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Abstract 

This thesis studies ordinary chondrites with cluster chondrite lithologies using 

electron backscatter diffraction so as to measure the temperatures of their olivine grains 

during deformation, for the purpose of constraining the accretion temperatures of cluster 

chondrites and creating new constraints on chondrule formation models.  Samples analyzed 

with the technique are shock classified in this thesis as S1 and are type 3, so the deformation 

analyzed is interpreted to represent the temperatures of the chondrules during accretional 

deformation.  It is found that the studied samples are primarily composed of chondrules at 

hot temperatures (>850°C) during deformation, mixed with a questionable minority at cold 

(<850°C) temperatures.  This is interpreted to represent a primarily hot or possibly 

heterogeneous temperature of accretion; the objects accreting were mostly hot chondrules 

with a possible addition of cold chondrules.  This interpretation establishes two new 

possible constraints for chondrule formation models, requiring that they must allow for 

chondrule accretion shortly after the heating event and that they might require the mixing 

of hot and cold chondrules in the short time period prior to that accretion.  The former of 

these new constraints has much stronger evidence for it than the latter.  These new 

constraints are most compatible with established protoplanetary bow shock and impact 

formation models, though if the mixing constraint can be dismissed density shockwave 

models are also viable.  Other models are either wholly incompatible with the new 

constraints or require modification to be consistent with them. 
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1. Introduction

The conventional view on chondrite accretion is that of cold accretion – that the 

components that came to together to create chondrites were cold during the event.  This is 

based on evidence such as surviving presolar grains and amorphous carbon in 

unequilibrated ordinary chondrites, which are incompatible with exposure to higher 

temperatures (Michel-Levy and Lautie, 1981; Rubin and Brearley, 1996).  This view is 

opposed by that of hot accretion: that chondrites’ components were hot during accretion.  

While seemingly incompatible with the evidence for cold accretion, there is evidence 

possibly indicating hot accretion.  Such evidence includes plastic deformation of 

chondrules in low grade chondrites, as well as an observed “burst” chondrule in Tieschitz 

(Hutchison et al., 1979). 

Cluster chondrites are chondrite clasts with a high chondrule content (88-92 vol%) 

that are characterized by close-fit textures of their chondrules and a low content of 

chondrule fragments and fine grained matrix (Metzler, 2012).  Cluster chondrites are 

defined by their petrographic texture and have no special distinction in their overall 

chemistry and mineralogy from chondrites in general (Metzler, 2012; Metzler and Pack, 

2016).  Whether the proportions of chondrule texture types in cluster chondrites differ from 

those of non-cluster chondrites is inconsistent in the literature.  Metzler (2012) reports no 

difference while Holmén and Wood (1986) observe overabundant granular and porphyritic 

chondrules, and underabundant barred and radiating chondrules.  Chondrules in cluster 

chondrites exhibit a high degree of apparent deformation, based on a high proportion of 

irregular shapes, compared to non-cluster chondrites (Metzler, 2012). 
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Cluster chondrites may be formed by the accretion and plastic deformation of hot 

chondrules (Hutchison et al., 1979; Hutchison and Bevan, 1983; Holmén and Wood, 1986; 

Sanders and Hill, 1994; Hutchison, 1996b; Metzler, 2012).  However, it is also possible 

that they may have formed by aggregation of hot chondrules into a clump in the solar 

nebula (Rubin and Brearley, 1996).  It has been estimated by their thermal histories that 

chondrules could have remained plastically deformable for 0.3-60 hours after their heating 

(Hood and Ciesla, 2001; Desch et al., 2012).  Other competing explanations for close-fit 

textures, such as pressure solution, have been advocated by other workers.  This 

mechanism would work by dissolving and redepositing chondrule material, just as it can 

do the same to sand grains in sandstone, and would best operate at lower temperatures 

(Rutter, 1976; Houseknecht, 1987; Skinner, 1989a, 1989b).  It has also been argued that 

such close-fit textures occurred due to collision of chondrules prior to accretion, 

compaction-induced porosity loss, or even simple coincidence (Rubin, 1995b).  Shock 

compaction may also be able to create close-fit textures (Davison et al., 2016), and is 

described in the shock metamorphism subsection of the background section (sec 2.6). 

If it is true that cluster chondrites formed at high temperature then their existence 

establishes important constraints on chondrule formation.  For chondrules to have accreted 

while hot would require them to be accreted onto or into planetesimals, or otherwise accrete 

into clumps, within hours of their formative heating, as chondrules cool rapidly after 

melting (e.g. Humayun, 2012; Miura and Yamamoto, 2014; Chaumard et al., 2018).  This 

would imply that the proximity of an accreting planetesimal is likely correlated with 

chondrule heating, or that formation of planetesimals and chondrules occurs in the same 



3 

 

 

 

process.  This would be consistent with some bow shockwave (e.g. Morris et al., 2012; 

Mann et al., 2016) and impact splashing models (e.g. Dullemond et al., 2016; Lichtenberg 

et al., 2018).  Further, the clast components of cluster chondrites would imply that shortly 

after heating events, the affected space of the nebula must contain a high proportion of 

chondrules to dust, which would favor models that heat entire local volumes, such as the 

shockwave models and the x-wind model (e.g. Shu et al., 2001; Morris et al., 2016).  As a 

result, constraining the accretion temperatures of cluster chondrites has the potential to 

advance the debate over the mechanism of chondrule formation.  Accordingly, determining 

the accretion conditions of cluster chondrites is the primary purpose of this study. 

To accomplish this, a number of type 3 ordinary chondrites were shock classified 

to identify unshocked chondrites.  Four of these are selected for electron backscatter 

diffraction (EBSD) analysis, chosen to represent the full range of cluster texture quality 

and for good preservation from terrestrial weathering.  EBSD is used to determine accretion 

temperatures of cluster chondrite chondrules.  This is because of its ability to constrain 

deformational temperature by analysis of olivine dislocation slip system activation 

(Ruzicka and Hugo, 2018).  Individual chondrules are also analyzed to look for relations 

between temperature and deformation, and to test Metzler’s (2012) inference of 

deformational temperature from chondrule deformation.  Details concerning shock, EBSD, 

and chondrule analysis can be found in the Methods section.  Background on chondrites 

and chondrules are provided in the following section to support later discussion on this 

study’s implications for chondrule formation models.  Further background information on 
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the utility of olivine dislocation systems and EBSD for determining deformational 

temperature are also in the following section. 

 
Figure 1.  Example Image of a Cluster Chondrite.  Sample is a section of NWA 

11991.  Possibly deformed chondrules in a close fit texture are visible.  Image 

courtesy of Alex Ruzicka. 
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2. Background 

2.1 Chondrites 

All cluster chondrites are a textural type of chondrite.  Chondrites were first 

described more than two centuries ago and have been a subject of study since then 

(Howard, 1802).  Chondrites are the most abundant of the two main types of meteorites 

that fall to Earth, constituting ≈ 87% of falls (Wood, 1988).  They are distinguished from 

the other type of meteorite, achondrites, by their comparatively primitive nature.  Whereas 

achondrites are mostly igneous rocks from differentiated bodies, chondrites have never 

undergone processes of melting and differentiation (Weisberg et al., 2006).  Chondrites 

instead are primitive accretionary rocks; rocks that formed from the amalgamation of dust 

and clasts from the solar nebula (Weisberg et al., 2006).  Chondrites and their components 

date from the formation of the solar system, having formed within its first 5 Ma  (Amelin 

et al., 2002; Connolly et al., 2006; Hutcheon et al., 2009; Jones et al., 2000; Bizzarro et al., 

2017; Kita et al., 2005; Krot et al., 2009; Connelly et al., 2008; Kita and Ushikubo, 2012; 

Bollard et al., 2017; Becker et al., 2015; Rudraswami and Goswami, 2007; Connelly et al., 

2012; Connelly and Bizzarro, 2009; Amelin and Krot, 2007; Villeneuve et al., 2009; 

Wadhwa et al., 2007; Yurimoto and Wasson, 2002; Yin et al., 2007; Kita et al., 2000; 

Budde et al., 2018; Scott, 2007).  Chondrites have two principal components: matrix and 

clasts.  The dominant clasts in chondrites are chondrules, though other clasts are present in 

much lower abundance such as calcium-aluminum inclusions and amoeboid olivine 

aggregates, both of which are known as refractory inclusions (Weisberg et al., 2006).  

Matrix in chondrites is postulated to have formed by a number of mechanisms, including 
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condensation of solids in the solar nebula and fragmentation of chondrules and other 

objects (Alexander, et al., 1989). 

Chondrites have varying degrees of thermal metamorphism at elevated temperature 

and low pressure (Huss et al., 2006).  This is characterized by a 3 to 6 scale based on 

petrographic and mineral composition features created by Van Schmus and Wood (1967), 

with 3 being unequilibrated and 6 being the highest degree of metamorphism prior to 

melting; grade 3 is further subdivided (i.e. 3.0-3.9; Grossman and Brearley, 2005; Huss et 

al., 2006).  Temperature ranges for end point petrographic grades are 250 - 600°C for type 

3 and 850 - 950°C  for type 6 (McSween et al., 1988; Huss et al., 2006).  Types 3.0-3.5 

ordinary chondrites experienced peak temperatures of 300 - 450°C (Brearley, 1990).   

Chondrites are divided into a number of classes on the basis of their chemistry, 

mineralogy, and petrology.  In this study only LL, L, H group chondrites are used, which 

together form the ordinary chondrite class.  Ordinary chondrites, which constitute ~80% of 

falls, are matrix poor (10-15 vol% matrix) and have few refractory inclusions.  They are 

reduced compared to terrestrial rocks, but are neither exceptionally reduced or oxidized 

compared to other meteorites (Weisberg et al., 2006).   

2.2 Chondrules 

Chondrules are the primary component comprising cluster chondrites.  These 

objects are submillimeter ultramafic igneous spherules, or fragments thereof, commonly 

found in chondrites (Hewins, 1997; Zanda, 2004; Scott and Krot, 2005; Lauretta et al., 

2006).  While having a generally subspherical shape, many chondrules are elongated by 

gas streamlining in the solar nebula, rendered oblate by rotation while in a molten state, or 
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fragmented after formation.  However, a large portion of chondrules have irregular shapes 

not explainable by such processes (Charles et al., 2018).  They are commonly composed 

of olivine and/or pyroxene crystals with a feldspathic glass mesostasis (Hewins, 1997; 

Lauretta et al., 2006).   

Chondrules are dominantly porphyritic in texture, though supercooling-related 

cryptocrystalline, barred, and radial textures are not uncommon (Gooding and Keil, 1981; 

Hewins, 1997; Connolly et al., 1998; Lauretta et al., 2006).  Nonporphyritic chondrules 

likely formed in spatial environments with a higher abundance of coarser solids than 

porphyritic ones, as has been inferred from their higher abundance among compound 

chondrules and cratered chondrules (Gooding and Keil, 1981).  Rapid crystallization in 

such chondrules was likely the result of dust colliding with molten chondrules, thereby 

providing nucleation sites (Connolly and Hewins, 1995).  In comparison, porphyritic 

chondrules formed from incompletely melted precursors or experienced much slower 

cooling times (Hewins and Radomsky, 1990; Radomsky and Hewins, 1990).  Thermal 

history is not the sole determiner of chondrule textures; precursor composition also plays 

an important role, as ferroan chondrules will have lower liquidi than magnesian ones 

(Connolly and Hewins, 1991).  Chondrules vary bimodally in their iron and magnesium 

content.  Type I chondrules have an Fe / (Fe + Mg) molar ratio of <0.1.  Others are 

considered to be Type II chondrules (Hewins, 1997; Zanda, 2004; Scott and Krot, 2005; 

Lauretta et al., 2006).  Accordingly, chondrules of differing texture types could have the 

same thermal history even if they differ in composition.   
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Numerous studies of chondrules have established several constraints that any 

genetic model must be able to meet.  As is indicated by several radiogenic chronometers, 

these objects formed in the solar nebula, with most forming 2-3 Ma after calcium-

aluminum inclusions (CAIs; ∆tCAI=2-3 Ma), though some formed much earlier (∆tCAI≈0 

Ma) or later (∆tCAI≈5 Ma) (Jones et al., 2000; Kita et al., 2000; Amelin et al., 2002; 

Yurimoto and Wasson, 2002; Kita et al., 2005; Connolly et al., 2006; Amelin and Krot, 

2007; Rudraswami and Goswami, 2007; Scott, 2007; Wadhwa et al., 2007; Yin et al., 2007; 

Connelly et al., 2008; Connelly and Bizzarro, 2009; Hutcheon et al., 2009; Krot et al., 2009; 

Villeneuve et al., 2009; Connelly et al., 2012; Kita and Ushikubo, 2012; Becker et al., 2015; 

Bizzarro et al., 2017; Bollard et al., 2017; Budde et al., 2018).  Chondrules probably 

experienced abrupt heating to temperatures of 1600-2400 K from initial temperatures of 

600 K, and cooled at rates ranging from 0.5-8000 K/hr in a dust-filled environment, based 

on their retention of Na and other moderately volatile elements, a lack of olivine re-

equilibration in 3.0-3.2 grade chondrites, and a lack of isotopic fractionation of Fe and S 

(Hewins, 1983; Lofgren and Russell, 1986; Hewins and Radomsky, 1990; Radomsky and 

Hewins, 1990; Hewins, 1991; Jones and Lofgren, 1993; Müller et al., 1995; Lofgren, 1996; 

Hewins, 1997; Connolly et al., 1998; Weinbruch et al., 1998; Cohen et al., 2000; Jones et 

al., 2000; Alexander and Wang, 2001; Yurimoto and Wasson, 2002; Yu et al., 2003; 

Tsuchiyama et al., 2004; Wasson, 2004; Zanda, 2004; Hewins et al., 2005; Tachibana and 

Huss, 2005; Connolly et al., 2006; Lauretta et al., 2006; Tachibana, 2006; Nagashima et 

al., 2008; Miyamoto et al., 2009; Alexander and Ebel, 2012; Desch et al., 2012; Humayun, 

2012; Miura and Yamaoto, 2014; Villeneuve et al., 2015; Connolly and Jones, 2016; Soulié 
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et al., 2017; Chaumard et al., 2018).  On the basis of suppressed Raleigh fractionation, it 

has been argued that chondrules must have formed in spatially large regions of heating 

(Cuzzi and Alexander, 2006; Desch, 2006).  The conditions of melting also require higher 

than canonical oxygen fugacities to retain Na and metallic iron in chondrule melts (Lewis 

et al., 1993; Hewins, 1997; Cohen and Hewins, 2004). 

It has also been inferred from many lines of evidence that chondrules must have 

formed in an environment with a very high concentration of chondrules and other solids, 

as this would explain the incidence rate of compound chondrules, lack of isotopic 

fractionation from evaporation effects, and scarcity of glassy chondrules (Connolly and 

Hewins, 1995; Ciesla et al., 2004; Ciesla, 2006; Desch, 2006; Alexander and Ebel, 2012; 

Hewins et al., 2012; Arakawa and Nakamoto, 2016).  The densities of chondrules implied 

by these observations are so high that such a cloud of chondrules would likely collapse 

under its own gravity (Alexander and Ebel, 2012).  This possibly conflicts with another 

well-established constraint: that chondrules were oft subject to multiple heating events 

prior to accretion, as is evidenced by relict grains, crystal zoning, igneous rims, and textural 

distributions (Fox and Hewins, 2005; Kracher et al., 1984; Palme et al., 1992; Rubin and 

Krot, 1996; Hewins, 1997; Jones et al., 2000; Yurimoto and Wasson, 2002; Wasson and 

Rubin, 2003; Alexander, Barber, et al., 1989; Scott and Krot, 2005; Connolly et al., 2006; 

Lauretta et al., 2006; Ruzicka et al., 2007, 2008; Alexander and Ebel, 2012; Rubin, 2013; 

Baecker et al., 2017).  Such a contradiction could be solved however, if such formed bodies 

were subsequently disrupted, allowing their components to be reheated in the nebula 

(Ruzicka, 2012).   
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Additional constraints on chondrule origins are given by their compositions and 

sizes (Ciesla, 2005).  For example, chemical complementarity between chondrules and 

matrix in chondrite groups, such that combined they match solar elemental abundance even 

if the chondrules and matrix by themselves do not, requires that chondrules and matrix are 

created or affected jointly during chondrule formation (Bland et al., 2005; Hezel and 

Palme, 2008, 2010; Desch et al., 2012; Palme et al., 2015; Budde et al., 2016).  A final 

constraint is the low variance in chondrule sizes within chondrite groups, which favors 

models that can explain such limited size ranges (Jacquet, 2014). 

2.3 Chondrule Formation Models 

A number of models have been proposed since 1877 to explain the formation of 

chondrules, but the debate of which is correct has remained unsettled since that time 

(Sorby, 1877).  The most currently favored formation models are the shockwave models 

(Connolly and Jones, 2016; Krot and Nagashima, 2017).  Shockwave models posit that 

chondrules and their precursors were heated by supersonic shockwaves in the solar nebula 

(Connolly and Love, 1998; Jones et al., 2000; Desch et al., 2005; Connolly et al., 2006).  

The primary mechanism of heating is friction by gas drag once particles enter the 

shockwaves, though secondary heating effects such as thermal radiation from heated 

particles in a shockwave prior to entry and compressional heating of the nebular gas may 

also contribute (Connolly and Love, 1998; Desch and Connolly, 2002; Desch et al., 2005; 

Connolly et al., 2006).  Gas drag in the shockwave would slow chondrules to the same 

speed as the shockwave, and the objects should be able to survive that deceleration 

(Connolly and Love, 1998; Sirono, 2006).  Shockwaves are capable of producing a range 
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of temperature environments, including those consistent with chondrule thermal histories, 

if the right conditions are met (Ciesla, 2005; Desch et al., 2005).  A particular strength of 

many shockwave models is their ability to explain the high concentrations of both gas and 

solids inferred for chondrule formation, as the shockwaves would act to concentrate both 

and vaporize solids (Connolly and Love, 1998; Desch and Connolly, 2002; Boss and 

Durisen, 2005b).  Another is the strong fit between the modeled thermal histories of 

particles moving through shockwaves and the thermal histories inferred for chondrules 

(Desch and Connolly, 2002; Desch et al., 2005; Connolly et al., 2006).  Shockwaves can 

also explain the limited size ranges of chondrules, stripping melt from larger particles and 

vaporizing smaller ones (Miura and Nakamoto, 2005; Kato et al., 2006; Miura and 

Nakamoto, 2007).  Further, shockwaves are easily recurring, and so can account for the 

abundant evidence for chondrule reheating (Ciesla, 2005; Desch et al., 2005).  As 

shockwaves can affect large portions of the solar nebula, they can thermally process a large 

amount of solids (Ciesla, 2005).  Finally, shockwaves are consistent with the cogenetic 

relationship of chondrules and matrix implied by complementarity (Palme et al., 2015). 

A multitude of sources for shockwaves have been proposed: bow shocks around 

eccentric planetesimals, density waves in the solar nebula, x-ray flares from the young sun, 

gas clumps falling into the solar nebula, tidal interactions with other stellar systems, and 

mass accretion into the solar nebula (Boss, 1996; Larson, 2002; Boss and Durisen, 2005b; 

Desch et al., 2005; Nakamoto et al., 2005; Connolly et al., 2006).  X-ray flares would have 

occurred as a result of mass accretion to the young Sun, and could have generated 

substantial nebular shockwaves in the outer surface of the solar nebula (Nakamoto et al., 
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2005).  Shockwaves in the periphery of the solar disk could also be created by accretion of 

clumps of dust and gas, though like x-ray flares these would not affect the midplane of the 

solar nebula (Tanaka et al., 1998; Boss and Durisen, 2005b).  A similar model works by 

the accretion of in-falling gas (Boss, 1996; Ruzmaikina and Ip, 1996; Boss and Durisen, 

2005b).  A further proposed source for shockwaves is tidal interactions with other proplyds 

in a densely packed stellar nursery (Larson, 2002).  Issues with these particular models 

include their location away from the nebular midplane, where the solids are concentrated, 

and a difficulty in explaining how chondrules could be reheated (Boss and Durisen, 2005b).  

Further, these mechanisms are not expected to have operated in the timeframe that most 

chondrules were created (Boss and Durisen, 2005b). 

The two most popular shockwave models are those of gravitational instabilities and 

bow shocks.  In the former, shockwaves are caused by gravitational instability waves, that 

would be capable of processing material in the nebular midplane in a manner which has 

good agreement with inferred chondrule thermal histories (Hood and Horányi, 1991; Desch 

and Connolly, 2002; Miura et al., 2002; Ciesla and Hood, 2002; Boss and Durisen, 2005b; 

Desch et al., 2005; Hood et al., 2009; Morris and Desch, 2010; Morris et al., 2016).  

Numerical modeling studies indicate that an early formed Jupiter could generate such 

density shockwaves in the solar nebula (Boss and Durisen, 2005a).  Additional modeling 

work has indicated that the required early formation of Jupiter is plausible, if not required 

(Boss, 2000; Hood et al., 2009; Mann et al., 2016).  This modeling work has empirical 

support from work on iron meteorites that suggests the formation of two distinct 
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geochemical reservoirs in the solar proplyd by 1 Ma, which is best explained by the 

formation of Jupiter (Kruijer et al., 2017). 

The second popular model is that of chondrule heating in bow shocks, shockwaves 

around rapidly moving planetesimals and protoplanets (Hood, 1998; Weidenschilling et 

al., 1998; Ciesla, 2005; Desch et al., 2005; Hood et al., 2005, 2009; Hood and 

Weidenschilling, 2012; Morris et al., 2012).  Early formed planetesimals could have been 

perturbed into eccentric orbits by proto-Jupiter, achieving high speeds relative to the 

nebular gas and thermally processing significantly large areas of the solar proplyd with 

their bow shocks before regaining a circular orbit (Hood, 1998; Weidenschilling et al., 

1998; Marzari and Weidenschilling, 2002; Boss and Durisen, 2005b; Desch et al., 2005; 

Nagasawa et al., 2014).  There is substantial evidence that planetesimals and planetary 

embryos had already formed before most chondrules did.  Such evidence includes the 

dating of iron meteorites, angrites, and the core formation of Mars, observations of igneous 

clasts with chemistry consistent with differentiated parent bodies found in chondrites, and 

observations of granoblastic relict olivine textures in chondrules, though it has been argued 

that the latter of these does not require such an origin (Kennedy et al., 1992; Hutchison, 

1996a; Lugmair and Shukolyukov, 2001; Baker et al., 2005; Kleine et al., 2005; Scherstén 

et al., 2006; Libourel and Krot, 2007; Sokol et al., 2007; Whattam et al., 2008; Dauphas 

and Pourmand, 2011; Libourel and Chaussidon, 2011).  It is probable that such a 

planetesimal would need to be large.  This would give chondrules time to be mechanically 

coupled to the larger bow shock.  This coupling would avoid accretion and extend modelled 

chondrule cooling times to be consistent with chemical and petrologic observations (Hood 
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et al., 2005; Mann et al., 2016).  Chondrules that did not become coupled to the bow shock 

would be accreted to the planetesimal, and would not be thermally reprocessed and nor be 

likely to survive their collision with the planetesimal (Hood et al., 2005).  Such larger 

planetesimals or planetary embryos could also have the advantage of possessing Na-rich 

outgassed atmospheres that could interact with forming chondrules, explaining their Na 

content (Morris et al., 2012).  Further, modelling of chondrule thermal histories in bow 

shocks of planetary embryos is consistent with chondrule formation constraints (Morris et 

al., 2012).  However, further modeling indicates that it may be the case that only larger 

objects can produce such thermal histories (Mann et al., 2016).  It is also entirely feasible 

that both bow shock and density wave mechanisms could operate simultaneously, 

especially as both could be caused by an early-formed Jupiter (Boss and Durisen, 2005b).   

Critics of shockwave models have used various arguments.  Numerical modeling 

of the collisional disruption of chondrules encountering dust grains in the shockwave 

region by Jacquet and Thompson (2014) indicate that such collisions should destroy 

chondrules, but their model does not explain how dust could survive preheating so as to be 

in the shockwave region at all (Morris and Desch, 2010; Morris et al., 2016).  Fedkin et al. 

(2012) used numerical modeling of kinetic chemical and isotopic fractionation under 

shockwave conditions to argue that the fractionations predicted by the modeling are 

inconsistent with geochemical data of chondrules.  However, effects such as back-reaction 

are not accounted for by their model.  It has also been argued on the basis of numerical 

modeling that the generation of nebular shockwaves sufficiently powerful to create 

chondrules is unlikely (Boley and Durisen, 2008).  Further, the good fit of shockwave 
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heating to inferred chondrule thermal histories has been questioned by Stammler and 

Dullemond (2014).  Similarly, modeling of a nebular shockwave by Miura and Nakamoto 

(2006) found that thermal histories in their models did not agree with those inferred for 

chondrules, though more recent modelling studies do agree with chondrule thermal 

histories (Morris and Desch, 2010; Morris et al., 2016). 

Currently discussed impact models generally resemble the model of Asphaug et al. 

(2011), which sees chondrules as resulting from impacts between young mostly-molten 

planetesimals (Lugmair and Shukolyukov, 2001; Sanders and Taylor, 2005; Sanders and 

Scott, 2012; Connolly and Jones, 2016).  However, other contemporary solid or mostly-

solid models exist (Johnson et al., 2015; Lichtenburg et al., 2017; Lichtenberg et al., 2018).  

Early versions of the model envisioned solid planetesimals colliding and spewing molten 

droplets, or the formation of chondrules as impact ejecta (Ruzicka et al., 2000; Hutchison 

et al., 2005).  Such models are no longer favored, however, though recent versions have 

been supported with numerical modeling (Johnson et al., 2015).  Instead, impact splashing 

models propose that chondrules result from oblique impacts of mostly molten early 

planetesimals.  Heat provided by short-lived nuclides is thought to have melted these 

objects, and the models posit that they did not have time to differentiate so as to explain 

complementarity (Hevey and Sanders, 2006; Sanders and Scott, 2012).  Collisions between 

these objects could have produced expanding clouds of droplets and vapor with cooling 

histories compatible with those inferred for chondrules (Sanders and Scott, 2012; 

Dullemond et al., 2014).  Such collisions may have been numerous, and are estimated to 

have occurred about once per 240-24,000 years in the solar nebula (Hood et al., 2009).  
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Chondrules generated by this model could also plausibly meet many other constraints, such 

as size ranges, ages of formation, and volatile contents (Sanders and Scott, 2012; 

Dullemond et al., 2016).  Modeling of chondrule production by planetesimals indicates that 

this process could create a sufficient mass of chondrules in 10 Ma, too long for established 

chondrule and solar nebula chronology (Hasegawa et al., 2016).  Chondrules in CR clan 

chondrites, especially those of the CB group but also some in the CH group, have many 

unusual features that are well explained from an impact-splashing origin (Krot et al., 2005, 

2007; Bollard et al., 2015; Fedkin et al., 2015; Oulton et al., 2016; Krot and Nagashima, 

2017; Hewins et al., 2018). 

However, it is unlikely that all chondrules could have been formed by this process, 

as it is incompatible with Na-rich chondrules which are interpreted to have formed from 

CAI and AOA precursors and it cannot reheat chondrules (Boss, 1996; Ebert and Bischoff, 

2016).  An additional strike against this model is that Hf-W dating of lithophile-siderophile 

separation of materials in CR chondrites is cotemporal with chondrule formation in those 

rocks, which is inconsistent with those chondrules being sourced from a differentiated body 

(Budde et al., 2018).  Further, chondrules and chondrites generally lack evidence of a 

differentiated source material and clasts of planetesimal origin are rare in chondrites 

(McSween, 1977; Boss, 1996).  However, the versions of the impact splashing model that 

use undifferentiated bodies do not suffer this shortcoming (Lichtenberg et al., 2018).  

Additionally, impact models can be expected to produce a highly variant size population 

of chondrules inconsistent with what is observed in most chondrite groups (Jacquet, 2014).  

Further, complementarity is difficult to explain with impact models (Palme et al., 2015).  
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Interestingly, the collisions of planetesimals may generate nebular shockwaves capable of 

forming chondrules, indicating that the collision and nebular shockwave mechanisms may 

be compatible (Hood et al., 2009). 

Electromagnetic models for chondrule formation are of two primary types: 

conventional lightning models and current sheet models.  Conventional lightning models 

are posited to have heated nebular solids both by Ohmic resistance heating and thermal 

radiation of heated material (Eisenhour et al., 1994; Boss, 1996).  The primary proposed 

source of charging is the beta decay of long-lived isotopes such as 40K.  However, 

numerous studies have demonstrated that charge build ups in the solar nebula should 

dissipate rapidly and would overwhelm the electrical potential generated by this 

mechanism (Gibbard et al., 1997; Pilipp et al., 1998).  This is problematic, because 

reproducing the cooling rates of chondrules requires lightning to occur frequently in a small 

volume of space (Fujii and Miyamoto, 1983).  Another lightning model put forth by Desch 

and Cuzzi (2000) operates through triboelectric charging of turbulence-concentrated solids.  

Turbulent concentration is required for this model.  Without it, even triboelectric charging 

in the solar nebula is quickly dissipated, except in situations involving low concentrations 

of dust in the solar nebula (Boss, 1996; Gibbard et al., 1997; Pilipp et al., 1998; Muranushi, 

2010).  This model can produce lightning energetic enough to melt solids but requires that 

short lived radioisotopes, such as 26Al, be heterogeneously distributed in the solar nebula 

or that chondrules be formed after such isotopes had decayed away, both of which 

conditions are inconsistent with empirical evidence (Amelin et al., 2002).  A newer model 

proposes that 26Al can be a charging source, so long as the environment is one of closely 
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packed chondrules in a ring around a planetesimal or planetary embryo (Johansen and 

Okuzumi, 2018).  However, regardless of the charge building model, lightning creates 

environments with conditions too oxidizing to be consistent with chondrule formation and 

is more likely to destroy dust aggregates than melt them (Poppe et al., 2010; Muranushi et 

al., 2012).  Further, simulation of heating by lightning discharges indicates that heating 

rates are on the order of 104 K/hr, too high to be consistent with the ranges of chondrule 

thermal history (Horányi and Robertson, 1996).  The model of Johansen and Okuzumi 

(2018) is an exception, instead predicting cooling rates on the order of 103 K/hr, which is 

a result of high particle densities not present in other lightning models. 

The other primary model of electromagnetic heating is that of current sheets.  In 

this model, heating is driven by magnetohydrodynamic interactions between the sun and 

the surface of the protoplanetary disk (Joung et al., 2004).  The magnetic field of the 

protosun induces current sheets to form in the ionized surface of the disk (Joung et al., 

2004).  Short circuit instabilities could result in rapid flash-heating of solids in a current 

sheet (Joung et al., 2004; Hubbard et al., 2012, 2013).  These instabilities would be 

triggered by rising temperatures, initiating at 1000K, far higher than the background 

preheating temperature inferred for chondrules (Hubbard et al., 2013).  This effect could 

only act in the periphery of the disk, as its interior was a dead zone (Joung et al., 2004; 

Muranushi et al., 2012; Dzyurkevich et al., 2013).  This dead zone would shrink over the 

lifetime of the solar nebula however, possibly allowing the current sheet to reach the 

midplane ~2 Ma after CAI formation (Joung et al., 2004).  The current sheet model has 

been criticized by Desch and Turner (2015), whose numerical modeling predicts that the 
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mechanism can only operate at temperatures that would have vaporized sulfur observed in 

chondrules from their precursors.  Desch and Turner (2015) also argue that conditions 

capable of inducing current sheets to heat solids are incompatible with those conditions 

that allow current sheets to exist.  However, current sheet models are capable of explaining 

complementarity (Palme et al., 2015). 

The X-wind model proposes that chondrules and other igneous solids were created 

close to the young Sun at an “X-point,” melted by its intense radiation and propelled 

outward into the disk by magnetically driven outflow (Shu et al., 1997, 2001).  However, 

the X-wind model for chondrule formation has been heavily criticized.  It is questionable 

that chondrules could retain their observed volatile contents while traveling outside the 

disk of the solar nebula (Ciesla, 2005).  However, the unusual chondrules of the CR and 

CH chondrites lack such volatiles, and have been suggested to have formed by the X-wind 

process (Krot et al., 2001).  Further issues with the X-wind model have been raised by 

Desch et al. (2010), who argue it underestimates the degree of heating at the X-point, is 

self-contradictory on a theoretical basis, and cannot produce thermal histories consistent 

with those of chondrules.  It is also argued that the X-wind model is unable to account for 

either complementarity or for the timing of chondrule formation (Palme et al., 2015). 

It has been suggested that close-sourced gamma ray bursts could heat material in 

the solar nebula and form chondrules.  Experiments by Duggan et al. (2003) have 

demonstrated that gamma rays can melt nebular solids and produce chondrule-like objects.  

It is also feasible that a gamma ray burst could induce widespread lightning in the solar 

nebula by ionizing atoms and propelling electrons in a coherent cloud far away from their 
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source ions (McBreen et al., 2005; Winston et al., 2006).  However, the probability of such 

a gamma ray burst occurring as often as once within close enough vicinity of the solar 

nebula over its lifetime has been calculated as being 0.1% (McBreen and Hanlon, 1999).  

Accordingly, recurrent heating by this mechanism, as is required by differing formation 

dates in chondrules and pervasive evidence of reheating in chondrules, is difficult to 

explain, and other constraints, such as the highly concentrated environment of chondrule 

melts, remain unaddressed. 

2.4 Dislocations 

Dislocations in olivine grains are used in this study to infer the accretional 

temperatures of cluster chondrite chondrules.  Dislocation creep is the primary mechanism 

of intracrystalline plastic deformation (Weertman and Weertman, 1992; Passchier and 

Trouw, 2005).  It consists of the movement of linear crystal defects constrained to a plane 

through a mineral grain (Weertman and Weertman, 1992; Passchier and Trouw, 2005).  

There are two types of dislocations: edge dislocations and screw dislocations, see Figure 2 

(Weertman and Weertman, 1992; Passchier and Trouw, 2005).  Edge dislocations represent 

an extra half-plane in the crystal lattice, whereas screw dislocations represent a twisting of 

the crystal lattice (Weertman and Weertman, 1992; Passchier and Trouw, 2005). 

The orientation and movement of dislocations through a crystal is described in 

crystallographic terms, principally Miller indices.  Minerals can be classified into six 

crystal classes on the basis of their symmetries (Klein and Dutrow, 2007).  Each of these 

crystal classes has a unique system of crystallographic poles, and the orientation of any 

crystallographically oriented feature can be described in terms of these poles, typically 
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through a number indicating that a feature intersects the pole (≥1) or not (0)  (Klein and 

Dutrow, 2007).  These numbers are listed in series, with their ordering indicating which 

pole each number is referencing.  Orthorhombic minerals such as olivine have three 

different mutually perpendicular crystallographic poles: a, b, and c (Klein and Dutrow, 

2007).  A plane described as (001) in an orthorhombic crystal intersects the c pole and not 

the a or b poles.  Accordingly, such a plane must be perpendicular to the c pole and parallel 

to the a and b poles, given the geometry of the system.  A line described as [001] parallels 

the c pole and not the b or a poles.  However, given the geometric nature of the object, this 

has the result of the line paralleling the c pole and being perpendicular to the a and b poles, 

which is the opposite case from the plane before. 

The crystallographically controlled movement of dislocations through a mineral is 

defined through a slip plane and slip direction, both of which are described with Miller 

indices (Weertman and Weertman, 1992).  Slip planes are described in the form of (hkl) or 

{hkl}.  The former signifies a singular slip plane, whereas the latter signifies a set of planes 

that all intersect with the defined poles (Weertman and Weertman, 1992; Passchier and 

Trouw, 2005).  Slip directions, also referred to as Burgers (b) vectors, are described in the 

manner of lines in the form of [uvw] (Weertman and Weertman, 1992; Passchier and 

Trouw, 2005).  A slip plane and a Burgers vector together constitute a slip system, a 

complete crystallographic description of a specific dislocation creep mechanism in a 

mineral, and are simply written as [uvw](hkl) or [uvw]{hkl} (Weertman and Weertman, 

1992; Passchier and Trouw, 2005).   
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Dislocations can pile up into dislocation walls and subgrain boundaries, which 

divide slightly misoriented domains of the crystal (Weertman and Weertman, 1992; 

Passchier and Trouw, 2005; Fossen, 2016).  The development of subgrains is enhanced by 

annealing, as dislocations can migrate and aggregate during the process (Weertman and 

Weertman, 1992; Passchier and Trouw, 2005; Fossen, 2016).  Misorientations between 

subgrains can be represented by a rotation axis in a crystallographic rotation axis (CRA) 

plot, in a crystal coordinate reference frame.  CRAs represent an axis around which a 

misoriented section of crystal lattice could be realigned with a neighboring non-

misoriented section of crystal lattice.  CRA rotation axes are perpendicular to the Burgers 

vectors (or slip directions) of the dislocations in the boundary between the described 

regions (See Figure 3, Lloyd et al. 1997).  As a result, the Burgers vector of a dislocation 

system can be constrained to a plane perpendicular to the CRA rotation axis, though its 

precise direction is unknown.  This plane should not be confused with the slip plane or 

planes of a dislocation system.  If the preferred dislocation systems of a mineral are well 

established in the literature and sufficiently limited in number, the plane of possible 

Burgers vectors can be sufficient to infer the probable dislocation system, and thereby be 

used to give information on the conditions associated with deformation.  A CRA stereonet 

for interpreting slip systems in the specific case of olivine can be seen in Figure 4. 
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Figure 2.  Cartoon Diagrams of Edge and Screw Dislocations.  Left is an edge 

dislocation, right is a screw dislocation.  Lines represent the crystal lattice; atoms 

are located in corners.  After Fossen (2016).  Dislocations are circled in red and 

Burgers vectors are indicated with red arrows. 

 

  

Figure 3.  Geometric Relations Among Rotation Axes, Slip Systems, and Subgrain 

Boundaries.  Slip direction is perpendicular to the crystallographic rotation axis.  

Right image is pertinent to screw dislocations, and left to edge dislocations.  

Adapted from Fig. 1b of Lloyd et al. (1997). 
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2.5 Olivine Deformation 

Olivine deformation is governed by a handful of primary dislocation slip systems 

that are active at different temperature ranges (Raleigh, 1968; Carter and Ave’Lallemant, 

1970; Kirby and Wegner, 1978; Tommasi et al., 2000; Tielke et al., 2016).  As olivine is 

common in cluster chondrite chondrules, identification of olivine slip systems is useful to 

infer codeformational temperature in these objects.  The dislocation systems of olivine are 

(010)[100], {0kl}[100], and {110}[001] (Raleigh, 1965, 1967, 1968; Carter and 

Ave’Lallemant, 1970; Carter, 1971; Kirby and Wegner, 1978; Tommasi et al., 2000; 

Karato et al., 2008).  They can be categorized by their Burgers vectors as either a-slip 

(b=[100]) or c-slip (b=[001]).  While the activity of these systems is dependent on many 

factors including confining stress, water content, and oxygen fugacity, temperature is 

dominant over other factors (Raleigh, 1967, 1968; Carter and Ave’Lallemant, 1970; 

Tommasi et al., 2000; Karato et al., 2008).  Although differing orientations of stress 

regimes can favor activation of one system over another, c-slip type systems are generally 

dominant at temperatures below 800°C, a-slip type systems above 1000°C, and a mixture 

of both system types occurs at 800-1000°C (Raleigh, 1967, 1968; Carter, 1971; Gaboriaud 

et al., 1981; Tommasi et al., 2000).  Of the a-slip type systems, the (010)[100] system is 

dominant at higher temperatures than the {0kl}[100] system (Carter and Ave’Lallemant, 

1970; Carter, 1971; Karato et al., 2008).  As for the other mechanisms, it is found that 

decreased pressure, high water content, and increased strain rates all favor c-slip (Carter 

and Ave’Lallemant, 1970; Durinck et al., 2005; Jung et al., 2006; Raterron et al., 2007, 

2009; Tielke et al., 2017). 
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Although much of the research on olivine deformation is oriented toward mantle 

conditions, extending the conventional temperature range of the c-slip to a-slip dominance 

transition to meteorites is not unreasonable even under the most extreme conditions.  High 

water contents are unlikely for ordinary chondrites, and strain rate and pressure conditions 

can be expected to behave in a counteractive manner.  Calculations based on the empirical 

relationships between confining pressure, strain rate, temperature for preferential slip 

system activation, and conditions appropriate for high impact shock conditions (10 GPa, 

10-1-108 s-1) imply a transition temperature from c-slip to a-slip of ≈950°C (Raleigh, 1968; 

Carter and Ave’Lallemant, 1970; Carter, 1971; Stöffler et al., 1991; Schultz, 1996; Sharp 

and de Carli, 2006).  Caution must be exercised with such a calculation, however, as it 

requires extending empirical mathematical relations far outside the range of strain rates and 

pressures in which they were derived.  While the established effects on the transition 

temperature suggest reduction of it under the higher pressure conditions of shock 

metamorphism, observation of c-slip in cold shocked chondrites and a-slip in chondrites 

shocked while hot from thermal metamorphism suggest the transition remains in a 

reasonable temperature range (Carter et al., 1968; Ashworth et al., 1977; Müller and 

Wlotzka, 1982; Sneyd et al., 1988; Nakamura et al., 1992; Langenhorst et al., 1995; Leroux 

et al., 1996; Joreau et al., 1997; Leroux, 2001; Ruzicka and Hugo, 2018; Hugo et al., 2019).  

However, if the deformation observed in a sample does result from accretion processes 

rather than hypervelocity shock, the conditions of deformation should be much closer to 

those studied in the existing literature, rendering the matter less challenging. 
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Figure 4.  Diagram for Relating 

Crystallographic Rotation Axis Data to 

Olivine Slip Systems.  Figure shows domains 

into which EBSD derived CRA data can be 

plotted, and which slip systems are associated 

with those domains.  Diagram is a standard 

CRA-plot format and is an equal area 

stereonet section.  Colors of domains are coded 

to interpreted temperature of deformation, 

from red (hot) to blue (cold).  Figure is from 

(Ruzicka and Hugo, 2018), which itself is based 

in part on figure 2 of de Kloe et al. (2002). 

 

2.6 Electron Backscatter Diffraction 

EBSD is an analytical technique that can be used to map crystallographic 

orientations of mineral grains and subgrains in a sample.  It employs use of a scanning 

electron microscope with a thin section sample inclined 70° to the electron beam (Figure 

5; Prior et al., 1999; Zaefferer, 2011).  Electrons from the scanning beam penetrate the 

sample and diffract out through interactions with the crystal lattice of a mineral.  The crystal 

lattice scatters diffracted electrons in an orderly manner that is dependent on its structure, 

which creates a crystallographically oriented diffraction pattern recordable by a detector 

(Prior et al., 1999; Zaefferer, 2011).  As a result, a computer can rapidly determine the 
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orientation of a mineral at a measured point from the diffraction patterns.  A grid of such 

points can be measured across the sample, rastering an orientation map (Prior et al., 1999; 

Zaefferer, 2011). 

Mapped EBSD data can be used to assess the overall intracrystalline deformation 

of olivine grains, as well as the slip systems active during olivine crystal deformation and 

the temperature conditions of that deformation.  From internal orientation maps of single 

olivine crystals, misorientation boundaries can be identified and their CRAs compiled.  

Observed CRAs can be used to infer the slip systems active during deformation (de Kloe 

et al., 2002).  Such analysis to determine slip systems of deformation has been successfully 

applied to olivine crystals by de Kloe et al. (2002) in experimentally deformed olivine-

pyroxene rocks and in meteorite samples by Ruzicka and Hugo (2017, 2018) and Hugo et 

al. (2019), with verification provided by transmission electron microscopy (TEM) analyses 

(Ruzicka et al., 2015; Hugo et al., 2019).  CRA data can be used to infer the temperature 

of deformation, as the preferential activation of slip systems in olivine is temperature 

dependent (Ruzicka and Hugo, 2017, 2018).  Mapped EBSD data can also be used to 

measure the grain orientation spread (GOS) and maximum grain orientation spread (MOS) 

values of crystals, which in meteoritic olivines are correlated to weighted shock stages 

determined by optical microscopy (Jamsja and Ruzicka, 2010; Ruzicka and Hugo, 2017, 

2018; Hugo et al., 2019). 
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Figure 5.  Set Up for EBSD Analysis with SEM.  

Figure is a cartoon diagram showing the basic 

configuration for EBSD analysis of a sample. 

2.7 Shock Metamorphism and Postshock Annealing 

 Shock from impacts can deform olivine grains in chondrites, both brittlely and 

plasticly (Stöffler et al., 1988).  Shock metamorphism is measured by an S1-S6 shock scale, 

with higher numbers signifying greater degrees of shock.  The shock scale comes in two 

forms, the first being an integer system based on petrographic features of olivine and 

plagioclase created by Stöffler et al. (1991, 2018) and refined by Schmitt et al. (1994), 

Schmitt (2000), and Fritz et al. (2017).  A second non-integer weighted shock stage scale 

was created by Jamsja and Ruzicka (2010).  This latter scheme assigns a shock stage to 

each olivine grain based on shock-caused undulose extinction, planar fracturing, or 

recrystallization texture in olivine grains, associating data for individual crystals with 
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conventional shock stages and then averaging all of the individual grain data to obtain a 

weighted shock stage for a sample.   

While the degree of shock deformation is based on optically observable features, it 

has been established that these features correlate to the degree of olivine intracrystalline 

plastic deformation, including deformation resulting from dislocations (Carter et al., 1968; 

Nakamura et al., 1992; Ruzicka et al., 2015; Ruzicka and Hugo, 2017, 2018).  Ruzicka and 

Hugo (2018) used EBSD derived mean grain orientation spread (GOS) metrics of olivine 

grains to characterize shock deformation, finding a good correlation (r2 = 0.94) between 

mean GOS and weighted shock stages in meteorites.  Although mean GOS is still correlated 

to weighted shock stage in annealed meteorites, anomalously high GOS grains exist, 

indicating that skewness in GOS distributions can be evidence of annealed crystals. 

Foliations with minor lineation components are commonly observed fabrics in 

meteorites, with impacts being commonly, though not always, cited as the most probable 

cause (Dodd, 1965; Cain et al., 1986; Scott et al., 1992; Nakamura et al., 1995; Tomeoka 

et al., 1999; Watt et al., 2006; Rubin and Swindle, 2011; Tait et al., 2013; Hanna et al., 

2015; Forman et al., 2016, 2017).  This process is called shock compaction, and it results 

in bimodal heating and deformation of chondrites, with matrix being much more affected 

than chondrules (Tomeoka et al., 1999; Bland et al., 2014; Davison et al., 2016).  Numerical 

modeling indicates such compaction could deform chondrules in low-matrix chondrites, 

creating chondrule deformation and close-fit textures similar to those found in cluster 

chondrites (Davison et al., 2016). 
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Thermal metamorphism can remove shock damage in minerals post-impact, 

restoring them to a low petrographic shock grade that contradicts their shock history 

(Ashworth and Mallinson, 1985; Rubin, 1992, 1995a; Ruzicka et al., 2015; Friedrich et al., 

2017; Ruzicka and Hugo, 2017, 2018).  Many meteorites show evidence for annealing after 

shock deformation (Ashworth et al., 1977; Leroux et al., 1996; Rubin, 2002, 2003; Rubin 

and Jones, 2003; Rubin, 2004; Rubin and Swindle, 2011; Friedrich et al., 2013, 2017).  

Annealing in meteorites can remove evidence for shock metamorphism from a meteorite 

(Ashworth and Mallinson, 1985; Friedrich et al., 2013, 2014, 2017).  However, such 

annealed minerals still have microstructural evidence of shock in the form of dislocation 

configurations detectable by TEM (Ashworth and Mallinson, 1985; Ruzicka et al., 2015; 

Hugo et al., 2019).  Annealing can also be inferred with EBSD data as GOS distributions 

are different for annealed and unannealed meteorites, with annealed meteorite GOS 

distributions being measurably skewed (Ruzicka and Hugo, 2017, 2018).  
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3. Methods and Samples 

3.1 General Methodological Design 

The approach of this study followed three main methodological phases.  1) A 

number of type 3 OCs were shock classified with the aim of identifying unshocked 

samples.  2)  Select unshocked samples were mapped twice with EBSD, and whole map 

data was analyzed so as to determine representative whole-sample deformation data and 

overall deformation temperature.  3) From the mapped data, 10 chondrules per map were 

subsetted and analyzed to determine their deformation character and deformation 

temperature.  Then trends between deformation and temperature metrics were assessed for 

possible relations using ANOVA tests. 

3.2 Shock Classification 

To ensure the deformation measured with EBSD is not a result of shock and the 

observed cluster textures are not a result of shock compaction, the shock stages of all 

samples were measured so as to identify unshocked samples.  This is not to say that cluster 

textures cannot be created by hypervelocity accretion and thereby have high shock stages.  

No conclusions along such lines are made in this study, but rather by using S1 samples 

deformational signals of post-accretion shock are minimized.  This ensures the 

deformational signal observed is likely due to accretion. 

Shock metamorphism was determined by assessment of shock features within the 

olivine grains of the samples by use of a Leica DM2500 petrographic microscope.  Methods 

follows the guidelines of Stöffler et al. (1991, 2018) for determination of conventional 

shock stage and the methods of Jamsja and Ruzicka (2010) for determination of weighted 
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shock stage.  Shock stage character of olivine grains is determined as per the methods of 

Jamsja and Ruzicka (2010); the population of grains with a specific shock stage that 

composes a majority of observed grains (≥50%) is used to assign the conventional shock 

stage, or ≥25% of observed grains if no subpopulation constituted a majority of those 

observed.  The former guideline is concordant with the procedure of Stöffler et al. (2018), 

and the latter with that of Stöffler et al. (1991).  A summary of the criteria used by Jamsja 

and Ruzicka (2010) to classify the shock stage characters of olivine grains can be found in 

Table 1.  For each grain this was done by measuring its angle of undulose extinction for 

the grain, counting the number of planar fractures sets in the grain, and noting whether the 

grain had been recrystallized or not.  Weighted shock stage is determined as the mean of 

all assigned olivine shock stage characters, displayed with the standard deviation of the 

population (Jamsja and Ruzicka, 2010).  Unlike as is recommended by Stöffler et al. (1991, 

2018), plagioclase/maskelynite grains are not used for shock stage evaluation, as usable 

individuals of such grains are absent or rare in the samples due to their unequilibrated 

nature.  Olivine grains used for analysis do not intersect the borders of the thin section and 

have minimal alteration and weathering, with the key criterion being that they are of 

sufficient recommended size (≥50 μm in one dimension) and preservation to be able to 

display undulose extinction, planar fracture sets, and recrystallization should they have 

these features (Stöffler et al. 1991, 2018).  Thin section samples were divided into sectors 

of approximately 6mm2, and olivine shock character data was gathered for each for the 

purpose of mapping heterogeneity of shock character.  Whole sample olivine shock data 
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was used to determine both the conventional shock stage of the sample and the weighted 

shock stage of the sample. 

Table 1.  Summary of Jamsja and Ruzicka (2010) Classification Characteristics.  

Angle of undulose extinction is predominant over the number of planar fracture 

sets for purposes of shock stage character assignment. 

Shock Stage Criteria for Olivine 

S1 Undulose Extinction Angle <2°, No Planar Fracture Sets 

S2 Undulose Extinction Angle 2°-3°, No Planar Fracture Sets 

S3 Undulose Extinction Angle 2°-3°, 1 or More Planar Fracture Sets 

S4 Undulose Extinction Angle 3°-5°, 2 or More Planar Fracture Sets 

S5 Undulose Extinction Angle >5°, 3 or More Planar Fracture Sets 

S6 Recrystallization 

3.3 EBSD Methods 

Samples selected for EBSD analysis were chosen to fulfill three criteria: 1) low 

shock stage, as determined with the preceding shock methods, 2) low weathering, so as to 

use well preserved samples, 3) and all samples must collectively represent a wide range of 

cluster texture quality, so as to be representative of cluster chondrites as a whole.  Once 

four samples were selected, they were analyzed with EBSD methods. 

EBSD methods of Ruzicka and Hugo (2018) and Hugo et al. (2019) were used to 

gain CRA metrics for olivine subgrain boundaries in the samples and GOS metrics for 

olivine grains.  A critical misorientation of 15° was used to define grain boundaries in 

neighboring pixels of the same phase.  CRA data were analyzed to determine causal slip 

systems for deformation in the olivine grains, and thereby infer temperature at deformation.  

GOS metrics were used to assess for evidence of annealed shock deformation in low shock 

grade samples by comparing mean GOS to median GOS, and to compare olivine 

deformation intensity to the shape parameters of the host chondrules. 
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An accelerating voltage of 20 kV was used for the EBSD work.  EBSD mapping 

step sizes used ranged from 2 to 4 μm, with larger step sizes used for larger maps, so that 

all maps could be acquired in 24-48 hours.  Minimum grain size was five contiguous pixels.  

Annealing parameters were computed by dividing the mean GOS by the median GOS of 

olivine grains larger in area than a 50 μm diameter circle.  Temperature parameters are 

calculated as the sum of the modal CRA densities, otherwise known as multiples of uniform 

density (MUD) values near the <001> and <010> poles relative to sum of the MUD values 

at all three poles, as these densities represent the activation of the a-slip systems favored in 

higher temperature regimes.  Only misorientations of 2-10° were used for constructing 

CRA diagrams.  In CRA diagrams contouring was done based on a 25° half-width. 

3.4 Chondrule Methods 

 To determine the heterogeneity or homogeneity of chondrule accretion 

temperatures and to the test for other relations between GOS, shape parameters, and 

temperature, 10 chondrules from each map were selected and analyzed to determine their 

mean GOS, shape parameters, and temperature parameters.  Temperature parameters for 

all samples were analyzed to determine their heterogeneity, and correlations between mean 

GOS, shape parameters, and temperature parameters were all tested for statistical 

significance.  The purpose of this was test Metzler’s (2012) inference of hot accretion from 

chondrule deformation, and whether chondrule and olivine deformation are linked. 

 Ten chondrules per EBSD map were chosen from each of the two maps of the four 

EBSD analyzed samples.  The chosen chondrules were selected so as to represent the full 

spread of deformational variability of chondrules in the map.  Deformational variability 
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was determined by qualitative circularity, so that chondrules selected ranged from the most 

circular in shape within in a map to the least circular.  Underlying this selection method is 

an assumption that undeformed chondrules are subcircular in cross-section.  Chondrules 

with indistinct boundaries were avoided.  Chondrules were chosen without regard as to 

their being chondrule fragments or not.  Temperature parameters were determined for all 

chondrules, and mean GOS values and shape parameters were only determined for those 

selected chondrules that did not intersect the edges of a map, as it would be impossible to 

determine shape parameters for them.  Temperature parameters were determined for 

chondrules as sums of modal densities near the poles of these subsets’ CRA diagrams that 

are associated with olivine a-slip systems, as applied to chondrules subsetted from the 

EBSD maps using Channel 5 software.  Shape parameters for chondrules were determined 

as the ratio of the perimeters of the chondrules and perimeters of circle with areas equal to 

those of the chondrules.  This approach was intended to be consistent with “degree of 

chondrule deformation” used by Metzler (2012), which was interpreted by Metzler to 

reflect chondrule deformation on the assumption that undeformed chondrules were 

subspherical.  ImageJ was used to measure chondrule perimeters and areas from band 

contrast images of the EBSD maps for the purposes of calculating the shape parameters.  

Mean GOS values for each chondrule were determined from the grain data of the chondrule 

subsets, with mean GOS being calculated as the average GOS of all olivine grains of a 

chondrule subset  

 Relations between the mean GOS, temperature parameters, and the shape 

parameters of the chondrules were analyzed sample by sample.  Each metric was compared 
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to another in pairs: mean GOS vs temperature parameters, mean GOS vs shape parameters, 

and shape parameters vs temperature parameters.  Best fit lines were calculated for each of 

these metric pairs for each sample.  These linear models were then analyzed using ANOVA 

tests, with a p-value of 5% being the threshold of statistical significance.  If two or more 

samples show a significant correlation between a given pair of metrics, it is then determined 

that a consistent relationship exists.  This is because when there is a 5% probability for 

each positive result to be a false positive, as would be case if the null hypothesis of no 

relation were true, then the probability of there being more than one false positive is 1.4%, 

as calculated using a binomial distribution.  This satisfies a 5% p-value criterion. 

Spatial variation in the CRA modality diagrams was calculated from automated 

subsets of EBSD whole maps, created by splitting the whole maps into 5 horizontal or 

vertical strips.  The chosen orientation of the strips was selected to maximize their width.  

This created 10 regional subsets for each sample.  Slip system modality for these strips was 

determined from their CRA diagrams, and 1.96 standard deviation ranges were calculated 

for each of the three slip systems for each sample.  These formed the bounds of regional 

variation within the whole maps to which chondrule modal slip system activations could 

be compared. 

3.5 Study Samples 

Meteorites used in this study (Table 2, next page) are: Lut 006 (LL3), Moorabie 

(L3.8), NWA 1955 (H/L3-4), NWA 5205 (LL3.2), NWA 5421 (LL3.7), NWA 5781 

(LL3.3), NWA 8575 (L/LL3), NWA 10220 (LL3), NWA 11291 (LL3), NWA 11351 (LL3-

6), NWA 11905 (LL3.10-5), NWA 11991 (LL3), NWA 11992 (LL3), and Tieschitz (H/L 
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3.6).  All of these meteorites possess cluster chondrite lithologies and are type 3, 

characteristics which are necessary for this study.  The low metamorphic type is needed so 

as to prevent the annealing of accretion-related dislocations by subsequent thermal 

metamorphism. 

Some of the meteorites used in this study have existing research histories.  NWA 

5421 and NWA 5205 were previously examined by Metzler (2012) and Metzler and Pack 

(2016) to determine their chemistry and degree of deformation of their chondrules in their 

cluster chondrite clasts.  Tieschitz is a much studied meteorite with evidence of aqueous 

alteration (Hutchison et al., 1998).  It also has evidence of hot accretion in the form of 

indented chondrules and mesostasis expelled from chondrules during accretion (Hutchison 

et al., 1979, 1998).  Lut 006 has been previously described by Hutson et al. (2014).  These 

workers identified a texture of poorly foliated and closely packed chondrules in the 

meteorite, with a compositionally unusual matrix for its class. 

Table 2.  Table of Samples.  

Name Classification Prior Shock Classifications 

NWA 5205 LL3.2 (Weisberg et al., 2010) None 

NWA 5781 LL3.3 (Weisberg et al., 2010) None 

NWA 5421 LL3.7 (Weisberg et al., 2010) None 

Lut 006 LL3 (Ruzicka et al., 2014) S5 (Ruzicka et al., 2014) 

NWA 10220 LL3 (Bouvier et al., 2017) S1 (Bouvier et al., 2017) 

NWA 11291 LL3 (Gattacceca et al., 2019) None 

NWA 11991 LL3 (Hutson, Pers. Comm.) None 

NWA 11992 LL3 (Hutson, Pers. Comm.) None 

NWA 11905 LL3.10-5 (Agee, Pers. Comm.) S3 (Agee, Pers. Comm.) 

NWA 11351 LL3-6 (Gattacceca et al., 2019) S4 (Gattacceca et al., 2019) 

NWA 8575 L/LL3 (Ruzicka et al., 2014) S1 (Ruzicka et al., 2014) 

Moorabie L3.8 (Clarke, 1975) S4 (McCoy et al., 1994) 

Tieschitz H/L3.6 (Grady, 2000) S1/2 (Scott et al., 1992), S3 

(Rubin et al., 1999) 

NWA 1955 H/L3-4 (Russell et al., 2005) None 
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4. Results  

4.1 Shock Classification Results 

A number of samples were observed to be S1 (Table 3), four of which, 1) 0244-2 

NWA 5781, 2) 0953-3A NWA 5421, 3) 0954-1A-1 NWA 5205, and 4) 0781B Tieschitz 

were chosen for EBSD analysis.  Figures 6-9 display olivine shock stage grain histograms 

for each EBSD analyzed sample.  Figures 10-13 display the spatial distribution of the shock 

data in these samples.  Shock histogram figures and shock spatial distribution figures for 

samples not selected for EBSD analysis can be found in the Appendix.  Shock data for the 

all samples are shown in Table 3. 

Table 3.  Olivine Shock Stage Data for Studied Samples.  Columns 2 through 7 list 

number of observed grains with features consistent with the listed shock stage in a 

sample.  A shock stage of “NA” means no shock stage can be assigned to a sample.  

Shock stages with “*” meet the criteria of Stöffler et al. (1991) but not of Stöffler et 

al. (2018).  The “n” column lists the number of grains measured in a sample. 

Sample S1 S2 S3 S4 S5 S6 
Weighted 

Shock Stage 

Shock 

Stage 
n 

0091-3 NWA 11991 9 4 5 27 441 21 4.87 ± 0.69 S5 507 

0244-2 NWA 5781 253 4 8 37 54 1 1.99 ± 1.60 S1 357 

0545-2A Moorabie 1 2 2 15 121 7 4.85 ± 0.64 S5 148 

0677-2 NWA 11992 79 13 12 79 45 0 2.99 ± 1.61 NA 228 

0736-3 Lut 006 0 0 2 20 165 1 4.88 ± 0.37 S5 188 

0754-2 NWA 11351 92 1 8 60 161 2 3.63 ± 1.73 S5* 324 

0754-3 NWA 11351 1 0 1 13 74 2 4.81 ± 0.59 S5 91 

0781A Tieschitz 304 9 0 11 8 0 1.22 ± 0.81 S1 332 

0781B Tieschitz 459 9 2 11 15 0 1.21 ± 0.82 S1 496 

0856-2A NWA 1955 11 19 43 48 4 0 3.12 ± 1.00 S4* 125 

0953-3A NWA 5421 351 3 7 14 16 0 1.31 ± 0.98 S1 391 

0953-3B NWA 5421 262 9 13 19 12 0 1.44 ± 1.07 S1 315 

0954-1A-1 NWA 5205 1022 20 63 132 66 1 1.62 ± 1.25 S1 1304 

0978-1A NWA 11905 268 0 6 10 20 0 1.40 ± 1.13 S1 304 

0978-2A NWA 11905 77 0 1 1 7 0 1.38 ± 1.15 S1 86 

0983-A NWA 11291 336 13 2 12 1 0 1.16 ± 0.61 S1 364 

0983-B NWA 11291 333 12 3 7 4 0 1.15 ± 0.63 S1 359 

0984-A NWA 10220 103 5 1 5 1 0 1.23 ± 0.75 S1 115 

0985-A NWA 8575 233 8 0 6 1 0 1.12 ± 0.55 S1 248 
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Figure 6.  Grain Shock Stage Histogram 

of Sample CML 0954-1A-1.  Shock stage 

is as defined by Stöffler et al. (1991, 

2018). 

Figure 7.  Grain Shock Stage Histogram 

of Sample CML 0953-3A.  Shock stage is 

as defined by Stöffler et al. (1991, 2018). 

 

  
Figure 8.  Grain Shock Stage Histogram 

of Sample CML 0244-2.  Shock stage is 

as defined by Stöffler et al. (1991, 2018). 

Figure 9.  Grain Shock Stage Histogram 

of Sample CML 0781B.  Shock stage is 

as defined by Stöffler et al. (1991, 2018). 
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0954-1A-1 NWA 5205 

 
 KEY 

 

Figure 10.  Shock Map of Sample CML 0954-1A-1.  Left image is a sectored shock 

map, and the right is an image of the sample in the same orientation.  Numbers in 

the shock map sectors are the number of measured grains in those cells.  Sector 

color is based on the weighted shock stage of a sector on the scale defined by the 

key.  Red line denotes boundary of cluster chondrite clast, which occupies the lower 

left of the thin-section image. 
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0953-3A NWA 5421 

  
KEY 

 

Figure 11.  Shock Map of Sample CML 0953-3A.  Left image is a sectored shock 

map, and the right is an image of the sample in the same orientation.  Numbers in 

the shock map sectors are the number of measured grains in those cells.  Sector 

color is based on the weighted shock stage of a sector on the scale defined by the 

key. 
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0244-2 NWA 5781 

 

 KEY 

 

Figure 12.  Shock Map of Sample CML 0244-2.  Left image is a sectored shock map, 

and the right is an image of the sample in the same orientation.  Numbers in the 

shock map sectors are the number of measured grains in those cells.  Sector color 

is based on the weighted shock stage of a sector on the scale defined by the key.  

Sectors with an X have no grains usable for shock stage assessment. 

 

0781B Tieschitz 

 

 KEY 

 

Figure 13.  Shock Map of Sample CML 0781B.  Left image is a sectored shock map, 

and the right is an image of the sample in the same orientation.  Numbers in the 

shock map sectors are the number of measured grains in those cells.  Sector color 

is based on the weighted shock stage of a sector on the scale defined by the key. 
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4.2 EBSD Area Map Results 

Tables 4 and 5 display data concerning the EBSD maps collected.  Annealing 

parameters for the samples are displayed in Table 6.  EBSD maps of the analyzed samples 

found generally low annealing parameters for the samples intermediate to the unannealed 

and annealed values documented by Ruzicka and Hugo (2018).  The notable exception is 

Tieschitz, which has an annealing parameter consistent with metamorphic annealing.  

Figure 14 shows the locations of the mapped areas in the samples.  Figures 15-22, 23-30, 

and 31-38 respectively display GOS, local misorientation, and grain orientation maps of 

the EBSD rastered areas.  Figures 39-42 display CRA stereonets for the EBSD mapped 

regions of the four analyzed samples, showing activation of both a-slip and c-slip type 

systems in all samples.  Figure 43 presents the analyzed samples plotted in relation to 

weighted shock stage and GOS/MOS relationships documented by Ruzicka and Hugo 

(2018), showing that the samples plot in a cluster removed from the established trendline.  

Figure 44 displays the apparent annealing and temperature parameters of the analyzed 

EBSD maps to those of Ruzicka and Hugo (2018).  Figure 45 shows the modal slip system 

activation of the studied samples. 
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Table 4.  Metadata for EBSD Area Maps.  “SAM” denotes “small area map,” 

representing EBSD mosaics at finer step sizes and smaller mapped areas.  “LAM” 

denotes “large area map,” representing EBSD mosaics at coarser step sizes and 

covering larger areas.  Step size is the distance between pixels in the mapped 

mosaic.  “GOS” refers to GOS values of olivine grains greater than 50 μm in 

diameter.  Map names are derived from their date of collection, in the format 

MMDD. 

Sample Map Type 

Area 

(mm2) 

Subset Size 

(mm2) 

Step Size 

(μm) 

Total 

Pixels 

Olivine 

Grains 

0244-2 

NWA 

5781 0923 SAM 10.9  2.18 1.99 2,748,603 181 

 

0244-2 

NWA 

5781 1005 LAM 97.6 19.5 4.00 6,087,400 1336 

 

0781B 

Tieschitz 0208 LAM 66.4 13.3 3.99 4,152,588 1280 

 

0781B 

Tieschitz 0215 LAM 53.1 10.6 3.62 4,030,983 920 

 

0953-3A 

NWA 

5421 1215 SAM 20.6 4.12 2.60 3,040,052 478 

 

0953-3A 

NWA 

5421 1222 LAM 75.9 15.2 4.00 4,742,080 1427 

 

0954-1A-1 

NWA 

5205 0118 SAM 25.8 5.16 3.48 2,123,454 641 

 

0954-1A-1 

NWA 

5205 0201 LAM 155 31.0 5.00 6,172,551 1940 
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NWA 5205 NWA 5421 

 

 
NWA 5781 Tieschitz 

 

 

Figure 14.  EBSD Mapped Areas of Selected Samples.  Mapped areas are labeled 

by their date of acquisition (MMDD).  All have one SAM and one LAM, except for 

Tieschitz, which has two LAMs.  LAM areas are larger than SAM areas, but have 

larger raster step sizes. 
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Table 5.  EBSD Area Maps Results.  Regional subsets are vertical or horizontal 

strips covering 20% of an EBSD mosaic.  “GOS” and “MOS” refer to GOS and 

MOS values of olivine grains greater than 50 μm in diameter.  f<010> + f<001> is the 

sum of the modal pole densities of the two a-slip systems in CRA stereonets; it is 

synonymous with the temperature parameter.  Map names are derived from their 

date of collection, in the format MMDD. 

Sample Map 

GOS 

Mean (°) 

GOS Std. 

Dev. (°) 

GOS 

Mean/Med. (°) 

MOS 

Mean (°) 

MOS Std. 

Dev. (°) 

f<010> + 

f<001> 

0244-2 

NWA 5781 0923 2.69 1.85 1.16 14.6 7.35 0.614 

 

0244-2 

NWA 5781 1005 2.37 1.58 1.25 10.3 5.72 0.604 

 

0781B 

Tieschitz 0208 1.69 1.91 1.87 8.86 6.33 0.624 

 

0781B 

Tieschitz 0215 1.44 1.91 2.15 8.03 6.69 0.640 

 

0953-3A 

NWA 5421 1215 2.90 2.09 1.24 13.6 6.17 0.613 

 

0953-3A 

NWA 5421 1222 2.60 2.00 1.24 12.4 6.33 0.617 

 

0954-1A-1 

NWA 5205 0118 2.18 1.95 1.36 11.7 7.88 0.592 

 

0954-1A-1 

NWA 5205 0201 2.43 1.85 1.26 10.7 5.87 0.619 

 

Table 6.  Apparent Annealing Parameters of EBSD Analyzed Samples.  Annealing 

parameter is (mean GOS of >50 μm olivine grains) / (median GOS of >50 μm olivine 

grains).  Data used is of the merged olivine grain populations from both maps of 

each sample.  Annealed specimens from Ruzicka and Hugo (2018) have an average 

annealing parameter of 1.89, and non-annealed specimens have an average 

annealing parameter of 1.10.  Studied samples have minor apparent annealing, 

except for Tieschitz.   

Sample Mean GOS / Median GOS Grains Analyzed 

0244-2 NWA 5781 1.24 1517 

0781B Tieschitz 1.98 2200 

0953-3A NWA 5421 1.24 1905 

0954-1A-1 NWA 5205 1.27 2581 
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Figure 15.  GOS Map 0118 of NWA 5205.  Map shows olivine grains colored 

according to their GOS (°) values. 
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Figure 16.  GOS Map 0201 of NWA 5205.  Map shows olivine grains colored 

according to their GOS (°) values.  Cluster chondrite clast only; host removed 

digitally. 
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Figure 17.  GOS Map 1215 of NWA 5421.  Map shows olivine grains colored 

according to their GOS (°) values. 
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Figure 18.  GOS Map 1222 of NWA 5421.  Map shows olivine grains colored 

according to their GOS (°) values. 
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Figure 19.  GOS Map 0923 of NWA 5781.  Map shows olivine grains colored 

according to their GOS (°) values. 
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Figure 20.  GOS Map 1005 of NWA 5781.  Map shows olivine grains colored 

according to their GOS (°) values. 
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Figure 21.  GOS Map 0208 of Tieschitz.  Map shows olivine grains colored 

according to their GOS (°) values. 

 



54 

 

 

 

 
Figure 22.  GOS Map 0215 of Tieschitz.  Map shows olivine grains colored 

according to their GOS (°) values. 
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Figure 23.  Local Misorientation Map 0118 of NWA 5205.  Map shows local 

crystallographic misorientation in olivine grains, measured in degrees and 

displayed with a scaled color gradient. 
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Figure 24.  Local Misorientation Map 0201 of NWA 5205.  Map shows local 

crystallographic misorientation in olivine grains, measured in degrees and 

displayed with a scaled color gradient.  Cluster chondrite clast only; host removed 

digitally. 
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Figure 25.  Local Misorientation Map 1215 of NWA 5421.  Map shows local 

crystallographic misorientation in olivine grains, measured in degrees and 

displayed with a scaled color gradient. 
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Figure 26.  Local Misorientation Map 1222 of NWA 5421.  Map shows local 

crystallographic misorientation in olivine grains, measured in degrees and 

displayed with a scaled color gradient. 
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Figure 27.  Local Misorientation Map 0923 of NWA 5781.  Map shows local 

crystallographic misorientation in olivine grains, measured in degrees and 

displayed with a scaled color gradient. 
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Figure 28.  Local Misorientation Map 1005 of NWA 5781.  Map shows local 

crystallographic misorientation in olivine grains, measured in degrees and 

displayed with a scaled color gradient. 
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Figure 29.  Local Misorientation Map 0208 of Tieschitz.  Map shows local 

crystallographic misorientation in olivine grains, measured in degrees and 

displayed with a scaled color gradient. 
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Figure 30.  Local Misorientation Map 0215 of Tieschitz.  Map shows local 

crystallographic misorientation in olivine grains, measured in degrees and 

displayed with a scaled color gradient. 
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Figure 31.  Euler Map 0118 of NWA 5205.  Map shows orientation of all crystal 

grains of all phases in a Euler coordinate system, as indicated by the color of the 

grains. 
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Figure 32.  Euler Map 0201 of NWA 5205.  Map shows orientation of all crystal 

grains of all phases in a Euler coordinate system, as indicated by the color of the 

grains.  Cluster chondrite clast only; host removed digitally. 
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Figure 33.  Euler Map 1215 of NWA 5421.  Map shows orientation of all crystal 

grains of all phases in a Euler coordinate system, as indicated by the color of the 

grains. 
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Figure 34.  Euler Map 1222 of NWA 5421.  Map shows orientation of all crystal 

grains of all phases in a Euler coordinate system, as indicated by the color of the 

grains. 

 



67 

 

 

 

 
Figure 35.  Euler Map 0923 of NWA 5781.  Map shows orientation of all crystal 

grains of all phases in a Euler coordinate system, as indicated by the color of the 

grains. 
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Figure 36.  Euler Map 1005 of NWA 5781.  Map shows orientation of all crystal 

grains of all phases in a Euler coordinate system, as indicated by the color of the 

grains. 
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Figure 37.  Euler Map 0208 of Tieschitz.  Map shows orientation of all crystal grains 

of all phases in a Euler coordinate system, as indicated by the color of the grains. 
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Figure 38.  Euler Map 0215 of Tieschitz.  Map shows orientation of all crystal grains 

of all phases in a Euler coordinate system, as indicated by the color of the grains. 
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Figure 39.  CRA 

Diagrams of EBSD 

Mapped Areas of NWA 

5781.  Upper diagram is 

for map 0923 (SAM), and 

lower diagram is for map 

1005 (LAM).  Hot colors 

indicate high density of 

CRA poles and cold 

colors indicate low 

density.  Evidence for 

activation of all olivine 

slip systems is present.  

Based on Figure 4, c-slip 

is the most activated 

system. 
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Figure 40.  CRA 

Diagrams of EBSD 

Mapped Areas of NWA 

5421.  Upper diagram is 

for map 1215 (SAM), and 

lower diagram is for map 

1222 (LAM).  Hot colors 

indicate high density of 

CRA poles and cold 

colors indicate low 

density.  Evidence for 

activation of all olivine 

slip systems is present.  

Based on Figure 4, c-slip 

is the most activated 

system. 
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Figure 41.  CRA 

Diagrams of EBSD 

Mapped Areas of NWA 

5205.  Upper diagram is 

for map 0118 (SAM), and 

lower diagram is for map 

0201 (LAM).  Hot colors 

indicate high density of 

CRA poles and cold 

colors indicate low 

density.  Evidence for 

activation of all olivine 

slip systems is present.  

Based on Figure 4, c-slip 

is the most activated 

system. 
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Figure 42.  CRA 

Diagrams of EBSD 

Mapped Areas of 

Tieschitz.  Upper 

diagram is for map 0208 

(SAM), and lower 

diagram is for map 0215 

(LAM).  Hot colors 

indicate high density of 

CRA poles and cold 

colors indicate low 

density.  Evidence for 

activation of all olivine 

slip systems is present.  

Based on Figure 4, c-slip 

is the most activated 

system. 
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Figure 43.  Diagrams Comparing GOS and MOS to Weighted Shock Stages.  GOS 

values are calculated from the combined olivine grain populations of map datasets.  

Data of this study depart from the trend established in Ruzicka and Hugo (2018), 

but are in regions of GOS, MOS, and weighted shock stages outside those of that 

study.  In the legend, “RH2018” is an abbreviation representing data from Ruzicka 

and Hugo (2018). 
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Figure 44.  Graph Comparing Mean GOS/Median GOS and Temperature 

Parameters.  Black points represent data from Ruzicka and Hugo (2018) and Hugo 

et al. (2019) shocked samples, white points are data from this study.  The clast in 

MIL 99301 was interpreted as a shock melt that was deformed and incorporated 

into the host.  “Hot shocked” refers to Saint-Séverin, which was interpreted as 

being shocked while hot due to thermal metamorphism and has had little annealing 

(Hugo et al., 2019).  “Hot shocked and annealed” refers to samples that were 

shocked while hot due to thermal metamorphism and subsequently annealed.  

“Non-Annealed” refers to samples shocked while cold.  Plotted points for this 

study’s samples represent the combined datasets of both maps for each sample.  

Samples of this study all have approximately 60% a-slip activation.  Most samples 

analyzed in this study form a tight cluster distinct from the clusters of Ruzicka and 

Hugo (2018) and Hugo et al. (2019).  Tieschitz plots with the annealed samples, but 

unlike them, is unequilibrated. 
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Figure 45.  Ternary Displaying Modal Crystal Rotation Axes in Analyzed Samples.  

Samples are highly similar with subequal activation of cold (<100> CRAs), 

intermediately hot (<010> CRAs) and very hot (<001> CRAs).  One point is plotted 

per EBSD mapped area.  Shocked samples are from Ruzicka and Hugo (2018) and 

Hugo et al. (2019).  Cold shocked samples were shock metamorphosed after thermal 

metamorphism.  Hot shocked samples were shock metamorphosed during thermal 

metamorphism and include both annealed and unannealed meteorites. 

 

4.3 Chondrule Results 

 Data for regional subsets are shown in Table 7.  Tables 8-11 show chondrule subset 

data for the samples.  Figures 46-53 identify analyzed chondrules in the EBSD maps and 

display localization of the chondrule data.  Most individual chondrules have temperature 

parameters consistent with deformation under elevated temperatures, with only 2 of 80 

chondrules having temperature parameters consistent with cold deformation.  See Figure 

54.  Most chondrule modal slip systems are roughly consistent with their associated whole 

maps, however, Tieschitz is exceptionally variable, see Figures 55-58.  It is also found that 

there is no significant correlation between the temperature parameters and shape 

parameters or mean GOS values of chondrules, however, there is a suggestive relationship 
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between the mean GOS values and shape parameters of chondrules, though not one that is 

statistically significant by the set methodological criteria.  See Figures 59-61. 

Table 7.  Regional Subset CRA Data.  Columns are labeled by sample and map, 

rows are divided by subset and show MUD values and f<010> + f<001> values which 

are labeled as “T Param.”  f<010> + f<001> is the sum of the MUD values of the two a-

slip systems in CRA stereonets; it is synonymous with the temperature parameter.  

f<100> is the MUD value of CRA poles associated with c-slip.  Map designations are 

the same as those in Tables 4 and 5. 
 NWA 5205 NWA 5421 NWA 5781 Tieschitz 

 0118 0201 1215 1222 0923 1005 0208 0215 

Subset 1         

f<100> 1.27 1.19 1.17 1.28 1.55 1.40 1.28 1.21 

f<010> 1.20 1.33 1.17 1.06 0.99 1.15 1.01 0.99 

f<001> 0.98 0.92 0.97 1.02 1.01 1.03 1.14 1.08 

T Param. 0.632 0.654 0.647 0.619 0.563 0.609 0.627 0.631 

         

Subset 2         

f<100> 1.35 1.20 1.33 1.26 1.25 1.47 1.30 1.25 

f<010> 1.06 1.07 1.18 1.14 1.32 1.13 1.10 0.97 

f<001> 1.01 1.03 0.60 0.98 1.00 1.00 1.03 1.14 

T Param. 0.605 0.636 0.572 0.627 0.650 0.592 0.621 0.628 

         

Subset 3         

f<100> 1.25 1.25 1.17 1.34 1.51 1.56 1.26 1.14 

f<010> 1.10 1.13 1.23 1.12 1.01 1.13 1.12 1.06 

f<001> 1.01 0.93 0.75 0.99 1.14 0.98 1.02 1.01 

T Param. 0.628 0.622 0.629 0.612 0.587 0.575 0.629 0.645 

         

Subset 4         

f<100> 1.36 1.31 1.25 1.32 1.22 1.39 1.24 1.17 

f<010> 1.08 1.18 1.25 1.14 1.28 1.16 1.08 1.13 

f<001> 0.94 0.94 0.83 0.96 1.07 1.04 1.09 1.07 

T Param. 0.598 0.618 0.625 0.614 0.658 0.613 0.636 0.653 

         

Subset 5         

f<100> 1.71 1.38 1.23 1.32 1.40 1.29 1.34 1.19 

f<010> 0.92 1.14 1.16 1.05 1.17 1.18 1.04 1.07 

f<001> 0.86 0.91 1.07 0.99 1.07 1.09 1.07 1.08 

T Param. 0.510 0.598 0.645 0.607 0.615 0.638 0.612 0.644 
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Table 8.  Chondrule Data Table for NWA 5205.  Map designations are the same as 

those in Tables 4 and 5.  Chondrules intersecting the borders of maps do not have 

recorded shape parameters or mean GOS values, though MUD data is available for 

all chondrules.  f<010> + f<001> is the sum of the MUD values of the two a-slip systems 

in CRA stereonets; it is synonymous with the temperature parameter.  Map 201 

only has data derived from the sample’s cluster chondrite clast; host material was 

digitally removed. 

Map Chondrule Shape Parameter Mean GOS f<010> + f<001> 

0118 1 1.06 0.69 0.560 

0118 2 - - 0.604 

0118 3 - - 0.414 

0118 4 1.16 2.96 0.630 

0118 5 1.11 2.15 0.630 

0118 6 - - 0.597 

0118 7 - - 0.608 

0118 8 - - 0.541 

0118 9 - - 0.654 

0118 10 - - 0.565 

0201 1 1.34 2.47 0.680 

0201 2 1.23 2.76 0.664 

0201 3 1.08 2.09 0.630 

0201 4 1.40 2.29 0.671 

0201 5 1.08 2.48 0.519 

0201 6 1.19 2.75 0.645 

0201 7 1.09 2.37 0.649 

0201 8 1.58 2.69 0.636 

0201 9 1.17 2.95 0.594 

0201 10 1.33 2.50 0.632 
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Table 9.  Chondrule Data Table for NWA 5421.  Map designations are the same as 

those in Tables 4 and 5.  Chondrules intersecting the borders of maps do not have 

recorded shape parameters or mean GOS values, though MUD data is available for 

all chondrules.  f<010> + f<001> is the sum of the MUD values of the two a-slip systems 

in CRA stereonets; it is synonymous with the temperature parameter. 

Map Chondrule Shape Parameter Mean GOS f<010> + f<001> 

1215 1 - - 0.642 

1215 2 - - 0.586 

1215 3 1.38 2.59 0.645 

1215 4 - - 0.665 

1215 5 - - 0.631 

1215 6 1.11 2.56 0.541 

1215 7 - - 0.665 

1215 8 - - 0.706 

1215 9 - - 0.621 

1215 10 1.15 1.94 0.575 

1222 1 1.18 2.95 0.542 

1222 2 1.45 2.97 0.676 

1222 3 1.19 2.96 0.611 

1222 4 1.29 2.16 0.623 

1222 5 1.40 2.71 0.661 

1222 6 1.09 0.91 0.617 

1222 7 - - 0.638 

1222 8 1.36 2.66 0.608 

1222 9 1.07 1.29 0.545 

1222 10 1.16 2.69 0.623 
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Table 10.  Chondrule Data Table for NWA 5781.  Map designations are the same 

as those in Tables 4 and 5.  Chondrules intersecting the borders of maps do not 

have recorded shape parameters or mean GOS values, though MUD data is 

available for all chondrules.  f<010> + f<001> is the sum of the MUD values of the two 

a-slip systems in CRA stereonets; it is synonymous with the temperature 

parameter. 

Map Chondrule Shape Parameter Mean GOS f<010> + f<001> 

0923 1 1.08 1.29 0.510 

0923 2 1.12 2.36 0.668 

0923 3 1.19 2.07 0.637 

0923 4 1.30 1.71 0.652 

0923 5 1.17 2.36 0.548 

0923 6 1.15 2.84 0.508 

0923 7 1.25 2.48 0.677 

0923 8 1.20 1.81 0.610 

0923 9 - - 0.587 

0923 10 1.41 2.64 0.677 

1005 1 1.12 1.41 0.640 

1005 2 1.28 1.59 0.647 

1005 3 1.03 1.57 0.598 

1005 4 1.15 1.64 0.702 

1005 5 1.09 1.15 0.524 

1005 6 - - 0.641 

1005 7 - - 0.650 

1005 8 1.11 1.09 0.642 

1005 9 1.09 1.40 0.653 

1005 10 1.06 1.54 0.580 
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Table 11.  Chondrule Data Table for Tieschitz.  Map designations are the same as 

those in Tables 4 and 5.  Chondrules intersecting the borders of maps do not have 

recorded shape parameters or mean GOS values, though MUD data is available for 

all chondrules.  f<010> + f<001> is the sum of the MUD values of the two a-slip systems 

in CRA stereonets; it is synonymous with the temperature parameter. 

Map Chondrule Shape Parameter Mean GOS f<010> + f<001> 

0208 1 1.11 0.79 0.591 

0208 2 1.04 1.06 0.570 

0208 3 1.02 0.36 0.324 

0208 4 1.13 1.45 0.582 

0208 5 1.06 0.73 0.724 

0208 6 1.19 2.59 0.642 

0208 7 1.24 2.30 0.553 

0208 8 1.08 1.24 0.632 

0208 9 1.26 0.95 0.709 

0208 10 1.09 1.34 0.596 

0215 1 - - 0.592 

0215 2 - - 0.672 

0215 3 1.11 1.33 0.731 

0215 4 1.39 1.57 0.547 

0215 5 1.07 1.11 0.625 

0215 6 1.13 0.68 0.771 

0215 7 1.17 0.68 0.765 

0215 8 1.12 1.74 0.753 

0215 9 1.10 1.20 0.678 

0215 10 1.08 0.69 0.630 
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Chondrule ID Temperature Parameter 

  
Shape Parameter Mean GOS 

  

 
Figure 46.  Chondrule Maps of NWA 5205 Map 0118.  Upper left map shows 

chondrule number labels.  Upper right map shows f<010> + f<001> values of the labeled 

chondrules.  Lower left map shows shape parameters of the labeled chondrules.  

Lower right map shows mean GOS values (°) of the labeled chondrules.  

Background map is the olivine local misorientation map of map 0118.  Scale applies 

to all maps. 

 

  



84 

 

 

 

Chondrule ID Temperature Parameter 
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Figure 47.  Chondrule Maps of NWA 5205 Map 0201.  Upper left map shows 

chondrule number labels.  Upper right map shows f<010> + f<001> values of the labeled 

chondrules.  Lower left map shows shape parameters of the labeled chondrules.  

Lower right map shows mean GOS values (°) of the labeled chondrules.  

Background map is the olivine local misorientation map of map 0118.  Scale applies 

to all maps.  Cluster chondrite clast only; host removed digitally. 
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Figure 48.  Chondrule Maps of NWA 5421 Map 1215.  Upper left map shows 

chondrule number labels.  Upper right map shows f<010> + f<001> values of the labeled 

chondrules.  Lower left map shows shape parameters of the labeled chondrules.  

Lower right map shows mean GOS values (°) of the labeled chondrules.  

Background map is the olivine local misorientation map of map 1215.  Scale applies 

to all maps. 
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Shape Parameter Mean GOS 

  

 
Figure 49.  Chondrule Maps of NWA 5421 Map 1222.  Upper left map shows 

chondrule number labels.  Upper right map shows f<010> + f<001> values of the labeled 

chondrules.  Lower left map shows shape parameters of the labeled chondrules.  

Lower right map shows mean GOS values (°) of the labeled chondrules.  

Background map is the olivine local misorientation map of map 1222.  Scale applies 

to all maps. 
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Figure 50.  Chondrule Maps of NWA 5781 Map 0923.  Upper left map shows 

chondrule number labels.  Upper right map shows f<010> + f<001> values of the labeled 

chondrules.  Lower left map shows shape parameters of the labeled chondrules.  

Lower right map shows mean GOS values (°) of the labeled chondrules.  

Background map is the olivine local misorientation map of map 0923.  Scale applies 

to all maps. 
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Figure 51.  Chondrule Maps of NWA 5781 Map 1005.  Upper left map shows 

chondrule number labels.  Upper right map shows f<010> + f<001> values of the labeled 

chondrules.  Lower left map shows shape parameters of the labeled chondrules.  

Lower right map shows mean GOS values (°) of the labeled chondrules.  

Background map is the olivine local misorientation map of map 1005.  Scale applies 

to all maps. 
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Figure 52.  Chondrule Maps of Tieschitz Map 0208.  Upper left map shows 

chondrule number labels.  Upper right map shows f<010> + f<001> values of the labeled 

chondrules.  Lower left map shows shape parameters of the labeled chondrules.  

Lower right map shows mean GOS values (°) of the labeled chondrules.  

Background map is the olivine local misorientation map of map 0208.  Scale applies 

to all maps. 
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Figure 53.  Chondrule Maps of Tieschitz Map 0215.  Upper left map shows 

chondrule number labels.  Upper right map shows f<010> + f<001> values of the labeled 

chondrules.  Lower left map shows shape parameters of the labeled chondrules.  

Lower right map shows mean GOS values (°) of the labeled chondrules.  

Background map is the olivine local misorientation map of map 0215.  Scale applies 

to all maps. 



91 

 

 

 

 
Figure 54.  Graph of Chondrule Temperature Parameters.  Points are chondrules, 

grouped by sample.  Lower colored region represents the range of observed 

temperature parameters in cold shocked chondrites in Ruzicka and Hugo (2018).  

Upper colored region represents the range of observed temperature parameters in 

hot shocked chondrites in Ruzicka and Hugo (2018). 
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Figure 55.  Ternary Displaying Chondrule CRA Data of NWA 5205.  Points are 

chondrules.  Gray shaded area represents regional variation determined from 

regional subsets. 
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Figure 56.  Ternary Displaying Chondrule CRA Data of NWA 5421.  Points are 

chondrules.  Gray shaded area represents regional variation determined from 

regional subsets. 
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Figure 57.  Ternary Displaying Chondrule CRA Data of NWA 5781.  Points are 

chondrules.  Gray shaded area represents regional variation determined from 

regional subsets. 
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Figure 58.  Ternary Displaying Chondrule CRA Data of Tieschitz.  Points are 

chondrules.  Gray shaded area represents regional variation determined from 

regional subsets.  Uniquely, regional variation in this sample is determined from 

two large area maps.  Other samples had regional variation determined from a 

large area map and a small area map. 
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Figure 59.  Graphs Comparing Chondrule Temperature and Shape Parameters.  

“P” is the probability of no significant correlation between the two parameters in 

the sample, as determined by ANOVA.  Points are individual chondrules.  Shape 

parameter error bars are 95% standard error ranges calculated from five 

measurements for each chondrule. 
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Figure 60.  Graphs Comparing Chondrule Temperature Parameters and Mean 

GOS.  “P” is the probability of no significant correlation between the two 

parameters in the sample, as determined by ANOVA.  Points are individual 

chondrules. 
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Figure 61.  Graphs Comparing Chondrule Mean GOS and Shape Parameters.  “P” 

is the probability of no significant correlation between the two parameters in the 

sample, as determined by ANOVA.  Points are individual chondrules.  Shape 

parameter error bars are 95% standard error ranges calculated from five 

measurements for each chondrule. 
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5. Discussion 

5.1 Anomalous Tieschitz 

A particular item of note is the anomalously high GOSMean/GOSMedian observed for 

Tieschitz.  All other studied samples show similar data in terms of their GOSMean/GOSMedian 

values consistent with the low degree of annealing expected for type 3 chondrites.  

Tieschitz is a significant exception to an otherwise consistent trend that requires further 

explanation.  Tieschitz, as a type 3.6 ordinary chondrite, is unlikely to have significant 

annealing, especially when NWA 5421 is of a higher metamorphic subtype (3.7) and shows 

no similar evidence of dislocation repair.  If Tieschitz had undergone annealing from 

metamorphic heating, then NWA 5421 should have as well.  As it is not sensible that 

Tieschitz should be thermally annealed when NWA 5421 is not, there must be another 

explanation.  Recognizing that the apparent annealing parameter is a measure of skewness 

within a population of GOS measurements, it must be determined what could be 

responsible for the observed skew if not metamorphic annealing.  Observing Figures 55-

58, it is apparent that the modal activation of slip systems in Tieschitz is more variable than 

in the other samples.  Taking this into account, I could interpret that the observed annealing 

parameter in Tieschitz is the result of the especially high heterogeneity of the chondrules 

of that meteorite as compared to the other samples, and not a result of annealing.  Such an 

interpretation is not unique in the literature, as it was determined by Ruzicka and Hugo 

(2018) that a high annealing parameter was found in an unannealed breccia (MIL 99301) 

was created by the heterogeneity between a clast in that meteorite and its surrounding host 

rock.  However, the variances of both weighted stages and mean GOS in Tieschitz are 
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unexceptional for the latter and lower than the other samples for the former, which does 

not support the notion of heterogeneity.  Despite this, it may be the case that Tieschitz is a 

variably shocked and deformed genomict breccia, if the variability in observed shock 

stages for the rock (S1-3) is considered (Scott et al., 1992; Rubin et al., 1999). 

5.2 Relations between Parameters of Deformation and Temperature 

 From the statistical analysis of the chondrules, it is found that there is no significant 

correlation between the inferred temperatures of the chondrules and any measure of 

deformation or chondrule shape.  It was expected that measures of temperature and 

deformation would be correlated, as higher temperatures promote plastic deformation.  For 

the unintuitive insignificance of deformational temperature upon deformation, it may be 

the case that other factors play a more important role in how deformed the chondrules and 

their olivine grains are.  Chondrules and their olivine grains vary in their content of Mg 

and other elements, which can affect the liquidus temperatures of these objects.  With 

different liquidus temperatures, chondrules and olivine grains of differing compositions 

will have different homologous temperatures, and therefore, when at the same temperature 

may have varying susceptibilities to deformation.  Further research comparing olivine and 

chondrule compositions to their temperature parameters and deformation metrics may be 

necessary to determine if this is the case.  Regardless, the data indicate that deformation is 

not related to temperature. 

As for the deformation metrics, the data suggests there may be a relationship 

between them.  This is indicated by the low ANOVA p-values associated with mean GOS 

and the shape parameter in three of four samples, although the data does not strictly meet 
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the 1.4% p-value criteria outlined in the methods.  This implies that intracrystalline 

deformation may be linked to chondrule deformation – that when a chondrule is deformed 

during accretion, at least some of that deformation is accommodated by plastic deformation 

of its mineral grains.  This suggests that EBSD measurable parameters such as GOS can 

reflect whole chondrule deformation and are related to accretional deformation in the 

analyzed chondrules.  Further, while the measured deformation is unrelated to chondrule 

deformational temperature, potential chondrule deformation is possibly linked to the 

plastic deformation within chondrule olivine grains, indicating that temperatures inferred 

from intracrystalline deformation reflect the codeformational temperature of the chondrule.  

Grain properties are related to chondrule properties, so grain data could imply the state of 

chondrules as a whole.  Further, this also suggests that the shapes of chondrules in cluster 

chondrites are at least partly due to deformation, supporting the interpretations of Metzler 

(2012). 

5.3 Codeformational Heat Source 

 Given that a-slip is observed in the samples, it is apparent that many olivine grains 

in these rocks were at an elevated temperature, above roughly 850°C based on the 

activation temperature of a-slip, during their deformation.  The dislocation data indicates 

that deformation is at least partly a result of high temperature plastic deformation at too 

high a temperature for liquid water.  This allows the removal of pressure solution as a 

possible origin for the close fit textures.  A critical question now is what is the source of 

the heat?  Metamorphism is an unlikely cause, as these samples are all type 3 ordinary 

chondrites; the heat range implied by the observed slip systems requires temperatures 
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inferred for higher metamorphic grades than these rocks have.  Shock compaction is also 

implausible as a heat source, for all the samples used for EBSD analysis are S1, and c-slip 

dislocations are typically observed for shock related deformation in type 3 chondrites.  

While shock compaction can heat matrix to high temperature, it does not do the same for 

chondrules (Davison et al., 2016).  One may attempt to argue that these samples have been 

annealed postshock, but this scenario is unlikely due to the low metamorphic grade of the 

samples.  Further, most of these samples do not have the expected GOS signature of 

postshock annealing.  However, there is potential evidence for a minor degree of annealing 

in the elevated GOSmean/GOSmedian metrics of the NWA samples, possibly from residual 

heat.  A third possible source is residual heat leftover from chondrule formation.  Excepting 

other unknown heat sources, this one is left the most plausible because unlike the other 

two, it cannot be ruled out. 

5.4 Codeformational Temperature 

 Interpreting the CRA data as being reflective of accretion temperature, a complex 

story emerges.  There is strong evidence for hot deformation, or at least, deformation above 

850°C, as most CRA poles for the olivines are consistent with this result.  However, there 

is also some evidence for predominant activation of the cold c-slip systems in a few 

chondrules, indicating that some were cold.  With evidence for both hot and cold 

deformation during accretion, the most straightforward interpretation is that both hot and 

cold components were accreted during the formation of these meteorites.  This is 

heterogenous accretion: a mixing of hot and cold components accreting together into one 

rock or onto the same planetesimal. 
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It must be noted however, that another plausible explanation for the two c-slip 

dominant chondrules exists.  If they possess a preferred crystal alignment, as the one in 

NWA 5205 does due to a barred olivine texture, a stress orientation favoring c-slip can 

result in the observed slip system activation.  In light of this possibility caution toward the 

idea of heterogeneous accretion is warranted, as the 2.5% of “cold” chondrules it is based 

upon cannot be said to be cold without plausible skepticism.  It is possible that future work, 

albeit with a larger sample population of chondrules, may be able to resolve this issue.  

Regardless, it is clear that the majority of the chondrules in the cluster chondrites accreted 

hot. 

5.5 Implications for Chondrule Formation Models 

 This establishes possible new constraints for chondrule formation models to meet.  

The first of these requires that accretion of chondrules into a clump or onto a planetesimal 

be possible soon after the chondrules have been heated, which is supported by the strong 

evidence for hot accretion observed in this study.  The second of these is heterogenous 

mixing; that a majority of hot chondrules must be able to mix with a small fraction of cold 

chondrules and then accrete together.  This second constraint is less well founded than 

rapid accretion, as the evidence for cold-accreted chondrules in cluster chondrites is 

significantly weaker than that for the hot-accreted chondrules.  This is because only 2 of 

80 of the observed chondrules were deformed while cold, and furthermore the interpreted 

cold deformation of them can be reasonably doubted. 

The constraint of rapid accretion is the more limiting constraint.  Density 

shockwaves are able to concentrate chondrules and thereby facilitate rapid accretion, 
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especially in a model where chondrules are already concentrated in a dense cloud or rubble 

pile of chondrules, such as that of Ruzicka (2012).  Bow shock models are well able to 

meet the rapid accretion constraint, as an object for the chondrules to accrete on is available 

in the model.  Impact models are also compliant with the new rapid accretion constraint.  

This is because in these models there are necessarily one or two colliding planetesimals 

nearby for chondrules to quickly accrete onto.  In the lightning models, there is little reason 

for heating and accretion to be associated on the requisite timescales, creating a difficulty 

for meeting the rapid accretion constraint.  Explaining how heating could be closely 

associated with accretion is difficult in the current sheet model, as there is no reason in the 

models for chondrules be become concentrated into a clump and no close proximity to a 

planetesimal is required by the model.  The X-wind is incompatible with the rapid accretion 

constraint, as there is no reason for accretion to follow shortly after heating.  In the gamma 

ray burst model there is no reason for accretion or clumping to closely follow heating.   

The heterogenous mixing constraint is less restricting than the rapid accretion 

constraint.  Density shockwave models have difficulty meeting the constraint.  These 

shockwaves heat vast regions of space, so it is difficult to explain the inferred mixing of 

hot and cold chondrules.  Bow shocks process a smaller region of space, and so conceivably 

allow for freshly heated chondrules to mix with colder chondrules in orbit of or in the wake 

of the protoplanet or planetesimal.  However, bow shock models are better able to meet the 

mixing constraint if the shockwave generating object is a protoplanet instead of a 

planetesimal, as the bow shocks of the latter are so small that chondrules will not be 

entrained into the gas flow, and thereby collide with the object.  In the impact models, it is 
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plausible that different debris clouds may cool at different rates and at variable rates 

throughout themselves, allowing for the mixing of cool and hot chondrules.  Within the 

lightning models, the close proximity of hot and cold chondrules is easy to justify, given 

the small volumes of space that are heated.  In the current sheet model, it is easy to explain 

the mixing of hot and cold chondrules with the thin volumes of the heated regions.  The X-

wind model’s extensive region of heating and the trajectory of chondrules out of the 

protoplanetary disk are incompatible with the mixing of hot and cold components.  The 

gamma ray burst model heats the whole of the solar nebula, but as it is conceivable that 

solids could be shielded by planetesimals or other large objects, a mixing of hot and cold 

chondrules after heating is not implausible.  However, such cold chondrules would have 

be created by prior heating events, which is difficult to justify with the model, and this is 

ignoring the issues of how hot and cold chondrules would be mixed quickly and efficiently.   

  In summary, only protoplanetary shockwave models and impact models are 

compatible with both of the new constraints.  In the case that the constraint of heterogenous 

mixing can be dismissed, density shockwaves can be viable.  Other models cannot be made 

compatible with rapid accretion, and so are not viable, regardless of whether heterogenous 

mixing is a valid constraint or not. 
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Table 12.  Summary of Implications on Formation Models for New Constraints.  

“X” indicates the model is compatible with the constraint with no or little 

modification.  Incompatibility is indicated by leaving the space blank. 

Model Rapid Accretion Heterogenous Mixing 

Density Shockwaves X  

Protoplanetary Bow Shockwaves X X 

Large Impacts X X 

Lightning  X 

Current Sheets  X 

X-Wind   

Gamma Ray Burst   
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6. Conclusions 

 In an analysis of four unshocked type 3 ordinary chondrites with cluster chondrite 

lithologies, evidence for temperature at accretion was found from the temperature-

dependent activation of olivine dislocation slip systems that accommodate the deformation 

in these rocks.  Strong evidence for primarily hot accretion of chondrules is observed from 

inferred slip system activation in their olivine grains.  While primarily hot, a mixture of 

temperature signals is found, indicating a possibly heterogenous mixture of cold and hot 

chondrules accreting together to form the studied cluster chondrites.  However, 97.5% of 

analyzed chondrules were hot during accretion, and the small number of cold-accreted 

chondrules can be reasonably questioned.  Temperature of the chondrules is not well 

correlated with their degree of deformation, but their intracrystalline and whole-chondrule 

deformation are possibly linked.  The most plausible source of heating for the accreted hot 

chondrules is the unknown chondrule formation mechanism, as these objects could not 

have been heated by thermal metamorphism or shock metamorphism in these unshocked 

and unequilibrated chondrites.  This establishes two new possible constraints for chondrule 

formation mechanisms: 1) they must allow the mixing of hot and cold chondrules and 2) 

they must allow for chondrule accretion to be spatially and temporally proximal to 

chondrule formation.  The second of these is founded on the weak evidence for cold-

accreted chondrules, but the former is well supported by the data for hot chondrule 

deformation.  Bow shock and impact models for chondrule formation can most plausibly 

meet these new constraints, whereas density shockwaves can possibly meet the rapid 

accretion constraint.  Other models require modification to meet the constraints, 
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particularly the rapid accretion constraint, and potentially must be rejected if they cannot 

be so accommodated. 
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Appendix: Shock Data Figures of Non-EBSD Analyzed Samples 

Shock data figures for samples that were not selected for EBSD analysis are presented 

below and on the following pages. 

  
Figure 62.  Grain Shock Stage 

Histogram of Sample CML 0091-3.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018). 

Figure 63.  Grain Shock Stage 

Histogram of Sample CML 0545-2A.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018). 

 

  
Figure 64.  Grain Shock Stage 

Histogram of Sample CML 0677-2.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018). 

Figure 65.  Grain Shock Stage 

Histogram of Sample CML 0763-3.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018). 
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Figure 66.  Grain Shock Stage 

Histogram of Sample CML 0754-2.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018).  Sample is composed of 

different lithologies than 0754-3. 

Figure 67.  Grain Shock Stage 

Histogram of Sample CML 0754-3.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018).  Sample is composed of 

a different lithology than 0754-2. 

 

  
Figure 68.  Grain Shock Stage 

Histogram of Sample CML 0781A.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018). 

Figure 69.  Grain Shock Stage 

Histogram of Sample CML 0856-2A.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018). 
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Figure 70.  Grain Shock Stage 

Histogram of Sample CML 0953-3B.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018). 

Figure 71.  Grain Shock Stage 

Histogram of Sample CML 0978-1A.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018). 

 

  
Figure 72.  Grain Shock Stage 

Histogram of Sample CML 0978-2A.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018). 

Figure 73.  Grain Shock Stage 

Histogram of Sample CML 0983-A.  

Shock stage is as defined by Stöffler et al. 

(1991, 2018). 
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Figure 74.  Grain Shock Stage 

Histogram of Sample CML 0983-B.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018). 

Figure 75.  Grain Shock Stage 

Histogram of Sample CML 0984-A.  

Shock stage is as defined by Stöffler et 

al. (1991, 2018). 

 

 

 

Figure 76.  Grain Shock Stage 

Histogram of Sample CML 0985-A.  

Shock stage is as defined by Stöffler et al. 

(1991, 2018). 
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0091-3 NWA 11991 

 

 

KEY 

 

Figure 77.  Shock Map of Sample CML 0091-3.  Left image is a sectored shock map, 

and the right is an image of the sample in the same orientation.  Numbers in the 

shock map sectors are the number of measured grains in those cells.  Sector color 

is based on the weighted shock stage of a sector on the scale defined by the key. 

 

0545-2A Moorabie 

  
KEY 

 

Figure 78.  Shock Map of Sample CML 0545-2A.  Left image is a sectored shock 

map, and the right is an image of the sample in the same orientation.  Numbers in 

the shock map sectors are the number of measured grains in those cells.  Sector 

color is based on the weighted shock stage of a sector on the scale defined by the 

key. 
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0677-2 NWA 11992 

 
 KEY 

 

Figure 79.  Shock Map of Sample CML 0677-2.  Left image is a sectored shock map, 

and the right is an image of the sample in the same orientation.  Numbers in the 

shock map sectors are the number of measured grains in those cells.  Sector color 

is based on the weighted shock stage of a sector on the scale defined by the key. 

 

0736-3 Lut 006 

 

 

KEY 

 

Figure 80.  Shock Map of Sample CML 0736-3.  Left image is a sectored shock map, 

and the right is an image of the sample in the same orientation.  Numbers in the 

shock map sectors are the number of measured grains in those cells.  Sector color 

is based on the weighted shock stage of a sector on the scale defined by the key. 
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0754-2 NWA 11351 

  
KEY 

 

Figure 81.  Shock Map of Sample CML 0754-2.  Left image is a sectored shock map, 

and the right is an image of the sample in the same orientation.  Numbers in the 

shock map sectors are the number of measured grains in those cells.  Sector color 

is based on the weighted shock stage of a sector on the scale defined by the key.  Red 

line denotes boundary of cluster chondrite clast, which occupies the left part of the 

thin-section image. 

 

0754-3 NWA 11351 

 

 

KEY 

 

Figure 82.  Shock Map of Sample CML 0754-3.  Sample is composed of lithology C.  

Left image is a sectored shock map, and the right is an image of the sample in the 

same orientation.  Numbers in the shock map sectors are the number of measured 

grains in those cells.  Sector color is based on the weighted shock stage of a sector 

on the scale defined by the key. 
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0781A Tieschitz 

 

 KEY 

 

Figure 83.  Shock Map of Sample CML 0781A.  Left image is a sectored shock map, 

and the right is an image of the sample in the same orientation.  Numbers in the 

shock map sectors are the number of measured grains in those cells.  Sector color 

is based on the weighted shock stage of a sector on the scale defined by the key. 

 

0856-2A NWA 1955 

 
 

KEY 

 

Figure 84.  Shock Map of Sample CML 0856-2A.  Left image is a sectored shock 

map, and the right is an image of the sample in the same orientation.  Numbers in 

the shock map sectors are the number of measured grains in those cells.  Sector 

color is based on the weighted shock stage of a sector on the scale defined by the 

key.  Sectors with an X have no grains usable for shock stage assessment. 
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0953-3B NWA 5421 

 
 KEY 

 

Figure 85.  Shock Map of Sample CML 0953-3B.  Left image is a sectored shock 

map, and the right is an image of the sample in the same orientation.  Numbers in 

the shock map sectors are the number of measured grains in those cells.  Sector 

color is based on the weighted shock stage of a sector on the scale defined by the 

key. 

 

0978-1A NWA 11905 

 

 

KEY 

 

Figure 86.  Shock Map of Sample CML 0978-1A.  Left image is a sectored shock 

map, and the right is an image of the sample in the same orientation.  Numbers in 

the shock map sectors are the number of measured grains in those cells.  Sector 

color is based on the weighted shock stage of a sector on the scale defined by the 

key. 
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0978-2A NWA 11905 

 

 KEY 

 

Figure 87.  Shock Map of Sample CML 0978-2A.  Left image is a sectored shock 

map, and the right is an image of the sample in the same orientation.  Numbers in 

the shock map sectors are the number of measured grains in those cells.  Sector 

color is based on the weighted shock stage of a sector on the scale defined by the 

key. 

 

0983-A NWA 11291 

  
KEY 

 

Figure 88.  Shock Map of Sample CML 0983-A.  Left image is a sectored shock 

map, and the right is an image of the sample in the same orientation.  Numbers in 

the shock map sectors are the number of measured grains in those cells.  Sector 

color is based on the weighted shock stage of a sector on the scale defined by the 

key. 
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0983-B NWA 11291 

 
 

KEY 

 

Figure 89.  Shock Map of Sample CML 0983-B.  Left image is a sectored shock map, 

and the right is an image of the sample in the same orientation.  Numbers in the 

shock map sectors are the number of measured grains in those cells.  Sector color 

is based on the weighted shock stage of a sector on the scale defined by the key. 
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0984-A NWA 10220 

  
KEY 

 

Figure 90.  Shock Map of Sample CML 0984-A.  Left image is a sectored shock 

map, and the right is an image of the sample in the same orientation.  Numbers in 

the shock map sectors are the number of measured grains in those cells.  Sector 

color is based on the weighted shock stage of a sector on the scale defined by the 

key. 
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0985-A NWA 8575 

 

 

KEY 

 

Figure 91.  Shock Map of Sample CML 0985-A.  Left image is a sectored shock 

map, and the right is an image of the sample in the same orientation.  Numbers in 

the shock map sectors are the number of measured grains in those cells.  Sector 

color is based on the weighted shock stage of a sector on the scale defined by the 

key. 
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