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ABSTRACT 

An abstract of the thesis of Alison Mary Gilbert for the Master of Science in Speech 

Communication: Speech and Hearing Science presented December 1, 1995. 

Title: Limiting Noise Exposure Associated with Hearing Aid Use. 

Industrial workers who have sustained hearing losses often wear hearing aids on the 

job in order to hear their co-worker's speech. However they risk damaging their hearing 

further by amplifying the high levels of background noise typical of such environments. 

The Occupational Safety and Health Administration (OSHA) has established guidelines 

to protect workers' hearing. A maximum allowable level of 90 dBA averaged over a 

period of eight hours is considered safe. Wearing hearing aids on the job may expose an 

individual to a considerably higher levels, however no guidelines as to maximum 

allowable levels of amplified noise exist at this time. This study evaluated the 

performance of four hearing aids in noise to determine which would provide appropriate 

amplification without exceeding the OSHA maximum. 

The instruments were adjusted to provide 14 different frequency responses and 

placed on the Knowles Mannequin for Acoustic Research (KEMAR). A microphone in 

the position of KEMAR's eardrum recorded amplified levels of taped industrial noise. A 

sound level meter integrated the levels to give the OSHA Time Weighted Average 

(TWA), simulating the acoustic effect of an 8-hour noise exposure on an industrial 

worker. 
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Amplified noise remained below the OSHA maximum (90 dBA) in 2 of the 14 

hearing aid conditions studied. Noise amplified by the Argosy Expander, an 

experimental noise-reducing hearing aid, remained below the OSHA maximum when the 

instrument was set to provide minimum gain and maximum noise reduction. The Argosy 

3-Channel Clock also maintained amplified noise at a safe level when adjusted to provide 

gain only in a limited frequency region. Noise amplified by the Danavox Aura X 

programmed to provide a TILL response remained within one dB of the OSHA 

maximum. 

This study demonstrated that it is possible to use amplification in environments with 

constant background noise without risking additional noise-induced hearing loss. Two 

hearing aids were proven effective in maintaining amplified industrial noise at safe levels, 

however determining their effect on speech intelligibility in noise is beyond the scope of 

this study. Further research is needed to address this issue. 
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CHAPTER I 

INTRODUCTION 

In modem society noise exposure is a daily fact of life. In the home, during 

recreational activities, and especially in the workplace, it is virtually inescapable. Noise 

levels above 85 dBA are potentially damaging to the structures of the inner ear. 

Physiological effects of acoustic overstimulation of the inner ear include changes in 

vascular supply, causing damage to hair cells and dendrites (Spoendlin, 1971). 

Mechanical detachment of cochlear structures may occur if noise is sufficiently intense 

(Bohne, 1976). How much damage is done and whether it is temporary or permanent 

depends on the physical characteristics of the noise as well as the duration of the 

exposure (Melnick, 1985). Industrial workers are often exposed to these high levels of 

noise for extended periods of time. Changes in auditory sensitivity assessed before and 

after noise exposure are called threshold shifts (Melnick, 1984). If sensitivity returns to 

its pre-exposure level after a period of recovery it is known as temporary threshold shift 

{TTS}. When physical changes caused by noise exposure do not reverse themselves with 

time and sensitivity does not return, the change is known as permanent threshold shift 

(PTS). Research suggests that noise exposure may hasten and/or intensify the loss of 

auditory sensitivity which naturally accompanies the aging process (Corso, 1980, Kryter, 

1983). 

The Walsh-Healy Public Contracts Act of 1969 was the first set of federal regulations 

aimed at protecting workers from excessive noise exposure {Teplitsky, 1984). In 1970 

in response to the Williams-Steiger Act, the U.S. Department of Labor's Occupational 

Safety and Health Administration (OSHA) proposed a maximum allowable noise 

exposure of 90 dBA for an 8-hour exposure. The regulations were amended in 197 4 to 

require audiometric monitoring of all workers exposed to 8 or more hours of noise levels 



equal to or exceeding 85 dBA. OSHA set specific guidelines in 1983 for the 

establishment of hearing conservation programs for workers in noisy industries 

(Department of Labor, 1983). Programs were to include monitoring of noise exposure 

in the workplace, engineering and administrative controls, a hearing protection program 

to include education of employees, and hearing evaluations. 
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Numerous studies have suggested that TTS and PTS may be associated with hearing 

aid use (Harford & Markle, 1955, Naunton, 1957, Ross & Truex, 1965, Ross & Lerman, 

1967, Bellefleur & Van Dyke, 1968, Macrae, l 968a, Macrae 1968b, Macrae l 968c, 

Roberts, 1970, Jerger & Lewis, 1975, Markides, 1976, Rintelmann & Bess, 1977, 

Humes, 1978, Humes & Bess 1981, Macrae 1991, Macrae, 1993, Macrae 1994, 

Macrae, 1995). Many industrial workers have sustained hearing losses as a result of 

noise exposure on the job and during recreational activities (Kramer, 1990). If these 

workers wear hearing aids on the job there are no guidelines aimed at preventing further 

deterioration of their hearing. In fact, no guidelines as to maximum amplified exposure 

exist. 

A linear hearing aid amplifies speech as well as background noise until output 

reaches a pre-determined saturation level (Meyer, 1985). Dolan, et al (1992) 

demonstrated that industrial noise amplified even by mild gain linear hearing aids rose 

from supposedly safe levels to above levels allowable under OSHA guidelines. Hearing 

instruments whose outputs change as a function of amplitude and frequency distribution 

of the input signal are called Automatic Signal Processing (ASP) instruments. These 

instruments may reduce gain in one or more areas of the frequency response as input 

level increases (Revit, 1991 ). This reduction is called compression, and may be effected 

in a variety of ways. Some types of compression include input and output compression, 

Adaptive Compression, syllabic compression, and frequency-dependent compression 



(Hickson, 1994). Compression may operate in one or several frequency bands of the 

output spectrum. No studies in the literature have addressed the effect of using ASP 

hearing aids in noisy industry. The present study addresses this issue. 
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The purpose of this study is to determine the effectiveness of ASP systems in 

reducing amplified sound exposure in industrial noise. Three ASP and one linear hearing 

aid, programmed with a total of 14 different frequency responses aimed at reducing 

harmful noise exposure were used. Each aid was placed on the Knowles Electronic 

Mannequin for Acoustic Research (KEMAR). For each condition the input to the aids 

was a 90 minute segment of taped industrial noise played in sound field at 7 4. 5 dBA 

TWA. A microphone recorded the output of the aid in a Zwislocki coupler inside 

KEMAR's head, in order to simulate the sound pressure level at the tympanic membrane 

of a worker wearing hearing aids on the job. An integrating sound level meter recorded 

the Time Weighted Average (TWA) and Equivalent Continuous Sound Level (Leq), 

measures of noise exposure over time, of the amplified sound during the 90 minute 

exposure. This study explores whether it is possible to wear hearing aids on the job in 

noisy industry without risking additional hearing loss from noise exposure. 



CHAPTER II 

REVIEW OF THE LITERATURE 

Physiological Effects of Noise Exposure 

Noise may damage the auditory system in one of two ways. Acoustic trauma relates 

to the effect of one or more exposures to extremely high levels of noise (Melnick, 1984 ). 

Hearing loss which results from chronic exposure to noise over many years is called 

noise-induced hearing loss (NIHL),(Robinson, 1976). NIHL is less dramatic than 

acoustic trauma, but a far more common cause of hearing loss in adults. The most 

apparent effect of noise exposure on hearing is reflected in a change in thresholds relative 

to a normal hearing population (Riley, et al 1965). If these changes reverse themselves 

after a period of recovery they are known as temporary threshold shifts (TTS). If 

hearing sensitivity does not return to pre-exposure levels it is known as permanent 

threshold shift (PTS) (Melnick, 1984). 

The physiological effects of noise on inner ear structures have been studied 

extensively using animal models. Spoendlin (1971) exposed guinea pigs to 100 to 138 

dB broad band noise for periods of time ranging from one minute to one hour. The 

animals were sacrificed immediately following the exposure and their cochleas examined 

using electron microscopy. Structural changes were observed such as distortion of both 

outer hair cells and dendrites to the inner hair cells. With cessation of noise exposure 

and periods of rest these physiological changes seemed to have reversed themselves in 

similarly exposed animals and it might be expected that hearing levels had recovered. 

With continued high levels of exposure lasting for several weeks hair cells disintegrated, 

dendrites ruptured, and the Organ of Corti disappeared. At this point it might be 

assumed that the damage to the animals' hearing had been permanent. 
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An acoustic "toughening" effect has been demonstrated on the hearing thresholds of 

noise-exposed chinchillas (Hamernik, Ahroon, Davis, & Lei, 1991). An experimental 

group was exposed to broad band noise for 20 days on a schedule of 6 hours of exposure 

time each day. The control group received the same total exposure of sound energy but 

their exposure schedule was continuous for five days. It was found that permanent 

hearing loss was significantly less (up to 30 dB) for the "interrupted" group than for the 

"steady state" group. Based on morphological evidence the experimenters concluded 

that for the "interrupted" group the efferent auditory system, particularly the outer hair 

cells, had mediated a protective effect on the animals' hearing. The concept that pre­

exposure to low level noise may reduce hearing loss from high level noise is persistent in 

the literature. Animals monaurally pre-exposed to very loud sounds have been found to 

be protected from permanent threshold shift (PTS) when compared to a control group of 

animals without the pre-exposure (Cody & Johnstone, 1982). In a 1988 a study 

conducted by Canion, Borg and Flock, guinea pigs which had been pre-exposed to low 

level noise recovered from threshold shift produced by exposure to loud sounds, whereas 

threshold shifts in animals not pre-exposed were permanent. The physiological basis for 

this phenomenon is unknown. However the authors suggest that their findings might be 

relevant in the prevention of permanent hearing loss in noise-exposed workers. 

The results of studies ofTTS using human subjects (Melnick, 1976) have suggested 

that shifts will reach a maximum, or asymptotic level if noise is moderately intense and 

exposure is of an extended duration. Asymptote is reached on average after between 8 

and 12 hours of noise exposure. If the asymptotic shift is 30 dB or less, the recovery 

time is significantly quicker than if the shift is greater than 30 dB. After such a shift 

hearing levels may not return to pre-exposure levels for several days. The magnitude of 

the threshold shift and the range of frequencies in which hearing is affected depends on 



the frequency distribution of the offending noise. For broadband noise typical of that 

found in industry the frequencies of 3000 to 6000 Hz are maximally affected (Salvi, 

1993). 
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Permanent loss of auditory sensitivity also seems directly related to frequency, 

intensity and duration of the noise (Bohne, 1976, Melnick, 1984). The stereocilia of the 

inner and outer hair cells are particularly prone to damage from noise exposure. Damage 

to these structures is often an early predictor of PTS (Canion, 1988). However no 

morphological changes can be said conclusively to indicate when threshold shift of a 

temporary nature might develop into a permanent one. Susceptibility to both TTS and 

PTS varies greatly between individuals and the physical correlates are not completely 

understood (Robinson, 1976, Mills, 1992). 

Presbycusis and noise-induced hearing loss 

Presbycusis is the gradual loss of hearing sensitivity which occurs as a result of 

normal aging (Zemlin, 1988). Much evidence suggests that noise exposure associated 

with modem society hastens and intensifies this process. In studies of noise induced 

hearing loss it is difficult to isolate the effects of presbycusis (hearing loss associated 

with aging) from sociocusis (hearing loss caused by non-occupational noise exposure), 

or from nosocusis, (hearing loss caused by otological disease). Kryter (1983) concluded 

that workers routinely exposed to intense noise have hearing sensitivity approximately 10 

to 20 dB below that of the general population. In addition to their higher levels of noise 

exposure such workers also experience a disproportionately large amount of sociocusis 

and nosocusis, and these factors have an additive effect on hearing loss. 

Corso (1980) proposed a mathematical formula with which to quantify the 

presbycusic component of occupational hearing loss. Corso's work assumes that aging 



and noise exposure are the major contributors to hearing loss. Over time the 

contribution of each factor becomes stable, or asymptotic. Therefore, for individuals of 

different ages the relative importance of noise versus aging differs. Corso derived a 

variable ratio by comparing the contribution of the two factors at different stages of life 

in order to determine a correction factor for computing occupational hearing loss. 
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When using human subjects it is especially difficult to isolate the effects of aging, 

noise exposure, and otological pathology on hearing loss. In an attempt to control these 

factors Mills, Schmiedt and Kulish ( 1990) conducted a study on the hearing of 

Mongolian gerbils. The animals were born and lived the remainder of their lives in an 

environment in which the ambient noise level never exceeded 40 dB. Their ears were 

examined in order to rule out the possibility of pathology which might affect hearing 

sensitivity, and their hearing was evaluated at regular intervals. The gerbils approaching 

the end of their natural lifespans, approximately 36 months, were found to have hearing 

sensitivity comparable to human males 60 to 65 years of age and females 70 years of age. 

The results suggested that gerbils also experience a loss of hearing sensitivity with 

advancing age regardless of noise exposure. 

Noise Control Regulations 

Occupational noise levels have been increasing dramatically since the industrial 

revolution, when machinery began to be the source of power for most industry and 

transportation. In 1981 the Environmental Protection Agency (EPA) initiated an 

investigation of noise in the workplace (EPA, 1981) which concluded that 9 .27 million 

Americans are exposed to levels of 85 dBA on their jobs. According to the Occupational 

Safety and Health Administration 2. 9 million American workers have daily exposures of 

90 dBA and above. The most wide-reaching method for controlling occupational noise 



levels has been through standards, laws, and regulations. Standards are a set of rules or 

guidelines developed by a consensus group. Regulations are rules prescribed by an 

authority such as the government, and published in a document such as the Federal 

Register. Laws are prescribed by an authority and enacted by Congress. 

Air Force Regulation 160-3 was the first standard aimed at protecting workers from 

excessive noise. It required the use of hearing protection devices (HPD) in ambient 

levels of greater than 95 dB in octave bands of 300 to 600 Hz, 600 to 1200 Hz, and 

2400 to 4800 Hz (U.S. Air Force, 1956). The regulation recommended administrative 

monitoring as well as use of HPDs in levels exceeding 8 5 dB in the specified bands. 
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In 1961 the International Organization for Standardization (ISO) proposed the first 

standard to take into account the duration of noise exposure. A maximum limit of 85 dB 

in octave bands centered at 500, 1000, and 2000 Hz was to be allowed for exposures 

equal to or exceeding 5 hours. The Committee on Acoustics, Bioacoustics, and 

Biomechanics (CHABA) published a report (Kryter, Ward, Miller & Eldridge, 1966) 

with curves detailing tolerable exposure levels and duration times for noise levels from 

85 to 13 5 dBA. Higher noise levels were considered safe if exposure times were 

decreased. 

The first national legislation aimed at preventing hearing loss due to occupational 

noise exposure was the Walsh-Healey noise standard of 1969. It states that workers may 

be exposed to noise levels up to 90 dBA for a maximum of 8 hours. The level may 

increase by 5 dB for each halving of exposure time. This is known as the "exchange rate" 

between time and intensity. A more conservative exchange rate of 3 dB is the norm in 

most European countries (Suter, 1988). When levels exceed this maximum level 

employers must provide HPDs and employees must wear them. The Walsh-Healey noise 

standard also specifies that impulse noise (transient sounds having a duration of one 
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second or less) may not exceed 140 dB. An ongoing hearing conservation program must 

exist at any site where noise levels exceed maximum allowable levels. 

In 1970 Congress enacted the Occupational Safety and Health Act. It gave the 

responsibility for conducting research and developing standards relative to occupational 

safety to an organization called the National Institute for Occupational Safety and Health 

(NIOSH). OSHA was created as a section of the U. S. Labor Department to enact 

NIOSH recommendations. In 1971 OSHA adopted the Walsh-Healey noise standard 

and its provisions were extended to apply to not only employers with government 

contracts, but also the those involved in interstate commerce. Based on mounting 

evidence that 8-hour daily exposures of 90 dBA of noise posed an unreasonable risk of 

hearing loss, NIOSH sought to lower the allowable level to 85 dBA (NIOSH, 1972). An 

acoustical consulting firm (Bolt, Baranek & Newman, 1973) reported that the cost to 

American industry to comply with the proposed standard would be in the billions of 

dollars range. At the time the economic climate of the country was such that requiring 

industry to limit workers' daily exposure to 85 dBA was financially as well as politically 

untenable (Suter, 1988). As a compromise OSHA proposed to initiate hearing 

conservation programs in work sites with noise levels of 85 dBA or higher. This 

proposal in combination with more detailed requirements regarding noise monitoring and 

worker testing and education comprise the requirements in effect today (Department of 

Labor, 1983). 

A worker's noise dose (Dn) is calculated by adding actual noise exposure times which 

have been divided by permissible noise levels. When Dn exceeds I 00% hearing 

conservation measures must be employed (Oregon Occupational Safety and Health 

Code, 1983). A criterion sound level and a criterion sound duration in conjunction 



constitute noise dose. According to OSHA criterion sound level equals 90 dBA and 

criterion sound duration is 8 hours. 
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Time Weighted Average (TWA) sound level is that level which, if constant over an 8 

hour period, would result in the same noise dose. OSHA defines TWA using a 5 dB 

exchange rate and an 80 dB threshold. A-weighting is used in sound measurement to de­

emphasize the low frequency component of noise in order to simulate the action of the 

human auditory system (Ward, 1976). 

Another measurement of sound level over time is the equivalent continuous sound 

level (Leq). Leq is defined as the continuous sound level which, integrated over a period 

of time, results in sound energy equal to a variable sound level integrated over the same 

period of time (Earshen, 1986). 

Hearing aids and noise exposure 

Those who wear hearing aids on the job, particularly in noisy industries, may be at 

further risk for noise-induced hearing loss. It has been demonstrated that hearing aid use 

on the job may expose workers to unsafe noise levels (Dolan et al, 1992). Time 

weighted average (TWA) and noise dose (Dn) specified by OSHA as safe for unaided 

ears may not be appropriate for workers who use hearing aids. 

The subject of whether hearing aid use can damage users' residual hearing has been 

debated in the literature for over 50 years. Berry ( 1939) stated that hearing aid use 

posed no danger to a listener's residual hearing. According to Holmgren (1940) hearing 

aid use did not cause further harm to hearing. In fact, he suggested that amplification 

had had a beneficial effect on auditory sensitivity in several cases. A study conducted by 

Barr and Wedenberg (1965) reported similar findings. They divided subjects into 

experimental groups according to whether their hearing loss was "exogenous" (acquired) 
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or "endogenous" (congenital). They found no evidence of further deterioration of 

hearing which they could attribute to use of amplification. Naunton (1957) also reported 

improved hearing thresholds in aided ears compared to those unaided, in his study of 120 

adult users of the British Government-issued Medresco hearing aid. Subjects of this 

study were divided into groups according to age, rate of hearing aid use, and etiology of 

hearing loss. Although his findings failed to reach a level of significance, Naunton 

suggested that the improvement was found in long-term, frequent users but not in those 

who wore their hearing aids infrequently or for short periods of time. It was Naunton's 

contention that individuals with sensorineural hearing loss would refrain from using the 

aids at such a level as to be potentially damaging, due to their sensitivity to loud sounds. 

Therefore declines in residual hearing would necessarily be attributed to factors other 

than amplification. These findings were supported by Bellefleur and Van Dyke ( 1968) in 

their 10 year study oflong-term effects of amplification on the residual hearing of 58 

residents of the Clarke School for the Deaf in Massachusetts. They found no significant 

changes indicating that the childrens' hearing thresholds had deteriorated as a result of 

hearing aid use. The authors echoed Naunton's (1957) hypothesis that subjects who 

wore aids sufficiently powerful to damage their residual hearing were operating the 

instruments at comfortable, and therefore safe levels. 

Ross and Lerman (1967) also failed to correlate progressive hearing loss with hearing 

aid use. Their study incorporated 18 subjects who used monaural amplification. The 

unaided ears of these subjects were used as a control. Relative threshold shifts of about 

5 dB were found in both aided and unaided ears. Because information about the etiology 

of the hearing losses was unavailable for most of the subjects, the authors were unable to 

rule out spontaneous progressive loss as a variable. Although the authors failed to link 

the relative shifts with hearing aid use they advised that caution be used in fitting children 
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with high gain aids by limiting the Maximum Power Output (MPO) and scheduling them 

for frequent audiological evaluations. Titche, Windrem & Starmer (1977) studied the 

hearing of 261 hearing aid users over a 10-year period. They found no evidence to 

suggest that hearing losses in aided ears had resulted from hearing aid use. 

Markides (1976) also studied threshold shifts in childrens' aided and unaided ears and 

found hearing sensitivity improved in aided ears and worsened in those unaided. Results 

suggest that rather than due to a change of threshold, the disuse of the unaided ears 

contributed to the loss of acuity. The greater dependence on the ears with hearing aids 

may have encouraged improved acoustic awareness. 

Many studies have documented individual case histories in which further hearing loss 

occurred in an aided but not in an unaided ear (Harford & Markle, (1955), Sataloff, 

(1961), Ross & Truex, (1965), Roberts, (1970), Hawkins, (1982). The first group study 

of this type to conclude that hearing aid use was potentially harmful to residual hearing 

was conducted by Kinney in 1961. Subjects were 1 78 children who wore hearing aids. 

They were divided into 2 groups based on the power of the hearing instrument used. 

However neither information regarding duration of use, nor volume settings were 

recorded. Results of Kinney's study suggested that use of powerful hearing aids by 

children with sensorineural hearing impairment may cause further decrements of hearing. 

Kinney advised against the use of instruments with greater than 40 dB of gain, even if 

speech awareness might improve with a higher level. He also advised against binaural 

hearing aid fittings for children, with the rationale that any threshold shifts resulting from 

amplification could recover if the instrument were periodically switched to the other ear. 

Macrae and Farrant (1965) studied threshold shifts in 87 children with sensorineural 

hearing impairment. The children were all aided monaurally and their unaided ears used 

as a control. The researchers found both temporary and permanent threshold shifts in 
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both ears. However shifts recorded in subjects' aided ears were significantly greater than 

in unaided ears. Subjects with moderate initial losses suffered greater threshold shifts 

than those whose losses were more severe. Furthermore, the more hours a day 

amplification was used and the higher the gain, the greater the shift. Hearing losses of a 

congenital nature were found to be no more susceptible to further deterioration 

following hearing aid use than acquired losses. Macrae and Farrant suggested that 

Maximum Power Output (MPO) of the hearing aids be kept as low as practicable, that 

user's hearing be evaluated regularly, and that hearing aid use be avoided in high levels of 

ambient noise. Similar findings and recommendations were reported in subsequent 

studies (Macrae 1968a, Macrae 1968b, Macrae 1968c). Jerger and Lewis (1975) also 

advocated a cautious approach in fitting children with powerful binaural hearing aids. 

They acknowledged that while binaural amplification is educationally advantageous for 

children with binaural hearing loss, the danger of threshold shifts from hearing aid use 

must not be discounted. Noise exposure from classroom auditory trainers, particularly in 

schools for the hearing impaired has also been cited as a potential source of noise 

exposure (Rintelmann & Bess, 1977, Jerger & Lewis, 1975, Humes & Bess, 1981). 

Macrae ( 1991) suggested that overamplification by hearing aids caused PTS in 

children with sensorineural hearing loss. The observed configuration of the hearing loss 

was flat across the frequencies, similar to other types of noise-induced hearing loss. It 

was hypothesized that hearing aid users with sensorineural hearing loss experience less 

damage from noise than normal hearing individuals, and that the time course of the loss 

progresses more slowly. To predict PTS from hearing aid use in individuals with 

sensorineural hearing loss Macrae applied Humes and Jesteadt's (1989) Modified Power 

Law (:rvfi>L) and Kraak's ( 1981) logarithmic equation for predicting hearing loss from 

noise exposure (Macrae 1991, Macrae 1993, Macrae 1995). The danger ofTTS and 
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PTS from hearing aid use intensifies when the aids are worn consistently at higher than 

recommended use settings in noisy environments (Macrae, 1994). In severely hearing 

impaired hearing aid wearers asymptotic threshold shift could be expected after 8 to 10 

hours of hearing aid use, although the shifts were far less than those considered capable 

of causing PTS (Melnick, 1976). The shifts were most common when amplification 

exceeded levels recommended by the National Acoustics Laboratory (NAL). 

Macrae ( 1993) suggested that according to the MPL even with recommended levels 

of gain small temporary threshold shifts, on the order of I or 2 dB will occur for full­

time users of powerful hearing aids. He recommended gain reduction to minimize 

asymptotic threshold shift. Like other forms of acoustic overstimulation, noise induced 

hearing loss resulting from hearing aid use is affected strongly by noise dose (Dn). 

Traditionally PTS has been predicted by determining TTS at frequencies at or above 

1000 Hz at a predetermined interval following noise exposure (Humes & Bess, 1981 ). In 

order to consider the growth of and recovery from TTS an equation has been derived in 

which TTS is calculated at intervals throughout its growth and recovery stages (Kraak, 

Ertel, Furler, & Kracht, 1974). The time integral of TTS or ITTS, may be a more useful 

predictor of PTS than is a measure of TTS obtained at one interval following noise 

exposure. This relates particularly to full-time users of powerful hearing aids (Humes & 

Bess, 1981) who are exposed routinely to impulsive or intermittent noise (Robinson, 

1976). As with other types of noise exposure, the frequency of the stimulus, duration of 

exposure, and saturation sound pressure level (SSPL), or maximum output of the 

hearing aid (Humes, 1978) affect TTS associated with hearing aid use most significantly. 
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Noise Reduction Systems in Hearing Aids 

Hearing aids are designed to amplify soft sounds as well as to prevent loud sounds 

from causing listener discomfort. Traditional hearing aids accomplish output limitation 

by "peak clipping" (Skinner, 1988). This occurs when output sound pressure level (SPL) 

surpasses a pre-determined maximum level. Beyond this point there is no significant 

increase in output, regardless of input level. When operating in saturation the instrument 

limits the amplitude of the sound waves comprising the output signal (Staab & Lybarger, 

1994). Peak clipping distorts the output and detracts from sound quality (Skinner, 

1988). This type of output limitation is termed linear because until reaching saturation, 

the input signal has a one-to one relationship with the output signal (Hickson, 1994). 

Non linear, or Automatic Gain Control (AGC) hearing aids incorporate a monitoring 

circuit which reduces or intensifies the signal depending on its magnitude (Staab & 

Lybarger, 1994). It may be either input or output compression, depending on the 

location of the monitoring circuit relative to the user-operated volume control. With an 

output compression system the volume control affects gain only. For input AGC 

systems changing the volume control affects both gain and maximum output. 

Compression limits gain without the distortion caused by peak clipping by compressing 

the signal into the listener's dynamic range. Parameters such as compression kneepoint 

(or threshold) and compression ratio may be manipulated depending on the listening 

environment. The kneepoint refers to the level at which compression begins to operate. 

The compression ratio is the change in input level as compared to the corresponding 

change in output. One drawback of AGC hearing aids is that continuous low frequency 

background noise such as that typical of a noisy factory may cause the hearing aid to stay 

in compression for extended periods of time. The result may be inadequate amplification 

for high frequency signals, such as speech (Sammeth & Ochs, 1991). Multichannel 
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compression systems have been developed to alleviate such problems. In an instrument 

with several channels corresponding to different frequency regions compression may 

operate only in the low band, or have a much lower compression threshold there than in 

the other bands. The goal of such a system is to attenuate low frequency sounds while 

preserving softer sounds such as the high frequency components of speech (Smriga, 

1991). Some instruments, such as the Argosy 3-Channel Clock allow the location of the 

center band to move, in order to accommodate unusual hearing loss configurations. 

Circuits which modify gain and frequency response relative to the input signal are called 

Level Dependent Frequency Response (LDFR) circuits. Bass Increase at Low Levels 

(BILL) circuits amplify low frequency sounds to a greater degree when input levels are 

relatively low. Treble Increase at Low Level (TILL) instruments provide more high 

frequency emphasis when input is quiet. Programmable Increase at Low Level (PILL) 

circuitry allows the audiologist to make adjustments which provide either BILL or TILL 

responses depending on the listening environment (Killion, Staub, & Preves, 1990, 

Stypulkowski, 1993). It is also possible with (ASP circuitry) to account for changes in 

the temporal characteristics in different listening situations. Adaptive Compression 

developed by Telex in 1988 (U.S. Patent 4,718,099) varies compression release and 

attack times as a function of changes of the input signal. A hearing instrument with 

Adaptive Compression goes into compression and recovers quickly in response to brief, 

intense signals. When stimuli are of a longer duration, recovery is more gradual (Teder, 

1993). Results of studies as to the advantages of linear over compression aids, or which 

type of compression reduces noise and/or enhances speech intelligibility most effectively 

have failed to reach a consensus (Hickson, 1994). 
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Word Understanding with Noise Reduction Systems in Hearing Aids 

Fabry and Van Tasell (1990) conducted a study in which 12 subjects with 

sensorineural hearing impairment listened to connected, recorded discourse presented in 

speech-weighted noise with hearing aids employing the Argosy Manhattan circuit. This 

circuit is designed to increase levels of high frequency sound (the portion of the 

spectrum where consonant sounds are located) when levels of background noise 

(presumably low frequency) increase. With the Manhattan circuit activated, subjects 

demonstrated no increase in speech understanding compared to that shown when the 

hearing aids did not employ the selective filtering. Similar results had been reported by 

Van Tasell, Larsen, and Fabry (1988) and in a subsequent study by Fabry (1994). 

Consonant recognition in speech-babble and low frequency noise declined when subjects 

listened through "noise suppression" hearing aids employing both low frequency 

attenuation and compression (Tyler & Kuk, 1989). Results suggested that attenuating 

low frequency sounds in an attempt to separate background noise from speech sacrificed 

some useful low frequency speech sounds (vowels), and that compressing the speech 

signal introduced temporal distortion. The authors suggested that these hearing aids may 

provide greatest benefit by 1) increasing user comfort for high input levels and 2) 

decreasing distortion by increasing saturation levels (Tyler & Kuk, 1989, Sammeth & 

Ochs, 1991). According to Plomp (1988) individuals with sensorineural hearing 

impairment require strong amplitude contrasts in the speech signal for maximal 

understanding. He maintained that because compression with small time constraints 

(also called syllabic compression) reduces these peaks, natural amplitude variations are 

distorted. For this reason he advocated linear fittings for those with sensorineural 

hearing impairment for optimal word understanding in noise. 
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Moore ( 1991) presented an opposing view by asserting that recruitment (the 

abnormal growth of loudness) causes many individuals with sensorineural hearing 

impairment to process amplitude variations of input signals improperly. Therefore these 

variations provide no useful information for speech understanding, and it is desirable to 

minimize them. Positive effects on speech discrimination in noise were found when 

compression operated in up to 31 channels, with compression ratios adjusted in each 

channel individually to accommodate subjects' hearing loss (Crain & Yund, 1995). 

When the same compression ratio operated in each channel, performance decreased as 1) 

the number of channels increased and 2) the compression ratio increased. Yund and 

Buckles (1995a) found significantly improved word recognition when subjects listening 

to speech in noise through hearing aids employing multichannel compression (MCC) had 

a period of time in which to become accustomed to the processing. The same 

improvement did not occur after an adjustment period with linear amplification. MCC 

processing was found to provide the greatest benefit to individuals with mild to moderate 

hearing losses listening to speech in noise in low signal-to-noise ratio conditions (Yund 

& Buckles, 1995c). 



CHAPTER III 

METHODS 

Stimulus and stimulus presentation 

A 2-hour segment of industrial noise was recorded during a work shift at the Beaver 

Heat Treating Company in Milwaukie, Oregon. Noise measurements were made with a 

TEAC DA-P20 digital audiotape recorder held under the experimenter's left arm, 

connected by a shoulder strap attached to the carrying case. Recordings were made on a 

two hour digital Maxell audiotape. A Larson-Davis 812 precision sound level meter 

with a Larson-Davis 2560 one-half inch air condenser microphone was used to transduce 

the sound. A cable connected the recorder to the sound level meter. Sound was 

recorded on the left channel only, with the recording level set at O dB. The microphone 

of the sound level meter was held in the right hand at a 45 degree angle to the floor. 

Readings were taken while the experimenter walked through the plant, pausing within I 

to 2 feet from each sound source for approximately 5 to 10 minutes to simulate a 

worker's exposure to noise during a typical shift of work. The sound level meter was 

calibrated immediately prior to all sound measurements using a Larson Davis CA 250 

calibrator according to procedures outlined in the user's manual. 

Aided and unaided noise measurement 

Figure 1 shows a diagram of the instrumentation used in determining aided and 

unaided exposures. In order to measure unaided noise exposure over a period of 90 

minutes the Knowles Electronics Mannequin for Acoustic Research (KEMAR)1 was 

1 The Knowles Electronics Mannequin for Acoustic Research (KEMAR) is designed to 
have the dimensions and, therefore, to simulate acoustic properties of the average adult 
head and torso. 
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placed in a sound-isolated chamber (Industrial Acoustics Company Inc. model #SP 403), 

such that the vertex of its head was 32 inches from a Realistic Nova 15 loudspeaker. A 

microphone attached to a preamplifier was fastened 1. 5 inches from the center of 

KEMAR's shoulder and 6 inches from the concha with cellulose tape. The recorded 

industrial noise was started one minute into the tape and played through the loudspeaker 

for 90 minutes. Equivalent continuous levels and Time Weighted Averages were 

measured in the coupler in the unaided condition. 

To measure aided noise levels, each hearing aid was placed on KEMAR's right ear. 

The Danavox, a post-auricular style instrument, was coupled to a silicone earmold made 

for KEMAR's ear. The in-the-ear instruments were placed in the ear canal. The 90-

minute noise tape was played for the 4 hearing aids configured in a total of 14 different 

conditions. Inside the sound isolated chamber, SPL was measured in the Zwislocki 

coupler2 inside KEMAR's head. An ACO Pacific 4012 1/2 inch air condenser 

microphone in the position ofKEMAR's eardrum was connected to an ACO Pacific 

preamplifier which was in tum connected to an ACO Pacific PS 9200 power supply. 

Output of the power supply was routed to a Rane PE 17 parametric equalizer. The 

equalizer was used in order to flatten the frequency response by attenuating high 

frequencies to compensate for resonance of the Zwislocki coupler. A flatter frequency 

response was desirable to make noise measurements compatible with OSHA 

measurements. Output of the equalizer was connected to a Larson-Davis sound level 

meter by means of a Larson-Davis AD005 adapter. The sound level meter was 

calibrated using a Larson-Davis CA 250 calibrator. During calibration the equalizer was 

2 The Zwislocki coupler is designed to have the same impedance and resonating 
characteristics as an average adult ear canal. Therefore, in situ measurements using 
KEMAR and a Zwislocki coupler closely approximate sound reaching a median adult 
eardrum. 



set on bypass. Calibration was checked and re-set with every battery change of the 

integrating sound level meter. 
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The noise was presented by the TEAC model DA-P20 DAT recorder, amplified by an 

NAD Stereo Power Amplifier, and attenuated by a Leader LAT-45 attenuator. A 

Realistic Nova 15 loudspeaker delivered sound to KEMAR. OSHA TWA and Leq were 

measured in the Zwislocki coupler first in the unaided condition and then for each aided 

condition. 

Hearing Aids 

Three different models of ASP hearing aids were used in this study. The hearing 

instruments are as follows: 1) the Telex 28 AC with Adaptive Compression, 2) the 

Argosy Expander, (an experimental instrument designed to reduce noise exposure) and 

3) theDanavox 143X Aura. An Argosy 3-Channel Clock, a linear instrument was also 

used. Each instrument was placed on or in KEMAR's right ear. Output of each aid was 

measured by means of a Zwislocki coupler and an ACO Pacific 1134 112 inch 

microphone. The recorded noise was played at a distance of 32 inches measured from 

the vertex ofKEMAR's head to the front edge of the loudspeaker and the output of each 

of the hearing aids recorded. Each hearing aid was programmed individually for a total 

of 14 different conditions in an attempt to determine which condition would reduce the 

level of the noise coming through the hearing aid most effectively. Instrumentation used 

for noise measurements is pictured in figure 2. 

Prior to the noise measurements, the response of each aid was measured using a 

Fonix 6500 hearing aid test system and KEMAR. A loudspeaker was placed 12 inches 

from KEMAR's ear at a 45 degree angle. The sound source was a 70 dB broad-band 

composite signal. A probe tube connected to the microphone of the Fenix system was 
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placed inside the Zwislocki coupler in KEMAR's head. A reference microphone was 

attached with a Velcro headband above KEMAR's ear and a "real ear" unaided curve 

was generated by presenting the 70 dB composite signal to KEMAR in the unaided 

condition. Real ear insertion gain was measured using KEMAR and the Zwislocki 

coupler. Insertion gain is a measurement made in the ear canal of the gain the hearing aid 

is providing (Skinner, 1988). Target gain was based on a hypothetical audiogram (fig. 1) 

using the National Acoustic Laboratories (NAL) procedure (Byrne & Tonisson, 1976). 

This audiogram represents a noise-induced hearing loss which might be expected in a 

chronically exposed worker. Each hearing aid was adjusted such that its insertion gain in 

KEMAR and the Zwislocki coupler approximated the target gain curve. 
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Figure 3 is a real ear curve representing the Argosy Expander experimental hearing 

aid set to condition 1 (linear). Frequency in KHz is shown as a function of gain in dB. 

The curve which appears as a solid line represents target gain or, based on the 

individual's audiogram, the amount of gain the aid should be providing. The dashed line 

represents the insertion gain or the amount of gain measured in the ear canal that the 

instrument actually is providing (Skinner, 1988). For maximum user benefit in quiet the 

line representing insertion gain should match the line representing target gain as closely 

as possible. This is a typical match. Real ear curves of the remaining hearing aid 

conditions are shown in Appendix B. 
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CHAPTER IV 

RESULTS 

Figures 4 through 8 are graphs of equivalent continuous sound level (Leq) as a 

function of time for a 90 minute segment of industrial noise. Figure 4 shows Leq values 

for noise amplified by the Argosy Expander. The Expander is an experimental hearing 

aid for use in noise. It uses input compression with a 50 dB compression threshold and a 

15 to I compression ratio when operating in maximum compression. The lowest curve 

represents the ambient or unaided condition, where levels range from 72 to 92 dBA, 

resulting in a TWA of 7 4. 5 dBA. The highest curve shown in figure 4 represents Leq 

measured with the Expander set to condition 1, a linear mode. Levels vary only by 2 dB, 

suggesting that the instrument was saturating. The next curve shows levels recorded 

with the instrument set to condition 3, which utilizes maximum low cut and maximum 

compression. Resulting levels are between 90 and 97 dBA TWA. The final curve in the 

series represents Leq recorded with the Expander set to condition 2, in which gain and 

SSPL 90 (maximum output) were reduced and compression was set at maximum. Leq 

here ranges between 80 and 84 dBA, resulting in a TWA of 80. 7, well below the OSHA 

maximum. The peaks of the exposure curve which were present in the unaided condition 

here are largely non-existent, indicating that the instrument was operating in full 

compression. 

The lowest curve in figure 5 represents the ambient noise condition with no hearing 

aid used. Leq levels range from 75 to 92 dBA, resulting in a projected 8-hour TWA of 

76.2 dBA. The top curve represents sound levels amplified by an Argosy 3-Channel 

Clock set to condition 1, a linear setting matching target gain at all frequencies. Leq in 

this condition ranges between 100 and 110 dBA. The projected 8-hour TWA for this 

condition was 93.2 dBA which was above the OSHA maximum of90 dBA. The middle 
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curve shows Leq of levels recorded through the 3-Channel Clock set to condition 2 

which is a linear condition in which target gain is matched at 3 and 4 KHz, and low and 

middle frequency gain is reduced. Levels here were raised to between 85 and 95 dBA 

with a TWA of88.8 dBA, which is below the OSHA maximum. 

Figures 6 and 7 are graphs of Leq as a function of time for industrial noise levels 

recorded through the Danavox Aura 143X. The Danavox Aura utilizes multichannel 

input compression. AGC thresholds are set individually in the 3 channels, with a 5 to 1 

compression ratio in each band. The lowest curve of figure 6 represents ambient, 

unaided noise levels. These ranged from 72 to 92 dB Leq, as in the unaided condition in 

figure 4. Noise recorded at the output of the Danavox Aura set to programs 1 and 2 

resulted in nearly overlapping curves pictured at the top of figure 5. Program 1 was a 

linear setting. Amplified levels ranged between 95 and 115 dBA, resulting in a TWA of 

103.4. Program 2 was a simulated BILL response(AGC thresholds of 60 dB in the low 

band, 70 dB in the middle band, and 80 dB in the high band with active low cut to 1000 

Hz). This setting reduces amplification in the low frequencies at high input levels. 

Amplified levels here ranged between 94 and 112 dBA with a TWA of 101. The curve 

representing program 2 is almost identical to that representing the linear condition, 

suggesting that the BILL setting was not significantly more effective in reducing noise in 

this case than the linear setting. The next lower curve represents noise recorded through 

the Danavox Aura set to program 3, a simulated TILL response. AGC thresholds are 80 

dB in the low band, 70 dB in the middle band, and 60 dB in the high band, with active 

low cut to 600 Hz .. Output levels in this case are between 85 and 95 dBA. Some peaks 

in the noise are preserved but the range of noise levels is reduced relative to the unaided 

condition, presumably due to the middle and high frequency compression. The relatively 

low compression threshold in the high band ( 60dB) and the active low cut to 600 Hz 
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may have caused this to be the most effective of the Danavox Aura programs included in 

this study in reducing overall exposure levels. Using TILL processing, in which the high 

frequency portion of the noise spectrum is reduced at high input levels, it was possible to 

achieve an OSHA TWA of90.7, which is within 1 dB of the OSHA maximum of90 dB 

TWA. 

Figure 7 shows exposure histories for 4 other settings of the Danavox Aura. The 

lowest curve on the graph on figure 7 represents ambient, unaided noise levels. Both 

programs 4 and 5 were linear with a high frequency emphasis. However program 5 also 

employs reduced gain in the low band. When the noise was amplified by the Danavox 

Aura set to programs 4 and 5, the curves overlapped and levels ranged between a 95 and 

115 dBA Leq. OSHA TWAs are 102.6 and 102.5, respectively. Although levels are 

higher, the range of levels is comparable to that measured in the unaided condition, 

reflecting the linear processing. The next lower curves represent levels for programs 6 

and 7, both providing broad band compression. The curves for these programs 

essentially overlap, occupying a range between 85 and 95 dBA, a more compressed 

range than that of the unaided condition. Program 6 employs low cut to 1200 Hz and 

AGC thresholds of 60 dB in the low band, 70 dB in the middle band, and 70 dB in the 

high band. The TWA for program 6 was 91 dBA. Program 7 also features active low 

cut to 1200 Hz, but AGC thresholds are 75, 75, and 85 dB in the low, middle and high 

bands. OSHA TWA was 91.3 dBA in this case, again slightly above the OSHA 

maximum. 

Figure 8 represents levels of noise amplified by the Telex 28 AC with Adaptive 

Compression. Telex Adaptive Compression employs output compression which has a 1 

to 1 (linear) compression ratio until limiting, at which point the ratio becomes 8 to 1. 

The lowest curve, with an Leq range of 72 to 92 dBA represents unaided levels. The 
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highest curve in figure 7 represents continuous equivalent level of industrial noise 

between 102 and 109 dBA, as recorded through the hearing aid set to linear mode 

(condition 1 ). Saturation seems to occur in this condition, preventing amplified levels 

from exceeding 110 dBA. The middle curve pictured represents Leq of noise amplified 

by the Telex instrument set to maximum Adaptive Compression, (condition 2). Levels 

range between IO I and I 05 dBA. The peaks of the noise are almost absent, presumably 

due to the action of the compression. Table I summarizes hearing aid settings and 

OSHA TW As of noise amplified by each hearing aid in each condition. 
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Hearing Aid Setting TWA 
(OSHA) dBA 

Argosy 3-Channel Clock 

Condition 1 linear, match target gain at all frequencies 93.2 

Condition 2 linear, match target gain at 3 & 4 KHz, 88.8 
reduced gain in low & middle bands 

Argosy Expander 

Condition 1 linear 108.7 

Condition 2 reduced gain & SSPL 90, maximum 80.7 
compression 

Condition 3 maximum low cut, maximum compression 93.7 

Danavox Aura 143x 

Program 1 linear 103.4 

Program 2 low cut to 1 KHz, AGC threshold of 60 dB in 101 
low band, 70 in middle band, 80 in high band 

Program 3 low cut to 600 Hz, AGC threshold of 80 dB in 90.7 
low band, 70 in middle band, 60 in high band 

Program 4 linear, high frequency emphasis 102.6 

Program 5 linear, high frequency emphasis, reduced gain 102.5 
in low band 

Program 6 low cut to 1200 Hz, AGC threshold of 60 dB in 91 
low band, 70 in middle band, 70 in high band 

Program 7 low cut to 1200 Hz, AGC threshold of 75 dB in 91.3 
low band, 75 in middle band, 85 in high band 

Telex 28 AC 

Condition 1 linear 106.8 

Condition 2 maximum AdaQtive ComQression 102.8 

Table I 
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Figures 4 through 8 are graphs of Leq in dBA as a function of time in hours and minutes 

representing noise amplified by the hearing aids in each condition. 

Figure 4 Leq-time graph of noise amplified by the Argosy Expander 

Figure 5 Leq-time graph of noise amplified by the Argosy 3-Channel Clock 

Figure 6 Leq-time graph of noise amplified by the Danavox Aura X (programs 1-3) 

Figure 7 Leq-time graph of noise amplified by the Danavox Aura X (programs 4-7) 

Figure 8 Leq-time graph of noise amplified by the Telex 28 AC 
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CHAPTER V 

DISCUSSION 

The purpose of this study was to determine the effectiveness of noise limiting systems 

in reducing amplified exposure of industrial noise. Results suggested that in all but 2 of 

the 14 conditions measured, TWA exceeded the level specified by OSHA as being 

potentially harmful to the auditory system (90 dBA). Levels amplified by the Danavox 

Aura programmed with a TILL response achieved a level within 1 dB of the OSHA 

maximum. The TWA 80. 7 dBA was recorded through the Argosy Expander set to 

minimum gain and maximum compression. This instrument utilizes Wide Dynamic 

Range Compression. With a sufficiently low compression ratio and threshold in steady 

background noise the instrument would operate in compression most, if not all, of the 

time the wearer was on the job in high levels of steady background noise. The wearer 

would not risk damaging his hearing at that level, however the results of studies of 

speech understanding in noise have suggested that a high compression ratio may cause 

speech comprehension to suffer (Van Tasell, Larsen, & Fabry, 1988, Tyler & Kuk, 1989, 

Plomp, 1988). If the hearing aid provided little or no benefit for speech understanding, 

the wearer would be better served by removing the aids in noise and wearing hearing 

protection devices. 

A level of 88.8 dBA TWA was obtained through the Argosy 3-Channel Clock under 

condition 2 (high frequency emphasis). This is a linear instrument in that it does not use 

a compression circuit. However gain can be controlled independently in each frequency 

band (low, middle, and high) by means of potentiometers. In condition 2, gain was 

effectively eliminated for low and middle frequency regions of the frequency spectrum, 

such that there was little gain below 2000 Hz. For the range of 3000 to 4000 Hz 

insertion gain matched target gain. It is in this region that important high frequency 
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speech cues, specifically consonant sounds are located. However eliminating gain in the 

middle and low bands may make low frequency speech sounds such as vowels inaudible, 

which also may compromise speech understanding. Because the Argosy 3-Channel 

Clock does not employ a compression circuit it limits output by peak clipping. A hearing 

instrument operating in saturation introduces distortion into the speech signal, 

compromising sound clarity and quality (Killion, 1993, Sweetow, 1994). 

The TWA obtained with the Danavox Aura programmed to provide a TILL response 

was 90. 7 dBA. TILL circuitry is designed to provide maximum high frequency gain at 

low levels. Gain decreases as input levels decrease. At high levels a hearing aid utilizing 

a TILL response provides no gain across the frequency spectrum (Mueller, Hawkins & 

Northern, 1992). Skinner (1980) found that optimal word identification at various 

presentation levels occurs when high frequency gain does not exceed the listener's 

uncomfortable listening level, and when low and high frequency speech cues fall within 

the listener's audible range. Skinner's results suggested that a hearing aid whose high 

frequency emphasis varied with input level might provide the listener with more audible 

speech sounds than an instrument with a fixed response. BILL circuitry also provides 

decreasing gain at increased input levels, however more high frequency amplification is 

present, even at high levels. Due to the action of the compression in the middle and high 

bands, the Danavox set to a TILL response was more effective than the BILL at 

reducing overall noise levels. 

CONCLUSIONS 

The purpose of wearing a hearing aid on the job is to hear warning signals, two-way 

radios, and speech of fellow workers. In high levels of background noise it is essential 

that this goal be achieved without further compromising the wearer's residual hearing. 

This study demonstrated that only 2 hearing aids worn in conditions simulating a typical 
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working environment will not expose wearers to levels of noise deemed potentially 

damaging by OSHA. The instruments which registered OSHA TW As below the 

maximum allowable level were the Argosy Expander and the Argosy 3-Channel Clock. 

Both instruments required adjustment of screw-set potentiometers to achieve the desired 

frequency response which would be inappropriate in other listening environments. 

No single frequency response is appropriate for all listening situations. A 

programmable hearing aid with user-operated multiple memories, and multichannel 

compression such as the Danavox Aura 143X, has the advantage of being the most 

flexible of the instruments studied. Set to a simulated TILL response the Danavox 

instrument was very effective in reducing overall level, although the TWA of amplified 

noise was slightly above the OSHA maximum. Some advantages of programmable 

hearing aids are the ability to store several different user-controlled frequency responses 

in memory, all of which are potentially useful in different listening situations. With 

multiple channels, ASP and maximum output can be programmed individually as a 

function of frequency so as not to exceed the listener's loudness discomfort level (LDL) 

in any frequency region. With a single channel instrument a peak in the frequency 

response might exceed LDL in one area of the spectrum. Turning down the volume 

would reduce the entire spectrum and render some speech sounds inaudible. Three 

channel compression allows the AGC threshold to be lowered only in the band 

containing the peak. Volume in the other bands need not be affected, allowing more 

speech sounds to remain audible without loudness discomfort (Mueller, Hawkins, & 

N orthem, 1992). 

This study has demonstrated that amplified levels in a background of industrial noise 

can be kept below the OSHA TWA of 90 dB with output limiting systems in hearing 



aids. The effect of any of the instruments studied on speech intelligibility in noise is 

beyond the scope of this study. Further research is needed to address this issue. 
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Hearing Aid Settings 

Argosy 3-CHANNEL-CLOCK 

Potentiometers: 
1 controls gain in the low band 
2 controls gain in the middle band 
3 controls gain in the high band 

APPENDIX A 

gain is at minimum when potentiometers are rotated clockwise 
C shifts frequency ranges of the bands to the right when rotated clockwise 

Condition #1 (match target gain) 
1 rotated 1I4 turn clockwise 
2 rotated 1I4 turn clockwise 
3 rotated 112 turn clockwise 
C rotated maximum counter clockwise 

Condition #2 (high frequency emphasis) 
1 rotated maximum clockwise 
2 rotated maximum clockwise 
3 rotated 1/2 counter clockwise 
C rotated maximum counter clockwise 
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Argosy Expander (Experimental Hearing Aid for use in Noise) 

Potentiometers: 
G regulates gain and S SPL 90 
T moves compression knee 
F tone control, gives maximum low cut in clockwise position 

Condition # 1 
G rotated maximum clockwise, maximum gain and SSPL 90 
T rotated maximum clockwise, minimum compression 
F rotated 1/2 clockwise-some low cut on to match target gain curve for theoretical 

hearing loss 

Condition #2 
G rotated maximum counter clockwise, minimum SSPL 90 
T rotated maximum counter clockwise, maximum compression 
F rotated 1/2 clockwise-some low cut (same as #1) 

Condition #3 
G rotated maximum clockwise, maximum gain and SSPL 90 
T rotated maximum counter clockwise, maximum compression 
F rotated maximum clockwise-maximum low cut 

Telex 28 AC 

potentiometer marked with red dot controls compression 

Condition # 1 
potentiometer rotated maximum clockwise, minimum compression 

Condition #2 
potentiometer rotated maximum counter clockwise, maximum 
compression 
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Danavox Aura 143X 
default settings 

#1 (basic) #2 (noise) #3 (noise) #4 (wide band) 
fl= 600 Hz 1000 
f2= 3000 Hz 3000 
gain 1= 2/12 1/12 

2= 6/12 5/12 
3= 10/12 10/12 

prog -3 -3 
AGC I= 80 60 

2= 80 70 
3=90 90 

PCTC 0 0 
vc 2 2 

Danavox Aura 143X 
experimental settings 

#1 (basic) 
fl= 600 Hz 
f2= 3000 Hz 
gain l= 2/12 
gain 2= 6/12 
gain 3= 10/12 
prog -3 
AGC 1 off 

2 off 
3 off 

PCTC 0 
vc 2 

#2 (noise) 
1200 
3500 
1/12 
5/12 
11/12 

-3 
60 
70 
70 
0 
2 

600 600 
2000 3000 
2/12 4/12 
5/12 7/12 
7/12 10/12 
-3 -3 
80 off 
70 off 
60 off 
0 0 
2 2 

#3 (wide band) 
1200 
3000 
1112 
5/12 

10/12 
-3 
75 
75 
85 
0 
2 
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Figures 9 through 18 are graphs of gain in dB as a function of frequency in KHz. The 

graphs are real ear curves representing insertion gain provi~ed by the hearing aids. 

Figure 9 Real ear curve representing insertion gain provided by the Argosy 3-Channel 
Clock set to condition 1 
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Figure 10 Real ear curve representing insertion gain provided by the Argosy 3-Channel 
Clock set to condition 2 

Figure 11 Real ear curve representing insertion gain provided by the Telex 28 AC set to 
condition I 

Figure 12 Real ear curve representing insertion gain provided by the Telex 28 AC set to 
condition 2 

Figure 13 Real ear curve representing insertion gain provided by the Danavox Aura X 
set to program 1 

Figure 14 Real ear curve representing insertion gain provided by the Danavox Aura X 
set to program 2 

Figure 15 Real ear curve representing insertion gain provided by the Danavox Aura X 
set to program 3 

Figure 16 Real ear curve representing insertion gain provided by the Danavox Aura X 
set to program 4 

Figure 1 7 Real ear curve representing insertion gain provided by the Argosy Expander 
set to condition 2 

Figure 18 Real ear curve representing insertion gain provided by the Argosy Expander 
set to condition 3 
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