we select the real pole to be roughly twice the value of the 

real part of the complex poles we get 

 
3 88s = − .  (3.26) 

If we place those gains using the Matlab ‘place’ command as follows 

 
u

P=[-88 -44+58.7i -44-58.7i]

K= [A,B ,P]place
  (3.27) 

with 
0 0 = , this gives 

 

5

0.08

75

h

l

K

K

K







= −

=

=

  (3.28) 

Pole-zero plots using the gains in (3.28), with 0 0o = , is shown in Figure 3.3 

andFigure 3.4. In Figure 3.3, we can see that the closed-loop zero is orders of magnitude 

farther to the left of the closed-loop poles, indicating it should not have an impact on the 

dynamics. In Figure 3.4 we can see that the poles are placed where we wanted them. To 

see how the poles shift within the range of operating load angle, a pole-zero plot was 

created (Figure 3.5 and Figure 3.6) where the load angle was swept over the interval 
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00 90   for the linear model. Figure 3.6 shows that as the load angle increases from 

0 to roughly 64 65o−  (132-134 Nm of load torque (2.8)), the complex poles are dominant 

but decreasingly so.  In this range, the real pole and complex poles move toward each 

other, the real pole has increasing influence over the complex and damping increases.  

After 65o , the real pole becomes dominant and the complex poles move further to the 

left. As we saw with the open-loop poles, as the load angle approaches the pullout value 

of 0 90o = the real pole converges to the origin.  Approaching this angle, we would 

expect to see more oscillatory behavior before the system becomes unstable. 

 
Figure 3.3. Pole-zero plot for (3.25)-(3.26), when 

o

o
0 = . 
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Figure 3.4. Pole-zero plot for (3.25)-(3.26), when 

o

o
0 = , detailed view. 

 

 
Figure 3.5. Pole-zero plot for (3.25)-(3.26) with load angle sweep. 
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Figure 3.6. Pole-zero plot for (3.25)-(3.26) with load angle sweep,  detailed view. 

 

Using the linearized dynamic Simulink model shown in Figure 3.2, a simulation 

was performed using a starting load torque of 0 Nm with a 10 Nm step increase at  

t = 1.5 s. The results can be seen in Figure 3.7 (a)-(d). A second simulation was 

performed using a starting load torque of 140 Nm with a 5 Nm step increase at t = 1.5 s. 

The results from the second simulation are shown in Figure 3.8 (a)-(d). Comparing the 

results of both simulations, the overshoot decreases as the load torque approaches the 

pullout torque of 147.8mT =  Nm. This is a result of the real system pole becoming more 

dominant than the complex conjugate poles, as we saw in Figure 3.6. These results are 

useful for verifying the pole placement design, for providing a starting point to discuss 

how accurate linearization can be when the real system is nonlinear, and for determining 

what the boundaries of that accuracy might be.   
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(a) 

 
(b) 

(c)  (d)  
Figure 3.7. Transient plot showing linear system states - load angle (a), torque (b), rotor speeds (c), load 

speed (d) - following a step change in load torque, Tl, from 0-10 Nm at t = 1.5s. 
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(a) 

 
(b) 

(c)  (d)  

Figure 3.8. Transient plot showing linear system states - load angle (a), torque (b), rotor speeds (c), load 

speed (d) - following a step change in load torque, Tl, from 140-145 Nm at t = 1.5s. 

 

 One of the most useful outcomes from the pole placement design was the 

observation that the real pole becomes more dominant as the load angle increases, 

completely damping the overshoot as the load angle approaches the pullout value.  If 

there is no load angle overshoot, it may be possible to transmit up to the maximum rated 

torque through the gear.  We have verified that this works when the system is linearized.  

Now we need to compare these results to the non-linear system, to see whether the load 

angle overshoot is damped when the system is non-linear.  The simulation that produced 
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the results in Figure 3.8 ( 140 145lT = −  Nm at t = 1.5s) was repeated for the non-linear 

system shown in Figure 3.9. The starting load angle for both the linear and non-linear 

simulations was 0 71.3o = . The linear and non-linear results are compared in Figure 

3.10. 

 
Figure 3.9. Full state feedback control, non-linear dynamics. 

  

 It is clear from the plots in Figure 3.10 that the overshoot is damped for both the 

linear and non-linear systems when the load torque is approaching the pullout value. 

What is also clear is that the settling time is faster for the transient linear states, and there 

is steady state error in the linear response to a 5 Nm step change in load torque. Both the 

linear and non-linear simulations started with the same steady state load angle and load 

torque values.  A step change in load torque of 5lT =  Nm was enough to cause an error 

in the linear estimate of the non-linear states.  This is because the linear controller isn’t 

being updated with a new linearization point when the load changes; and the magnetic 
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gear is operating in the non-linear region.  The next section will take a closer look at the 

conditions in which a linear approximation of the system dynamics can be accurate when 

operation is in the non-linear region. 

 

 
(a) 

 
(b) 

(c)  (d)  

Figure 3.10. Transient plot comparing linear system states - load angle (a), high-speed rotor speed (b), low 

speed rotor speed (c), load speed (d) - following a step change in load torque, Tl, from 140-145 Nm at t = 

1.5s. 
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3.2 Linear Control of Non-linear Dynamics 

 

Before moving further in the design of a linear controller for the nonlinear 

magnetic gear it is good to look at how the accuracy changes with different amounts of 

load torque disturbance. Using (2.41) and the dynamic Simulink model shown in Figure 

3.2, Figure 3.12 and Figure 3.13 show what happens to the load angle when it is 

linearized around a stable operating point and there is a step change in load torque of 5, 

10, and 20 Nm, respectively. Figure 3.11 is a visualization of the load torque step profiles 

used for the simulations.  In the actual simulations, the load torque was increased each 

increment (5, 10 or 20 Nm) from 60 Nm and allowed to reach steady state before being 

increased again. Final values from each simulation were extracted and used to create the 

plots in Figure 3.12 and Figure 3.13. These curves are compared to the non-linear load 

angle evolution, to show how accurately the linearized controller could estimate the non-

linear dynamics if there were a step change and the load angle was not updated in the 

linearized controller.  

It is clear from the plots that the closer the load angle gets to the pullout value of 

90o , the more a step increase of 5, 10 or 20 Nm causes error in the linearized load angle 

approximations. The linearization is fairly accurate, even with 20 Nm step changes, up to 

130 Nm, or 88% of rated torque. If the load change is in 5-10 Nm increments, the 

linearization has minimal error up to 95% of rated torque. Any load torque changes 
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greater than 20 Nm will only make the load angle in the linear model less accurate 

following the increase.  This is why it is important for a linear controller to dynamically 

update the load angle with load changes in the system. 

 
Figure 3.11. Step torque profiles for Figure 3.12 and 

Figure 3.13 

 

 

 
Figure 3.12. Linearized load angle responses to step changes in load torque 
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Figure 3.13. Linearized load angle responses to step changes in load torque, detailed view. 
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4 Full Order Observer – State Feedback Control 

 

When designing state feedback controllers for physical systems it is important to 

keep in mind which states can be physically measured and which can be measured with 

the accuracy required.  It may be too costly or physically impossible to accurately and/or 

reliably measure all of the states needed for feedback control [31].  In these situations, an 

observer is useful because it can provide accurate estimates of the states that cannot be 

directly measured. While state observers are discussed in most controls texts, the 

following explanation and development of the full order (FO) observer equations is based 

on information in [29-31].  

The observed or estimated states are provided through a replica of the state space 

model of the system being controlled, which takes in the physical system inputs and 

outputs and replicates the state vector. The estimated state vector, denoted x̂ , contains all 

the states that are in the system state vector. This is what makes the observer full order. 

The estimated state vector is scaled with the state feedback gain vector, K, defined in 

(3.28), to modify the input to the system 

 ˆu = −Kx   (4.1) 

Because this feedback structure utilizes estimated states to influence the physical input to 

a system there must be a way to ensure the estimates are accurate. This is achieved by 

comparing the outputs of the system, y , and observer, ŷ ; and creating a feedback signal to 

the observer with gain  

 ˆ( )−L y y   (4.2) 
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The observer state equation can then be defined as 

 ˆ ˆˆ ˆ ˆ( )u= + + −
u

x Ax B L y y   (4.3) 

where if we note 

 ˆˆ ˆ=y Cx   (4.4) 

Then substituting (3.4) and (4.4) into (4.3) yields 

 ˆ ˆˆˆ ˆ ˆ( )u= + + −
u

x Ax B LC x x   (4.5) 

Where it is assumed that ˆ=C C , ˆ=A A , and ˆ
u u

B = B , substituting (4.1) into (4.5) and 

grouping state vector terms gives 

 ˆ ˆ ˆ( )= − − +
u

x A LC x B Kx LCx   (4.6) 

this simplifies to 

 ˆ ˆ( )= − − +
u

x A LC B K x LCx .  (4.7) 

If (4.1) replaces (3.16), in (3.19), the state feedback equation for the system becomes 

 ˆ
ld− +u lx = Ax B Kx B   (4.8) 

Combining (4.7) and (4.8), the state equation for combined system and observer states is 

 
ˆ 0ˆ

ld
  −     

= +       − −      

u l

u

x A B K x B

LC A LC B K xx
  (4.9) 

A state flow diagram of (4.9) is shown in Figure 4.1. 
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Figure 4.1. Magnetic gear state flow diagram, linear system, with observer state feedback 

control. 

 

If the linear observer is applied to the nonlinear system, which will be the case in 

this section, the observer dynamics are defined by the second row in (4.9). The plant 

dynamics are defined by (2.18), (2.19) and (2.13). The flow diagram for the nonlinear 

system with full order observer is shown in Figure 4.2. 
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Figure 4.2. State flow diagram for the nonlinear system with observer state 

feedback control. 

 

Equation (4.9) can be further simplified if we replace the full observer state vector with 

the estimate error in our state space model.  The estimated error is defined as 

 ˆ( )e = −x x .  (4.10) 

Taking the derivative and substituting in (4.8) and (4.7) gives 

 ˆ ˆ( ) ld− − − − + +u u le = Ax B Kx A LC B K x LCx B   (4.11) 

which simplifies to 

 ( ) ld− + le = A LC e B   (4.12) 

Replacing x̂  with (4.12), (4.9) becomes [6] 
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0

ld
−     

= +     
−     

u

l

x A B K x
B

e A LC e
  (4.13) 

The benefit of this state equation is that it separates the feedback gains, K, from the 

observer gains, L. This separation allows the poles of each to be placed independently, 

provided all states are controllable and observable. The gain vector, L, is typically 

selected so that the poles of A-LC are 2-5 times faster (further to the left) than the system 

poles with state feedback [31].  This is done to ensure the estimate error, e, converges to 

0 as t →  quickly enough. Before doing this, we must verify that the state observer 

model we have defined is fully state observable. To determine observability, the rank of 

the observability matrix (4.14) is compared to the rank, n, of the A matrix. 

 2 1... n− =  bO C CA CA CA   (4.14) 

For the matrices defined in (3.6) and (3.11), equation (4.14) is evaluated as 

 
3 4

1 0 0

0 0 899

2.7 10 1.5 10 0x x

 
 

=
 
 − 

bO   (4.15) 

With row swaps, multiplying rows by constants and adding them to other rows this 

reduces to  

 

1 0 0

0 1 0

0 0 1

 
 

=
 
  

bO .  (4.16) 

The rank of the observability matrix is 3, which is also the size of the A matrix. 

Therefore, the state observer model as it has been defined is fully state observable.  
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To help select the observer pole multiplier, load angle simulations were run using 

observer poles placed 3, 4 and 5 times the state feedback poles (3.27). The simulated 

observer load angle error for each set of conditions is shown in Figure 4.3. For all three 

simulations, the initial condition for the observer load angle is 0 0o = ; and the initial 

load angle for the system is 0 1.94o = . Using (2.44), this corresponds to 0 5lT =  Nm of 

steady state load torque.  

 
Figure 4.3. Observer load angle error for observer poles placed 3, 4- and 5-times state feedback poles 

 

It is clear from Figure 4.3 that increasing the pole placement multiplier decreases the 

settling time. A multiplier of 5 is not that much faster than 4, so we will choose 4 to 

reduce control effort. The observer poles are the roots of  

 ( )FO s = − −I A LC   (4.17) 
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Since we know we want to place them 4 times faster than the state feedback poles defined 

by (3.27), we can solve for the corresponding gains using the Matlab place command as 

follows 

 

=4

=[-352 -176+235i -176-235i]

= [ , , ]place

obs

obs

u obs

P P

P

L A B P

  (4.18) 

which yields 

 

704

1858

227

h

l

L

L

L







=

=

=

  (4.19) 

Figure 4.4 (a)-(c) and Figure 4.5 (a)-(b) show the linear system and linear full order 

observer responses of each state when the initial load angles are different. The load 

torque input to the system at the start of the simulation is 0 Nm, with an initial load angle 

(prior to the simulation start) of 0 1.94o = (5 Nm of load torque).  The initial load angle 

for the observer is 0 0o = . The purpose of this simulation is to see how well the observer 

can resolve differences in initial conditions. 



66 

 

 
(a) 

 

(b) 

 

(c) 

Figure 4.4. Transient plot showing non-linear system and full order observer states - load angle (a), torque 

(b), load angle speed (c) – when the initial load angle is 
0 1.94

o
 =  for the system and 

0 0
o

 =  deg for 

the observer 
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(a) 

 

(b) 

Figure 4.5. Transient plot showing non-linear system and full order observer states - HSR speed (a), LSR 

speed (b)– when the initial load angle is 
0 1.94

o
 = for the system and 

0 0
o

 = for the observer 

 

It is clear from the plots that the selected observer gains quickly drive the estimation error 

to 0. The HSR speed shows the least amount of estimation error because that is the only 

state we can measure; hence it is the only one we are comparing to the output of the 

observer. Figure 4.6 (a)-(d) show the system and observer states when there is a 10 Nm 

step change in load torque from 0 Nm steady state.  The initial load angles for the system 

and observer are 
0 0o = .  
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(a) 

 
(b) 

 

(c) 

 
(d) 

Figure 4.6. Transient plot showing nonlinear system and observer states - load angle (a), torque (b), HSR 

speed (c), LSR speed (d) - following a step change in load torque, Tl from 0-10 Nm at t = 1.5s. 

 

It is clear from Figure 4.6 (a) and (d) that the full order observer estimates for load 

angle and LSR speed have steady state error.  With only one measured signal (HSR 

speed) and the generator torque as inputs, the observer does not accurately account for 

the effect of load torque changes on the system. It is possible that the steady state error 

can be driven to zero with the addition of integral control and a reference input, r, for 
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defining error.  Since the focus of this control scheme is load angle control, one potential 

candidate for the reference input is load angle speed.   

4.1 Load Angle Speed Control 

 

If we hypothesize that most of the load torque disturbances that lead to pole 

slipping would cause the load angle to change rapidly in the transient, we can set a fixed 

reference load angle speed to 0. We can then compare the load angle speed estimated 

from the observer to the reference; and integrate that error with an integral gain, Ki.  The 

flow diagram for this non-linear system with full order observer plus integral control and 

load angle speed regulation [6] is shown in Figure 4.7. 

 
Figure 4.7. Magnetic gear drivetrain with full order observer and regulator with integral 

control. 
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Figure 4.8 shows the full order observer estimate of the load angle, with load angle speed 

regulation, for different values of the integral gain, Ki. The starting load angle for the 

simulations was 
0 0o = , the initial load torque was 0lT =  Nm and there was a load 

disturbance step increase of 10 Nm at t = 0.4s.  It is clear from the plots that varying the 

integral gain for load angle speed error regulation only impacts the transient evolution of 

the load angle.  The steady state value of the load angle is not impacted.  

 

(a) 
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(b) 
Figure 4.8. Transient plot showing full order observer estimated load angle for varying values of integral 

gain, Ki (a), and detailed view (b). 

 

Similarly, Figure 4.9 shows the evolution of the non-linear system load angle for 

different values of 
iK . Again, the steady state value of load angle is not affected by the 

addition of load angle speed regulation. 
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Figure 4.9. Transient plot showing non-linear system load angle for 

varying values of integral gain, Ki 

 

 

To bring the focus back to the original issue, Figure 4.10 compares the evolution 

of the non-linear system load angle when 0.5iK = , to the evolution of the full order 

estimated load angle for varying values of 
iK . It is clear that the addition of the load 

angle speed regulation does not fix the steady state error in the observer estimated load 

angle. 
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Figure 4.10. Transient plot comparing non-linear system load angle and 

estimated load angle for varying values of integral gain, Ki. 

 

Figure 4.11 compares the transient plots of load angle speed from the non-linear system 

and from the reduced order observer with load angle speed regulation ( _
ˆ
speed I
 ) (Figure 

4.7) for a step change in load torque from 0lT =  Nm  to 10lT =  Nm.  The initial load 

angles in both the magnetic gear model and the full order observer were set to 
0 0o = ; 

and an arbitrary value was selected for the integral gain, Ki = 1.5. For ease of 

differentiation, dashed lines are used to plot state estimates that closely match the 

evolution of actual states. 
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Figure 4.11. Actual and estimated load speed [rpm]. Load 

speed estimation from reduced order observer with load 

angle speed regulation (Figure 4.7). 

 

Figure 4.12 (a)-(d) compares the non-linear system states to the states estimated by the 

reduced order observer ( x̂ ) and the reduced order observer with load angle speed 

regulation ( ˆ
Ix ).  Again, it is clear from the plots that the addition of the load angle speed 

regulation does not improve the steady-state error.  It is possible that increasing the 

response time might improve the performance.  It is more likely that controlling the speed 

at which the load angle is changing does not ultimately affect the steady-state system load 

angle. This is controlled by the physical system load.  Controlling the speed at which the 

load angle is changing might not affect the steady state estimated load angle either. That 

value is hardcoded into the linearized state space matrices.  Controlling the load angle 

speed impacts the transient value of the load angle, but not the steady state value. The 

next section will look at using a reduced order observer and techniques for estimating the 

load torque disturbances.   



75 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.12. Transient plot showing nonlinear system and observer with load angle speed regulation states 

- load angle (a), torque (b), HSR speed (c), LSR speed (d) - following a step change in load torque, Tl from 

0-10 Nm at t = 1.5s. 
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5 Reduced Order Observer  

 

 One approach to accounting for the disturbance load torque input that cannot 

reliably be measured is to add it to the observer as a state that can be estimated using 

measured and observed inputs.  This idea has been explored by [8, 10, 16, 18]. If the load 

torque can be estimated with minimal error, it may be possible to then use that signal to 

counteract load angle transients and/or update the load angle in the linear controller. 

If the load torque input is changed to a state, it will be assumed that the change in load 

torque is sufficiently slow, compared to the observer dynamics, that the load torque 

derivative is 0. If initial conditions are set to 0 the model defined by (3.1) becomes 
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 
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 
 

y

  (5.1) 

One way the observer can be simplified is to remove the states that can be measured, in 

this case 
h .  The measured state will still be used as an input to the observer, but it will 

not be estimated with the others.  This creates what is known as a reduced order (RO) 

observer, constructed from the model defined in (5.1), which is of the form: 
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u

y

= +

=

x Ax B

Cx
  (5.2) 

From here the state vector is partitioned into observable, x1, and non-observable, x2, parts 

where 

 
1 2[ ]Tx=x x   (5.3) 

 1 hx =   (5.4) 

  2

T

l lT =x   (5.5) 

so that (5.2) becomes [32] 

 
1 11 12 1 1

2 21 22 2 2

x A x B
u

       
= +       

       

A

x A A x B
  (5.6) 

and 

  
1 1

1 2
2 2

y x
C C

y

   
=   

   
x

  (5.7) 

where 

 1 1C =   (5.8) 

 2 0C =   (5.9) 

 
11 0A =   (5.10) 

 
 m

12

cos
0 0

h r

T

J G

 
=  
 

A   (5.11) 

  21 0 0
T

hp= −A   (5.12) 
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 
 
 =
 
  

A   (5.13) 

 1

1

h

B
J

−
=   (5.14) 

  2 0 0 0
T

=B   (5.15) 

 

From here, the reduced order observer is constructed according to the processes 

developed in [32], [33], and [6].  

The development of a reduced order observer is like that of the full-order 

observer.  The observer is modeled on the plant, with estimated states replacing the states 

that cannot be measured, and a weighted correction factor that multiplies the difference 

between the measured and estimated outputs. The main difference is that the full-order 

observer contains all the system states, giving it an order of n. The reduced order 

observer has an order of n-m, where n is the order of the system and m is the number of 

states that can be measured.  The reduced order equations can be taken from (5.6) and 

(5.7). The equation for the measured states is given by 

 
1 11 1 12 2 1x A x B u= + +A x   (5.16) 

The equation for the unmeasured states is given by 

 2 21 1 2 22 2( )x u= + +x A B A x   (5.17) 

divided into measured (parentheses) and unmeasured parts; and noting that A11 = 0 and B2 

= 0, (5.16)-(5.17) become 
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1 12 2 1x B u= +A x   (5.18) 

 2 21 1 22 2x= +x A A x   (5.19) 

Since the output only contains the measured states the output equation for the system is 

 

1

1 1

1

y y

C x

x

=

=

=

  (5.20) 

The observer state vector is given by 

  1 2

T
x=x x   (5.21) 

This shows that the measured states are part of the reduced order observer but are fed in 

as known variables. While [32] chose to define an observer equation for the measured 

states, it is simply a duplicate of (5.16), and will be omitted here. From (5.19), the 

observer equation with an output error corrective term added is 

 
2 21 1 22 2 ( )rx y y= + + −x A A x L   (5.22) 

where the tilde sign, ~, indicates a reduced order estimated parameter; and Lr is the 

corrective output error gain matrix. From (5.3), and (5.7)-(5.9) 

   1

1

1

y

x

x

=

 
=  

 

=

2

Cx

0
x

  (5.23) 

similarly, replacing (5.3) with (5.21) 
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   1
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1

1 0

y
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x

=

 
=  

 

=

Cx

x
 . (5.24) 

If we define the plant and observer output to be the same, then only the measured 

states will be reflected in the output and the error will always be 0. A different way to 

define the observer output equation was set forth by [33].  If we assume that having 

access to the measurements in y means we also have access to their derivatives then from 

(5.20) 

 1y x=   (5.25) 

and substituting (5.18) into (5.25) yields 

 
12 2 1y B u= +A x   (5.26) 

Rearranging so that measured terms are on one side and unmeasured terms are on the 

other 

 
1 12 2y B u− = A x   (5.27) 

If we treat the measured terms as the plant output and the unmeasured terms as the 

observer output, then substituting into (5.22) gives 

 
2 21 1 22 2 1 12 2( )x y B u= + + − −rx A A x L A x   (5.28) 

It was pointed out by [6, 33], that the use of the derivative of y (= 1x ) to estimate 2x can 

amplify system noise, and should be avoided. To eliminate y , first expand and rearrange 

(5.28), which gives 

 
2 1 22 12 2 21( ) ( )y B u y− = − + − +r r rx L L A L A x A .  (5.29) 
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Then, define a new variable 

 y= −2 rz x L   (5.30) 

and rearrange (5.30) as 

 y= +2 rx z L .  (5.31) 

Now, substitute (5.31) into (5.29), and expand and group 

 

2 1 22 12 21

1 22 22 12 12 21

22 12 22 12 21 1

( )( )

( ) [( ) ]

y B u y y

B u y y y

y B u

− = − + − + +

= − + + − − +

= − + − + −

r r r r

r r r r r

r r r r

x L L A L A z L A

L A z A L L A z L A L A

A L A z A L A L A L

 

 (5.32) 

define 

 22 12= − rF A L A   (5.33) 

 
1B= − rG L   (5.34) 

then substituting (5.33) and (5.34) into (5.32) gives 

 
21[ ]y u= + + +rz Fz A FL G . (5.35) 

We can simplify further by defining 

 
21= + rH A FL   (5.36) 

and substituting (5.36) into (5.35) gives 

 u y= + +z Fz G H .  (5.37) 

The partitioned observer error matrix equation can be defined as 

 
1 11

2 22

x xe −  
= − =    −   

e x x
x xe

  (5.38) 
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but since 1x is measured not observed 

 1 1x x=   (5.39) 

thus 

 1 0e =   (5.40) 

and the only error we are concerned with is 

 2 2 2= −e x x .  (5.41) 

To see how the error evolves with time, take the derivative of (5.41) 

 
2 2 2= −e x x   (5.42) 

 and substitute (5.19) and (5.28) into (5.42), which gives 

 
2 21 1 22 2 21 1 22 2 1 12 2( ) ( ( ))x x y B u= + − + + − −re A A x A A x L A x . 

 (5.43) 

Now, cancelling terms and rearranging gives 

 
2 22 2 22 2 12 2 12 2

2 22 12 2 2

( )

( )( )

= − − −

= − −

r

r

e A x A x L A x A x

e A L A x x
  (5.44) 

and substituting (5.41) into (5.44) gives 

 
2 22 12 2( )= − re A L A e .  (5.45) 

Equation (5.45) shows that the reduced order observer error dynamics can be shaped by 

selecting the Lr gain matrix.  But first it must be shown that the matrix pair (A12, A22) is 

observable. This can be determined by evaluating 

 1

12 22 12 22 12[ ( ) ]T T T T n m T

b

− −=O A A A A A   (5.46) 
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If the rank of 
bO is n-m, where n is the order of the system and m is the number of 

independent, measurable outputs, the observability condition is satisfied.   

The order of the system given in (5.6) is 4 and there is 1 measurable state.  This gives n – 

m = 3. Substituting (5.11) and (5.13) into (5.46), with values from Table 2.1, yields the 

observability test matrix 

 

4

8

4
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0 0 9 10
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x

x

x

 
 
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 
 

O   (5.47) 

with reduced row echelon form  

 

1 0 0

0 1 0

0 0 1

b

 
 

=
 
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O   (5.48) 

which has a rank of 3. Therefore, the reduced order observer poles, the roots of 

 
22 12( )RO s = − − rI A L A   (5.49) 

can be placed as needed. The reduced order observer will use the same poles as the full 

order observer, these poles are defined in  (4.18).  However, now the gains will be solved 

for using 

 
22 12( , , )T Tplace A A poles=rL   (5.50) 

which yields 
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The reduced order observer flow diagram using (5.6)-(5.15) and (5.33)-(5.36) is 

shown in Figure 5.1.   

 
Figure 5.1. Flow diagram for reduced order observer 

where 

 

0 0 0

1 0 0

0 1 0

0 0 1

 
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 =
 
 
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C   (5.51) 

 
1 
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 r

D
L

  (5.52) 

The C  and D  matrices transform the states from z back to x through the relationship 

defined in (5.30). The next question that needs to be addressed is how to incorporate the 

estimated states into the controller.   
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5.1 Reduced Order Observer - State Feedback Control 

 

We saw in Chapter 4, that if the controllability and observability conditions are 

met, the estimated states of the full order observer can be incorporated into the state 

feedback control law.  For the reduced order observer, the observability condition was 

satisfied as shown by (5.46)-(5.48).  The system controllability matrix was given in 

(3.12).  With the addition of another state to the observer, we must verify that the system 

is still controllable.  Considering (5.1), the A  and B  matrices are given by 

 

 

 

m

m

cos
0 0 0

cos 1
0 0

0 0

0 0 0 0

h r

l l

h l

T

J G

T

J J

p n





 
 
 
 −

=  
 
 
−
 
  

A   (5.53) 

 
1

0 0 0

T

hJ

 
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 

B   (5.54) 

Substituting (5.53) and (5.54) into (3.12), with load angle 
0 0o = , gives 

 
6

4.55 0 31973 0

0 0 93835 0

0 27.27 0 3.95 10

0 0 0 0

o
x

− 
 
 =
 −
 
 

C   (5.55) 

Rearranging (5.55), multiplying through by constants and adding rows gives the reduced 

row echelon form as follows 
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5

1 0 0 0

0 1 0 1.45 10

0 0 1 0

0 0 0 0

o

x

 
 

−
 =
 
 
 

C  . (5.56) 

The rank of 
oC is 3, which is less than the size of the A  matrix.  Therefore, adding the 

disturbance input to the state matrix has meant that the system is no longer fully state 

controllable.  This problem was discussed in detail by [32].  When there are disturbance 

or reference inputs to a system, there is a natural inclination to turn them into states that 

can be estimated and integrated into an observer state feedback control scheme.  

These new states are referred to as ‘metastates’ [32]; and while they can often be 

observed they cannot be controlled.  Ultimately what this means for this controller design 

is that the load torque metastate can be observed but it cannot be fed back into the system 

as part of observer state feedback control. However, the original state estimates still form 

a controllable subset that can be used for state feedback.  Figure 5.2 gives a state flow 

diagram for the nonlinear magnetic gear with linear reduced order (RO) observer. Note 

that the load torque output from the reduced order observer is terminated, not fed back 

into the system. 
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Figure 5.2. Nonlinear magnetic gear with reduced order observer state feedback. 

 

Figure 5.3 (a)-(d) show actual and estimated states when the magnetic gear is operating 

with 
0 50lT =  Nm of load torque in steady state and then there is a 10 Nm load 

disturbance at time t = 1.5s.  For ease of differentiation, dashed lines are used to plot state 

estimates that closely match the evolution of actual states. From Figure 5.3 (a) it is clear 

that the load angle offset is also a problem with the reduced order observer.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.3. Transient plot showing nonlinear system and observer states - load angle (a), torque (b), HSR 

speed (c), LSR speed (d) - following a step change in load torque, Tl from 50-60 Nm at t = 1.5s. 

 

One thing to note from Figure 5.3 (b) is, despite the error in load angle estimation, the 

reduced order observer does a good job of estimating the load torque. This could be 

useful for correcting the error in load angle estimation; and will be the focus of the next 

section. 
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5.2 Load Angle Correction 

The relationship between magnetic torque and load angle was defined for steady-state 

conditions in (2.44).  Here we can note that in steady state, 0L = , and so (2.18) 

simplifies to 

 m sin( )lT T = ,  (5.57) 

which indicates that, without damping, the load torque and magnetic torque are equal in 

steady state.  Solving (5.57) for load angle yields 

 
1sin ( )l

m

T

T
 −=   (5.58) 

We can use this relationship to approximate the load angle from the estimated load 

torque. Figure 5.4 shows a flow diagram for (5.58). 

 
Figure 5.4. Flow diagram for (5.58) 

 

Figure 5.5 shows the flow diagram for the load angle calculation in the structure of the 

reduced order observer. 
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Figure 5.5. Flow diagram for nonlinear system with reduced order observer and load angle 

calculation from estimated load torque. 

 

Figure 5.6 shows the system and calculated load angles, when using (5.58), 

following a step change in load torque from 50-60 Nm.  Figure 5.7 shows the load torque 

applied to the system to produce the plots in Figure 5.6; and the load torque estimate 

from the reduced order observer.  The calculated load angle is a good approximation of 

the system load angle, with only a small amount of error in the transient response to 

changes in load torque. This error, which appears as an almost instantaneous response to 

load torque changes compared to a slower system load angle response, is due to the fact 

that the equation for calculating the load angle (5.58) assumes that 0L = . 
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Figure 5.6. Transient plot of non-linear system 

load angle and load angle calculated from the 

reduced order estimated load torque (5.58). 

 
Figure 5.7. Transient plot of load torque applied 

to the non-linear system and load torque 

estimated by the reduced order observer. 

 

For comparison purposes, Figure 5.8 shows the system load angle, the reduced 

order estimated load angle ( ) and the load angle calculated from the reduced order 

observer estimate of the load torque ( calc
 ). Simulation conditions for system and 

observer are an initial load torque of 
0 50lT =  Nm, an initial load angle of 

0 19.78o = , 

and a 10 Nm step disturbance at t = 1.5 s.  With the restrictions this thesis has placed on 

observer design – the generator torque and high-speed rotor speeds are the only available 

inputs – the best way to dynamically estimate the system load angle is by calculating it 

from the estimated load torque. Finding a way to use the calculated load angle to 

dynamically update the reduce order observer is an objective for future research. The 

final section of this thesis will look at how well the reduced order observer can estimate 

load torque fluctuations from wind turbine data. 
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Figure 5.8. Load angle comparison from the system, reduced order observer, and 

calculated from the reduced order estimated load torque. 

 

5.3 Reduced Order Observer Estimation of Wind Torque 

 

A subset of wind data was provided by Xzeres Wind Corporation from a 10 kW 

wind turbine. The data included rotor angular speed, 
a   [rad/s] and aerodynamic power, 

P [W], from which aerodynamic torque, aT  was calculated using the following [24]: 

 [Nm]a

a

P
T


=   (5.59) 

The torque values were scaled down by a factor of 7, to accommodate the operating range 

of the magnetic gear, where the pull-out torque is 147.8mT =  Nm. The resulting torque 

values were then fed into the reduced order observer model shown in Figure 5.5. Initially, 

the starting load angle for the system and the observer was set to 
0 0o = .  A plot of the 

wind torque data and load torque estimation is shown in Figure 5.9 (a)-(b). 
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(a) 

 

(b) 

Figure 5.9. Plot of wind torque data obtained from [34] and reduced order estimated load torque (a) and 

detailed view (b), 
0

0
o

 = . 

 

It is clear that the observer is estimating the wind torque in broad trends but missing a lot 

of the content. Figure 5.10 (a)-(b) compares the load angle from the system fed from 
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wind torque data to the load angle calculated from the reduced order estimated load 

torque. 

 

(a) 

 

(b) 

Figure 5.10. Transient plot of system load angle and load angle calculated from reduced order estimated 

load torque (a) and detailed view (b), 
0

0 = . 
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For comparison purposes, the average wind torque over the 20 s shown was calculated 

and then used to calculate the average load angle using (2.44).  While this equation is for 

calculating steady-state load angle, it serves the purpose of approximation in this case. 

The average wind torque is 119 Nm, giving an average load angle of 
0 53.6o = . Figure 

5.11 (a)-(b) show the wind torque data and reduced order estimated load torque data, 

when the reduced order estimator is linearized around 
0 53.6o = . Figure 5.12 (a)-(b) 

compare the resulting system load angle and load angle calculated from the reduced order 

estimate of the load torque.  

 Comparing the detailed plots of load torque (Figure 5.9 (b) and Figure 5.11 (b)), 

updating the load angle in the observer so that it is at least somewhat more representative 

of the system load angle produces better estimation of the load torque.  While still 

missing some of the content, the load torque estimation at 
0 53.6o = does capture more 

of the dynamic movement of the wind than it did linearized at 
0 0o = .  Looking at the 

detailed load angle plots in Figure 5.10 (b) and Figure 5.12 (b), the calculated load angle 

is noisier than it was when the system was linearized around 
0 0o = , but the average 

appears to be tracking the system load angle well.  To test that theory, an averaging filter 

was applied to the calculated load torque using a fundamental frequency of 20 Hz.  The 

resulting plot in Figure 5.13 shows that the averaged load angle is far closer to the actual.  

For comparison purposes, Figure 5.14 shows the same filter applied to the calculated load 

angle, when the observer is linearized around 
0 0o = . The average is a better 

approximation of the system load angle for this linearization point as well.  This may be a 
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potential application for filters, but the estimation noise might also be resolved if the 

observer were modified so that the load angle was dynamically updated. 

 

(a) 

 

(b) 

Figure 5.11. Plot of wind torque data obtained from [34] and reduced order estimated load torque (a) and 

detailed view (b), 
0

53.6
o

 = . 
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(a) 

 

(b) 

Figure 5.12. Transient plot of system load angle and load angle calculated from reduced order estimated 

load torque (a) and detailed view (b), 
0

53.6
o

 = . 
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Figure 5.13. Transient plot of system load angle and load angle 

calculated from reduced order estimated load torque, 
0

53.6
o

 = and 20 

Hz frequency averaging filter applied 

 

 

Figure 5.14. Transient plot of system load angle and load angle calculated 

from reduced order estimated load torque, 
0

0
o

 = and 20 Hz frequency 

averaging filter applied. 
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6 Conclusions and Areas for Future Research 

The objective of this Master’s thesis was to lay the groundwork for modeling, analyzing 

and optimizing control schemes for pole-slip prevention in a magnetically geared 

drivetrain.  Systems of equations for the linear and nonlinear magnetic gear dynamics 

were developed.  The open-loop dynamics were evaluated in the frequency domain and 

frequency domain techniques were used for pole placement design in a state feedback 

compensation controller.  Linearized dynamic equations were used to build a state-space 

model of the system, the basis for a state feedback controller, full order observer and 

reduced order observer. A novel feedback regulation control structure was tested, 

utilizing load angle speed control that tracked 0 set point.  A method of estimating the 

nonlinear system load angle was developed and tested against both step changes in load 

torque and changes in load torque from wind turbine data.   

 One key next step toward continuing this research effort would be to find a way to 

feed the load torque estimate or load angle calculation back into the reduced order 

observer so that it can update in real-time with changes to the system dynamics. While 

this thesis assumed that only the high-speed rotor speed was available for measurement, it 

would be interesting to expand the state space model to a MIMO structure to see if any 

combination of states would allow the observer to accurately calculate the system load 

dynamics. Once the load angle can be monitored accurately by the state estimator, the 

next step would be to set up a pole slip detection algorithm and explore how prevention 

and recovery can be achieved with integration into the broader control system of a wind 

turbine drivetrain. 
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