
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

4-24-1996

Layout Synthesis for Datapath Designs Layout Synthesis for Datapath Designs

Naveen Buddi
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Buddi, Naveen, "Layout Synthesis for Datapath Designs" (1996). Dissertations and Theses. Paper 5240.
https://doi.org/10.15760/etd.7113

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5240&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5240&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5240
https://doi.org/10.15760/etd.7113
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Naveen Buddi for the Master of Science in Electrical and

Computer Engineering were presented April 24, 1996, and accepted by the thesis

committee and the department.

COMMITTEE APPROVALS:

Michael A Driscoll

Maria Balogh
Representative of the Office of Graduate Studies

DEPARTMENT APPROVAL:

Rolf Schaumann, Chair

Department of Electrical Engineering

**

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY

on s~;qqt,

ABSTRACT

An abstract of the thesis of Naveen Buddi for the Master of Science in Electrical

and Computer Engineering presented April 24, 1996.

Title: Layout Synthesis for Datapath Designs

As datapath chips such as microprocessors and digital signal processors

become more complex, efficient CAD tools that preserve the regularity of datapath

designs and result in small layout area are required. The standard-cell placement

techniques ignore the regularity of datapath designs and hence give inefficient lay­

outs. This has necessitated the development of new techniques for datapath module

placement.

We developed a layout synthesis tool DataPathLAYOUT, for the bit-slice

datapath logic designed using standard-cell libraries. We developed fast and area

efficient heuristics for placing the cells in a bit-slice such that the regularity of data­

path circuits is preserved and the number of channels in which a control signal is

routed is minimized. The placement heuristics proposed here are general and also

applicable to regular logic like systolic arrays. In addition, we propose a novel win­

dow-based heuristic, applicable to datapath and non-datapath circuits, for global

routing of multi-terminal nets. We compared the area and run-time efficiency of the

DPLAYOUT with an existing standard-cell placement and routing tool. We

achieved 98-99% improvement in placement time, 28-33% improvement in area

and 8-80% in total time. We conducted some experiments and demonstrated that for

i\'
standard-cell based datapath designs, bit-slice-based layout generation approach is

superior to non-bit-slice-based layout generation approach both in terms of area

and run-time. Finally, by providing interface to Verilog hardware description lan­

guage, we developed a general tool which can be easily integrated with any high­

level synthesis system. This tool is critical in any Datapath Silicon Compiler, to

generate mask geometries from the behavioral level input specifications written in a

hardware description language.

LAYOUT SYNTHESIS FOR DATAPATH DESIGNS

by

NAVEEN BUDDI

A thesis submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

m

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University

1996

i>nJ?n a~m ~Tr.n nimrr~~rrv rnuunv

ACKNOWLEDGEMENTS

I would like to express my deep appreciation and gratitude to Dr.Malgorzata

Chrzanowska-Jeske for her encouragement and guidance in this work. I wish to

thank Dr.Michael A Driscoll and Dr.Maria Balogh for serving on my thesis com­

mittee and for carefully reviewing my work. Thanks are due to all the committee

members for their critical comments about my work.

I would like to thank Charles L.Saxe, Vince Ast of Tektronix Inc.for their

cooperation and an interesting technical discussion throughout this work. This

work was sponsored by a research grant from Tektronix Inc. and I would like to

thank Tektronix Inc. for the support.

It is a pleasure to acknowledge the constant help from the faculty and admin­

istrative staff of Department of Electrical Engineering, PSU.

I wish to express my sincere thanks to my ex-colleagues at CAD(VLSI) lab

of Micro-electronics and Computers Division, Indian Telephone Industries Ltd ..

India for the technical discussions which helped me in learning the various aspects

of VLSI CAD tool development.

Finally, I would like to thank my present employer Cypress Semiconductor

Corporation for making the time available for me to complete the work.

Table of Contents

Page

Abstract .. iii

Acknowledgements . v

List of Figures .. viii

List of Tables .. ix

1 Introduction .. 1

2 Datapath Layout Generation4

3 DPLA YOUT Methodology 11

4 Placement ... 16

4.1 Regularity preserving classification of control signals 20

4.2 Classification of the cells 21

4.3 Row assignment .. .21

4.4 Row merging ... 27

4.5 Complexity analysis .. 27

5 Global Routing .. .29

5.1 Net ordering .. 32

5.2 Window-based routing33

5.3 Complexity analysis .. 35

vii
6 Results ... 38

7 Conclusions ... 44

8 References .. 45

9 Appendix 1 : Package Details48

A.1.1 Synopsis .. 48

A.1.2 Usage ... 48

A.1.3 Error Messages .. .49

10 Appendix 2: Test Runs ... 51

List of Figures

Figure Page

2-1 Floorplan of a datapath chip 6

2-2 8-bit-slice datapath design .. 7

2-3 Cell structure in a library ... 7

2-4 Abutment of cells ... 8

3-1 Datapath synthesis system 12

3-2 Layout Model of DPLAYOUT 14

3-3 DPLAYOUT tool architecture 15

4-1 Control signal routing .. 19

4-2 Classification of control signals 24

4-3 Row Assignment .. 25

4-4 Row merging algorithm ... 27

5-1 Placement and routing of a sample netlist 31

5-2 Paths connecting a 3-terminal net33

5-3 Net ordering scheme .. .35

5-4 Window based global routing36

5-5 Advantage of window based routing37

6-1 Single bit-slice adder accumulator circuit layout43

List of Tables

Table Page

I DPLA YOUT Results and Comparison with SCR tool.41

II Comparison of bit-slice approach and non-bit-slice approach42

1.INTRODUCTION

The datapath logic of microprocessors and digital signal processing circuits

contributes significantly to the overall chip area. This logic is regular and repeti­

tive.In cell-based designs, usually datapath compilers (tools that generate layouts

directly from netlists) are used to generate the layouts. To achieve better perfor­

mance the datapath compilers implement the datapath logic using cells from spe­

cialized (datapath) libraries [2,3). However, the development and maintenance of

specialized libraries requires an extra effort and causes cost overhead. In addition,

not all vendors supply these specialized libraries. In such cases, the CAD tools use

standard-cell library elements to implement the datapath logic. Traditional place­

ment techniques [18) used in CAD tools ignore the regularity present in the datap­

ath designs. Consequently, the CAD tools will not provide area efficient layouts.

This has necessitated the development of new techniques for datapath module

placement in standard-cell based designs.

In the past, researchers have proposed different techniques [5-8) to solve the

datapath layout generation problem. More detailed description of these techniques

is given in chapter 2. Some of these techniques [5] assume datapath libraries and

some other [6-8] assume standard-cell libraries. The former techniques [5] use bit­

slice based approach in which the layout of datapaths is generated by replicating

the layout of one bit-slice. The standard-cell based techniques [6-8] do not effec­

tively use the repetitive nature of bit-slice datapath designs. They follow non-bit­

slice approach in which all the bit-slices are combined and treated as a single bit­

slice. In this work, we solved the datapath layout problem using standard-cell

2
libraries by exploiting the bit-slice nature of datapath designs. The given circuit is

divided into several bit-slices and the layout is generated for one bit-slice at a time.

Then the layouts of all bit-slices are combined to obtain the layout of the given cir­

cuit. Our approach is faster than the non-bit-slice based approach because the size

of the problem is reduced by considering a single bit-slice at a time. This is more

significant when the number of leaf cells in a bit-slice is large which is typically the

case in designs where large number of datapath functional blocks are stacked

together. Our method is area efficient because the regularity of datapath circuits is

preserved. We implemented this approach in a program called DPLAYOUT.

After experimenting with several designs, we demonstrate that for standard

cell based datapath designs, efficient layouts can be generated by using the bit-slice

based approach. Present day Datapath Silicon Compilers are capable of generating

mask geometries automatically, from the behavioral or architectural level input

specification described using a hardware description language. By providing inter­

face to Verilog hardware description language [31], we made a general tool which

can be integrated with any high-level synthesis system.

The remaining part of the thesis is organized as follows. Chapter 2 discusses

datapath layout in general and the issues to be considered while designing a datap­

ath layout synthesis system. The evolution of datapath layout tools and the previ­

ous work are also described in this chapter. In chapter 3, the layout model used in

our work, the DPLAYOUT tool architecture and the importance of our work are

described. The Placement and Global Routing heuristics developed are described in

Chapters 4 and 5 respectively. Finally, the comparison between the DPLAYOUT

and a standard-cell place and route tool, for a set of datapath designs, is given in

chapter 6. Appendix 1 gives the details of the package and Appendix 2 shows

£

2.DATAPATH LAYOUT GENERATION

Fig.2-1 shows typical floorplan of a microprocessor or a digital signal proces­

sor chip. It consists of one or more stacks of datapath logic, a random logic and

memory. The datapath logic is regular and repetitive in nature when compared to

the random logic.

Definition 2-1: A logic circuit is regular if it can be partitioned into slices

(portion of a circuit) such that the functionality and logic structure in each of the

slice is exactly the same or differ only slightly. And the connectivity between the

slices is the same. Systolic array architectures, datapath logic circuits are examples

of regular logic.

Each datapath stack is made up of many custom datapath macros (group of

cells implementing a logic function), such as adders, shifters, registers, ALU etc.

which form the data flow of the datapath functional units such as the fixed-point

and floating-point execution units. Different approaches, namely, bit-slice, macro­

cell-based and array-based datapaths are used for datapath design, based on differ­

ent design styles.

In bit-slice approach, a datapath generator constructs the datapath by con­

necting several bit-slices in parallel, as shown in Fig.2-2. Each of the bit-slice per­

forms the required function on a single bit of the data flow. The number of bit-slices

in each of the datapath macro depends on the width of the datapath. In Fig.2-2, the

datapath is 8-bit wide. These datapath macros are typically stacked up vertically (or

horizontally) and wired almost exclusively with vertical (or horizontal) wires.

Macro-cell-based datapaths are typical of Digital Signal Processing (DSP)

circuits. In these datapaths, module generators are used to synthesize the resources

5
(logic blocks like adders, multipliers, registers etc.). After synthesizing the

resources, the resources have to be placed and wired. This method has been used by

the CATHEDRAL-II compiler [24]. From the architectural level synthesis stand

point this approach is more flexible (in terms of choice of resources) than one using

bit-slice datapath synthesis approach. This is especially true when application-spe­

cific resources are needed (e.g., arithmetic operators with non-standard word

lengths).

In the case of array-based datapaths, logic and physical synthesis techniques

[18,30] are applied to the datapath. Thus, the datapath is treated no differently than

other portions of the design. In general, bit-slice datapaths consume less area and

perform better than datapaths designed in a macro-cell-based or array-based style

[30].

Datapath layout generation can be done in two different ways. In the first

method the datapath macros are treated as blocks and block placement and fioor­

planning techniques [17] are used to generate the layout. In the second method, bit­

slice nature of datapath designs is used for generating the layouts. First the layout

of a single bit-slice is optimized, then this bit-slice is replicated and finally all the

bit-slices are combined to perform the routing. In cell-based designs, datapath

compilers follow this method.

To realize the datapath logic, datapath libraries or standard-cell libraries are

used. Fig.2-3 shows a typical cell structure in a datapath library and in a standard­

cell library. In a datapath library, the cell pins (I/Os) are available only on one side

but at multiple horizontal locations. Thus this pin structure allows abutment of the

cells in a bit-slice as shown in Fig.2-4. In this figure, the cells (C 1, C2, ... C 12) are

placed in rows. The dotted vertical lines show connectivity among cell pins. When

Memory

Datapath stack

Random

Logic

Data path
stack

Fig.2-1 Floorplan of a datapath chip

the cells are abutted as shown in the figure, no space between rows is required for

routing. However, some times this abutment is not possible and space is required to

route the nets. For example, in Fig.2-4, space is needed between rows 3 and 4 to

route the net connecting pins of cell C8 and C 12.

Where as in a standard-cell library, the cell pins are available on both sides of

the cell but at only one horizontal location (refer Fig.2-3). R.Leveugle et.al. [13]

made an analysis of datapath library versus standard-cell library implementation of

datapath designs and concluded that datapath library implementations are in most

cases better from the area point of view than the standard-cell library implementa-

tions especially up to two level (layer) metal technologies. However, not all ven-

dors offer these datapath libraries and they are not cost effective compared to

6

7
standard-cell libraries. Also, they are not efficient to realize the control logic. With

recent advances in IC fabrication, many standard-cell library vendors are offering

libraries with three or four levels (layers) of metallization. With more layers, rout-

ing can be done over the cells and hence the routing region between rows can be

minimized. Using these standard-cell libraries the layout can be minimized if we
data-in

' ' ' ' ' ' ' '

bit 0 I bit I I bit 2 I bit 3 I bit 4 I bit 5 I bit 6 I bit 7

data-out

Fig.2-2 8-bit-slice datapath design

D D D DB

F

datapath library standard-cell library

Fig.2-3 Cell structure in a library

8
also take into account the regularity of datapath designs. Datapath libraries with

more levels of metallization are expensive compared to the standard-cell libraries.

Thus standard-cell libraries with efficient CAD tools and better technology give

area comparable to datapath libraries, with less cost. At the same time, they offer

the convenience of using the same library for the datapath logic and the control

logic.

I

l C1
I

I C2 I C3 I
I I I I I I

Rowl

I I I I I I I
I C5 I C6 I I C7

C4 1
I

I I I

Row2

I I I I

I
Cs C9 Row3

I

L--------,

C10 C11
I

C12 Row4

Fig.2-4 Abutment of cells

Several options need to be considered to automate the datapath layout gener-

ation. They are:

a. A number of datapath stacks: The number of datapath stacks (blocks) in the

overall chip. In a single stack approach, entire datapath logic is implemented as

one block. In multi-stack approach, datapath logic is partitioned into several

blocks.

b. The composition of bit-slices: All the bit-slices are constructed from the same

set of cells or different bit-slices are constructed from different sets of cells.

c. The library: The type of the library (datapath or standard-cell) used to imple-

ment the datapath logic.

d. The basic approach: Bit-slice approach or non-bit-slice approach.

Previous Work:

The early work on automatic datapath layout generation [25,26] has been

focused on generating the layouts directly from the schematic description of a

design. Later gate-arrays and cell-based designs gained popularity due to the need

for fast design turn-around time. In cell-based designs, it is often more area efficient

to build small datapaths using standard-cells because of ftoorplan flexibility. So the

researchers addressed the problem of generating efficient netlist compilers [14].

These netlist compilers generate standard-cell and gate-array netlists from the same

high-level specification. They do not synthesize any control logic, but focus on

building the datapath logic within a design. Some efforts were also made to reduce

the area of cell based datapaths by using bit-slice based module generators [5]. In

these module generators, the chip designer can specify not only datapath parameter

values (like number of bits) but also the resources (like number of multipliers,

adders etc.) of the datapath.

Other class of tools [6,7] concentrated more on higher level optimization, that

is, optimizing area of datapath chips by optimizing the number of datapath stacks

and their placement. Luk and Dean [6] use a multi-stack approach in which the

datapath logic cells are partitioned and assigned to several stacks with the objective

of minimizing the number of nets crossing a stack. The placement within a stack is

determined such that the misalignment of macros and a number of vertical wiring

tracks used for routing, are minimized. However, they did not use the regularity

present in the datapath designs. Wu and Gajski [7] used the regularity property of

datapath designs, but concentrated only on partitioning the Register Transfer Level

9

10
(RTL) netlist to generate RTL-component layout. In [8], the authors extract similar-

ity among several bit-slice components to form macros and solve the problem as

the placement of the extracted macros. The authors did not effectively use the repet­

itive nature of bit-slice datapath designs because they consider several bit-slices at a

time. Also their cell-matrix approach for placement leaves some empty slots in the

matrix. The area wastage due to these empty slots is more significant when the

macros have non-uniform width. The objective of the above tools is to ensure the

datapath internal wirability, as well as external stack wirability to the other circuits

and to minimize the wire lengths for mutability and timing.

In custom-designs, like in microprocessors, large scale datapaths are conven­

tionally hand-crafted to obtain a high density and high performance circuits. As the

complexity of the circuits increases, the design effort for the datapaths is increased

remarkably in the hand-craft methodology. To reduce the design effort, new hierar­

chical symbolic design methodology has been proposed [I]. In this, I-bit field of

the bit-slice structure is designed symbolically using gates as the primitives, then

compacted and finally the entire datapath is generated. Later using a new cell struc­

ture called stretchable cell with access free terminals, efficient datapath layouts

comparable to a hand-crafted one are generated [3].

As none of the previous work exploited the regularity of datapath logic for

generating the layouts in standard-cell based designs, we addressed this, in our

work. The subsequent chapters explain the methodology and the algorithms used in

DPLAYOUT.

3.DPLAYOUT METHODOLOGY

As we can see from the previous work on the datapath layout generation, dif­

ferent tools have followed different approaches for generating the layouts of data p­

ath circuits. No single tool gives efficient results for all the designs. In order to

generate area efficient datapath designs, we need an integrated system which

includes all the above approaches. An integrated datapath synthesis system with

DPLAYOUT is shown in Fig.3-1. From the behavioral description, architectural

level synthesis is done and Register Transfer Level (RTL) netlists are generated.

These RTL netlists are partitioned into single or multiple stacks of datapaths. Each

stack of a datapath logic is implemented using standard cell or datapath libraries.

When standard-cell libraries are used, DPLAYOUT can be used to realize area effi­

cient layouts. Finally, the layouts are combined to generate the complete layout of

the datapath logic.

We assume that a datapath circuit is designed using standard-cell library com­

ponents (cells). The layout model used is a single stack of rows with cells placed in

rows. All data signals enter from the top of the stack and leave to the bottom of the

stack. The control signals enter from the left side of the stack and leave to the right

side of the stack. Fig.3-2 shows the layout model used in DPLAYOUT. A datapath

is constructed by connecting several bit-slices in parallel. SliceO, slicel, slice(n-

1) are n-bit slices. In each of the bit-slices, the cells are placed in rows. The cells are

shown as filled boxes. Each of the bit-slices can consist of different cells.

The DPLAYOUT tool architecture is shown in Fig.3-3. The design is

described in the form of a hierarchical Verilog netlist. A bit-slice is described as an

entity in Verilog, and the datapath is described by instantiating these entities. Refer

12

Behavioral Description

+
Highlevel Synthesis

! RTL netlist

Partitioning and multi-stack optimization

t t
Standard-cell libraries Datapath libraries

+
DPLA~

Layout

+ h . datapat compder

""""'
Fig.3-1 Datapath synthesis system

to Appendix 2 for the sample netlists. This interface to Verilog makes DPLAYOUT

a general tool which can be integrated with any high-level synthesis system. The

tool is modular and hence to handle hierarchical VHDL [32] netlists only the Ver-

ilog parser needs to be replaced with a VHDL parser.

Each of the bit-slices is constructed from a set of primitive cells present in the

target standard-cell library. The input netlist is first analyzed and the bit-slices are

classified into different types as follows. Each of the bit-slices is represented as a

cyclic graph in which the nodes represent the cells and the edges represent the nets.

Each node has a cell type attribute (represents the functionality of the cell) associ­

ated with it.

Definition 3-1: Two bit-slices i,j are treated as the same if the graphs repre-

senting the bit-slices are isomorphic and there is a one to one correspondence

between the cell type attribute of the nodes of the two graphs.

The bit-slice order (the order in which the bit-slices are connected) is

13
extracted from the input netlist. After performing the placement and global routing

of each bit-slice type, the bit-slices are abutted in the extracted order. Finally, the

nets within a channel are routed using greedy channel routing technique [10]. The

output of DPLAYOUT is a CIF (Caltech Intermediate Format, a standard format

used to represent layout information) file containing the layout information.

Status: In our work we concentrated on developing area efficient placement

and global routing algorithms, instead of spending our time on implementing a triv­

ial task like bit-slice abutment. Currently DPLAYOUT reads Verilog netlists and

generates layouts of each of the bit-slice types. Since bit-slice abutment is not

implemented, we had to perform channel routing for each of the bit-slice type. In

the subsequent chapters, placement and global routing heuristics used to create the

layout of a single bit-slice are described.

i:::::
-~

I ,..._..
0 ... I
l-<
i::::: .,
0
()

row

data-in

ro\. ro

data-out

Fig.3-2 Layout Model of DPLAYOUT

.......
;:3
0

I ... ~
0

I ~ l;j
0
0
()

+-

Analyze Netlist

Select a bit-slice typ

Place cells in the
bit-slice

Global route the net

Abut bit-slices and
Route channels

Generate CIF

Yes

Fig.3-3 DPLAYOUT tool architecture

15

4.PLACEMENT

Placement is a key step in physical design cycle. During placement, the loca­

tion of the cells on the chip is determined. The placement problem can be stated as

follows. Given a circuit description (netlist), construct a layout indicating the posi­

tion of each cell in the design such that all the nets can be routed with minimum

crossovers and the total layout area is minimized. As mentioned in the previous

chapter, in our approach, placement is determined for one bit-slice at a time. A

more formal statement of the single bit-slice datapath placement is as follows.

Problemfonnulation: Let C 1, C2, Cm be a set of cells in a bit-slice. Each

cell has width w = wi and all the cells have the same height h. Let N = { N 1, N2, ,

Nn} be the set of nets within the bit-slice. Let R1, R2, , Rr be the set of standard

cell rows and B 1, B2' ... , Bm be the set of bounding rectangles enclosing each of the

cells C 1, C2, ... Cm respectively. Then the placement problem is defined as assign­

ing each cell Ci , a row Rj such that,

i) No two cells overlap. That is Bin B1 = 0 for 1::::; i, j::::; m

ii) The total area of the rectangle bounding all the cells is minimized.

iii) The nets can be routed with less crossovers.

Based on the methodology used, traditional placement algorithms can be

divided into two main classes, simulation based [4,27,28] and partition-based

[15,29]. Simulation-based algorithms are iterative improvement algorithms. There

are three major algorithms in this class: simulated annealing, simulated evolution

and force directed placement. In simulated annealing, given a placement configura­

tion, a change to that configuration is made by moving a component or interchang­

ing locations of two components. Then the cost function is reevaluated with this

17
new configuration. All new configurations that result in a decrease in cost are

accepted. New configurations that result in an increase in cost are accepted with a

probability that decreases over the iterations.

Simulated evolution is analogous to the natural process of mutation of species

as they evolve, to better adapt to their environment. The algorithm starts with an

initial set of placement configurations, which is called the population. The individ­

uals of the population are evaluated on the basis of certain fitness tests which can

determine the quality of each placement. Two individuals among the population are

selected as parents with probabilities based on their fitness. The better fitness an

individual has, the higher the probability that it will be chosen. Then a set of opera­

tors called crossover, mutation and inversion, which are analogous to the counter­

parts in the evolution process, are applied on the parents to combine 'genes' from

each parent to generate a new individual called the offspring. The offspring are then

evaluated and a new generation is then formed by including some of the parents and

the offspring on the basis of their fitness in a manner that the size of the population

remains the same. This process is repeated until there is improvement in the overall

placement quality. Refer to [18) for more details.

Force directed placement algorithm [16) is another example of simulation

based placement techniques. It explores the similarity between placement problem

and classical mechanics problem of a system of bodies attached to springs. In this

method, the cells connected to each other by nets, exert attractive forces on each

other. The magnitude of these force is directly proportional to the distance between

the cells. According to Hooke's law, the force exerted due to stretching of the

springs is proportional to the distance between the bodies connected to the spring.

If the cells were allowed to move freely, they would move in the direction of the

18
force until the system achieved equilibrium. The same idea is used for placing the

cells. The final configuration of the placement of cells is the one in which the sys­

tem achieves equilibrium. Even though simulation based algorithms produce good

quality placement, they are computationally expensive and can lead to longer run

times.

Partitioning-based placement algorithms are an important class of placement

algorithms. In these algorithms, the given circuit is repeatedly partitioned into two

sub-circuits. At the same time, at each level of partitioning, the available layout

area is partitioned into horizontal and vertical sub-sections alternatively. Each of

the sub-circuits so partitioned is assigned to a sub-section. This process is carried

out till each sub-circuit consists of a single cell and has a unique place on the layout

area. During partitioning, the number of nets that are cut by the partition is mini­

mized. There are other types of placement algorithms: cluster growth, quadratic

assignment, resistive network optimization and branch-and-bound algorithms.

Refer to [18] for details of these algorithms.

The above placement techniques ignore the regularity present in the datapath

logic. So they result in inefficient layouts. After analyzing several datapath designs,

we noticed that the area of the datapath layouts can be minimized by preserving the

data-flow during the placement and by minimizing the number of channels in which

a control signal is routed. With the placement shown in Fig.4-1 (a), the control sig­

nal C is routed in two channels. To route this control signal one feed-through (a

vacant position in a cell row that allows connection between two segments in two

adjacent channels) is required. The same control signal can be routed in one chan­

nel, by changing the placement as shown in Fig.4-l(b). In this case, no feed­

through is needed to route the signal C. Thus we can minimize the demand on the

c
--....---~

c --------'-------.,

feed-through

(a) (b)

Fig.4-1 Control signal routing (a) in two channels (b) in one channel

feed-throughs by changing the placement.

Usually, in datapath circuits the same control signal is connected to several

cells. Therefore, to maintain the data-flow a control signal has to be assigned to

more than one routing channel (multiplication of control signals, as in Fig.4-l(a).

The routing of a control signal can be limited to minimum number of channels (ide­

ally to one, as in Fig.4-1 (b)) by placing all the cells connected to that control signal

in the same row or in two adjacent rows. However, this may violate the data-flow.

Hence, while generating the layout, we can meet only one of the two objectives:

preserving the data-flow or minimizing the multiplication of control signals. The

placement heuristics proposed here minimizes the multiplication of control signals.

The steps involved in the placement heuristic are described below.

19

4.1 Regularity preserving classification of control signals:

In the case of the bit-slice structure, control signals propagate through several

bit-slices. This propagation can be of two types, direct and indirect.

20

Definition 4-1: Direct propagation occurs when a control signal is connected

to cells belonging to different bit-slices.

Definition 4-2: Indirect propagation occurs when an output control signal of

one bit-slice is connected as an input control signal to the next bit-slice.

Fig.4-2(a) shows both kinds of propagation. Direct propagation is shown as

solid line and indirect propagation is shown as dotted line. The control signal con­

nected to pins C, D, E, Fis directly propagating from bit-slice i to bit-slice (i+l).

Clock signal is a typical example of direct propagation. The net B in bit-slice i is

connected as the net A in bit-slice (i+l). Therefore, nets A and B of the bit-slice i

are involved in indirect propagation. This kind of indirect propagation is typical in

adder circuits (the carry-out of one bit-slice is connected as carry-in of next bit­

slice).

We classify the control signals into two categories, related and unrelated.

Definition 4-3: Related control signals are control signals involved with indi­

rect propagation.

Definition 4-4: Unrelated control signals are control signals other than

related control signals.

In Fig.4-2 A and B are related signals.

The first step in the placement is identifying the related control signals within

a bit-slice type. These related control signals are treated as one signal during initial

stages of the placement. DPLAYOUT also allows the designer to specify a set of

control signals to be treated as related. This control signal classification preserves

21
the regularity of datapath designs, as we see from the following sub-sections.

4.2 Classification of the cells

The cells in the bit-slice are classified into groups, based on the following cri­

teria. All cells that are connected to the same control signal or to related control

signals are assigned to the same group. Each of the remaining cells is assigned to a

separate group. The purpose of this classification is to place cells using the same

control signal in the same row or in two adjacent rows. Fig.4-2(a) shows two bit­

slices (i, i+l) in which the cells M1, M2 connected to the related signals A and B

are assigned to the same channel. In Fig.4-2(b) the signals A and B are assigned to

two different channels. In Fig.4-2(b) the path connecting nets A and B is longer

than that in Fig.4-2(a). The classification of cells allows us to assign the related

control signals to one channel as shown in Fig.4-2(a), thus minimizing the routing

area. When a cell is connected to more than one control signal, then it is assigned to

more than one group. The subsequent sub-sections describe how such cells are

placed.

4.3 Row assignment

The cells classified into groups are assigned to rows using the following heu­

ristic. The bit-slice netlist is represented as a directed cyclic graph G = (V, E) in

which the vertices set V = { v1, v2, } represents cells and the edge set E = { e1, e2,

.... } represents the nets (signals). The edge set represents both the data signals and

the control signals. The direction of an edge represents the direction of the signal

flow. Fig.4-3(a) shows a sample netlist and Fig.4-3(b) its graph representation

(dl_in, d2_in are data input signals and dl_out, d2_out are data output signals.

22
c l_in, c2_in are control input signals and cl_out is control output signal). The

edges representing the data signals are shown as solid lines and the edges represent­

ing the control signals are shown as dotted lines. Assuming that cl_in, cl_out are

related control signals, then 11, 14, 15 belong to one group, say G1, and 14, 16 belong

to another group, say G2. In this case, cell 14 is assigned to more than one group

because it is connected to more than one control signals. The placement of such

cells is discussed in the subsequent paragraphs. In the following description of the

proposed heuristic, we use node and cell as synonyms.

The row assignment heuristic involves three phases.

Phase 1: The graph is traversed in a breadth-first manner, starting from the

cells connected to data input signals. We assume that the order of data input signals

is specified by the user. The edges representing the control signals are not consid-

ered during the traversal. For each of the nodes (cells) visited, the current level rep-

resents the row in which the cell has to be placed. In other words, cells connected to

data-input signals are assigned to row one (top row). Cells within a group have to

be assigned to the same row or to two adjacent rows. Whenever the first cell from a

group is encountered during the traversal, then the channel below the row corre­

sponding to the current level is assigned as the channel number of the group. Thus

group G1 is assigned to channel 1. Then all control signals connected to the cells in

that group are assigned to that group's channel. Thus, c2_in and cl_out will be

assigned to channel 1. If the group the visiting node belongs to, has already been

assigned to a channel, then the visiting node is placed in a row below that channel.

Otherwise, it is placed in a row corresponding to the current level. When a cell

appears in more than one group, the row assigned to that cell is the channel number

of the first group encountered during the graph traversal. Fig.4-3(c) shows place-

23
ment after this phase.

Phase 2: In this phase, we place all the unplaced cells, which are connected

to the control signals. We repeat the following procedure for each of the control sig­

nals which have been assigned to a channel. For all the unplaced cells connected to

the control signal, assign the row directly below the control signal's channel (for

example, for the netlist in Fig.4-3(a), 16 is assigned to row 2). Fig.4-3(d) shows

placement after this phase.

Phase 3: In this phase, we place all the remaining unplaced cells. The graph

is traversed in depth-first manner starting from the data-output signals. Unplaced

cells are assigned to rows using the same row assignment technique as in the first

phase. The depth-first traversal backtracks when we encounter any of the input sig­

nals (control/data) or placed cells and terminates when all the cells are placed. This

phase is required only if there are feedback signals in the given circuit or there are

cells not in the data-flow (for example cell 17 in Fig.4-3). Fig.4-3(e) shows place­

ment after this phase.

Analysis of the row assignment heuristics shows that in the first phase all the

cells which constitute the data-flow are placed. In the second phase any glue logic

associated with the control signals is placed and in the last phase cells in the feed­

back loop and cells not in the data-flow are placed.

This graph based technique preserves the data-flow and the grouping of cells

minimizes the number of channels used by each control signal, thus the circuit lay­

out area is minimized. The relative position of cells in a row is determined by the

order in which the cells are assigned to that row.

direct

propagation

Slice i

indirect propagation
- - - I

A

M1

B

D

Slice i+ 1

E
'

I -,
A

F

'-------+----~-~

_ __J

(a)

Slice i Slice i+ 1

- - - I

A

M1

A

r----- ...J

(b)

Fig.4-2 Classification of control signals (a) Control signal propagation (b) Related signals A,B assigned to different channels
N
.p.

d l_in, d2_in, c l_in, c2_in : IN ;

cl_out, dl_out, d2_out: OUT;

Il(dl_in, cl_in, Il_out);

12(d2_in, I2_out) ;

13(1l_out,12_out, 13_out);

14(13_out, cl_in, c2_in, dl_out, I4_out);

I5(14_out, 17 _out, c l_out, d2_out) ;

16(c2_in, 16_out);

17(I6_out, 17 _out) ;

(a)

c l_in i
o----Z
c2_in

D -- -, -
I

(b)

Slice i

11 out/

(

\ I2_out

I3
.___....

13_out

'dl_out d2_oulilill

I
~

"5 I .S
0 I I I

........ u
u

_.. contrql signals
__ __...,.. data signals

llZil data input/output

D control input/output

I I. 14, 15 assigned to same group

Fig.4-3 Row Assignment (a) Input netlist (b) Graph representation

Slice i+ 1

N
V1

Row 1

Row 2

[nH[12]

I ~I 14 I 15 I

r~ , --~') i
L___L~

l I3 I 14 I 15 I 16 I

(c) (d)

Row 1 ~--, 12 I_ -~

Row2 Im~ -rl4H-r~ l~I

(e)

Fig.4-3 (cont.) Row assignment (c) after phase 1 (d) after phase 2 (e) after phase 3

N

°'

27
4.4 Row merging

In this step, some of the rows are merged in order to maintain user specified

aspect ratio. However, this step is not trivial because merging of rows may violate

the above described minimization of MCS objective. So we only allow merging of

complete rows so that the control signals in the channels adjacent to the merged

rows need not be multiplied. The row merging algorithm is shown in Fig.4-4

for(all rows from top to bottom)

if(there are two consecutive rows whose

sum<= (factor) of maximum row size)

{

merge the two rows.

update number of cells in the new row.

Fig.4-4. Row merging algorithm

4.5 Complexity analysis

Let N be the total number of nets, C be the total number of cells and S be the

total number of bit-slices in the design. Let le be the number of control input nets

and Oe be the number of control output nets. Let CP be the average number of pins

in a cell.

Then the average number of nets in a bit-slice Ni= O(NIS), the average num­

ber of cells in a bit-slice Ci= O(CIS). The number of control input nets in a bit-slice

lei= O(le) and the number of control output nets in a bit-slice Oei = O(OJ Assum-

28
ing that each pin of a cell is connected to a different net (implies each cell is con-

nected to CP nets), the average number of pins connected to a net NP = C;C,fN;·

Control signal classification: In order to classify the control signals, we need

to compare each of the pins connected to control output signals with each of the

pins connected to control input signals. Since the number of pins connected to con-

trol input signals= Ic;Np and the number of pins connected to control output signals

= Oc;Np, the worst case time complexity of this step is O(lcPciN/J.

Cell classification: In order to classify the cells into groups, we need to visit

each of the cells. The time complexity of this step is thus 0(C;).

Row assignment: The row assignment algorithm involves visiting each of the

cells and nets once. The time complexity of this step is 0(C;N;).

Thus the placement algorithm has a time complexity of O(ICOC c2c/!N2) +

0(C/S) + 0(CN!S2).

5.GLOBAL ROUTING

During the placement step, the exact locations (row and position within a

row) of cells are determined. The region between rows (channels) is used for rout­

ing the nets. In standard-cell based designs, the height of the channels is not fixed.

The channel height can be varied by varying the distance between adjacent cell

rows to accommodate the nets. In other words, the channels do not have predeter­

mined capacity. The routing problem can not be solved in polynomial time [33].

Therefore, routing has traditionally been divided into two phases, global routing

and detailed (channel) routing. During the global routing phase, the nets are

assigned to various channels. And in the detailed routing phase the exact path of a

net in a channel is determined. Fig.5-1 (a) shows the pin positions of a sample netlist

after placement. Pins with the same number belong to the same net. Fig.5-1 (b,c)

shows the two stages of routing. There is also a single phase routing approach,

namely area routing. This technique is computationally expensive and is used in

full-custom designs. In DPLAYOUT, we use two phase routing approach. In this

chapter, the global routing algorithms used in DPLAYOUT are described. For

detailed routing, we used the greedy channel router [10] implementation provided

by Tektronix Inc.

There are two approaches to solve the global routing problem.

1. Sequential approach: In this approach, nets are routed one after another.

So whenever a net is routed, it may block other nets which are yet to be routed. As

a result, this approach is very sensitive to the order in which the nets are considered

for routing. Usually, the nets are ordered according to their criticality, perimeter of

the bounding rectangle and the number of terminals. Typically, clock nets and nets

30
on the critical paths are assigned high criticality numbers since they play a key role

in determining the performance of the circuit. This criticality based sequencing

technique do not solve the net ordering problem completely, because it is the dispo-

sition of the cells and nets that plays role in determining the net routing order. So

in addition to a net ordering scheme, often an improvement phase is used to remove

blockages when further routing of nets is not possible. The blockages are removed

by unrouting the interfering nets and rerouting them, to accommodate the routing of

affected nets. This kind of improvement phase is known as Rip-up and reroute [19].

However, there is no guarantee that the rip-up and reroute gives optimal routing

because unrouting a net means, loosing its optimum path [20].

2. Concurrent approach: In this approach, all the nets are routed simulta-

neously, thus avoiding the ordering problem present in the sequential approach.

This approach is computationally hard and no efficient polynomial algorithms are

known even for two-terminal nets. As a result, linear and integer programming

techniques are suggested. Linear programming techniques [21,22] routes nets

simultaneously using a randomized routing technique. This approach does not route

multi-terminal nets optimally. Another approach [23] was a hierarchical method in

which the problem is partitioned into a hierarchy of global routing sub-problems

and each sub-problem is solved by integer programming. The solutions are then

combined to obtain the solution of original global routing problem. However, the

resulting global routing solution highly depends on the quality of the partitions and

often is sub-optimal.

Usually, the sequential approach is used to route two-terminal nets. Multi-ter-

minal nets are routed using either sequential approach or concurrent approach. Sev-

eral methods were proposed to extend the two-terminal algorithms [18] to solve the

J

02 2QJ
(a) Pin locations after placement

2

I
I

7
J

....... ...(

1~]'1
" ' ' -........

I I ~ / I- -2 I 1 I
(b) Global routing

2 1

(c) Detailed routing

Fig.5-1. Placement and routing of a sample netlist

multi-terminal net global routing problem. In these methods, the multi-terminal

nets are decomposed into several two-terminal nets and the resultant two-terminal

nets are routed by using two-terminal algorithms. This approach produces sub-opti-

mal results. So multi-terminal nets are routed using Minimum Spanning tree (MST)

approach. A Minimum Spanning tree connects all the nodes of a graph such that the

total path length is minimum. Fig.5-2 shows paths connecting a three terminal net.

31

32
The path length in Fig.5-2(b) obtained by constructing MST is less than the path

length in Fig.5-2(a). A better approach for routing of multi-terminal nets is Recti­

linear Steiner tree (RST) approach. Rectilinear Steiner tree is obtained by adding

intermediate points (Steiner points) to the MST such that all the net pins can be

connected with minimum net length. Fig.5-2(c) shows a RST for the net in Fig.5-

2(a) and the Steiner point is shown as dark circle.

In our work, we propose a novel window based heuristic which is a combina­

tion of sequential and concurrent approaches. To my knowledge, window based

technique is not used before, to solve the global routing problem. In DPLAYOUT,

this technique has been integrated with a Minimum Spanning Tree based global

routing algorithm [18].

5.1 Net ordering

The Net ordering heuristic used in DPLAYOUT is described below.

a. The nets are ordered in the ascending order of the location of their right most

pins (maximum columns). When a group of nets have the same maximum col­

umn they are sorted in the ascending order of the location of their left most pins

(minimum columns)

b. If two or more nets have the same minimum and maximum columns, they are

sorted in the descending order of their vertical spans.

Fig.5-3 shows a set of nets, their pin locations and the net order obtained from

the above ordering heuristic. Fig.5-3(a) shows the pin positions and the pins of the

same net have same number. Fig.5-3(b) shows net order obtained by selecting only

the right most column of the nets. Fig.5-3(c) shows net order obtained by consider­

ing both the right most column and the left most column of the nets. Fig.5-3(c)

shows the net order obtained by considering the left column, right column and ver-

•
•

(a) a path connecting all the net pins (b) MST

..
----•

•
(c) RST

Fig.5-2 Paths connecting a 3-terminal net

33

tical span of the nets. For this example, net 2 has to be routed before net 3 and so

on. In addition to the above technique, DPLAYOUT also allows the user to specify

an order of his choice. For example, the designer can give highest priority to the

critical nets in the design.

5.2 Window-based routing

A segment of a net is a path connecting two terminals of a net. Instead of glo­

bal routing a net completely, we route only a subset of net segments and defer the

routing of the remaining segments. To determine which subset of net segments to

route first, we define a parameter called window. A window is a rectangular region

with constant height and variable width. At the beginning of the global routing, the

window width is set to a range 0 - W s , where W s is the window width specified by

the user. The window height is always fixed and includes all rows of the bit-slice

34
layout. Fig.5-4(a) shows a sample window, which includes the pins A1, B 1 of net 1

and pins E2 and F2 of net 2. For all the nets which originate in the current window,

MST is constructed. For the net 1, the MST consists of the segments A 1-B 1 and B 1-

C 1. For the net 2, the MST consists of the segments ErF2 and ErG2. Then for each

net, only those edges in its MST that terminate in the current window are routed.

For example, when the window size is as shown in Fig.5-4(a), only the net seg­

ments A1-B 1 and ErF2 are routed. After completing the routing of net segments in

the current window, the window is moved to the right by W8• This is repeated until

all the nets are routed. Thus the net segments B1-C1 and ErG2 are routed when the

window is moved as shown in Fig.5-4(b).

The advantage of the window-based routing technique is evident from the fol­

lowing example. Fig.5-5(a) shows two terminal nets N1, N2. When the window size

is as shown in Fig.5-5(b), the net order for this example is N 1, N2. When the feed­

through assignment for the net N2, routed after N1, results in the cell movement in

row 2, then the path of the net N 1 is as shown in Fig.5-5(b). Since we are not rerout­

ing the nets disturbed by the cell movement, the overall global routing solution will

not be efficient. When the window size is small, as shown in Fig.5-5(c), the net N 1

will not be routed until its end point is visible in the window. That is net N 1 will be

routed after the cell movement caused by net N2 routing is completed. This exam­

ple shows that the window-based technique results in better quality routing than the

one obtained without this technique. The window size has an effect on the global

routing quality only if the cells are moved during global routing.

The window-based global routing technique proposed here is general and is

applicable to both datapath circuits and non-datapath circuits. Also it can be inte­

grated with any global routing algorithms.

35
5.3 Complexity analysis

Net ordering: The net ordering algorithm involves sorting the nets based on

their positions. Quick sort algorithm [34] is used to sort the nets. Each of the steps a

and b in section 5.1 have a time complexity of O(NilogNi) [34], where Ni is the

number of nets in a bit-slice.

Minimum Spanning Tree: Let NP be the average number of pins of a net (refer

section 4.5). Then the MST of each of the net can be constructed in a time complex­

ity of O(N/) [11]. Thus global routing algorithm has a time complexity of O((NIS)

log(NIS)) + O(C2C/!N2) (refer section 4.5).

113 i 13

[

t
I

.l4

I
I

+,

t
I

l2

I
I
+,

(a) Pin Positions

IJ

1, 3, 2, 4

(b) Net order based on location
of maximum column

3, 2, 1, 4

(c) Net order based on location
of maximum column and
minimum column

2, 3, 1, 4

(d) Final net order based on minimum
column, maximum column and
vertical span

Fig.5-3 Net ordering scheme

A1 G2

E2
B1

2

w ... s _ _.

A1

E2

(a) Initial window position. Segments A1-B 1 and
ErF2 are routed

B1

G2

1 I
I

Ws _ _.

(b) New window position after it is moved. Segments
B1-C1 and ErG2 are routed

Fig.5-4 Window based global routing

36

I
...,_ Ws

Row!
c.--.-----1

N1 N
2

Rowl

Row2 c=i_c ___ J Row~ I ,

I -..

N, • • N1 i . N1 r i
Row3 I Row3 LI -----~

(a) (b)

1 W 5 1

1 I

N1

D [~T--1
N2

(c)

Fig.5-5 Advantage of window based routing (a) Net pin positions (b) Net route after a cell is moved for large window
(c) Net route after a cell is moved for small window

l;.)

-..J

6.RESULTS

DPLAYOUT is implemented in C under UNIX environment. We conducted

experiments to evaluate the run-time and area efficiency of DPLAYOUT. We com­

pared the results of DPLAYOUT with a standard-cell placement and routing tool

(SCR) in the ALLIANCE CAD package [12), for a set of data path designs. ALLI­

ANCE is a CAD package developed at University of Paris. We compared with this

package because it is a complete CAD tool available in the public domain and using

this package layouts can be generated from the behavioral description of a design.

The design statistics and results are shown in Table I. The examples selected here

represent bit-slices of a wide class of datapath circuits. Ex 1, Ex7-10 are selected

from DLX RISC processor implementation available in ALLIANCE. Ex2-6 are bit­

slices of datapath circuits used in industry designs.

Ex I is single bit-slice of an adder-accumulator and the layout generated by

DPLAYOUT is shown in Fig.6-1. The graph corresponding to this netlist, place­

ment before and after row merging and global router output are shown in

Appendix2. Ex2-5 are bit-slices of datapath designs. Ex6 is a bit-slice of an ALU.

Ex7 and Ex8 are single bit-slices of 8x16 bit.fifo and 4-bit ram circuit, respectively.

Ex9 is 8 bit.fifo and Ex IO is 4-bit ram. All the results were obtained using the com­

plete row-merging heuristic. The time shown is measured on a SUN SPARC-2

workstation. The total CPU time reported is the combined time for input parsing,

placement, routing and layout file generation. No SCR time data comparison is

done for the designs Ex2-Ex6 because their library is different from ALLIANCE

library. For all the single bit-slice circuits (Exl-Ex8), the area and run time of

39
DPLAYOUT is better than that of SCR. We achieved 98-99% improvement in

placement time, 28-33% improvement in area and 8-80% in total time.

We also compared DPLAYOUT with SCR for non-bit-slice datapath circuits

(Ex9,Exl0). The results of fifo show that even when the circuit is not partitioned

into bit-slices, DPLAYOUT outperforms SCR for more regular datapath circuits

(fifos, register files etc.). However, traditional placement methods [18] used in SCR

won over our algorithms when the datapath circuits have more random logic associ­

ated with them (4-bit RAM results).

We also compared the efficiency of the bit-slice based layout generation

approach with the non-bit slice based layout generation approach and the results are

shown in Table II. All the bit-slices of the above 8x 16 bit fifo and 4-bit ram are sub­

mitted to DPLAYOUT and SCR as one bit-slice. Considering the fact that area of

the datapath circuits is proportional to the number of bit-slices, the area of the com­

plete circuit must be close to n-times the area of single bit-slice, where n is the

number of bit-slices in the circuit. The same should be true of the total CPU time

(shown in rows 2 and 6 in Table-II). However, for both DPLAYOUT and SCR, the

total time and area obtained using non-bit-slice approach are more than n-times the

time and area of respective single bit-slices. This demonstrates that for datapath

circuits, bit-slice based layout generation approach has better area and run-time

efficiency over non-bit slice based layout generation approach.

We noticed that for the examples in Table-I, window size has no affect on the

total area. Analysis of the results shows that because the placement heuristics used

in DPLAYOUT preserve the data-flow, no cell movement is involved. However, for

large designs often the cells are moved to accommodate the feed-throughs. When­

ever there is a cell movement, window based technique gives better global routing

40
quality as we see in the previous chapter. In order to find the effect of window-

based global routing, some more experiments needs to be conducted on large cir­

cuits using traditional placement techniques.

Finally, DPLAYOUT tool details are discussed in Appendix-I. The Verilog

netlists and the generated layouts of some of the designs in Table-I are included in

the Appendix-2.

Complexity analysis: Refer to sections 4.5 and 5.3 respectively for detailed

discussion of the time complexities of the placement and global routing algorithms.

Table-I: DPLAYOUT Results and Comparison with SCR tool in ALLIANCE Package

DPLAYOUT SCR

Design #cells #nets place time(sec) total I area(sq.mm.)
place total time area(sq .mm.)

time(sec) I time(sec) (sec)

Exl 9 17 0.01 0.32 0.02 0.5 1.87 0.03

Ex2 17 37 0.01 4.7 0.008 - - -
-

Ex3 21 38 0.02 6.9 0.012 - - -

Ex4 16 31 0.01 4.1 0.007 - - -

Ex5 16 29 0.01 3.8 0.007 - - -

Ex6 11 23 0.02 1.5 0.004 - - -

Ex7 16 35 0.01 0.6 0.057 0.59 3.0 0.08

Ex8 58 107 0.03 7.1 0.18 2.4 7.75 0.25

Ex9 128 154 0.03 12.8 0.6 5.3 46 1.35

I
ExlO 232 I 284 0.07 94 II 1.45 10.5 54.25 1.37

--

+:-

Table-II: Comparison of bit-slice approach and non-bit-slice approach

DPLAYOUT SCR

Design #cells #nets
total area

total time(sec) time(sec) (sq.mm.)

FIF0-1 16 35 0.6 0.057 3.0

8*FIF0-1 128 4.8 0.456 24

FIF0-8 128 154 12.8 0.6 46

RAM! 58 107 7.1 0.18 7.75

4* RAMl 232 28.4 I 0.72 31.0

RAM4 232 284 94 1.45 54.25

area
(sq.mm.)

0.08

0.64

1.35

0.25

1.0

1.37

+.
N

'Tl
dQ"
O'I I

-

7 .CONCLUSIONS

The thesis work describes an efficient and fast approach for generating lay­

outs of bit-sliced datapath circuits designed using standard-cell libraries. We devel­

oped efficient data-flow preserving heuristics for placement. The placement

heuristics exploit the regularity characteristic of datapath designs and attempt to

route a control signal in minimum number of channels. We proposed a window­

based global routing technique which gives efficient routing Without any rip-up

rerouting when the cells are moved to accommodate the feed-throughs.

We also demonstrated that for standard cell based datapath circuits efficient

layouts can be achieved when the circuits are partitioned into bit-slices and the bit­

slices are handled separately. The developed tool is a general tool which can be eas­

ily integrated with any high-level synthesis system. The row merging algorithm

leaves empty gaps within a bit-slice. So it needs to be improved. Also delay optimi­

zation algorithms can be included in the proposed placement and global routing

heuristics to minimize the delay.

The placement heuristics proposed here are general and applicable to any reg­

ular logic like datapath and systolic arrays. The possibility of using the proposed

methodology to solve the Register-Transfer level component layout generation

problem needs to be investigated, in order to achieve efficient datapath layouts.

a.REFERENCES

[l]. K. Usami et.al., "Hierarchical Symbolic Design Methodology for Large-Scale

Data Paths", in IEEE Journal of Solid-State Circuits, Vol. 26, No. 3, pp. 381-385,

March 1991.

[2]. R. C. Mason and M. T. Fertsch, "A Bit-modular Cell Library Optimized for

Datapath Applications", in Proc. of ISCAS, pp. 10-14, 1986.

[3]. Y. Tsujihashi et.al., "A High-Density Data-path Generator with Stretchable

Cells", in IEEE Journal of Solid-State Circuits, vol. 29, No. 1, pp. 2-7, Jan.1994.

[4]. C. Sechen and A. Sangiovanni-Vincentelli, "The TimberWolf Placement and

Routing Package", IEEE I.Solid-State Circuits, vol. 20, pp. 510, April 1985.

[5]. C. B. Shung et.al., "An Integrated CAD System for Algorithm-Specific IC

Design", in IEEE Trans. on CAD, vol. 10, no. 4, pp. 447-462, April 1991.

[6]. W. K. Luk and A. A. Dean, "Multistack Optimization for Datapath Chip

Layout", in IEEE Trans. on CAD, vol. 10, no. 1, pp. 116-129, Jan. 1991.

[7]. A. C. H. Wu and D. D. Gajski, "Partitioning Algorithms for Layout Synthesis

from Register-Transfer Netlists", in IEEE Trans. on CAD, vol. 11, no. 1, pp. 453-

463, April 1992.

[8]. C. E. Cheng and C. Ho, "SEFOP: A Novel Approach To Datapath Module

Placement", in Proc. of ICCAD, pp. 178-181, Nov. 1993.

[9]. W. Swartz and C. Sechen, "A New Generalized Row-Based Global Router", in

Proc. of ICCAD, pp. 491-498, 1993.

[10]. R. L. Rivest and C. M. Fiduccia, "A Greedy Channel Router", in Proc. of

Design Automation Conj, pp. 256-262, 1982.

[11]. N. Deo, Graph Them}' with Applications to Engineering and Computer

Science, Prentice-Hall International Inc., Reading, 1974.

[12]. ALLIANCE CAD system-2.0, Laboratoire MASI/CAO-VLSI, University

Pierre et Marie Curie, PARIS, FRANCE.

[13]. R.Leveugle et.al., "Datapath implementation: bit-slice structure versus

standard cells", in Proceedings of EURO ASIC, pp.83-88, 1992.

[14]. Jim Rowson, Bill Walker and Suresh Dholakia, "A Datapath Compiler for

Standard cells and Gate Arrays'', in Proceedings of Custom Integrated Circuits

Conference, pp.149-152, 1987.

[15]. B.W.Kernighan and S.Lin, "An Efficient Heuristic Procedure for Partitioning

Graphs", Bell Syst.Tech.J., vol.49, no.2, pp.291-307, Feb.1970.

[16]. N.R.Quinn, "The Placement Problem as Viewed from the Physics of Classical

Mechanics", Proceedings of the 12th Design Automation Conj, pp.173-178, 1975.

[17]. W.W.Dai et.al., "Hierarchical Placement and Floorplanning in BEAR'', IEEE

Trans. on CAD, vol.8, No.12, Dec.1989.

[18]. N.A.Sherwani, "Algorithms for VLSI Physical Design Automation'', Kluwer

Academic, Reading, 1995.

[19]. W.A.Dees and P.G.Karger, "Automated Rip-up and Reroute Techniques,"

Proceedings of Design Automation Conference, 1982.

[20]. R.Nair, "A Simple Yet Effective Technique for Global Wiring", IEEE Trans.

Computer-Aided Design, Vol. CAD-6, No.2, pp.165-172, March 1987.

[21]. A.Ng., P.Raghavan and C.Thompson, "Experimental Results for a Linear

Program Global Router," Computers and Artificial Intelligence, 1987.

46

[22]. P.Raghavan and CD.Thompson, "Multiterminal Global Routing: a

Deterministic Approximation Scheme," Algorithmica, Vol.6, No. l, pp. 73-82, 1991.

[23]. J.Heisterman and T.Lengauer, "The Efficient Solution oflnteger Programs for

Hierarchical Global Routing, "IEEE Trans. Computer-Aided Design, CAD 10(6),

pp.748-753, June 1991.

[24]. D.Gajski, Editor, Silicon Compilation, Addison-Wesley, Reading, MA, 1987.

[25]. Jerraya, Varinot, Jamier and Courtois, "Principles of the SYCO Compiler",

Proceedings of the 23rd Design Automation Conference, 1986.

[26]. Marshburn et.al., "DATAPATH: A CMOS Datapath Silicon Assembler",

Proceedings of the 23rd Design Automation Conference, 1986.

[27]. H.Chan, P.Mazumder and K.Shahookar, "Macro-cell and module placement

by genetic adaptive search with bitmap-represented chromosome", Integration: the

VLSI Journal, Vol.12(1), pp.49-77, November 1991.

[28]. K.Shahookar and P.Mazumder, "A genetic approach to standard cell

placement using meta-genetic parameter optimization'', IEEE Trans. Computer­

Aided Design, pp.500-511, May 1990.

[29]. B.Krishnamurthy, "An improved mincut algorithm for partitioning vlsi

networks", IEEE Trans. on Computers, pp.438-446, 1984.

[30]. Giovanni De Micheli, S.vnthesis And Optimization of Digital Circuits,

McGraw-Hill, Inc., 1994.

[31]. Donald E.Thomas and Philip R.Moorby, The Verilog Hardware Description

Language, Kluwer Academic Publishers, 1995.

[32]. R.Lipsett, C.Schaefer and C.Ussery, VHDL: Hardware Description and

Design, Kluwer Academic Publishers, 1993.

[33]. Thomas Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,

John Wiley and Sons Ltd. 1990.

[34]. E.Horowitz and S.Sahni, Algorithms and data structures, Galgotia

Publications, 1982.

47

APPENDIX 1: PACKAGE DETAILS

A.1.1 Synopsis:

DPLAYOUT module generates gate-level layout of a design described in the

form of a netlist.

A.1.2 Usage:

dplayout -n <netlist> -t <pdf_file> -p <port_side> -o <out_file> -w <width

control factor(%of max. row width)> -g <pgcell> -s [<window size>] -d

[<minimum channel density>] -m [allow row merging/not(l/0)]

where

nethst: is a file containing circuit description in Verilog format.

pdf _file: is pin description file. This file contains library information (cells, pins

and their position).

port_side: is a file containing description of side of module ports (primary

inputs and outputs).

pgcell: is a pin description file for power and ground cells.

out_file: is name of the output file in which DPLAYOUT writes CIF data.

factor: is aspect ratio control factor. It is used to control the width and hence the

aspect ratio (defined as overall width/height).

size: is window size (in terms of columns).

density: is minimum channel density. The minimum channel density to be con­

sidered while doing global routing.

allow row merging/not: boolean flag that controls row merging.

Each file name above contains complete path, absolute or relative, with respect

to directory from which dplayout is invoked.

A.1.3 Error Messages:

The following is description of the error messages and the actions to be taken

when an error occurs. An error message Internal error indicates that there is a

bug in the software which ultimately leads to inconsistency. The only action the

user can take in such cases is report to the person responsible for code mainte­

nance.

Netlist file not specified: Make sure that the netlist file is present and you have

permissions to access it.

PDF file not specified: Make sure that the Library information file is present

and you have permissions to access it.

Port sides file not specified: Make sure that the file containing the port side

information is present and you have permissions to access it.

Output file not specified: Make sure that you specify a file to write the CIF out­

put.

Module <name> port type not specified: The type (Input/Output) of module

(<name>) port is not specified. Check the netlist and specify the type.

Net <name> declared more than once : The net (<name>) is declared more

than once. Check the netlist and fix the bug in it.

Net/Port <name> not in the module port list: A net/port specified is not present

in the module interface list. Check the netlist to fix the bug.

Module <name> instantiated in itself: A module can not be instantiated within

itself. Check the netlist to fix it.

49

Module <name> has one unspecified port: In the module port list, extra delim­

iter(s) ',' appears.

Instance has one unspecified port: An instance port is not present in the corre­

sponding module-port list. i.e. there is some inconsistency in the number of

ports of an instance and a module.

Illegal format <pdf> file: Check the format of <pdf> file.

Illegal format <pgcel> file: Check the format of <pgcel> file.

Illegal format <port side> file: Check the format of <port side> file.

No Power _Ground cell file: Make sure that you specify a file that contains

power and ground cells and you have access to it.

Too many ports for a module: Increase the constant MAX_MODPORTS,

recompile and rerun.

Unable to identify top level of the hierarchy : There is inconsistency in the data

structures, due to which the top level of hierarchy could not be determined.

Report the bug.

Net <name> not in the port list of the top level module: A net specified in the

<port side> file is not present in the netlist file.

Improper array declaration: Syntax error in Bus declaration. Check the netlist

and fix it.

No instances to place or nets to route: Either no instances to place or no nets to

route. So running DPLAYOUT does not make sense.

Illegal cell in pgfile: A cell in the <pgcel> file is illegal.

Bit-slice Instance without cells: Inconsistency. Report the bug.

Primitive cell encountered while grouping: Inconsistency. Report the bug.

Primitive cell encountered while assigning channels: Inconsistency. Report the

bug.

Unable to place all the cells: Report the bug.

Improper instance row assignment: Inconsistency. Report the bug.

Net without any instance pins: There is a net connected to only module pins. i.e.

not connected to any instance. The present version can not handle this case.

Internal Error.000: Inconsistency in the data structures. Report the bug.

Gap feed error: Improper gap within a row. Report the bug.

Unable to assign a feed: Shows the inefficiency of the feed assignment algo­

rithm. Report the bug.

MST. Internal error: Inconsistency while forming MST. Report the bug.

50

SNn~ .lS3.l :~ XICN3ddV

II Example 1: 4-bit adder accumulator circuit. The layout for this circuit is Fig.6-1

module addaccu (a, b, sel, nsel, elk, cin, is, cout) ;

input[3:0] a,b ;

input sel,nsel,clk, cin ;

output[3:0] is ;

output cout ;

mid_slice bitO (a[O],b[O],sel,nsel,clk,cin,is[O],coutO) ;

mid_slice bit1 (a[1],b[1],sel,nsel,clk,cout0,is[1],cout1) ;

mid_slice bit2 (a[2],b[2],sel,nsel,clk,cout1 ,is[2],cout2) ;

mid_slice bit3 (a[3].b[3],sel,nsel,clk,cout2,is[3],cout) ;

endmodule

II Bit-slice instantiated above

module mid_slice (a1, b1, sel, nsel, elk, cin, is1, cout) ;

input a1 ,b1 ,sel,nsel,clk,cin ;

output is1 ,cout ;

mx2_y iO (a1 ,nsel,regout1 ,sel,mux1) ;

ms_y i1 {s1 ,clk,regout1) :

xr2_y i2 (b1 ,mux1 ,init1) ;

xr2_y i3 (cin,init1 ,s1) ;

a2_y i4 (cin,b1 ,init4) ;

a2_y i5 (mux1 ,b1 ,init5) ;

a2_y i6 (cin,mux1 ,init3) ;

o3_y i7 (init4,init5,init6,cout) ;

n1_y i8(s1,is1);

end module

II The graph corresponding to this netlist, the placement before and after row

merging and global router output are shown below.

52

/
/

sel Q,,,. /
/

/

nsel Q /

cin Q_ -- ---

elk

--, --

r1
~..J cout

is1

_. contrql signals
___ ..,~ data s1gna1s

D data input/output

D control input/output

Single bit-slice netlist represented as a graph

10 15 14 12

16 13

[3 11 17

Placement before row merging

53

10 15 14

16 13 [j
Placement after row merging

II Global router output

Net Al : (id = 16)
Bot pin: at 3
Top pin(module): at 3

Net Bl : (id = 15)
Bot pin: at 75
Top pin(module): at 78

Channel 1
Net Bl : (id = 15)

Top pin: at 51
Top pin: at 75
Top pin: at 105

Net SEL : (id = 14)
Top pin: at 27
Bot pin(module): at 81

Net NSEL : (id = 13)
Top pin: at 9
pin SEL side = 3 id = 4
Left pin(module):

Net CIN : (id = 11)
Bot pin: at 3
Top pin: at 69
Bot pin: at 39
pin CIN side = 3 id = 6
Left pin(module):

Net REGOUTl : (id = 8)
Bot pin: at 153
Top pin: at 21

Net MUXl : (id = 7)
Bot pin: at 9
Top pin: at 45
Top pin: at 123
Top pin: at 39

Net INITl : (id = 5)

54

12

11 17

Bot pin: at 57
Top pin: at 135

Net INIT4 : (id = 4)
Bot pin: at 159
Top pin: at 87

Net INIT5 : (id = 3)
Bot pin: at 165
Top pin: at 63

Channel 2
Net SEL : (id = 14)
Net CLK : (id = 12)

Top pin: at 111
pin NSEL side = 3 id = 5
Left pin(module):

Net CIN : (id = 11)
Top pin: at 3
Top pin: at 39

Net ISl : (id = 10)
Top pin: at 81
pin CLK side = 3 id = 7
Left pin(module):

Net COUT : (id = 9)
Top pin: at 177
pin COUT side = 4 id = 8
Right pin(module):

Net Sl : (id = 6)
Top pin: at 75
Top pin: at 69
Top pin: at 87

II Refer the code for description of the net ids and port sides, above.

55

II Example 2: 12-bit slice datapath circuit

module whiffersullen (a, b, c, d, e, slew, reset, clock, duf, select,

tonset, takpul, xy);

input[11 :OJ a, b, c, d, e;

input slew, reset, clock, duf, select;

output[11 :OJ tonset, takpul, xy;

supplyO lo;

supply1 hi;

slice sl11 (a[11], b[11 J, c[11], d[11], e[11], tonset[11], takpul[11], xy[11],

slew, reset, clock, duf, select, lo, a1110, lo, b1110, hi, c111 O);

slice sl10 (a[1 OJ, b[1 OJ, c[1 OJ, d[1 O], e[10], tonset[1 OJ, takpul[1 OJ, xy[1 O],

slew, reset, clock, duf, select, a1110, a1009, b1110, b1009, c1110, c1009);

slice sl09 (a[09], b[09], c[09], d[09], e[09], tonset[09], takpul[09J, xy[09],

slew, reset, clock, duf, select, a1009, a0908, b1009, b0908, c1009, c0908);

slice sl08 (a[OBJ, b[OB], c[OBJ, d[OB], e[OBJ, tonset[OB], takpul[OB], xy[OB],

slew, reset, clock, duf, select, a0908, a0807, b0908, b0807, c0908, c0807);

slice sl07 (a[07], b[07], c[07], d[07], e[07], tonset[07], takpul[07], xy[07],

slew, reset, clock, duf, select, a0807, a0706, b0807, b0706, c0807, c0706);

slice sl06 (a[06], b[06], c[06], d[06], e[06], tonset[06], takpul[06], xy[06],

slew, reset, clock, duf, select, a0706, a0605, b0706, b0605, c0706, c0605);

slice sl05 (a[05], b[05], c[05], d[05], e[05J, tonset[05], takpul[05], xy[05],

slew, reset, clock, duf, select, a0605, a0504, b0605, b0504, c0605, c0504);

slice sl04 (a[04], b[04], c[04], d[04], e[04J, tonset[04], takpul[04], xy[04],

slew, reset, clock, duf, select, a0504, a0403, b0504, b0403, c0504, c0403);

slice sl03 (a[03], b[03J, c[03J, d[03], e[03J, tonset[03], takpul[03J, xy[03],

slew, reset, clock, duf, select, a0403, a0302, b0403, b0302, c0403, c0302);

slice sl02 (a[02], b[02], c[02], d[02], e[02], tonset[02], takpul[02], xy[02],

slew, reset, clock, duf, select, a0302, a0201, b0302, b0201, c0302, c0201);

slice slOO (a[OOJ, b[OO], c[OO], d[OO], e[OO], tonset[OO], takpul[OO], xy[OO],

slew, reset, clock, duf, select, a0100, , b0100, , c0100,);

slice sl01 (a[01], b[01], c[01], d[01], e[01J, tonset[01], takpul[01], xy[01],

56

slew, reset, clock, duf, select, a0201, a0100, b0201, b0100, c0201, c0100);

endmodule

II Bit-slice instantiated above

module slice (a, b, c, d, e, tonset, takpul, xy, slew, reset, elk, duf, sel,

acyin, acyout, icyin, icyout, rgin, rgout);

input a, b, c, d, e;

output tonset, takpul, xy;

input slew, reset, elk, duf, sel;

input acyin, icyin, rgin;

output acyout, icyout, rgout;

supplyO lo;

supply1 hi;

x592 adder (n1, n2, acyout, hi, a, lo, b, acyin);

x136 incr1 (n4,, icyout, n3, n2, icyin);

x420 xor1 (n6, n4, slew);

x352 dff1 (n7, n8, elk, n6, reset);

x416 mux1 (n9, n7, n8, duf);

x351 dff2 (rgout, n10, n14, n9);

x432 or1 (n12, n10, n11);

x416 mux2 (n3, n12, n16, sel);

x101 inv1 (tonset, n3);

x101 inv2 (n14, elk);

x422 major (n16, n15, c, d);

x318 lat1 (n18,, elk, n16);

x402 and1 (n11, n8, rgin);

x163 nand1 (takpul, n11, d, rgin);

x136 incr2 (, n15, icyout, d, n18, icyin);

x351 dff3 (n17,, elk, e);

x421 xor2 (xy, c, n17);

end module

57

rn r

r
I~ ~ •
, 1a:=

!::=

t==

b

11
~ I==

•
Ii

'

· 1
~

11 I
I I

ii .__. I

1 11 -

m
11

11. I ~p

I! 11 I
j

~

I I
'

~

,~
i II=

= .
tJ

I

]
I:::= ii I

I

b

I =

1 tr11 b

~:-: , ~ .~

·~·; -·cO":-.-

, -. -
.;;:.•· ·. :.' -·

II Example 3 : 8-bit alu circuit

module alu (ainput, binput, dataout, aselect, binvert, bzero,

almode, logic, shift, clock);

input [7:0] ainput, binput;

output [7:0] dataout;

input aselect, binvert, bzero, almode;

input[2:0] logic;

input shift, clock;

supplyO lo;

alu_slice bit? (ainput[7], binput[7], dataout[7], carry67,,

shift67, , aselect, binvert, bzero, almode, logic, shift, clock);

alu_slice bit6 (ainput[6], binput[6], dataout[6], carry56, carry67,

shift56, shift67, aselect, binvert, bzero, almode, logic, shift, clock);

alu_slice bit5 (ainput[5], binput[5], dataout[5], carry45, carry56,

shift45, shift56, aselect, binvert, bzero, almode, logic, shift, clock);

alu_slice bit4 (ainput[4], binput[4], dataout[4], carry34, carry45,

shift34, shift45, aselect, binvert, bzero, almode, logic, shift, clock);

alu_slice bit3 (ainput[3], binput[3], dataout[3], carry23, carry34,

shift23, shift34, aselect, binvert, bzero, almode, logic, shift, clock);

alu_slice bit2 (ainput[2], binput[2], dataout[2], carry12, carry23,

shift12, shift23, aselect, binvert, bzero, almode, logic, shift, clock);

alu_slice bit1 (ainput[1], binput[1], dataout[1], carry01, carry12,

shift01, shift12, aselect, binvert, bzero, almode, logic, shift, clock);

alu_slice bitO (ainput[O], binput[O], dataout[O], binvert, carry01, lo,

shift01, aselect, binvert, bzero, almode, logic, shift, clock);

end module

module alu_slice (ain, bin, out, cin, cout, shftin, shftout, asel,

binvert, bzero, almode, logic, shift, elk);

input ain, bin, cin, shftin, asel, binvert, bzero, almode, shift, elk;

output out, cout, shftout;

59

input[2:0) logic;

mux2 aselect (aoperand, ain, out, asel);

xor2 bselect (bchoice, bin, binvert);

not1 zeroinv (notzero, bzero);

and2 zselect (boperand, bchoice, notzero);

mux2 logicsel (ctoaddr, cin, logic[1], almode);

add2 adder (sum, cout, aoperand, boperand, ctoaddr);

xor2 negandor (carry, cout, logic[O]);

and2 agate (addmuxsel, logic[2], almode);

mux2 addmux (shftout, sum, carry, addmuxsel);

mux2 shiftmux (shftmuxout, shftout, shftin, shift);

dff register (out,, elk, shftmuxout);

end module

60

19

II Example 4 : 16 stage, 1-bit FIFO circuit

module fifo (shramo, raO, ck1, ck2, ck3, ck4, ck5, ck6,

ck7, ck8, ck9, ck10, ck11,ck12, ck13, ck14, ck15, ck16);

input shramO, ck1, ck2, ck3, ck4, ck5, ck6,

ck7, ck8, ck9, ck10, ck11,ck12, ck13, ck14, ck15,ck16;

output rao;

fifoO sliceO(shramO, raO, ck1, ck2, ck3, ck4, ck5, ck6,

ck7, ck8, ck9, ck10, ck11, ck12, ck13, ck14, ck15, ck16);

endmodule

module fifoO (shramO, raO, ck1, ck2, ck3, ck4, ck5, ck6,

ck7,ck8, ck9,ck10, ck11,ck12,ck13, ck14,ck15,ck16);

input shramO, ck1, ck2, ck3, ck4, ck5, ck6,

ck7, ck8, ck9, ck10, ck11, ck12, ck13, ck14, ck15, ck16;

output raO;

ms_y m_ 16_0 (shramO, ck16, s016);

ms_y m_ 15_0 (s016, ck15, s015);

ms_y m_ 14_0 (s015, ck14, s014);

ms_y m_ 13_0 (s014, ck13, s013);

ms_y m_12_0 (s013, ck12, s012);

ms_y m_ 11 _0 (s012, ck11, s011);

ms_y m_ 1 o_o (s011, ck1 o, s01 O);

ms_y m_9_0 (s010, ck9, s09);

ms_y m_8_0 (s09, ck8, s08);

ms_y m_7 _o (s08, ck7, s07);

ms_y m_6_0 (s07, ck6, s06);

ms_y m_5_0 (s06, ck5, s05);

ms_y m_ 4_0 (s05, ck4, s04);

ms_y m_3_0 (s04, ck3, s03);

ms_y m_2_0 (s03, ck2, s02);

ms_y m_ 1_0 (s02, ck1, raO);

endmodule

62

£9

// 1 bit ram circuit

module ram (5hram0, raO, rbO, ck1, ck2, ck3, ck4, ck5, ck6,

ck7, ck8, ck9, ck10, ck11, ck12,ck13, ck14, ck15, ck16,

a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11, a12,a13,a14,a15,a16,

b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11, b12,b13,b14,b15,b16);

input 5hram0, ck1, ck2, ck3, ck4, ck5, ck6,

ck7, ck8, ck9, ck10, ck11, ck12, ck13, ck14,ck15, ck16,

a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,

b1,b2,b3,b4,b5,b6,b7,b8,b9,b10,b11, b12,b13,b14,b15, b16;

output raO, rbO ;

ramO 5lice0(a1, a2, a3, a4, a5, a6, a7, aB, a9, a10, a11, a12, a13, a14, a15,

a16,b1,b2,b3,b4,b5,b6,b7, b8,b9,b10,b11,b12,b13, b14,

b15, b16, 5hram0, ck1, ck2, ck3, ck4, ck5, ck6,

ck7, ck8, ck9, ck10, ck11, ck12, ck13, ck14, ck15, ck16,raO,rbO) ;

end module

module ramO(a1, a2, a3, a4, a5, a6, a7, aa, a9, a10, a11, a12, a13, a14, a15,

a16, b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14,

b15, b16, 5hram0, ck1, ck2, ck3, ck4, ck5, ck6,

ck7, ck8, ck9, ck10, ck11, ck12, ck13, ck14, ck15, ck16,raO,rbO) ;

input 5hram0, ck1, ck2, ck3, ck4, ck5, ck6,

ck7,ck8, ck9, ck10, ck11, ck12, ck13, ck14, ck15, ck16,

a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,

b1,b2,b3, b4,b5,b6,b7,b8, b9,b10, b11,b12,b13,b14, b15, b16;

output raO, rbO ;

m5_y m_16_0 (5hram0, ck16, 5016);

m5_y m_15_0 (5hram0, ck15, 5015);

m5_y m_ 14_0 (5hram0, ck14, 5014);

m5_y m_ 13_0 (5hram0, ck13, 5013);

m5_y m_ 12_0 (5hram0, ck12, 5012};

m5_y m_ 11_0 (5hram0, ck11, 5011);

m5_y m_ 1 o_o (5hramO, ck1 o, 501 O);

64

ms_y m_9_0 (shramo, ck9, s09);

ms_y m_a_o (shramo, ck8, sOB);

ms_y m_7 _O (shramO, ck7, s07);

ms_y m_6_0 (shramO, ck6, s06);

ms_y m_5_0 (shramO, ck5, s05);

ms_y m_ 4_0 (shramO, ck4, s04);

ms_y m_3_0 (shramO, ck3, s03);

ms_y m_2_0 (shramO, ck2, s02);

ms_y m_1_0 (shramO, ck1, s01);

na2_y am016 (a16, a016s, s016);

na2_y am015 (a15, a015s, s015);

na2_y am014 (a14, a014s, s014);

na2_y am013 (a13, a013s, s013);

na2_y am012 (a12, a012s, s012);

na2_y am011 (a11, a011 s, s011);

na2_y am010 (a10, a010s, s010);

na2_y am09 (a9, a09s, s09);

na2_y amoa (as, aoas, sOB);

na2_y am07 (a7, a07s, s07);

na2_y am06 (a6, a06s, s06);

na2_y am05 (a5, a05s, s05);

na2_y am04 (a4, a04s, s04);

na2_y am03 (a3, a03s, s03);

na2_y am02 (a2, a02s, s02);

na2_y am01 (a1, a01 s, s01);

a4_y oa410 (oa410s,a016s, a015s, a014s, a013s);

a4_y oa420 (oa420s,a012s, a011s, a010s, a09s);

a4_y oa430 (oa430s,a08s, a07s, a06s, a05s);

a4_y oa440 (oa440s,a04s, a03s, a02s, a01s);

na4_y oa450 (oa410s, oa420s, oa430s, oa440s, raO);

na2_y bm016 (b16, b016s, s016);

na2_y bm015 (b15, b015s, s015);

65

na2_y bm014 (b14, b014s, s014);

na2_y bm013 (b13, b013s, s013);

na2_y bm012 (b12, b012s, s012);

na2_y bm011 (b11, b011 s, s011);

na2_y bm010 (b10, b01 Os, s01 O);

na2_y bm09 (b9, b09s, s09);

na2_y bm08 (b8, b08s, s08);

na2_y bm07 (b7, b07s, s07);

na2_y bm06 (b6, b06s, s06);

na2_y bm05 (b5, b05s, s05);

na2_y bm04 (b4, b04s, s04);

na2_y bm03 (b3, b03s, s03);

na2_y bm02 (b2, b02s, s02);

na2_y bm01 (b1, b01 s, s01);

a4_y ob410 (ob410s,b016s, b015s, b014s, b013s);

a4_y ob420 (ob420s,b012s, b011 s, b010s, b09s);

a4_y ob430 (ob430s,b08s, b07s, b06s, b05s);

a4_y ob440 (ob440s,b04s, b03s, b02s, b01s);

na4_y ob450 (ob410s, ob420s, ob430s, ob440s, rbO);

endmodule

66

l9

'TJ
-CJQ

> I
N
.J;:,.
en
::s

CJQ

-(1)

r::::r I
Vl

-....... (')
(1)

i:1
~
(')

;:r c

~ 0
c

	Layout Synthesis for Datapath Designs
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1574197806.pdf.fvrU8

