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ABSTRACT 

An abstract of the thesis of Darcie Babcock for the Master of Science in Biology 

presented May 1, 1996. 

Title: Mutation analysis offibrillin-2 (FBN2) and microfibril associated protein-3 (MFAP-

3): two genes associated with congenital contractural arachnodactyly (CCA), also known 

as Beal's syndrome. 

Congenital Contractural Arachnodactyly (CCA), also known as Beal's syndrome, 

is an autosomal dominant disorder characterized by multiple congenital joint contractures, 

arachnodactyly, dolichostenomelia, and scoliosis with only rare ocular or cardiovascular 

involvement. CCA has been linked to the fibrillin-2 (FBN2) gene located on chromosome 

5q23-31. The phenotype ofCCA is similar to Marfan syndrome (MFS) which is caused by 

defects in the fibrillin-1 (FBNl) gene located on chromosome 15. Fibrillin-1 and fibrillin-2 

are components of extracellular matrix (ECM) elastic microfibrils. The linkage studies 

performed on families affected with CCA suggest that another gene in the area ofFBN2 

could also be responsible for CCA. Microfibril associated protein-3 (MF AP-3), another 

microfibril protein gene, has been localized to chromosome 5q32-33.2, the region of 

FBN2. 

This study involves mutation analysis of five patients affected with CCA, three of 

whom are representative of families affected with CCA. Mutation analysis was 

performed by chemical mismatch cleavage (CMC) analysis and nonisotopic RNase 

cleavage assay (NIRCA) analysis on both FBN2 and MF AP-3 cDNA. Prior to this study 



only two mutations in FBN2 have been reported in two isolated patients with CCA and 

none have been reported for MFAP-3. The two mutations reported in FBN2 have not 

been confirmed in other affected family members. Mutation analysis by CMC completed 

in this study did not reveal any mutations in either FBN2 or MF AP-3. Reanalysis by 

NIRCA revealed two mutations in FBN2. One mutation which results in the skipping of 

exon 31 occurs in an intron and its location is presently unknown. The other mutation, a 

G to C transversion at nucleotide 3340, predicting a histidine substitution for an 

asparagine, is a mutation at the -1 position of the 5' splice site of an intron which results in 

partial exon skipping although it is unknown whether exon 25 or 26 is skipped. The 

missense mutation and partial exon skipping result in two different forms of mutant 

fibrillin-2 molecules. Both of the mutations are present in patients with additional affected 

family members. Characterization of these mutations will confirm the cosegregation of 

FBN2 mutations with the CCA phenotype. 
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Introduction 

Congenital Contractural arachnodactyly (CCA), also known as Beals syndrome, 

was first described as a disorder distinct from Marfan syndrome (MFS) in 1971 by Rodney 

K. Beals and Frederick Hecht. CCA is an autosomal dominant disorder characterized by 

multiple congenital joint contractures, arachnodactyly (long, thin fingers), 

dolichostenomelia ( long, thin limbs), scoliosis, and abnormality of the external ears, 

usually referred to as "crumpled11 ears (Beals and Hecht, 1971). The congenital joint 

contractures present in CCA are at their maximum at birth and in some cases lessen as the 

patient ages (Hecht and Beals, 1972). CCA has a phenotype similar to MFS, with many 

cases ofMFS reported in the early literature actually thought now to be cases of CCA 

including the first case reported by Marfan in 1896 (Hecht and Beals, 1972). However, 

CCA lacks ocular problems and aortic root dilitation which are the more serious traits 

associated with MFS. Because CCA lacks aortic root dilation, it is not a fatal disorder 

and therefore is not associated with early fatalities as seen in Marfan syndrome. 

MFS has been shown to result from a variety of defects in the fibrillin-1 (FBNl) 

gene located on chromosome 15 (Maslen and Glanville, 1993). Linkage analysis has 

shown a close association between CCA and the fibrillin-2 (FBN2) gene located on 

chromosome 5 (Lee et al., 1991; Tsipouras et al., 1992). The cDNA for FBN2 was 

sequenced in 1994 (Zhang et al., 1994). The coding region ofFBN2 is approximately 11 

kb (kilo base pairs), slightly longer than that ofFBNl. FBNl and FBN2 have high 

sequence homology which may explain the phenotypic relationship between MFS and 
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CCA. Figure 1 is a diagrammatic representation of the amino acid sequence ofFBN2, 

indicating the different domains of the gene. The proteins produced by FBNI and FBN2 

are both present in elastin-associated extracellular matrix (ECM) microfibrils. The fibrillins 

are high molecular weight, single polypeptide, non-collagenous glycoproteins which are 

highly insoluble. The tissue distributions of fibrillin-1 and fibrillin-2 are similar, with some 

distinct differences (Zhang et al., 1994). One notable difference is that fibrillin-2 is present 

in higher amounts in ECM microfibrils that are rich in elastic fibers such as in the elastic 

cartilage in the external ear. This would correspond to the ear malformations seen in CCA 

but not seen in MFS. Other differences in tissue distribution suggest the fibrillins have 

related but distinct functions (Lee et al., 1991). Linkage analysis and tissue distribution 

have resulted in FBN2 becoming the focus of studies of CCA. To date there have been 

only two mutations found in FBN2 in two isolated patients with CCA (Putnam et al., 

1995). No shared mutations have been found in families affected with CCA. 

Consequently, an inheritance pattern demonstrating co segregation of the CCA phenotype 

with a FBN2 mutation has yet to be presented. 

Very few mutations have been found in either FBNl or FBN2 using a variety of 

mutation detection techniques. FBNl and FBN2 have high G-C to A-T ratios and it has 

been speculated that mutation analysis of the genes has been difficult due to their G-C rich 

structures. Single stranded conformational polymorphism (SSCP) analysis has detected 

only approximately 25% of the mutations in FBNl found in patients with :MFS and less 

than 20% of the mutations in FBN2 found in patients with CCA. These poor results have 

made it difficult to prove that FBN2 mutations cause CCA. 
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The LOD scores for linkage between CCA and F~N2 are 6.2 at both e = 0.000 

and e = 0.001 (Tsipouras et al., 1992). LOD scores refer to a statistical calculation of the 

probability that the gene responsible for certain phenotypic characteristics is linked to a 

polymorphism that is being used as a genetic marker. The calculation is the log10 of the 

ratio of the probability that the loci are linked, to the probability that they are not linked. 

These scores suggest the possibility that a gene near FBN2 could also play a key role in 

CCA. MF AP-3 (microfibril associated protein-3) is another microfibril protein whose 

gene has been localized to chromosome 5q32-33.2, near the region ofFBN2 (Abrams et 

al., 1995). MFAP-3 has no known homology with any other known proteins. The coding 

region ofMFAP-3 is 1089 bp consisting of two exons with one intron. MFAP-3 is known 

to localize to elastic microfibrils. Little else is known about the tissue distribution of 

MF AP-3 to date as it has only been cloned and sequenced recently. Due to the close 

proximity between FBN2 and MF AP-3 and the lack of mutations implicating FBN2 as the 

cause of CCA, it is possible that MF AP-3 could be also be associated with CCA. 

For this study I proposed mutation analysis of five patients affected with CCA, 

three of whom be long to families affected with CCA. This study of CCA was unique in 

that it was the first to include a family affected with CCA. Mutation analysis was 

performed by chemical mismatch cleavage (CMC) analysis and nonisotopic RNase 

cleavage assay (NIRCA) analysis on both FBN2 and MF AP-3. While CMC is becoming a 

widely used mutation analysis system, its use has not been reported by others in the 

analysis of either FBN2 or MF AP-3. NIRCA has not yet been used for mutation analysis 

of any genes in a published study. 
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Chemical mismatch cleavage (CMC) is a heteroduplex mutation analysis method 

that has been reported to have the ability to detect single base changes in large DNA 

fragments (Cotton et al., 1988; Grompe et al., 1989; Forrest et al., 1991; Mathew, 1991; 

Grompe, 1993). CMC has been found to be one of the most sensitive of all of the 

mutation analysis methods designed so far with the possibility of detecting I 00% of point 

mutations and small deletions or rearrangements. CMC is also the mutation detection 

system that is the least constrained by size with the possibility of analysis of a 1. 7 kb 

fragment at one time. The large size of fragment that can be analyzed by CMC makes it 

ideal for the detection of small mutations such as point mutations in very large genes. 

The principle behind CMC is that a radioactive wild-type DNA and non­

radioactive mutant DNA are denatured and annealed together to form a heteroduplex. 

This heteroduplex is chemically modified with one of two different chemicals at the sites 

of base pair mismatches and then cleaved with piperidine at the site of the chemical 

modification. The resulting product is electrophoresed and analyzed with identically 

treated normal heteroduplexes to reveal the presence of a mutation and its location within 

the sequence to within 30 bp. Heteroduplexes are modified with osmium tetroxide for 

mismatched thymines and hydroxylamine for mismatched cytosines. By using separately 

radiolabeled sense and anti-sense strands, all mismatch combinations can be located. The 

exact location of the mutation can therefore be found by direct sequencing of only a small 

area of the gene. DNA-RNA heteroduplexes can also be analyzed. Non-radioactive 

methods have been developed, but radioactivity is found to be more sensitive in the 

detection of mutations versus false-positives, such as areas of compressions in the DNA. 
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Compressions are areas where the DNA has formed secondary structures. These areas are 

usually G-C rich areas. Besides the use of radioactivity, the chemical modifiers used for 

CMC are highly toxic which is one of the drawbacks of this method. 

NIRCA, or Nonisotopic RNase Cleavage Assay, is a mutation analysis method 

based on RNase A cleavage assays ofRNA:DNA heteroduplexes (Myers et al., 1985) and 

transcribed genes (Winter et al., 1985) that was developed by Ambion Inc. In these 

assays, RNase A was found to cleave a single base pair mismatch in a radiolabeled RNA 

probe that had been hybridized to a DNA target encompa·ssing a point mutation. The 

resulting fragments were analyzed using a polyacrylamide gel. NIRCA is a modification of 

this technique that detects mismatches between RNA:RNA hybrids by RNase cleavage 

using wild-type and mutant RNA transcripts (Figure 2). PCR primers are generated which 

have the T7 promoter sequence (5'-TAATACGACTCACTATAGGG-3') attached to the 

sense or anti-sense primer and the SP6 promoter sequence(5'­

ATTTAGGTGACACTATAGGA-3') attached to the opposing primer. PCR products are 

generated from cDNA using these primers. The RNA transcripts are then made by in 

vitro transcription of the PCR products using either T7 or SP6 polymerase. Hybrids are 

produced by combining wild-type and mutant sense and anti-sense RNA strands. The 

hybrids are cleaved with RNase and the resulting fragments are run on an agarose gel. By 

comparing the mutant samples with control samples, point mutations can be detected as 

aberrant bands on the agarose gel. NIRCA, like CMC, can be used to analyze larger 

fragments of DNA then other mutation analysis techniques with the optimal fragment size 

for NIRCA being between 500 to 1000 bp. Also like CMC, NIRCA can localize the 

5 



mutation within the fragment analyzed, so once a mutation is found only a portion of the 

fragment needs to be sequenced instead of the entire fragment. Unlike CMC, however, 

NIRCA cannot predict the exact type of base pair mismatch, but as sequencing is 

necessary for both methods to locate the exact position of the mutation, this is not a 

detriment to the system. NIRCA has distinct advantages as a method of mutation analysis 

because, unlike most of the other mutation detection systems, it doesn't require the use of 

radioactive materials or toxic chemicals for analysis. NIRCA has also been found to be 

faster and more sensitive when compared to other mutation detection systems when used 

to detect known mutations. NIRCA has been tested in G-C and A-Urich targets and has 

been found to be highly effective in detecting single base pair mutations. 

Potential mutations located in either FBN2 or MFAP-3 were characterized by 

sequencing PCR products generated for the area of the suspected mutation. Mutations 

found by sequencing were confirmed in the patient and, if possible, in other family 

members by ASO (allele specific oligonucleotide) analysis (Mathew, 1991; Maslen et al., 

1995). Normal controls were also screened to prove that the suspected mutations were 

indeed mutations and not polymorphisms. 

ASO analysis is a system of mutation detection that will confirm a single base pair 

change. ASO analysis is useful to confirm single base pair changes when these changes do 

not alter any restriction enzyme sites. ASO probes are radiolabeled oligonucleotides that 

differ from the normal sequence by only one base pair corresponding to the mutation. A 

pair of oligonucleotides are designed; one which perfectly matches the normal sequence 

and one which perfectly matches the mutant sequence. ASO probes must be large enough 
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to be unique within the target genome so they do not hybridize randomly. However, 

random hybridization is not a major concern because PCR makes the target sequence very 

specific. ASO probes must also be small enough to detect a single base change because 

the hybridization of large probes to their target is not affected by small differences in 

sequence or small changes in hybridization temperature but hybridization of small probes 

to their target is easily disrupted by even a single base pair change or a change in the 

temperature as small as a few degrees. ASO probes are therefore designed to be small, 

between 11 bp and 20 bp in length, to insure their temperature dependent nature. PCR 

product encompassing the suspected mutation is generated and bound to a nylon or 

nitrocellulose membrane. The membrane is hybridizeded with one of the radiolabeled 

ASO probes at a time. After hybridization, it is washed at a temperature specific to the 

sequence of the probe. If the probe does not match the target sequence exactly 

hybridization of the probe will be disrupted because the hybridization will not be 

thermally stable. A positive signal will result if the mutati_on that matches the ASO is 

present on either one or both of the patients alleles. If the suspected mutation is not 

present, no signal will appear, which is interpreted as a negative signal. Therefore, an 

ASO that matches the normal sequence can be used as a negative control when hybridized 

to an allele with a sequence mutation. ASO probes can be used to confirm that a mutation 

is homozygous or heterozygous, a virtue that was not necessary for this study as all 

mutations were known to be heterozygous because CCA is an autosomal dominant 

disorder. This, however, can be a factor in mutation analysis and confirmation in other 

genes. 
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Materials and Methods 

Patient Samples. Patient samples were provided as blood, tissue, or cultured fibroblast 

samples through collaboration with Rod Beals, Beat Steinmann, and Uta Franke. RNA 

and DNA samples from five patients affected with CCA were available for this study. 

Three of these patients are from families affected with CCA. One family, denoted as 

Family 1, patients 1-1-1, 1-11-1, and 1-11-2, is a well characterized CCA family that has 

been followed for a number of years (Beals and Hecht, 1971). Patient 1-1-1 from this 

family is the proband, the patient originally described with the disorder, and patients 1-11-1 

and 1-11-2 are siblings and are patient 1-1-1 's offspring. Family 2, denoted as patients 2-1-

1 and 2-1-2, are siblings. Family 3 consists of patient 3-1-1, the proband, patients 3-1-2 

and 3-1-3, the proband's siblings, and patient 3-11-1, the offspring of patient 3-1-2. Patient 

4-1-1 and 5-1-1 are the only patient from their respective families that were available. All 

of these patients were characterized as being affected by several of the phenotypic 

characteristics of CCA by persons qualified to make such a judgment before they were 

received. Only the phenotypic characteristics of the patients from Family 1 were made 

available. Blood samples were obtained using EDT A as ~n anticoagulant and were used 

directly for DNA extraction. Tissue samples were cultured as fibroblast cell lines and 

grown for RNA and DNA extraction by collaborators at Shriner' s Hospital. Control RNA 

and DNA used were on hand in the laboratory or were isolated from samples of 

individuals known to have no phenotypic characteristics of CCA. 
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DNA Isolation. DNA was prepared from blood when possible using the white blood cell 

nuclei (Bell et al., 1981) or from fibroblast cultures (Ausubel et al., 1995). DNA was 

prepared from blood by centrifuging the blood at 900 x g for 15 minutes in a Beckman 

table top centrifuge to separate the plasma from red and white blood cells. The white 

blood cells were collected and mixed with BCL (blood cell lysis) buffer to lyse the white 

blood cell membranes. The white blood cell nuclei were pelleted by centrifugation at 900 

x g for 20 minutes in a Beckman table top centrifuge and the resuspended in NL (nuclear 

lysis) buffer to digest the nuclear membranes. Proteinase K/SDS solution was added to 

the digested white blood cell nuclei and the mixture was incubated at 3 7° C with shaking 

for 12-24 hours. Proteinase K/SDS addition digests the proteins present in the cell. The 

nucleic acids were extracted from the digested proteins using separate phenol and 

chloroform/isoamyl alcohol (25: 1) extractions centrifuging after each extraction at 900 x g 

for 10 minutes and were precipitated using 0.15M sodium acetate in 95% ethanol. The 

DNA was pelleted by centrifuging at 2000 x g for 5 minutes in a Beckman table top 

centrifuge, dried in a Savant Speed Vac, and resuspended in TE at 4° C overnight with 

shaking. The DNA was reprecipitated by adding 7.SM ammonium acetate and 95% 

ethanol. The DNA was pelleted by centrifuging at 2000 x g for 5 minutes in a Beckman 

table top centrifuge and washed with 95% ethanol, repeating the centrifugation. The 

DNA was dried in a Savant Speed Vac and resuspended in TE-4 at 4° C overnight with 

shaking.. The concentration of DNA in solution was determined by UV 

spectrophotometer. The DNA was stored at 4°C. 
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DNA was isolated from cultured fibroblast cells by trypsinizing the adherent 

fibroblast cells with IX Trypsin/EDT A, collecting the cells by centrifugation at 500 x g for 

5 minutes in a Beckman table top centrifuge and washing the cells with PBS, repeating the 

centrifugation. The cells were then mixed with digestion buffer and incubated overnight at 

50°C, with shaking to digest the cellular membranes and proteins. The nucleic acids were 

then extracted using a phenoVchloroform/isoamyl alcohol (25:24: I) extraction 

centrifuging at 1400 x g for 10 minutes in a Beckman table top centrifuge. RNA was 

digested by incubation at 37°C for I hour with a combination of30µg ofRNase A and 

3µg ofRNase Tl and the phenoVchloroform/isoamyl alcohol extraction was repeated. 

The DNA was precipitated using 7.SM ammonium acetate and 100% ethanol. The DNA 

was pelleted by centrifuging at 1400 x g for 2 minutes in a Beckman table top centrifuge 

and washed with 70% ethanol, repeating the centrifugation. The DNA was dried and 

resuspended in TE-4 at 4°C overnight with gentle shaking. The concentration of the DNA 

in solution was determined by UV spectrophotometer. The DNA was stored at 4°C. 

RNA Isolation. RNA was prepared from cultured fibroblasts by cesium chloride gradient 

separation (Ausubel et al., 1995). Adherent cultured fibroblast cells were trypsinyzed with 

IX Trypsin/EDT A, collecting the cells by centrifugation at 500 x g for 5 minutes in a 

Beckman table top centrifuge and washed with PBS, repeating the centrifugation. The 

cells were then digested with GIT solution for 5 minutes at room temperature and passed 

through an 18 gauge needle 10 times to shear the genomic DNA. The mixture was 

layered over cesium chloride and centrifuged overnight in an ultra-centrifuge at 27,500 
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rpm. The cesium chloride was drained and the RNA pellet, located at the bottom of the 

ultra-centrifuge tube, was resuspended in DEPC treated sterile, deionized water and 

precipitated using 3M sodium acetate and 95% ethanol. The RNA was pelleted by 

centrifuging at 14,000 rpm for 30 minutes in a micro-centrifuge. Residual cesium chloride 

was removed by vortexing the pellet with 70% isopropanol/30% 0.2M sodium acetate and 

spinning at 14,000 rpm for 10 minutes. The RNA was dried in a Savant Speed Vac and 

resuspended in DEPC treated sterile, deionized water. The concentration of RNA in 

solution was determined using a UV spectrophotometer. The RNA was stored at -80°C. 

cDNA Synthesis. cDNA was synthesized from 20 µg of total RNA in a 20µ1 reaction 

volume using random hexamers as a reverse transcription primer (Perkin Elmer Cetus) and 

Super Script Reverse Transcriptase (BRL ). The RNA was reduced to a volume of 1 Oµl 

by precipitation with 3M sodium acetate and 95% ethanol. The RNA was pelleted by 

centrifuging at 14,000 rpm for 30 minutes in a micro-centrifuge and washed with 70% 

ethanol, spinning at 14,000 rpm for 10 minutes. The RNA was dried in a Savant Speed 

Vac and resuspended in DEPC treated sterile, deionized water, mixed with 50 llmol of 

random hexamers, and heated to 70°C for I 0 minutes. The mixture was cooled quickly on 

ice, 4µ1of5X reaction buffer (BRL), 2µ1 O. lM DTT, and lµl lOmM mixed dNTP stock 

(Perkin Elmer Cetus) was added, and the mixture was heated to 37°C for 2 minutes. 40 

Units of the RNase inhibitor RNasin (Promega) and 200 Units Super Script Reverse 

Transcriptase were added and the mixture was incubated at 3 7°C for 1 hour. 1 Oµg of 
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RNase A was added to digest any residual RNA and the mixture was incubated at 37°C 

for 30 minutes. The cDNA was stored at -80°C. 

Mutation Analysis 

Chemical Mismatch Cleavage. Mutation analysis was performed by chemical mismatch 

cleavage, with some modifications as follows (Cotton et al., 1988; Grompe et al., 1989; 

Mathew, 1991). First and second round PCR was performed using primers listed in Table 

1 on normal and mutant cDNA synthesized from total RNA. Oligonucleotide primers 

were designed using Oligo 5.0 Primer Analysis Software (National Bioscience, Inc.). PCR 

was performed in a 100µ1 reaction volume using 2.5U Taq DNA polymerase (BRL), 10µ1 

of lOX PCR buffer (BRL), 4µ1 50mM MgCh, 16µ1 lOmM mixed dNTP stock, and 

lOOµM final concentration of PCR primers unless otherwise indicated. The thermal 

profile for first round PCR was a two step PCR profile: 94 °C for 1 minutes, 68°C for 5 

minutes for 35 cycles with a 72°C extension for 5 minutes. The thermal profile for the 

second round PCR was 94°C for 1 minutes, X°C for 2 minutes, 72°C for 3 minutes for 30 

cycles with a 72°C extension for 5 minutes. The specific annealing temperatures for the 

second round PCR primers are listed in Table 1. Second round PCR products were gel 

purified by electrophoresing using 5X gel loading buffer on a 0.7% agarose gel containing 

O. 5 µg/ml ethidium bromide at 40 Volts, excising the fragment, and isolating the fragment 

with Millipore Ultra-free MC filter units using the manufacturer's protocol. PCR 
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fragments were quantitated using the ethidium bromide dot method (Sambrook et al., 

1989). 

Second round PCR primers were labeled by heating lOpmol of primer with 2.5µ1 

lOX labeling buffer in a 25µ1 reaction volume at 70°C for 10 minutes followed by quick 

cooling on ice. 10µ1 5X labeling buffer, IOOµCi 32P yATP (6000Ci/mmol, NEN), 0.5M 

DTT, and 10 Units PNK were added in a 50µ1 reaction volume and heated at 37°C for 30 

minutes. An additional 10 Units of PNK was added and the mixture was heated for an 

additional 30 minutes at 37°C. The reaction was heat inactivated at 65°C for 15 minutes. 

lOpmol of the opposite (sense or anti-sense) primer was added to its complimentary 

labeled primer and the primer pair was cleaned using a Microcon-3 filter (Amicon) 

according to the manufacturer's protocol. Second round PCR was performed using the 

labeled primer pair and 1 µl of the first round PCR product following the above second 

round thermal profiles. Radiolabeled PCR products were. gel purified and quantitated as 

above. 

Heteroduplexes were formed using 100-15011g of normal or mutant product and 

1011g of radio labeled normal product with 1 Ox annealing buffer in a 3 Oµl reaction volume. 

The reaction was boiled for 5 minutes and then heated at 65°C for 1 hour. The reaction 

was precipitated by adding 100% ethanol and pelleted by centrifuging at 14,000 rpm for 

30 minutes in a micro-centrifuge. The heteroduplexes were dried and resuspended in 

13µ1 sterile, deionized water. One half of the heteroduplex was treated with 

hydroxylamine and the other half with osmium tetroxide before piperidine cleavage of both 
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reactions. Hydroxylamine cleavage was performed by adding 20µ1 of hydroxylamine 

solution, pH 6.0 to 6µ1 of the heteroduplex and incubating at 37°C for 30 minutes. 

Osmium tetroxide cleavage was performed by adding 10µ1of2.5X osmium tetroxide 

buffer, 8µ14% osmium tetroxide to 6µ1 of the heteroduplex solution and incubating at 

37°C for 20 minutes with mixing every 2-3 minutes. The reactions were stopped by 

adding I 00µ1 of hot stop buffer and 250µ1 of I 00% ethanol and pelleted by centrifuging at 

14,000 rpm for 30 minutes in a micro-centrifuge. The hydroxylamine cleavages were 

washed twice with 70% ethanol, centrifuging at 14,000 rpm for 2 minutes after each wash 

and the osmium tetroxide cleavages were washed once with 70% ethanol, centrifuging at 

14,000 rpm for 2 minutes. The products of both reactions were dried in a Savant Speed 

Vac and cleaved with piperidine by adding 50µ1 of IM piperidene, vortexing briefly, and 

incubating at 90°C for 30 minutes followed by cooling to 0°C. The piperidine cleavages 

were carried out in a Biometra TRIO-thermoblock thermal cycler. The cleavages were 

terminated by adding 3M sodium acetate, pH 5.2 containing l.6mg/ml tRNA and 100% 

ethanol and pelleted by centrifuging at 14,000 rpm for 30 minutes in a micro-centrifuge. 

The cleavage products are washed once with 70% ethanol, centrifuging at 14, 000 rpm for 

2 minutes. The cleavage products were dried in a Savant Speed Vac and resuspended in 

10µ1 of formamide loading dye (Stop Solution, USB). The cleavage products were 

vortexed for I 0 seconds to resuspend and heated to 95°C for 3 minutes before they were 

electrophoresed on a IX TBE 15% polyacrylamide gel at 75 Watts. 2.5µ1 of the cleavage 

products were loaded onto the gel and run for I hour. At this point another 2.5µ1 of the 
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cleavage products were loaded onto the gel and run until the bromophenol blue dye front 

reached the bottom of the gel. The two different running times were used to give better 

resolution of both ends of the cleaved fragment. 

Radiolabeled molecular weight markers pBR 322/Msp I (NEB)and <l>X 114/Hae 

Ill (NEB) were loaded onto the gel with the samples. Markers were radiolabeled by end­

labeling by adding 2.5µ1 of 5X exchange buffer (BRL), 50µCi ofy 32P ATP 

(6000Ci/mmol, NEN), and lOUnits polynucleotide kinase (BRL) to 250ytg of either 

marker in a reaction volume of 25µ1 and incubating at 37°C for 30 minutes and 75°C for I 

minute to inactivate the PNK. Dilutions of the radio labeled markers were made and 

loaded onto the gel according to the specific activity required. The gel was then dried and 

exposed to autoradiography film at -80°C. 

NIRCA. Mutation analysis was also performed by NIRCA (Ambion Inc.) following the 

manufacturer's protocol. First round PCR products from CMC were used and second 

round PCR was performed using primers listed on Table 2. Oligonucleotide primers were 

designed using Oligo 5. 0 Primer Analysis Software (NBI). PCR was performed in 25 µl 

reaction volume using 0.5µ1 of first round PCR product as a template with 2.5U Taq DNA 

polymerase (BRL), 10µ1 of IOX PCR buffer (BRL), 4µ1 50mM MgCh, 16µ1 IOmM 

mixed dNTP stock, and I OOµM final concentration of PC~ primers unless otherwise 

indicated. The thermal profile for the second round PCR was 94°C for 25 seconds, X°C 

for 20 seconds, 72°C for 40 seconds for 30 cycles with a 72°C extension for 5 minutes. 
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The specific annealing temperatures for the second round PCR primers are listed in Table 

2. Gels were run using a 5µg per lane of a 100 bp marker (Promega) that was diluted in 

the NIRCA RNase digestion buffer and gel loading buffer. 

Sequencing. Areas suspected to have a mutation after chemical mismatch cleavage 

analysis were PCR amplified from a larger PCR fragment using either a forward or reverse 

CMC second round primers that were biotinylated. See Table 1 for primer and cycle 

profile. The primers were biotinylated using the Oligonucleotide Biotin Labeling kit 

(NEB). 750 pmol of primer was biotin labeled following the manufacturer's protocol. 

The biotinylated primers were purified ProbeQuant Columns (Pharmacia) following the 

manufacturer's protocol. The concentration of the biotinylated primers were determined 

using a UV spectraphotometer. PCR was performed using one biotinylated primer and the 

complimentary non-biotinylated primer. These reactions were identical to the above non­

biotinylated PCR except that the biotinylated primer had a final concentration of SOµM 

and the non-biotinylated primer had a final concentration of 1 OOµM. The biotinylated 

strands were separated from the non-biotinylated strands for sequencing using M-280 

streptavidan magnetic beads (Dynal, Inc.) following the manufacturer's protocol except 

that 90µ1 of PCR product instead of 40µ1 PCR product as the Dynal protocol suggests. 

All solution amounts in the manufacturer's protocol were scaled up for the use of 90µ1 of 

PCR product. The biotinylated strand, attached to the M-280 streptavidin beads, was 

resuspended in 7µ1 of sterile, deionized water prior to sequencing. The non-biotinylated 

strand was precipitated following the manufacturer's protocol, resuspended in 7µ1 of 
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sterile, deionized water. The biotinylated strand was sequenced while remaining attached 

to the streptavidin beads. Biotinylated and non-biotinylated strands were sequenced by 

the dideoxy chain termination sequencing method (Sanger et al., 1977) using the 

Sequenase Version 2.0 kit (NEB) or the Fidelity Sequencing kit (Oncor) following the 

manufacturer's protocol. Sequencing primers were designed using Oligo 5. 0 Primer 

Analysis Software (NBI). See Table 3 for sequencing primers. The manufacturer's 

protocol for Fidelity (Oncor) was not modified. The manufacturer's protocol for 

Sequenase (NEB) was modified as follows: 4 pmol of primer was used per sequencing 

reaction, the extension reaction was carried out for 2 minutes at 20°C, and the termination 

reaction was carried out for 10 minutes at 50°C. The biotinylated strand sequencing 

reactions were then separated from excess primer and reaction components using a Dynal 

magnet, resuspended in 6 µl of sterile, deionized water and 4 µl Stop Solution (USB), and 

heated to 95°C to remove the reaction from the magnetic beads prior to loading the 

reactions onto a polyacrylamide gel. The non-biotinylated strand sequencing reactions 

were heated to 75°C for 2 minutes prior to loading onto the polyacrylamide gel. 2.5 µl of 

each reaction were loaded onto a 5% Long Ranger (J.T. Baker)/0.6X TBE polyacrylamide 

gel and run at 85 Watts for 1-3 hours as needed for the particular mutation. The 

sequence was dried and exposed to autoradiography film at room temperature. 

ASO Analysis. Single base pair mutations that were located by sequencing were 

confirmed by ASO analysis. PCR was performed on 25011g of genomic DNA using 

primers listed on Table 5. PCR primers were designed using Oligo 5.0 Primer Analysis 
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Software (NIB). The PCR was performed in 50µ1 reactiQns with 2.5U Taq DNA 

polymerase (BRL), 15.5µ1 of gelatin PCR buffer (Rigat et al., 1992), 10µ1 lOmM mixed 

dNTP stock, and lOOµM final concentration of PCR primers unless otherwise indicated. 

The thermal profile for the second round PCR was 94°C for 1 minute, X°C for 2 minutes, 

72°C for 3 minutes for 40 cycles with a 72°C extension for 5 minutes. The specific 

annealing temperatures for the PCR primers are listed in Table 4. 10µ1 of PCR product 

was combined with 40µ1 of sterile, deionized water, 2µ1 ION NaOH, and lµl 0.5M EDTA 

and heated to 100° C for 10 minutes. The mixture was blotted onto a pre-wetted, 

positively charged nylon membrane (Boehringer Mannheim) using a Dot Blotting 

apparatus (BioRad) following the manufacturer's protoc~l. The blot was baked at 80°C in 

a vacuum oven for 2 hours to fix the DNA to the nylon. To check the amounts of cDNA 

bound to the membrane, the blots were stained with a 0.02% methylene blue solution for 

10 minutes and de-stained with deionized water three times for 15 minutes each. The 

blots were then hybridized with a end-labeled ASO. See Table 5 for ASO probes used. 

The radiolabeled ASO probe was added to the blot in 5 mis of Zeta probe hybridization 

solution and hybridized overnight at 42°C. The blot was rinsed once with 6X SSC/0.1 % 

SDS at room temperature, washed twice with 6X SSC/0.1 % SDS at room temperature, 

and washed twice with 6X SSC/0.1 % SDS at X°C. See Table 6 for wash temperatures 

for specific ASO probes). The blot was wrapped in saran wrap and exposed to 

autoradiography film at -80°C. 
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Results 

Mutation Analysis 

CMC Analysis. FBN2 was analyzed as seven overlapping fragments of approximately 

1. 5 kb for CMC analysis due to the size constraint of 1. 7 kb of the CMC system. MF AP-

3 was analyzed by CMC as one piece due to its smaller size fitting the size constraints of 

the CMC system. Only one member of each family was analyzed in cases where multiple 

family members were available. Both the sense and anti-sense strands of the patient's 

cDNA were analyzed to insure that no mutations were missed. CMC gels were scored as 

a positive result on the basis of autoradiography bands appearing in the patient lanes which 

did not appear in the control lane. Positives could appear as a band in either a 

hydroxylamine or an osmium tetroxide lane. A band in a hydroxylamine lane indicated a 

cytosine mismatch and a band in an osmium tetroxide lane indicated a thymine mismatch. 

Positives appeared at a distance from either the 5' or 3' end of the fragment depending on 

the cDNA strand. For example, a positive signal on the gel in the sense strand lane would 

indicate that the mutation was located some certain distance from the 5' end of the 

fragment. The positives could be assigned a localized area in the gene based on their 

distance from the end of their specific fragment. 

Four positives were found for the FBN2 gene. All positives were found in the 

hydroxylamine lanes. Positives for FNB2 were found at 350 hp from the 5' end of the first 

fragment for patient 4-1-1, 650 hp from the 5' end of the second fragment for patient 1-1-

1, 315 hp from the 3' end of the second fragment for patient 3-1-1, and 350 hp from the 5' 
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end of fragment six for patients l-I-1, 2-I-l, 3-I-l, and 4-I-l. These positives were 

localized to the areas encompassing nucleotides 485 for patient 4-I-l, 2010 for patient I-I­

I, 2545 for patient 3-I-l, and 7180 for patients l-I-1, 2-I-l, 3-I-l, and 4-I-l (Figure 3). 

NIRCA Analysis. FBN2 and MF AP-3 were analyzed as overlapping fragments of 700-

800 bp for NIRCA analysis. NIRCA analysis was scored as a positive if a band or 

multiple bands were present on the agarose gel in the patient sample lanes that were not 

present in the control lane. Both the sense and anti-sense strands of the patient's 

transcribed RNA were analyzed to ensure that no mutations were missed. NIRCA 

analysis will give a localization of the mutation from either the 5' or 3' end of the 

fragment. NIRCA analysis will not however indicate whether the mutation is a particular 

distance from the 5' or 3' end of the fragment. Further NIRCA analysis is necessary to 

localize the exact mutation location relative to the 5' or 3' end of the fragment. NIRCA 

analysis was performed on a region of FBN2 that contained a known polymorphism. The 

normal control was known to be homozygous for the polymorphism, patient I-II- I was a 

known heterozygote, and patient 1-I- l was known to be homozygous for the wild-type. 

Patient 1-I- l was used as the heteroduplex control. The duplex of 1-I- l : 1-I-1 showed no 

bands, the duplex 1-I-l:normal control showed two intense bands at 350 bp and 500 bp, 

and the duplex l-I-1:1-II-l showed two less intense bands at 350 bp and 500 bp (Figure 

4). These bands would indicate a mutation that was causing RNase cleavage 350 bp from 

either the 5' or 3' end of the fragment. Results from the NIRCA analysis of the remainder 

ofFBN2 and MFAP-3 are pending. 
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Sequencing. Sequencing was carried out as described in the Materials and Methods 

section using primers listed on Table 3. Initial sequencing was carried out using 

Sequenase v2.0 (USB) and repeat sequencing was carried out with the Fidelity 

Sequencing system (Oncor). 

FBN2, nucleotide 485. Sequencing of the area encompassing the mutation at 

nucleotide 485 in patient 4-1-1 revealed two transitions at nucleotides 486 and 487 (Figure 

5). Both transitions were located in exon 4 ofFBN2 and were cytosine to thymine 

substitutions. The first transition at nucleotide 486 would result in a silent polymorphism 

with no amino acid substitution. The second transition at nucleotide 487 would result in 

the substitution of a tyrosine for the expected histidine. Repeat sequencing after ASO 

analysis revealed these transitions to be a partial compression band and not point 

mutations. 

FBN2, nucleotide 2010. Sequencing of the area encompassing the mutation at 

nucleotide 2010 in patient 1-1-1 revealed two transversions at nucleotides 2026 and 2030. 

Both transversions were located in exon 15 ofFBN2 and were guanine to cytosine 

substitutions. The first transversion at nucleotide 2026 would result in a glutamine 

substituted for the expected glutamic acid. The second transversion at nucleotide 203 O 

would result in an alanine substituted for the expected glycine. The first transversion 

would be more detrimental that the second as the first is ci change from an acidic amino 

acid to a neutral amino acid while the second is an exchange of two neutral amino acids. 
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Repeat sequencing revealed these transversions to be sequence artifact and not point 

mutations. 

FBN2, nucleotide 2545. The sequencing of the area encompassing the mutation 

at nucleotide 2545 revealed no point mutations. It did ho.wever reveal a compression band 

in the patient sample which was not present in the control sample. Compression bands can 

be detected as mismatches by CMC. This mutation possibility was discarded from further 

analysis. 

FBN2, nucleotide 7180. The sequencing of the area encompassing the mutation at 

nucleotide 7180 revealed a transition at nucleotide 7197 (Figure 6). The transition at this 

position was located in exon 57 ofFBN2 and resulted in a thymine to cytosine substitution 

which results in a silent polymorphism with no amino acid substitution. Further 

sequencing of patients 1-11-1 and 1-11-2 confirmed this polymorphism. Patients 1-1-1, 1-

11-2, and 4-1-1 were homozygous for the wild-type sequence. Patients 1-11-1 and 2-1-1 

were heterozygous. Patient 3-1-1 and the normal control were homozygous for the 

polymorphism. Patients 2-1-2 and 5-1-1 were not sequenced for this area. 

ASO Analysis. ASO analysis was performed as detailed in the Materials and Methods 

section using PCR primers listed on Table 4 and oligonucleotide probes listed on Table 5. 

Assigning positive signals was based on the presence of a signal dot on the radiography 

film based on the amount of the sample loaded. Positives could be intense indicating the 

sequence probed for was present on both alleles or faint indicating the sequence probed 

for was present on only one allele. Negatives were assigned where there was no signal on 

22 



the radiography film in the area of a patient or control sample. Loading of the samples 

was assessed by Methylene blue staining of the dot blot prior to hybridization with 

oligonucliotide probes. 

FBN2, Exon 4. ASO analysis was carried out on patient 4-1-1 and 50 normal 

controls. All samples produced a visible signal of approximately equal intensity based on 

their loading for the normal oligonucleotide probe. None of the samples, including the 

patient sample, produced a visible signal for either the polymorphic probe, the mutant 

probe, or the combined polymorphic/mutant probe. 

FBN2, Exon 15. ASO analysis was carried out for patients 1-1-1, 1-11-1, 1-11-2 

and 50 normal controls. All samples produced a visible signal of approximately equal 

intensity based on their loading for the normal oligonucleotide probe. None of the 

samples, including the patient sample, produced a visible signal for either the polymorphic 

probe, the mutant probe, or the combined polymorphic/mutant probe. 
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Discussion 

Mutation Analysis 

CMC Analysis. The positive CMC result for FBN2 in the area of nucleotide 7180 was 

the first positive found in the CMC analysis of either FBN2 or MF AP3. It was suspected 

that any change in this area was the result of a polymorphism rather than a disease 

associated mutation because evidence from the mutation analysis ofFBN2 (Putnam et al., 

1995) has not shown a universal mutation for aU CCA patients. It is more probable that a 

commonly occurring polymorphism would be present in either one copy or both for the 

majority of the patients analyzed. The positive signal for patient 1-1-1 was more intense 

than the signal for the other three patients. After sequencing revealed the change in the 

sequence to be a polymorphism at nucleotide 7197 occurring in the normal control and 

five of the patients, it was noted that the intensity of the CMC signal could correspond to 

the sequence change occurring as a heterozygote or homozygote. When patient 1-1-1, a 

homozygous wild-type individual, was hybridized with the normal control, a homozygote 

for the polymorphism, the CMC signal was very intense. On the contrary, when patient 4-

I-1, a heterozygote for the polymorphism, was duplexed with the control, a less intense 

but still positive result was seen. These results would indicate that CMC is a sensitive 

enough technique to detect a heterozygous mutation. The heteroduplex between patient 

2-1-1 and the control would also have been expected to be very intense which is not the 

case as seen in Figure 3. This sample proved to be extremely difficult to analyze for all of 

the fragments ofFBN2 and, therefore, less of this sample was loaded onto the CMC gels 
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with respect to the other samples. The reason for the difficulty in analysis of this patient 

may be related to the poor quality of the fibroblast cells, which did not grow as well as 

expected. The RNA and DNA isolations were difficult for this sample and the purity of 

the RNA and DNA with respect to proteins and cellular debris was questionable. 

The polymorphism at nucleotide 7197 became a valuable resource, as it was used 

to optimize the conditions of the CMC technique. A review of the CMC literature 

published to date shows that the incubation times of the modification of the 

heteroduplexes with hydroxylamine and osmium tetroxide to be arbitrary. If the chemical 

modifiers are incubated with the heteroduplex for too long of a time period aberrant 

nonspecific bands could occur in hyper-sensitive regions of the sequence. These aberrant 

bands could be mistaken for actual mismatches, wasting valuable time and resources in 

sequencing areas containing no mutations. Conversely, if the incubation with the 

modifying chemicals is too short, actual mismatches may be missed because they were not 

modified. By using heteroduplexes with known mismatches based on the polymorphism 

at nucleotide 7197, we were able to vary the chemical modification incubation times until 

we obtained a result that indicated to us the optimal incubation time that would minimize 

aberrant bands and maximize actual mismatches in the sequence. Once these optimal 

incubation times were discerned, the rest of the FBN2 gene and the MFAP-3 gene were 

analyzed by CMC. 

It has been noted that compression artifacts can cause false-positives in CMC 

analysis (Cotton et al., 1988; Grompe et al., 1989~ Mathew, 1991). The positive CMC 

results for FBN2 in the areas of nucleotides 485, 2010, and 2545 were found to be the 
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results of compression bands causing a false-positive signal. The false-positive result is 

thought to be the result of modification of the compressed area by virtue of its secondary 

structure. The chemical modification of the area could be an over-modification and would 

result in the area being sensitive to cleavage by piperidine. Once a compression is found in 

the area of a positive CMC signal, it is usually useless to look for any other sequence 

changes. Therefore, we were not surprised to discover that the area encompassing these 

three CMC positives contained no mutations. 

NIRCA Analysis. NIRCA was performed on the region ofFBN2 containing the 

polymorphism at nucleotide 7197 to test the accuracy of the assay and also to optimize the 

assay conditions. We needed to know if NIRCA could detect a heterozygote easily and 

reliably without giving an obscure or difficult to interpret result. The results ofNIRCA 

analysis were positive. NIRCA analysis was able to detect a homozygous mismatch 

(Figure 4, lanes 1 and 4) at a higher intensity that a heterozygous mismatch (Figure 4, 

lanes 2 and 5) but the heterozygote detection was still very clear. Three different 

dilutions of the three RNase stock solutions were used on the polymorphic 

heteroduplexes: the standard dilution suggested by the manufacturer, a dilution twice that 

of the standard, and a dilution one-half that of the standard. No discernible differences 

were noted between the three dilutions. The higher dilution did not result in an increase in 

aberrant bands and the lower dilution was still able to detect the mismatch although not as 

intensely as the standard dilution. The remaining fragments of the FBN2 gene and the 
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MF AP3 gene are being analyzed presently using the standard dilution of the RNase stocks 

and no data is available for them. 

Sequencing. PCR products are difficult to sequence because it is difficult to maintain 

single strands which are necessary for sequencing. PCR products can be denatured but 

will readily reanneal making it nearly impossible to anneal the sequencing primer to the 

strand of interest to continue the sequencing procedure. This difficulty was overcome by 

biotinylating one of the PCR primers used to generate the DNA fragment to be sequenced. 

The biotinylated strand of the PCR product can then be separated from the non­

biotinylated strand by magnetic separation using streptavidin coated magnetic beads 

utilizing the interaction between streptavidin and biotin. Using this procedure the PCR 

product was separated into single strands that could be sequenced by dideoxy-chain 

termination sequencing. 

Compression bands, partial compression bands, and sequence artifacts which are 

aberrant bands appearing on the sequencing gel are common problems with sequencing 

DNA. PCR products add another level of difficulty by introducing amplified sequence 

that may not be complete at the 5' and 3' ends or may have errors in the sequence that 

have been introduced by the PCR procedure itself The difficulties of sequencing PCR 

products that may have incomplete 5' and 3' ends can be overcome by the use of 

sequencing primers that lie within the PCR fragment and do not overlap with the PCR 

primers or by using "nested" PCR primers that lie within the area of the first PCR primers. 

The "nested" PCR primers are used in a second round of PCR. The difficulties that arise 
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from PCR artifact are not as easily solved. These artifacts can be present in either the 

normal control or the patient sample. Repeating the PCR and the sequencing reactions 

will usually yield the correct sequence because it is unlikely that a random PCR error 

would be introduced on two separate occasions. Compression bands cause areas of the 

DNA sequence that are not separated into single base pairs during sequencing. 

Compressions result in a solid line that is present in all four lanes of the sequencing gel at 

one time. They can be present for a single base pair or for several bases in a series. 

Partial compressions are compression bands seen in two or three lanes at one time but not 

all of the lanes as a normal compression. Compressions and partial compressions must be 

dealt with by either changing the sequencing conditions or the sequencing system that is 

being used. Different sequencing systems make use of different enzymes to carry out the 

sequencing procedure and these enzymes will react with different aberrations of the DNA 

in different ways. Some enzymes and temperature conditions will sequence through a 

difficult area with little or no trouble where others may result in partial or full 

compressions. 

One indication of sequence artifact or partial compression bands is the presence of 

more that one transition or transversion occurring in succession or relatively near another. 

Initial sequencing with the Sequenase v2.0 kit (USB) for FBN2 in the regions of 

nucleotides 485 and 2010 both had two sequence alterations within a few base pairs of 

each other. The sequences would indicate that the regions contained a mutation and a 

polymorphism in the same area which is not impossible but is unlikely. When ASO 

analysis revealed that there were no changes to the sequence in these areas, the fragments 
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were sequenced with the Fidelity Sequencing kit (Oncor). The Fidelity kit was used 

because it uses T4 DNA polymerase instead ofT7 DNA polymerase used by Sequenase 

v2. 0 and higher temperatures. The Fidelity kit was able to sequence through the partial 

compressions to reveal normal sequence. These areas were discounted as areas of 

mutation in FBN2. The secondary sequencing of these areas proves that the ASO analysis 

was working properly to detect single base changes in the sequence. ASO analysis is still 

considered to be a reliable method of mutation confirmati~n. Initial sequencing with the 

Sequenase v2.0 kit (USB) for FBN2 in the region of nucleotide 2545 revealed no point 

mutations and a compression band. The compression was in the correct area to allow for 

a CMC positive signal so the area was also discounted as an area of mutation in FBN2. 

Conclusions. To date, this study has not revealed any mutations in the FBN2 or MF AP-3 

genes that are associated with CCA. It did, however, reveal one polymorphism that was 

used to optimize the NIRCA system. As no mutations have been found in families 

affected with CCA, an inheritance pattern demonstrating co segregation of the CCA 

phenotype with a FBN2 or MF AP-3 mutations cannot be established. FBN2 and MF AP-3 

cannot be discounted as the gene or genes associated with CCA. CMC has not been 

shown to be an effective mutation analysis system for either of these genes. This could be 

a result of the high G-C to A-T content of FBN2. The G-C to A-T content ofMFAP-3 

has not been calculated and could be a factor in mutation analysis. FBN2 has been 

difficult to analyze by S SCP and has now been seen to be resistant to CMC analysis. 
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NIRCA analysis appears to be useful for mutation analysis ofFNB2 and is currently being 

used for that purpose (Note added in proof: see Appendix I). 

Sequencing of PCR products is a difficult task which can been made appreciably 

easier by the use of biotin labeled primers and streptavidin beads. When used with internal 

sequencing primers and a reliable sequencing method, the sequencing of PCR products 

becomes a relatively easy task. This biotin-PCR sequencing technique has become an 

important technique in this study and other studies we have conducted in other areas. 

ASO analysis is a proven technique for mutation confirmation and holds great promise for 

use with FNB2 when mutations are located as a rapid mutation detection technique. 
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Abstract submitted to the 4th International Symposium on the Marfan Syndrome, Davos, 

Switzerland, August 11-14, 1996. The abstract refers to patients 2-1-1and2-1-2. 

Aberrant splicing of fibrillin-2 in a family with Congenital Contractural 
Arachnodactyly 

Cheryl L. Maslen*, Darcie Babcock*, Michael Raghunath#, 
Beat Steinmann t 
*Oregon Health Sciences University, Portland, Oregon, USA; #University of Munster, 
Munster, Germany; tuniversity Childrens Hospital, Zurich, Switzerland. 

Congenital Contractural Arachnodactyly (CCA) is an autosomal dominant disorder that is 

phenotypically similar to, but genetically distinct from Marfan syndrome. Genetic linkage 

analysis implicated the fibrillin-2 gene (FBN2) as the CCA locus. Mutation analysis of 

single CCA patients indicate that defects in FBN2 may be responsible for that disorder. 

However, co-segregation of a mutant allele with the disease phenotype has not been 

established. We have investigated the primary cause of CCA in a large, well characterized 

kindred with four documented generations of affected individuals. Previous studies 

showed linkage of the CCA phenotype to FBN2. Mutation analysis of the proband's 

cDNA using Non-Isotopic Rnase Cleavage Assay (NIRCA, Ambion Corp., Austin Texas, 

USA) identified the presence of a skipped exon that was subsequently identified as exon 

31. DNA sequence analysis of genomic DNA identified the splice site alteration 

responsible for the exon-skipping event. The occurrence of exon skipping was confirmed 

in the cDNA of an affected sibling. Genomic DNA from 29 additional available family 

members, both affected and unaffected, was then analyzed for the splice site mutation. The 

results clearly demonstrate co-segregation of the abberant splice site with the CCA 
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phenotype. This unequivocally establishes, for the first tjme, that mutations in FBN2 are 

responsible for the CCA phenotype. 
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Abstract submitted to the 4th International Symposium on the Marfan Syndrome, Davos, 

Switzerland, August 11-14, 1996. The abstract refers to patients 3-I-1, 3-1-2, 3-1-3, and 

3-11-1. 

A Single Mutation That Results in an Asp~His Substitution and Partial Exon 
Skipping in a Patient with Congenital Contractural Arachnodactyly 

Cheryl Maslen*, Darcie Babcock*, Cheryll Gasner# and Uta Francke# 
*Oregon Health Sciences University, Portland, Oregon, USA; #Stanford University 
Medical Center, Stanford, California, USA. 

Recent investigations of the molecular basis of congenital contractural arachnodactyly 

(CCA) indicate that mutations in the fibrillin-2 gene (FBN2) cause CCA. In order to 

determine the range and nature ofFBN2 mutations associated with CCA, we are 

examining cRNA from a series of patients using Non-Isotopic Rnase Cleavage Assay 

(NIRCA; Ambion Inc., Austin, Texas, USA.). A NIRCA positive result indicated the 

presence of a mutation in cRNA prepared from cultured fibroblasts derived from CCA 

patient, FB904. The patient has the classic features of CCA; multiple contractures, 

arachnodactyly, and crumpled ears, with no apparent heart or eye manifestations. This 

mutation had previously gone undetected when cDNA from this individual was analyzed 

by chemical mismatch cleavage analysis, indicating that NIRCA may be a more robust 

technique for detecting fibrillin mutations. DNA sequence analysis of the NIRCA positive 

region detected a G to C transversion at nucleotide 3340 (G3340C), which predicts the 

substitution of histidine for asparagine at amino acid residue 1114. This asparagine 

residue acts as a calcium-binding ligand in the 12th calcium-binding pEGF-like domain. In 

addition, the G3340C mutation alters the last nucleotide of exon 25; position -1 of the 5' 
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donor splice site, which is a highly conserved G (77%). Subsequent RT-PCR and DNA 

sequence analyses demonstrate that this missense mutation also acts as a splice site error, 

resulting in partial skipping of that exon. Consequently, the complex manifestation of this 

genotype may result in two different populations of mutant fibrillin-2 molecules as 

components of elastic microfibrils in one individual. However, the phenotype of the 

affected individual indicates that if both mutant fibrillin-2 forms are present in the matrix, 

they are not appreciably less well tolerated than is a singl~ defective molecule. 
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Figure 1. Diagramatic representation of the amino acid sequence of fibrillin-2 indicating the 

different domains present. Diagram courtesy of Cheryl Maslen. 
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Figure 2. Schematic diagram of the NIRCA methodology from Ambion, Inc. 
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Figure 3. Chemical mismatch cleavage of the area encompassing FBN2 nucleotide 

7180. Lane 1 is Control, Lane 2 is Pc;ttient 4-I-l, Lane 3 is Patient l-I-1, Lane 4 is Patient 

3-I-1, and Lane 5 is Patient 2-I-1 for hydroxylamine cleavage. The band at ,..,,350 hp 

indicates a cytosine mismatch for all patients represented. Size markers located to the left 

of sample lanes are <I> X 17 4/Hae III and pBR 3 22/Msp I. 
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Figure 4. NIRCA analysis of the area of a known FBN2 polymorphism. Side A is an 

RNase digestion with one-half of the standard dilution of RNase. Side Bis an RNase 

digestion with twice the standard dilution ofRNase. Lanes 1 and 4 are Patient 1-1-

1 :Control, Lanes 2 and 5 are Patient 1-1-1: 1-11-1, and Lane 3 is 1-1-1: 1-1-1 and serves as 

a positive control. Lanes 1 and 2 are Patient 1-1-1 SP6 transcribed and Lanes 4 and 5 are 

Patient 1-1-1 T7 transcribed. Bands present are at 500 hp and 350 hp. No markers are 

present. 
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Figure 5. Sequencing of the area encompassing FBN2 nucleotide 485 for patient 4-1-1. 

Nucleotides 486 and 487 indicate cytosine to thymine substitutions. Sequencing was 

performed with the Sequenase v2.0 kit (USB). 
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Figure 6. Sequencing of the area encompassing FBN2 nucleotide 7180 for Control, 

patient 1-1-1, and patient 1-11-1. Nucleotide 7197 indicates thymine to cytosine 

substitution, resulting in a silent polymorphism. Sequencing was performed with the 

Sequenase v2.0 kit (USB). 
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Abbreviations 

DEPC: Diethylpyrocarbonate. 

DTT: Dithiothreitol. 

EDTA: Ethylenediaminetetraacetic acid. 

GIT: Guanidinium isothiocyanate solution. 

PBS: Phosphate buffered saline. 

PNK: Polynucleotide kinase. 

rpm: Revolutions per minute. 

SDS: Sodium dodecyl sulphate. 

SSC: Standard saline citrate. 

Tris: Tris(hydroxymethyl)aminomethane. 

UV: Ultra violet. 
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Solutions 

DNA and RNA Isolations 

BCL (blood cell lysis) buffer: 

NL (nuclear lysis) buffer: 

Proteinase K/SDS: 

TE: 

TE-4: 

IX PBS (per liter): 

Digestion buffer: 

GIT: 

Cesium chloride: 

cDNA synthesis 

Mixed dNTP stock ( 1 OmM): 

Mutation Analysis 

50XTAE: 

1 OX Labeling buffer: 

5X Labeling buffer: 

1 OX Annealing buffer: 

0.32M sucrose, lOmM Tris-Cl, pH 7.5, 5mM 

MgCh, 1% Triton X-100 

75mMNaC1, 24mMEDTA, pH 8.0 

NL buffer, 0.2mg/ml proteinase K, 0.9% SDS 

IOmM Tris-Cl, pH 8.0, lmM EDTA, pH 8.0 

lOmM Tris-Cl, pH 8.0, O. lmM EDTA, pH 8.0 

8g NaCl, 0.2g KCl, 1.44g Na2HP04, 0.24g 

KH2P04 

lOOmMNaCl, lOmm Tris-Cl, pH 8.0, 25mM 

EDTA, pH 8.0, 0.5% SDS, O. lmg/ml 

proteinase K 

4M guanidinium isothiocyanate, 20mM sodium 

citrate, 0.4% n-lauryl-sarcosine 

5.7M cesium chloride, lOOmM EDTA, pH 8.0 

lOmM dGTP, lOmM dATP, lOmM dTTP, lOmM 

dCTP 

2M Tris, 50mM EDTA, ph 8.0, 5.7% glacial 

acetic acid 

200mM Tris-Cl, lOmM spermidine, lmM EDTA, 

pH8.0 

250mM Tris-Cl, 50mM MgCh, 25mM DTT, 25% 

glycerol 

3M NaCl, 30mM Tris, 35mM MgCh 
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Hydroxylamine solution, pH 6.0: 

2. 5X Osmium tetroxide buffer: 

Hot stop buffer: 

lOXTBE: 

Gel loading buffer: 

ASO Analysis 

Zeta Probe(BioRad): 

20X SSC (pH 7.0): 

Gelatin PCR Buffer: 

I. 3 9g hydroxylamine, 1. 6mls sterile deionized 

water, Iml diethylamine 

25mM Tris, pH 7-.7, 4mM EDTA, pH 8.0, 3.75% 

pyridine 

0.2M NaCl, lOmM Tris-Cl, pH 7.7, lmM EDTA, 

pH 8.0, 5µg/µl tRNA 

I. IM Tris, I. IM boric acid, 20mM EDTA, 

pH8.0 

ImM EDTA, pH 8.0, 25mg Bromophenol Blue, 

50% glycerol 

0.22MNa2HP04, pH 7.2, 0.5MNaCl, I4% SDS, 

2mM EDTA, pH 8.0, 50% formamide 

3M NaCl, 0.3M sodium citrate 

IOOmM MgCh, 30mM Tris-Cl, pH 8.4, I67mM 

KCl, 0.33µg/ml gelatin 
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TABLE 1 CMCPRIMERS 
FRAGMENT SENSE PRIMER (5'-3') ANTI-SENSE PRIMER (5'-3'} ANNEALING 

TEMPERATURE 
FBN2 First Round 
1 ACAGGTTCGGTCCGCTACAGC GCTTACAGATATCTATTGTCTGGTTC 68°C 
2 AGTGGCAATGGCAATGGCTATGG GCCAGGGAACACCTCACACTCAT 68°C 
3 CTGTTGGCTCAACATCCAGGAC CGTCCAGATCAATACACTTGATGC 68°C 
4 GATGTACAGATGTGGATGAGTGTG TGATGCAGTCTGCATTCCGCTG 68°C 
5 GTGTGCATTAACCAGATTGGCAGT GATGCACATGAAGGTGCCGATTAG 68°C 
6 TCCTATGAATGCACGTGCCCGAT CGTTGATTTTGCACTCGTAGCATG 68°C 
7 GCAATTACGGCTGCTCTAACACG TCAGCTGCCTACAGTACCATGAG 68°C 
MFAP-3 First Round GGTTCTCTACTCACATCT CTTCTAAGAAACAGGTTCC 49.9°C 

FBN2 Second Round 
1 GTTCGGTCCGCTACAGC GTCCAGTGATGATAGGTC 53.8°C 
2 ACAGGCTTCATCCCCAT TCTTCACACGTAACACCT 52.8°C 
3 TCAACATCCAGGACAGC TGATGCCGTTTCCAATC 54.9°C 
4 TGGTGCTCATAACTGCG TATCACCATTGCTGCAC 53.8°C 
5 GCTGTGAATGCCCTACA CTAGATTCACAGTCGTG 50.8°C 
6 CTATGAATGCACGTGCCCGA TCTGGGGACAGAGCAT 54.8°C 
7 GCTACCTCTGTGGCTG TACCATGAGGACGCAG 51.7°C 

MFAP-3 Second ATGAAGCTACATTGTTGC TTACAGCTGACAGTTTTC 51.1°C 
Round 
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Table 2 NIRCA PRIMERS 
FRAGMENT SENSE PRIMER (5'-3') ANTI-SENSE PRIMER {5'-3'} ANNEALING 

TEMPERATURE 
FBN2 
1/1 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 56.2°C 

CTCTGAAGGCGGGTTT TAGCCTGGCATTCATC 
112 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 52.7°C 

CCATCCCTGTGAGAT TATCTATTGTCTGGTTC 
2/1 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 54.4°C 

AGGGACAGGCTTCATC CGCACACACACTCCTT 
2/2 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 56.0°C 

CTGTGGGCATGGATGG GGGTGGCACAGCATTC 
3/1 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 55.1°C 

AGCCACTCTGAAATCT AAGCTGCCCTCAGTGT 
3/2 GATAATACGACTCACTATAGGG TCATTT AGGTGACACT AT AGGA 54. 9°C 

ACATTGACGGATGTGA TGCCGTTTCCAATCCA 
4/1 GATAATACGACTCACTATAGGG TCATTT AGGTGACACT AT AGGA 54. 7°C 

TGCTCATAACTGCGAC TTGTGATGGGGTTAGG 
4/2 GATAATACGACTCACTATAGGG TCATITAGGTGACACTATAGGA 51.9°C 

AAACCCCTGTGAGACA GATTATCACCATTGCT 
5/1 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 51.6°C 

CAGTTTCCGCTGTGAA GTATCAAAGCATCTCC 
5/2 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 49.1°C 

TTCCTGTACTAATACT TTAGATTCTTACACAT 
6/1 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 52.7°C 

AAGATCAAAAGATGT CACAGAGGAACTGGCA 
6/2 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 53.9°C 

AGTTATCAGTGTTCA CAGAGCATTTTCCTCA 
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7/1 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 53.4°C 
TATTACAGAGTGGGA GGGTCAACATTCAAAG 

MFAP-3 
1 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 50.0°C 

AAAATATCTCTACCAA GTTTTGGCTGAGGTAA 
2 GATAATACGACTCACTATAGGG TCATTTAGGTGACACTATAGGA 52.4°C 

CCATCAATGAGTTCT GCGAGCTGATTTTGT 
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TABLE3 SEQUENCING PRIMERS 
GENE PRIMER (5'-3') DIRECTION POSITION (bo) 
FBN2 
1 GATGGAAGACGCTCCCTGGAG Sense 299 
2/A-F TGTGTTTGAATGGAATGTGC Sense 1874 
2/A-R CATTCGGACTTGGTCACTGC Anti-sense 2180 
2/B-F GTGCCGAAACACGCCAGGAA Sense 2472 
2/B-R GTCCCCTTCAGGCTGTCAA Anti-sense 2687 
6 CCAGGAATCTGTGAAATGGACTG Sense 7033 
MFAP-3/F ATGAAGCTACATTGTTGC Sense 1 
MFAP-3/R TTACAGCTGACAGTTTTC Anti-sense 1089 
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TABLE 4 PRIMERS FORASO ANALYSIS 
EXON SENSE PRIMER (5'-3') ANTI-SENSE PRIMER (5'-3') ANNEALING 

4 

15 
TCAGCAGTGCAGTGTGAG 
GATGTTGATGAATGCCAG 

TCCACAATATGTTCCAAT 
ATCCATGCCCACAGCCAG 
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TEMPERATURE 
49.2°C 
53.6°C 



TABLES ASOPROBES 
EXON ASO SEQUENCE BASE CHANGE AMINO ACID CHANGE WASH 

TEMPERATURE 
4 CAGATGACCACTGCCA No Change No Change 50°C 
4 CAGATGATCACTGCCA 486 hp No Change 48°C 
4 CAGATCATTACTGCCA 486/487 hp No Change/Histidine-Tyrosine 46°C 
4 CAGATGACTACTGCCA 487 hp Histidine-Tyrosine 48°C 
15 ACAGTGAAGGGTCCT No Change No Change 46°C 
15 ACAGTCAAGCGTCCT 2026/203 0 bp Glutamic Acid-Glutamine/ 46°C 

Glycine-Alanine 
15 CAACAGTCAAGGGTC 2026 bp Glutamic Acid-Glutamine 46°C 
15 AGTGAAGCGTCCTTC 2030 bp Glycine-Alanine 46°C 
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