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Abstract 

The abstract of the thesis of Armin Rest for the Master of Science in Physics pre

sented August 23, 1996. 

Title: Calibration of a CCD camera and correction of its images 

Charge-Coupled-Device (CCD) cameras have opened a new world in astronomy 

and other related sciences with their high quantum efficiency, stability, linearity, 

and easy handling. Nevertheless, there is still noise in raw CCD images and even 

more noise is added through the image calibration process. This makes it essential 

to know exactly how the calibration process impacts the noise level in the image. 

The properties and characteristics of the calibration frames were explored. This was 

done for bias frames, dark frames and flat-field frames at different temperatures and 

for different exposure times. 

At first, it seemed advantageous to scale down a dark frame from a high temperature 

to the temperature at which the image is taken. However, the different pixel popu

lations have different doubling temperatures. Although the main population could 

be scaled down accurately, the hot pixel populations could not. A global doubling 

temperature cannot be used to scale down dark frames taken at one temperature to 

calibrate the image taken at another temperature. 
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It was discovered that the dark count increased if the chip was exposed to light 

prior to measurements of the dark count. This increase, denoted as dark offset, is 

dependent on the time and intensity of the prior exposure of the chip to light. The 

dark offset decayes with a characteristic time constant of 50 seconds. The cause 

might be due to storage effects within chip. 

It was found that the standard procedures for image calibration did not always 

generate the best and fastest way to process an image with a high signal-to-noise 

ratio. This was shown for both master dark frames and master flat-field frames. 

In a real world example, possible night sessions using master frame calibration are 

explained. Three sessions are discussed in detail concerning the trade-offs in imaging 

time, memory requirements, calibration time, and noise level. 

An efficient method for obtaining a noise map of an image was developed, i.e., a 

method for determining how accurate single pixel values are, by approximating the 

noise in several different cases. 



CALIBRATION OF A CCD CAMERA AND CORRECTION OF 
ITS nvIAGES 

By 

ARMIN REST 

A thesis submitted in partial fulfillment of the 

requirements for the degree of 

MASTER OF SCIENCE 

lil 

PHYSICS 

Portland State University 

1996 





Acknowledgments 

I want to express my appreciation and gratitude to all the different people who have 

supported me throughout my research. I am indebted to my advisor Dr. Fabrizio 

Pinto for providing an interesting and challenging project and for all his guidance 

throughout the project. I am also grateful to Dr. Erik Bodegom and the Physics 

Department. Dr. Bodegom's unique humor, encouraging help and unforgetable 

ways of solving problems will always be remembered. I deeply appreciate the help 

of Dennis Luse; without his telescope I would not have been able to take any star 

images. I am grateful to Tom Misley for all the time and great effort he spent 

in enlightening my understanding of the English language. I am afraid the task 

was not easy. Very special thanks to my roommate and friend Thomas Herzinger 

for his patient help by solving all the problems I had related to computers. I will 

remember all the fun we had together in this year, all the way to the year 2008. I 

would also like to acknowledge the University of Portland and NASA for the support 

in acquiring of the camera. Lynn, Shawn, Tony, Sven, Thomas and a lot of other 



111 

people made the time I spent in the Physics Computer Lab a time full of laughs 

and good memories. I want to thank my family and all my friends for the love and 

friendship they have given me. I have spent one of the best times of my life here in 

Portland. Thank you! 



Contents 

Acknowledgments 

Introduction 

0 .1 History of Light Detectors in Astronomy 

0.2 Principles of a CCD Camera . . . . . . . . 

0.3 Comparison of CCD's and Other Light Detectors 

I Theoretical Background: Noise and Repeatable Pat-

terns in CCD Images 

1 Repeatable Patterns 

2 Noise in Images 

2.1 The Statistical Nature of Noise 

2.2 The Sources of Noise ..... . 

11 

1 

1 

3 

4 

8 

9 

13 

13 

15 



v 

2.3 Signal-to-Noise Ratio, ~ ........................ 16 

2.4 Image Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

2.4.1 Addition .............................. 18 

2.4.2 Subtraction ............................ 20 

2.4.3 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

2.4.4 Division .............................. 21 

2.4.5 Multiplication with a Constant ................. 23 

2.4.6 Combining Images ........................ 23 

2.5 Noise in the Calibrated Signal . . . . . . . . . . . . . . . . . . . . . . 26 

II Calibration of CCD Images 30 

3 Instruments and Methods 32 

3.1 Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

3.1.1 CCD-Device ............................ 32 

3.1.2 Mira Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

3.1.3 Lab Setup ............................. 35 

3.1.4 Telescope Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

3.2 Methods .................................. 36 

3.2.1 Measuring the Noise of an Image ................ 36 

3.2.2 Experimental Procedures in the Lab .............. 39 



4 Bias Frames 

4.1 Temperature. 

4.1.1 Bias Noise 

4.2 Stability . . . . . 

5 Dark Frames 

5.1 Exposure Time 

5.2 Dark Count Populations 

5.3 Temperature .. 

5.4 Dark Noise .. 

5.4.1 Temperature .. 

5.4.2 Exposure Time 

Vl 

40 

43 

46 

. ............... 47 

48 

........ 50 

51 

53 

55 

55 

56 

5.5 Is it Possible to Use Dark Frames Taken at Another Temperature ? . 57 

5.6 Effect of Past Images on the Dark and Bias Count . . . . . . . . . . . 62 

6 Flat-Field Frames 

6.1 When is it Necessary to Take a New Flat-Field Frame .. 

6.2 Flat-Field Targets ..................... . 

7 Master Frames 

68 

70 

..... 71 

74 

75 7 .1 Generating a Master Bias Frame . 

7.2 Generating a Master Dark Frame ................. 77 



Vll 

7 .3 Generating a Master Flat-Field Frame . . . . . . . . . . . . . . . . . 80 

8 Real World Example 85 

8.1 Comparison of the Three Night Sessions .............. 90 

8.2 Quantitative Estimation of the Noise Levels . . . . . . . . . . . . . . 91 

9 Conclusions 

Appendix 

A.I Median Combining 

A.2 Normalization in Combining feature . 

A.3 Minor Problems . . . . . . . . . . . . 

Bibliography 

98 

102 

. 102 

. 105 

. 109 

113 



List of Tables 

1 Overview of signal and noise levels in image arithmetic . . . . . . . . 24 

2 Two ways to generate a master dark frame . . . . . . . . . . . . . . . 79 

3 Two ways to generate a master flat-field frame . ......... 83 

4 Three possibilities of how a night session might look . . . . . . . . . . 88 

5 Noise levels of the night sessions . . . . . . . . . . . . . . . . . . . . . 89 



List of Figures 

1 Comparison of the quantum efficiency of CCD-device to other light 

detectors ......................... . 6 

2 Ring Nebula M-57: calibrated and uncalibrated image . ...... 28 

3 Hercules cluster M-13: calibrated and uncalibrated image . . . . . . . 29 

4 Camera head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

5 Comparison of theoretical and experimental noise of master bias frame 38 

6 Probability distribution of pixel values in a bias structure frame 42 

7 Temperature dependence of the bias offset . . . . . . . . . . . . . . . 44 

8 Typical bias frames for different temperatures . . . . . . . . . . . . . 45 

9 Temperature dependence of the bias noise . . . . . . . . . . . . . . . 46 

10 Temperature dependence of the stability and reproducibility of the 

bias offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 

11 Typical dark frame .............. 49 

12 Exposure time dependence of the dark count . . . . . . . . . . . . . . 51 



x 

13 Dark count populations . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

14 Temperature dependence and doubling temperature of the dark count 54 

15 Temperature dependence of the dark noise . . . . . . . . . . . . . . . 56 

16 Exposure time dependence of the dark noise ........ 58 

17 Doubling temperature of the first hot pixel population . . . . . . . . 61 

18 Increased dark count caused by past light image . . . . . . . . . . . . 63 

19 Decay of the dark offset after partially illuminating the chip 64 

20 Image of a laser spot on a video screen with the corresponding dark 

frame .................................... 65 

21 Decay of the dark offset past fiat-field frames . . . . . . . . . . . . . . 67 

22 Typical fiat-field frame . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

23 Noise level in master bias frames 76 

24 Comparison of the two methods for master dark frame calibration . . 80 

25 Difference of the squared noise of the two master fiat-field frame cal

ibration methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

26 Comparison of the noise in a median or mean combined master bias 

frame .................................... 104 



Introduction 

0.1 History of Light Detectors in Astronomy 

Astronomy, one of the oldest of sciences concerned with nature on the largest scale, 

is being aided by the newest developments in microelectronics, the most advanced 

technology of the very small. The advancement of knowledge in astronomical re

search was always constrained by the kinds of detectors available, therefore the his

tory of astronomy is in large part the story of a continual search for more efficient 

and more accurate ways of measuring the meager light of stars[6]. 

In the 19th century, the eye was the only 'instrument' to gather the information 

given by the telescope. The eye is a very good light detector, perfectly tailored to 

its everyday uses, but it has its limitations for astronomy. Even though its efficiency 

is comparable to some modern light-detecting devices, it responds only to a limited 

range of colors. The eye can also discern subtle differences in light intensity but 
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is a poor judge of absolute brightness. Its major disadvantage, however, is that it 

cannot store light for more than a few tenths of a second[6]. 

A big step forward was the invention of photography at the end of the 19th 

century. This invention offered such marked advantages that it quickly became 

the main detection method for astronomy. In spite of being less sensitive than the 

eye, it has the great advantage of accumulating light for a long time. This made 

it possible to measure the brightness of fainter stars. Nonetheless, there is still a 

limiting faintness beyond which an object cannot be detected on a photograph; for 

long exposures, the ever present background light from the night sky eventually 

saturates the entire emulsion. However, a further advantage is the wider range of 

sensitivity: from the ultraviolet region to the near-infrared. Over the years, several 

developments such as photo-electric systems and image intensifiers improved the 

performance of photography. 

More recently the technology of television and electronic image amplification 

have been adapted to astronomy, both with the aim of combining the accuracy and 

unlimited exposure time of the photomultiplier with the extended field of view of 

the photographic plate. Various devices of this type have been proposed and tested, 

but in the last years, Charge-Coupled-Device cameras are getting more and more 

important for astronomy[6]. 
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0.2 Principles of a CCD Camera 

Recording a pattern of light is rather like measuring the distribution of rainfall over 

a field by setting out an array of buckets before the rain and afterward moving the 

buckets on to conveyer belts to a metering station where the amount of water in 

each bucket is recorded. In a Charge-Coupled-Device (CCD) camera the 'buckets' 

are electron-collecting zones of low electric potential created below an array of elec

trodes formed on the surface of a thin wafer of semiconducting silicon. The zones, 

called potential wells, are moved about within the device to an output amplifier by 

changing the voltage on the electrodes in a systematic manner(6]. 

When a photon strikes the silicon, it is very likely to give rise to a paired entity 

consisting of a displaced electron and the hole created by the temporary absence of 

the electron from the regular crystalline structure of the silicon. When a photon 

creates an electron-hole pair, the electron is immediately collected in the nearest 

potential well, whereas the hole is forced away from the well and eventually escapes 

into the substrate[6]. 

The CCD chip is divided into channels that are separated from one another by 

narrow barriers. Each channel is in turn subdivided along its length into pixels by 

a series of parallel electrodes (gates) which run across the device at right angles to 

the channels. Each row of the pixels is controlled by one set of gates. A picture is 
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read out of the device by a succession of shifts through the imaging section, with all 

rows simultaneously moving one space at a time through the body of the device[6]. 

At each shift the last row of pixels passes out of the imaging section through 

an isolating region called a transfer gate into an output shift register. Before the 

next row is transferred, the information is moved along the output shift register, 

again one pixel at a time, to an amplifier at the end, where the charge in each 

pixel is measured. This final step constitutes a measurement of the original light 

intensity registered in each pixel. The technique for moving the electric charge is 

called 'charge coupling', which is how devices operating on this principle got their 

name. The basic physics of the process is quite linear: doubling the number of 

photons at any pixel will result in doubling the number of repelled electrons, until 

the potential well corresponding to that pixel is finally saturated[6]. 

0.3 Comparison of CCD's and Other Light De-

tectors 

How does the CCD camera compare to other light detectors in the major criteria 

such as quantum efficiency, noise level, dynamic range, color response, photometric 

accuracy and field of view? 
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Quantum efficiency is a measure of the sensitivity of a detector. An ideal detector 

would ;have a quantum efficiency of 100%, that is, it would generate a measurable 

response for every photon that struck it without introducing noise and it would be 

sensitive to the light of all colors. In the real world, an ideal quantum efficiency is 

not reachable. In contrast to the eye and the kinds of emulsion commonly used in 

astronomy, which have a quantum efficiency of a few percent, CCD detectors can 

reach a quantum efficiency as high as 90%. Since a more efficient detector yields 

more data, an observation made with such a detector can be done in less time or 

with a smaller telescope. A comparison of the quantum efficiency of a CCD-device 

to other light detectors is shown in Figure 1[6][9]. 

Most detectors add noise to the gathered signal. The light-sensitive particles 

in a photographic emulsion are not distributed uniformly. This produces the effect 

known as graininess, which hides features that are small or have a low contrast. In 

electronic detectors, noise is generated as a result of the constant .thermal agitation 

of their constituent atoms or molecules. This thermal noise can be reduced by 

cooling the detector. Additionally, the electronic components add noise. Since the 

thermal noise can be reduced by subtracting a 'dark frame', electronic detectors are 

superior to photographic detectors[6][9]. 



6 

100.0 

+:J" c: 
Cl) 
u .... 
t> 10.0 !!:, 
>-u c 
Cl) 

u 
E w 
E 1.0 ::l 
1: m 
::l a 

0.1 -+-~~..__~.-----~~-----~--~--.-~~~~--~~~-----1 

0.2 0.4 0.6 0.8 1.0 1.2 

Wavelength of Radiation (Microns) 

Figure 1: Comparison of the quantum efficiency of a CCD-device to other light detectors 
(see page 70 in [6]). 

The dynamic range of a light detector is the ratio of the maximum detectable 

light intensity to the minimum detectable light intensity. The minimum level is 

usually determined by noise, the maximum by the fact that most detectors saturate 

in some way at high exposure times. By increasing the dynamic range of a detector 

more photons can be collected before saturation, the relative noise due to statistical 

photon processes can be reduced and fainter objects can be detected. Cooled CCD 

cameras have a very high dynamic range due to the fact that the limiting noise is 

very sma11[6][9]. 

An accurate measurement of brightness requires that the detector responds in 

a known and reproducible manner, so a given light input always yields the same 
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output. CCD devices are highly linear devices. Photographs, on the other hand, 

are inherently nonlinear in several ways. Moreover, photographic plates can be used 

only once, and their characteristics are not reproducible, so that for the highest 

attainable photometric accuracy each plate must be individually calibrated; which 

is an inaccurate process[6][9]. 

The relatively small size of most CCD-chips is a disadvantage. It is not always 

possible to have the minimum of three reference stars needed for data reduction in 

the image. Compared to some photographic plates as big as several square meters, 

the CCD-chip looks small with its several square centimeters[9]. 

It is apparent that CCD cameras are a powerful addition to the astronomer's 

tools. In areas requiring high accuracy such as detecting faint stars, they are su

perior to other light detectors used in astronomy. The stability and linearity of 

CCD measurements provide a noticeable improvement in the general consistency of 

observations in comparison to photographic data. 



Part I 

Theoretical Background: Noise 

and Repeatable Patterns in CCD 

Images 



Chapter 1 

Repeatable Patterns 

The appearance of CCD cameras opened a door to the world of astronomy. Never 

before was it this easy and fast to obtain high quality images from stars and galaxies. 

But nevertheless, the uncertainty in signals makes life difficult for everyone who uses 

CCD cameras. A major goal is to keep this uncertainty small in order to obtain a 

signal that is as precise as possible. In most cases, the measured signal (raw signal) 

is different than the signal one wants to measure (real signal). The reason for this is, 

that the real signal is changed by counts added by charging the chip ('bias count') 

or the count accumulated due to thermal excitation ('dark count'). Fortunately, 

these effects are reasonable repeatable, so it is possible to remove them from the 

raw signal in order to obtain a cleaner signal. 
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Several factors affect pixel values. Some factors will increase or decrease the 

measured intensity of two different pixels identically, whereas other factors affect 

pixels in different ways. Some factors depend on the exposure time, while others 

only add an offset. If the added count does not depend on the exposure time, we 

can subtract the added count and obtain a corrected image; if it depends on the 

exposure time, then the effect is multiplicative and we have to divide by a correction 

factor. If we want to calibrate the image without unnecessarily increasing the noise, 

we have to take all these effects into account[13]. 

Another important factor is the order in which the photons are affected as they 

travel from the source to becoming a digital image. Let us look at a light beam 

which is on its way through the telescope onto the camera until the image is read 

out of the detector[13]. 

• The light striking the telescope objective builds up a total signal Sreal propor

tional to the brightness of the light Flo and the exposure time t 0 [13]. 

• The optical systems have varying degrees of vignetting, which reduce the in

tensity of the off-axis beam. Vignetting (V) is a multiplicative effect[13]. 

• Dust on filters and optical windows reduce the intensity of a beam. These dust 

specks are imaged out of focus on the sensor and appear as shadows. With 

an unobstructed refractor the shadow looks like a disk, whereas a telescope 
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with a central obstruction produces a doughnut. Dust shadowing (s) 1s a 

multiplicative effect, as well (see Figure 22)[13]. 

• The shutter in a CCD camera travels at a finite speed and can produce an 

uneven exposure. This can cause slightly different exposure times for different 

pixels. With short exposures, this difference can be a significant percentage 

of the total exposure[13]. 

• Different pixels have in general different sensitivities. The amount of a signal 

recorded by a pixel depends upon its quantum efficiency q. It is also, as 

vignetting and dust shadowing, a multiplicative factor[13]. 

• Even in the absence of light, the pixels of a CCD will accumulate a signal 

due to the inescapable and random motions of electrons within the chip. The 

dark count signal ( D) is dependent on the exposure time, but not necessarily 

proportional to it. The time tn the dark count accrues in the detector is 

slightly larger than the real exposure time. The dark count is an additive factor 

and its contribution can be removed by subtracting a correction count[13]. 

• A CCD has to be operated in a charged state in order to detect and collect 

light. Since a false signal ( B) is created by this bias, it has to be removed by 

subtracting a correction count from the raw signal[13] ~ 
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Given the conditions above, the raw signal can be described with the following 

equation[13]. 

Sraw = S • q · V · Sreal + D + B (1) 

F = s·q· V (2) 

where Sraw is the measured signal. The question now is how can we extract the 

real signal, Sreal, from the raw signal? The correct way to remove each effect is to 

work the equations backward, from right to left, undoing each effect in the reverse 

order in which it happened: First we have to subtract the bias count and the dark 

count, then we have to divide by a multiplicative factor (13). In practice, we do this 

by subtracting a dark frame (D) and a bias frame (B) and dividing by a flat field 

frame (fr). 

Seal = Smeasured - D - B 
fr 

(3) 

In the ideal case, Seal would be equal to Sreal, and here is where the problem starts: 

There is noise in the signals, therefore b, Band fr are only estimates for D, Band 

F, respectively. 



Chapter 2 

Noise in Images 

Uncertainty in measurements can be divided into two groups: those of a systematic 

and those of a statistical nature. In this chapter we will explore the nature and 

sources of the statistical and random uncertainty, the noise, and especially, how 

noise impacts a CCD image. 

2.1 The Statistical Nature of Noise 

The general term 'noise' refers to any process that contributes to errors of measure

ments or distortions of information. In astronomy, there is an ultimate source of 

noise that cannot be overcome: Light is quantized in the form of photons whose 

arrival at any point in time and space is represented statistically by a characteristic 

distribution function; hence, the number of photons that strike even a uniformly 
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illuminated detector differs from area to area in a given time interval. This means 

that, in general equal signals differ slightly even if they are detected under identical 

conditions. Large deviations occur less often than small ones, and very, very large de

viations almost never occur. The measured signals are scattered around an average 

value (mean). In general, we can characterize this distribution with the Gaussian 

probability distribution (F), named for the German mathematician/astronomer, 

Carl Friedrich Gauss (1777-1855), who first derived it mathematically[10][6]. 

F( ) - c.r-72)2 x - e 2u (4) 

In this equation, F( x) is the probability that the measured quantity will have the 

value x, m is the average of the expected values (mean), and u is the standard 

deviation. Mathematically, 68% of the area enclosed by the curve is within one 

standard deviation of the mean and 90% within two standard deviations. This means 

that for a measured signal, which can be described by the Gaussian curve, there is a 

68 percentage probability that the measured value is within one standard deviation 

from the true mean. The values corresponding to this 68 percent confidence level 

are usually those being quoted when a measurement is stated as being some value 

± uncertainty[lO]. 

It is important to distinguish between noise and a repeatable pattern added to 

or multiplied by a signal, e.g., if the same count c is always added to the real signal, 
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it can be removed from a measured signal by subtracting it, but if the signal has the 

noise c, the noise cannot be removed since the specific error in one measured signal 

is unknown. 

2.2 The Sources of Noise 

Some of the noise that arises in a CCD image is from the fundamental properties of 

light itself. Due to the quantum property of light, the photons arrive at a detector 

in sporadic bursts, even from a perfectly constant source. This noise is equal to the 

square root of the signal and is named Poisson noise after the French mathematician 

Simeon Poisson (1781-1840). Therefore, signals detected under the same conditions 

have noise which is equal to the square root of the number of counted photons. 

The Poisson distribution looks much like the Gaussian distribution, but its width is 

determined by the square root of the total number of counts[lO]. 

There are additional sources of noise in a CCD image that have to be taken into 

account: 

• Readout noise: When the signal generated by light falling on a CCD is col

lected, amplified and converted to a digital value, noise is added at each step 

of the process[lO]. 
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• Background noise: The sky background is another source of noise in astro-

nomical images. This can be caused by the natural skyglow, moonlight, or 

light pollution in urban areas. The background noise plays a minor role for 

bright stars, but for faint stars it is not negligible and it is essential that it be 

removed[lO]. 

• Processing noise: Whenever an image is processed (e.g. when the dark count 

or the bias count is subtracted), the noise will be increased, no matter how 

good the calibration images are[lO]. It is possible to minimize this added noise 

with a few strategies which will be mentioned in part II of this thesis. 

In general, independent noises such as those mentioned above add quadratically. 

This means that the square of the total noise is equal to the sum of the squares of 

the individual noises. 

N2 = Ni + Ni + NJ + ... (5) 

Even though the signal might decrease through processing, e.g., by subtracting 

a count, the noise will always add quadratically. 

2.3 Signal-to-Noise Ratio ~ 

The signal-to-noise ratio, ~'is a very good measure to evaluate the accuracy of the 

signal. The higher the ft is, the easier is it to distinguish between the brightness 
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of signals measured from two pixels next to each other, e.g., in order to get useful 

results in the detection of faint stars it is essential to increase the t as much as 

possible. 

As mentioned before, the light count can be characterized by a Poisson distribu

tion. Since the standard deviation of a Poisson distribution is equal to the square 

root of the mean, the number of photons recorded in a given amount of time is 

uncertain by at least the square root of the number that has been collected. The 

t is at most equal to fs, or VS. It can never surpass nature's maximum value of 

v's, which happens in the case of pure Poisson noise[lO]. 

2.4 Image Arithmetic 

Before CCD images are ready for display and measurement, we usually apply a 

series of standard image-processing procedures to remove bias count and dark count, 

and also to take variations in pixel-to-pixel sensitivity into account. Because these 

procedures modify the signal and the noise of the original image, it is important 

to know how each step affects the final results. But it is important to note that 

it does not matter which procedure we use, the noise never decreases. It always 

increases or at best, a very rare case, it remains unchanged. If noise comes from 

several independent sources, then it adds quadratically (see Equation (5)). We have 

to take this into account whenever we do image processing. Each procedure will be 
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described in the following section. Table 1 gives an overview of the signal and noise 

levels in image arithmetic[ll]. 

2.4.1 Addition 

Adding multiple exposures is a common procedure in astronomy. The signals are 

simply added, but how does the signal-to-noise ratio change? If we use Equation 

( 5) we can determine the ~ : 

8 
N 

81 + 82 + ... 
- jN'f + N'i_ + ... 

81 82 
= + + ... 

-jN'f +Ni+... -jN'f +Ni+ ... 
.§i_ 
N1 + 

j1 + (~ )2 + (~ )2 + ... 
§i 

N2 + ... (6) 

We have two interesting cases that can be considered at this point. The first is, 

what happens when we add similar images? If the images have the same exposure 

time and are taken under similar conditions, they will have similar signal and noise 

levels. Mathematically speaking, we get: 

81 = 82 = 83 = . . . and 
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Ni= N2 = N3 = ... 

and we can plug that in Equation (6) and get 

§_ = Vns_ 
N Ni 

(7) 

This shows that the signal-to-noise ratio of the sum of the images increases propor-

tional to the square root of the number of images added[l 1]. 

The second interesting case is whether it is an advantage to add an image with 

a poor ~ to an image with a good ~ ? Let's consider an example: two images with 

the same signal but one has twice as much noise as the second, or: 

Si= S2 

2 ·Ni= N2 

Using Equation ( 6) we can estimate the ~ of the resulting image. 

s 
N 

§._ §J._ 
_ Ni + N2 

- .j1 + ( !//; )2 Ji+(%;-)2 
.& ...& 

_ Ni + 2Ni 

- JI+ 22 j1+(~)2 

1 Si 1 Si 
<--+--

2 Ni 2 Ni 

Si 
<-

Ni 
(8) 
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Note that the resulting image has a signal-to-noise ratio smaller than the original 

image with the larger signal-to-noise ratio. It can be said as a rule of thumb, that 

it is not advantageous to add images with different noise levels[ll]. 

2.4.2 Subtraction 

When we process images we subtract bias and dark frames, and we sometimes 

subtract background levels for the sky. What happens when one image is subtracted 

from another? 

s 
N 

S1 - S2 - .. . 

jN'f + N? + .. . 
(9) 

Although the signals are subtracted, the noise still adds quadratically. If the noise 

in the subtracted image is small, the degradation of the image is minor. This does 

imply, however, that it is advantageous to get calibration frames with very large 

signal-to-noise ratios[ll]. 

2.4.3 Multiplication 

Multiplication of two signals leads to the following signal levels and noise levels: 

s = S1 * S2 (10) 



N2 = s; . Ni + s~ · Ni 

The signal-to-noise ratio can be determined 

s 
N 

S1 · S2 

J s; . Ni + s~ . N'f 

For equal signal levels and noise levels we can simplify Equation (12) to 

s 
N 

S1 · S1 

~ Jsr ·N'f +sf ·Nt 
1 S1 

~ J2. Ni 

The signal-to-noise ratio decreases for this special case by the factor of J2. 

2.4.4 Division 
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(11) 

(12) 

(13) 

To compensate for the multiplicative spatial nonuniformity and to obtain the uni-

form response of an ideal detector on an ideal telescope, we divide the image by a 

fiat-field frame. Once again, processing an image degrades the signal-to-noise ratio 

of the resulting image, but in this case, the algebra is more involved. How can we 

determine the total noise? The squared total noise is again the sum of the squared 

individual noises, but this time the terms have coefficients. The noise from the fiat-

field (NF) is weighted with the ratio of the uncalibrated, raw signal ( Sraw) and the 

fiat-field signal ( F). This means that if the fiat-field signal is much larger than the 
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raw signal, NF contributes very little to the total noise. Additionally, the sum of the 

squared raw signal noise ( N s,raw) and the weighted NF has to be divided through 

the flat-field signal. This yields the following equation for the noise Ns,Jinal of the 

final signal (Sf inal): 

2 N 2 +~ 2 
NS,final = S,raw F

2 
·NF p2 

The total signal is just the ratio of the two signals. 

Sraw s1ina1 = F 

We can now use (14) and (15) to determine the ~ 

SJinal 

Nlfinal 

32 N2 +~N2 = raw • ( S,raw F2 F )-1 
p2 p2 

1 
1 1 

( Srow )2 + ( F )2 
Ns,raw Np 

(14) 

(15) 

(16) 

The reduced form in (16) shows, that it is not only very important how large the 

signal-to-noise ratio of the flat-field image is, but it is even more important how 

good it is compared to the signal-to-noise ratio of the original image. As a rule of 

thumb, we can say the signal-to-noise ratio of the processed image is slightly smaller 

than the poorest signal-to-noise ratio of the processing images, if they have different 

signal-to-noise ratio's. 
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In general, dividing through an image works best when the calibration frame has 

a signal-to-noise ratio larger than that of any pixel of interest in the image that is 

processed. The best way to reach a large signal-to-noise ratio for the calibration 

frame is to combine several images into a master frame[ll]. 

2.4.5 Multiplication with a Constant 

Sometimes it is necessary to normalize images. In this case we multiply the image 

with a constant. The result works out nicely: 

s kS1 S1 
(17) -=---=--

N kN1 Ni 

Because the constant affects the signal and the noise in exactly the same manner, 

the constant terms cancel and there is no net effect on the result. 

2.4.6 Combining Images 

Image processing, like calibration, always adds noise. To minimize the degradation 

by calibration, we should use a calibration image that has a high signal-to-noise 

ratio. This is best accomplished by taking many frames and combining them into 

a master. But why should we not take a calibration image with a longer exposure 

time? The advantage of multiple exposures is that a CCD's response is less apt to 
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Arithmetic Signal level Noise level 

Addition S == S1 + S2 N2 == Nf + N? 

Subtraction S == S1 - S2 N2 == Nr + N? 

Multiplication S == S1 • S2 N2 - 32 . N2 + 32 . N2 
- 2 1 1 2 

N2+~N2 
Division s - §i_ 

2 1 s 2 

- S2 N == 8i 
2 

Multiplication with a constant c S == c · S1 N 2 == c2 
• N'f 

n n 
Combining S == l L: Si N2 == ~ L: Nl 

n i=l n i=l 

Table 1: Overview of signal and noise levels in image arithmetic 

become nonlinear, which can happen if the pixels approach saturation. Furthermore, 

multiple frames aid in removing such random features as cosmic-ray detections. 

In most cases we combine images with similar signal and noise levels. If this is 

the case, then the combining images can be split into two steps: 

• Adding n frames: 

n 

S' == LSi (18) 
i=l 

n 

N'2 == L:Nl (19) 
i=l 

• And normalizing S' to S by dividing by n: 

s S' 
(20) = 

n 

f.r = ~~tN? 
n i=I 

(21) 
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In most cases we combine images with similar signal and noise levels. If this is the 

case, then the effect these two steps have on the ~ based on the 1J: of the original 

pictures is as follows: 

S' S· 
- ~v:n-' 
N' Ni 
S' s 

and -
N' -N 

where if{l..n }. If we combine (22) and (23), we get 

S Si 
-=- ~ yrl,
N Ni 

and because S ~Si we can write 

1 1 
rv vn- or 

N rv Ni 

Ni N rv_ 

rv Vn 

(22) 

(23) 

(24) 

(25) 

So, if we combine n frames, we get a frame with the same signal, but with noise 

decreased by the factor y'n. 
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2.5 Noise in the Calibrated Signal 

Armed with this knowledge, we can estimate the noise in a raw signal and in a 

calibrated signal. We can literally describe the raw signal Sraw (see Equation (1)) 

by 

Sraw = F · Sreal + D + B (26) 

Let us consider the noise in this raw signal. The problem is, that there is not only 

noise in the real signal, but there is also noise in the dark count and the bias count. 

Since these noises are all caused by independent sources, we can determine the noise 

by 

N~,raw = F 2 
• N~,real + N} · s;eal + Nb + N~ (27) 

The first calibration steps are to subtract the bias count and the dark count. The 

corresponding signal and noise levels are 

Beall = Sraw - D - B 

= (F · Sreal + D + B)raw - fl - B (28) 

N;all = N~,raw + Nt + N~ 

= (F2 
• N~,real + N} · s;eal +Nb+ N~)raw + N'}; + N~ (29) 
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where Beall and Neall represent the signal and noise level after the first calibration 

steps are done. Similarily, flat fielding (dividing by F) will decrease the signal-to-

noise ratio since there is noise as well in the flat-field frame. The total noise can 

then be determined: 

Scal2 

Ncal2 

Beall ---
F 

N 2 ~N2 
call + ji'2 fr 

p2 

(30) 

(31) 

where Scal2 and Ncal2 is the final signal and its noise level. In Figure 2 and Figure 

3 examples are shown which demonstrate the differences of an uncalibrated and a 

calibrated image. 

Functionally, it is possible to split the total noise in a calibrated image into two 

parts. On the one hand, there is the part corresponding to the raw signal, N s,raw· 

Exposure time, temperature, equipment and other factors have influence on this 

part of the total noise. But this noise is fixed as soon as the image is taken. On the 

other hand all the calibration steps add noise. It is possible to minimize the altering 

of the noise caused by the calibration steps by carefully choosing and generating 

calibration frames with high signal-to-noise ratio after the images are taken. In 

part II, we will examine in detail how to apply the calibration frames considering 

trade-offs in imaging time, memory requirements and noise level. 
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Figure 2: Image A shows an uncalibrated image of Ring Nebula M-57. In Image B the 
calibrated image, i.e., the dark frame and the bias frame are subtracted and then the 
image is divided by a flat field frame, is displayed. The image was taken at -5° C and 
with a 240 second exposure time. The Ring Nebula M-57 is a planetary nebulae 4000 
light-years away from our solar system. Its central star has a magnitude of 15. 



29 

Figure 3: Image A shows an uncalibrated image of the Hercules Cluster M-13. In Image 
B the calibrated image is displayed. The image was taken at -5° C and with a 120 second 
exposure time. M-13 is an irregular cluster which is about 500 million light-years from 
Earth. 
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Before we can use a CCD image it has to be calibrated in order to remove the 

dark and bias counts and to correct for the irregularities across the telescope's field 

of view as well as for the variations in the sensitivity of the CCD itself. Clearly, the 

calibration method has a significant impact on the quality of the final image and 

different calibration methods yield different results on the final image. 

First of all, we should consider the order in which we correct the raw image 

with the calibration frames. The correct way is to remove each effect with the 

'Last in - First out' method, this means that we undo each effect in the reverse 

order in which it happened. Correction for bias should be first, dark count second, 

and division by the flat-field frame for the multiplicative terms should be last. 

It is essential to know more about the calibration images to develop a method 

of calibration that obtains a high quality image with the lowest possible noise. In 

the experiments done, the characteristics and properties of the calibration frames 

are examined. Furthermore, different methods for calibrating master frames were 

performed. This was done for both master dark frames and master flat-field frames. 

Using the method of master frame calibration, different possible night sessions are 

discussed for the trade-offs in imaging time, memory requirements, calibration time 

and noise level. A way to estimate the noise level in a calibrated image is described. 



Chapter 3 

Instruments and Methods 

3.1 Instruments 

3.1.1 CCD-Device 

The CCD-Camera used was manufactured by Axiom Research, Inc., Tucson, Ari

zona. It is an AX-2 model with a Kodak KAF 1600-2 Sensor. 

Sensor 

The built-in sensor is a Kodak KAF 1600-2 Sensor with a pixel area of 14.0 x 9.3 mm 

and a pixel size of 9µm. It is divided into 1536 imaging columns and 1024 imaging 
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rows. According to the specifications the sensor has a well depth1 of 85,000 elec-

trons, a dynamic range2 > 76 db, a read noise3 of 13-20 electrons, a dark count 

at 25° C of 50e-/sec/pixel and a doubling temperature of 5-6° C. A 16 bit A/D 

converter with correlated digital doubling sampling is used. The sampling rate is 50 

kilopixel/second. The exposure time can be varied between 0.02 and 10400 seconds. 

A 16 bit, 3/4 length ISA bus card is used as the computer interface. The power is 

supplied by the computer power supply. 

Camera head 

The camera head used is an S-type model. It is made out of 6061-T6 aluminium, 

hard anodized with stainless steel fasteners. It connects to lenses and other in-

struments through a standard T-thread lens mount on the front of the body. The 

camera is described in Figure 4. 

Thermal Control System 

The camera combines active and passive thermal control designs to achieve cooling 

capacity and temperature stability. The active part of the system uses a one-stage 

1The value is the minimum number of electrons over which the CCD response has less than 1 % 
nonlinearity. 

2The value 20 log Smaz: /R, where Smaz: is the signal measured at the maximum 'linear' well 
depth, and R is the sensor's readout noise, both measured in electrons. 

3 The stated value is attributable to the sensor only and is not measured from images. 
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Figure 4: This figure shows a S-type cam
era head. On top, an outside front view is 
displayed. On the bottom, a cross sectional 
view is shown. 

thermoelectric cooler with closed-loop stabilization through the Temperature Con-

trol Unit (TCU). When the cooler is turned on, the TCU continuously monitors the 

CCD sensor temperature and makes corrections to keep it stable within an uncer-

tainty of approximately ±0.1° C. The software commands the TCU to ascend or 

descend. The maximum cooling capacity is 38° C below ambient temperature. 

3.1.2 Mira Software 

The software used was MIRA A/P (Microcomputer Image Reduction and Analysis 

software). MIRA comprises a family of powerful, full featured image processing 

software for astronomy and related areas of research. It is a 32-bit program that 

runs on Intel processors under the DOS operating systems. MIRA A/P provides a 
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rich tool box of high and low level image processing functions which makes it easy 

to ana,lyze any kind of images. 

3.1.3 Lab Setup 

The camera was connected to a computer with a Pentium processor (120 MHz), 

16 MByte Memory and 1.6 GByte hard disk. This was sufficient to work fast and 

efficiently with the camera. A 28-200 mm Tokina SZ-X 282 lens was connected to 

the camera. For flat-fielding, a video screen and two lamps were used. Additionally, 

white paper was fixed in front of the lens in order to get a uniformly illuminated 

sensor. All data were collected with this setup except the star images, i.e., the 

images of the Ring Nebula M-57 and the Hercules Cluster M-13. 

3.1.4 Telescope Setup 

The CCD camera described in section 3.1.1 was connected to a Meade LX200 10 inch 

f/6.3 Schmidt-Cassegrain telescope and to the computer described in section 3.1.3. 

A Celestron C-5+ telescope was connected to a SBIG ST-7 CCD camera. The 

LX200 telescope was aligned to the Celestron, so that the Celestron/ST-7 setup 

could be used for the tracking. The tracking program is an integral part of the 

ST-7 operating system. The images of the Ring Nebula M-57 and the Hercules 
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Cluster M-13 were taken with this setup which was located in Beaverton, a suburb 

in Portland, Oregon. 

3.2 Methods 

3.2.1 Measuring the Noise of an Image 

Unfortunately, it is not possible to measure the noise of an image directly. So, how 

can we find out how much noise an image has? An easy and very accurate indirect 

way is to subtract two images taken under the same conditions (denoted as the 

'subtraction method'). The two images, denoted as / 1 and / 2 , should then have 

similar signal levels and noise levels. Therefore, the difference of the two images will 

have a mean of zero. Due to the fact that noise always adds quadratically, we can 

determine the noise ( Ndif J) from the resulting image, denoted as difference frame 

Dif f, with 

Diff 

NJiff 

= /1 - 12 

= NJ1 + NJ2 

(32) 

(33) 
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and if the noise in the two images is similar, we can then determine the noise of the 

original images 

N2 = N2 - NJiff 
11 12 - ---

2 
(34) 

The following example shows the efficiency of this method. First, 30 bias frames 

are taken in a row. Experimentally, the noise (NB,master(n)) of the master bias frame 

(Bmaster(n)) is measured with the subtraction method mentioned above (subtracting 

only master bias frames combining equal number of frames), where n is denoted as 

the number of bias frames used for the generation of the master bias frame. 

DiJ J master(n),exp = Blmaster(n) - B2master(n) (35) 

NbiJ J,master(n),exp = N~l,master(n) + N~2,master(n) 

= 2 · N~,master(n) 

=2· N~ 
n 

(36) 

N2 _ N};ij J,master(n),exp 
B,master(n),exp - 2 (37) 

The experimental value for the noise (NB,exp) in a single bias frame is 5.63 ± 0.01 

counts. Using this experimentally measured noise of a single bias frame, the noise 
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of a master bias frame can then theoretically be evaluated with the number n of 

bias frames used: 

N~,exp 2 -
N B,master(n),theo - n (38) 

A comparison of the experimental noise NB,master(n),exp and the theoretical noise 

NB,master(n),theo of master bias frames is shown in Figure 5. 
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Figure 5: Comparison of theoretical and experimental noise of master bias frames. The 
experimental noise is measured with the subtraction method, the theoretical noise is cal
culated with Equation (38) using the measured noise of a single bias frame. The bias 
frames are taken at -10° C. 
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With only the knowledge of the noise of single bias frames, it is possible to predict 

the noise of master bias frames very accurately. The nearly perfect match between 

experimental data gathered for this camera and theoretical values demonstrates the 

amazing accuracy with which it is possible to estimate the noise of the calibration 

frames with this method. This example shows two things: 

• It is possible to indirectly measure the noise of an image very accurately. 

• In image processing, the way the noise is processed is very predictable. As 

in the example above, the noise of an image combining similar images can be 

estimated using only the average noise of a single image. 

3.2.2 Experimental Procedures in the Lab 

All the data were collected by using the CCD-Camera described in section 3.1.1. 

In order to increase the processing speed and to save memory, a 392x258 pixel 

subframe instead of the full frame was used. The total number of 101136 pixels in 

this subframe was sufficiently large to do the statistical experiments. The master 

frames were processed by mean combining4 the single frames. The noise in the 

frames was determined by using the subtraction method described in section 3.2.1. 

Refer to figure caption for specific experimental set up. 

4 mean combining: averaging the pixel values of the same pixel over all frames. 



Chapter 4 

Bias Frames 

The bias count is caused by the charge applied to a CCD to activate its photon

collecting capacity, therefore it is present as a false signal in every image. Typically, 

the bias level drifts up and down with time as the camera's electronics change 

temperature. Thus, the measurements made immediately after an image is taken 

give the best estimate of the bias. In general, a bias frame contains a structure with 

the pixels in one part of the image containing a different average value than those 

from a different part. Therefore we can functionally split the raw bias count ( Braw) 

into a noise-free bias offset (Boffset) and a bias structure (Bstruc), that includes 

noise. For clarification in the notation: Braw, the total bias count, varies from pixel 



41 

to pixel, Baj j set, the bias offset, is a constant that is the same for all pixels and 

Bstruc, the bias structure, again varies from pixel to pixel[l3]. 

Braw = Baj jset + Bstruc (39) 

It turns out the bias structure is very stable over a long period of time while the 

bias offset can drift. So, it is advantagous for some processing to separate Bstruc 

from Baj j set and correct them separately so as to achieve a better signal-to-noise 

ratio. It is easy to achieve the correct bias offset by calculating the mean over a 

sufficiently large area. It is critical to always use the same area for calculating the 

mean, otherwise any bias structure present will deteriorate the results. The bias 

structure can be obtained by subtracting the calculated bias offset from the raw 

bias frame. In Figure 6A the probability distribution of the bias structure count 

around the mean value of 0 is shown[l3]. 

Since the bias count is not a Poisson count, the bias noise is not the square root 

of the bias count and we have to pay extra attention to the change of the noise for 

different bias counts. 



42 

25 

20 j A I • Pixel values of 
the bias structure 

~ 151 I \ , -- Gaussian 
approximation 

~ -:= 10 .c 
co 
.c e 5 Q. 

0 

-5 

-15 -10 -5 0 5 10 15 20 
Pixel value in counts 

25 

20 J B Ll ~c 
• 10 °C 

~ 151 ~ 
& 20 °C 
-- Gaussian 

== 10 
approximation 

.c 
cu 
.c e 5 Q. 

0 

-15 -10 -5 0 5 10 15 20 

Pixel value in counts 

Figure 6: Graph A shows the probability that a pixel in a bias structure frame has a 
specific count. This bias structure frame combines 10 bias frames taken at 10° C for 
which the bias offset was removed. In Graph B, this probability distribution is shown for 

different temperatures. 
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4.1 Temperature 

The bias count of a CCD camera can drift up and down with time as the camera 

electronics change temperature. With the camera used, it was possible to cool the 

chip down to a maximal temperature difference of 38° C. 

The bias offset decreases as expected with decreasing temperature, but if the 

temperature decreases below 0° C, the bias count increases again slightly. Overall, 

it can be said that the bias offset changes only slightly for temperatures below 10° C 

(see Figure 7). 

Just as the bias offset is dependent upon temperature, the bias structure also 

exhibits a temperature dependence. This effect is apparent in Figure 6B, where the 

pixel value probability of the bias structure for different temperatures is shown. It 

can be recognized that the pixel values are uniformly distributed around the mean 

value of 0 with a Gaussian shape. Notice the importance in the trend as the plot 

narrows around the mean value with decreasing temperature. 

The pixels with different values are not uniformly distributed across the frame, 

on the contrary, they form a structure. One common structure is attributable to 

the gradual buildup of the dark count during the read-out time. This structure can 

be recognized as an increase of the counts in the bias frames as we traverse from top 

to bottom (see Figure 8A). The effect is highly dependent on how large the dark 

count is (how warm the CCD Camera is and how much time the software needs to 
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read-out the image). In Figure 8A (CCD camera working at a temperature of 20° 

C) this structure is obvious, whereas in Figure 8B this effect does not occur in such 

a manner. In Figure 8C, due to the low temperature (-10° C), the dark count is very 

small (less than 1 count per second) and therefore its accumulation in the read-out 

process is negligible. The result is that the structure cannot be noticed any longer. 

The vertical white pixel lines are another common structure. These white pixel 

lines are easily noticed in Figure 8A and 8B, but they nearly disappear when the 

camera is cooled down. In Figure 8C very few tracks from the hot pixel lines can 

still be noticed. 
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Figure 7: Temperature dependence of the bias offset. 
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Figure 8: This Figure shows typical bias frames for different temperatures; 20° C, 5° C 
and -10° C for the Graphs A, B and C, respectively. 
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4.1.1 Bias Noise 

The bias noise decreases with lower temperatures. One reason for this is that the 

gradual dark count build-up in the read-out process decreases as the temperature 

decreases, and therefore the corresponding noise decreases as well. Nevertheless, the 

effect is small (see Figure 9) and may be neglected. 
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Figure 9: Temperature dependence of the bias noise. 
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4.2 Stability 

Another important question is how stable and reproducible is the bias count. The 

bias offset can drift with the temperature of the camera electronics. Figure 10 

shows the bias offset of 20 bias frames for each temperature taken in a row. For 

low temperatures, the bias offset is nearly constant, whereas for high temperatures, 

the bias count drifts up and down around a mean value. It is necessary, and highly 

advantageous, to maintain a stable bias offset in order to accurately correct the bias 

count in image calibration. 
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Figure 10: This Figure shows, how stable and reproducible the bias offset is over time. 
For each temperature, 20 bias frames were taken in a row. The mean of the bias count over 
the whole frame (bias offset) was calculated and plotted versus the bias frame number. 



Chapter 5 

Dark Frames 

Even in the absence of light, the pixels of a CCD will accumulate a signal propor

tional to the exposure duration. The random motions of electrons within the chip 

are the source of this dark or thermal count. It is essential to remove the dark count 

in order to process an accurately calibrated image. 

The raw dark count in a randomly picked pixel can functionally be separated in 

a dark count (D) and a bias count (B). 

Draw 

Nb,raw 

= (D + B)raw 

=N'JJ+Ni 

(40) 

(41) 
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We have to subtract a bias frame (B) in order to obtain the real dark count. In 

other words, we have to 'calibrate' the calibration frame. The corresponding signal 

and noise levels can be determined: 

Deal = (D + B)raw - B (42) 

Nb,raw =N'};+N~+Nl (43) 

A typical dark frame is shown in Figure 11. 

Figure 11: This figure shows a typical dark frame. The white specks are the 'hot 
pixels' which have a very high dark count. They are uniformly distributed over the 
frame. The dark frame used is a master dark frame combining 10 dark frames. All 
frames were taken at 20° C with a 20 second exposure time. 
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5.1 Exposure Time 

The dark count is linearly dependent on the exposure time, which means the dark 

count accumulates during the process of exposure (see Figure 12). In order to remove 

the correct amount of dark count, the effective dark-integration time of an exposure 

should be used instead of the 'real' exposure times. The real exposure time is only 

the length of time the shutter is open. In practice there is a lag between the end of 

flushing and the shutter opening and another lag between the time the shutter closes 

and the start of the read-out process. The dark-integration time is thus always longer 

than the actual exposure time. The difference is usually negligible with individual 

dark frames which have the same duration as the exposure, but it is essential to take 

this into account when using a master dark frame that is scaled. The software used 

supported the distinction between dark exposure time and real exposure time. It is 

therefore possible to use dark frames with different dark exposure times by scaling 

them with a constant (12]. 
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Figure 12: The exposure time dependence of the dark count is shown. For each exposure 
time, a mean dark count was calculated from 20 dark frames taken at 5° C. 

5.2 Dark Count Populations 

The CCD camera used works in a multi-pinned-phase (MPP) mode. A feature of 

this mode is that there are multiple distinct populations, each with a well defined 

average dark count and with random fluctuations about the average. However, it 

is not possible to estimate a meaningful average dark count for all pixels[12]. In 

Figure 13 the dark count populations in a 100,000 pixel area are shown. 
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Figure 13: Graph A shows the main population and hot pixel population one of the 
dark count at 5° C with a 20 second exposure time. The dark frame used was a master 
dark frame combining 10 dark frames. In Graph B the hot pixel population one and 
hot pixel population two from graph A are shown in an enlarged scale. 

Around 95% of the pixels are in the main population and have an average dark 

count of 10 counts. The next population, denoted as hot pixel population one, 

already contains a 10 times larger dark count, or about 100 counts. This population 
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makes up around 2% of the total amount of pixels. Hot pixel population two is only 

0.1 % of all pixels with an average dark count of 190 counts. The remaining 3% of 

the population are uniformly distributed up to a maximum of 1000 dark counts. In 

fact, one extraordinary hot pixel out of these 100,000 pixels had a very high dark 

count of over 7000 counts. 

5.3 Temperature 

Temperature has a big influence on the dark count. The dark count (D) is exponen-

tially dependent on the temperature (T) (see Figure 14A). A very convenient and 

expressive form is to write the dependence as 

D D 
T-To 

= 0 • 2 aT (44) 

if a reference dark count (Do) for a reference temperature (To) is known (see Figure 

14B). ~Tis called the doubling temperature, because the dark count doubles if the 

temperature is increased by this temperature[l2]. By rearranging and taking the 

logarithm, Equation ( 44) changes to 

D ln(2) 
ln(-) = - . (T - Ti) 

Do ~T 0 (45) 
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If we now plot l n ( g
0 

) vs T - To (see Figure 14B) we can determine the slope ( s) of 

the best fitting line by a linear regression and since 

ln(2) 
s = !:l.T (46) 

we can then calculate the doubling temperature !:l.T. The result is 5. 71° C with an 

R2 value of 0.9998, a nearly perfect fit by the linear regression. In the literature (see 

[12]) a doubling temperature around 6° C is mentioned for the CCD camera used. 
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Figure 14: In Graph A the temperature (T) dependence of the dark count (D) is shown. 
In Graph B ln(f]J vs T - To is plotted with To = 20° C and Do = 55.8 counts. The 
doubling temperature 6.T can be determined by the slope of the plot. The dark frame 
exposure time was 20 seconds. 
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5.4 Dark Noise 

The dark count is Poisson count, which means that the noise of a dark count signal 

should be equal to the square root of the signal. Since the dark count is highly 

dependent on the temperature and the exposure time, the dark noise should also be 

dependent on them both. 

5.4.1 Temperature 

Figure 15A shows the temperature dependence of the dark noise. The dark noise is 

obtained by the subtraction method described in section 3.2.1. 

The mean of the dark noise is squared and treated as a type of 'dark count'. 

Once this is done, it is possible to plug the squared dark noise in equation ( 45). 

Using linear regression we obtain a doubling temperature of 5.88 ° C with a R2 

value of 0.9979 for this artificial 'count' (see graph on the bottom in Figure 15). 

The close value of the doubling temperatures of the real dark count and the squared 

mean of the dark noise reinforces the assumption that the dark count can be treated 

as a Poisson count. 
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Figure 15: Graph A shows the temperature dependence of the dark noise. In Graph B 
ln(~) vs T - To is plotted. It is possible to fit a straight line through the plot since 

0 

the squared dark noise is equal to the dark count. The dark frame exposure time was 20 
seconds. 

5.4.2 Exposure Time 

The exposure time dependence of the dark noise is shown in Figure 16. Comparison 

of the mean and the median dark count with the squared dark noise is shown in 

Figure 16B. In general, the dark count is very closely distributed around a mean 

value with a few runaway pixels (hot pixels). The median disregards these pixels, 

so the median is expected to be slightly smaller than the squared dark noise, as it 

can be seen in Figure 16B. The dark noise takes these pixels, as does the mean dark 
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count, into account, but because the dark noise is only the square root of the dark 

count, these hot pixels have a minor influence on the dark noise compared to the 

influence on the mean dark count. As expected, the squared dark noise is between 

the mean and the median of the dark count and closer to the median (see Figure 

16). 

5.5 Is it Possible to Use Dark Frames Taken at 

Another Temperature ? 

The dark count for low temperatures is much smaller compared to that associated 

with high temperatures, therefore it is desirable to take images at low temperatures. 

However, dark frames taken at low temperatures have a small signal-to-noise ratio 

compared to dark frames taken at high temperatures. This can be seen in the fol-

lowing relationship (from the fact that D increases exponentially with temperature): 

S D D 
( N )darkcount = ND = v'lJ = v'lJ (47) 
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Figure 16: Graph A shows the exposure time dependence of the mean dark noise. In 
Graph B the exposure time dependence of the mean and median dark count is compared 
to the exposure time dependence of the squared dark noise. 
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If a dark frame (D1) taken at a high temperature (Ti) (and therefore a high 

( ~ )DI,TI) could be scaled down to a lower temperature (T2 ), it would have a higher 

(~ )DI,T2 than the (~ )n2,T2 of a dark frame (D2) taken at temperature T2 with the 

same exposure time. Let Dl be l times larger than D2. Then we can compare the 

~ of the two dark frames for T2 

S S Dl l · D2 S 
( N)Dl,T2 = ( N)Dl,Tl = NDl = JI. NTv, = Vl · ( N)n2,T2 (48) 

A scaled down dark frame from T1 to T2 would have a v1 higher ~ than a dark 

frame taken at T2 • Using Equation ( 44) we can calculate the scaling factor l: 

l 
- Ti-T2 
- 2 LlT (49) 

where ~T is the doubling temperature. For the CCD camera1 used, the factor l 

would be 20.8 for a temperature difference of 25° C, therefore the ~ would improve 

by a factor 4.56. 

In order to verify if a dark frame can be scaled down, dark frames at different 

temperatures were taken. The dark frames (D1 ) taken at 15° C were scaled down to 

-10° C and then subtracted from dark frames (D2 ) taken at -10° C. The average dark 

count of the scaled down dark frames were, as expected, very close to the average of 

the dark frames taken at -10° C. If we define the difference frame as the difference 

1The camera has a doubling temperature of 5.71° C. 
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between D1 and D2, the expected mean of the counts in all pixels is zero, and the 

noise in the difference frame ( N Dif f) can be calculated by the following equation. 

Nniff =VN[+Ni 

N
2 N 2 + <> N2 
D2 T2 + 2 . N 2 + Dl,Tl ~ . B T2 

I B,T2 ' l2 

= Jo.952 + 2. 5.612 + 4.18
2 + 2. 6.822 

= 8.01 (50) 

Surprisingly, the noise in the difference frame was found to be 9.1. This is higher 

than expected, but still less than the noise2 in a difference frame made out of two 

dark frames taken at -10° C. While at first glance this method appears to improve 

the signal to noise ratio, it does not take into account that some pixels are scaled 

improperly. In fact, it turned out that the maximum error3 increased from 60 to 

1100, when a scaled down dark frame was used! What causes this unexpected 

increase in noise and this large maximum error? The dark count in the hot pixels is 

very poorly scaled down. On the average, the scaled down dark count was three times 

too small for the hot pixels. A further look at the hot pixels showed that the hot 

pixel populations have different doubling temperatures. With the linear regression 

2This noise is around 11.3 counts. 
3 The maximal error is the largest absolute value in the difference image. 
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done in Figure 17 the doubling temperature (f}..Thot) for hot pixel population one4 

turned out to be 7.40 ° C with an R2 value of 0.9997 using Equation ( 44), ( 45) 

and ( 46). Therefore, the main population could be scaled down accurately, but not 

the hot pixel populations at the same time. Due to this and the resulting large 

maximum error it is not possible to use a global doubling temperature for scaling 

down dark frames taken at another temperature. 
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Figure 17: In this graph ln (vDhqt ) versus T -To is plotted where Dhot is the mean dark 
O,hot 

count of the hot pixel population, Do,hot = 403.8 counts and T0 = 20° C. The doubling 
temperature tlThot for the first hot pixel population can be determined using the slope 
of the plot. For comparison, the plot In(~) vs T - To is shown, where Dtotal is the 

O,total 

mean dark count of the total population and Do.total= 55.7 counts. 

4Hot pixel population onecan be approximated with a Gaussian curve, see Figure 13, and the 
mean of these Gaussian curves were used for the calculations. 
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5.6 Effect of Past Images on the Dark and Bias 

Count 

Another important aspect is to determine whether or not the dark and bias count 

is dependent on past images. If flat-field frames, which are frames taken from a 

uniform light source, are taken before dark and bias frames, a large increase of the 

dark and bias counts can be observed. In Figure 18 the dark and bias count is shown 

for different sets of frames: 

• set 1-5 : each set consists of 1 dark5 and 1 bias frame. 

• set 6-10: each set consists of 1 flat-field6
, 1 dark and 1 bias frame. 

• set 11-25: each set consists of 1 dark and 1 bias frame. 

It can be observed, that the dark and bias count is stable for the first 5 sets, 

but for set 6-10 a large increase of the dark count and bias count is caused by the 

flat-field frames taken before. For set 11-25 an exponential decrease of the dark and 

bias count can be observed until the count drops to the values seen in the first five 

sets. 

In order to verify if the incoming light is the source of this increase, an experiment 

was done in which only a part of the chip was illuminated by light7
• In Figure 19 

5The dark exposure time was 1 second. 
6The flat-field exposure time was 20 seconds, the frame was not saturated. 
7 An image was taken from a small, bright laser spot, exposure time 0.15 seconds. 
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Figure 18: In Graph A, the mean raw dark count and mean bias count for the indicated 
sets of frames is shown. Graph B shows the dark count (raw dark count minus bias count) 
for each set. All frames were taken at -10° C. The exposure times were 1 seconds for the 
dark frame and 20 seconds for the flat-field frame. The short exposure time for the dark 
frame was chosen in order to be able to collect a sufficient amount of data in the short 
time after the flat-field frames were taken. An increase of the counts can be seen for sets 
in which a flat-field frame was taken before the dark and bias frames (set 6-10). 
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the time dependence of the average dark count for two different areas of the chip 

is shown: One area was illuminated by the image taken before and the other one 

was not illuminated. A change in the dark count could only be found in the area 

that had been illuminated. By exaggerating the exposure time for the light image8 

a white spot in the dark frame, immediately taken after the image, can be seen (See 

Figure 20). 

4 
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Figure 19: This figure shows the dark offset for two different areas of the chip: One area 
was illuminated before by taking an image of a bright laser spot. The other area was not 
illuminated. All frames were taken at 5° C. The image exposure time was 0.15 seconds 
and the dark exposure time was 3 seconds. 

8 Exposure time 5 seconds instead of 0.15 seconds. 
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Figure 20: This Figure shows the effect of increased dark count caused by exposure of 
the chip to light. Graph A shows the image of a laser spot on a video screen. Graph B 
displays a dark frame taken immediately after the image of the laser spot was taken. The 
frames were taken at 5° C. The image exposure time was 5 second and the dark exposure 
time was 3 second. 
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How can the incoming light cause this increase in the dark and bias count? One 

possible source is an increase of the temperature on the surface of the chip. But two 

reasons contradict this assumption. 

• As Figure 18B shows, the dark count increased by a factor of 15, if a flat-field 

frame is taken before the dark frame. This would correspond to an unreason

able temperature increase of at least 20° C since the doubling temperature is 

5. 71° C. Similar results were obtained in the temperature range of -15° C to 

20° c. 

• The average dark count increased by the factor of 15, but the dark count of the 

hot pixel increased only slightly. Therefore, the effect is not a multiplicative 

effect, it is an additive effect. If a temperature increase would be the reason for 

the larger dark count, then the effect would be multiplicative and the hot pixels 

would increase at least by the same factor since the doubling temperature 

~Thot is larger than the average doubling temperature ~T. 

A more realistic explanation for this additive effect is a kind of 'storage' of the 

light count with a slow, time-dependent release. I denote this offset as 'dark offset'. 

In Figure 21 the time dependence of the dark offset is shown for different flat-field 

exposure times. After approximately 50 second flat-field exposure time, the dark 
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offset becomes saturated. Note that it is possible to fit an exponential curve over 

each set of decaying dark offset (see Figure 21). The halftime fl.tis 50 ±1.7 seconds. 
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Figure 21: The decay of the dark offset after different flat-field exposure times as a 
function of time is shown in this figure. Open circles denote the calculated dark offset 
at the end of the flat-field exposure. Flat-field exposure starts at t==O. Closed symbols 
indicate the decay of the dark offset with time, where time is the time since the beginning 
of the flat-field exposure. 



Chapter 6 

Flat-Field Frames 

The last frame needed to calibrate an image is the flat-field frame. Flat-field calibra

tion corrects for irregularities across the telescope's field of view and variations in 

the sensitivity of the CCD itself, i.e., a flat-field frame is a map of the relative sensi

tivity of each pixel in the detector (see Equation ( 1)). They are created by imaging 

a uniformly illuminated surface. A typical flat-field frame is shown in Figure 22(14]. 

The flat-field count in a randomly picked pixel can functionally be separated in 

a light signal count (F), a dark count (D) and a bias count (B). 

Fr aw 

2 
NF,raw 

= (F + D + B)raw 

= N'j+ N'}; + N~ 

(51) 

(52) 
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In order to calibrate the flat-field frame, we have to remove the dark count ( b) 

and the bias count (B). Since there is noise in the dark and in the bias count, the 

subtraction causes again an increase in the noise level. The corresponding signal 

and noise levels can be determined: 

Fcal 

2 
NF,cal 

= (F + D + B)raw - fl - B 

= N'j.. + N'}; + N~ + Nb + N~ 

(53) 

(54) 

Dividing by a flat-field frame should not change the average pixel value. Therefore 

it is advantageous to normalize the flat-field frame to an average pixel value of 1 

count. This can be done by dividing the flat field frame by the average flat-field 

count of the flat field frame, denoted as F. After normalizing the flat-field frame to 

an average value of 1, the signal and noise levels are 

SF,nrm 
Fcal 

(55) ----
F 

N'J..,nrm 
N'J..,cal 

= p2 (56) 

The signal-to-noise ratio stays unchanged since dividing or multiplying by a constant 

influences the signal and the noise the same way (see section 2.4.5). 

SF,nrm Fcal 
(57) 

N F,nrm N F,cal 
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6.1 When is it Necessary to Take a New Flat

Field Frame 

Since the flat-field correction is repeatable, it is essential to avoid introducing non

repeatable patterns, such as from mechanical and optical effects, into the flat-field 

frame. The alignment between a CCD camera and the optical system must remain 

fixed for all sky images and flat-field frames, otherwise the pattern changes and a 

new correction has to be generated. The following mechanical considerations are 

critical to obtain a reliable flat-field correction[14]. 

• The camera-to-telescope alignment must not change as the system is pointed 

to different parts of the sky[14]. 

• A filter wheel must repeat its positioning very accurately so that shadows from 

dust on the filters will land on the same pixels. In a converging optical beam, 

as the filter is moved farther from the CCD, dust shadows enlarge and soften. 

At the same time, however, it becomes more difficult to accurately repeat a 

filter's position[14]. 

• Since it is impossible to remove a camera or filter wheel from a telescope and 

put it back in exactly the same orientation, a new flat-field frame must be 

obtained each time the equipment is adjusted[14]. 
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• Telescope optics and the CCD's sensitivity may change according to the wave-

lengths of light. So it is essential that the flat-field frames are exposed to the 

same color as the sky images [ 14]. 

• A CCD's quantum efficiency varies with temperature. Therefore a new flat

field frame should be taken if the temperature changes[14]. 

6.2 Flat-Field Targets 

In general, a distinction is made between three different flat-field targets. 

Twilight Flat-Field: Twilight flat-fielding uses the twilight sky as the uniformly 

illuminated surface. There are two major problems which have to be consid

ered. One is that the brightness of the twilight sky changes very fast. This 

makes it essential to normalize the flat-field frames for generating a master flat

field frame. The other problem is that the blue twilight sky matches poorly the 

typical reddish sky background on a moonless sky. This can cause problems 

since the pixels have different quantum efficiencies for different wavelengths. 

Furthermore, it is advantageous to generate a master flat-field frame due to 

the fact that there are stars visible even in the twilight sky[14]. 
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Sky Flat-Field: Many different celestial images are combined into a master flat

field frame. The big advantage of this method is, that obviously the fiat

field frame represents very well the wavelength distribution in the sky image. 

However, a huge number of celestial images are needed in order to process a 

master flat-field frame with a high signal-to-noise ratio[14]. 

Dome Flat-Field: A screen in front of the telescope, uniformly illuminated by 

lamps, is used as the target. Additionally, the light can be diffused by putting 

a white paper directly in front of the telescope's aperture. Dome fiat-field 

frames have two advantages over twilight ones: The level of illumination can 

be controled and the wavelength of the light used can be matched to the color 

of the sky[14]. 
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Figure 22: Graph A shows a typical flat-field frame. The dust shadows can be clearly 
recognized in Graph B, which shows the marked area in Graph A on an enlarged scale. 
The frame is taken at 20° C with a 20 second exposure time. 



Chapter 7 

Master Frames 

One way to obtain a high signal-to-noise ratio is to generate a master frame. A 

master frame is, in general, the average frame of frames with equal signal levels as 

explained in section 2.4.6. If we combine images with similar signal and noise levels, 

we can write 

Ni 
f/t;:::; yin 

S Si 
-=- ~ Fn
N Ni 

(58) 

where S and N are the signal and noise level of the master frame and Si and Ni are 

the signal and noise level of one of the original images. The noise in a master frame 

combining n images is decreased by the factor yin compared to the noise in a single 

frame. 
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7 .1 Generating a Master Bias Frame 

Typically the bias level drifts up and down with time as the camera's electronics 

changes temperature. Thus, a bias frame taken immediately after an image gives 

the best estimate of the bias count in the image. Depending on how much a bias 

frame is drifting, it is sometimes advantageous to split the raw bias count (Braw) 

into a noise-free bias offset 1 (Boffset) and a bias structure (Bstruc), that includes 

n01se. 

Braw = Bojfset + Bstruc (59) 

Therefore, if the raw bias count drifts with time, the bias offset can be calculated 

for an individual bias frame and then be subtracted to obtain the bias structure 

frame. A master bias frame can then be generated with the bias structure frame. 

Note that the bias offset is no longer included in the master bias frame. Thus, if the 

bias count has to be removed in an image, it is then essential not only to subtract 

the master bias frame, but to subtract the bias offset as well. A bias frame taken 

directly after the image can be used to calculate the bias offset and the master bias 

frame is used to subtract the bias structure. Henceforth, whenever we refer to a 

master bias frame, a decision on whether it is appropriate to split the bias count 

1 The bias offset is denoted as the average of the bias count over the whole frame or over a 
sufficiently large subframe. 
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into a bias offset and a bias structure will have to be made. Using Equation ( 58) 

the noise in a master bias frame can be determined: 

N~ 
2 - --N B,master(n) - n (60) 

In Figure 23 the noise of a master bias frame generated by combining different 

numbers of bias frames is shown. Since the bias offset is noise free, the noise in 

a master bias frame is independent of whether the master frame was generated by 

combining bias structure frames or by combining raw bias frames. 
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Figure 23: This figure displays the noise of master bias frames. The bias frames are taken 
at -10° C. 
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7.2 Generating a Master Dark Frame 

A dark frame needs to be calibrated as mentioned before (see chapter 5). In order to 

get a high signal-to-noise ratio, a master dark frame can be generated. In general, 

there are a couple of different methods that can be followed to process this master 

dark frame. Let us consider as an example two different methods of generating a 

master dark frame (see Table 2). Suppose we have a pool of 10 sets of frames, each 

set consisting of one dark frame and one bias frame. 

Method One: We generate first a master bias combining the 10 bias frames2 • The 

next step is to subtract the master bias frame from the raw dark frame. As 

the last step, themaster dark frames are processed with n out of the 10 cali-

brated dark frames. It is important to point out, that the noise caused by the 

subtraction of the master bias frame of each individual dark frame does not 

decrease with the number of frames n used for the master dark frame. This is 

because each dark frame is calibrated with the same master bias frame and 

therefore the noise in each dark frame corresponding to the subtraction of the 

master bias frame is not independent anymore. 

Method Two: The first step in this method is to subtract each of the raw bias 

frames from the corresponding raw dark frames. Then the master dark frames 

2 Depending on the camera used, the bias count should be separated into a bias offset and a 
bias structure. 
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are generated by using n out of these 10 calibrated dark frames. Since each 

dark frame is calibrated with a different bias frame, the noise corresponding to 

these subtractions is independent from each other. Therefore the total noise of 

the master dark frame decreases with the number n of calibrated dark frames 

used. 

Method one has, as can be seen in Table 2, a better noise level than method two, 

if there are only a few calibrated dark frames used for the master dark frame. But 

since the noise caused by subtracting the master bias frame is not decreasing by 

increasing the numbers of combined dark frames, the noise level for 10 combined 

calibrated dark frames is equal for both methods. At first glance it looks like method 

one is superior to method two. However, since the noise level of the 'end result', the 

master dark frame, is equal for both methods and method two is much faster, the 

use of method two can be recommended. A graphical comparison of the noise level 

of the two methods is shown in Figure 24. It can be seen that when n is 10 both 

methods result in essentially the same noise level. 



Method one: 

A master bias is processed with the 
10 bias frames. 

1 10 
Bmaster(lO) = ; · ?= Bi 

i=l 
2 N2 N - ::...IL B,master(lO) - 10 

From each raw dark frame the master 
bias frame is subtracted. 

Deall = (D + B)raw - Bmaster(lO) 

N 2 _ N2 + N2 + !!1 
D,eall - D B 10 

Master dark frame with n out of the 
ten Deal 

1 n 
Deall,master(n) = ; • .L Deall 

t=l 
2 N 2 N 2 N 2 

N - :.:.a. + ::...IL + ::.:a D,eall,master(n) - n n 10 

Method two: 

From each raw dark frame one single 
bias frame is subtracted. 

Deal2 = (D + B)raw - B 

N'b,eal2 = N'JJ + N~ + N~ 

Master dark frame with n out of the 
ten Deal 

1 n 
Dea/2,master(n) = ; · .L Dea/2 

i=l 
2 N 2 N 2 N 2 

N - :.:.a. + ::...IL + ::...IL D,eal2,master(n) - n n n 

Table 2: Summary of two ways to generate a master dark frame. 
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Figure 24: Comparison of the two methods for master dark frame calibration. All frames 
are taken at 15° C. The dark frame exposure time was 10 seconds. 

7 .3 Generating a Master Flat-Field Frame 

Just as the dark frame, the flat-field frame needs to be calibrated as well (see chapter 

6). A master flat-field frame can be generated since it is advantageous for the signal-

to-noise ratio. There are different methods of calibrating a master flat-field frame. 

Two methods will be discussed. Once again we have a pool of 10 sets of (flat-field 
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frame, dark frame, and bias frame). Table 3 shows an overview of the signal and 

noise levels for both calibration methods. 

Method One: First, a master bias frame is generated with the 10 bias frames. The 

10 dark frames are calibrated with this master bias frame and then combined 

into a master dark frame. The next step is to subtract the master bias frame 

and the master dark frame from each flat-field frame. One important thing to 

mention is, that the noise caused by the subtraction of the master bias frame 

from the flat-field frame and the noise caused by the subtraction of the master 

bias frame from each dark frame cancels out. The reason for this is, the same 

master bias frame is subtracted from the dark frame and from the flat-field 

frame. With some algebra it can be shown that these two operations cancel 

each other out, as shown below. 

Fcall = Fraw - Dmaster(lO) - Bmaster(lO) 

1 10 

= Fraw - lO ·?:(Draw - Bmaster(lO)) - Bmaster(lO) 
i=l 

1 10 1 
= Fraw - lQ ·?:(Draw)+ 10 · 10 · Bmaster(lO) - Bmaster(lO) 

i=l 

1 10 

= Fraw - lQ ·?:(Draw) (61) 
i=l 

It can be observed that the bias frame drops out completely. The last step 

is then to generate the master flat-field frame with n out of the 10 calibrated 
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flat-field frames. Similar as method one in the master dark frame calibration, 

the noise corresponding to the subtraction of the master dark frame and the 

master bias frame is not decreasing with an increasing number of flat-field 

frames used for the master flat-field frame. 

Method Two: In this method, the first step is to subtract the raw dark frame 

from the corresponding flat-field frame. The master fiat-field frame is then 

generated by n out of the 10 calibrated flat-field frames. The noise of the 

master flat-field frame decreases proportional to yin, since all sources of noise 

are independent from each other. 

Similar to the master dark frame calibration, method one has a better noise level 

for a single flat-field frame; but the noise level for a master flat field frame generated 

out of all the 10 fiat-field frames is equal for both methods. Since method two is 

superior in processing speed, memory requirements and imaging time, the use of 

this method can be recommended to easily obtain a flat-field frame with a high 

signal-to-noise ratio. The difference of the squared noise of the two master fiat-field 

frame calibration methods is shown in Figure 25. 



Method one: 

A master bias and a master dark is 
processed with the 10 bias frames and 
the 10 dark frames. 

1 10 
Bmaster(lO) = 10 · ,L Bi 

i=l 

Deal = Draw - Bmaster(lO) 

1 10 
Dmaster(lO) = 10 • .2: Deal 

i=l 

Subtract master bias and master dark 
from each raw flat-field frame. 

Feall = (F + D + B)raw 

-Dmaster(lO) - Bmaster(lO) 

2 -N2+N'b+NA o;ro 
NF,eall - F2 N2 ,2 + N 

+~+:.:..a+ 0 10 10 

Master flat-field frame with n out of 
the ten Fcall 

1 n 
Fcall,master(n) = ; · .L Feall 

i=l 

2 N2 N2 N2 N -.:.:£+~+:.:..a F,eall,master(n) - n n n 

+~+~ 10 10 

Method two: 

Subtract one single raw dark frame 
from each raw flat-field frame 

Fcal2 = (F + D + B)raw 

-(D + B)raw 

Nf eal2 = NJ,.+ N'b + N~ 
' +N'b+NA 

Master flat-field frame with n out of 
the ten Feal2 

1 n 
Fcal2,master(n) = ; · L Fcal2 

i=l 

2 N2 N2 N2 
N -.:.:£+~+.:..:.ii F,eal2,master(n) - n n n 

+~+~ n n 

Table 3: Summary of two ways to generate a master flat-field frame 
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Figure 25: The difference of the squared noise of the two master flat-field frame calibration 
methods is shown. All frames are taken at 5° C. The exposure times are 5 seconds for all 
dark frames and flat-field frames. 



Chapter 8 

Real World Example 

Considering the different ways to calibrate an image, how might a night session look 

like? Let us take a look at three possible night sessions and compare the advantages 

and disadvantages. In Table 4 an overview of the different sessions is shown with 

their associated 'costs'. These 'costs' are measured in terms of 

op. #: The number of operations performed. 

time units: The number of time units needed. Any image taken with an exposure 

time larger than 0 seconds counts as one time unit. A bias frame is considered 

to require no time to be acquired. 

memory units: One saved image counts as one memory unit. 

The three sessions can be described as follows. 



86 

Session one: At the beginning of the night, a flat-field frame and a corresponding 

dark frame are taken. The flat-field frame is calibrated with the dark frame 

and normalized to an average pixel value of 1 count. During the night, images 

are taken with the corresponding dark frames, which are used for calibrating 

the images. 

Session two: At the beginning of the night, 10 sets of (flat frame, dark frame), 

denoted as Pool-1, and 10 sets of (dark frame, bias frame), denoted as Pool-2, 

are taken. A master flat-field frame combining 10 flat-field frames is generated 

with the frames of Pool-1 and normalized to an average pixel value of 1 count. 

The master bias frame and the master dark frame are generated with the 

frames of Pool-2, each combining 10 frames. During the night, images and 

corresponding bias frames are taken. These bias frames are used to subtract 

the correct bias offset from the images. The master bias frame and the master 

dark frame are subtracted from the image and then the image is divided by 

the master flat-field frame. 

Session three: In this session, a high performance CCD is used. Therefore the bias 

count does not drift and the bias count does not have to be divided into the 

bias offset and the bias structure. The session is very similar to session two, 
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except there is no need to take the bias frame corresponding to each image, 

since it is not necessary to separately take the bias offset into account. 

If we combine Equation (28), (29), (30) and (31 ), we can estimate the calibrated 

final signal with its noise level. 

Seal 

2 
Neal 

Sraw - D - B 
- fr 

N 2 N2+N2 ~ N2 S,raw + fJ f3 + p2 ' F 
p2 

(62) 

(63) 

The three different sessions have different N'jy, N~ and NJ, therefore it is essential 

for the comparison of the noise levels to express these terms in the same 'units'. 

The noise in a bias count, dark count and flat field signal corresponding to a single 

frame, denoted as Nn, NB and Np, respectively, are chosen as the units. 

If we substitute the noise in the different calibration frames with the units Nn, 

NB and NF, we can calculate the noise levels, shown in Table 5, of the sessions. The 

noise levels in session two and three are equal due to the fact that the bias offset is 

noise free. Note that we find the same cancellation of the bias noise terms in session 

two for the same reason found in the flat-field calibration (see section 7.3, Equation 

(61)). 
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Operation type op. time memory 

# units units 
Session 1 1 set (Flat,Dark) 2 2 

-fr · (Flatraw - Darkraw) . =} Flatcal,nrm 2 2 
3 4 7 

1 set (Image,Dark) 2 2 
I mageraw - Darkraw =} ImagenBcal 1 1 
I magenBcal/ Flatcal,nrm =} I magenBFcal 1 1 

2 2 4 
Session 2 10 sets (Flat,Dark) 20 20 

Flatraw - Darkraw =} Flat cal 10 10 
t · ( 110 2:10 

Flatcal) =} Flatmaster,nrm 2 2 
10 sets (Dark,Bias) 10 20 
Darkraw - Biasraw =} Dar kcal 10 10 
1~ LlO Darkcal =} Darkmaster 1 1 
Biasraw - Biaso1 fset =} BiaSstruc 10 10 
1 LlO B" 10 'tllSstruc =} Bias master 1 1 

33 30 73 

1 set (Image, Bias) 1 2 
I mageraw - Darkmaster =} Imagencal 1 1 
Imagencal - Biasmaster =} ImagenBcal 1 1 
ImagenBcal - Biasojfset =} I magenBOcal 1 1 
I magenBOcal/ Flatmaster,nrm =} I magenBOFcal 1 1 

4 1 6 
Session 3 10 sets (Flat,Dark) 20 20 

Flatraw - Darkraw =} Flatcal 10 10 

t · ( 110 L:1° Fl at cal) =} Flatmaster,nrm 2 2 
10 sets (Dark,Bias) 10 20 
Darkraw - Biasraw =} Dar kcal 10 10 
{ 0 2:10 Darkcal =} Darkmaster 1 1 
1 LlO B" =} Biasmaster 1 1 
10 iasraw 

23 30 63 

1 Image 1 1 

I mageraw - Darkmaster =} Imagencal 1 1 

Imagencal - Biasmaster =} ImagenBcal 1 1 

I magenBcaz/ Flatmaster,nrm =} I magenBFcal 1 1 
3 1 4 

Table 4: Three possibilities of how a night session might look are shown. 



Session one 

Session two 

Session three 

iJ+B 
N~ +N~ D B 

ft 

N~ 
F 

Ns
2 

cal seu.1 
' ' 

i3 

iJ 
N~ 

D 

ft 

N~ 
F 

N'§.cal,seu.2 

Nlcal,seu.3 

= 

= 
= 
= 
= 

= 

= 
= 
= 
= 

Draw = (D + B)raw 

(N'}; + N'Ji)D,raw 

j · (Fraw - Draw) 

Fcal,nrm 

.P · ((Nfo + N'jy + N'Ji)F,raw + (N'jy + N'Ji)D,raw) 

52 
N~,raw+Nb+N~+ ,.2 cg! .t:-2 ·(N;+2·Nb+2·N~) 

10 

110 . L Beal 
10 

master.nrm 

F!o•ter,nrm 

1
1
0 • l:(Draw - Braw) 

1
1
0 • ((N'jy + N'Ji)v,raw + N'Ji) 

10 

j · (1
1
0 • l:(Fraw - Draw)) 

89 

= F master,nrm 

= j · (1
1
0 • ((Nfo + N'jy + N'Ji)F,raw + (N'fi + N'Ji)v,raw)) 

= 1 2 1 2 2 ~o ~o ' · (NS raw + 10 • (ND + NB + B + 10 • B 
ma•ter,nrm 1 

+ .,,:;i s;e, .p2 • (lo · (NJ. + 2 · Nj, + 2 · Nj))) 
moater,n.rm 

= .,,::i 
1 

· (Nj raw+ lo · (Nj, + Nj) 
maater,n.rm , 

+ .,,2 s;9 , .p2 • (i10 • (NJ. + 2 · N'}; + 2 · Nj))) 
ma•fer,nrm 

= Nlcal,seu.2 

Table 5: This Table shows the noise levels of the night sessions. Note that the noise level 
of session three is equal to the noise level of session two 



90 

8.1 Comparison of the Three Night Sessions 

Following is the comparison of the night sessions. 

Comparison of session one and session two: In Table 4 it can be seen that 

session one is superior in processing speed and memory requirements. The 

straightforward processing makes a correct calibration easy to perform. A 

disadvantage is that the noise level is higher compared to session two. Another 

disadvantage is that the dark exposure time has to be equal to the image 

exposure time, since the dark frame includes the bias count. This makes it 

impossible to scale the dark frame to another exposure time. 

In session two, it is possible to use the same calibration frames the whole 

night. After the calibration frames are obtained at the beginning of the night, 

only the images with the corresponding bias frames have to be taken during 

the night. This is a big advantage for long night sessions since a bias frame 

has zero exposure time and therefore only half of the imaging time is needed 

compared to session one. 

Comparison of session two and session three: Since session three is very sim

ilar to session two, it has the same advantages and disadvantages, but session 

three is a little faster than session two. Furthermore, it is no longer necessary 

to take a bias frame corresponding to the image, therefore this session is not 
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as memory intensive. The major disadvantage is that session three can only 

be performed if the CCD camera used is a high performance camera, since it 

is essential for this calibration procedure that the bias count does not float. 

8.2 Quantitative Estimation of the Noise Levels 

The raw signal (Sraw) can functionally be split into a real signal (Breaz), a dark count 

(D) and a bias count (B) 

Sraw 

2 
Ns,raw 

= Breal + D + B 

= N~,real + Ni + N~ 

(64) 

(65) 

Using this we can describe the noise levels in the three night sessions as follows (see 

Table 5): 

1 
N 2 . 1 = p2 S,cal,aeaa1on maater,nrm ((Nlreal +Nb+ N'JJ)s,raw + N'b + N'JJ + (66) 

s~, (N2 2 
F!aater,nrm·F2 • F + 2 'ND+ 2' NA)) (67) 

1 
N 2 . 2 = p2 S,cal,aea111on maater,nrm ((NJ,real +Nb+ N'JJ)s,raw + 1

1
0 ·(Nb+ NA)+ (68) 

s;g, ( 1 (N2 2 
F!aater,nrm·F2 • 10 • F + 2 ·ND+ 2 'NA)) (69) 
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A quantative estimate of the noise in the final image can be done if values are 

found for NB, N n, NF and N s,real. This is easy for N n, NF and N s,real, since these 

noises correspond to a Poisson count. Then N'f:,, NJ. and NJreal can be estimated 
' 

with the dark count D, the flat-field count F and the real signal Sreal, respectively. 

The estimate for the bias noise has to be done differently since the bias count is 

not a Poisson count. An easy way to obtain an estimate of the average noise in 

the bias count is to use the 'subtraction method' described in section 3.2.1. The 

bias noise can be estimated by simply calculating the average noise in a difference 

frame, generated by subtracting two bias frames from each other, and then using 

the following equation: 

2 N 2 

NB= difj 
2 

(70) 

The average bias noise corresponding to one bias frame is denoted with NB. The 

normalized flat-field count Fmaster,nrm can be estimated with 1 count (see chapter 6). 

With correct calibration, the real signal Sreal should be very close to the calibrated 

signal Seal. Using all these estimates, we can approximate the noise of the final 

image with 

N~,cal,aeaaionl ~Seal+ D + N~ + D + N~ + s;.~l . (F + 2. D + 2. N~) (71) 
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2 S D - 2 1 ( - 2 s;a, 1 - 2 Ns,cal,amion2~ cal+ +Nn+ 10 · D+Nn)+ p 2 ·(
10 

·(F+2·D+2·Nn)) (72) 

This approximation can be applied to estimate the average noise in the image 

using averaged D, NB, F and Seal or to estimate the noise in a specific pixel using 

the counts of this specific pixel. 

To calculate this lengthy term is very time consuming but, in most cases it is 

possible to get a rough estimate by simplifying the Equation (71) or Equation (72) to 

just the leading terms. The following sections detail this process for several different 

cases. 

Faint objects 

Suppose the average flat-field signal(F) is much bigger, say x times bigger, than the 

real signal (Bread, then we can write 

s;eal - _.!._ 
p2 - x2 

If we plug this in Equation (71), we get 

N2 ,.....,, S D - 2 1 ( - 2 
S,cal,sessionl ,.....,, cal + 2 . + 2 . NB + x2 . F + 2 . D + 2 . NB) 

and since 

1 -2 1 -2 
2 · (F + 2 · D + 2 ·NB)~ - ·(Seal+ 2 · D + 2 ·NB) 
x x 

(73) 

(74) 

(75) 
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the total noise can be estimated by 

N~,eal,sessionl :S: Seal+ 2 · D + 2 •fl~+~· (Seal+ 2 · D + 2 •fl~) (76) 

For a sufficiently large value of x, the second term cancels out and we can further 

simplify to 

N2 '"'-JS -2 
S,cal,sessionl '"'-J cal + 2 · D + 2 · NB (77) 

Very bright objects 

The exposure time for bright objects is short and therefore also the accumulated 

dark count is very small compared to the real signal (Breaz), even for very hot pixels. 

This can be applied to the flat-field count (F), if the flat-field count is sufficient 

high. In this case, the contribution of the dark count and the bias count can be 

neglected and Equation (71) can be simplified to 

N2 '"'-JS + s;al F 
S,cal,sessionl '"'-J cal p 2 • (78) 

Figure 2 shows a faint object, the Ring Nebula M-57. The white specks caused 

by the dark count can clearly be seen in the uncalibrated image. In Figure 3, a 

bright object, the Hercules Cluster M-13, is shown. The dark count can hardly be 

seen, even in the uncalibrated image. Obviously, dark subtraction plays a larger 

role for faint objects. The reason being a larger exposure time for faint objects1 as 

well as a smaller ratio of the real signal to the dark count. 
1 More dark count is accumulated. 
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Combining celestial images 

In order to obtain a better signal-to-noise ratio, it is advantageous to combine several 

'equal' images of the same object, i.e., the images should have the same signal and 

noise levels and the object should be on the same spot in the image. Say n images are 

combined to a master image (Scal,master(n))· If the images are calibrated as described 

in session one, the noise (Ns,cal,master(n),sessioni) decreases with fo,: 

Scal,master(n),sessionl 

N~,cal,master(n),sessionl 

1 10 

= - · L Si,cal,sessionl 
n i=l 

N~,cal ,sessionl 

n 

(79) 

(80) 

It is different if the images are calibrated as described in session two, since the 

same calibration frames, i.e., the same master bias frame, master dark frame and 

master flat field frame, were used to calibrate the images. Then, the noise caused by 

subtracting the master dark frame and the master bias frame and the noise caused 

by dividing through the master flat-field frame does not decrease by combining the 

calibrated object images. 

1 
Nlcal,aeuion2 = F~aater,nrm ((Nlreal + N'jy + Nj) + 1

1
0. (N'jy + Nj) + (81) 

s;a, ( 1 (N2 
F!asier,nrm·F2 • 10 • F + 2 • N'jy + 2 · Nj)) (82) 
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N2 -
S,cal,master(n),seuion2 -

1 ((N~,real:Nb+N~) + /
0 

·(Nb+ N'j,) + (83) 
F~aster,nrm 

s;a, ( i (N2 
p;_atter,nrm·F2 • 10 • F + 2 · N'}y + 2 • N'j,)) (84) 

This can have a major influence on the noise estimate. Suppose the noise in the raw 

signal is m times higher than the other noise caused by subtracting the dark count, 

the bias count and by dividing by the flat-field count. 

2 2 1 2 
N S,cal,session2 = N S,raw + m . N S,raw (85) 

The second term can be neglected for sufficiently large m, for reasons mentioned 

earlier, and the main contribution to the total noise is the noise in the raw signal. 

N2 r"'o.J N2 
S,cal,session2 r--..J S,raw (86) 

It is very attractive to use the noise of the raw signal as the estimate of the noise of 

the combined images. 

N2 
N2 r"'o.J S,raw 

S,cal,master(n),session2 r"'o.J n (87) 

But this is meaningful only to a limit. Say m = n, then we can use Equation (85) 

to calculate the noise in the master image, shown below: 
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N~,cal ,session2 
2 1 2 

= Nsraw + - · Nsraw 
' n ' 

(88) 

N~,cal,master(n),session2 
1 2 1 2 = - · NS raw + - · NS raw 
n ' n ' 

N2 = 2 . S,raw 

n 
(89) 

Obviously, the noise calculated with Equation (89) is larger by a factor of two 

compared to the noise calculated with Equation (87). It is important that the noise, 

which could be neglected for one image, now plays a more important part in the 

total noise of the master image. 



Chapter 9 

Conclusions 

The dependence of the bias count, caused by charging the chip, on the temperature 

was examined in several experiments. It was shown that the bias count and the 

corresponding bias noise decreased slightly if the CCD-camera is cooled down. For 

temperatures lower than 5° C, the bias offset and the bias structure stayed nearly 

unchanged. But more importantly, the bias offset and consequently the bias count 

were much more stable at low temperatures and therefore, it was possible to subtract 

the bias count with greater accuracy at low temperatures. 

Random motions of electrons within the chip are the sources of dark count. The 

dark count showed a linear dependence on the exposure time, even though different 

pixels have different dark counts. This made it possible to use dark frames with 

different dark exposure times by scaling them with a constant. As expected, multiple 
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pixel populations, each with a well defined average dark count, could be observed. 

95 % of the pixels were in the main population, 2% in the hot pixel population one 

and 0.1 % in the hot pixel population two. The remaining 3% of the population were 

uniformly distributed. 

The dark count showed a well-defined exponential temperature dependence. The 

measured doubling temperature ~T was 5. 71° C for the chip used. It turned out 

that the hot pixels have a higher doubling temperature. For the first hot pixel 

population, a doubling temperature ~Thot of 7.40° C was found. 

It was shown that it could be an advantage to use dark frames scaled down from 

a high temperature for dark subtraction, due to the fact that a dark frame taken at 

a higher temperature with the same exposure time has a larger signal-to-noise ratio. 

It was found that in practice, dark subtraction with a dark frame taken at another 

temperature led to a wrong result; this is caused by the fact that the hot pixels 

have a different doubling temperature than the main population. Although the 

main population can be scaled down very accurately, the disadvantage of incorrect 

scaled-down hot pixels overshadows the better signal-to-noise ratio, even though the 

hot pixels are only 5% of the total population. 

An unexpected effect was observed when flat-field frames or other light frames 

were t.aken before dark frames or bias frames: The average count increased. For a 

temperature of -5° C the dark count increased by a factor of 15 if a flat-field frame 
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was taken before with a sufficiently long exposure time. Even for non-saturated flat

field frames with short exposure times, the average dark count of a dark frame taken 

directly after the flat field frame increased by a factor of 3. It was first thought that 

the incoming light caused a temperature increase on the surface of the chip which 

could result in a multiplicative increase of dark count. This, however, was shown 

not to be the case, since the hot pixels did not increase by this factor and only 

an offset, denoted as dark offset, was observed. From these observations, it was 

surmised that the effect was due to storage effects. The halftime of the dark offset 

was 50.5 seconds ±1. 7 seconds. The dark offset is a false signal added to the dark 

count and missing from the light count. The ratio of two pixels with different light 

counts deteriorates by this dark offset, since the storage is not linearly dependent 

on the light count. In order to remove the error caused by adding the dark offset to 

the dark count, dark frames should be taken before light frames are taken. 

It has been shown that the generation of a master frame does not always decrease 

the noise as expected. The noise decreases with fo (n = number of frames used) 

if independent frames are used; but if in the calibration process the same frame is 

used, the noise of the master image will not decrease as fast. This fact is overlooked 

in the literature. For generating master dark frames, it is sufficient to subtract 

just raw bias frames instead of both master bias frames and bias offset for the bias 

count subtraction. Similarly, in master flat-field frame generation, the subtraction 
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of just raw dark frames instead of both master bias frames and master dark frames 

leads to the same noise level. In celestial images, the use of master frames increases 

the signal-to-noise ratio. On a case by case basis, one might need to decide if the 

advantages of a higher signal-to-noise ratio is worth the additional processing time 

and increased memory requirements. For long night sessions it can be advantageous 

to spend time at the beginning of the night to generate master calibration frames 

since it is then no longer necessary to take additional frames for calibration after 

each image, due to the fact that one can use the same master dark frame for all 

dark count calibrations. 

From the result of the night sessions described above, it was shown how to esti

mate the final noise in a calibrated image. Starting from the noise in the calibrated 

master flat field frame, the total noise was calculated. Several examples were given 

onhow to simplify the estimate for real applications like faint stars and bright ob

jects. The possibility to easily process a noise map of acalibrated image using the 

image arithmetic features in the software usedwas shown. 



Appendix 

Problems with the software 

MIRA 

The software described in section 3.1.2 was used for all image processing and for 

controlling the CCD camera. Several problems with the software arose during the 

research done. 

A.1 Median Combining 

The combining feature in the software was extensively used. It was recognized, that 

the median combining led to unexpected results. Instead of improving the noise 

level compared to mean combining, it increased the noise level. Furthermore, the 
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noise showed different noise levels for odd and even numbers of frames used for the 

master frame. The 'Saw Tooth'-like curve can be seen in Figure 26. 

Out of 3 pools, each with 10 bias frames taken at -10° C, the master frames were 

processed. The noise in the frames was measured using the subtraction method 

described in section 3.2.1. 

N};iff 
2 - ~~-

N B,master(n),exp - 2 (90) 

where NB,master(n) is the noise in the master bias frame and Nnif f is the noise in 

the di:ff erence frame. 

In Figure 26, the measured noises of median and mean combined master bias 

frames (see Equation (90)) are shown. For comparison, the theoretical noise for a 

master bias frame is calculated using 

Nlexp 2 -
N B,master(n),theo - n (91) 

where N B,master(n),theo is the theoretical noise in the master bias frame and N B,exp is 

the noise in a single bias frame measured with the subtraction method. 

Obviously, the noises in the mean combined master bias frames are very close to 

the predicted theoretical values (see Figure 26). The noises in the median combined 

master bias frames have oddball values, that do not agree with the theoretical values. 

It can be concluded that there is an error in the median combining feature. 
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Figure 26: Comparison of the noise in a median or mean combined master bias frame. 
The bias frames are taken at -10° C 
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A.2 Normalization in Combining feature 

The normalization in the combining feature causes problems, too. If we normalize 

with median as reference statistic, the median is calculated wrong and therefore 

the scaling constant is calculated wrong. A demo of this defective calculation is as 

follows: A pool of 15 dark frames 1 were taken and calibrated by subtracting the 

corresponding bias frames. Using the 'image arithmetic' feature to calculate the 

median of the whole frame gives the expected values, median dark count around 20 

counts. But using the normalization feature in the combining images feature gives 

a completely different result. The first value is correct, but the following medians 

have an increasing error and therefore a wrong scaling constant. The error converges 

in this example to a value of -13. Since most of the frames are now scaled down to 

a value of 20-13=7, the resulting combined image has a median of 8 instead of the 

correct value of around 20. The corresponding sections of the Mira logbook are: 

file mean median sdev min max 

DARKC12.001 32.22268 20 73.734106 -446 10065 

DARKC12.002 31.864064 20 73.43877 -458 10229 

DARKC12.003 31.149502 20 72.085515 -432 10032 

DARKC12.004 30.406759 19 70.895907 -440 9871 
--

1 Exposure time: 30 seconds; Temperature: 12° C 



106 

DARKC12.005 30.196883 19 70.622178 -429 9907 

DARKC12.006 30.113085 19 70.544217 -426 9856 

DARKC12.007 30.686472 19 71.71651 -451 10057 

DARKC12.008 31.259196 20 72.722375 -439 10172 

DARKC12.009 31.811946 20 73.459893 -453 10218 

DARKC12.010 32.159251 20 74.014917 -455 10223 

DARKC12. 011 32.663443 21 74.940597 -476 10402 

DARKC12.012 33.416983 21 75.736816 -463 10411 

DARKC12.013 33.953113 22 76.558599 -455 10544 

DARKC12.014 33.545058 21 75.814116 -482 10423 

DARKC12.015 32.452094 20 74.249486 -461 10242 

image file ref. median constant 

-------------------------------------
DARKC12.001 20 0 

DARKC12.002 27 -7 

DARKC12.003 29 -9 

DARKC12.004 31 -11 

DARKC12.005 32 -12 

DARKC12.006 32 -12 

DARKC12.007 32 -12 

DARKC12.008 33 -13 
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DARKC12.009 33 -13 

DARKC12.010 33 -13 

DARKC12. 011 33 -13 

DARKC12.012 33 -13 

DARKC12.013 33 -13 

DARKC12.014 33 -13 

DARKC12.015 33 -13 

median of 15 images -> DUMMY.MAS 

file mean median sdev min max 

DUMMY.MAS 20.564695 8 72.826975 -465 10205 

image file ref. median constant 

Furthermore, a bias frame was used as reference frame instead of the correct 

dark frame. The calculated medians of the dark frames are very close to the median 

of the reference bias frame (around 2242 counts) instead of having the correct value 

of 20 counts. The corresponding section of the Mira logbook is: 

image file ref. median constant 

DARKC12.001 2242 0 
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DARKC12.002 2245 -3 

DARKC12.003 2246 -4 

DARKC12.004 2247 -5 

DARKC12.005 2247 -5 

DARKC12.006 2247 -5 

DARKC12.007 2248 -6 

DARKC12.008 2248 -6 

DARKC12.009 2248 -6 

DARKC12.010 2248 -6 

DARKC12.011 2248 -6 

DARKC12.012 2248 -6 

DARKC12.013 2248 -6 

DARKC12.014 2248 -6 

DARKC12.015 2248 -6 

median of 15 images -> DUMMY.MAS 

file mean median sdev min max 

DUMMY.MAS 26.768787 14 72.804781 -459 10212 

[exit code 317] 

Tue Oct 15 1996 20:25:16.72 
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A.3 Minor Problems 

The following are some minor problems found with the software: 

• In the 'File Manager', it is not possible to copy an image from outside the 

main directory: Instead of copying the header file and the generic data file, 

Mira is copying two generic data files. 

• The text editor has problems with the last line: 

- If the last line is empty, the text editor deletes two lines instead of one 

line. 

- If the last line is not empty, deleting the last line causes the computer to 

freeze. 

- The feature 'Image & Image' (and other similar features) do not recognize 

the last line of a file list if the file list was created with the text editor. 

• It is not possible to change the keyword value of the keyword 'Refbias' with the 

'Change Keyword Value' feature. Error message: 'The value is not consistent 

with the data type of the keyword'. 

• 'Default Path' feature: If you use the file dialog window, you have to select a 

file instead of selecting only a path, and the filename is copied in the default 

path, too. 
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• The 'Write Fts Image' feature saves thefts image always in the main directory 

(C: \Mira) and ignores the default paths. 

• Occasionally, the computer resets while using the 'Flat Field' feature. 

• At the beginning of the research done, a computer with a 486 processor, a 

brand new hard disk and a brand new motherboard was used. After two 

weeks, the hard disk crashed and it was not possible to restore the data. Since 

there were all these problems with the 486 computer, a brand new Pentium 

with l.2Gbyte hard disk was used instead. After 40 days of using the Mira 

Software exclusively, the hard disk crashed again and all data were lost. The 

next exchanged hard disk had increasing bad sectors in the first days, but 

fortunately, it stopped after one week. In both cases, when the hard disks 

crashed, the hard disks were full or almost full. It might be coincidence, but 

perhaps something went wrong when the Mira software tried to write to a full 

hard disk. Note that the hard disk was extensively used since around 7Gbyte 

data were processed. 
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