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ABSTRACT 

An abstract of the thesis of Ying Luo for the Master of Science in Chemistry 

presented February 15, 1996. 

Title: Heme Proton Resonance Assignments and Kinetics Study in High-Spin and 

Mixed-Spin Metmyoglobin Complexes by Chemical Exchange NMR Spectroscopy 

NMR studies of paramagnetic hemoproteins have improved significantly our 

understanding of the structure-function relationship ofhemoproteins in general. Up to 

date most of the studies focus on low-spin ferric systems which are characterized by 

relatively narrow resonance peaks and concomitant better resolution. 

However, characterizing in detail the NMR spectra of high-spin ferric 

hemoproteins is important since there are several hemoproteins, such as peroxidases, 

catalases, oxygenases, and some ferricytochromes that contain high-spin iron (III) in 

their biologically active forms. Yet assigning resonances from heme peripheral 

protons and/or heme pocket residues in high-spin myoglobins is a daunting 

undertaking. Only a sparse number of active site residues are assigned in such 

instances, even for metaquo-myoglobin. The protons from the heme and heme pocket 
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residues in high-spin complexes experience extremely fast relaxation and very broad 

linewidths, which impede the 2D methods that detect through-space and through-bond 

connectivities. 

It is the intention of this study to develop an effective strategy to gain more 

resonance assignments for fast-relaxing protons in hemoproteins. We have set out to 

use a combined strategy, using two-dimensional exchange spectroscopy (2D-EXSY) 

with two dimensional nuclear Overhauser effect spectroscopy I correlation 

spectroscopy I total correlation spectroscopy (NOESY/COSY/TOCSY). I demonstrate 

here that 2D EXSY experiments can be used to obtain assignment correlations for the 

heme protons of methydroxy-, metthiocyano-, metaquo-, and metimidazole-myoglobin 

forms. All these assignments are unambiguous and straightforward. Moreover, 

saturation-transfer experiments allow determination of ligand binding kinetics. Thus, 

the exchange rates between the metaquo- and metimidazole- or methyl substituted 

imidazole myoglobin complexes are estimated. The differences between the exchange 

rates reflect the differences in the hydrophobic and steric interactions between the 

ligands and the protein moiety. Although I only demonstrate the feasibility of2D 

EXSY for the myoglobin case, this assignment strategy should to be applicable to 

other hemoprotein systems. 
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CHAPTER I 

INTRODUCTION 

Myoglobjn Function and Structure 

Myoglobin (Mb) is an oxygen transport and storage protein. It plays vital roles 

in one of the most important aspects of animal metabolism - the acquisition and 

utilization of oxygen. The most efficient energy-generating mechanisms in animal 

cells require molecular oxygen for the oxidation of foodstuffs. Therefore, proteins that 

deliver oxygen to cells and store it until needed are essential for any higher organism. 

Mb is found in virtually all higher animals, especially in tissues such as muscle, which 

require large oxygen reserves for periods when energy demands are high. The rate 

that oxygen can diffuse from the capillaries to tissues, and thus the level of respiration, 

is limited by the oxygen's low solubility in aqueous solution. Mb increases the 

effective solubility of oxygen in muscle. Mb functions as a kind of molecular bucket 

brigade to facilitate oxygen diffusion.1
,2 In animals with a circulatory system, the 

oxygen transport function is performed by both hemoglobin (Hb) and Mb: Hb carries 

oxygen from the lungs to tissues via the circulatory system, and Mb binds the cellular 

oxygen and releases it when it is required for metabolic processes. Hb binds oxygen 

more easily in the lungs and releases it to myoglobin in the tissues owing to allosteric 



effects from low oxygen pressure, low pH resulting from high concentration of 

dissolved C02, and from high chloride ion concentration. 1'
2 
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Human (or equine) Mb is a small monomeric protein of 153 amino acids with a 

single iron protoporphyrin(IX), or heme group. Mb's three-dimensional structure is 

illustrated in Figure 1. Hb, on the other hand, is a tetramer with two pairs of identical 

subunits labeled a. and p; each subunit binds an oxygen molecule. Figure 2 compares 

the x-ray crystal structures of myoglobin and hemoglobin. Each of the four chains in 

hemoglobin has a folding structure similar to that of myoglobin. The Hb a. and J3 

chains are very similar but are distinguishable in details of both primary structure and 

folding. 

Mb and Hb belong to a large protein family termed hemoproteins, which 

contain various iron-porphyrin ligands as prosthetic groups in the protein structures. 

The functions ofhemoproteins vary widely and include: (1) oxygen binding and 

transport (Mb, Hb ), (2) transfer of electrons (redox proteins and enzymes, such as 

cytochromes ), (3) insertion of oxygen atoms or di oxygen into organic substrates 

(cytochrome P-450, cytochrome H-450, chloroperoxidase), and (4) catalysis of other 

important organic reactions (cytochrome c oxidase, cytochrome c peroxidase, 

horseradish peroxidase). Owing to its relatively small size and high stability, 

myoglobin has served as a model for studying protein-ligand interactions, and 

structure-functional relationships in hemoproteins and proteins in general.3"
5 



Various Complexes in Mb 

The structure of the prosthetic group, heme in Mb is shown in Figure 3. The 

key feature of the porphyrin is the presence of a relatively rigid macrocyclic 

tetradentate ligand which is nearly planar. The removal of heme from Mb is facile at 

low pH, as is the reconstitution of apomyoglobin with modified hemes at neutral or 

higher pH. 

5 

Many of the properties of paramagnetic Mb depend upon the status of heme 

iron ion coordination. The coordination structures and oxidation states that commonly 

occur in Mb are indicated in Figures 4 and 5. In Mb, the naturally occurring iron 

oxidation state is ferrous (Fe2+): the protein is either in the deoxygenated form (deoxy) 

with four unpaired electrons, or in the oxygenated state (oxy) which is a diamagnetic 

form. The iron is coordinated with the four heme pyrrole nitrogens and the proximal 

histidine Ne (Figure 4). Carbon monoxide can also bind to ferrous Mb or Hb to yield 

6-coordinate diagmagnetic forms (Figure 4). In deoxyMb the iron does not lie within 

a plane defined by the heme pyrrole nitrogens, but projects out of the heme plane 

toward the proximal histidine.6 Although usually not as pronounced, the ferric (Fe3+) 

oxidation state of most heme proteins also exhibits this out-of-plane displacement in 

the unligated (5-coordinate) state.6 

Physiologically, Mb can be irreversibly oxidized to the metmyoglobin form, 

which contains high-spin iron(III). Upon binding a strong ligand, such as cyanide ion, 

the ferric protein is converted to the low spin {S=l/2) state. This electronic state has 
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only a single unpaired electron as shown in Figure 5B. Thus, the ligated, 6-coordinate 

state appears in ferrous and ferric forms of myoglobin. Crystallographic data reveal 

that in this type of structure the iron ion lies in the plane of the porphyrin ring. 

Neglecting the fact that the ligands are different, the local structure is best described 

by a distorted octahedrally coordinated iron ion, albeit with different ligands. 

For ferric proteins capable of ligand binding, several species are capable of 

being bound at the sixth coordination site, yet do not produce sufficiently strong 

ligand fields to convert the heme iron completely to the low-spin state. These 

intermediate or mixed-spin states (Table I) are induced by such ions as SCN", N3", Im 

and OH'. Current reviews exist that discuss the concept of mixed-spin porphyrin 

systems and their origin. 7•
9 

Nuclear Magnetic Resonance Spectroscopy(NMR) of Paramagnetic Heme Proteins 

NMR has played a key role in delineating structure-function relationship in 

h . 6 10-12 Th h . . NMR s:.-. • emoprotems. ' e c aractenst1c parameters 1or paramagnetic states are 

(1) spreading of the chemical shift range; (2) short T1; and (3) short T2 leading to large 

linewidth. These large perturbations are due to the interaction between the proton 

nuclei and the unpaired electron(s) residing on the heme iron.6 

Paramagnetic Shifts 
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In the presence of unpaired electrons in a molecule, the observed chemical 

shifts are contributed by both diamagnetic and paramagnetic shifts. 12
•
14 The 

diagmagnetic shift arises from the shielding of the nucleus from the external magnetic 

shift as a result of the electron density around, and the circulation of the electrons near 

the nucleus itself. The paramagnetic, or hyperfine, shift is the difference between the 

chemical shift of a given nucleus in the paramagnetic molecule and what its shift 

would be in a diamagnetic molecule of the same structure. 

Oobs = Odia + Opara 

There are two contributions to the paramagnetic shift or hyperfine shift, the 

contact and dipolar (pseudocontact) terms. 12
•
14 

Opara= Ocon + Odip 

(1) 

(2) 

The contact shift (8coJ has its origin in scalar coupling between electron spins and a 

given nucleus. The dipolar, or pseudocontact, contribution to the paramagnetic shift 

results from through-space dipole-dipole coupling of the nuclear and electron 

magnetic moments. Contact shifts provide details of covalent bonds to the iron, while 

dipolar shifts provide both molecular structural details for noncoordinated amino acid 

residues and information about the magnetic properties of the iron. This wealth of 

information in the hyperfine shift, however, becomes accessible only upon first 

unambiguously assigning the hyperfine-shifted resonances in a paramagnetic protein. 
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Significance of Resonance Assignments 

The hyperfine-shifted resonance as a result of interactions between proton 

nuclei and the paramagnetic heme iron have been investigated to gain insight into the 

electronic structures of the heme embedded in the polypeptide chain of the protein. 12 

The initial, critical step for protein structure analysis demands definitive resonance 

assignments of nearby residues. For hemoproteins, the resonance assignment assumes 

an even greater importance, because it forms the basis for understanding both the 

solution-state structure and the electronic properties of the heme iron. The hyperfine­

shifted signals reflect the electronic structure and can, in particular, elucidate the 

orbital ground state. 16 As a result, structural perturbations that alter the electronic state 

are often manifested in the hyperfine chemical shift pattern, which points to the 

molecular mechanisms controlling ligand binding affinity.13 

Assignment Methods 

Although there are some aspects of solution behavior of hemoproteins that can 

be studied in the absence of assignments, when specific resonance assignments can be 

made for a given protein a barrier to detailed understanding of the molecular level 

events accompanying the protein's function is surmounted. The following methods 

can be used to make unambiguous resonance assignments for the heme and nearby 

residues. 
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1. Specific deuterium labeling 

Specific deuterium labeling of iron protoheme IX and subsequent 

reconstitution into Mb has been the most reliable and most widely used method for 

making unambiguous assignments of heme protons. Although the procedures are well 

known, they are time-consuming and arduous. The synthetic work17
"
20 of G.W. 

Kenner, Kevin Smith, and their co-workers has contributed significantly to our 

understanding of heme protein function since 1978. The ferric high-spin proteins have 

large paramagnetic shifts of protons of the heme group. Consequently, unambiguous 

assignments can be made for all the heme methyl groups, most vinyl protons, and in 

fortuitous cases, the meso protons, as illustrated in the Figure 6. 

2. Comparison to model compounds 

Since before the use of isotopically enriched hemes, model systems have 

played a major role in interpreting heme protein NMR spectra. 10 The use of iron 

porphyrin model systems in making resonance assignments in heme proteins has been 

· d 7 610 23 24 M d I b d. th 1 fi d . . ·11 rev1ewe . ' ' ' o e s can e use m e east re me approxnnatton to 1 ustrate 

how spectra of particular types of well characterized iron porphyrins should appear in 

comparison with actual heme protein spectra An illustration of this method is the 

vinyl proton assignment made in met-myoglobin cyanide, which is based on the Curie 

behavior (8para ex: 1/T) of the spectrum oflow spin ferric porphyrin models.21
•
22 
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3. JDNOE 

The one-dimensional nuclear Overhauser effect (ID NOE), is defined as a 

change in the resonance intensity of a nuclear spin when the resonance of another spin 

is saturated. The NOE originates from dipole-dipole interactions between pairs of 

nuclear spins. Random molecular motions at the resonance frequency of the magnetic 

moments of spins at one site induce magnetic transitions in the spins at another site. 

The net effect is the exchange of magnetization between the sites. The NOE's 

magnitude is proportional to the reciprocal of the sixth power of the distance between 

the irradiated and the observed nucleus. The magnitude of NOE also depends on the 

correlation time for the interaction between the two protons. NOE represents one of 

the most powerful techniques for peak assignment as well as for solution structure 

determination in highly folded biopolymers. 25
"
26 It had generally been assumed that 

the unpaired electron(s) in a molecule would obviate any NOE; consequently, for a 

long time no investigation was attempted on paramagnetic systems. Not until the 

early I 980s have data become available to demonstrate NOEs can be used for making 

important assignments in a variety of paramagnetic proteins.27 However, NOE 

detectiC>ll by ID NOE experiments has its limitations: (1) the lines in paramagnetic 

molecules are difficult to saturate due to short T 1 s, thus a decoupler with high rf power 

is necessary; a strong rf pulse induces large off-resonance effects which could make 



true NOEs difficult to be distinguished from artifacts; (2) the saturation pulse can be 

used to irradiate only well-resolved resonances. 

4. 1 D saturation Transfer 

11 

1 D saturation transfer28 is used to relate pairs of signals belonging to the same 

nuclear species in two different chemical environments in the presence of moderately 

slow chemical exchange. Two separate signals are observed under this condition. 

Chemical exchange, in the NMR sense, reflects all processes of inter- and 

intramolecular rearrangements in which observed spins change their magnetic 

environment. In NMR spectroscopy, slow refers to an exchange rate kij between sites 

i and j that is smaller than the difference in resonance frequencies (in Hz) of the two 

exchange sites; that is, exchange that is slow enough not to cause the individual 

resonances to coalesce into a single line: kij << lro1- rojl/21t. The lower limit of the 

exchange processes is imposed by T1 relaxation of the spins. To be observed, the rate 

of the exchange process must be greater than or comparable to the T 1 relaxation rate 

(lff1): kij ~ Ri> Rj, where Ri = lffli. Chemical exchange processes in proteins include 

all internal rearrangements, such as slow side-chain rotations or reversible folding, and 

reversible intermolecular interactions, such as exchange of labile protons or 

bimolecular associations. These processes, when exhibit much higher rates than can 

be studied by exchange spectroscopy ( kij ~ lro1- rojl/27t.), can be investigated by NMR 

relaxation time measurements or line shape analysis. 
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Although ID saturation transfer can be analyzed simply, it suffers from several 

shortcomings: (1) the exchange rate has to fit in the suitable range to be slow on the 

NMR time scale, yet greater than the relaxation rate (lff 1); (2) saturation can induce 

off-resonance effects; (3) only the well-resolved resonances can be saturated. 

5. Conventional 2D methods (NOESYICOSY) 

Two-dimensional nuclear Overhauser effect spectroscopy (NOESY)29 and 

correlation spectroscopy (COSY)30-
31 have been recognized to be very power tools to 

achieve resonance assignments and three-dimensional structures ofbiopolymers in the 

last decade.32 Whereas the NOESY experiment detects through-space interactions, 

identifying pairs of protons that are within 5 A of one another, the COSY experiment 

detects through-bond interactions, elucidating the direct J-coupling of two protons, 

thereby assisting in sorting proton resonances by residues. 2D NOESY/COSY 

methods have allowed successful assignments for heme and/or heme pocket residue 

resonances in low-spin metcyano-myoglobin (metMbCN),33 aplysia metcyano­

myoglobin,34 horse heart cytochrome c35 and mixed-spin metazido-myoglobin.36 For 

the high-spin or mixed-spin systems with large high-spin content, the mixing times 

have to be shorter than the relaxation times of the protein complexes. For instance, the 

relaxation times of heme resonances in metMbH20 are in the range of- 2-20 msec, 

which is too short to detect conveniently the coherence transfer during the mixing time 

ofNOESY spectra. 
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6. 2DEXSY 

To solve the problem of not being able to use conventional 2D NOESY/COSY 

method for wholly and essential high-spin hemoproteins, I demonstrate in this study a 

combined strategy: 2D exchange spectroscopy (2D EXSY) in combination with 2D 

NOESY/COSY. 2D exchange spectroscopy (2D EXSY)37 has been recognized to be 

very useful to study the dynamic processes in liquids. 2D EXSY is the 2D version of 

the ID saturation transfer experiment, still requiring the same restriction in exchange 

rates in the systems to be able to apply this technique35
• However, 2D EXSY has the 

following advantage over the ID experiment: (I) it avoids using decoupling power to 

saturate individuals peaks, giving no off-resonance effects; (2) it provides much 

greater resolution because the peaks are spread into the second dimension; (3) all the 

saturation transfer peaks are obtained at once, so the experiment is more convenient to 

set up the experiment and to analyze data. Also, the data are more easily viewed in the 

2D plot than in a long series of ID difference plots. 

Previous work on the subject ofthjs study 

1. Assignment of metMblm 

Many assignments of metMblm were achieved by NOESY/COSY in a 

previous work:40 phase sensitive NOESY and magnitude COSY for metMblm in 2H20 

at 31°C and pH 6.8 are shown in Figure 7. Three heme methyls are first recognized by 



14 

their well resolved hyperfine-shifted positions with integrals of three protons relative 

to other resonances of single proton intensity. The assignment process is made based 

on the through-space and through-bond connectivities, starting from the NOE between 

8CH3 and ICH3, the only heme methyls close enough to have an NOE between them. 

The 8CH3 and ICH3 are distinguished by the ICH3 NOE to a vinyl spin system. 2-

vinyl group was recognized by its characteristic AMX spin systems with the J-coupled 

connectivities (2Ha; 2Hpt), (2Ha; 2Hpc), (2Hpt ; 2Hpc). The 2-vinyl group has NOE 

to the ICH3 (ICH3; 2Ha), (ICH3; 2Hpt), (ICH3; 2Hpc)· The 6-propionate was 

assigned by its NOE to 5CH3 and it produced many of the possible COSY/NOESY 

cross peaks: (6Ha; 6Ha'), (6Ha; 6Hp), (6Ha; 6Hp'), (6Ha'; 6Hp), (6Ha'; 6Hp'), (6Hp 

; 6Hp'). 

2. Assignment of metMbH20 

The heme proton resonances ofmetMbH20 were assigned by deuterium 

isotope labeling41 and ID NOE27 experiments as indicated in Figure 6 and 8. La Mar 

and his co-workers demonstrated that the ID NOE is effective for making assignments 

in the high-spin (S=5/2) ferric met-aquo myolobin, metMbH20, which has efficient 

paramagnetic contribution to nuclear relaxation; and yet its spectrum is relatively well­

resolved by virtue of large hyperfine shifts. With a number of the heme resonances 

first assigned by isotope labeling, the propionate peak assignments were obtained by 
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saturating 8CH3 and 5CH3 to gain assignments of7Hm 7Ha', 6Ha; saturating 7Ha and 

6Ha gains assignment to 7H13 and 6Ha, respectively. 

3. Assignment ofmetMbOH 

There are two kinds of methods reported for assigning the heme protons of 

metMbOH. Sperm whale metMbOH was assigned by deuterium isotope labeling 

method by reconstituted apomyoglobin with (l,5-2H6) heme and (l,3-2H6) heme.42 

The 1 D saturation transfer method was used by Yamamoto to obtain the limited 

assignments for metMbOH, as shown in Figure 9 A-D.43 

4. Assignment of metMbSCN 

The situation of heme proton assignment of metMbCN is similar situation to 

metMbOH. There are two methods reported for assigning the heme protons of 

metMbSCN. Three methyl groups of sperm whale metMbSCN were assigned by 

deuterium isotope labeling method by reconstituted apomyoglobin with (l,5-2H6) 

heme and (l,3-2H6) heme.42 The ID saturation transfer method was used by 

Yamamoto43 to obtain the assignment for metMbSCN, as shown in Figure 9 E-1. 

5. Assignment of metMb(4Melm) and metMb(JMelm) 



The same strategy in assigning metMblm resonances was used to make 

assignments for the heme protons of the methylated Mb complexes. Eleven 

assignments were obtained for both complexes in a previous work.40 
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CHAPTER II 

MATERIALS AND METHODS 

MATERIALS 

Horse heart metmyoglobin was purchased from Sigma as lyophilized powder 

and dissolved in 50 mM phosphate, 150 mM NaCl buffer in D20 solution. The total 

17 

concentration of the protein was 4 mM for each sample. All the external ligands (L) 

added were reagent grade, and the molar ratios of two metmyoglobin complexes were 

about 1:1. Ratios were monitored by 1H NMR. The mixtures for 2D EXSY 

experiments were prepared as followings: a mixture of metMblm and metMbH20 was 

prepared by adding aliquots of imidazole in D20 solution to 4 mM slightly acidic 

myoglobin solution in 50 mM phosphate, 0.1 M NaCl buffer (pH 6.8) in D20 to 

achieve - 1 : 1 ratio of each species. A mixture of metMblm and metMbOH was 

prepared by adding aliquots of imidazole D20 solution to 4 mM basic myoglobin 

solution (pH 10.6) in 50 mM phosphate, O. lM NaCl buffer in D20 until - 1: 1 ratio of 

each species is reached; a mixture of metMbSCN and metMbOH was prepared by 

adding aliquots of KSCN D20 solution to 4 mM basic myoglobin solution (pH 10.6) 

in 50 mM, O. lM NaCl buffer in D20 until - 1: 1 ratio of each species is reached. The 

pH values were uncorrected for the isotope effect. 



INSTRUMENTAIION 

Proton NMR spectra were recorded on a Bruker AMX 400 spectrometer 

interfaced with Aspect X32 computer and equipped with a dedicated 5 mm 1H probe. 

Chemical shifts are referenced to 2, 2-dimethyl-2-silapentane-5-sulfonate (DSS) 

through the residual water resonance. 

NMR EXPERIMENTS 

In this study, I utilize the following exchange reactions: 

metMbH20 +Im ~ metMbim + H20 

metMbH20 + lMeim ~ metMb(lMeim) + H20 

metMbH20 + 4Meim ~ metMb(4Melm) + H20 

metMbH20 + SCN-~ metMbSCN + H20 

metMbOH +Im~ metMbim + Off 

metMbOH + SCN-~ metMbSCN + OH-

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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These exchange rates fall in the range suitable for observation by NMR, which enables 

us to assign the hyperfine-shifted resonances by using 2D EXSY experiments. EXSY 

also provides a highly sensitive approach to investigate the dynamics of heme cavity 

in the high-spin and low-spin complexes of metmyoglobin. 

1. General Considerations44 



To cover a large range of chemical shifts, it is important to use short exciting 

pulses and a fast analog-to-digital converter (ADC). Short T 1 values for the 

resonances of interest allow faster scanning and therefore high signal-to-noise ratios 

for a given experiment time. On the other hand, short T 2 values imply large 

linewidths, and the SIN is inversely proportional to the linewidth. 
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Proper choice of the magnetic field is a prerequisite considering all the field­

dependent paramagnetic effects on T 1 and T 2• In the absence of these effects the 

obvious choice would be the highest magnetic field available, since both resolution 

and sensitivity increase almost linearly with magnetic field. T 1 "
1 goes ultimately to 

zero at high magnetic field, whereas T2"
1 levels off at a field-independent value. 

Therefore, it is advisable not to choose too high a field because this may result in a 

longer T1 (slower scanning with no improvement in linewidth). Even though 

relaxation rate arising from chemical shift anisotropy is proportional to the square of 

the applied magnetic field, this effect does not cause line broadening for proton nuclei 

at high applied fields. 

Another general phenomenon that should be considered in paramagnetic 

macromolecules is the occurrence of Curie spin relaxation. The line broadening 

introduced by this relaxation mechanism is proportional to the square of magnetic 

field, and therefore becomes dramatic at very high fields. The onset of such a 

mechanism as the dominant one depends on the relative values of the electronic and 

rotational correlation times, as well as the number of unpaired electrons on the metal 



ion. For metMb complexes, our instrument Bruker AMX 400 with magnetic field at 

9.4 Telsa compromises spectral resolution and these different effects. 

2. 2DEXSY 

Two dimensional phase-sensitive EXSY spectra were acquired using the 

standard NOESY pulse sequence:30
•
37 

relaxation delay - 90° - t1- 90°- tm - 90° - FID (t2) 

Quadrature detection in t1 was achieved using time-proportional phase increase 

(TPPl).45 The mixing time of 5 msec was chosen, which was long enough to obtain 

sizable EXSY cross peaks, while avoid the problems of NOESY cross peak buildup. 

Typically 256 scans were accumulated for each value of ti; 300 ti values were 

recorded with free induction decays of 1024 data points. These were then zero filled 

to 1024 x 1024 real data sets. 

All the EXSY spectra were performed at the elevated temperature of 323K to 

enhance the chemical exchange processes because the chemical exchange rates 

increase with temperature. Although the metMb complexes are not stable for long 

periods of time at this temperature, the acquisition times for these experiments are 

only a few hours at most. The relaxation delay was 500 msec for all the EXSY 

experiment. 

3. 2D NOESYICOSYITOCSY 

20 



Two dimensional magnitude COSY (MCOSY) spectra was acquired using 

standard methods and phase cycling:31
•
46 

relaxation delay - 90° - t 1 - 90° - FID (t2) 

Phase-sensitive NOESY were acquired using the standard pulse sequence: 

relaxation delay - 90° - t1 - 90° - 'tm - 90° - FID (t2) 
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the mixing time ( 'tm) was 25 msec. A short relaxation time (20 msec) was used in 

order to obtain large collection of data in a short experiment time. The mixing time of 

25 msec gave rise to large NOESY cross peaks between heme protons. These 

experiments were typically run at 304 K. The temperature was chosen at which 

metMblm gives well-resolved ID hyperfine-shifted resonances, and because at this 

temperature the protein structure is stable during the relatively long NMR 

experiments. 

Two-dimensional total correlation spectroscopy (TOCSY)47 was acquired with 

pulse sequence: 

relaxation delay - 90° - t 1 -SLx - Mlevl 7 - SLx - FID (t2) 

in which SLx denotes a short 2 msec spin lock field applied along the x axis and Mlev 

17 is a composite pulse sequence that also spin-locks the protons. TOCSY spectra 

display both direct and relayed connectivities within a spin system, and are very useful 

for elucidation of scalar-coupling network. Its advantage is that it gives the entire spin 

system and coherence transfer is efficient and data are largely pure phase. The 

intensities of peaks depend on the length of the spin lock mixing time. For metMblm, 



the mixing time of 25 msec was used. 90° pulse for spin lock was calibrated as 2 i µs 

with spin lock power attenuation of i2 dB. 

4. T1 measurements 

The nonselective Tis of the resolved resonances of the myoglobin complexes 

were obtained by inversion recovery experiment by the method ofHarris48 using the 

pulse sequence: 

relaxation delay - i 80° - t0 - 90° - FID 
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where i80° pulse is used to inverse the magnetization, 90° pulse (read pulse) was used 

to monitor the state of magnetization, and t0 was the delay time between the i 80° and 

90° pulses, ranging from 0.2 msec to i sec. The intensity at i sec is regarded as the 

intensity at infinity since the magnetization has return to its equilibrium position even 

before this delay time. The natural logarithm of the peak intensity for each peak may 

be plotted against t0 , and thus Ti found according to the following equation: 

ln(loo -It)= 1n2 + lnloo -to IT1 (7) 

A plot ofln (loo - It) vs t0 was used to determine Tis of the heme protons of the Mb 

complexes. Ti values were thus calculated from the slope (-i!Ti)-

The spin lattice relaxation times of the resonances in proximity to the 

paramagnetic center, such as heme methyls, can be determined through a non-
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selective, hard 180° inversion pulse. For these resonances, relaxation by the unpaired 

electrons overwhelms all other mechanisms, so that the Tis obtained through either 

selective or nonselective inversion pulse are approximately the same.47 

5. 1 D Saturation Transfer 

lD saturation transfer experiments were carried out for mixtures of (1) 

metMbH20-metMblm; (2) metMbH20-metMb(1Melm); and (3) metMbH20-

metMb(4Melm) mixtures respectively. The irradiated methyl peaks are strongly 

relaxed, hence the use of high rfpower, possibly inducing off-resonance effects, was 

necessary to saturate the peak. To alleviate the problem, lower power irradiation of 

the methyl was attempted although less than 100% saturation was achieved. The 

experimental conditions for these three mixtures are exactly the same: power 

attenuation level of 40 dB and irradiation time of 200 msec were used. The pulse 

sequence of zgh2pr was utilized with on- and off-resonance frequencies alternating for 

64 cycles at 323 K. The pulse sequence is given as follows: 

relaxation delay - 90° - acquisition 

decoupler on - off 
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6. Exchange rates 

For reactions 3, 4, 5 and 6 the reverse reactions are pseudo-first order, because 

the concentration of water is essentially constant. The exchange rate k_1 can be 

. db 50 estimate y 

k - r,-1 1-F 
-I - I -

F 
(10) 

F =I/Io (11) 

-I 
where T 

1 
is the spin lattice relaxation rate of the interested proton in metMbH20. F 

is saturation factor, which is the ratio of the intensities of the involved resonance with 

(I) and without t(I0) irradiation of imidazolate myolgobins determined by 1 D 

saturation transfer experiments. To determine k-1 from Equation 10 directly it is 

required that magnetization of the irradiated peak be reduced to zero,50
-
51 i.e. the peak 

has to be completely saturated. Therefore, I used the difference spectra to normalize 

the irradiated peaks in order to calculate the saturation factors. 
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CHAPTER III 

RESULTS AND DISCUSSION 

1. Additional Assignments ofmetMblm by NOESYICOSY 

Efforts were taken to achieve more complete assignments of metMblm than 

previously available, as shown in Figure 11. The y mesa proton at 11.4 ppm was 

identified by its NOE to 7Ha, 6Ha, 6Ha', and its broad linewidth (-160 Hz) and an 

intensity of one proton. The a mesa proton at 9.62 ppm is identified by its NOE to the 

2Ha and 3CH3, and its large linewidth of about 77 Hz. A resonance at 7.42 ppm is 

identified as the B meso proton based on the NOEs from this proton to the SCH3 and 

IleFG5C0H3. All these distances are consistent with the by x-ray crystal structure of 

sperm whale myoglobin. 4-vinyl B protons are identified by their AMX spin systems 

of the vinyl group in TOCSY experiment: (4Ha, 4Hpc), (4Ha, 4Hpi). The small 4HBt-

4HBc coupling fails to yield a cross peak due to the line width and small value of the 

coupling constant J < 2 Hz.33 The results are summarized in Table I. 

2. Additional Assignments of metMbH20 by 2D EXSY 
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Figure 12 shows the downfield hyperfine-shifted region of a phase-sensitive 

2D EXSY spectrum of -1 : 1 mixture of the equine myoglobin complexes: metMbH20 

and metMbim, recorded at 400 MHz, 50°C, and pH 6.2. The upfield region of the 2D 

EXSY experiment is shown in the insert. The mixing time was 4 msec and the 

relaxation delay was 40 msec. The assignments on the horizontal and vertical axes are 

those of metMbH20 and metMblm, respectively. The meso y of metMbH20 was 

obtained from the EXSY cross peaks, which matched one of the three unspecified 

meso protons that were identified by La Mar;42 A resonance at -5.8 ppm was assigned 

to 2Hf3c• which was only able to identified as vinyl f3 proton.42 The results are 

summarized in Table I. 

3. Assignments of metMbOH by 2D EXSY 

Figure 13 shows the downfield hyperfine-shifted region of phase-sensitive 2D 

EXSY spectra of - 1 : 1 equine metMbOH and metMblm complexes, recorded at 50°C 

and pH 10.3, with a mixing time of 5 msec and relaxation delay of 60 msec. The 

original data matrix was 512 x 512 data points, zero-filled to 1024 x 512. Each block 

was 300 scans. The running time was 4.5 hrs. Twelve heme protons of metMbOH 

were assigned through the 2D EXS Y cross peaks, based on the corresponding 

resonances of metMblm. As the pH of metMbH20 solution is increased, more 
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population of this acidic form converts to metMbOH (acid-base transition, illustrated 

in Figure 14 ). The exchange rate of metMbOH and metMbH20 is on the order of 105 
-

106 s·1
, fast on the NMR time scale. The fast exchange rate is due to the association 

and dissociation of a proton on the ligand (water), which does not require the ligand 

diffuse out of the heme pocket.51
"
52 Thus, the heme resonances in metMbOH can not 

be assigned directly through the exchange of the acidic and basic form of metaquo­

myoglobin. Yet they are easily attainable through the 2D EXSY experiment, as 

illustrated in Figure 13. The results are included in Table I. This single experiment 

allows twelve assignments of the heme resonances ofmetMbOH, which is quite 

profitable compared to the isotope labeling method which assigned only four methyl 

heme protons, as shown in Figure 9 E-1. Although the heme resonances of metMblm 

change slightly with pH, the assignments of metMbOH are unambiguous because the 

assignments of metMblm resonances which correlate with the resonances of 

metMbOH, are definitive. 

4. Assignments of metMbSCN by 2D EXSY 

Figure 15 illustrates the downfield hyperfine shifted region of a -1: 1 mixture 

of metMbSCN and metMbOH at pH 10.3 and 323 K. The mixing time was 5 msec and 

the relaxation delay was 20 msec. The spectrum was collected in 2 hrs as a 512 x 300 

data point matrix. The assignments of heme proton resonances had proved very 
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difficult to make either by isotope labeling method or i D saturation-transfer 

experiment (Figure 9 A-D and 10). Only three methyl protons were assigned by both 

methods. Nevertheless, our study demonstrates that the heme resonances of 

metMbSCN are obtained through the cross peaks of a 2D EXSY spectrum of - i: i 

metMbSCN-metMbOH mixture, after the heme resonances ofmetMbOH are assigned. 

Nine heme protons are able to assigned, among which the three methyl assignments 

. "th . k 43 were consistent wi previous wor . 

An unsuccessful attempt was made to observe 2D-EXSY between metMbH20-

metMbSCN. Cross-peaks were not detected even though these species exchange 

slowly enough relative to the NMR time scale to give separate resonances for the 

mixture, and i D saturation transfer was able to detect the magnetization transfer from 

the three methyls.43 This failure was probably due to the extremely short Ti values 

(the Ti's of 5CH3 ofmetMbSCN, metMbH20 are 4 msec and 4.7 msec, 

respectively).40,47 

Likewise, both metMbH20 and metMbOH exchange with metMbF slowly, 

yet the 2D EXSY experiments failed to detect the any EXSY cross peaks. This is not 

surprising because F- is a weaker ligand to replace the water and OH" in the reactions. 

Therefore exchange rates are probably much slower relative to their very fast spin 

lattice relaxation rates. 
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5. T1 Comparison 

The inversion-recovery experiments of the myoglobin complexes are 

illustrated in Figure 17-22. T1 values were extrapolated from the experiments using 

Equation 7, using Figure 23 as an example. The results are tabulated in Table II. The 

wholly and essentially high-spin complexes have very short spin lattice relaxation 

times compared to the essentially low-spin complexes. These values provide the clues 

for the difficulties to perform 2D NOESY experiments of metMbH20, metMbSCN 

and metMbOH since the mixing times ofNOESY are required to be shorter than T1 

values of each complex, which is too short to detect any coherence transfer. 

6. Spin States 

According to magnetic property studies, 53
"
56 metMbSCN was believed to be 

essentially high-spin, as is metMbH20, metMblm and metMbN3 were approximately 

80 % low-spin, and metMbOH was about 30 % low-spin. Since high spin contents are 

manifested by the chemical shift dispersion and the spin lattice relaxation rates, the 

high-spin contents can be calculated from Equation12 and 13,57 listed in Table I. 

f HS= (()obs_ ()LS)/ (()HS_ ()LS) (12) 
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fHS = ( R
1
obs_R

1 
LS)/ (R

1
Hs_ R

1
LS) (13) 

where 88 s (or R1 HS) is the chemical shift (or spin lattice relaxation rate R1 = l/T1) of a 

specific group (i.e., the average of the heme methyls) in the pure high-spin form 

(metMbH20), 3LS (or R1 LS) is the chemical shift (or R1) of the same group in the pure 

low-spin form (metMbCN), and 3obs ( or R1 obs) is the observed chemical shift (or R1) 

of the group in the mixed spin case. At 323 K, the 8HS is 73.1 ppm and 3Ls is 14.7 

ppm obtained from our experimental data at this temperature based on the 

results.27
•
33

'
41 Despite the discrepancy in the exact values, the four categories they fit 

into estimated by the three methods are identical. 

9. Linewidth Comparison 

The broadness of linewidth of metmyoglobin complexes follow the order of 

metMbH20 > metMbSCN > metMbOH > metMblm > metMbN3 > metMb(lMelm), 

metMb(4Melm) > metMbCN, which correlates the order of their high spin contents, 

with the exception that metMblm is abnormally broad. In the methylated imidazolate 

complexes, the linewidths are much narrower, suggestive that the extra methyl group 

generates more stability of the heme pocket through hydrophobic interaction with the 

protein matrix, or steric hindrance for the rotation of the imidazole ring. This unusual 

line broadness in metMblm likely results from the chemical shift average of the 

resonances by rotating imidazole ligand around its pseudo-C2 axis in the heme pocket. 



The detailed dynamics in the imidazole and methyl-substituted imidazole complexes 

ofmetmyoglobin has been studied.40 

8. Exchange rates 

31 

While a 1: 1 ratio of metMblm (or metMb4Melm) and metMbH20 mixture 

form readily by adding-2 fold access oflm (or 4Melm), - 20 fold access of lMelm is 

needed to form its 1:1 mixture to metMbH20. A large excess of2-methylimidazole is 

required to achieve metMbH20: metMb(2Melm) mixture, although free heme binds 

to 2Melm readily in aqueous solution.58 In some cases ofhemoproteins,59
•
60 with the 

influence of protein surroundings, the heme reactivities upon 2Melm change. For 

metMb(2Melm) the methyl group on the imidazole is too close to the heme plane, the 

steric hindrance likely lengthens the Im-Fe bond distance thus destablizes the 

complex.59 In order to study the exchange rates of reaction 3, 6 and 7 quantitatively, 

lD saturation transfer experiments at 50°C, pH 6.7 were performed for the following 

equine metMb complex mixtures in Figure 25-27: (a) metMblm and metMbH20; (b) 

metMblMelm and metMbH20; (c) metMb4Melm and metMbH20. Selective 

irradiation of the 5-methyl heme protons of the imidazole metMbs in each mixture 

giving saturation transfer to 5-methyl heme protons of metMbH20 in the mixtures. To 

alleviate the problem of strong off-resonance effects from using high rf power, low 
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power (40 dB with irradiation time of200 ms) irradiation was used. The lower spectra 

are from the irradiation, the middle spectra are the corresponding reference, the upper 

spectra are the difference between the reference and the corresponding irradiation 

spectra. Saturation factors were calculated using Equation 11 with correction for the 

incomplete irradiation. The spin lattice relaxation times of 5CH3 of metMbH20 at 

323K is 5 msec, which is used to calculate the exchange rates k.1 using Equation 10. 

The results are tabulated in Table Ill. 

The exchange rate constants of the exchange reactions at 323 K for water with 

metMblm, metMb(lMelm) and metMb(4Melm) are 50, 127, 5.5 s·1 respectively. The 

extra methyl group allows 4Melm likely fills the heme pocket more effectively. The 

more hydrophobic nature of the ligand stablizes the metMb(4Melm) complex, which 

accounts for the much smaller exchange rate of reaction 5 than that of reaction 3. The 

exchange rate of reaction 4 is larger than that of reaction 3, sugguesting 

metMb(4Melm) is less stable. Although lMelm and 4Melm are similar in size and 

shape, they bind to metmyoglobin in a different fashion. Figure 28 illustrates that 

4Melm forms a hydrogen bond with its N1H to the distal histidine 64 residue (Hs E7), 

as does Im in metMblm, whereas 1 Melm does not have the ability to form this 

hydrogen bond. Thus a less stable complex and a faster off-rate k.1• 

Although the heme protons and heme pocket residues of metMbCN are fully 

assigned, this protein complex does not exchange its ligands with water at a sufficient 

rate to gain 2D EXSY cross-peaks, even at 323K (higher temperature causes rapid 
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denaturing of the protein). Therefore, obtaining the assignments of metMbH20 

through exchange metMbCN with water is impossible to realize. The irreversibility of 

this reaction is attributable to the strong interactions between the ligand CN- and the 

uon. 
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CHAPTER IV 

CONCLUSIONS 

The study demonstrates the feasibility of2D EXSY experiments to make 

assignments of many heme protons of metMbim, metMb 1 Meim, metMb4 Meim, 

metMbOH, and metMbSCN; additional assignment of 2Hj3c and y meso protons of 

metMbH20 are made. An alternative to isotopic labeling approach to gain heme 

proton assignments is established. In comparison to previous methods, which have 

yielded only the heme methyl resonance assignments of metMbim, metMbOH, and 

metMbSCN, this new method gives assignments for each complex from a single 2D 

EXSY spectrum. The quantitative comparison of the linewidth of these complexes 

correlate with their high spin contents except for metMbim. This abnormally broad 

linewidth of metMbim has been suggested to the rotation of the imidazole ring around 

its pseudo C2 axis. The study also demonstrates that saturation-transfer NMR can 

monitor directly the ligand binding kinetics in the myoglobin complexes. The 

difference in exchange rates of the imidazolate myoglobins are accounted for by the 

difference in hydrophilicity and ligand coordinating strength. These results will 

provide different opportunities to explore the structural and electronic mechanisms 

that influence ligand binding in myoglobin. In addition, this study provides a 

promising prelude for obtaining assignments for resonances of residues that reside 



close in space to the paramagnetic iron of metMbH20 via their EXSY cross peaks to 

the corresponding resonances of metMblm, which can be obtainable using the 

conventional 2D NMR techniques. 
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TABLE I. 1H NMR assignments of heme protons in equine metMbH20, metMbSCN, 
metMbOH and metMblm at 323K 

heme metMbH20 metMbSCN metMbOH metMblm 
protons 
lCH3 50.9 46.2* 29.l 25.0 

3CH3 70.0 53.3 37.5 7.5 

5CH3 82.6 58.8 43.0 38.5 

8CH3 89.0 63.5 43.8 17.6 

2Ha. 44.7 34.2* 26.3* 23.2 

2Hpc -5.8* 1.8* -1.6 

2Hpt -6.4 -3.0 

4Ha. 31.8 32.4* 21.5* 8.3 
4Hpc -1.0* 

4Hpt -1.3* 

6Ha. 54.4 47.8* 36.8* 15.4 
6Ha.' 44.7 34.2* 25.9* 13.5 

6H13 2.5 
6HB' 2.3 

7Ha. 67.4 10.8* 13.8* 6.8 
7Ha.' 30.8 10.8* 2.6 

7HB 17.0 20.1 * 2.5 
7HB' 

a.-meso 9.6* 
p-meso 7.42* 
y-meso 48* 11.0* 
o-meso 

*Assigned in this study, the rest of the assignments were obtained based on the 
reference 24, 28, 37. 
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TABLE II. 

T1 measurements (msec) of heme protons in equine metMbH20, metMbSCN, 
metMbOH,metMblm, metMb(lMelm) and metMb(4Melm) at 323 K. 

heme metMbH20 metMbSCN metMbOH metMblm 
protons 
lCH3 1.0 4.6 2.1 31.4 

3CH3 4.1 4.9 2.0 

5CH3 5.0 4.7 33.7 

8CH3 5.2 5.0 1.7 40.1 

2Ha 3.6 1.54 30.2 

2H~c 

2H~t 

4Ha 2.8 2.5 1.03 

4H~c 

4H~t 

6Ha 5.5 5.9 33.5 
6Ha' 3.2 31.1 
6H13 
6H13' 

7Ha 18.6 
7Ha' 14.8 
7H13 
7H13' 

a-meso 
~-meso 

y-meso 
8-meso 
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TABLE II (continued) 

T1(msec)measurements of heme protons in equine metMb(lMelm) and 
metMb(4Melm) at 323K 

heme protons metMb(l Melm) metMb( 4Melm) 
lCH3 26.6 msec 43.3 msec 

3CH3 

5CH3 26.0 38.9 

8CH3 28.8 20.0 

2Ha. 33.3 32.9 

2H~c 

2H~t 

4Ha. 
4H~c 

4H~t 

6Ha. 22.6 25.1 
6Ha.' 26.3 22.8 
6HB 
6HB' 

7Ha. 
7Ha.' 
7HB 
7H13' 

a.-meso 
~-meso 

y-meso 
o-meso 
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TABLE III Exchange rates and saturation factors (F) between metMbH20 and 
metMblm; methyl substituted imdidazole metmyoglobins at 323K based on ID 
saturation transfer experiments 

Reactions 3 4 5 

Saturation 0.69 0.56 0.93 
factors 

k..1 (s-1) 90 156 15 
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Figure 1. Three-dimensional crystal structure of spenn whale myoglobin.1_Each 
amino acid is indicated by a circle corresponding to its a-carbon atom. Individual a­
helical regions are labeled A-H, with turn regions designated by two letters, eg, EF. 
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