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Abstract

Dependently-typed languages are well-known for the ability to enforce program invariants

through type signatures, and previous work establishes the effectiveness of this style

of program verification in the implementation of type-safe interpreters for a wide class

of languages with a variety of interesting scoping semantics, offering an account of

dynamic semantics. This thesis covers the complementary topic of static semantics, in

the form of a pattern for constructing verified typechecking procedures in a dependently-

typed setting. Implementations are given for simply-typed lambda calculus and a

small procedural language as well as a module system with unrestricted cyclic module

dependency semantics that are traditionally hard to formalize, parameterized over the

choice of base language. A library of finite graphs and decision procedures for path

search queries is presented and used in the construction of the example language

implementations to resolve variable references. The resulting development is suitable

as a static analysis phase (“middle end”) in a hypothetical end-to-end verified interpreter

developed in a dependently-typed setting.
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Chapter 1 Introduction

In the dependently-typed idiom of correct-by-construction programming, program spec-

ifications are encoded in data types with intrinsic invariants such that any well-typed

program is guaranteed to respect the invariants. The best examples of correct-by-

construction code elegantly combine the computational definition of a program with

its own proof of correctness, eliminating the need for extrinsic program validation and

incurring little or no syntactic proof overhead beyond the encoding of invariants in data

types. In particular, some object languages admit very natural implementations of

type-preserving-by-construction denotational semantics over intrinsically-typed abstract

syntax: the type of an AST term in the host language is indexed by a representation of

its object language type, ensuring that every valid AST represents a well-typed term in

the object language. Unfortunately, it quickly becomes challenging to tame complexity

and proof overhead in intrinsically-typed implementations of object languages featuring

advanced scoping and typing rules, and especially to maintain readability; at worst, the

dependently-typed encoding of the specification of a program can be too complicated

for a human being to reliably audit against a less formal and more readable specification

that it claims to encode.

Bach Poulsen et al. [3] give a formalization of the scope graph calculus [10] in Agda

and show that their framework enables relatively clean implementations of intrinsically-

typed syntax tree types and type-preserving interpreters for languages with sophisticated

scoping semantics, giving a formalization of Middleweight Java [4] as an example. This

thesis builds on their work with a similar focus on readability, covering the specification

and implementation of typechecking procedures in this setting.
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1.1 Background

A canonical example of the power and expressivity of dependently-typed languages is

the implementation of a type-safe evaluator for simply-typed lambda calculus (STLC),

given in Agda below.

data Type : Set where

x_y : Set Ñ Type

_ñ_ : Type Ñ Type Ñ Type

data Expr Γ : Type Ñ Set where

con : A Ñ Expr Γ x A y

var : t P ΓÑ Expr Γ t

o : Expr (t1 :: Γ) t2 Ñ Expr Γ (t1 ñ t2)

_‚_ : Expr Γ (t1 ñ t2) Ñ Expr Γ t1 Ñ Expr Γ t2

Val : Type Ñ Set

Val x A y = A

Val (t1 ñ t2) = Val t1 Ñ Val t2

eval : All Val ΓÑ Expr Γ t Ñ Val t

eval ρ (con a) = a

eval ρ (var i) = lookup i ρ

eval ρ (o e) = λ v Ñ eval (v :: ρ) e

eval ρ (e1 ‚ e2) = eval ρ e1 (eval ρ e2)

This definition can be read as a denotational semantics for STLC using Agda as

the metalanguage: Val gives semantics to object language types (Type) in terms of
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metalanguage types (Set), and eval gives semantics to object language expressions

(Expr) in terms of metalanguage values (Val). The proof of type preservation for eval

is by construction, in the sense that there is no explicit proof code and the property

holds definitionally in each case according to the semantics of Agda, aided by the

invariants encoded in the Expr type definition. For example, the o expression form is

defined to have an object-language type constructed with _ñ_, which Val interprets

as an Agda-level function type. These definitions constrain the right-hand side of the

corresponding case in eval to be an Agda function from a metalanguage value of the

input type to a metalanguage value of the output type, and the Agda typechecker will

report an error if the implementation is not type-correct in this way.

The STLC definition above also serves as a functioning interpreter for expressions

of the Expr type. Constructing these expressions by hand is somewhat tedious but

relatively straightforward, as demonstrated in the definition of idN below; the syntax

here refl in this context is denoting the 0th de Bruijn index. The Agda typechecker

catches any type or scoping errors in the definition of idN, for example ensuring that

0 is the only usable variable index in the body of a lambda with no free variables. The

eval function is used in the definition of idN1 to evaluate idN in an empty environment,

yielding an Agda-level identity function over natural numbers.

idN : Expr [] (x N y ñ x N y)

idN = o (var (here refl))

idN1 : NÑ N

idN1 = eval [] idN

The multifaceted nature of this style of denotational semantics offers distinct potential:

the traditional processes of defining a formal semantics, implementing it in software,

and verifying the implementation are unified into a single development process, avoiding

the possibility of translation errors during implementation and possibly cutting down

3



significantly on code size and development effort. The resulting Agda program is roughly

suitable as a “reference implementation” of the evaluation semantics of STLC with de

Bruijn indices, for testing example programs with and testing other implementations

against.

Of course, pure STLC with de Bruijn indices is not realistically representative of all

interesting object languages. STLC is effectively a heavily restricted sublanguage of

Agda and the construction of STLC interpreters in purely functional settings is well

understood; it is not immediately clear whether this style of defining semantics scales to

more complex languages that do not have these properties.

Bach Poulsen et al. [3] show that it is feasible to define intrinsically-typed syntax types

and interpreters in this style for languages such as Middleweight Java [4] with complex

scoping semantics much different from Agda’s, using a scope graph [10] framework

to formalize variable binding. Their AST types and interpreter code are claimed to

be readable as a formal semantics, but they leave for future work another desirable

aspect of simpler correct-by-construction interpreters: a convenient syntax for reading

and writing the object language terms that the interpreter operates over. Among other

overhead, constructing variable terms in their intrinsically-typed syntax requires the

manual construction of paths through a scope graph, and the scope graph itself for a

program must also be constructed by hand to match the binding structure of the program.

These manual processes are error-prone and often require some amount of debugging

to get right.

This thesis covers the process of generating a scope graph to match the binding struc-

ture of a given “raw” term AST with no intrinsic invariants along with the scopechecking

and typechecking of these terms. The target set of object languages is specifically the

class of languages where these can be defined as orthogonal phases, i.e. where scope
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graph construction does not depend on querying a partially constructed graph as it does

in van Antwerpen et al. [13]. To demonstrate the pattern of development and illustrate

that this class of languages includes nontrivial examples, implementations are given for

STLC and a toy procedural language that includes array and pointer types, along with

a small library for adding module system functionality to an arbitrary object language.

The procedural language with the module system is sufficiently expressive that standard

procedural pseudocode for an in-place quicksort algorithm can be directly translated to

it, as demonstrated in the final example, and the module system fully supports cyclic

module imports to demonstrate a natural feature of the scope graph theory that is often

challenging to formally model in other settings.

The ability to write raw terms and typecheck them within Agda provides a solution to

the issue of intrinsically-typed terms being challenging and tedious to construct by hand,

which is useful when writing example and test programs, and also serves as a method of

implementing a standard phase in a typical compiler or interpreter for a language. Taken

along with the interpretation techniques described in Bach Poulsen et al. [3], the only

remaining missing piece of an end-to-end interpreter is a frontend to parse source text

into raw terms, which can be defined in a total parser combinator library like Agdarsec

[1]. The potential benefits are clear, if readability is indeed maintained: the entire syntax

and semantics of an object language can be defined in a style simultaneously suitable

for both human and machine consumption, with the correct-by-construction approach

guiding development and eliminating most of the need for manual verification.

This thesis does not cover the construction of a complete end-to-end interpreter, but

contributes the missing part of the “middle end” in the form of a pattern for defining

correct-by-construction typechecking procedures for intrinsically-typed object languages.

While the focus is not on the interpretation of object language programs, the intrinsically-
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typed terms that the typechecker outputs are claimed to be immediately suitable for

interpretation in the style of Bach Poulsen et al. [3], which is justified in an Appendix

detailing the evaluation of programs in the example procedural language with modules.

1.2 Specifying typechecker correctness

1.2.1 Theory

What is the specification of the correct behavior of a typechecker? It should be both

sound and complete with respect to a defined typing semantics, in the sense that the

user should be able to trust the veracity of both “yes” and “no” answers to questions

about typechecking and type inference. It should also be able to report reliably on

ambiguity in variable resolution, in cases where the (partial) specificity ordering does

not determine a unique “best” resolution.

Typechecking and type inference procedures are often phrased as decision proce-

dures that decide whether a typing derivation exists for a given input term. When

working with intrinsically-typed syntax, these can be phrased as procedures to decide

whether there exists an intrinsically-typed term that erases to a given raw input term.

This does not account for the complete correctness specification of a typechecker for

some object languages, however; specifically, some languages include the possibility

of well-formed but semantically ambiguous terms in cases where there may be more

than one semantically distinct typing derivation for a raw term according to the rules of

the language. This arises in particular in the presence of scoping mechanisms that may

introduce ambiguity into the process of variable resolution with the expectation that a

language implementation will reject any program with ambiguous variable references.

For example, consider the pseudocode below in an imperative language with modules
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where the main module executes when the program is run.

module A:

var x: int = 0

module B:

var x: bool = true

module main:

import A

import B

print x+1

What are the semantics of this program? The answer is determined by the scoping

semantics of the language in question: the ambiguity might be considered an error,

or importing x from B may shadow the import of x from A so that the program has a

type error when attempting to add x to 1, or some form of type-directed resolution may

recognize that the reference from A is uniquely well-typed, or the reference to x may be

resolved by some other criteria entirely.

Defining the static semantics of the language in a scope graph framework yields a

convenient visualization of the scoping structure of a program, which can be used to

illustrate this variety of choices. The directed graph below represents one interpretation

of the binding structure for the program given above; each node is a scope and the

paths in the graph represent an accessibility relation between scopes. In this case, each

edge in the graph represents a module import statement importing the contents of the

destination scope into the source scope.

7



A

x:int

B

x:bool

main
import A
import B
print x+1

In a scope graph framework, the definition of an object language includes a speci-

ficity ordering and well-formedness predicate [10] over variable resolution paths that

respectively order and filter the set of valid resolutions for the variables in a program.

The process of variable resolution searches from the scope containing some variable

reference for all reachable scopes that bind the same variable name; a scope in the

scope graph is reachable from some origin scope when there exists a path to it that

is maximal according to the specificity ordering and that meets the well-formedness

predicate. When the reference to x in main is resolved, it resolves based on this set

of reachable scopes and potentially a mechanism defined in the object language for

dealing with ambiguity.

One notable feature of this style of scoping semantics is that module imports are

transitive under a trivially satisfiable well-formedness predicate, in the sense that when

some module A imports B and B imports C, the definitions in C are visible in A. This can

be restricted by strengthening the well-formedness predicate, for example by requiring

that all variable resolution paths contain at most one edge between two module scopes.

If the language is intended to consider ambiguity an error in all cases (i.e., the

semantics forbid variable shadowing), the graph as given above is sufficient and no

specificity ordering or well-formedness predicate is required; a path search finds that
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there are two valid paths that resolve the variable x and there is no means to distinguish

between them. If the intent is for resolution to be type-directed, the typechecker can

inspect this set of paths and see that only one is well-typed. If the intent is for the import

of B to shadow the import of A, an auxiliary scope can be added to represent the implicit

sub-scope of main encapsulating the next two lines after import A, as below, and the

specificity ordering defined to prefer shorter paths.

A

x:int

B

x:bool

main
import A

main1

import B
print x+1

A technique for building correct-by-construction code to generate scope graphs and

use them to typecheck terms should account for this variety, in that the mechanism of

encoding the specification of a typechecker’s correct behavior should be fine-grained

enough to express the distinctions between these resolution semantics and many others.

A typechecker expressed as a decision procedure for the existence of some typing

derivation is not sufficient, then, since a typechecker should be able to decide whether

a unique derivation exists, and this in general requires an inspection of the set of all

derivations for the given input term.
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1.2.2 Implementation

This section roughly traces the development process that led to the type signatures for

the correct-by-construction typecheckers constructed in the rest of this thesis. A first

attempt at type signatures for typechecking and type inference functions looked like

the following, where RawTerm is a standard AST type with no intrinsic invariants and

TypedTerm is an intrinsically-typed term:

check1 : (Γ : Ctx) (t : Type) Ñ RawTerm Ñ Maybe (TypedTerm Γ t)

infer1 : (Γ : Ctx) Ñ RawTerm Ñ Maybe (D λ t Ñ TypedTerm Γ t)

It is possible to define functions with these signatures that have the correct observable

behavior, but the type signatures guarantee neither completeness nor total soundness.

They guarantee a partial soundness property, in the sense that they may not output

ill-typed terms, but they may fail indiscriminately and may output intrinsically-typed terms

with no relation to the input raw terms, as evidenced by the following two well-typed

definitions of infer1.

infer1 _ = nothing

infer1 _ = just (bool , true)

One critical insight is that the intrinsically-typed output term should bear some pre-

dictable relation to the raw input term, namely that the output term should erase to the

input term (i.e., should yield the raw term when all intrinsic invariants are “forgotten”).

The following signature is fully sound, using the name Erasure to represent a predicate

type that witnesses that its first argument is the erasure of its second.
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check2 :

(Γ : Ctx) (t : Type) (e : RawTerm) Ñ

Maybe (D λ (et : TypedTerm Γ t) Ñ Erasure e et)

The check2 signature still does not guarantee full completeness, however, as a

definition that always returns nothing is still type-correct. A next attempt might involve

the Dec type, as in check3 below.

check3 :

(Γ : Ctx) (t : Type) (e : RawTerm) Ñ

Dec (D λ (et : TypedTerm Γ t) Ñ Erasure e et)

The check3 signature is complete and sound in the sense that an implementation is

guaranteed by construction to give a yes answer exactly when the input term is well-typed

and a no answer exactly when it is not, but the signature ignores ambiguity information

that may be relevant: in general, the specificity ordering of an object language’s definition

may be only a partial ordering, so any individual variable reference in a program may

have more than one “best” resolution. Object languages may be specified to handle

these cases in language-specific ways, so a fully correct typechecker should return the

complete collection of “best” resolutions.

The approach taken in this thesis is to have a typechecker output a value of the

Listable type from Firsov and Uustalu [8], which contains a list of elements of the type

along with a total function that assigns a distinct index in this list to each possible value

of the type, establishing that the elements of the type are finitely enumerable.
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check :

(Γ : Ctx) (t : Type) (e : RawTerm) Ñ

Listable (D λ (et : TypedTerm Γ t) Ñ Erasure e et)

This pattern illustrated by the signature of check above is the one used for typechecker

specifications throughout the rest of this thesis.

1.3 Contributions

This thesis makes the following contributions, which are all formalized in Agda.

• A pattern is presented for the implementation of intrinsically-verified typechecking

functions in a dependently-typed setting, using scope graphs for variable reso-

lution. The type signatures of these functions are designed such that the entire

correctness specification of the typechecker is encoded intrinsically and verified

by the Agda typechecker: typechecking is guaranteed to succeed over a uniquely

well-typed input term, and guaranteed to fail over ill-typed terms as well as terms

involving ambiguous variable references. Typechecking functions in this style are

presented for simply-typed lambda calculus (STLC) and a toy procedural language,

as concrete examples of the pattern.

• The design and implementation of a generic module system is presented, illustrat-

ing that the style of language definition covered in this thesis supports not only

the implementation of intrinsically-verified typecheckers for term languages but

also higher-order constructs that take the term languages themselves as input.

The module system can be instantiated over a choice of arbitrary base language,
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including the presentations of STLC and the toy procedural language given in this

paper. The system fully supports cyclic dependencies between modules, and the

details of scoping semantics, including variable shadowing rules, are left to the

base language definition.

• To resolve variable references in a language defined in a scope graph framework,

the design and implementation of an intrinsically-verified function for an all-paths

finite graph search in a dependently-typed setting is presented, guaranteed by the

Agda type system to return the complete set of acyclic paths that originate at a

given source node and meet a given predicate.

1.4 Organization

Part I describes a general framework used in Part II to build the example language

implementations.

Part I: Framework

Chapter 2 is a brief overview of the Agda language features and idioms used throughout

this thesis along with some relevant standard library types, assuming a basic prerequisite

knowledge of pure functional programming and the theory of dependent types. Readers

experienced with Agda and its standard library can probably skim it without missing

anything important. The techniques presented in this thesis are directly portable to

similar dependently-typed languages like Idris [5], and should apply in principle in Coq

[12] with potentially some differences in encoding.

Chapter 3 is a summary of the Listable type from Firsov and Uustalu [8] and some

relevant operations that they define on it. The type is comparable to a list type and
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has behavior similar to a container type in general, but the invariant it encodes is fairly

restrictive, and the standard higher-order list operations like mapping and filtering require

a little more care and proof effort to define over Listable values. In return, the guarantees

provided by Listable are very strong: in particular every listable type has decidable

cardinality, which is used to check whether the output of a typechecker for some given

input term is unique, and a universally- or existentially-quantified predicate is decidable

over a Listable type whenever the unquantified predicate is decidable over individual

elements of the type.

Chapter 4 presents a type of finite graphs and decision procedures for graph search

queries, which are used in the typecheckers in Part II to resolve variable references in

scope graphs. The path search implementation is correct by construction, expressed as

an all-paths breadth-first search returning a Listable type of all found paths.

Chapter 5 presents a minor generalization of the scope graph framework of Bach

Poulsen et al. [3]. Where their implementation uses the Agda standard library Fin type

of bounded natural numbers to represent scopes, the implementation in this thesis is

parameterized over an arbitrary Listable type. This offers a benefit to code clarity and

simplicity in some portions of the code at the cost of an additional requirement to prove

inductively-defined scope types finite, and this tradeoff is discussed and illustrated with

an example.

Part II: Scopechecking and Typechecking

Chapter 6 presents the abstract syntax and static semantics of a generic module system

parameterized over an arbitrary term language, along with an introduction to the high-

level pattern of term language definition used in the next two chapters. A module

consists of a list of term definitions each given a name and a type annotation, and a
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program consists of a list of named modules along with a distinguished “main” term that

runs when the program is executed. A module may import another module, bringing

the contents of the imported module into scope in the module containing the import.

All choices about the set of valid variable resolution paths are deferred to the term

language definition, offering some flexibility in the details of the semantics of module

imports in the resulting language with modules. A procedure is given to construct a

scope graph representing the binding structure of a program, depending on a term

language procedure to construct a scope graph to represent the binding structure of an

individual term.

Chapter 7 presents a scopechecker and typechecker for simply-typed lambda calculus

(STLC) in the scope graph framework, outputting the same kind of intrinsically-typed

terms that the STLC interpreter in Bach Poulsen et al. [3] accepts as input. The STLC

implementation is suitable as a term language for the module system from Chapter 6.

The resulting language of modules containing STLC terms makes conservative choices

of specificity ordering and well-formedness predicate, encoding the standard STLC

variable shadowing conventions but simply reporting an error for any other ambiguous

variable reference (as may be introduced by module import statements).

Chapter 8 presents a toy procedural language with arrays and pointers. This imple-

mentation is also suitable as a term language for the module system from Chapter 6.

The resulting language of modules containing procedures and module-scoped muta-

ble variables makes a liberal choice of scoping semantics, enabling a flexible form of

type-directed overloading and transitive module imports.

The Conclusion discusses some challenges encountered during development and

suggests potential future work. An Appendix details the interpretation of programs in the

language from Chapter 8, using the same style of intrinsically-typed interpreter definition
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presented in Bach Poulsen et al. [3].
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Framework
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Chapter 2 Agda

Agda [11] is a purely functional programming language with comprehensive support

for dependent types, allowing programs and proofs to be written in the same language.

Its syntax is mostly a superset of Haskell’s with some modifications, notably that the :

and :: operators are swapped to represent “has type” and “list cons” respectively and

that full Unicode support is available and used liberally in the Agda standard library

[6]. The code in this thesis has been tested and compiled to LATEX with Agda version

2.6.0.1 and standard library version 1.0.1, and the accompanying development can be

found at http://web.cecs.pdx.edu/~cas28/thesis. Some definitions are abridged

or omitted for brevity in the thesis, with only a type signature and description given.

The intent of this chapter is not to serve as a full-fledged Agda tutorial but to briefly

familiarize the reader with the syntax and conventions of Agda code in order to facilitate

reading the rest of the thesis. Some basic prerequisite knowledge of pure functional

programming and the theory of dependent types are assumed, but the reader is not

assumed to have used Agda previously. Most of the types and some of the functions

presented are used later in this thesis, and some are just for the sake of an introduction

to Agda as a language.

All of the top-level modules defined in the code accompanying this thesis are prefixed

with the qualifier Code; all other modules referenced in the thesis are from the Agda

standard library. The color and font conventions in use are the default for the Agda LATEX

backend:

keyword string number constructor data/record type

record field module function variable comment

Agda supports a variety of language extensions enabled by flags on the command
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line or in source code directives, some of which significantly change some of the logical

properties of the language. This thesis uses Agda with no flags except --type-in-type,

explained below, and --sized-types in Chapter 8, explained there. Statements in this

thesis about “base Agda” should be interpreted as about the language implemented by

the Agda compiler with all flags set to their default values.

2.1 Universes

The type Set is Agda’s built-in universe of types. Set is technically an alias for Set0, the

first in an infinite hierarchy of types Set0 : Set1 : Set2 : . . . , to prevent inconsistencies

that arise from self-reference paradoxes if Set : Set. This becomes relevant in practice

when defining constructors that take types as arguments, as in some of the record types

used throughout this thesis: a record type A : Setn may not have any fields of type Setm

for any m ě n, so a record of type Set0 may not have any fields that are types at all.

Agda supports a universe polymorphism feature for programming generically over these

universe levels, so for example an identity function over all types may have the type

(α : Level) Ñ (A : Setα) Ñ A Ñ A. Library code in Agda is usually written in this style in

order to assume as little as possible about the types being used in client code.

Agda also supports a command line option --type-in-type, adding the axiom Set

: Set so that universe levels can be ignored altogether. As mentioned, this makes

the language inconsistent; in programming terms, this means the type system can be

circumvented and well-typed programs can “go wrong”. While this option is generally

unsuitable for the final verified implementation of a program or proof, it offers an attrac-

tive tradeoff during development and presentation: the inconsistencies introduced by

--type-in-type are unlikely to be accidentally exploited by a programmer acting in

good faith, and the details of explicit universe polymorphism are almost always irrelevant
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to a reader’s understanding of a program. Accordingly, the code presented in this

thesis has the --type-in-type option enabled, and the accompanying development

includes a nearly identical version in the Code/WithoutTypeInType directory using

explicit universe polymorphism that typechecks with it disabled.

2.2 Inductive data types

Inductive data types in Agda are defined in the style of generalized algebraic data types

(GADTs) by giving a name and type for a data type itself and then a name and type for

each of its constructors. For example, the standard library Bool type (from the standard

library module Data.Bool) is defined with two nullary constructors true and false, and

the natural number type N (from Data.Nat) has one nullary constructor zero and one

unary constructor suc with an argument of type N.

data Bool : Set where

true false : Bool

data N : Set where

zero : N

suc : NÑ N

2.3 Functions

The syntax for functions in Agda is almost identical to Haskell’s, allowing pattern-

matching against constructors on the left-hand side.

not : Bool Ñ Bool

not true = false

not false = true

Anonymous functions are written with the λ symbol, which associates as far right as
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possible - the right-hand side of quadruple parses the same as twice (λ x Ñ double x).

twice : (NÑ N) Ñ NÑ N

twice = λ f x Ñ f (f x)

quadruple : NÑ N

quadruple = twice λ x Ñ double x

All functions in Agda are required to pass a conservative syntactic totality checker,

restricting recursion to “obviously” structural recursion; the definition of double below is

total because its recursive call in the suc case receives an argument n which is a strict

syntactic subpattern of the corresponding input argument pattern suc n.

double : NÑ N

double zero = zero

double (suc n) = suc (suc (double n))

Anonymous functions may also case over their arguments with pattern-matching

lambdas (similar to the LambdaCase Haskell extension), denoted with the syntax λ

where and delimited by indentation.

pred : NÑ N

pred =

λ where

zero Ñ zero

(suc n) Ñ n

21



2.4 Implicit arguments

An argument can be surrounded in curly braces to denote it as an implicit argument,

as in the definition of the identity function id below. By default implicit arguments are

resolved automatically by unification and do not appear in the source code, as in id-ex1;

an implicit argument can be given explicitly at a call site by enclosing it in curly braces,

either as a positional argument as in id-ex2 or by name as in id-ex3. A typechecking error

is thrown if an implicit argument is not given explicitly and cannot be resolved uniquely

by unification.

id : {A : Set} Ñ A Ñ A

id x = x

id-ex1 id-ex2 id-ex3 : Bool

id-ex1 = id true

id-ex2 = id {Bool} true

id-ex3 = id {A = Bool} true

Similarly, implicit arguments in definitions can be accessed positionally or by name,

as in typeof1 and typeof2. The underscore pattern has the same meaning as in Haskell,

leaving the argument unnamed.

typeof1 : {A : Set} Ñ A Ñ Set

typeof1 {X} _ = X

typeof2 : {A : Set} Ñ A Ñ Set

typeof2 {A = X} _ = X

The special underscore term explicitly directs Agda to attempt to produce a unique

term by the same unification procedure that resolves implicit arguments.
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id1 : (A : Set) Ñ A Ñ A

id1 A x = x

id1-ex : Bool

id1-ex = id1 _ true

2.5 Mixfix operators

Agda offers flexible support for mixfix operator definitions: in general, Agda names may

contain any number of non-consecutive underscores, which are treated as argument

positions, and nearly any character is allowed to be part of a name. For example, the

standard library defines the addition function over natural numbers as an infix binary

operator.

_+_ : NÑ NÑ N

zero + n = n

suc m + n = suc (m + n)

The mixfix style can also be used to define operators with other arities, such as

the traditional ternary if/then/else notation. The underscore at the end of the iden-

tifier if_then_else_ indicates that the application of this mixfix function to its right-

most argument is right-associative rather than left-associative, so that, for example,

if a then b else c d parses as if a then b else (c d) assuming c is not a mixfix operator.

Operators can be given integer precedence (with higher precedence binding tighter) and

left/right/no associativity with the infixl/infixr/infix operators respectively, as in Haskell.

infix 0 if_then_else_

if_then_else_ : {A : Set} Ñ Bool Ñ A Ñ A Ñ A
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if true then x else y = x

if false then x else y = y

Although Agda has no built-in syntax for casing directly over expressions on the

right-hand side of a definition, the standard library Function module provides a mixfix

operator with the identifier case_of_ that serves this purpose when combined with a

pattern-matching lambda; the type of the pattern-matching lambda in the definition of

plus below is NÑ N, and it implements the same pattern-matching behavior as in _+_.

case_of_ : {A B : Set} Ñ A Ñ (A Ñ B) Ñ B

case x of f = f x

plus : NÑ NÑ N

plus m n =

case m of λ where

zero Ñ n

(suc m1) Ñ suc (plus m1 n)

Mixfix operators also support operator sections similar to the feature under the same

name in Haskell, but with slightly different syntax: a mixfix operator can be applied with

any number of its arguments left out, denoted by an underscore as in the definition of the

operator (i.e., not surrounded by spaces). For example, the expression if_then 1 else 0

has type Bool Ñ N and returns 1 for true and 0 for false, and the expression _+ 1 has

type NÑ N and adds its argument to 1.

2.6 Indexed types

An inductive type may have indices of any combination of types; in general, the data

keyword defines an indexed family of types (as with GADTs). Indices that do not vary
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across the return types of the constructors of a data type can be declared as parameters,

given a name once in the signature of the type and referenced in each constructor, as

in the List and _Z_ definitions below (from Data.List and Data.Sum). If a parameter is

declared without an explicit type, the type is inferred by unification.

infixr 5 _::_

data List (A : Set) : Set where

[] : List A

_::_ : A Ñ List A Ñ List A

data _Z_ (A B : Set) : Set where

inj1 : A Ñ A Z B

inj2 : B Ñ A Z B

Indices that vary across different constructors are expressed as part of the type

signature of a data declaration, as with the List A index of the All type (from

Data.List.Relation.Unary.All) defined below. A unary predicate over values of type

A is encoded as a dependent type A Ñ Set, so the All type can be seen as a type of

proofs that some predicate P holds for every element of a list, in the form of a list of

proofs with parallel structure to the list of elements.

data All {A} (P : A Ñ Set) : List A Ñ Set where

[] : All P []

_::_ : @ {a as} Ñ P a Ñ All P as Ñ All P (a :: as)

The type Fin n, sometimes used as a type of intrinsically-bounded list indices, has a

similar structure to N, and can be seen as the type of natural numbers strictly less than

n.

data Fin : NÑ Set where

zero : @ {n} Ñ Fin (suc n)

suc : @ {n} Ñ Fin n Ñ Fin (suc n)
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Although this thesis generally uses a different type for list indices, the Fin type is

still useful in some circumstances. The name Fin alludes to an interpretation of the

set of values of this type as “the” finite set of size n, since all finite sets of the same

size are isomorphic, though not all are equally suited for any particular use case in

dependently-typed programming. For a mostly trivial example, Bool could be defined as

Fin 2, but the data definition of Bool in Section 2.2 is much more immediately clear to a

reader and a little more convenient in pattern-matching.

2.7 Propositional equality

Two terms of the same type are considered definitionally equal in a context if

they are equal up to αβη-equality in that context. The _”_ type (from Rela-

tion.Binary.PropositionalEquality) encodes propositional equality, a weaker notion: two

types can be shown to be propositionally equal when they are definitionally equal under

any consistent instantiation of their free variables.

infix 2 _”_

data _”_ {A : Set} (a : A) : A Ñ Set where

refl : a ” a

In base Agda, there is always at most one element of the type a ” b for any a and

b, namely refl. A proof term of type a ” b can be given by refl exactly when a and b

are definitionally equal in the context of the proof case being defined. The semantics

of pattern-matching on a term of type a ” b can be subtle, and depend on an attempt

to unify a with b; pattern-matching on refl is used in some of the same situations as

mechanisms in Agda and other languages to “rewrite” with equality proofs, but is a

distinctly different operation with some different usage patterns.

26



At a high level, the unification engine “knows” little other than the definitional equality

rules and that datatype constructors are injective, and its behavior can sometimes

be surprising. The higher-order unification algorithm that Agda depends on is only

semi-decidable, so there are three possible scenarios when pattern-matching on a value

of type a ” b: there is a consistent unifying substitution that makes a and b definitionally

equal (“yes”), they are definitionally inequal (“no”), or the unification engine cannot

decide (“maybe”).

• In the “yes” case (a and b can be successfully unified), the pattern refl is valid and

causes the unification engine to apply the unifying substitution in the context of the

case containing the pattern. The expressions a and b are then seen by Agda as

definitionally equal. For example, in the definition of cong below, pattern-matching

on the second argument unifies x with y, making f x definitionally equal to f y. (The

syntax @ {A B} Ñ . . . is syntactic sugar for {A : _} Ñ {B : _} Ñ . . . , leaving the

types of the declared arguments implicit.)

cong : @ {A B} (f : A Ñ B) {x y} Ñ x ” y Ñ f x ” f y

cong f refl = refl

The cong function is included in the same standard library module as the _”_

type, along with several other derived combinators for reasoning with propositional

equality. Its implementation works specifically because the x and y arguments to

cong can be unified; the more explicit equivalent implementation below illustrates

this with a dotted pattern, which asserts that the value of the third argument is

constrained by unification to be identical to the value of the second argument.

cong1 : @ {A B} (f : A Ñ B) x y Ñ x ” y Ñ f x ” f y

cong1 f x .x refl = refl
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Since datatype constructors are definitionally injective in unification, pattern-

matching successfully against refl can also be used to give a witness of this

property phrased in terms of propositional equality. This generally has to be

defined for each constructor manually, as in suc-injective below (defined in

Data.Nat.Properties).

suc-injective : @ {x y} Ñ suc x ” suc y Ñ x ” y

suc-injective refl = refl

• In the “no” case (a and b are definitionally inequal terms), the pattern match

is shown to be unsatisfiable and the special empty pattern () (with a different

meaning than the same syntax in Haskell) is used to signify that there are no

possible values of the type. The empty pattern indicates that the case being

defined is impossible in a closed context and therefore doesn’t need a right-hand

side, since it will never occur at runtime. For example, this can be used to show

that 0 ” 1 implies anything, since different constructors (in this case zero and suc)

are definitionally disjoint.

0ı1 : {A : Set} Ñ zero ” suc zero Ñ A

0ı1 ()

• In the “maybe” case (a and b cannot be unified but also are not definitionally

inequal), the Agda typechecker throws an error. For example, when giving a

definition for plus-lem, attempting to pattern match immediately on the first explicit

argument gives an error saying the two sides cannot be unified: the + operator is

not a constructor and therefore not definitionally injective, so attempting to unify
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x + y with y + x does not produce any constraints that could be used to uniquely

resolve expressions for the x and y arguments.

plus-lem : @

{x y z} Ñ

x + y ” y + x Ñ

(x + y) + z ” (y + x) + z

These cases require either pattern-matching on the terms that appear within the

equality type or applying higher-level combinators to operate over the propositional

equality proofs less directly. plus-lem can be defined as cong (_+ z).

In general, definitional equality is almost always more convenient in Agda than propo-

sitional equality, since it requires no manual proof effort to make use of. This often leads

to a style of proof where propositional equality is used sparingly, preferring inductive

data types that encode invariants more directly when feasible and matching against refl

whenever possible to avoid explicitly reasoning with propositional equality proofs.

2.8 Record types

Record types in Agda may have parameters, but no other indices. A record type has an

optional constructor name and zero or more named fields, whose types may depend on

the values of fields above them. The derived constructor has arity equal to the number

of fields and takes arguments left to right corresponding to the fields top to bottom; field

names can be enclosed in curly braces to make them implicit in the constructor type.

A record type definition may also optionally contain arbitrary definitions after the field

declarations, which may reference the fields by name and are brought into scope when

the record’s module is opened (discussed in the section on modules below).
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An important record type from the standard library is the dependent pair or “sigma”

type (from Data.Product), which is used to encode existentially quantified propositions. D

and D2 are type synonyms for Σ with the type inferred for respectively the first component

and the first two components, and _ˆ_ is the type of ordinary non-dependent pairs

where the second component’s type does not depend on the first’s value. (The definitions

of D2 and _ˆ_ depend on the right-associativity of the λ operator: the definitions are

read as though a left parenthesis was present immediately to the left of each lambda

with corresponding right parentheses at the end of the line.)

record Σ A (B : A Ñ Set) : Set where

constructor _,_

field

proj1 : A

proj2 : B proj1

D : @ {A} Ñ (A Ñ Set) Ñ Set

D = Σ _

D2 : @ {A} {B : A Ñ Set} Ñ (@ a Ñ B a Ñ Set) Ñ Set

D2 C = D λ a Ñ D λ b Ñ C a b

_ˆ_ : Set Ñ Set Ñ Set

A ˆ B = Σ A λ _ Ñ B

Record types enjoy an η-expansion rule similar to functions, so that, for example,

(proj1 x , proj2 x) is definitionally equal to x for any x of a pair type.

Often, the first component of a term of a dependent pair type can be uniquely inferred

by unification if the second component is known; this can be expressed as _ , x or
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with the standard library operator -,_ as -, x with some suitable second component

x. Since the comma character is not lexically distinguished from any other identifier

characters, pair expressions in Agda generally require spaces both before and after

a comma so that the comma isn’t read as part of an identifier in the first or second

component expression. The _,1_ operator constructs specifically non-dependent pairs;

while the _,_ constructor already serves this purpose, indicating that an expression is a

non-dependent pair can sometimes be an aid to type inference.

Another syntax for giving terms of record types is with the record keyword, giving

each field a definition in an arbitrary order.

ex : N ˆ N

ex = record { proj2 = 1 ; proj1 = 0 }

The unit type is defined in Data.Unit as a trivial record type, with no fields and exactly

one distinct member of the type called tt.

record J : Set where

constructor tt

There is an advantage in Agda to defining J as a trivial record instead of a trivial

inductive data type: η-expansion makes every expression of type J definitionally equal

to tt, whereas all expressions of a unit type declared inductively can be shown to be

propositionally equal by pattern-matching but not all are definitionally equal.

2.9 Negation

From Relation.Nullary.Negation, the negation of a type A is the type of functions mapping

every element of A to an element of the empty type K (from Data.Empty), which has no

elements.
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data K : Set where

infix 3  _

 _ : Set Ñ Set

 A = A Ñ K

The negation of the propositional equality type is defined in Rela-

tion.Binary.PropositionalEquality.

_ı_ : @ {A} Ñ A Ñ A Ñ Set

a ı b =  (a ” b)

Proofs of negated types are usually created by pattern-matching against unsatisfiable

patterns with the empty pattern; for example, a slightly different encoding of the proof of

0 . 1 from before can be written as a negated type.

absurd1 : zero ı suc zero

absurd1 ()

Similarly, the eliminator for the empty type (ex falso quodlibet or the principle of

explosion) is defined in Data.Empty as a function mapping values of the empty type to

values of any other type, using the empty pattern to assert that the pattern match on the

input argument is unsatisfiable. The empty pattern can be used for any definitionally

empty type, not just propositional equalities. An indexed type is definitionally empty at

some particular indices when the return types of all of its constructors fail to unify with

the type at those indices, which is trivially true of a type with no constructors (and in this

case incidentally no indices).

K-elim : {A : Set} Ñ KÑ A

K-elim ()
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The contradiction combinator combines K-elim and the principle of explosion to

produce a value of any arbitrary type when both a type and its negation are inhabited

in the same context. (The name  a is just an identifier with no special semantic

significance - the  character is a normal identifier character.)

contradiction : @ {A B} Ñ A Ñ  A Ñ B

contradiction a  a = K-elim ( a a)

2.10 List membership

The inductive type of membership proofs for some element in a list is particularly relevant

to this thesis, serving as a type of list indices guaranteed to be within the bounds of a

specified list. The here constructor says that the head of a nonempty list is a member of

the list, and there says that any member of the tail of a nonempty list is a member of the

whole list.

infix 4 _P_

data _P_ {A} (a : A) : List A Ñ Set where

here : @ {b as} Ñ a ” b Ñ a P b :: as

there : @ {b as} Ñ a P as Ñ a P b :: as

The standard library actually defines _P_ in Data.List.Membership.Setoid as a spe-

cialization of the Any type (from Data.List.Relation.Unary.Any); the _P_ type is also

parameterized over an arbitrary equivalence relation, but this thesis only uses the variant

specialized to propositional equality in Data.List.Membership.Propositional, which has

the same name and constructors as the definition shown above. In this thesis here is

always used with the argument refl, making it effectively a nullary constructor relying on

definitional equality.
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With this usage, the type a P as can be seen as a type of unary indices in the list

as that contain the element a, and the type D (_P as) as the type of all unary indices

in as. The indexed function, provided in Code.Util in the development accompanying

this thesis, produces an output list with each element of the input list paired with its

own index, similar to the Haskell function λ as Ñ zip as r0 .. length ass. (The List. and

Σ. prefixes refer to the Data.List and Data.Product modules respectively, and map2 is

the function to map a function over the second component of a pair.)

indexed : @ {A} (as : List A) Ñ List (D (_P as))

indexed [] = []

indexed (a :: as) = (-, here refl) :: List.map (Σ.map2 there) (indexed as)

2.11 Decision procedures

Agda implements a constructive logic by default, without the law of the excluded middle

as a fully general axiom or theorem; in the setting of type theory, this means that there is

no general decision procedure for inhabitance of types. A type is defined to be decidable

when it is known to be either inhabited or uninhabited, as witnessed by either an element

of the type or a proof that there are no elements. This is represented by the Dec type

from Relation.Nullary, which also includes the True data type and conversion functions

defined below.

data Dec A : Set where

yes : A Ñ Dec A

no :  A Ñ Dec A

A decidable proposition can be “squashed” into one with exactly zero or one members

with the True type. For some A : Set and A? : Dec A, an element of type True A?
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witnesses that A is inhabited and therefore that all elements of the type Dec A must be

constructed with yes.

True : @ {A} Ñ Dec A Ñ Set

True (yes _) = J

True (no _) = K

A and True A? are logically equivalent in the sense of bidirectional implication, but

they are not isomorphic in Agda’s proof-relevant logic; some element toWitness t :

A can be extracted from a value t : True A?, but for any nontrivial A there are ele-

ments of Dec A that are not propositionally equal to yes (toWitness t), and therefore

toWitness ˝ fromWitness is not an identity function in general.1

fromWitness : @ {A} {A? : Dec A} Ñ A Ñ True A?

fromWitness {A? = yes _} a = tt

fromWitness {A? = no  a} a = contradiction a  a

toWitness : @ {A} {A? : Dec A} Ñ True A? Ñ A

toWitness {A? = yes a} _ = a

toWitness {A? = no _} ()

Importantly, propositional equality is decidable over many types. The definition for

natEq? below illustrates a common pattern in decidable equality proofs: a case for

each possible pair of constructors is written out, and the cases with inequal pairs are

given the result no λ (), asserting that the goal equality type in each case is definitionally

uninhabited. The cases with matching constructor patterns match against the result

of a recursive call over each parallel pair of their arguments; in the case that all of

1True A? is properly isomorphic to the type D λ (a : A) Ñ A? ” yes a.
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them are equal, the two input arguments are equal, and in the case that any parallel

pair of constructor arguments is not equal, the input arguments are not equal. The

pattern argument  ” has type  (m ” n) as the negative result of the recursive equality

test, and the term λ where refl Ñ  ” refl here has type  (suc m ” suc n), exploiting

the definitional injectivity of constructors to reduce the suc m ” suc n argument to a

definitional equality between m and n so that refl is a valid argument to  ”.

natEq? : (m n : N) Ñ Dec (m ” n)

natEq? zero zero = yes refl

natEq? (suc m) (suc n) =

case natEq? m n of λ where

(yes refl) Ñ yes refl

(no  ”) Ñ no λ where refl Ñ  ” refl

natEq? zero (suc n) = no λ ()

natEq? (suc m) zero = no λ ()

Unfortunately, this quadratic explosion of cases is sometimes unavoidable. Boolean

equality tests over sum types traditionally rely on catch-all cases returning false to

combine all cases with disjoint constructors into one case, but the term no λ () is only

well-typed as a right-hand side for a case in a decidable equality proof when the case’s

argument patterns are definitionally disjoint, which isn’t true in a catch-all clause in

Agda even if previous cases in the definition already handle all non-disjoint pairs of

constructors. (Agda provides a semantic guarantee of top-to-bottom evaluation of cases,

but there’s no straightforward way to obtain an internal proof of that property within a

particular definition.)
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2.12 Modules

Modules in Agda programs can be parameterized over an arbitrary sequence of typed

identifiers, and then brought into scope with the open keyword with any (or none) of the

module parameters instantiated. Any parameters left uninstantiated when a module is

opened become arguments to all of the terms that the open brought into scope. For

example, the AddMod module is parameterized over a natural number; when it’s opened

with the parameters uninstantiated in the Ex1 module, the function add takes two argu-

ments, and when it’s opened with the parameter instantiated with 1 in the Ex2 module,

add takes one argument. An open expression can be accompanied by the keyword

public to re-export all of the definitions being imported, and the using/hiding/renaming

keywords can be used to avoid name clashes and avoid littering a local scope.

module AddMod (n : N) where

add : NÑ N

add = n +_

module Ex1 where

open AddMod

-- add : N Ñ N Ñ N

-- add n = n +_

module Ex2 where

open AddMod 1

-- add : N Ñ N

-- add = 1 +_

Definitions in modules are also always accessible unparameterized by their fully

qualified names as long as the module itself is in scope, so the expression AddMod.add
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always takes two arguments. Like data type indices and function arguments, module

parameters can be explicit or implicit, with implicit parameters surrounded by curly

braces.

Modules can also be defined directly in terms of other modules, as in the examples

Ex3 and Ex4. This syntax can be combined with the open keyword for significant flexibility

in specializing modules, particularly with the form used in Ex4 where some parameters

of the module being referenced are instantiated with nontrivial terms constructed over

parameters to the module being defined.

open module Ex3 = AddMod 1 renaming (add to add1)

-- add1 : N Ñ N

-- add1 = 1 +_

open module Ex4 (n : N) = AddMod (suc n) renaming (add to addsuc)

-- addsuc : N Ñ N Ñ N

-- addsuc = λ n Ñ suc n +_

Data types and record types have associated modules that are created automatically;

the module associated with a data type has no parameters, contains only its constructors,

and is automatically opened with all its definitions exported publicly, while the module

associated with a record type is parameterized over the record type itself, contains the

record’s constructor and fields and other definitions, and only automatically exports the

constructor. The standard library exports proj1 and proj2 explicitly, but otherwise they

would only be accessible qualified or through an open Σ statement.

A special form of the module declaration syntax allows for the definition of an anony-

mous module, which gets opened into the public scope immediately. This can be used to

abstract a block of code over some parameters in order to avoid repeating the parameter
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types in each definition. The comment at the end of this anonymous example module

definition is its effective definition in the scope outside the anonymous module.

module _ (n : N) where

flip-add : NÑ N

flip-add m = m + n

-- flip-add : N Ñ N Ñ N

-- flip-add = λ n m Ñ m + n

The variable keyword provides a different form of abstraction over common parameters:

in the scope after a variable definition, whenever one of the defined names is referenced

in a type where the name is otherwise unbound, the type is automatically defined to take

an implicit argument with that name. For example, the dependent function composition

operator can be defined as follows, taking A, B, and C as implicit arguments.

variable

A : Set

B : A Ñ Set

C : @ a Ñ B a Ñ Set

_˝_ : (@ {a} (b : B a) Ñ C a b) Ñ (f : @ a Ñ B a) Ñ @ a Ñ C a (f a)

(g ˝ f) x = g (f x)

Unlike with anonymous modules, only the names from a variable definition that are

used in a particular type are included as implicit arguments in the type.

2.13 Instance arguments

In addition to explicit arguments given by the user and implicit arguments uniquely

inferred by unification, Agda supports a third kind of arguments called instance argu-
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ments [7], which the typechecker attempts to resolve uniquely through a constrained

proof search. The instance context contains all instance arguments in scope along

with all definitions in scope that have no explicit arguments and are declared within

an instance block, and when the typechecker encounters a term with an unresolved

instance argument, it searches through the instance context to try to construct a unique

term for the type. Since this is not guaranteed to terminate in general, the search has a

fixed cutoff depth that can be configured with a command-line option.

Instance arguments are declared and used with the same syntax as implicit arguments,

but with double curly braces instead of single braces.

auto1 : {A : Set} {{a : A}} Ñ A

auto1 {{a}} = a

auto2 : {A : Set} {{a : A}} Ñ A

auto2 {{a = x}} = x

Instance arguments are most useful in conjunction with a special form of the open

syntax that opens a module with all of its parameters resolved by instance search at

each use site of each of its definitions, allowing record types and the modules they

generate to serve some of the purposes of typeclasses in other languages. The types in

this section are defined in Util.lagda in the development accompanying this thesis.
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record Show (A : Set) : Set where

field

show : A Ñ String

print = putStrLn ˝ show

open Show {{. . . }}

In the scope after this open expression, show is in scope with the type

@ {A} {{_ : Show A}} Ñ A Ñ String. With the instance definition below in scope, for

example, this can be automatically specialized by instance search at a use site to

show : Bool Ñ String.

instance

show-bool : Show Bool

show {{show-bool}} = Data.Bool.Show.show

An anonymous definition in an instance block can be given by using a single un-

derscore _ as the name; this does not add any new names into scope, but adds the

instance into the local instance context anonymously. This can be useful for introducing

instances into scope in a where or let clause, in order to seed the local instance context

without affecting the global instance context. An instance defined in this way within a

module can’t be exported from the module, however, so library code defining instances

intended to be used by client code needs to give names to the instances, even though

the names themselves are often immaterial since they get resolved by instance search

instead of being written explicitly in the source code.

The DecEq type classifies types with decidable equality. A function to decide list
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membership over a list of elements of a type with decidable equality is exported into the

DecEq module scope by opening a standard library module specialized with the equality

decision operator, making the _P?_ operator also available through open DecEq {{. . . }}.

record DecEq A : Set where

constructor decEq

infix 4 _ ?
“_

field

_ ?
“_ : (a b : A) Ñ Dec (a ” b)

open module ListMembership =

Data.List.Membership.DecPropositional _ ?
“_ using (_P?_) public

open DecEq {{. . . }}

The Propositional type classifies propositional types in the sense of “mere propositions”

or (-1)-truncated types in homotopy type theory; the type isPropositional A is defined

in Relation.Binary.PropositionalEquality as @ (x y : A) Ñ x ” y, the type of proofs that

every element of A is propositionally equal, witnessing that A has exactly zero or one

distinct elements up to propositional equality. This type can be particularly useful when

working with finite types, as any propositional type whose inhabitance is decidable can

be shown to be finite. The Propositional type can also be useful as a stronger variant of

the DecEq type, for types where the result of an equality decision procedure is always

yes.

record Propositional (A : Set) : Set where

constructor propositional

infix 4 _ ‹
“_
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field

_ ‹
“_ : isPropositional A

open Propositional {{. . . }}

The empty and unit types are trivially propositional, and by virtue of these the

True type is propositional. This thesis uses Agda with the K axiom enabled (as by

default), so the equality type is also propositional. (The uip proof comes from Ax-

iom.UniquenessOfIdentityProofs.WithK).

instance

K-propositional : Propositional K

K-propositional = propositional λ ()

J-propositional : Propositional J

J-propositional = propositional λ _ _ Ñ refl

true-propositional : @ {A} {A? : Dec A} Ñ Propositional (True A?)

true-propositional {A? = yes _} = J-propositional

true-propositional {A? = no _} = K-propositional

”-propositional : @ {A} {a b : A} Ñ Propositional (a ” b)

”-propositional = propositional uip

The Singleton type is similar in character to the DecEq and Propositional, although it

isn’t used with the open {. . . } feature in this thesis. A type is defined to be a singleton if

it has exactly one element up to propositional equality; a problem has a unique solution

if the type of its valid solutions is a singleton type.

record Singleton (A : Set) : Set where

constructor singleton
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field

point : A

{{unique}} : Propositional A

Finally, Agda provides the built-in types Number, Negative, and IsString in the

Agda.Builtin.FromNat, Agda.Builtin.FromNeg, and Agda.Builtin.FromString modules,

allowing the constant literal syntax to be overloaded for positive integer literals, negative

integer literals, and strings, respectively.
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Chapter 3 Listable types

The code associated with this chapter is found in the Code.Listable module.

3.1 Representation

As the list membership type can be seen as a type of unary list indices, the membership

field in the definition of Listable below can be read computationally as an inverse lookup

function, mapping elements to their indices in the elements list. This function is total (as

all Agda functions are), which establishes that A is finite. The function Any.index from

the standard library converts a list membership proof to a bounded numeric index, so

Listable.index identifies each element of the type A with a unique index in elements.

record Listable A : Set where

constructor finite

field

elements : List A

membership : @ a Ñ a P elements

size : N

size = List.length elements

index : A Ñ Fin size

index = Any.index ˝ membership
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3.2 Properties

The definitions in this section are defined within the Listable record definition, so they

have access to the elements and membership fields directly.1 The Listable module

defined by the record type is usually opened with open Listable, without giving a specific

record value as a parameter, so that these definitions all take a Listable argument and

the references to elements and membership are bound to the corresponding fields to

that argument.

3.2.1 Decidability

The Listable type can be seen as a generalization of the Dec type, in the sense that a

value of type Dec A witnesses whether there are zero or nonzero elements of A and a

value of type Listable A witnesses how many elements of A there are. By this reasoning,

a value of type Dec A is derivable from a value of type Listable A by checking whether

the elements list is empty or nonempty.

dec : Dec A

dec with elements | membership

. . . | [] | p = no λ a Ñ case p a of λ ()

. . . | a :: _ | _ = yes a

The syntax with elements | membership is a more general form of pattern matching

than case_of_, used in this definition to match against elements and membership at

the same time so that in the [] case the p argument has type @ x Ñ x P [] rather than

@ x Ñ x P elements. Typechecking definitions using the with keyword can require the
1Due to a peculiarity in the way the Agda compiler outputs LATEX code, these definitions are not printed

in this thesis with leading indentation, but in the actual Agda code they are all indented to the same
level as the size and index definitions.
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typechecker to do more work than typechecking functionally equivalent definitions using

case_of_ and pattern-matching lambdas, and the with syntax can only be used on the

left-hand side of a definition, so case_of_ is usually preferred when it suffices.

3.2.2 Decidable equality

Equality is decidable over the type D (_P as) for any as, following from the view of the _P_

type as a type of unary indices - the implementation is similar to the equality decision

procedure over the N type.

DP- ?
“ : @ {A} {as : List A} (i j : D (_P as)) Ñ Dec (i ” j)

DP- ?
“ (_ , here refl) (_ , here refl) = yes refl

DP- ?
“ (_ , there i) (_ , there j) =

case DP- ?
“ (-, i) (-, j) of λ where

(no  ”) Ñ no λ where refl Ñ  ” refl

(yes refl) Ñ yes refl

DP- ?
“ (_ , here refl) (_ , there j) = no λ ()

DP- ?
“ (_ , there i) (_ , here refl) = no λ ()

A consequence of this is a decision procedure for equality over any listable type,

following from the view of membership as an inverse lookup function.

instance

finite-decEq : DecEq A

finite-decEq =

record

{ _ ?
“_ =

λ a b Ñ
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case DP- ?
“ (-, membership a) (-, membership b) of λ where

(yes refl) Ñ yes refl

(no  ”) Ñ no λ where refl Ñ  ” refl

}

3.2.3 Recursion over listable types

A general pattern of recursion over listable types is to maintain a list of “seen” elements

and a list of “unseen” elements, along with a proof that some informative decidable

procedure holds for every seen element. Functions defined in this style can be seen

as recursively “discovering” proofs of the relevant predicate until they have enough

information to prove some proposition.

Rec : (A Ñ List A Ñ Set) Ñ Set Ñ Set

Rec P B = @ xs ys Ñ (@ a Ñ (a P xs ˆ P a xs) Z (a P ys)) Ñ B

rec : @ {B : Set} {P : A Ñ List A Ñ Set} Ñ Rec P B Ñ B

rec r = r [] elements (inj2 ˝ membership)

Most importantly, this style of recursive function definition can be used to implement

decision procedures for the existential and universal quantifiers over predicates with

listable domains. The implementations of D-rec and @-rec are respectively upgraded

versions of the standard list functions any and all of type (A Ñ Bool) Ñ List A Ñ Bool.

module _ {P : A Ñ Set} (P? : @ a Ñ Dec (P a)) where

D-rec : Rec (λ a _ Ñ  P a) (Dec (D P))

@-rec : Rec (λ a _ Ñ P a) (Dec (@ a Ñ P a))
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D? : Dec (D P)

D? = rec D-rec

@? : Dec (@ x Ñ P x)

@? = rec @-rec

These decision procedures along with finite-decEq can be used to build decision

procedures for the Singleton and Propositional types. The singleton? function is used in

Part II to check whether the typing derivation of a term is unique.

singleton? : Dec (Singleton A)

propositional? : Dec (Propositional A)

3.3 Functions and instances

The definitions in this section are outside the Listable record module, so they take explicit

Listable arguments as needed.

3.3.1 Listable algebraic data types

The empty and unit types are trivially listable. A superscript f is used to distinguish the

definitions that construct Listable values, as a mnemonic for the interpretation of Listable

as a type of proofs of “finiteness”. As seen in various definitions later in this section,

it’s often a benefit to readability to be able to express Listable values with a syntax that

closely mirrors the types they construct proofs of listability for.

K f : Listable K

K f = finite [] λ ()
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J f : Listable J

J f = finite [ tt ] λ where tt Ñ here refl

The sum and dependent pair types are both listable whenever their constituent types

are, and the non-dependent pair type is shown to be listable by a specialization of Σ f .

3.3.2 Mapping

The Listable type is often naturally seen as a container type, but it’s not a functor in the

sense of Haskell’s Functor typeclass or Agda’s Category.Functor.RawFunctor type (an

endofunctor over the category of types and unrestricted function arrows): only surjective

functions can be mapped over a Listable value in general in order to produce another

Listable value. The code in this thesis mostly uses an infix version of map f with the

arguments flipped, named after the _<&>_ operator in Category.Functor.RawFunctor.

map f : @ {A B} Ñ (A� B) Ñ Listable A Ñ Listable B

infix 0 _<& f >_

_<& f >_ = flip map f

The type _�_ is defined in Function.Surjection and represents functions that are

surjective up to propositional equality. The surjection function from the same module

constructs a term of type A� B given a function from A to B and a function left inverse

to it.

surjection : @ {A B} (f : A Ñ B) (g : B Ñ A) Ñ (@ x Ñ g (f x) ” x) Ñ A� B

The first argument to surjection is the function that gets mapped over the elements

list; when a value constructed with surjection is used as an argument to map f , the
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second and third arguments to surjection are only used as proof artifacts witnessing

the surjectivity of the first argument, so notably the g function is never called during an

evaluation of map f at runtime.

The map f function is most often useful when given a function between some

inductively-defined type and another straightforwardly structurally isomorphic type al-

ready known to be listable. For example, the type Maybe A is isomorphic to J Z A,

which is known to be listable when A is listable. The first argument in the definition of

Maybe f below is of type J Z A Ñ Maybe A, and the second argument is its inverse; the

third argument is the witness to the surjectivity of the first function, showing that both

cases reduce to definitional equality.

Maybe f : @ {A} Ñ Listable A Ñ Listable (Maybe A)

Maybe f A f =

J f Z f A f <& f >

surjection

(λ where

(inj1 _) Ñ nothing

(inj2 a) Ñ just a)

(λ where

nothing Ñ inj1 tt

(just a) Ñ inj2 a)

(λ where

nothing Ñ refl

(just _) Ñ refl)

This illustrates a common tension in the tradeoff between bespoke inductive data

types with specific declarative constructor names and more reusable polymorphic types,
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also at play in the decision not to define Bool as Fin 2. Generic programming features

like GHC’s Generic typeclass enable library code to traverse and manipulate values of

unknown user-defined types by offering a procedure to derive structurally isomorphic

types constructed with a known set of primitives like the sum and sigma types; along

with Agda’s metaprogramming features, this might make it possible to automate away

some or all of the proofs that use map f , which would significantly simplify the source

code of this development.

3.3.3 Filtering

Σ f can be seen as a kind of filtering function: the set of all of the proj1 components in

the elements list of the output type is a subset of the set of elements in the elements

list of the input. Depending on the predicate used as the second argument, however,

there may in general be any number of values in the output elements list for any given

element of the input elements list, making Σ f unsuitable as a general counterpart to the

traditional filtering function over lists.

Since True A? is listable for any A?, an appropriate type for the filter f function over

listable types in general is Listable (D (True ˝ P?)), for some decidable unary predicate

argument P?. In the special case where P is propositional at all indices, True (P? a) is

isomorphic to P a for any a, so this filtered output is guaranteed to contain all elements

of P at all indices as witnessed by the surjection given in the definition of filterProp f .

module _ {A} {P : A Ñ Set} (P? : @ a Ñ Dec (P a)) where

filter f : Listable A Ñ Listable (D (True ˝ P?))

filter f A f = Σ f A f (True f ˝ P?)

filterProp f : {{_ : @ {a} Ñ Propositional (P a)}} Ñ Listable A Ñ Listable (D P)
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filterProp f A f =

filter f A f <& f >

surjection (Σ.map2 toWitness) (Σ.map2 fromWitness) λ where

(a , p) Ñ cong (a ,_) (_ ‹
“ p)

3.3.4 Maximal values

The definitions in this subsection appear in the Ordered module, which the languages

defined later in this thesis open specialized to their respective specificity orderings.

The type IsDecStrictPartialOrder from Relation.Binary witnesses that a given ordering

relation is a decidable strict partial order over a given equivalence relation.

module Ordered

{A} {_«_ : A Ñ A Ñ Set} {_<_ : A Ñ A Ñ Set}

(<-dpo : IsDecStrictPartialOrder _«_ _<_)

(A f : Listable A)

where

open IsDecStrictPartialOrder <-dpo

open Listable A f

A listable set ordered by a decidable strict partial order has a listable subset of

maximal values, in the sense of values that are not strictly smaller than any other values

of the type.

Maximal : A Ñ Set

Maximal a = @ b Ñ  (a < b)
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maximal? : @ a Ñ Dec (Maximal a)

maximal? a = @? λ b Ñ  ? (a <? b)

Dmaximal f : Listable (D (True ˝ maximal?))

Dmaximal f = filter f maximal? A f

3.3.5 Listable standard library types

All empty types are trivially listable.

 f _ : @ {A} Ñ  A Ñ Listable A

 f  a = finite [] λ a Ñ contradiction a  a

All singleton types are listable, with exactly one element.

Singleton f : @ {A} Ñ Singleton A Ñ Listable A

Singleton f s = finite [ point s ] λ x Ñ here (x ‹
“ point s)

Propositional types are not necessarily listable in general, but any decidable proposi-

tional type is listable, with either zero or one elements.

decProp f : @ {A} {{_ : Propositional A}} Ñ Dec A Ñ Listable A

decProp f (yes a) = finite [ a ] λ b Ñ here (b ‹
“ a)

decProp f (no  a) = finite [] λ a Ñ contradiction a  a

As a consequence, the propositional equality type for any type with decidable equality

is listable.

_” f _ : @ {A} {{_ : DecEq A}} (a b : A) Ñ Listable (a ” b)

a ” f b = decProp f (a ?
“ b)
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For any unary predicate P that’s listable at all indices and any list as of elements in its

domain, the type All P as is listable.

All f : @ {A} {P : A Ñ Set} {as : List A} Ñ (@ a Ñ Listable (P a)) Ñ Listable (All P as)

Similarly, the Pointwise type from Data.List.Relation.Binary.Pointwise is the variant

of All for binary instead of unary predicates, and is listable at all indices whenever the

predicate type P is listable at all indices.

Pointwise f : @

{A B} {P : A Ñ B Ñ Set} {as : List A} {bs : List B} Ñ

(@ a b Ñ Listable (P a b)) Ñ

Listable (Pointwise P as bs)

55



Chapter 4 Finite graph search

The main challenges in formalizing a graph search decision procedure in Agda are

establishing termination and completeness. Traditional graph search algorithms are

usually implemented with a collection of vertices that grows and shrinks dynamically

during the execution of the algorithm, and termination is shown by an argument that the

collection will eventually reach an empty state. Agda enforces termination by allowing

only structural recursion, where at least one argument to every recursive call must be

a strict syntactic subpattern of the corresponding argument pattern in the case being

defined; the termination arguments for the traditional algorithms are not easily phrased

in these terms. A recognition procedure for the existence of a path between given

vertices can be implemented structurally recursively over the set of all vertices in the

graph, monotonically removing elements from the set until a path is found or the set is

empty, but the fact that the failure case implies that no path at all exists is not proven by

construction and is nontrivial to prove separately.

One conceptually simple technique for formalizing a complete search algorithm by

construction in this setting is to show that the search space is finite, which allows the

size of the space to serve as a structurally decreasing termination measure and yields

a proof of completeness by construction. The set of all paths in a graph is infinite if

the graph contains any cycles, but the search space for a finite graph search is always

finite: it needs only to consider acyclic paths, since the ability to "cut loops" out of a path

means the impossibility of an acyclic path between two nodes implies the impossibility

of any path at all between them.

This can be formalized in Agda with the Finite type, representing a finite graph as a

Listable type of vertices along with a binary edge relation indexed over vertices which is
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listable at all indices. Paths in the graph correspond to elements of the reflexive transitive

closure of the edge relation. A search procedure for paths out of a given source to a

destination matching some given decidable predicate can be expressed as a decision

procedure that iterates over the list of acyclic paths; if no acyclic path is found, a function

that reduces arbitrary paths to acyclic paths serves as witness that no path of any length

exists.

The code associated with this chapter is found in the Code.Graph, Code.Graph.Cut,

Code.Graph.Finite, and Code.Graph.Search modules.

4.1 Finite graphs

module Code.Graph where

This variable block is declared private to the Code.Graph module so that it doesn’t

conflict with other definitions in later modules.

private

variable

A : Set

a b c : A

m n l : N

Finite graphs are represented by the FiniteGraph type. The Edge f field is an adjacency

list representation of a graph, with each element in its elements list containing a pair of

vertices and an edge between them.

record FiniteGraph : Set where

constructor finiteGraph
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field

{Vertex} : Set

{Edge} : Vertex Ñ Vertex Ñ Set

Vertex f : Listable Vertex

Edge f : Listable (D2 Edge)

The edgeFrom f function is defined by filtering the adjacency list down to a list of

edges that have a given source; edgeTo f is defined similarly.

edgeFrom f : @ a Ñ Listable (D (Edge a))

edgeFrom f a =

filterProp f (λ where (a1 , _ , _) Ñ a ?
“ a1) Edge f <& f >

surjection

(λ where ((_ , _ , e) , refl) Ñ -, e)

(λ where (_ , e) Ñ (-, -, e) , refl)

(λ where (_ , e) Ñ refl)

edgeTo f : @ b Ñ Listable (D λ a Ñ Edge a b)

4.2 Reflexive transitive closure types (Star)

The standard library defines the type of the reflexive transitive closure of an arbitrary

binary relation in Relation.Binary.Construct.Closure.ReflexiveTransitive with the name

Star, which can be seen as a type of paths.

data Star {A} (R : A Ñ A Ñ Set) a : A Ñ Set where

ε : Star R a a

_C_ : @ {b c} Ñ R a b Ñ Star R b c Ñ Star R a b
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Computationally, Star is a list of edges of type R with the usual graph path invariant

requiring the sources and destinations of edges at adjacent indices in the list to agree,

with ε as the empty list and _C_ as the "cons" operator.

4.3 Path types

The definitions in this section and the next are parameterized over an arbitrary vertex

type A and edge type R.

module Path (R : A Ñ A Ñ Set) where

A type of length-indexed vectors is sometimes useful in intermediate steps when

reasoning about List values, in cases where careful reasoning about the lengths of

lists is required. Similarly, the Star type is the end goal of path search, but since the

termination argument for graph search relies on careful reasoning about the lengths of

paths, it’s convenient to express some of the logic with the length-indexed Path type.

data Path a : A Ñ NÑ Set where

ε : Path a a zero

_C_ : R a b Ñ Path b c n Ñ Path a c (suc n)

The _CC_ operator acts as an append function, witnessing the transitivity of paths.

The _B_ operator appends a single edge to the end of a path, like the traditional “snoc”

function on lists; unsnoc splits the last element off of a nonempty path, serving as an

inverse to _B_.

_CC_ : Path a b m Ñ Path b c n Ñ Path a c (m + n)

_B_ : Path a b n Ñ R b c Ñ Path a c (suc n)

unsnoc :

59



(p : Path a c (suc n)) Ñ

D λ b Ñ D2 λ (p1 : Path a b n) (e : R b c) Ñ p ” (p1 B e)

The types Path< and Pathď represent paths that are respectively less than and less

than or equal to the length index, useful for tracking decreasing path lengths to establish

termination. The convenience function boundedPath accesses the Path component of

either of these types.

Path< Pathď : A Ñ A Ñ NÑ Set

Path< a b n = D λ m Ñ m < n ˆ Path a b m

Pathď a b n = D λ m Ñ m ď n ˆ Path a b m

boundedPath : {P : NÑ Set} (p : D λ n Ñ P n ˆ Path a b n) Ñ Path a b (proj1 p)

boundedPath = proj2 ˝ proj2

4.4 Isomorphism between path representations

The type Star a b is isomorphic to D (Path a b); the conversion functions back and

forth are analogous to the ones that convert between List and Vec (the type of

length-indexed lists) in the standard library. The fold function here is defined in Rela-

tion.Binary.Construct.Closure.ReflexiveTransitive.

starLength : Star R a b Ñ N

starLength = fold _ (const suc) zero

toStar : Path a b n Ñ Star R a b

toStar ε = ε

toStar (e C p) = e C toStar p

60



fromStar : (p : Star R a b) Ñ Path a b (starLength p)

fromStar ε = ε

fromStar (e C p) = e C fromStar p

One direction of the isomorphism is easy to witness:

toStar ˝ fromStar : Star R a b Ñ Star R a b is extensionally (pointwise) equal to

the identity function by straightforward structural induction on the input argument.

toStar-fromStar : (p : Star R a b) Ñ p ” toStar (fromStar p)

The other direction is a little more awkward; since the return type of fromStar ˝ toStar

has length index starLength (toStar p) instead of n, a witness to the equality of the input

and output lengths is required in order to express the equality between the input and

output values with the _”_ type. An alternative is to phrase the proposition with the

heterogeneous equality type _�_, effectively requiring the proof to witness both the

equality between types and the equality between terms. Heterogeneous equality is often

less convenient to work with than propositional equality: the constructor pattern refl is

only applicable for heterogeneous equality when both the types and the terms of the

two arguments to _�_ can be respectively unified, in which case propositional equality

is often possible to use directly instead, and the heterogeneous equality combinators

often require explicit type annotations to use. Thankfully, fromStar-toStar is not directly

relevant to most of this development, and is only used once in the Agda source code.

fromStar-toStar : (p : Path a b n) Ñ p � fromStar (toStar p)

4.5 Cycles

The definitions in this section are parameterized over an arbitrary FiniteGraph named g.
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module Code.Graph.Cut (g : FiniteGraph) where

open FiniteGraph g

open Path Edge

4.5.1 Path membership

The type _PP_ is an inductive predicate similar to _P_, witnessing the index of the source

of an edge in a path. It could be equivalently defined as _P_ composed with a function

that extracts a list of edge sources from a path, but being able to pattern-match against

a specialized inductive predicate is convenient in many cases.

data _PP_ x : Path a b n Ñ Set where

here : {e : Edge x b} {p : Path b c n} Ñ x PP e C p

there : {e : Edge a b} {p : Path b c n} Ñ x PP p Ñ x PP e C p

Edge sources can also be accessed by numeric index; PP-lookup can be seen as

converting a numeric index to a more strongly-typed index in the type _PP_.

lookup : Path a b n Ñ Fin n Ñ Vertex

PP-lookup : {p : Path a b n} (i : Fin n) Ñ lookup p i PP p

4.5.2 Cyclic paths

A path is defined to be cyclic if it includes at least two distinct edges with the same

source or if it includes an edge with the last vertex in the path as a source. In the here

case, the source of the head edge is found as the source of an edge somewhere in the

tail; in the there case, the tail of the path contains a cycle; and in the end case, the last

vertex in the path is found as the source of an edge somewhere in the path.
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data Cyclic : Path a b n Ñ Set where

here : {e : Edge a b} {p : Path b c n} Ñ a PP p Ñ Cyclic (e C p)

there : {e : Edge a b} {p : Path b c n} Ñ Cyclic p Ñ Cyclic (e C p)

end : {p : Path a b n} Ñ b PP p Ñ Cyclic p

A proof of Cyclic p encodes an ordered pair of vertex indices in a path, delimiting a

cycle in the path. Both _PP_ and Cyclic are decidable by structural induction, assuming

equality between vertices is decidable.

cyclic? : (p : Path a b n) Ñ Dec (Cyclic p)

_PP?_ : @ x (p : Path a b n) Ñ Dec (x PP p)

A path is defined to be acyclic if it is not cyclic. The function  ? from Rela-

tion.Nullary.Negation decides the negation of a decidable predicate.

Acyclic : Path a b n Ñ Set

Acyclic p =  (Cyclic p)

acyclic? : (p : Path a b n) Ñ Dec (Acyclic p)

acyclic? p =  ? (cyclic? p)

4.5.3 Locating cycles

The type Segmented a b n represents a path of length n, broken into a prefix, a cycle of

nonzero length, and a suffix. Even though it only has one constructor, it’s defined as an

inductive data type instead of a record type because the third index of the return type of

the constructor is not a variable and therefore can’t be a parameter to the type.

data Segmented (a b : Vertex) : NÑ Set where

_J_J_ : @ {x} Ñ
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Path a x m Ñ Path x x (suc n) Ñ Path x b l Ñ

Segmented a b (m + suc n + l)

Given an index in a path, the path can be broken into a prefix strictly before the index

and a suffix including the index and everything after it.

prefixLength : @ {x} {p : Path a b n} Ñ x PP p Ñ N

prefix : @ {x} {p : Path a b n} (i : x PP p) Ñ Path a x (prefixLength i)

suffixLength : @ {x} {p : Path a b n} Ñ x PP p Ñ N

suffix : @ {x} {p : Path a b n} (i : x PP p) Ñ Path x b (suffixLength i)

lengthsAddUp : @

{x} {p : Path a b n} (i : x PP p) Ñ

n ” prefixLength i + suffixLength i

4.5.4 Cutting cycles

The segment function recursively identifies the cycle represented by a proof of Cyclic.

The base case, here, indicates a path that starts with a cycle; the lemma length-

sAddUp witnesses that splitting the path p at index i gives back two paths whose

lengths add up to the length of the original path. The rewrite keyword rewrites n to

prefixLength i + suffixLength i in the type of the goal on the right-hand side of the case,

so that the _J_J_ constructor can be used to build a return expression (with zero

implicitly given for the m argument). (The +-identityr lemma is from Data.Nat.Properties,

witnessing that 0 is a right identity for the _+_ function.)

segment : {p : Path a b n} Ñ Cyclic p Ñ Segmented a b n

segment {p = e C p} (here i) rewrite lengthsAddUp i =
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ε J (e C prefix i) J suffix i

segment {p = e C p} (there r) =

case segment r of λ where (p1 J p2 J p3) Ñ (e C p1) J p2 J p3

segment {n = n} {p = p} (end here) rewrite sym (+-identityr n) =

ε J p J ε

segment {p = e C p} (end (there i)) =

case segment (end i) of λ where (p1 J p2 J p3) Ñ (e C p1) J p2 J p3

Cutting a cycle out of a cyclic path then reduces to segmenting the path

and appending the prefix and suffix together without the cycle. The lemma

lengthLem m : m + l < m + suc n + l shows that the output path is strictly shorter than

the input path, where the lengths of the prefix, cycle, and suffix are respectively m, suc

n, and l.

cutCycle< : {p : Path a b n} Ñ Cyclic p Ñ Path< a b n

cutCycle< r =

case segment r of λ where

(_J_J_ {m = m} p1 p2 p3) Ñ -, lengthLem m , (p1 CC p3)

The maximum length of an acyclic path in a graph is the number of distinct nodes

in the graph; by the finite pigeonhole theorem, any path longer than this maximum

length must contain at least one cycle. The standard library includes a form of the

finite pigeonhole theorem in Data.Fin.Properties with the name pigeonhole and the

type @ {m n} Ñ m < n Ñ (f : Fin n Ñ Fin m) Ñ D2 λ i j Ñ i ı j ˆ f i ” f j, witnessing that

a mapping from some finite prefix of the natural numbers to a strictly smaller one must

map at least two distinct inputs to the same output.

The lemma indicesCycle constructs a proof that a path is cyclic if it includes two
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distinct indices that lookup to the same value. In the base cases, where one of the

indices is zero, the path begins with a cycle that ends at the other index.

indicesCycle : {p : Path a b n} Ñ i ı j Ñ lookup p i ” lookup p j Ñ Cyclic p

indicesCycle {i = zero} {zero} {e C p} zız eq = contradiction refl zız

indicesCycle {i = zero} {suc j} {e C p} _ refl = here (PP-lookup j)

indicesCycle {i = suc i} {zero} {e C p} _ refl = here (PP-lookup i)

indicesCycle {i = suc i} {suc j} {e C p} siısj eq =

there (indicesCycle (siısj ˝ cong suc) eq)

With this, pigeonhole can be applied to find a cycle in any path longer than the

longest possible acyclic path. The composition Listable.index vertexFinite ˝ lookup p

maps indices of edge sources in p to indices in the list of all vertices; since the list of

all vertices is smaller than the length of the path, there must be at least two distinct

indices in the path that map to the same index in the list of all vertices. The lemma

index-injective transforms a proof of equality between two indices in the list of all vertices

into a proof of equality between the vertices at those indices.

findCycle : (p : Path a b n) Ñ n > size Vertex f Ñ Cyclic p

findCycle p gt =

let _ , _ , iıj , eq = pigeonhole gt (Listable.index Vertex f ˝ lookup p) in

indicesCycle iıj (index-injective Vertex f eq)

An acyclic path in a graph must contain at most as many edges as there are distinct

vertices in the graph. This can be proved by contradiction: in any path with more edges

than vertices in the graph, findCycle will be able to find a cycle, showing that the path

is not acyclic. While proof by contradiction is not admissible in general in Agda, a

form of proof by contradiction over an assumption of a decidable type can be given
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as a theorem, provided in Relation.Nullary.Negation as decidable-stable with the type

@ {A} Ñ Dec A Ñ  ( A) Ñ A.

acyclic-length-ď : (p : Path a b n) Ñ Acyclic p Ñ n ď size Vertex f

acyclic-length-ď {n = n} p  r =

decidable-stable (n ď? size Vertex f )

λ n�v Ñ contradiction (findCycle p (�ñ> n�v))  r

4.5.5 Acyclic paths

As mentioned, the Acyclic predicate restricts the set of all paths to a finite (listable) set.

It’s possible to construct the Listable set of all Acyclic paths by filtering over the set of all

paths of length up to size Vertex f , but this has performance repercussions: generating

every path of up to the maximum acyclic path length and then filtering that list down to

only acyclic paths takes time at least proportional to the number of paths of length up

to size Vertex f , which may be significantly greater than the number of distinct acyclic

paths in some particular language’s set of valid resolution paths.

A more efficient method of construction is to define the listable type of all acyclic paths

as a family of listable types of acyclic paths of particular fixed lengths in a style similar

to dynamic programming, with the type at each length defined as an extension of the

type at the previous index that preserves the Acyclic invariant. By then showing with

acyclic-length-ď that every type in the family at indices strictly greater than size Vertex f

is empty, all acyclic paths are shown to be contained in the union of the types indexed

by values between 0 and size Vertex f .
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Representation

Type synonyms are defined for acyclic paths of fixed lengths and bounded lengths.

AcyclicPath : Vertex Ñ Vertex Ñ NÑ Set _

AcyclicPath a b n = D λ (p : Path a b n) Ñ True (acyclic? p)

AcyclicPathď : Vertex Ñ Vertex Ñ NÑ Set _

AcyclicPathď a b n = D λ (p : Pathď a b n) Ñ True (acyclic? (boundedPath p))

Listable proof

module Code.Graph.Finite (g : FiniteGraph) where

The nexts function generates a list of all paths that can be obtained by extending a

given input path by one edge at the end, including any cyclic paths obtained this way.

nexts : @ {a b n} Ñ Path a b n Ñ List (D λ b Ñ Path a b (suc n))

nexts {b = b} p = List.map (λ where (_ , e) Ñ -, p B e) (elements (edgeFrom f b))

The acyclic-nexts function is defined by filtering the output of nexts to only acyclic

paths.

acyclic-nexts : @

{a b n} (p : Path a b n) Ñ

List (D λ b Ñ AcyclicPath a b (suc n))

The P-nexts function witnesses that mapping nexts over a list containing all elements

of the relevant fixed-length path type generates a list that contains every path one edge
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longer, and P-acyclic-nexts witnesses the same about acyclic-nexts for fixed-length

acyclic paths.

P-nexts : @ {a c n} Ñ

(path f : Listable (D λ b Ñ Path a b n)) Ñ

(p : Path a c (suc n)) Ñ

(c , p) P (concatMap (nexts ˝ proj2) (elements path f ))

P-acyclic-nexts : @ {a c n} Ñ

(path f : Listable (D λ b Ñ AcyclicPath a b n))

(p : AcyclicPath a c (suc n)) Ñ

(c , p) P (concatMap (acyclic-nexts ˝ proj1 ˝ proj2) (elements path f ))

The fixedAcyclicPathFrom f and boundedAcyclicPathFrom f functions generate the

listable types of all fixed-length and bounded-length acyclic paths, respectively. The

construction of these functions is such that acyclic-nexts is always applied to an acyclic

input path, so the filtering operation it carries out is over a list of elements with length

equal to the number of acyclic paths of length n from a to b multiplied by the number of

edges out of b.

fixedAcyclicPathFrom f : @ n a Ñ Listable (D λ b Ñ AcyclicPath a b n)

boundedAcyclicPathFrom f : @ n a Ñ Listable (D λ b Ñ AcyclicPathď a b n)

The acyclicPathFrom f function uses boundedAcyclicPathFrom f along with acyclic-

length-ď to define the type of all acyclic paths out of a given vertex. Since the only

use of acyclic-length-ď in this development is in the second argument to surjection

here, which is never evaluated at runtime, and the definition of acyclic-length-ď is the

only use of any of the functions relating to identifying and cutting cycles in paths, those
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functions are also never evaluated with an argument at runtime during the evaluation of

acyclicPathFrom f .

acyclicPathFrom f : @ a Ñ Listable (D2 (AcyclicPath a))

acyclicPathFrom f a =

boundedAcyclicPathFrom f (size Vertex f ) a <& f >

surjection

(λ where (b , (n , l , p) , t) Ñ -, -, p , t)

(λ where (b , n , p , t) Ñ -, (-, acyclic-length-ď p (toWitness t) , p) , t)

λ _ Ñ refl

Along with the Listable type used in this thesis, Firsov & Uustalu[8] also give an

account of listable types whose elements list contains no duplicates; the elements

list output for any input to acyclicPathFrom f should qualify, and a proof of this is a

witness that the union of all the elements lists in the image of acyclicPathFrom f is

minimal as a search space. In general, the code in this development is focused on

the goal of verifying the logical specifications of typecheckers by construction rather

than on verifying properties of their efficiency, so the definitions above are only shown

by construction to produce sufficient search spaces and the claim that they are also

non-repetitive search spaces (assuming Vertex f and Edge f are non-repetitive) is left

formally unverified. Informally, the claim is justified by induction on the lengths of paths:

the set of zero-length paths is trivial to define as listable with no duplicates, and the

use of nexts in the types of P-nexts and P-acyclic-nexts produces an output list with no

duplicates assuming Edge f and the path f arguments contain no duplicates.
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4.5.6 “Best” paths

The Code.Graph.Search module defines the interface in this section, used by the

language implementations in Part II to resolve variable references. A language defined

in a scope graph framework may include as part of its definition a decidable strict partial

ordering over paths and a unary predicate over paths; variable resolution paths must be

acyclic, be maximal by the partial ordering, and meet the unary predicate in order to be

valid.

module Code.Graph.Search

(g : FiniteGraph)

{P : @ {a} Ñ D (Star (FiniteGraph.Edge g) a) Ñ Set}

(P f : @ {a} (p : D (Star (FiniteGraph.Edge g) a)) Ñ Listable (P p))

{_«_ : @ {a} Ñ Rel (D (Star (FiniteGraph.Edge g) a)) _}

{_<_ : @ {a} Ñ Rel (D (Star (FiniteGraph.Edge g) a)) _}

(<-dpo : @ {a} Ñ IsDecStrictPartialOrder (_«_ {a}) _<_)

where

The MaximalPath type represents valid variable resolution paths out of a given node.

record MaximalPath (a : Vertex) : Set where

constructor maximalPath

The field types (specifically maximal) are defined in a context where the

Code.Listable.Ordered module has been opened into scope, specialized to an ordering

derived from <-dpo for acyclic paths that meet P.

field

destination : Vertex
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path : Star Edge a destination

predicate : P (destination , path)

acyclic : True (acyclic? (fromStar path))

maximal : True (maximal? ((destination , path , acyclic) , predicate))

open MaximalPath public

The size of the set of all variable resolution paths should not depend on the number

of distinct values of the types of the acyclic and maximal fields, since these represent

logical invariants, so they are encoded with the True type. The unary predicate type,

however, should factor into the total number of valid variable resolution paths: among

other things, this is where a language definition includes the requirement that a path

resolving some variable must end at a declaration with the same name as the variable

it’s resolving, so there should be more than one MaximalPath value with the same path

and different values for predicate in cases where a single scope binds the same name

to multiple declarations, to represent ambiguity in the resolution.

The work to show MaximalPath listable has all already been done in the

Code.Listable.Ordered module. The definition of maximalPathsFrom f simply converts a

MaximalPath value to the nested product type used in the type of maxes, and unification

can even infer the inverse function in the other direction. The occurrence of maxes here

is specialized to a derived ordering in a similar way as in the types of the MaximalPath

fields, this time specialized to maximal paths that meet the given predicate.

maximalPathsFrom f : (a : Vertex) Ñ Listable (MaximalPath a)

maximalPathsFrom f a =

Dmaximal f <& f >

surjection
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_

(λ where (maximalPath b p pr ac m) Ñ ((b , p , ac) , pr) , m)

(λ _ Ñ refl)

The first argument to surjection in the maximalPathsFrom f definition can be uniquely

inferred by unification, thanks to the definitional η-equality rules for function abstractions

and record constructors. This is generally only true when the destination type is a simple

type, but is very convenient when it works: the surjectivity of the function is effectively

proven for free, and the only cost to readability over an unverified implementation aside

from a bit of syntactic boilerplate is that the function written in the source code is actually

the inverse of the function that is mapped over the elements list of Dmaximal f at runtime.
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Chapter 5 Scope graphs

The scope graph calculus [10] is a flexible theoretical framework for describing the

scoping and binding semantics of programming languages, in which some interesting

language features are more natural to model than with traditional contexts of bindings.

The object languages in Part II of this thesis are defined within an Agda framework en-

coding the theory of scope graphs from Bach Poulsen et al. [3]. This chapter summarizes

Sections 4.2 and 4.3 in their work and explains a minor generalization of their framework

in which any arbitrary type can be used as the type of scopes in a scope graph; variable

resolution in a scope graph becomes a special case of the graph resolution procedure

from Chapter 4 of this thesis in any graph with a Listable type of scopes.

5.1 Motivation

This section does not attempt to fully motivate the theory of scope graphs in general

but focuses mainly on the benefit it brings to the module system implementation in

Chapter 6, specifically the ability to model cyclic dependencies between scopes in a

natural way, enabling a straightforward definition of a module system with no restrictions

on cyclic imports. Cyclic module imports are not the most common example of cyclic

scope dependencies in real-world languages, but are a relatively minimal represen-

tative example of the feature. Many languages do support some kind of local cyclic

scope dependency, especially in the OOP paradigm in the form of mutually recursive

class definitions; this is the form of cyclic dependency covered in the formalization of

Middleweight Java in Bach Poulsen et al. [3].

Consider the small program below, in pseudocode in a language including modules
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and module imports.

module A:

import B

var a1: int = b2

var a2: bool = true

module B:

import A

var b1: bool = a2

var b2: int = 0

A and B are in a dependency cycle, since each imports the other. The intended

semantics of this particular program are informally clear: when all definitions are

evaluated, the result should be a1 = b2 = 0 and b1 = a2 = true. The general

semantics of cyclic module dependencies, however, are more complicated, and require

significant effort to formalize in a traditional setting.

The scoping semantics of the program above can be given straightforwardly as a

scope graph, as illustrated below. The two-headed arrow between the scopes for A and

B represents the two edges corresponding to the two import statements in the program,

and each scope contains a name and type for each declaration that it binds.

A

a1:int

a2:bool

B

b1:bool

b2:int

The evaluation semantics of this program can be described in the “scopes-and-frames”

model of Bach Poulsen et al. [2], and an Agda implementation of the similar feature

in Middleweight Java is described in Bach Poulsen et al. [3]. Briefly, the idea is that

the runtime heap contains “frames” in a many-to-one relation with the set of scopes in

the program being evaluated, where each frame contains a value for each declaration
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bound in the associated scope and a pointer to a corresponding destination frame for

each edge leading out of the associated scope. The frames for the module-scoped

values declared in A and B each depend on data in the other, but in such a way that it

is possible to construct them programatically without diverging. The Appendix of this

thesis covers an interpreter in this style for the language defined in Chapter 8.

5.2 Basic definitions

The code in this section is found in the Code.Scope module in the development associ-

ated with this thesis.

The data contained within a scope is represented by a pair of lists, one representing

an adjacency list encoding of the set of edges out of that scope and one representing

the declarations that the scope binds.

ScopeData : Set Ñ Set Ñ Set

ScopeData S D = List S ˆ List D

edges = proj1; decls = proj2

In constructing scope graphs programmatically, it will sometimes be necessary to

map a function over the edges list in a ScopeData value; this corresponds to applying a

graph homomorphism to the represented edges, which is used when extending a scope

graph with new scopes while preserving the meaning of the data at each of the existing

scopes. (Σ is a local alias for Data.Product, as before, and Σ.map1 is the function to map

over the first element of a pair.)

mapEdges : @ {S S1 D} Ñ (S Ñ S1) Ñ ScopeData S D Ñ ScopeData S1 D

mapEdges f = Σ.map1 (List.map f)
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A ScopeGraph is a function mapping scopes to associated ScopeData.

ScopeGraph : Set Ñ Set Ñ Set

ScopeGraph S D = S Ñ ScopeData S D

It is illustrative at this point to consider an encoded scope graph for an example

program. The raw abstract syntax of a small example language of Boolean values is

given below; this language is only used to demonstrate some of the basic principles of

scope graph generation and will not be given a full semantics. (The let1 constructor is

named to avoid clashing with the Agda let keyword.)

data Expr : Set where

true false : Expr

var : String Ñ Expr

let1 : String Ñ Expr Ñ Expr Ñ Expr

if : Expr Ñ Expr Ñ Expr Ñ Expr

The meaning of let1 x e1 e2 in standard notation is let x = e1 in e2. Each let1 node in an

Expr AST corresponds to a single scope in the graph of the expression, since each let1

declares a new identifier and no other Expr forms do. For example, the scope graph for

the term let1 "x" true (if (var "x") (let1 "y" true true) (let1 "z" true true)) is given below,

with the scopes numbered in an arbitrary order.

0

x

1

y

2

z
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As this language has only one type, scopes bind only names, and the type of every

binding is assumed to be the type of Boolean values. When expressing this graph as

a ScopeGraph, the D argument will simply be String. One natural choice for the S

argument when creating graphs by hand is the Fin type as used in Bach Poulsen et al.

[3], in this case Fin 3 to represent the three scopes. The definition of g below is an

encoding of the above graph in this manner.

g : ScopeGraph (Fin 3) String

g zero = [] , [ "x" ]

g (suc zero) = [ zero ] , [ "y" ]

g (suc (suc zero)) = [ zero ] , [ "z" ]

5.3 Motivating the generalization

While Fin is a convenient type of scopes in manually-constructed scope graphs, it is

a somewhat inconvenient type of scopes to use during scope graph generation. To

demonstrate the issues that arise, this section details the construction of scope graphs

representing the binding structures of terms in this Expr language both with Fin scopes

and with an inductively-defined datatype. This is not intended as an in-depth explanation

of the mechanics of scope graph generation, which is covered in Part II, but rather as a

motivation for the generalization of the scope graph library from Bach Poulsen et al. [3]

to support arbitrary types of scopes (where theirs only supports scopes of type Fin).

Generating scope graphs with Fin scopes

A function to generate a scope graph with Fin scopes for any arbitrary input Expr must

first calculate how many scopes there are in the term, in order to know the index to use
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with Fin. The scopes function does this recursively, where the suc constructor in the let1

represents adding a new scope. In this language, the number of scopes in a term is

exactly the number of let1 AST nodes in the term, because let1 is the only expression

form that binds a new name.

scopes : Expr Ñ N

scopes (let1 x e1 e2) = suc (scopes e1 + scopes e2)

scopes (if e1 e2 e3) = scopes e1 + scopes e2 + scopes e3

scopes _ = zero

Given this definition, the type of the scope graph representing the binding structure of

a given term e is a ScopeGraph with scopes of type Fin (scopes e).

graph : (e : Expr) Ñ ScopeGraph (Fin (scopes e)) String

This type normalizes to (e : Expr) Ñ Fin (scopes e) Ñ List (Fin e) ˆ List String, so it

is defined as taking two arguments and returning a pair: the graph of e is represented as

a lookup function that takes a scope value as an argument and returns the contents of

the scope. In the let1 case, the scope zero is designated as the scope corresponding to

the outermost scope in the program, the one that the let1 AST node under consideration

binds.

graph (let1 x e1 e2) zero = [] , [ x ]

An impediment arises in the suc case for let1, when the pattern is

graph (let1 x e1 e2) (suc i). The type of i is Fin (scopes e1 + scopes e2), and

the types of graph e1 and graph e2 are ScopeGraph (Fin (scopes e1)) String

and ScopeGraph (Fin (scopes e2)) String respectively. A value of type

Fin (scopes e1 + scopes e2) can be decomposed into a value of type
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Fin (scopes e1) Z Fin (scopes e2) in order to obtain an index suitable for recurs-

ing into one of the two subgraphs with, but this is not a definitional property of the Fin

type, and must be given by a lemma, as in split+ below.

split+ : @ {m n} Ñ Fin (m + n) Ñ Fin m Z Fin n

split+ {zero} i = inj2 i

split+ {suc m} zero = inj1 zero

split+ {suc m} (suc i) =

case split+ i of λ where

(inj1 i1) Ñ inj1 (suc i1)

(inj2 i1) Ñ inj2 i1

The suc case for let1 can be defined using this lemma. The expression suc ˝ inject+ _

here has type Fin (scopes e1) Ñ Fin (suc (scopes e1 + scopes e2)), and raise is used

with the type Fin (scopes e2) Ñ Fin (suc (scopes e1 + scopes e2)); inject+ and raise

are from the standard library Data.Fin module. In the case where i is an index for a

scope in the subgraph of e2, an edge to the zero scope is added to its adjacency list

with Σ.map1 (zero ::_) to represent the “parent scope” relationship between the scope

associated with the let1 AST node and the subgraph of scopes associated with the

bindings in e2. (This is a somewhat careless design, made to keep this example simple

for the purpose of demonstration, with the result that an edge is added to zero for each

scope in the graph of e2, not just the root scope as would likely be expected.)

graph (let1 x e1 e2) (suc i) =

case split+ i of λ where

(inj1 i1) Ñ mapEdges (suc ˝ inject+ _) (graph e1 i1)

(inj2 i1) Ñ Σ.map1 (zero ::_) (mapEdges (raise _) (graph e2 i1))
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The case for if does not have to deal with adding a new scope to the graph, but

does still have to split its Fin argument in a similar way as the code above, this time

with an input of type Fin (scopes e1 + scopes e2 + scopes e3). This can be done with

a new bespoke lemma or by applying split+ twice, as in the code below. The function

arguments to mapEdges convert scope indices from each respective subgraph into

indices in the graph of the if term, in the same way as in the let1 (suc i) case above.

graph (if e1 e2 e3) i =

case split+ i of λ where

(inj1 i1) Ñ

case split+ i1 of λ where

(inj1 i11) Ñ mapEdges (inject+ _ ˝ inject+ _) (graph e1 i11)

(inj2 i11) Ñ mapEdges (inject+ _ ˝ raise (scopes e1)) (graph e2 i11)

(inj2 i1) Ñ mapEdges (raise _) (graph e3 i1)

The split+ lemma is used in the definition of graph above to select which subexpression

of a term a given scope index is bound within, but it is not particularly well-suited for

this purpose, running in O(m) time in the implicit m argument to the function, and it only

applies directly to expression AST node types with exactly two subexpressions. While it

may be possible to define a more general library for casing over Fin values in this way,

there is a simpler solution requiring no additional code: inductive data types.

The only semantically important property of Fin for representing scopes is that it

is a finite type, so that the graph search procedure from Chapter 4 can be used to

resolve variable references when typechecking with a scope graph. This property is

not depended on by any code within the scope graph library, and it is satisfied by any

Listable type, so the approach taken in this thesis is to generalize the scope graph

library to any arbitrary type of scopes and use the Listable type in typechecking code to
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constrain scope types to be finite types.

Generating scope graphs with inductively-defined scope types

The type of scopes in an object language term is encoded by an inductively-defined

data type specific to the object language, defined to have exactly as many members as

there are scopes in the graph corresponding to the binding structure of the term. The

Scope data type is not meant to represent the entire binding structure of a term, but just

the set of vertices in the scope graph representing the binding structure.

data Scope : Expr Ñ Set where

let1-here : @ {x e1 e2} Ñ Scope (let1 x e1 e2)

let1-def : @ {x e1 e2} Ñ Scope e1 Ñ Scope (let1 x e1 e2)

let1-body : @ {x e1 e2} Ñ Scope e2 Ñ Scope (let1 x e1 e2)

if-cond : @ {e1 e2 e3} Ñ Scope e1 Ñ Scope (if e1 e2 e3)

if-true : @ {e1 e2 e3} Ñ Scope e2 Ñ Scope (if e1 e2 e3)

if-false : @ {e1 e2 e3} Ñ Scope e3 Ñ Scope (if e1 e2 e3)

This pattern is explained in more detail in Chapter 7, but at a high level the Scope

type encodes the type of all paths from the root of an Expr AST to some let1 node within

the AST, with the let1-here constructor representing the scope of a let1 AST node at the

root of the AST. The type is Listable at all indices, so it is suitable for use as the vertex

type in the FiniteGraph library from Chapter 4, and for any e, Scope e is isomorphic to

Fin at some index (specifically the cardinality of Scope e). The definition of graph below

with this type of scopes is significantly simpler and more efficient than the definition

above with Fin scopes, because Agda’s built-in pattern-matching functionality is used to

decide which subgraph to recurse into, as opposed to the split+ lemma.
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graph : (e : Expr) Ñ ScopeGraph (Scope e) String

graph (let1 x e1 e2) let1-here = [] , [ x ]

graph (let1 x e1 e2) (let1-def i) = mapEdges let1-def (graph e1 i)

graph (let1 x e1 e2) (let1-body i) =

Σ.map1 (let1-here ::_) (mapEdges let1-body (graph e2 i))

graph (if e1 e2 e3) (if-cond i) = mapEdges if-cond (graph e1 i)

graph (if e1 e2 e3) (if-true i) = mapEdges if-true (graph e2 i)

graph (if e1 e2 e3) (if-false i) = mapEdges if-false (graph e3 i)

5.4 Resolution in scope graphs

The definitions in this section are parameterized over an arbitrary scope graph.

module ScopeGraph {S D} (g : ScopeGraph S D) where

As mentioned, the scope graph library described in this chapter is intended to be

used in conjunction with the graph search library from Chapter 4 for path resolution.

In order to set this up, it is helpful to make the types of edges and paths in a scope

graph explicit. The Edge type defined below represents the type of edges between two

scopes in a scope graph: a scope s has an edge to another scope s1 when s1 is in the

edges list of s. The _I_ operator is defined as a binary synonym for Edge, and _I*_

as a synonym for the type of paths over scope graph edges, using the Star type from

Relation.Binary.Construct.Closure.ReflexiveTransitive as a type of paths as in Chapter 4.

Edge : S Ñ S Ñ Set

Edge s s1 = s1 P edges (g s)
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_I_ = Edge

_I*_ = Star Edge

This type of edges forms a FiniteGraph whenever S is Listable, as witnessed by

finiteScopeGraph below.

finiteScopeGraph : Listable S Ñ FiniteGraph

finiteScopeGraph S f =

finiteGraph S f (Σ f S f λ s Ñ Σ f S f λ s1 Ñ s1 P f edges (g s))

The object language implementations in Part II use this graph to specialize the

Code.Graph.Search module from Chapter 4 in order to obtain a version of the

maximalPathsFrom f function suitable for resolving variable reference paths.
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Part II

Scopechecking and Typechecking
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Part II presents a module system parameterized over an arbitrary base language,

defined using the constructs from the previous chapter, and then presents two suitable

example base languages: simply-typed lambda calculus with boolean and natural

number types, and a toy procedural language with booleans, integers, arrays, and

pointers (without pointer arithmetic). In contrast to the generally bottom-up style of

presentation in most of this thesis, the module system is presented before the languages

it applies to; the purpose of this presentation structure is to introduce the general pattern

of base language definition that the module system works with, in order to motivate

some otherwise nonobviously-relevant features of the example language definitions.
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Chapter 6 Module system

The module system presented in this chapter can be described as a small framework for

implementing the semantics of languages that feature a particular kind of module system.

The idea is similar to that of the “modular module system” presented in Leroy [9], but

works within a scope graph framework and fully supports cyclic dependencies between

modules. A module in this system is defined as a collection of named and explicitly-typed

terms, and a program is a collection of modules along with an explicitly-typed “main”

expression that describes the evaluation of the program when executed.

The clients of this framework import the definitions in this module, with a sort of double

inversion of control: the client provides a scope graph construction procedure for terms

in a term language and obtains a scope graph construction procedure for programs, and

then the client provides a typechecking procedure for terms within those constructed

program scope graphs and obtains a typechecking procedure for programs. The module

system code does not provide any code to evaluate a program, but does include code to

construct an initial heap for a program’s evaluation, so term languages can easily define

their own evaluators over intrinsically-typed programs. (Evaluation is described in the

Appendix; most details about it are left out of this part of the thesis.)

The code associated with this chapter is found in the Code.Module module in the

Agda development.

6.1 Names

Identifiers are encoded with the primitive String type imported from Data.String.
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Name = String

variable x y z : Name

This is an arbitrary choice for convenience; the only algorithmically relevant property

of strings is that equality over them is decidable.

6.2 PreScope and PreGraph

When a term language procedure constructs a scope graph for some term in a program,

it does not have access to the complete program scope graph for inspection, since

it hasn’t been fully built yet; still, the procedure should have some way in general to

produce a graph that includes edges that point outside the graph of that particular term

to other scopes in the program. A limited form of this capability is achieved by having

the term language scope graph construction procedure for terms output a PreGraph,

in which the adjacency list at any given scope may contain references to a PreScope

called free; when the program graph is built, all edges to free in the term graphs are

replaced with edges to the scopes that each respective term is scopechecked within.

data PreScope S : Set where

free : PreScope S

bound : S Ñ PreScope S

PreGraph : Set Ñ Set Ñ Set

PreGraph S T = S Ñ ScopeData (PreScope S) (Name ˆ T)

The bind function is the eliminator for PreScope, from which a mapping function can

be derived. (PreScope is isomorphic to Maybe, and bind corresponds to the maybe

eliminator with the arguments flipped.)
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bind : {S S1 : Set} Ñ S1 Ñ (S Ñ S1) Ñ PreScope S Ñ S1

bind x f free = x

bind x f (bound s) = f s

mapPreScope : @ {S S1} Ñ (S Ñ S1) Ñ PreScope S Ñ PreScope S1

mapPreScope f = bind free (bound ˝ f)

6.3 Raw programs

The RawModuleSystem module takes parameters from a term language defining the

Agda types of object term language types and raw terms, along with a finite type

of scopes and a function constructing a PreGraph over those scopes for any given

term. The rest of the code in this chapter is defined within this module, including the

TypedModuleSystem module in Section 5.4. (The variable declarations are private to

this module to avoid clashing with similar declarations in the base language modules.)

module RawModuleSystem

(Type Term : Set)

{TermScope : Term Ñ Set}

(TermScope f : @ e Ñ Listable (TermScope e))

(termGraph : @ e Ñ PreGraph (TermScope e) Type)

where

private

variable

t : Type

tm : Term
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6.3.1 Modules

A raw Module contains a list of imports and a list of named and explicitly-typed raw

declarations.

record Module : Set where

constructor mod

field

imports : List Name

declarations : List (Name ˆ Type ˆ Term)

termSignatures : List (Name ˆ Type)

termSignatures = List.map (λ where (x , t , _) Ñ x , t) declarations

open Module

variable md : Module

6.3.2 Programs

A raw Program contains a list of named modules and an explicitly-typed main declaration

depending on a specified list of imports. The rest of the code within this subsection is

defined within the Program record module.

record Program : Set where

constructor prog

field

modules : List (Name ˆ Module)

mainImports : List Name

90



mainType : Type

mainTerm : Term

Scopes

The Scope type describes the set of scopes in a program.

data Scope : Set where

main-root : Scope

main : TermScope mainTerm Ñ Scope

mod : (x , md) P modules Ñ Scope

term-root : (i : (x , md) P modules) (j : (y , t , tm) P declarations md) Ñ Scope

term :

(i : (x , md) P modules) (j : (y , t , tm) P declarations md) Ñ

TermScope tm Ñ Scope

Scope f : Listable Scope

instance scope-decEq : DecEq Scope

The example graph below illustrates the general shape of a program graph in this

language: the main declaration is contained within a distinct root scope, and each

other module in the program has a scope associated with the module itself and a root

scope for each of the module’s declarations, each containing the graph of the respective

declaration. Subscript numbers represent values of list membership types seen as

numeric indices, and the metasyntax <. . . > after a constructor name within a node

indicates that the node actually represents a subgraph for some declaration, with all

scopes in the subgraph constructed with that construtor. Import edges are annotated
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with an I and lexical parent edges with a P - a term language might in general choose

to restrict the set of valid variable resolution paths to e.g. only those that include at most

one import edge. In this example graph, mod1 has two declarations, mod2 has one,

main imports mod1, and mod1 and mod2 mutually import each other. The -root scopes

are auxiliary scopes used in the process of scopechecking raw terms, explained in detail

by example in Subsection 7.2.2.

main-root

main <. . . >

mod1

decl-root11

decl11 <. . . >

decl-root12

decl12 <. . . >

mod2

decl-root21

decl21 <. . . >

P P

P

P

P

P

P

I I

I

Scope graph construction

A program Graph is a ScopeGraph mapping program Scope values to declaration

signatures.

Graph : Set

Graph = ScopeGraph Scope (Name ˆ Type)

The importScopes function takes in a list of names and returns the list of all module

scopes whose names are in the input list, used to generate the list of scopes that

92



represent the outgoing edges of a module scope (the module’s import edges). One

consequence of this definition is that attempting to import a nonexistent module is not an

error in general, instead simply silently adding zero import edges to the resulting graph;

this could be rectified by returning a Maybe result from importScopes to represent failure

in the case that an import would add zero edges, but it is left as-is here for simplicity.

(Similarly, importing the same module multiple times will only trigger ambiguity errors if

definitions from the module are referenced.)

importScopes : List Name Ñ List Scope

The graph function defined below constructs a scope graph representing the binding

structure of any given program. The uses of bind in graph map occurrences of the

free constructor in the graphs of declarations generated by the term language to the

appropriate -root scopes; main-root has edges to all of the imports in mainImports and

binds the main expression with the name "main", mod scopes have edges to their

imports and bind their declarations, and decl-root scopes have edges to their parent

modules.

graph : Graph

graph main-root = importScopes mainImports , [ "main" , mainType ]

graph (main i) = mapEdges (bind main-root main) (termGraph mainTerm i)

graph (mod {md = md} i) = importScopes (imports md) , termSignatures md

graph (term-root i j) = [ mod i ] , []

graph (term {tm = tm} i j k) =

mapEdges (bind (term-root i j) (term i j)) (termGraph tm k)
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6.4 Intrinsically-typed programs

The code in this section (still within the RawModuleSystem module) defines the Typed-

ModuleSystem module as an inner module with a parameter list representing a language

with intrinsically-typed values (_|ù_) and terms (_$_˝
˝_), along with a function that pro-

duces every intrinsically-typed term with a given type that corresponds to a given

declaration in a given program graph and scope. (The Weakenable type is the same as

the one defined in [3], and the _|ù_ and |ù-weakenable parameters are only relevant

in evaluation, covered in the appendix to this thesis.) The code in this module is also

parameterized over a raw Program, which is the program to be typechecked. Notably,

the term type is parameterized over specifically the type of scopes in program p, so

a term language definition has the ability to reason about program scopes and not

just term scopes (e.g., to limit the set of valid variable resolution paths so that module

imports are intransitive).

module TypedModuleSystem

(p : Program)

(_|ù_ : ScopeGraph.HeapType (Program.graph p) Ñ Type Ñ Set)

{{|ù-weakenable : @ {t} Ñ Weakenable (_|ù t)}}

{_$_˝
˝_ : Program.Scope p Ñ Term Ñ Type Ñ Set}

(_$_˝
˝

f _ : @ s e t Ñ Listable (s $ e ˝
˝ t))

where

open Program p

open ScopeGraph graph
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6.4.1 Modules

The ModuleTyping type represents intrinsically-typed modules, indexed by some element

of the modules list of the raw program p. An intrinsically-typed module is defined as an

All list containing a term for each declaration in the given module, where the terms are

each intrinsically-typed in their corresponding root scope.

ModuleTyping : (x , md) P modules Ñ Set

ModuleTyping {md = md} i =

All

(λ where ((_ , t , e) , j) Ñ term-root i j $ e ˝
˝ t)

(indexed (declarations md))

6.4.2 Programs

A ProgramTyping is a term for the main declaration in p scopechecked in the main-root

scope, along with a ModuleTyping for each module in the modules list of p.

record ProgramTyping : Set where

constructor prog

field

mainTyping : main-root $ mainTerm ˝
˝ mainType

moduleTypings : All (λ where (_ , i) Ñ ModuleTyping i) (indexed modules)

6.4.3 Typechecking

The type of intrinsically-typed raw modules corresponding to any given module in the

modules list of p is a finite type, since the type of terms is finite.
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ModuleTyping f : (i : (x , md) P modules) Ñ Listable (ModuleTyping i)

ModuleTyping f i = All f λ where ((_ , t , e) , j) Ñ term-root i j $ e ˝
˝

f t

This implies that the type of intrinsically-typed programs corresponding to any given

raw program p is finite, since both fields of the ProgramTyping field are of finite types.

ProgramTyping f : Listable ProgramTyping

It’s then straightforward to decide whether p has a unique typing.

uniqueTyping? : Dec (Singleton ProgramTyping)

uniqueTyping? = singleton? ProgramTyping f

The uniqueTyping function is the main top-level interface to typechecking used by

clients of the language implementations in the next two sections.
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Chapter 7 Simply-typed Lambda Calculus

The definition of the intrinsically-typed syntax type for simply-typed lambda calculus

(STLC) in this chapter is almost identical to the one in Bach Poulsen et al. [3], with

one important difference: the path that resolves a variable reference is (intrinsically)

required to be a maximal and well-formed path according to the specificity ordering and

well-formedness predicate that define the scoping rules of the language. The standard

lexical shadowing rules of arguments in STLC are encoded as an ordering on the lengths

of paths, and a well-formedness predicate is chosen to allow only paths with at most

one import edge, in order to avoid transitive imports.

An implementation of STLC as a base language for the module system in the previous

section must provide a procedure to construct a scope graph for an STLC term and

a procedure to generate all intrinsically-typed terms under the scope graph of some

program that erase to some given raw term. Encoding the restrictions on variable

resolution paths intrinsically guarantees that a typechecker outputting a finite type of

intrinsically-typed terms only outputs terms that respect the lexical shadowing rules

of STLC - for example, the raw term λ (x : nat). λ (x : nat). x has two corresponding

members in a type of intrinsically-typed terms with unrestricted variable paths, but only

one corresponding member in a type of intrinsically-typed terms with maximal paths in

which the x reference resolves to the inner binding.
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7.1 Raw expressions

7.1.1 Types

Natural number and boolean types are included for the sake of building non-trivial

example programs.

infixr 7 _ñ_

data Type : Set where

bool nat : Type

_ñ_ : Type Ñ Type Ñ Type

variable t t1 t2 : Type

In typechecking function applications it will be especially relevant to decide whether

some given type t is a function type accepting an argument of another type t1, which

is implemented by the acceptsArg? decision procedure; the output of this function

is propositional, making it suitable for use with the filterProp f function. Propositional

equality is also decidable in general over STLC types.

acceptsArg? : @ t t1 Ñ Dec (D λ t2 Ñ t ” (t1 ñ t2))

instance

acceptsArg-prop : Propositional (D λ t2 Ñ t ” (t1 ñ t2))

type-decEq : DecEq Type

7.1.2 Expressions

This representation of STLC syntax is explicitly-typed: lambda parameter types are

always given explicitly in the source representation of a term.
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infixl 8 _‚_

data Expr : Set where

bool : Bool Ñ Expr

nat : NÑ Expr

suc pred iszero : Expr Ñ Expr

if : Expr Ñ Expr Ñ Expr Ñ Expr

var : Name Ñ Expr

o : Name Ñ Type Ñ Expr Ñ Expr

_‚_ : Expr Ñ Expr Ñ Expr

variable

b : Bool

n : N

e e1 e2 e3 : Expr

7.1.3 Scopes

The set of lexical scopes local to a particular STLC expression can be identified with the

set of all lambda nodes in the expression’s AST. This set is encoded as an inductive

type of paths from the root of an expression AST to some lambda node; the structure of

the type is similar to that of _P_, with o-here corresponding to the here constructor and

each other constructor corresponding to a variant of there for some specified subtree

of the root node of the given expression AST. (Note that the Scope type defined in

the Program record module is only in scope here as Program.Scope since Program

hasn’t been opened, so this is not a name conflict.) The set of scopes in some given

expression AST is finite, by straightforward structural induction on the AST.
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data Scope : Expr Ñ Set where

o-here : Scope (o x t e)

o-there : Scope e Ñ Scope (o x t e)

‚-left : Scope e1 Ñ Scope (e1 ‚ e2)

‚-right : Scope e2 Ñ Scope (e1 ‚ e2)

suc : Scope e Ñ Scope (suc e)

pred : Scope e Ñ Scope (pred e)

iszero : Scope e Ñ Scope (iszero e)

if-cond : Scope e1 Ñ Scope (if e1 e2 e3)

if-yes : Scope e2 Ñ Scope (if e1 e2 e3)

if-no : Scope e3 Ñ Scope (if e1 e2 e3)

Scope f : @ e Ñ Listable (Scope e)

For example, the AST is given below for the term

(λ (x : bool). λ (y : nat). suc y) ((λ (x : nat). x) 1); the three members of Scope in-

dexed over this term are ‚-left o-here, ‚-left (o-there o-here), and ‚-right o-here,

representing the o nodes in this AST in the order of an inorder traversal.

‚

o (x : bool)

o (y : nat)

suc

y

‚

o (x : nat)

x

1
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7.1.4 Scope graph construction

The PreGraph for an STLC expression encodes the lexical binding structure of the term.

graph : @ e Ñ PreGraph (Scope e) Type

For an example of the goal, the term given an AST in the previous subsection should

generate this scope graph below; the scopes apart from free are to be interpreted as

under the bound constructor, which is omitted in the diagrams to save space. (This is

just the subgraph for a particular term’s local scopes, so the diagram does not include

module scopes or import edges.)

free

‚-left o-here

x : bool

‚-left (o-there o-here)

y : bool

‚-right o-here

x : nat

As this function is specifically returning a PreGraph, the edges lists of the output

ScopeData values may reference the free pre-scope. The o-there case notably leverages

this to replace any references to the free scope in the graph of the lambda body with a
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reference to the scope of the lambda itself (o-here), representing the conversion of a

free variable to a bound variable that can occur when grafting raw ASTs together. The

o-here case includes an edge to the free scope, so that the definitions in the body of the

lambda will have access to all declarations accessible from the scope containing the

lambda once everything has been all connected up.

graph (o x t e) o-here = [ free ] , [ (x , t) ]

graph (o x t e) (o-there i) = mapEdges (bound ˝ bind o-here o-there) (graph e i)

As an example of the behavior of these potentially nonobvious o cases of graph,

the construction of the scope graph for the term λ (x : nat). λ (y : nat). y proceeds as

follows.

• graph is called on the outer lambda and recurses into the body subterm, λ (y :

nat). y.

– graph is called on the inner lambda and recurses into the body subterm, y.

∗ An empty graph is returned for y, because there are no cases for the var

constructor in graph - the type Scope (var p) is definitionally empty for

any p, so there can be no value for the second argument to graph if the

first unifies with the pattern var p.

– The graph of λ (y : nat). y is constructed by adding one o-here scope and a

o-there scope for each scope in the graph of y, which is empty, so the graph

of λ (y : nat). y only has one actual scope, which has an edge to the free

pre-scope.
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free

o-here

y : nat

• The graph of λ (x : nat). λ (y : nat). y is constructed by adding one o-here scope

and a o-there scope for each scope in the graph of λ (y : nat). y, which only has

the one scope, so the graph of λ (x : nat). λ (y : nat). y has two actual scopes

apart from free. Each scope from the graph of the inner lambda is copied over

under a o-there, and the edges that used to point to free are redirected to point to

o-here while the o-here is given a new edge pointing to free.

free

o-here

x : nat

o-there o-here

y : nat

All other cases of the graph function for STLC are straightforward instances of a

simpler pattern, recursing into the appropriate subterm and mapping the appropriate
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Scope constructor over all of the edges in the resulting graph. None of these affect any

existing edges to free, since none of the expression forms in these cases bind any new

identifiers.

graph (suc e) (suc i) = mapEdges (mapPreScope suc) (graph e i)

graph (pred e) (pred i) = mapEdges (mapPreScope pred) (graph e i)

graph (iszero e) (iszero i) = mapEdges (mapPreScope iszero) (graph e i)

graph (if e1 e2 e3) (if-cond i) = mapEdges (mapPreScope if-cond) (graph e1 i)

graph (if e1 e2 e3) (if-yes i) = mapEdges (mapPreScope if-yes) (graph e2 i)

graph (if e1 e2 e3) (if-no i) = mapEdges (mapPreScope if-no) (graph e3 i)

graph (e1 ‚ e2) (‚-left i) = mapEdges (mapPreScope ‚-left) (graph e1 i)

graph (e1 ‚ e2) (‚-right i) = mapEdges (mapPreScope ‚-right) (graph e2 i)

For a simple example, consider the (nonsense) term suc (λ (x : nat). λ (y : nat). y),

obtained by adding a suc AST node at the root of the term considered in the example

for the o cases above. The example graph with three scopes above is the graph of the

subterm of suc, so the graph of the whole term including suc is the same but with the

suc Scope constructor added to the identifier of each scope.
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free

suc o-here

x : nat

suc (o-there o-here)

y : nat

7.1.5 Specificity ordering and well-formedness predicate

The definitions in this section so far are sufficient to fill in all of the parameters to

the RawModuleSystem module, so the parts of the module system concerning scope

graph construction can be opened and used to construct the specificity ordering that

defines the lexical shadowing rules of STLC and the well-formedness predicate that will

prevent transitive module imports. This module is opened publicly so that later stages

of the validation pipeline can import its contents just by importing Code.STLC.Raw;

the Code.STLC.Raw module can be thought of as a definition of the whole language

of programs that include modules of raw STLC terms, with the definitions in previous

subsections providing the definition of the term language and the opening of RawMod-

uleSystem providing the definition of the program language.
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open RawModuleSystem Type Expr Scope f graph public

The rest of the definitions in this subsection are parameterized over an arbitrary

program, an arbitrary scope graph for that program, and the name of a variable being

resolved. This module is opened later with the p parameter supplied and the x argument

left unfilled, so that all the definitions take an explicit Name argument.

module VarPath (p : Program) (x : Name) where

open module Prog = Program p renaming (graph to programGraph)

open ScopeGraph programGraph

The declIndex field of the well-formedness predicate type represents an index of the

variable name in question in the list of declarations at the destination scope of the given

variable resolution path p, and the ď1-import-edge field witnesses that p contains at

most one import edge by requiring that the type of indices of module scopes in the list

of all scopes in the path is a propositional type. (In contrast to the behavior of the Cyclic

and Acyclic types from earlier, the trail function returns all scopes in a path, including

both the first and last; in this situation it’s just as convenient either way, so the more

precise choice is made.)

The True type is used to “squash” the type of all edges between two mod scopes

into a type with zero or one values up to propositional equality, which is not a prop-

erty that can be proven of the Propositional type itself in base Agda; this ensures

that the WellFormedVar type can be shown to be finite. (The ď-import-edge field ex-

ists in this development only to encode part of a correctness specification and isn’t

mentioned anywhere else except in the code that constructs WellFormedVar expres-

sions.) The edgeList function returns a list of type List (D2 Edge), representing all of

the edges in a Star path, and the _,?_ operator is defined in Code.Util with the type
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@ {A B} Ñ Dec A Ñ Dec B Ñ Dec (A ˆ B).

record WellFormedVar (p : Star Edge s s1) : Set where

constructor var

field

declIndex : x P List.map proj1 (decls (programGraph s1))

ď1-import-edge :

True

(propositional?

(filterProp f

(λ where ((a , b , _) , _) Ñ modScope? a ,? modScope? b)

(DP f (edgeList p))))

open WellFormedVar public

WellFormedVar is finite, since both of its fields are finite.

WellFormedVar f : (p : Star Edge s s1) Ñ Listable (WellFormedVar p)

The specificity ordering over paths is defined directly in terms of the lengths of paths,

as in the standard STLC variable shadowing rule: shorter variable resolution paths

shadow longer paths.

_<_ : D (Star Edge s) Ñ D (Star Edge s) Ñ Set

(_ , p) < (_ , p1) = starLength p N.< starLength p1

With these definitions, Code.Graph.Search can be opened with all of its parameters

filled in. The first argument, the call to finiteScopeGraph, is the proof that the graph

of program p is finite; the second argument, WellFormedVar f ˝ proj2, is the proof that
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the predicate used in the predicate field of the MaximalPath type is finite at all indices;

and <-isDecStrictPartialOrder is a lemma showing that the specificity ordering is a

decidable strict partial ordering on paths. The MaximalPath and maximalPathsFrom f

definitions are renamed to represent that they denote variable resolution paths. The

varPathType function is used in the definition of intrinsically-typed terms; the varType

function referenced in its definition takes an index in the list of names bound in a scope

and returns the type paired with the name at that index.

open import

Code.Graph.Search

(finiteScopeGraph (Program.Scope f p))

(WellFormedVar f ˝ proj2)

<-isDecStrictPartialOrder

renaming (MaximalPath to VarPath; maximalPathsFrom f to varPathsFrom f )

public

varPathType : VarPath s Ñ Type

varPathType = varType ˝ declIndex ˝ predicate

7.2 Scoped expressions

A question that arises when defining this style of intrinsically-typed typechecker in a

scope graph framework is whether to opt into a kind of automatic implementation of

ad-hoc type-directed overloading: if a typechecker is defined as going from raw terms to

intrinsically-typed terms in a single pass, the type of all well-typed terms that erase to

a raw input variable term will be a singleton type if there exists a uniquely well-typed

resolution path for that variable, not just a unique resolution path in general. For example,
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the term λ (x : nat). λ (x : bool). if x x (suc x) has uniquely well-typed resolution paths

for each of the occurrences of the variable name x, but each occurrence has two distinct

resolution paths before type invariants are enforced.

The definition of the Proc language in the next chapter opts into this overloading

feature. The definition of STLC in this chapter makes the more conservative choice

for the sake of demonstration: scopechecking and typechecking are implemented in

separate passes, and a term is only valid if all of its variables are uniquely well-scoped

before any type-related analysis, enforced by requiring the type of intrinsically-scoped

terms output by the scopechecking procedure to be a singleton type.

The Code.STLC.Scoped module imports Code.STLC.Raw to bring the VarPath-related

definitions into scope, hiding the Expr type in order to reuse that name for a type of

intrinsically-scoped expressions and hiding some graph-related definitions for expres-

sions in favor of using Scope for program scopes, brought into scope by opening

Raw.Program below.

open import Code.STLC.Raw as Raw hiding (Expr; Scope; Scope f ; graph)

The module is then parameterized over an arbitrary raw program. The code in this

module scopechecks terms against the graph generated for this program, the scopes in

which are of type Raw.Program.Scope p.

module Code.STLC.Scoped (p : Raw.Program) where

open Raw.Program p

open ScopeGraph graph

open VarPath p
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7.2.1 Expressions

The type of intrinsically-scoped expressions has the same structure as the type of

intrinsically-typed STLC expressions from Bach Poulsen et al. [3], but does not enforce

type invariants. The shape argument to the o constructor witnesses that the scope s1

being associated with the lambda actually has the shape of a lambda scope, with a

single parent scope and a single binding; an expression in the scope s1 paired with a

proof of this shape invariant can be seen as a lambda expression in s, with the shape

argument witnessing the binding structure in the graph linking the body scope to the

lambda scope. (This encoding with the shape argument is from Bach Poulsen et al. [3]

and is motivated by the demands of an intrinsically type-preserving interpreter, explained

briefly in the Appendix to this thesis.)

data Expr s : Set where

bool : Bool Ñ Expr s

nat : NÑ Expr s

suc pred iszero : Expr s Ñ Expr s

if : Expr s Ñ Expr s Ñ Expr s Ñ Expr s

var : VarPath x s Ñ Expr s

o : {{shape : graph s1 ” ([ s ] , [ x , t ])}} Ñ Expr s1 Ñ Expr s

_‚_ : Expr s Ñ Expr s Ñ Expr s

variable es es
1 es

2 es
3 : Expr s

As mentioned earlier, the var constructor takes not just any arbitrary path but a VarPath

guaranteed to be maximal and well-formed according to the defined specificity ordering

and well-formedness predicate.

110



7.2.2 Erasures

The Erasure type is the type of proofs witnessing that some raw term is the erasure of

some intrinsically-scoped term. All of the cases are fairly straightforward; the predicate

could be defined in terms of the output of an erasure function from intrinsically-scoped

terms to raw terms, but defining it as an inductive data type enables some convenient

pattern-matching in the definition of the scopechecker.

data Erasure {s} : Raw.Expr Ñ Expr s Ñ Set where

bool : Erasure (bool b) (bool b)

nat : Erasure (nat n) (nat n)

suc : Erasure e es Ñ Erasure (suc e) (suc es)

pred : Erasure e es Ñ Erasure (pred e) (pred es)

iszero : Erasure e es Ñ Erasure (iszero e) (iszero es)

if :

Erasure e1 es
1 Ñ Erasure e2 es

2 Ñ Erasure e3 es
3 Ñ

Erasure (if e1 e2 e3) (if es
1 es

2 es
3)

var : {p : VarPath x s} Ñ Erasure (var x) (var p)

o :

{{shape : graph s1 ” ([ s ] , [ x , t ])}} Ñ Erasure e es Ñ

Erasure (o x t e) (o {{shape}} es)

_‚_ : Erasure e1 es
1 Ñ Erasure e2 es

2 Ñ Erasure (e1 ‚ e2) (es
1 ‚ es

2)

A verified erasure function is fairly trivial to implement, along with a proof that any two

raw terms that are the erasure of the same typed term must be propositionally equal.

erase : (es : Expr s) Ñ D λ e Ñ Erasure e es

erased-unique : Erasure e1 es Ñ Erasure e2 es Ñ e1 ” e2
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7.2.3 Scopechecking

The DErasure f function serves as a scopechecker: it takes in a scope s in the program

graph and a raw expression e, and returns all of the intrinsically-scoped expressions

that scopecheck in s and erase to e. (As a reminder, the <& f > function is from Subsec-

tion 3.3.2, and surjection is a standard library function described in the same section.)

DErasure f : @ s e Ñ Listable (D λ (es : Expr s) Ñ Erasure e es)

The cases for constants and suc are relatively straightforward: there is exactly one

intrinsically-scoped term that erases to any given constant, and the set of intrinsically-

scoped terms that erase to suc e are in one-to-one correspondence with the set of

intrinsically-scoped terms that erase to e.

DErasure f s (bool b) = finite [ -, bool ] λ where (_ , bool) Ñ here refl

DErasure f s (nat n) = finite [ -, nat ] λ where (_ , nat) Ñ here refl

DErasure f s (suc e) =

DErasure f s e <& f >

surjection

_

(λ where (_ , suc er) Ñ -, er)

(λ where (_ , suc er) Ñ refl)

There are two interesting applications of arguments resolved by unification in the

code above: the specific value of a constant bool or nat input term (b or n) is never

referenced on the right-hand side of the definition, and one direction of the surjection

in the suc case is inferred by unification, namely the function that is actually mapped

over the elements list of erasure f s e at runtime when this scopechecking procedure
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is executed. Intuitively, in the bool and nat cases the type of the right-hand side is

“intrinsically-scoped terms that erase to the given constant value”, so the Erasure.bool

and Erasure.nat constructors used in the elements lists and the lambda argument

patterns have their implicit arguments uniquely resolved by unification to the constants

b and n without explicit specification; in the suc case, the third argument to surjection

tells the unification engine that the first argument function must return an expression

definitionally equal to the expression returned by the second argument function, and

η-expansion of functions and the _,_ constructor along with the definitional injectivity of

the suc constructor enable unification to fill in the entire function definition.

The effect of this style of implicit programming is that all of the explicit code in the

three cases above is (hopefully somewhat readable) proof code, and all of the program

code that executes at runtime is filled in by unification; the definition of DErasure f reads

as a proof that the output type is finite by virtue of surjections to other types known to be

finite and computes as a procedure producing lists of scoped terms by mapping and

filtering over other lists. The consistency of the pattern also indicates a possibility for

future work to fill in most or all of this definition automatically with generic programming

given the definitions for the expression and erasure types as input.

This same pattern used in the suc case is used in the pred, iszero, if, and _‚_ cases.

To save space, only the if case is listed here.

DErasure f s (if e1 e2 e3) =

DErasure f s e1 ˆ
f DErasure f s e2 ˆ

f DErasure f s e3 <& f >

surjection

_

(λ where (_ , if er1 er2 er3) Ñ (-, er1) , (-, er2) , (-, er3))

(λ where (_ , if er1 er2 er3) Ñ refl)
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The variable case is similar: the type of intrinsically-scoped variable terms that erase

to a given raw variable is isomorphic to the type of VarPath values that resolve the name

of the raw variable.

DErasure f s (var x) =

varPathsFrom f x s <& f >

surjection

_

(λ where (var p , var) Ñ p)

(λ where (var p , var) Ñ refl)

The lambda case has to generate only terms with a valid shape argument, so it filters

the type of all scopes by a predicate matching only scopes with the correct shape of

ScopeData and then generates the type of all suitable intrinsically-typed body terms that

scopecheck in any of those filtered scopes.

DErasure f s (o x t e) =

Σ
f

(filterProp f (λ s1 Ñ graph s1 ?
“ ([ s ] , [ x , t ])) Scope f )

(λ where (s1 , _) Ñ DErasure f s1 e) <& f >

surjection

_

(λ where (_ , o {{shape}} er) Ñ (-, shape) , (-, er))

(λ where (_ , o er) Ñ refl)

The lambda case illustrates the purpose of the -root nodes in the scope graphs

generated by Program.graph: since the static semantics of this language require that

each valid term is uniquely well-scoped, the root node of each term’s scope graph needs
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to be unique so that there will be only one scope that matches the predicate in the o

case for the outermost lambda of a term. For example, consider the scope graph below

for a module that contains the terms λ (x : nat). x and λ (x : nat). suc x.

mod1

decl-root1

decl1 o-here

decl-root1

decl2 o-here

The first term is scopechecked in the root scope decl-root1 (i.e. the scope index

in the type of the intrinsically-scoped output term is decl-root1), and the second is

scopechecked in decl-root2. When scopechecking either term, there is a unique scope

in the graph that has the correct parent and binds the correct name and type: decl-root1

and decl-root2 both bind an argument named x with type nat, but they cannot occur

together in the output of the call to filterProp f in the o case of DErasure f , since the s

argument to DErasure f will be different in each case.

In contrast, consider the scopechecking of this module in a scope graph without

decl-root nodes, where the outermost lambda scopes of each term point directly to the

module scope and the overall expression is scopechecked in the module scope.
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mod1

decl1 o-here decl2 o-here

Under this scope graph, the o cases in DErasure f for each term both find that there are

two scopes with the correct contents (decl1 o-here and decl2 o-here), and therefore both

return ambiguous output with two distinct intrinsically-scoped terms that erase to each

corresponding raw term. The issue is that the scopechecker is designed to scopecheck

any arbitrary term in any arbitrary graph, so it does not have enough information to know

that a given term under consideration is e.g. “the first term in the first module in the

program”.

This scheme with the -root nodes is admittedly a bit of a concession of computational

efficiency for the sake of proof convenience; the execution of a realistic scopechecker

should ideally not depend on the linear-time operation of filtering a list of all scopes

in order to find a scope suitable to represent a particular lambda subterm. A poten-

tially more principled solution would be to introduce an annotation phase before the

scopechecker, annotating the lambda nodes in a raw expression with their scopes in the

overall program graph so that the scopechecker knows which scopes are associated

with each of them. Since the module in question does scopecheck uniquely in a graph

with decl1 o-here and decl1 o-here unified into the same node with a single edge to

mod1, another potential solution might be to unify the subgraphs in the scope graph that

have identical shapes and bindings, creating a “minimal” graph in some sense for the

given module before scopechecking the module.
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7.3 Typed expressions

The module defining intrinsically-typed expressions is also parameterized over a raw

program; all the code in this section is defined within this module.

open import Code.STLC.Raw as Raw hiding (Expr; Scope; graph)

module Code.STLC.Typed (p : Raw.Program) where

open Raw.Program p

open ScopeGraph graph

open VarPath p

7.3.1 Expressions

The type of expressions is almost identical to the intrinsically-typed STLC syntax type

in Bach Poulsen et al. [3], with the exception again of the VarPath argument in the var

case.

data Expr s : Type Ñ Set where

bool : Bool Ñ Expr s bool

nat : NÑ Expr s nat

suc pred : Expr s nat Ñ Expr s nat

iszero : Expr s nat Ñ Expr s bool

if : Expr s bool Ñ Expr s t Ñ Expr s t Ñ Expr s t

var : (p : VarPath x s) Ñ Expr s (varPathType x p)

o : {{shape : graph s1 ” ([ s ] , [ x , t1 ])}} Ñ Expr s1 t2 Ñ Expr s (t1 ñ t2)

_‚_ : Expr s (t1 ñ t2) Ñ Expr s t1 Ñ Expr s t2

variable et et
1 et

2 et
3 : Expr s t
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7.3.2 Erasures

The erasure type is almost identical to the one in the Scoped module, with the exception

of the slightly modified var and o cases and the type indices that must be specified for

the intrinsically-typed terms.

data Erasure {s} : Scoped.Expr s Ñ Expr s t Ñ Set where

bool : Erasure (bool b) (bool b)

nat : Erasure (nat n) (nat n)

suc : Erasure es et Ñ Erasure (suc es) (suc et)

pred : Erasure es et Ñ Erasure (pred es) (pred et)

iszero : Erasure es et Ñ Erasure (iszero es) (iszero et)

if :

Erasure es
1 et

1 Ñ Erasure es
2 et

2 Ñ Erasure es
3 et

3 Ñ

Erasure (if es
1 es

2 es
3) (if et

1 et
2 et

3)

var : {p : VarPath x s} Ñ Erasure (var p) (var p)

o :

{{shape : graph s1 ” ([ s ] , [ x , t1 ])}} Ñ Erasure es et Ñ

Erasure (o {{shape}} es) (o et)

_‚_ : Erasure es
1 et

1 Ñ Erasure es
2 et

2 Ñ Erasure (es
1 ‚ es

2) (et
1 ‚ et

2)

The presence of the STLC type index in the erasure type makes it a little more

challenging to specify the uniqueness properties of this erasure relation than those of

the scoped one. erased-unique witnesses that any pair of scoped terms that are the

erasure of the same typed term must be propositionally equal, pre-erased-type-unique

witnesses that any two typed terms that erase to the same scoped term must have the

same type, pre-erased-unique witnesses that two typed terms with the same type that
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erase to the same scoped term must be propositionally equal, and erasure-unique-�

combines the previous two into a proof that any two typed terms of any types that erase

to the same scoped term must be heterogeneously equal. Finally, the Erasure type itself

is shown to be propositional by an application of some of these lemmas.

erase : (et : Expr s t) Ñ D λ es Ñ Erasure es et

erased-unique : Erasure es
1 et Ñ Erasure es

2 et Ñ es
1 ” es

2

pre-erased-type-unique :

{et
1 : Expr s t1} {et

2 : Expr s t2} Ñ

Erasure es et
1 Ñ Erasure es et

2 Ñ t1 ” t2

pre-erased-unique : Erasure es et
1 Ñ Erasure es et

2 Ñ et
1 ” et

2

erasure-unique-� :

{et
1 : Expr s t1} {et

2 : Expr s t2}

(er : Erasure es et
1) (er1 : Erasure es et

2) Ñ er � er1

instance erasure-propositional : Propositional (Erasure es et)

7.3.3 Typechecking

Since there is at most one intrinsically-typed term that erases to a given intrinsically-

scoped term (by pre-erased-type-unique and pre-erased-unique), a typechecker may

be appropriately defined as a decision procedure; any ambiguity in the meaning of

explicitly-typed STLC terms arises from scoping ambiguities, not typing ambiguities.

The typechecker could be defined as a function returning a Dec value along with a proof

that the type it returns is Propositional, in order to use it with filterProp f to filter the

scopechecker output.

Instead, it turns out to be more convenient for the recursive procedure defining the
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typechecker to return a Finite type of intrinsically-typed terms that erase to a given

intrinsically-scoped input term. This is partly because it’s not possible to give an equiva-

lent of the Σ f function for Dec without requiring additional proof arguments: knowing that

some element a : A exists and that the type B a is empty is not enough to know whether

Σ A B is inhabited. There are types with decidable inhabitance that are not finite (trivially

including N), so this is not a fully general technique for building decision procedures,

but in situations where the output of a decision procedure is a type that can be given

a Finite proof, it can be simpler to build the procedure using the somewhat more ex-

pressive Finite combinators. The values of the type D2 λ t (et : Expr s t) Ñ Erasure es et

can be seen as witnesses that the intrinsically-scoped expression es has a valid typing

derivation, in the sense that they witness the existence of an intrinsically-typed term that

erases to es.

DErasure f : (es : Scoped.Expr s) Ñ Listable (D2 λ t (et : Expr s t) Ñ Erasure es et)

As in scopechecking, typechecking a constant expression is immediate.

DErasure f (bool b) = finite [ -, -, bool ] λ where (_ , _ , bool) Ñ here refl

DErasure f (nat b) = finite [ -, -, nat ] λ where (_ , _ , nat) Ñ here refl

The suc case filters the type of all terms that erase to e with a predicate requiring the

inferred type to be nat.

DErasure f (suc e) =

filterProp f (λ where (t , _ , _) Ñ t ?
“ nat) (DErasure f e) <& f >

surjection

(λ where ((_ , _ , er) , refl) Ñ -, -, suc er)

(λ where (_ , _ , suc er) Ñ (-, -, er) , refl)

(λ where (_ , _ , suc er) Ñ refl)
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The pred and iszero cases are omitted to save space, since they’re nearly identical to

the suc case.

The if case is similar to the suc case, although it has to check more invariants: e1

must be of type bool, and e2 and e3 must both be well-typed and have the same type.

DErasure f (if e1 e2 e3) =

filterProp f (λ where (t1 , _ , _) Ñ t1 ?
“ bool) (DErasure f e1) ˆ f

filterProp f

(λ where ((t2 , _ , _) , (t3 , _ , _)) Ñ t2 ?
“ t3)

(DErasure f e2 ˆ
f DErasure f e3) <& f >

surjection

(λ where

(((_ , _ , er1) , refl) , (((_ , _ , er2) , (_ , _ , er3)) , refl)) Ñ

-, -, if er1 er2 er3)

(λ where

(_ , _ , if er1 er2 er3) Ñ

((-, -, er1) , refl) , (((-, -, er2) , (-, -, er3)) , refl))

(λ where (_ , _ , if er1 er2 er3) Ñ refl)

The var case is trivial: all of the work of variable resolution has been done during

scopechecking, and all of the work of validating the types of variables occurs in the

cases for the constructs that require typechecking subterms like suc and _‚_.

DErasure f (var p) = finite [ -, -, var ] λ where (_ , _ , var) Ñ here refl

The o case is straightforward: a lambda expression is well-typed iff its body is well-

typed. The shape argument is passed silently from the input to the output by instance

resolution.
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DErasure f (o e) =

DErasure f e <& f >

surjection

_

(λ where (_ , _ , o er) Ñ -, -, er)

(λ where (_ , _ , o er) Ñ refl)

The application case checks that the type of the right subexpression matches up with

the type of the input to the left subexpression.

DErasure f (e1 ‚ e2) =

filterProp f

(λ where ((t1 , _ , _) , (t2 , _ , _)) Ñ acceptsArg? t1 t2)

(DErasure f e1 ˆ
f DErasure f e2) <& f >

surjection

(λ where (((_ , _ , er1) , (_ , _ , er2)) , (_ , refl)) Ñ -, -, er1 ‚ er2)

(λ where (_ , _ , er1 ‚ er2) Ñ ((-, -, er1) , (-, -, er2)) , (-, refl))

(λ where (_ , _ , er1 ‚ er2) Ñ refl)

The typecheck decision procedure is defined with Finite.dec, which looks only to see

if the elements list has a head, so in runtime execution the typecheck function lazily

returns after the first typing derivation is found. This is justified by Derasure-propositional,

which witnesses that the output of typecheck in the positive case is unique.

typecheck : (es : Scoped.Expr s) Ñ Dec (D2 λ t (et : Expr s t) Ñ Erasure es et)

typecheck = Listable.dec ˝ DErasure f

instance
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Derasure-propositional :

Propositional (D2 λ t (et : Expr s t) Ñ Erasure es et)

The _$_˝
˝_ predicate witnesses that a raw expression e is uniquely well-scoped and

well-typed with type t in scope s. The type of the scopedErasure field ensures that e

has no variables that resolve ambiguously; as mentioned in the introduction to section

6.2, this disables type-directed overloading in cases where a raw term has more than

one distinct corresponding intrinsically-scoped term but only one is well-typed.

record _$_˝
˝_ s e t : Set where

constructor typing

field

scopedErasure : True (singleton? (Scoped.DErasure f s e))

scopedExpr = proj1 (point (toWitness scopedErasure))

field

{typedExpr} : Expr s t

typedErasure : Erasure scopedExpr typedExpr

This type is propositional and finite: since it requires the intrinsically-scoped term

that it contains to be unique and an intrinsically-typed term that erases to a given

intrinsically-scoped term is always unique, there is either zero or one member for at

given indices.

_$ f _˝
˝_ : @ s e t Ñ Listable (s $ e ˝

˝ t)

instance typing-propositional : @ {s e t} Ñ Propositional (s $ e ˝
˝ t)

These definitions are used to specialize the TypedModuleSystem module, completing

the definition of the static semantics of this language.
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open TypedModuleSystem p _|ù_ _$ f _˝
˝_ public

7.4 Program example

The test program below is defined in Code.STLC.Test, and the code accompanying this

thesis includes a main function to test the static analysis and evaluation procedures

over this test program (and a README file with compilation and execution instructions).

A couple of features of the language definition are on display: the “two” and “three”

modules import each other in a cycle, the definitions of “even” and “odd” are mutually

recursive across different modules, and both “two” and “three” must import “one”

to use the “ ” function because module imports are not transitive (if they were then

only one of them would need to). The code takes advantage of Raw.Expr instances

of the Number and IsString typeclasses to convert natural number literals and string

literals to raw expressions with the nat and var constructors respectively. The program

passes scopechecking and typechecking with a unique output intrinsically-typed term

that evaluates to the value bool true, which prints as true in the Agda main function’s

execution.

test : Program

test =

record

{ modules =

( "one"

, record

{ imports = []

; declarations =
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[ (" " , bool ñ bool ,

o "x" bool (if "x" (bool false) (bool true)))

]

}

) ::

( "two"

, record

{ imports = "one" :: "three" :: []

; declarations =

[ ("even" , nat ñ bool ,

o "x" nat

(if

(iszero "x")

(bool true)

(" " ‚ ("odd" ‚ pred "x"))))

]

}

) ::

( "three"

, record

{ imports = "one" :: "two" :: []

; declarations =

[ ("odd" , nat ñ bool ,

o "x" nat

(if
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(iszero "x")

(bool false)

(" " ‚ ("even" ‚ pred "x"))))

]

}

) ::

[]

; mainImports = [ "two" ]

; mainType = bool

; mainTerm = "even" ‚ 2

}
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Chapter 8 Toy Procedural Language

The toy procedural language defined in this chapter includes imperative assignments

and for loops along with pointer, array, boolean, and integer types. As mentioned in

the introduction to Section 6.2, a flexible form of type-directed overloading is enabled,

allowing some of the language definition to be streamlined. The implementation is

described here in less detail than that of STLC in the previous chapter, referencing

patterns from the STLC definition to avoid repeating their explanations except where

they differ notably in the application to a different language.

The procedures in this language are not first-class, and can only be referenced by

name. The definitions used as “terms” when instantiating the module system are a sum

type of procedures and expressions; an expression defined at the top-level in a module

acts as a module-scoped variable with a default value given by the expression.

8.1 Raw terms

8.1.1 Types

The syntax for types is taken roughly from C: the prefix asterisk represents a pointer

type and the postfix square brackets represent an array type, defined as two distinct

types. Arrays can be indexed with integers but arithmetic over pointers is not supported;

pointers are obtained through a variable de-referencing operator comparable to the

unary & operator in C.

infix 17 *_

infix 18 _~�

data Type : Set where
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unit bool int : Type

_~� *_ : Type Ñ Type

variable t t1 t2 : Type

8.1.2 Expressions

The implicit parameter of type Size (from the standard library Size module) in the

definition of Expr below is only to aid termination checking: specifically, the function

application operator _x_y accepts a List argument of Expr values, and a recursive call

in a structurally recursive function cannot, in general, be used as the argument to a

higher-order function like List.map over this list of subexpressions without some kind

of additional termination evidence, even though the expressions in the list are actually

structurally smaller than the argument pattern they come from. The Ò function returns

a Size value definitionally larger than its argument, so the implicit Size arguments

effectively act as an index representing the depth of an AST value. The --sized-types

compiler option fills in implicit Size arguments with a special value 8 rather than filling

them in by unification, allowing implicit Size arguments to be effectively ignored in uses

of the type that don’t require them for termination reasoning. The variable syntax is not

quite as flexible with terms that involve Size arguments, so most implicit arguments are

written out in the code in this section.

infix 13 _x_y

infix 14 _<=_

infix 15 -_

infixl 15 _+_

infix 16 _~_�
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infix 17 &_

data Expr : {l : Size} Ñ Set where

unit : @ {l} Ñ Expr {l}

null : @ {l} Ñ Type Ñ Expr {l}

_~_� : @ {l} Ñ Expr {l} Ñ Expr {l} Ñ Expr {l}

&_ : @ {l} Ñ Name Ñ Expr {l}

bool : @ {l} Ñ Bool Ñ Expr {l}

int : @ {l} Ñ ZÑ Expr {l}

new_~_� : @ {l} Ñ Type Ñ Expr {l} Ñ Expr {l}

-_ *_ : @ {l} Ñ Expr {l} Ñ Expr {l}

length : @ {l} Ñ Expr {l} Ñ Expr {l}

_+_ _<=_ : @ {l} Ñ Expr {l} Ñ Expr {l} Ñ Expr {l}

_x_y : @ {l} Ñ Name Ñ List (Expr {l}) Ñ Expr {Ò l}

variable

e e1 e2 : Expr

The &_ constructor turns a name into a pointer to the data cell for the variable with that

name; the *_ constructor accesses the value at the data cell specified by a pointer-typed

expression; the _~_� constructor creates a pointer to a specific index in an array, given a

pointer to the array and an expression for the index; the new_~_� constructor creates a

new array of the given type with length specified by the given Expr, with all cells initialized

with a type-specific default value; and the _x_y constructor represents a procedure call

expression, taking the name of a procedure and a list of argument expressions.
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8.1.3 Statements

The Stmt type represents statements. The void_ statement evaluates an expression

and ignores the resulting value, to allow calling procedures for only their side effects; the

assignment statement x :“ y is like *x = y in C, assigning the value of y to the data cell

pointed to by x; the struck-through semicolon _;_ is the sequencing operator (underlined

instead in the Agda source code due to typesetting differences); the let operator binds

the given expression value in the given substatement with the given name and type; and

the for and if operators work as in C-like languages, with the second Expr argument and

both Stmt arguments to for typechecked in a scope that includes the variable named by

the first argument.

infixr 10 _;_

infixr 11 void_ forx_:“_;_;_y_ ifx_y_ letx_˝
˝_:“_y_

infix 12 _:“_

data Stmt : Set where

void_ : Expr Ñ Stmt

_:“_ : Expr Ñ Expr Ñ Stmt

_;_ : Stmt Ñ Stmt Ñ Stmt

letx_˝
˝_:“_y_ : Name Ñ Type Ñ Expr Ñ Stmt Ñ Stmt

forx_:“_;_;_y_ : Name Ñ Expr Ñ Expr Ñ Stmt Ñ Stmt Ñ Stmt

ifx_y_ : Expr Ñ Stmt Ñ Stmt

variable st st1 st2 : Stmt
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8.1.4 Procedures

The Proc type represents procedures, each containing an argument list, a body state-

ment, and a return expression.

record Proc : Set where

constructor proc

field

params : List (Name ˆ Type)

body : Stmt

ret : Expr

open Proc

variable pr : Proc

8.1.5 Declarations

The Decl type is used as the instantiation of Term in the module system. A declaration

is either a procedure or a variable with a given initial expression.

data DeclType : Set where

proc : List Type Ñ Type Ñ DeclType

var : Type Ñ DeclType

variable dt : DeclType

data Decl : Set where

proc : Proc Ñ Decl
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var : Expr Ñ Decl

variable d : Decl

8.1.6 Scope graph construction

There are no expression forms in the Proc language that introduce new scopes. The type

of scopes in a statement are defined similarly to the Scope type in the STLC definition

in the previous chapter, with the let and for constructors introducing new scopes; the

proc-outer scope is used to bind the arguments of a procedure.

data StmtScope : Stmt Ñ Set where

;-left : @ {st1 st2} Ñ StmtScope st1 Ñ StmtScope (st1 ; st2)

;-right : @ {st1 st2} Ñ StmtScope st2 Ñ StmtScope (st1 ; st2)

let-here : @ {x t e st} Ñ StmtScope (letx x ˝
˝ t :“ e y st)

let-there : @ {x t e st} Ñ StmtScope st Ñ StmtScope (letx x ˝
˝ t :“ e y st)

for-here : @ {x e1 e2 st1 st2} Ñ StmtScope (forx x :“ e1 ; e2 ; st1 y st2)

for-step : @

{x e1 e2 st1 st2} Ñ

StmtScope st1 Ñ StmtScope (forx x :“ e1 ; e2 ; st1 y st2)

for-there : @

{x e1 e2 st1 st2} Ñ

StmtScope st2 Ñ StmtScope (forx x :“ e1 ; e2 ; st1 y st2)

if-there : @ {e st} Ñ StmtScope st Ñ StmtScope (ifx e y st)

data ProcScope (p : Proc) : Set where

proc-outer : ProcScope p
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proc-body : StmtScope (body p) Ñ ProcScope p

data DeclScope : Decl Ñ Set where

proc : @ {p} Ñ ProcScope p Ñ DeclScope (proc p)

The graph of a statement or procedure is also generated with a similar pattern as in

the STLC definition; the free pre-scope is referenced as a parent in the let-here, for-here,

and proc-outer scopes, since these are the forms that introduce new scopes.

stmtGraph : @ {s} Ñ PreGraph (StmtScope s) Type

stmtGraph (;-left i) = mapEdges (mapPreScope ;-left) (stmtGraph i)

stmtGraph (;-right i) = mapEdges (mapPreScope ;-right) (stmtGraph i)

stmtGraph {letx x ˝
˝ t :“ e y s} let-here = [ free ] , [ x , t ]

stmtGraph (let-there i) =

mapEdges (bound ˝ bind let-here let-there) (stmtGraph i)

stmtGraph {forx x :“ e1 ; e2 ; s1 y s2} for-here =

[ free ] , [ x , int ]

stmtGraph (for-step i) =

mapEdges (bound ˝ bind for-here for-step) (stmtGraph i)

stmtGraph (for-there i) =

mapEdges (bound ˝ bind for-here for-there) (stmtGraph i)

stmtGraph (if-there i) =

mapEdges (mapPreScope if-there) (stmtGraph i)

procGraph : @ {p} Ñ PreGraph (ProcScope p) Type

procGraph {proc xts s e} proc-outer = [ free ] , xts

procGraph (proc-body i) =

mapEdges (bound ˝ bind proc-outer proc-body) (stmtGraph i)
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There are no expression forms that introduce new scopes, so all scopes in the graph

of a declaration must be procedure scopes.

declGraph : @ d Ñ PreGraph (DeclScope d) DeclType

declGraph d (proc i) =

let es , ds = procGraph i in

List.map (mapPreScope proc) es , List.map (Σ.map2 var) ds

All of the scope types involved in the graph are finite, so this raw language definition

is sufficient to specialize RawModuleSystem with.

StmtScope f : @ st Ñ Listable (StmtScope st)

ProcScope f : @ pr Ñ Listable (ProcScope pr)

DeclScope f : @ d Ñ Listable (DeclScope d)

open RawModuleSystem DeclType Decl DeclScope f declGraph public

8.1.7 Specificity ordering and well-formedness predicates

The well-formedness predicates are defined similar to the STLC one, but in this case

there are two relevant predicates: one for resolving variable names that refer to data

cells in memory and one for resolving procedure names in procedure call expressions.

record WellFormedVar x i : Set where

constructor wellFormedVar

field

{type} : Type

declIndex : (x , var type) P decls (g i)
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record WellFormedProc x i : Set where

constructor wellFormedProc

field

{paramTypes} : List Type

{retType} : Type

declIndex : (x , proc paramTypes retType) P decls (g i)

Neither predicate imposes any constraints on the paths used to resolve names, leaving

module imports implicitly transitive. The specificity ordering prioritizes the resolution

paths with the fewest import edges and then the shortest paths in general, using a type

Lex from Code.Util that encodes a lexical ordering relation over pairs of natural numbers.

importEdges : @ {i j} Ñ Star Edge i j Ñ N

_<_ : @ {i} Ñ D (Star Edge i) Ñ D (Star Edge i) Ñ Set

(_ , p) < (_ , p1) =

Lex (importEdges p , starLength p) (importEdges p1 , starLength p1)

The types VarPath and ProcPath are derived from these predicates and this ordering,

in the same way as VarPath in the STLC definition (but one for each predicate).

8.2 Typed terms

As in the STLC definition, the module defining typed terms in this language is parame-

terized over a raw program. The Scoped step from STLC is skipped altogether, since in

this language terms are defined to be unambiguous whenever they have a uniquely well-

typed interpretation, not necessarily a uniquely well-scoped interpretation; typechecking

goes directly from raw terms to intrinsically-typed terms.
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module Code.Proc.Typed (p : Raw.Program) where

open Raw.Program p

open VarPath graph

open ScopeGraph graph

8.2.1 Expressions and statements

The intrinsically-typed expression and statement types follow effectively the same pattern

as in the STLC definition. Of note is that the _x_y constructor takes an All argument,

requiring its argument sublist to have the correct length and types for the procedure

being called. The VarPath and ProcPath types are the path types defined with the

specificity ordering and the respective well-formedness predicates from the previous

section, and the varType, paramTypes, and retType functions extract the corresponding

component types from the destination of a variable or procedure name resolution path.

The var constructor of DeclType, used earlier to represent module-scope variables, here

also represents variables bound by statement forms and procedure parameters.

data Expr (s : Scope) : {l : Size} Ñ Type Ñ Set where

unit : @ {l} Ñ Expr s {l} unit

null : @ {l t} Ñ Expr s {l} (* t)

&_ : @ {l x} (p : VarPath x s) Ñ Expr s {l} (* varType p)

_~_� : @ {l t} Ñ Expr s {l} (* (t ~�)) Ñ Expr s {l} int Ñ Expr s {l} (* t)

bool : @ {l} Ñ Bool Ñ Expr s {l} bool

int : @ {l} Ñ ZÑ Expr s {l} int

new_~_� : @ {l} (t : Type) Ñ Expr s {l} int Ñ Expr s {l} (t ~�)

*_ : @ {l t} Ñ Expr s {l} (* t) Ñ Expr s {l} t
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-_ : @ {l} Ñ Expr s {l} int Ñ Expr s {l} int

_+_ : @ {l} Ñ Expr s {l} int Ñ Expr s {l} int Ñ Expr s {l} int

_<=_ : @ {l} Ñ Expr s {l} int Ñ Expr s {l} int Ñ Expr s {l} bool

length : @ {l t} Ñ Expr s {l} (t ~�) Ñ Expr s {l} int

_x_y : @

{l x} (p : ProcPath x s) Ñ

All (Expr s {l}) (paramTypes p) Ñ Expr s {Ò l} (retType p)

data Stmt (s : Scope) : Set where

void_ : @ {t} Ñ Expr s t Ñ Stmt s

_:“_ : @ {t} Ñ Expr s (* t) Ñ Expr s t Ñ Stmt s

_;_ : Stmt s Ñ Stmt s Ñ Stmt s

letx_˝
˝_:“_y_ : @

{i1} x t {{_ : graph i1 ” ([ s ] , [ x , var t ])}} Ñ

Expr s t Ñ Stmt i1 Ñ Stmt s

forx_:“_;_;_y_ : @

{i1} x {{_ : graph i1 ” ([ s ] , [ x , var int ])}} Ñ

Expr s int Ñ Expr i1 bool Ñ Stmt i1 Ñ Stmt i1 Ñ Stmt s

ifx_y_ : Expr s bool Ñ Stmt s Ñ Stmt s

8.2.2 Procedures

Intrinsically-typed procedures carry a scope and a witness to the shape of the scope;

this is the proc-outer scope in the graphs generated in the previous section.

record Proc (i : Scope) (xts : List (Name ˆ Type)) (t : Type) : Set where

constructor proc

137



field

{scope} : Scope

{{shape}} : graph scope ” ([ i ] , List.map (Σ.map2 var) xts)

body : Stmt scope

ret : Expr scope t

The Erasure types and Finite proofs for the Ptr, Expr, Stmt, Proc, and Decl types are

defined along the same pattern as those for the Expr type in the STLC definition. One

somewhat nontrivial constructor case is that of the procedure call expression, listed

below. The Pointwise type is used to relate the parameter type list of the procedure

to the list of argument expressions by requiring that there exists an intrinsically-typed

expression for each pair of type and raw expression (and implicitly that the lists are the

same length).

-x_y : @

{l x} {p : ProcPath x s} {es : List (Raw.Expr {l})} Ñ

(es1 :

Pointwise

(λ t e Ñ D λ (e1 : Expr s t) Ñ ExprErasure e e1)

(paramTypes p) es) Ñ

ExprErasure (x x es y) (p x pointwiseñall1 (Pointwise.map proj1 es1) y)

The pointwiseñall1 function (from Code.Util) is used to convert a Pointwise value to

an All value when the binary predicate used ignores its second argument. The use in the

type of -x_y extracts the list of intrinsically-typed expression proj1 components from the

es1 argument to get the All list of intrinsically-typed arguments for the intrinsically-typed

procedure call expression.
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pointwiseñall1 : @

{A B} {P : A Ñ Set} {as : List A} {bs : List B} Ñ

Pointwise (λ a _ Ñ P a) as bs Ñ

All P as

8.2.3 Typechecking

The Finite proofs for the erasure types establish a typechecking procedure for the

various syntactic sorts in this language; since no special uniqueness invariants are

being enforced, the Typing type for a raw declaration d just contains an intrinsically-typed

declaration of type t that erases to d.

record Typing s d t : Set where

constructor typing

field

typedDecl : Decl s t

erasure : DeclErasure d typedDecl

Typing f : @ s d t Ñ Listable (Typing s d t)

With these definitions the TypedModuleSystem module can be opened and special-

ized, completing the definition of the static semantics of this language.

open TypedModuleSystem p DeclVal Typing f public

8.3 Program example

A complete example program in the language of this chapter is presented on the next

page. To simplify comprehension, mixfix operators and Agda’s built-in features for
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overloading certain syntax are abused below to define a Pascal-like syntax with begin

and end delimiters for the module language. In a sense, the definitions of these operators

represent the definition of a syntax analysis phase for the Proc language, delegating all

of the work of lexing and parsing to Agda. In exchange, of course, the object language

syntax can only be defined in terms of mixfix operators and overloadable Agda syntax,

rather than any kind of direct definition in terms of a formal grammar or a bespoke parser,

and Agda syntax errors are the only form of error reporting

_»_ = _;_

program xms main-imports xs main˝
˝ t :“ e end = prog xms xs (var t) (var e)

mod x imports xs begin es end = x , mod xs es

procedure x x xts y t begin s return e end =

x , proc (List.map proj2 xts) t , proc (proc xts s e)

procedure_x_ybegin_end = procedure_x_y unit begin_return unit end

var x ˝
˝ t :“ e = x , var t , var e

_of_ = _,1_

The do syntax in Agda desugars to whatever operators with the relevant names are

in scope, similar to the RebindableSyntax Haskell extension. In this case the _»_

operator is defined to be the statement sequencing operator, allowing do syntax to be

used to sequence statements in raw Stmt definitions, as in several of the definitions in

test below.

The program test creates a buffer array, initializes it with 25 integers in descending

order, and then calls an in-place quicksort procedure to sort the buffer before returning

its contents; an unused secondary declaration with the same name as the buffer is

given with a different type to demonstrate type-directed overloading. The program is

translated from pseudocode on the Wikipedia page for quicksort [14], specifically the
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pseudocode in the “Lomuto partition scheme” section. The test code is a more or less

direct translation of the pseudocode in the style of a standard C implementation. While

this style of implementation of object language syntax is probably not suitable for the

user-facing frontend of a real-world language implementation, it does make it relatively

straightforward to verify by eye that the implementation of test matches the pseudocode,

which is a useful quality for a test to have.

test : Program

test =

program

mod "code" imports [] begin

procedure "swapint" x "a" of * int :: "b" of * int :: [] ybegin

letx "temp" ˝
˝ int :“ * "b" y (do

"b" :“ * "a"

"a" :“ "temp"

)

end ::

procedure "quicksort"

x "A" of * (int ~�) :: "low" of int :: "high" of int :: [] ybegin

ifx "low" + 1 <= "high" y

letx "p" ˝
˝ int :“ "partition" x "A" :: "low" :: "high" :: [] y y (do

void "quicksort" x "A" :: "low" :: "p" + -1 :: [] y

void "quicksort" x "A" :: "p" + 1 :: "high" :: [] y

)

end ::

procedure "partition"
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x "A" of * (int ~�) :: "low" of int :: "high" of int :: [] y int begin

letx "pivot" ˝
˝ int :“ * ("A" ~ "high" �) y (do

forx "j" :“ "low" ; "j" + 1 <= "high" ; & "j" :“ "j" + 1 y

ifx * ("A" ~ "j" �) + 1 <= "pivot" y (do

void "swapint" x "A" ~ "low" � :: "A" ~ "j" � :: [] y

& "low" :“ "low" + 1

)

void "swapint" x "A" ~ "low" � :: "A" ~ "high" � :: [] y

)

return "low"

end ::

[]

end ::

mod "buffer" imports "code" :: [] begin

var "buf" ˝
˝ int ~� :“ new int ~ 25 � ::

var "buf" ˝
˝ bool :“ bool true ::

procedure "go" x [] y int ~� begin (do

forx "i" :“ 0 ; "i" <= 24 ; & "i" :“ "i" + 1 y

& "buf" ~ "i" � :“ 24 + (- "i")

void "quicksort" x & "buf" :: 0 :: length "buf" + -1 :: [] y

)

return "buf"

end ::

[]

end ::
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[]

main-imports "buffer" :: []

main˝
˝ int ~� :“ "go" x [] y

end

143



Chapter 9 Conclusion

9.1 Results

This thesis demonstrates that the scope graph calculus framework constructed in Bach

Poulsen et al. [3] admits implementations of correct-by-construction typecheckers in

a relatively direct style, at least for languages whose programs’ scope graphs can be

constructed in a single pass over the program. The module language presented in

Chapter 6 is an example of a kind of higher-order construct in the style of Leroy [9],

taking a base language definition as input and generating a new language with a module

system.

The code presented in Chapter 4 is only used a couple of times in the language

implementations in Part II, but it constitutes a library in its own right that is suitable for rea-

soning about finite graphs in general. A version of the library is available independently

of the rest of the code in this thesis at https://www.github.com/kcsmnt0/graph.

The generalization of the framework from Bach Poulsen et al. [3] presented in Chap-

ter 5 is sufficient for defining other languages similar to the ones presented here, as well

as languages with a wide range of scoping semantics that can be given in the scope

graph calculus. It may not immediately extend to languages with more complicated

typing semantics, as discussed in Section 9.3 below.

9.2 Readability

The set of potential target audiences for correct-by-construction code is somewhat

different than in more traditional settings, at least at present, and accordingly the

analysis of readability should also be somewhat different. A distinct characteristic of
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fully correct-by-construction code is that the reader needs only to understand the type

signatures in a program in order to understand the meaning of the program and verify

its correctness; a reader of this thesis with the intent to understand the ideas presented

and not necessarily the implementation details is thus mostly unconcerned with the

term-level code, and will not be hindered by proofs that are informally clear but formally

unpleasant. On the other hand, while a nontrivial formal proof is very rarely readable

enough to stand entirely on its own without informal presentation, more readable proof

code requires less explanation in general, sometimes significantly so.

In the specific case of this thesis, the specifications of the typecheckers in Part II

are given by the definitions of the intrinsically-typed syntax types and the Erasure

types; these are expected to be reasonably readable and informative to a reader with

a general background in type theory, as with the definitions in Bach Poulsen et al. [3].

The term-level implementations of these functions are not expected to be immediately

comprehensible to a reader without a strong familiarity with Agda and its standard

library, but with the aid of the informal explanation given in the thesis text, the reader is

expected to be able to understand and recognize the pattern of typechecker definition

using surjection proofs as a variant of the more traditional pattern of mapping functions

over lists.

For an example of where readability in proof code could potentially be improved,

consider the following excerpt from the definition of the STLC scopechecking function

DErasure f in Subsection 7.2.3.

DErasure f s (bool b) = finite [ -, bool ] λ where (_ , bool) Ñ here refl

DErasure f s (nat n) = finite [ -, nat ] λ where (_ , nat) Ñ here refl

DErasure f s (suc e) =

DErasure f s e <& f >
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surjection

_

(λ where (_ , suc er) Ñ -, er)

(λ where (_ , suc er) Ñ refl)

A more traditional Haskell-style definition capturing the computational behavior of this

excerpt might read as follows.

DErasure f s (bool b) = return (bool b)

DErasure f s (nat n) = return (nat n)

DErasure f s (suc e) = map suc (DErasure f s e) -- or “DErasure f s e <&>

suc”

This highlights the general pattern that the correct-by-construction code shares in

common with more traditional code; each of the elements of the traditional definition is

recognizable in the correct-by-construction definition, with the caveat that the second

argument to surjection is actually the inverse of the function that is passed to map as its

first argument and the actual first argument to map is inferred. The comparison also

illustrates some syntactic overhead in the correct-by-construction code, as each line

includes proof information that is most likely irrelevant to a human reader, namely the

lambda subexpressions involving the refl constructor.

9.3 Future work

Most or all of the manual proof overhead covered in Section 9.2 can be eliminated by

proof automation, at least in principle: all of the surjection proofs presented throughout
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this thesis are trivial enough that the interactive Agda Emacs mode is able to fully guide

their development with the help of some button presses but no actual ingenuity from the

user, so it is expected that this process could be fully automated, requiring the user to

specify only the codomain of each surjection and deriving the surjective function itself.

Extending the approach covered by this thesis to more complex languages that may

require multiple passes and queries over incompletely-constructed scope graphs, as

in van Antwerpen et al. [13], is left for potential future work. This includes languages

that require the interleaving of scope graph construction and type inference in order

to construct a scope graph for a program, including languages with traditional field

accessor syntax (“dot notation”) for record-like types.

The auxiliary -root scopes and linear-time scope search explained in Subsection 7.2.2

should be avoidable. It might be sufficient to introduce an annotation stage between raw

terms and intrinsically-scoped terms, operating with knowledge of the relation between

the structure of a raw term and the structure of the scope graph generated for it by the

object language’s static semanantics.

Another interesting avenue of further development would be to build parsers for

these languages with a library like Agdarsec [1], to achieve an interpreter implemented

end-to-end in Agda with important properties proven by construction. The evaluators

defined in the appendix exist in this development primarily to justify the existence

of the languages they evaluate, and are fairly inefficient; it may also be possible to

construct interpreters over intrinsically-typed languages in this scope graph framework

that verify more semantic properties by construction than just type preservation, such

as guarantees about computational complexity, or to build a compiler backend verified

to faithfully implement the semantics of an interpreter defined in this style.

147



9.4 Retrospective

Apart from initially learning Agda and becoming familiar with the standard library, the

most challenging part of this project in terms of development time and effort was

probably the graph search code, which went through several iterations before reaching

a workably concise implementation (which is still fairly involved compared to a standard

non-dependently-typed implementation). This speaks to a frequent general challenge in

the space of dependently-typed programming, which is the lack of a cohesive established

ecosystem of libraries, partly due to the relative youth and obscurity of languages like

Agda and partly due to it still being unclear how to best organize a communal system

of libraries of formalized mathematics at the scale of an ecosystem like Hackage for

Haskell or NPM for JavaScript.

The scopechecking and typechecking code came together in light of the organizing

principle of returning Listable values, which was motivated by the need to track ambiguity

in terms in order to encode a complete correctness specification for typechecking. This

also led to the need for the VarPath and ProcPath types in the example languages, to

account for shadowing rules that uniquely resolve otherwise ambiguous references in

some cases.

Ultimately, while this method of typechecker construction is certainly nontrivial to learn

and requires a prerequisite familiarity with the constructs presented in Part I, it yields

usable and explicable results for the set of languages it works over. The pattern, though

not immediately applicable to practical interpreter construction, is definitely promising as

an avenue of further development of verified language implementations.
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Appendix A: Term and program evaluation

While the focus of this thesis is on scopechecking and typechecking the example 

languages in order to produce intrinsically-typed terms, the intrinsically-typed syntax 

types themselves are arguably not very interesting in isolation - it is not necessarily 

obvious whether they are suitable for any particular kind of analysis or interpretation 

as syntactic objects in their own right beyond serving as a correctness specification for 

typechecking. In this appendix, an intrinsically type-safe evaluation function is given for 

programs in the Proc language presented in Chapter 8 of this thesis. This evaluation 

function takes intrinsically-typed terms as input and produces intrinsically-typed values 

as output, as in [3], demonstrating that the presented intrinsically-typed syntax types 

are suitable at least as input to a certain kind of intrinsically type-safe interpreter. The 

code accompanying this development also includes an evaluator for STLC, which is the 

same as the STLC evaluator code in [3] with minor modifications to support values of 

the Cell type described below.

The evaluation function is defined i n a  s imilar s tyle to the ones i n [ 3]: the t ype of 

a value in a heap is indexed over the types of the heap and the value, and a heap is 

represented as a collection of frames that each correspond to a particular scope in the 

scope graph of the program, each containing a value for each of the associated scope’s 

bound declarations and a reference to an associated frame for each of its parent scopes. 

The module system in Code.Module includes code to generate a program’s initial heap, 

and the Code.STLC and Code.Proc languages define evaluators over terms that are run 

with these intial heaps.

The purpose of the code in this appendix is mostly to serve as a sanity check that the 

language defined in Chapter 8 is realistic in the sense that it can be given unsurprising
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dynamic semantics by an already-established pattern. The explanatory content in this

appendix is somewhat shallower than much of the content in the rest of this thesis;

the goal is not to instill the reader with a functional understanding of the interpreter

construction pattern described in [3], but rather to justify briefly that the contributions of

this thesis are relevant in that setting.

Module system

The _|ù_ parameter to the TypedModuleSystem module in Code.Module is the type

of intrinsically-typed values in a heap with frames representing scopes in the graph of

program p; informally, an Agda value of type ht |ù t represents an object language value

of type t that may reference any frame in ht (e.g. a closure value holds a reference to

the frame it closes over).

module TypedModuleSystem

(p : Program)

(_|ù_ : ScopeGraph.HeapType (Program.graph p) Ñ Type Ñ Set)

{{|ù-weakenable : @ {t} Ñ Weakenable (_|ù t)}}

{_$_˝
˝_ : Program.Scope p Ñ Term Ñ Type Ñ Set}

(_$_˝
˝

f _ : @ s e t Ñ Listable (s $ e ˝
˝ t))

where

open Program p

open ScopeGraph graph

A program’s initial heap contains a frame for the main expression, a frame for each

module, and a frame for each declaration in each module.

modsHeapType : HeapType
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modsHeapType = List.map (λ where (_ , i) Ñ mod i) (indexed modules)

termRootsHeapType : HeapType

termRootsHeapType =

List.concatMap

(λ where

((_ , m) , i) Ñ

List.map

(λ where (_ , j) Ñ term-root i j)

(indexed (declarations m)))

(indexed modules)

programHeapType : HeapType

programHeapType = main-root :: modsHeapType ++ termRootsHeapType

The potential for cyclic imports introduces a challenge in the construction of an initial

heap with this heap type: the heap must contain a “value” for each declaration in each

module, but some declarations in some modules may be mutually recursive, so there

is not necessarily any linear order in which the declarations can be evaluated in order

to construct all of the values for each module frame. The solution implemented here is

to soften the notion of “value” to include a constructor for an unevaluated term paired

with a reference to the frame it will be evaluated in, similar to the notion of a “thunk” in a

lazy language, and include the original intrinsically-typed terms declared in a program

directly in the initial heap of the program.

The Cell type represents the type of “values” that can be in a heap frame during

evaluation.

data Cell (ht : List Scope) (t : Type) : Set where
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val : ht |ù t Ñ Cell ht t

term : @ {s e} Ñ s $ e ˝
˝ t Ñ s P ht Ñ Cell ht t

The Heap module from Code.Scope is parameterized over the type of “values” in the

heap and includes the types and definitions from [3] section 4.3, including the Heap

type.

open Heap (λ where ht (x , t) Ñ Cell ht t)

The fine details of the construction of the program heap are somewhat involved,

requiring some careful manipulation of list indices representing references to frames

in a heap, but at a high level it just recurses over the modules and definitions in

the program and puts each declaration in the appropriate frame with the term con-

structor. The definition of programHeap is within the definition of the ProgramTyp-

ing record in Code.Module, so it has access to the mainTyping and moduleTyping

fields. (The ++` (prefix rather than infix) function is the append function for the

All type, from Data.List.Membership.Propositional.Properties, and All.tabulate from

Data.List.Relation.Unary.All maps a function taking a list index as input over every index

in the list in order to produce an All value.)

programHeap : Heap programHeapType

programHeap =

(term mainTyping (here refl) :: [] , importLinks mainImports) ::

+++ (All.tabulate moduleFrame) (All.tabulate termFrame)

where

moduleFrame : @

{s} Ñ s P modsHeapType Ñ HeapFrame s programHeapType
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termFrame : @

{s} Ñ s P termRootsHeapType Ñ HeapFrame s programHeapType

Proc

In Code.Proc.Typed, value types are declared for expressions, procedures, and declara-

tions. The ExprVal type is straightforward, with the ptr constructor taking both a pointer

to some value and a reference to the frame that the pointer was valid in; the proc con-

structor for ProcVal is similar to ptr and to a closure constructor for an intrinsically-typed

STLC value type, taking an explicit equality proof to ease pattern matching.

data ExprVal (ht : HeapType) : {l : Size} Ñ Type Ñ Set where

null : @ {l t} Ñ ExprVal ht {l} (* t)

ref : @ {l x} (p : VarPath x s) Ñ s P ht Ñ ExprVal ht {l} (* varType p)

_~_� : @ {l t} Ñ ExprVal ht {l} (* (t ~�)) Ñ ZÑ ExprVal ht {l} (* t)

unit : @ {l} Ñ ExprVal ht {l} unit

bool : @ {l} Ñ Bool Ñ ExprVal ht {l} bool

int : @ {l} Ñ ZÑ ExprVal ht {l} int

arr : @ {l t} Ñ List (ExprVal ht {l} t) Ñ ExprVal ht {Ò l} (t ~�)

data ProcVal (ht : HeapType) (ts : List Type) (t : Type) : Set where

proc : @

{i xts} Ñ

ts ” List.map proj2 xts Ñ Proc i xts t Ñ i P ht Ñ

ProcVal ht ts t

The DeclVal type is the actual type of values used in the cells in the heap.
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data DeclVal (ht : HeapType) : DeclType Ñ Set where

var : @ {t} Ñ ExprVal ht t Ñ DeclVal ht (var t)

proc : @ {ts t} Ñ ProcVal ht ts t Ñ DeclVal ht (proc ts t)

The Code.Proc.Eval module defines the evaluator for the Proc language. Only a

couple interesting parts of the code are included here; the rest generally follow the

pattern from [3], with some slight modifications to account for the Cell type in heap

frames.

module Code.Proc.Eval p where

open Raw.Program p

open ScopeGraph graph

open VarPath graph

The evaluator involves several mutually-recursive functions, with termination estab-

lished by a natural number “fuel” argument as in [3]. The M monad, also from that

paper, represents a monadic evaluation context indexed over an extension to the given

heap type - e.g. evalExpr represents a monadic computation that returns an ExprVal in

some heap type ht1 that is a consistent extension of the heap type ht, accounting for the

possibility that expression evaluation may allocate new frames on the heap.

evalExpr : @ {s t ht} Ñ NÑ Typed.Expr s t Ñ M s (λ ht1 Ñ ExprVal ht1 t) ht

evalStmt : @ {s ht} Ñ NÑ Typed.Stmt s Ñ M s (const J) ht

evalDecl : @ {s t ht} Ñ NÑ Typed.Decl s t Ñ M s (λ ht1 Ñ DeclVal ht1 t) ht

Notably, evalExpr and evalDecl both have Val types in their return types, not Cell,

indicating that they must deal with the form of laziness introduced by the term constructor

to Cell in some way. The force function evaluates a Cell to a DeclVal, invoking evalDecl
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if given an unevaluated term. The usingFrameM function is from [3], evaluating a

computation in the M monad in a frame specified by an index into the type of the current

heap.

force : @ {s t ht} Ñ NÑ Cell ht t Ñ M s (λ ht1 Ñ DeclVal ht1 t) ht

force k (val x) = return x

force k (term (typing e _) i) = usingFrameM i (evalDecl k e)

The access function retrieves the value pointed to by a Ptr, or fails with failM (defined as

an alias of timeoutM) if the pointer is invalid. An associated function update, implemented

similarly, sets the value pointed to by a Ptr. The ZÑfin? function, defined locally, has

type @ {n} Ñ ZÑ Maybe (Fin n) and checks to see whether an integer is a positive

number within a given (inferred) bound.

access : @ {s t ht} Ñ NÑ ExprVal ht (* t) Ñ M s (λ ht1 Ñ ExprVal ht1 t) ht

access zero _ = timeoutM

access (suc k) null = failM

access (suc k) (ref p i) = do

var v Ð usingFrameM i (getValM (varRef p)) »= force k

return v

access (suc k) (v ~ n �) = do

arr vs Ð access k v

case ZÑfin? n of λ where

nothing Ñ failM

(just n1) Ñ return (List.lookup vs n1)

update : @ {s t ht} Ñ NÑ ExprVal ht (* t) Ñ ExprVal ht t Ñ M s (const J) ht
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The variable dereference case of evalExpr simply saves the resolution path for the

variable being referenced along with a pointer to the frame that it is valid in.

evalExpr (suc k) (& p) = ref p <$> getFrameM

The case for the * operator evaluates the given expression to a pointer and then calls

the access function to retrieve the value at that pointer.

evalExpr (suc k) (* e) = evalExpr k e »= access k

The code for the application constructor is a little unpleasant, and there may be

a more idiomatic way to write it; the issue is mainly that operating over values of

type All as collections can require careful reasoning about the type-level indices of

All, and it’s often challenging to set up the relevant predicates so that the neces-

sary reasoning is definitional. In this case, evalExpr is mapped over the collection

of argument expressions to produce a collection of values of type ExprVal, which

is then converted into a collection of values of type DeclVal; the sequenceAll func-

tion from Code.Util is a version of the standard Haskell monadic sequence func-

tion for the All type, and the line below the one containing it is just applying the eq

proof from the proc constructor to show that the list of values obtained by evaluat-

ing the argument expressions does in fact have the same type as the parameter list.

(The functions map` and map´ functions from Data.List.Relation.Unary.All.Properties

convert back and forth between the isomorphic types All P (List.map f as) and

All (P ˝ f) as; subst is from Relation.Binary.PropositionalEquality with the type

@ {A} (P : A Ñ Set) {x y} Ñ x ” y Ñ P x Ñ P y.)

evalExpr (suc k) (p x es y) = do

proc (proc eq (proc {{eq1}} s e) i) Ð getValM (procRef p) »= force k
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es1 , i Ð sequenceAll (All.map (λ e1 {_} Ñ evalExpr k e1) es) ^ i

let es11 = map+ (map- (subst (All _) eq (All.map (val ˝ var) es1)))

j Ð initFrameM es11 (i :: [])

_ , j Ð usingFrameM j (evalStmt k s) ^ j

usingFrameM j (evalExpr k e)

Executing a Proc program is then as simple as calling evalDecl on mainTyping,

evaluating it in the main-root scope in the generated programHeap for the program. For

convenience, evalProgram is a version of runProgram that doesn’t include the final Heap

or heap extension witness.

module _ pt where

open ProgramTyping pt

runProgram :

NÑ

Maybe (D λ ht1 Ñ Heap ht1 ˆ DeclVal ht1 mainType ˆ programHeapType Ď ht1)

runProgram k = evalDecl k (typedDecl mainTyping) (here refl) programHeap

evalProgram : NÑ Maybe (D λ ht1 Ñ DeclVal ht1 mainType)

evalProgram = Maybe.map (Σ.map2 (proj1 ˝ proj2)) ˝ runProgram
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Appendix B: Code artifact

The code artifact distributed along with this paper is a ZIP archive file named 

thesis-code.zip (184KB) containing the code described by this thesis. The archive 

is also available online at http://web.cecs.pdx.edu/~cas28/thesis. The code is 

compatible with Agda version 2.6.0.1 and standard library version 1.0.1.
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