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Abstract

Wearable motion tracking systems pose an opportunity to study and correct hu-

man balance and posture during movement. Currently, these observations are either

being conducted in laboratories with the use of camera systems and markers placed

on the body, or through the use of suits containing large numbers (15-20) of inertial

measurement units. However, to aid with rehabilitation of individuals with impaired

balance, there needs to be an option to collect these observations outside of clinics

and without incurring much cost from the user. I have focused on three inertial

measurement units, one placed on each shank and one placed on the upper torso, to

record posture and estimate where an individual’s center of mass is located. The use

of three inertial measurement units significantly reduces the cost and encumbrance

for studying balance in an individual’s primary environment. This reduction comes

at the cost of accuracy, which is explored further through this thesis. First, I looked

at different methods used for determining IMU orientation, such as a biologically

inspired orientation algorithm and a gradient descent algorithm. I then incorporated

those methods to create a model of the body that calculates an estimate on the center

of mass, based on the user’s weight and height. Finally, this estimate is compared

to a force plate derived method of finding center of mass to determine viability of

sensor reduction for practical applications. The created algorithm is able to generate

a center of mass location that is able to match the actual location within 3 cm.
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Chapter 1

Introduction

1.1 Detecting Falls

Falls pose a significant risk to our aging populace. Currently, the World Health

Organization estimates 646,000 individuals suffer from a fatal fall every year (https:

//www.who.int/news-room/fact-sheets/detail/falls), placing it as the second

leading cause of unintentional injury death, after road traffic injuries. 41% of these

falls are caused by incorrect weight shifting, or movement of the individual’s center

of mass [14]. These statistics show a clear need for a way to help prevent falls.

Individuals who are at high risk for falling are asked to engage in exercises and

strength building to help maintain balance. Those with repeated occurrence of falls

are asked to also make changes in their life that will eliminate high risk activities

[17]. Balance and gait training is estimated to reduce the risk of falling anywhere

from 14-27%. These measures help lower the probability of falling, however wont

prevent falls as they are occurring.

Current systems using accelerometers are able to detect when a fall has happened

and can alert medical personnel. Falls can be quantified as when the acceleration

detected at the torso exceeds 1.8g [6]. Commercial devices that implement this tech-

nology, such as Life Alert, produce fast response to a falling event, however, don’t

prevent the fall from happening.
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While we have methods of lowering the probability of falling and methods of

detecting when a fall has happened, there are no current means of detecting motion

that will lead to a fall event.

1.2 Kinematics of Falls

When evaluating how to prevent falls, it is important to quantify how falls occur and

what conditions need to be fulfilled to maintain balance. For static upright standing

conditions, the center of mass (CoM) needs to be within the base of support (BoS) or

maintain a velocity that will move it towards the BoS [11]. The BoS is defined as the

possible range of the center of pressure, and the center of pressure is the centroid of

the pressure that is distributed by a person’s contact with a surface [5]. Individual’s

are at risk of falling when their CoM is no longer aligned with their CoP. In order

to quantify and move towards preventing falls, researchers need to have a way of

monitoring where an individual’s CoM is located.

1.3 Current Methods Monitoring Center of Mass

The golden standard for tracking an individual’s center of mass is through a camera

system. These visual systems typically are accompanied with the use of markers,

which are placed along key anatomical landmarks on a human. Visual tracking sys-

tems, like VICON or Optotrack, can accurately track human motion to 1 mm of

error [21]. Visual systems fail to monitor human motion properly when body seg-

ments overlap and markers cannot be detected. This prevents 3D models from being

rendered.

Goniometers are another option for monitoring body orientation. A goniometer

is a device that measures the change in angle that joints go through during mo-
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tion. Goniometers are typically used to measure the range of motion for patients [20].

Electrogoniometers are goniometers that measure rotation through the use of a poten-

tiometer. They are sufficient at detecting uniplanar movement, but lack the ability to

properly monitor movement of joints with multiple degrees of freedom, making them

less desirable for full body motion tracking. Electrogoniometers allow for automated

data collection by a microcontroller. Other goniometers, such as the one in Figure

1.1, must be visually read in order collect data.

Figure 1.1: Goniometer that is visually read to determine the angle between two body
segments.

Another method for monitoring human motion is through the use of full body suits

that are embedded with inertial measurement units (IMU sensors). Xsens is a leading

company that sells these suits. They are used for both full body tracking as well as

animation capture. Their suits place 17 IMU sensors strategically on different limbs

of an individual. Their proprietary sensor fusion algorithm and model construction

monitors body motion with a high degree of accuracy [15]. The Xsens MVN Biomech
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system was found to be able to monitor an individual’s center of mass to within

5.45 mm [2]. However, with their cost being above $10,000, they are impractical for

individuals who don’t require the degree of precision that Xsens provides.

1.4 Objectives and Outline

The primary objective of this research is to develop a low cost method for tracking an

individual’s center of mass. Inertial measurement units are a low cost device that are

small and noninvasive. This makes them ideal for creating a method of monitoring

human motion. The sensor system does not need to fully define an individual’s range

of motion, but rather, capture the important motions that contribute to a change in

a person’s center of mass. With a positive outcome, this research can continue to

be refined to create a way of not only monitoring an individual’s center of mass, but

also alert the user if they are about to fall. With these objectives in mind, it is my

hypothesis that center of mass can be tracked with three inertial measurement units,

one placed on the upper torso, and one placed on each of the lower legs.

This thesis will begin with an overview of inertial measurement units, a discussion

on how to quantify rotations, a description of the different sensor fusion algorithms

that were used in this research, and an explanation of the sensor distribution across

the body. Chapter 3 details what equipment was used for this research and why it

was selected. Chapters 4 to 6 describe the different experiments that were performed

to quantify the accuracy of the different sensor fusion algorithms that were used. The

first two focus on modeling leg orientation of an individual, while testing which IMU

sensor algorithm performs best. The last experiment tests the full IMU sensor system

to detect where an individual’s center of mass is located. Chapter 7 reflects on what

was gained through this research and what future steps need to be taken to increase

the viability of this sensor system.

4



Chapter 2

Background

2.1 Inertial Measurement Units

Inertial measurement units are sensors that detect linear accelerations and angular

velocity. IMU sensors can also come equipped with a magnetometer, to measure

magnetic field. Six degree of freedom (DoF) inertial measurement units include tri-

axis accelerometers and gyroscopes. The accelerometer of the IMU sensor measures

the sum of all accelerations and gravity, expressed in the sensor’s reference frame. The

gyroscopes measure rotational velocities about the axes of the reference frame. When

IMU sensors include a magnetic angular rate and gravity sensors (MARG sensors),

they are able to provide 9 DoF. By combining these measurements, IMU sensors

provide an attitude and heading reference system (AHRS) which will describes the

orientation of the IMU sensor. With the ability to generate an AHRS, IMU sensors

have become an essential component for the navigation and guidance of land vehicles,

aircrafts, and ships, both manned and autonomous.

IMU sensors have become much smaller in size over the past few years, making

them ideal candidates for monitoring biomechanics of individuals [18]. The diminish-

ing size is due to improvements to mecroelectromechanical systems (MEMS). MEMS

technology has given them wider applicability than their previous iterations. Along

with biomechanics, MEMS IMU sensors can be found in mobile phones, virtual and
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augmented reality devices, game controllers, and many other small electronic systems.

The main complication that arises with using IMU sensors to determine orienta-

tion is the tendency to drift or deviate from their true angular value. The issue is

due to gyroscopic drift. This drift is caused by continuously integrating the angular

velocity data, where noise and bias in the signal continues to build up after repeated

numerical integration (Equation 2.1). In order to combat this issue of drift, multiple

sensor fusion algorithms have been created that increase the accuracy of determining

the IMU sensor’s orientation. Three of these algorithms will be discussed and tested

in later sections.

θcalculated = (ωmeasured + ωnoise + ωbias) ·∆t (2.1)

2.2 Describing Rotations

There are multiple ways of describing the rotation of an IMU sensor. The first way is

to collect the Euler angles that the IMU sensor experiences and to calculate rotation

matrices from them. The other way is to describe the rotation in a four dimensional

vector called a quaternion. Creating rotation matrices from Euler angles is the most

common way for determining IMU sensor orientation. Euler angles are commonly

taught and easy to generate based off of angular velocities. Rotation quaternions are

more difficult to use, as it requires understanding specific quaternion mathematical

operations, and have not seen much use is the past. However, with the advent of

computer generated graphics, they have become increasingly more prominent since

1985 [16]. Rotation quaternions have made their way into IMU sensor research,

primarily because they avoid the issue of gimbal lock. They are also more compact

representations of rotation.
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2.2.1 Rotation Matrices

Rotation matrices are orthogonal matrices, with real components, that are used to

rotate vectors or rotate axes. Rotation matrices are calculated based off the Euler

angles. The equation can be found in Equations 2.2 to 2.4, where θ, φ, and ψ are the

Euler angles that represent rotation about the x axis, rotation about the y axis, and

rotation about the z axis respectively.

Rx(θ) =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 (2.2)

Ry(φ) =


cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ

 (2.3)

Rz(ψ) =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1

 (2.4)

To determine the overall rotation about all of the axes, the rotation matrices can

be multiplied together.

R = RzRyRx (2.5)

An issue that arises with using Euler Angles to represent rotation is gimbal lock.

Gimbal lock occurs when two axes are rotated into becoming parallel, losing a degree

of freedom in the process, and creating a degenerate system. One way of avoiding

this problem is to use quaternions to describe rotation instead.

7



2.2.2 Rotation Quaternions

Quaternions are vectors with four components written in complex number notation.

Equation 2.6 shows the general form of a quaternion, where ı̂2 = ̂2 = k̂
2

= −1 and

ı̂̂ = k̂, ̂̂ı = −k̂, k̂̂ı = ̂, ı̂k̂ = −̂, ̂k̂ = ı̂, and k̂̂ = −̂ı. In the following analysis, bold

variables are representative of vectors.

q = qw + qx̂ı + qy ̂ + qzk̂ (2.6)

Rotation quaternions can be used to describe the rotation of three component

vectors. The three imaginary components of the rotation quaternion describe an axis

that the vector rotates around, and the real component of the quaternion describe

the magnitude of rotation. Knowing the angle of rotation, θ, and the unit vector

describing the axis of rotation, u = ux̂ı + uy ̂ + uzk̂, a quaternion can be written as:

q = exp

(
θ

2
u

)
= cos

(
θ

2

)
+ (ux̂ı + uy ̂ + uzk̂) sin

(
θ

2

)
(2.7)

To apply a rotation to a vector using a rotation quaternion, the vector is premul-

tiplied by the quaternion and postmultiplied by the quaternion’s reciprocal. Because

quaternions are four element vectors, the vector to be rotated needs to be rewritten

as having four elements, which means including a real component equal to 0 to the

vector.

v = 0 + vx̂ı + vy ̂ + vzk̂ (2.8)

v′ = qvq−1 (2.9)

The multiplication used for this rotation is called the Hamilton or quaternion
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product. The result is determined by multiplying each element through the distribu-

tive law. For example, for two generic quaternions q1 = a1 + b1̂ı + c1̂ + d1k̂ and

q2 = a2 + b2̂ı + c2̂ + d2k̂, their Hamilton product, q1q2, would be equal to:

a1a2 − b1b2 − c1c2 − d1d2+

(a1b2 + b1a2 + c1d2 − d1c2) ı̂

(a1c2 − b1d2 + c1a2 + d1b2) ̂

(a1d2 + b1c2 − c1b2 + d1a2) k̂

(2.10)

The reciprocal of a quaternion, seen in equation 2.9, is defined as[19]:

q−1 =
q∗

||q||2
(2.11)

The numerator in equation 2.11 is the conjugate of the quaternion.

q∗ = qw − qx̂ı− qy ̂− qzk̂ (2.12)

The denominator in equation 2.11 is the norm of the quaternion.

||q|| =
√

qq∗ (2.13)

With a known angular velocity, ω, the time derivative of the quaternion can be

calculated by taking the Hamilton product of the quaternion and the angular velocity:

q̇ =
1

2
qω (2.14)

9



2.3 Sensor Fusion Algorithms

There are many sensor fusion techniques for calculating the angles of rotation or

quaternions for an IMU sensor. The ones that were looked at during the course of

this thesis were the complementary filter, a vestibular emulating filter created by

Thomas Mergner et al. [9], and a gradient descent filter created by Madgwick et al.

[7].

Other filters that were considered but not evaluated include the Kalman filter,

Mahony filter, and other filters that are modifications on the filters described here.

The Kalman filter is an accurate filter, but notorious for being too computationally

intensive for most microcontrollers. The Mahony filter is a variation of the gradient

descent filter, and it was decided to first implement the gradient descent filter to test

it’s viability before looking at variations.

2.3.1 Complementary Filter

One of the most common ways for filtering IMU data is the complementary filter [4].

It is straight forward to implement and comes at a low computational cost.

The algorithm is a numeric method for integrating gyroscope data. The angular

velocity is multiplied by the sampling rate and added to the previously calculated

angle. The filter then takes the tangent of the different accelerometer components to

determine the angles of direction that the acceleration vector is in. Two gains are

created, one for the gyroscope angle and one for the accelerometer angle. These gains

are complementary, in that they sum to 1. After multiplying the different angles by

their respective gains, the results are summed together to provide an estimated angle

of rotation.

10



θx(t) = Gaingyroscope · (θx(t− 1) + ωx(t) · ts) +Gainaccelerometer · tan
(
ay(t)

az(t)

)
(2.15)

θy(t) = Gaingyroscope · (θy(t− 1) + ωy(t) · ts) +Gainaccelerometer · tan
(
ax(t)

az(t)

)
(2.16)

θz(t) = Gaingyroscope · (θz(t− 1) + ωz(t) · ts) +Gainaccelerometer · tan
(
ax(t)

ay(t)

)
(2.17)

To serve as a high pass filter, the gyroscope gain is kept to a value close to

one. The accelerometer gain is closer to 0, to act as a simple low pass filter. When

taking the tangent of the accelerometer, the aim is to take the tangent of only the

measured gravitational vector, and to eliminate any higher frequency movements that

are detected by the IMU sensor. Figure 2.1 shows this algorithm as a block diagram.

Figure 2.1: Block diagram depicting the complementary filter, with the value of gains
used during this research.
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2.3.2 Vestibular Emulating Filter

The vestibular emulating filter is a filter that was developed by Mergner et al [9, 10].

The human vestibular system uses biological analogs to IMU sensors for balance

control. Inner ear otolith receptors detect inertial acceleration and the semicircular

canals detect angular velocities in humans [1]. These organic sensors are similar to

linear accelerometers and gyroscopes respectively. The vestibular system synthesizes

information received from the otoliths and canals to determine an estimated angular

velocity, linear acceleration, and gravitational direction. Transfer functions have been

created to represent each stage of this filter.

The semicircular canals interpret angular velocity information with a time con-

stant of 5 seconds [8]. In order to approximate how humans receive this information,

gyroscope data is passed through a first order high pass filter with a time constant of

5 seconds.

HP =
5s

5s+ 1
(2.18)

The acceleration data is normalized and differentiated with respect to time. The

normalized acceleration and it’s time derivative are crossed to find the rate of change

in direction.

f = ȧ× a

|a|
(2.19)

This signal passes through a first order low pass filter. This filter is complementary

with the high pass filter used for the angular velocity data.

1 = HP + LP (2.20)
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LP =
1

5s+ 1
(2.21)

The outputs from these two filters are then summed together to give an improved

estimate of the angular velocity, ω̂, that is not affected by gyroscopic bias. This

angular velocity estimate is then used to update the direction of gravity. The previous

direction of gravity is crossed with angular velocity to find the rate of change in

direction of gravity, ġ.

ġt = gt−1 × ω̂ (2.22)

To find the new direction of gravity, the rate of change in the direction of gravity

is passed through a leaky integrator, with a time constant of 20 seconds. To fill in

for a portion of the output that is lost through the leaky integrator, some of the raw

acceleration data is added to the input. The accelerometer data is multiplied by a

gain of 0.05 before being added to ġ. This new signal then goes through the leaky

integrator.

Leaky Integrator =
20

20s+ 1
(2.23)

The updated direction of gravity is subtracted from the raw acceleration data to

eliminate the gravitational component that it measures. Figure 2.2 displays a block

diagram representation of the algorithm.

The orientation of the sensor relative to the earth frame is calculated using the

angles between ĝ and the original direction of gravity, determined at the beginning of

the algorithm. These angles are then used to create a rotation matrix that determines

the rotation of the sensor.

This process is described as a continuous system. In order to make it available to
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Figure 2.2: Block diagram depicting the algorithm of the vestibular emulating filter,
developed by Mergner et al.

be placed onto a microcontroller, the system was converted into a discrete system of

difference equations using MATLAB. The MATLAB code can be found in Appendix

A1.

2.3.3 Gradient Descent

The gradient descent method for fusing IMU sensor data was developed by Madg-

wick et al. as a method of reducing the computational load of determining sensor

orientation compared to the popular Kalman filter [7].

The gradient descent filter is a first order optimization algorithm that calculates a

rotation vector that aligns a reference acceleration vector, in this case a gravity vector,

with the IMU sensor measured acceleration vector. It first defines the optimization

function as:

f = qEsdEq−1Es − as (2.24)

qEs describes the orientation of the sensor frame in the Earth frame, dE is the

reference vector, and as is the acceleration experienced in the sensor frame. The

function is minimized when qEs rotates the reference vector to be in the same direction
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as the measured acceleration vector.

The first step of the algorithm is to evaluate the objective function with the pre-

viously estimated qEs and multiplying that by the Jacobian of the objective function.

J =



∂
∂w

f

∂
∂x

f

∂
∂y

f

∂
∂z

f


(2.25)

∇f = JT f (2.26)

The filter also takes the measured angular velocity, and performs a quaternion

product with it and the previously estimated rotation quaternion to come up with

the time derivative of the quaternion.

q̇Es =
1

2
qEsω (2.27)

The gradient is then normalized and multiplied by a scaling factor, β. For this

research, the value of β was set to 0.1. This value is then subtracted from the

derivative. The scaling factor and gradient serve to reduce the error in the quaternion

derivative that comes up due to gyroscopic bias and noise. The result is numerically

integrated and normalized to form the new estimate of the rotation quaternion. The

algorithm is visualized in Figure 2.3.

The gradient descent algorithm used during this thesis was written in Arduino

and MATLAB by Sebastian Madgwick, and can be found at

https://github.com/arduino-libraries/MadgwickAHRS. Minor changes were made to

extract different information from the Madgwick filter class.
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Figure 2.3: Block diagram depicting the gradient descent algorithm, developed by Madg-
wick et al.

2.4 IMU Sensor Placement

One of the goals of this thesis is to develop an IMU sensor system that minimizes the

number of sensors needed. By lowering the amount of sensors needed, the cost of the

system is lowered and provides instrumentation that won’t burden or interfere with

an individual’s normal tasks.

In order to decide the number of sensors required and where to place them, it

was necessary to look into which limbs contributed to the majority of an individual’s

center of mass. This was done by analyzing the results from Dumas et al.’s paper

on human body segment inertial parameters [3]. This paper lists a number of body

segments, such as the head, torso, legs, and describes where the center of mass is for

each of those segments, as well the average percentage of mass of a person that is

contained within those segments.

The body segment center of mass locations are given as a scaling value in the x,

y, and z axis. The location can be found by multiplying these values by the length of

the body segment. For example, if the torso has the following parameters:
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Torso Length = 47.7 cm (2.28)

Torso CoM Scale = [−0.036,−0.42, 0.002]T (2.29)

then the center of mass location of the torso, in reference to the torso anatomical

landmark, the suprasternale, is:

Torso CoM = [−1.717,−20.034, 0.0954] cm (2.30)

The segments that contribute most to the mass of an individual are the torso,

pelvis, thigh’s, and lower legs. The percentages can be found in Table 2.1.

Table 2.1: Inertial parameters of various limb segments for males, documented by Dumas
et al. [3].

Limb Segment Percent of Mass
Head and Neck 6.7%
Torso 30.3%
Pelvis 14.2%
Thigh 12.3%
Lower Leg 4.8%
Feet 1.2%
Arm 2.4%
Forearm 1.7%
Hand 0.6%

Using this information, by knowing the orientation of each limb segment, the

overall center of mass coordinates, Ctotal, can be found by summing all of the limb

center of mass locations, Csegment, multiplied by their percent of mass contribution,

%mass.

Ctotal = Σ(Csegment ·%mass) (2.31)
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Because of their large contributions to an individual’s center of mass, it was de-

cided to focus on using three inertial measurement units, one on the torso and one

on each lower leg. By knowing the position of these segments in space, the thigh,

pelvis, and head position can be calculated by making assumption about their ori-

entation relative to the segments that are being measured. The assumptions made

were that the head is extended along the same orientation as the torso, the pelvis is

at the base of the torso orientation, the feet are located at the bottom of the lower

legs, and the thighs orientation begins at the end of the lower legs and connect to

the pelvis. The arms, forearms, and hands are the only segments not included in

this analysis. Combined, they contribute 9.4% to the overall mass of an individual.

With this value being low, it was assumed their center of mass and position could be

neglected, as the other body segments would contribute to the location of the center

of mass more significantly. The accuracy of these assumptions was tested during the

last experiment of this thesis. Figure 2.4 shows the location of each IMU sensor used

to find the orientation of the targeted body segments, as well as showing how their

sensor frames are oriented in the global Earth frame.
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Figure 2.4: Placement of IMU sensors on the human body, including their sensor frames
with respect to a global Earth frame.
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Chapter 3

Equipment

This chapter describes the various pieces of equipment that were used. Sections 3.1

to 3.6 describe the equipment and its purpose. Section 3.7 describes the overall cost

of the project, to see how well it meets the objective to keep costs minimal. Section

3.8 shows a wiring schematic that depicts how the electrical equipment fits together.

3.1 Inertial Measurement Units

The IMU sensors used for this research were the Adafruit NXP Precision 9 DoF IMU.

They combine a FXAS21002C 3 axis gyroscope and a FXOS8700CQ 6 axis accelerom-

eter and magnetometer. The magnetometer was not used during this research.

The gyroscope has a 16-bit digital resolution. It has a configurable angular velocity

range. The range goes from ± 250 degrees per second (dps) to ± 2000 dps. The

resolution at ±250 dps is 0.39 dps and the resolution at ±2000 dps is 3.125 dps. For

this research, the range was set to ±250 dps. The gyroscope also has a data output

frequency between 12.5 and 800 Hz.

The accelerometer has a 14-bit ADC resolution. The adjustable acceleration range

goes from ±2g to ±8g. For this research, the range was set to ±2g. The accelerometer

has a data output frequency between 1.56 to 800 Hz.

These sensors are low cost and able to provide readings accurate for testing this
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research. Other IMU sensors could have been used, such as ones from Xsens and

APDM, however, the increase in accuracy is offset by the dramatic increase in cost.

3.2 Microcontroller

The microcontroller used for this experiment was the Adafruit Feather M0 Adalogger.

The Adalogger used an ATSAMD21g18 ARM Cortex M0 processor, with a clock speed

of 48 MHz and 32KB of RAM. It has a built in MicroSD card slot for writing data to,

which was used during experimentation to collect raw and filtered IMU sensor values.

It also used an external lithium polymer battery to power it.

3.3 I2C Multiplexer

For the experimental setup, three of the same IMU sensors were used. They all

shared the same I2C (Inter-Integrated Circuit) protocol address. Each IMU has two

addresses, however, three would be necessary to communicate with them indepen-

dently. In order to solve this issue, an I2C multiplexer (MUX) was used. An I2C

multiplexer is a multiplexer that splits the I2C signal between multiple devices. It

only communicates with one at a time, and is told which one to communicate with

by the microcontroller. The I2C multiplexer used was an Adafruit TCA9548A.

3.4 IMU Sensor Brackets

Custom built brackets to hold the IMU sensors were 3D printed using a Markforged

printer. The 3D printer uses a proprietary material called Onyx, which is primarily

composed of nylon plastic and chopped strands of carbon fiber. The IMU sensor

brackets were designed to match the shape of the IMU sensors. They include a loop

in which to thread a velcro strap. This velcro strap attaches the IMU and bracket to
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the individual’s body segments. Figure 3.1 shows the SolidWorks model used for 3D

printing and Figure 3.2 shows the final assembly for the IMU bracket.

Figure 3.1: Solidworks rendering of the IMU sensor bracket.

Figure 3.2: Image of the IMU bracket with an IMU attached and wired, as well as a velcro
strap threaded through it.

3.5 Project Box

A custom built project box was 3D printed using a Markforged printer. The box

housed all the microcontroller components, I2C multiplexer, and was embedded with

LED’s to indicate when experiment runs were in progress or completed.

The box has four through holes located along the bottom surface. The holes

included recess in which to place a 2-56 nut. A 2-56 screw was threaded through the
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microcontroller shield, to secure it and the components to the bottom of the project

box.

Figure 3.3: Solidworks rendering of the project box.

Figure 3.4: Image of the project box, containing the microcontroller inside, with wiring
heading out to the IMU sensors.

3.6 Goniometer Linkage

The goniometer is constructed with a potentiometer. The potentiometer rotates with

one bar of the linkage, sending a varying analog signal to the microcontroller as

the linkage rotates. After calibration, a relationship between the voltage signal and

the angle was calculated. The potentiometer used for this experiment was a TT
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Electronics P160KN28K. An IMU sensor is also attached to the linkage that sits on

the lower leg. The IMU sensor is located 6 cm below the potentiometer. This piece

of equipment was used for the leg extension experiment (Chapter 4).

Figure 3.5: Image of the linkage with a goniometer and IMU attached.

3.7 Total Cost

The individual component cost and sum total for the full IMU sensor system is found

in Table 3.1. The total cost for the resulting system is $126.07. This price doesn’t

factor the engineer time developing the coding system, however it does provide the

basis of a low cost device that can be used to monitor balance and center of mass

for individuals. With the price of Xsens systems being around $10,000, the goal of

creating a system with substantially lower cost than the leading market devices has

been achieved.

3.8 Wiring

The microcontroller was connected with the three IMU sensors through the I2C mul-

tiplexer. Communication across these devices occur along the SDA and SCL lines.

The microcontroller was also connected to three LED’s. Green indicated startup of
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Table 3.1: Cost of the various components used during the construction of the sensor suite

Component Quantity Cost
NXP Precision 9 DoF Breakout 3 $44.85
Adafruit Feather M0 Adalogger 1 $19.95
Assembled Terminal Block 1 $14.95
Lithium Ion Polymer Battery 1 $5.95
16 GB micro SD Card 1 $9.99
I2C Multiplexer 1 $6.95
3D Printed Project Box 1 $12.70
3D Printed IMU Brackets 3 $1.71
Velcro Straps 8 $8.99
Total 1 $126.07

the microcontroller and when the data collection was complete, yellow indicated data

was currently being captured, and red indicated an error with the system. Figure 3.6

shows how these pieces were connected.

Figure 3.6: Diagram of the microcontroller wiring.
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Chapter 4

Leg Angle Experiment

The leg angle experiment was the first experiment developed to observe how well the

IMU sensor fusion algorithms would preform at determining limb orientation. The

experiment compares goniometer data to data filtered through the complementary

filter, gradient descent filter, and vestibular emulating filter (discussed in Section

2.3).

4.1 Methods

In this experiment, the subject attached the goniometer linkage and IMU holder onto

their leg. Then, while sitting down with their leg bent to 90◦, they extended their leg

out horizontally and returned it to the original position. The participant performed

this motion repeatedly within 30 seconds. The experiment was conducted three times,

with varying frequencies of leg extension and flexion.

The IMU sensor captured angular velocity and linear acceleration data, which was

post processed through the complementary filter and vestibular emulating filter using

MATLAB. The gradient descent angles were calculated on the microcontroller and

stored on the SD card to compare with the complementary filter.

The goniometer provided the validation reference measurement for this exper-

iment. It was held in place, both with velcro straps and by holding it with the
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participants hands. It provides an accurate measurement of the true angle that the

leg swings through. Figure 4.1 shows a representation of the experimental set up.

Figure 4.1: Diagram showing the schematic for the knee bending experiment.

4.2 Results

This experiment was performed three times. The first time it was performed, the leg

extended and flexed at a frequency of 0.165 Hz. The results of this experiment can

be seen in Figure 4.2. Both the complementary filter and the gradient descent filter

were able to match the true angle generated by the goniometer. There is a period

within the first two seconds that the gradient descent filter has dramatic error, as it

is still optimizing to find the quaternion that matches the initial orientation of the

inertial measurement unit in the Earth frame. The vestibular emulating filter shows

errors early on. It has significantly diminished peaks compared to the actual angle

the leg swings through, and is off phase by 1.01 seconds.

The second time the experiment was performed, the frequency was increased to

0.467 Hz. The complementary filter was unable to match the peak to peak range of

the goniometer at this frequency, but was able to match it closer compared to the

vestibular emulating filter. The gradient descent filter was still able to follow the angle
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Figure 4.2: Leg angle measurements from extending and flexing the leg at a frequency of
0.165 Hz.

almost perfectly. The vestibular emulating filter continues to be unable to match the

angle change, with a phase lag of 0.54 seconds. Figure 4.3 shows the results of this

trial.

Figure 4.3: Leg angle measurements from extending and flexing the leg at a frequency of
0.467 Hz.
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The last experiment was performed at 1Hz. This is where we saw dramatic drop

off in the accuracy of the complementary filter. The gradient descent filter was able

to easily match the true angle. The vestibular emulating filter shows a phase lag of

0.46 seconds for this experiment. Figure 4.4 shows the results of this trial.

Figure 4.4: Leg angle measurements from extending and flexing the leg at a frequency of
1.00 Hz.

To evaluate the accuracy quantitatively, the root mean squared error (RMSE) of

all three experiments was calculated. The equation used to calculate the RMSE can

be found in equation 4.1. Table 4.1 lists the RMSE values calculated for each trial.

RMSE =

√
1

N
(
N

Σ
i

θi,goniometer − θi,algorithm)2 (4.1)

Table 4.1: RMSE values calculated for each trial of the leg angle experiment.

Frequency Complementary
Filter

Gradient
Descent

Vestibular Filter

0.165 Hz 2.76◦ 1.72◦ 26.90◦

0.467 Hz 7.54◦ 3.97◦ 25.36◦

1.00 Hz 11.85◦ 5.00◦ 25.16◦
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4.3 Discussion

This experiment was able to identify how the changing dynamics of the human system

would effect the results captured from the complementary filter, gradient descent

filter, and vestibular emulating filter. We see that the complementary filter begins to

experience drop off of its peak to peak range at higher frequencies. It maintains the

same phase as the leg swing angle, but it has a low gain that continues to decrease

as frequency increases. The gradient descent method doesn’t experience this at high

frequencies and is able to maintain both phase and magnitude with the goniometer

angle.

Overall, results show that the gradient descent method is more accurate and

robust than the complementary filter for dynamic motions. However, for ease of

computational load, the complementary filter provides accurate measurements during

low frequency activities.

The vestibular emulating filter shows significant error throughout all of the ex-

periments. The results from Mergner et al. experiments were accurate for a change

in angle with a peak to peak range of up to 8 degrees [10]. However, with a peak to

peak range of 90 degrees, the vestibular emulating filter has issues maintaining accu-

rate results for these frequencies. The filter will continue to be investigated, however,

with this degree of error, it shows that it will likely not be robust enough to capture

a person’s posture during normal movement.
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Chapter 5

Constrained Hip Experiment

The constrained hip experiment was designed to test how well the complementary

filter, gradient descent filter, and the vestibular emulating filter would preform at

modeling both lower legs. The hip was constrained in the horizontal plane, but allowed

to move up and down vertically. This serves as a way to validate the sensor fusion

algorithm, by recording the hip position with a stationary camera. This experiment

was designed to build off the previous experiment. Instead of only evaluating one

leg’s position, this experiment calculates both leg positions. Results were meant to

inform how to construct the final experiment, in which the full body orientation was

calculated as well as calculating the center of mass.

After the first experiment, it was seen that the complementary filter performed

very well during low frequency movements. Because of this and it’s ease of use, it

was used as a baseline to compare it to the vestibular emulating filter.

5.1 Methods

The experiment was designed to see how accurate the IMU sensor algorithms would

preform at monitoring lower leg position and angle. The experiment used the com-

plementary filter, gradient descent filter, and vestibular emulating filter to track the

shank of the participant while they enter a crouching position. With the shank angle
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determined, the thigh position is calculated by connecting the knee position (located

at the end of the shank) to the transverse location of the hip, which is constrained

by the experimental apparatus. The angle of the thighs were then used to calculate

an experimentally determined hip height.

One IMU sensor was attached to the outside of each shank, 8cm below the knee on

the leg of the participant. The hip was attached to a measurement device, which was

comprised of a platform with a measuring stick extending vertically upward off the

platform with centimeter gradations along it. The gradations indicate the hip height

above the platform. The hip attachment point is at approximately the location of

the L5 spinal segment. The hip was allowed to slide up and down the measurement

device, and using a video of the experiment, the hip height was determined manually

at every second that the experiment was performed. This hip height measurement was

used to validate the accuracy of the sensor fusion techniques. Figure 5.1 represents

the experimental set up.

Figure 5.1: Diagram representing the model and equipment for the constrained hip ex-
periment.

At the beginning of the experiment, the subject stood in an upright position, feet

placed shoulder width apart. The camera began recording video of the experiment.

Without moving their feet, the subject slowly bent their knees to enter a crouching
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position. The motion of the lower legs was recorded through the IMU sensors and

the position of their hip was recorded with the video. The experiment lasted for

30 seconds, during which the subjected moved into the crouching position and then

returned to their initial upright position.

After completing the data collection, the sensor data was filtered through a com-

plementary filter, gradient descent filter, and vestibular emulating filter. These filters

calculated the angle of the lower legs relative to an Earth frame. These angles deter-

mine the experimental hip height location, based on the lengths and positions of the

individual’s lower and upper legs and their orientation. This experimental result was

compared to the data collected from the video. The video gave a direct location for

the hip height, with measurements occurring once a second with a resolution of half

a centimeter. The video and the collected IMU sensor data were synced by a green

LED embedded in the project box. When data collection began, the LED illuminated

and could be seen in the video recording. Table 5.1 lists the various model lengths

that were used during the recreation of the lower limbs in MATLAB.

Table 5.1: Dimensions used to model the lower body during constrained hip experiment.

Segment Length
Height from Floor to Ankle 5.0 cm
Shank Length 43.3 cm
Thigh Length 42.0 cm
Height from Hip Joint to L5 4.2 cm
Initial L5 Height 94.5 cm
Feet Width 21.0 cm
IMU Sensor Placement (below knee) 8.0 cm

5.2 Results

The results of this experiment are shown in Figure 5.2. The hip height data was

normalized to the standing hip height. Results show that the complementary filter
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and gradient descent filter were able to calculate a hip height that was close to the

camera recorded hip height location. The vestibular emulating filter is offset from

the true position, with phase lag of about 2 seconds.

Figure 5.2: Normalized hip height location, captured visually as well as calculated using
a complementary filter and vestibular emulating filter.

To quantify the the precision of these methods, the RMSE was calculated between

the camera validation and each algorithm. The RMSE equation can be found in

Section 4.1. The RMSE of the complementary filter was 0.0196, the RMSE of the

gradient descent filter was 0.0198, and the RMSE of the vestibular emulating filter

was 0.0663. These values were calculated based on the normalized hip height. By

multiplying them by the initial hip height, they provide specific information about the

error of the system. The complementary filter had a RMSE of 1.85 cm, the gradient

descent filter had a RMSE of 1.87 cm, and the vestibular emulating filter had an

RMSE of 6.26 cm.
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5.3 Discussion

The results demonstrate how a limited number of IMU sensors can be used to deter-

mine hip height during motion. The complementary filter and gradient descent filter

are more accurate than the vestibular algorithm for tracking the IMU sensor orienta-

tion. The error found with the complementary filter and gradient descent filter were

below 2 cm, while the vestibular emulating filter was over three times that amount.

While not shown, gradient descent filter in this experiment experienced a longer

period of convergence than it did with the first experiment performed. Without

initialization, the convergence period was about 7 seconds. This is due to including

a second IMU sensor in the algorithm. With the need to converge two optimization

functions, it takes longer to arrive at a solution. This continues to come up in the

next experiment where 3 IMU sensors are used.

The vestibular algorithm does not perform as well in the context of continuously

tracking an IMU sensor in real time. The issue comes from the very large angle

changes and slow dynamics of the system. The primary role of this algorithm is

to emulate the vestibular system of a human, which is only one component that

contributes to overall balance. The hope was that this algorithm would be an accurate

way of monitoring limb position in a biologically inspired manner. The outcome

here shows that when emulating biology for the stance determination of the limbs,

proprioception should be the system to replicate.

The experimental set up itself could lend to the errors found in these results.

The hip location was determined manually by watching the video of the experiment.

During the experiment, the measuring rod tilted slightly due to the force applied when

the hip pulled against it. While the change in angle was less than ± 2.5 degrees, it

still could provide inaccurate readings of the hip location.
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The complementary filter and gradient descent filter continue to show the highest

accuracy results. Moving forward with this research, they will be the filters consid-

ered.
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Chapter 6

Center of Mass Experiment

This was the final experiment conducted to determine the viability of using three

IMU sensors to track an individual’s center of mass. The data collected from the

IMU sensors was validated against a one dimensional axis position of the center of

mass, retrieved from a device created by Dr. R. Peterka [12]. The purpose was

to test the validity of using three IMU sensors to track CoM of a person using the

complementary filter and the gradient descent filter.

6.1 Methods

For this experiment, the participant wore the three IMU sensor suite proposed for the

measurement of CoM sway. The systems consists of an IMU placed on the outside of

each shank, 8 cm below the knee, as well an IMU sensor on the front of their chest, 6

cm below the clavicles. The subject also used the equipment developed by R. Peterka

to locate center of mass of an individual [13]. This equipment included a single IMU

sensor placed on the subject’s back, two sway rods attached at the hip and shoulders

that measured lateral body displacements, and a force plate that the participant

stood on. A calibration procedure that related center of pressure measurements from

the force plate to lateral motions at the hip and shoulder levels was used to derive

a relationship used to calculate CoM displacement as a function of hip and shoulder
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displacement. This corresponds with a location along the z axis from Figure 2.4.

With all the equipment in place, the user performed three motions. Angular velocity

and linear acceleration data was captured and stored on an SD card at a sampling

frequency of 40 Hz. The three motions performed were a side to side full body sway,

a second full body sway at a higher frequency, and finally a high frequency side to

side hip sway.

Once all of the IMU sensor data was collected, it was transferred to MATLAB to

build the human model. The first step was to create rotation matrices that would

orient the IMU sensor frames into the Earth frame. The Earth frame’s origin starts at

the horizontal plane the participant stands on. It is centered along the medial plane.

The x axis extends towards the anterior of the body, the y axis extends upward,

orthogonal to the ground plane, and the z axis extends laterally away from the body.

All the data was premultiplied by the matrices, so that the data from each sensor

would be in the Earth frame.

θE = REsθs (6.1)

After all the data was oriented in the same reference frame, the angular data

was used to create rotation matrices that the IMU sensor’s went through during the

experiment. The body segment CoM points were rotated by these rotation matrices,

to find their new location in the Earth frame following the experimental motion.

The initial CoM locations for each of the body segments while the participant was

standing upright can be found in Table 6.1. These are the values that were found

after multiplying the scaling data found in Dumas et al.’s paper [3] by the participants

body segment lengths and moving them to be in reference with the Earth frame, as

opposed to the anatomical landmark joint frames.
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Table 6.1: Body segment center of mass locations in the Earth frame.

Segment X Location Y Location Z Location
Torso -1.7 cm 70.4 cm 0.095 cm
Pelvis -1.8 cm 43.1 cm 1.01 cm
Left Thigh -1.78 cm 86.3 cm 6.6 cm
Left Shank -2.1 cm 43.8 cm 7.7 cm
Right Thigh -1.78 cm 86.3 cm -6.6 cm
Right Shank -2.1 cm 43.8 cm -7.7 cm

Once all of the new positions of the CoM locations were found, the overall CoM

was calculated using Equation 2.31. The z axis location was then compared against

the location retrieved from the validation equipment.

6.2 Results

The first motion performed was a full body side to side sway. The participant slowly

tilted their legs and torso into the positive z direction, returned back to the standing

position, and tilted in the negative z direction. This action was performed at a

frequency of 0.02 Hz. The angles generated from the complementary and gradient

descent filter of the torso and lower legs were used to recreate the human model

and center of mass. The z axis position of the center of mass generated from the

complementary and gradient descent filter can be found in Figure 6.1. We see that

the complementary filter matches the shape of the CoM location, but only reaches

72.7% of the peak to peak range of the actual CoM location. The gradient descent

filter also undershoots the CoM location, but is able to achieve up to 92% of the

magnitude.

The second motion performed was the same side to side swaying as the first

motion, however, with an increased frequency. The frequency of sway for this trial

was 0.13 Hz. In Figure 6.2, we see a similar trend as the previous result, where both

filters undershoot the CoM location. The complementary filter reaches 68% of the
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Figure 6.1: Z axis position of center of mass calculated during slow side to side swaying.

magnitude and the gradient descent filter reaches 80% of the magnitude.

Figure 6.2: Z axis position of center of mass calculated during fast side to side swaying.

The final motion that was performed was a swaying of the hips from side to side.

The hip was extended out in one direction, while the torso and head attempted to

stay in the same horizontal position. The hip then swayed to the other side. This

action was performed at a frequency of 0.13 Hz. Figure 6.3 shows the results from

the filters. The complementary filter matched 53% of the peak to peak amplitude,
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while the gradient descent matched 72%.

Figure 6.3: Z axis position of center of mass calculated during hip swaying.

To quantify the errors in the methods, the RMSE was calculated for the comple-

mentary and gradient descent filter. The RMSE values can be found in table 6.2.

The RMSE confirms that there is a large amount of error in these methods. Both

methods undershoot the actual CoM location by 0.5-3 cm.

Table 6.2: RMSE values for the center of mass experiment.

Motion Complementary Gradient Descent
Slow Swaying 2.28 cm 0.79 cm
Fast Swaying 2.79 cm 1.53 cm
Hip Swaying 3.06 cm 2.40 cm
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6.3 Discussion

Both filters were unable to attain an accurate reading. The methods and assumptions

used to model the body are too conservative. We see from the results that both the

complementary filter and the gradient descent filter returned results that undershot

the actual CoM location. Compared to a system like Xsens, who are able to return

results within 5.45mm, these results are much worse. The error for the complementary

filter ranged from 2-3 cm and the error for the gradient descent filter ranged from

0.8-2.5 cm.

The gradient descent filter performed much better than the complementary filter.

For the first two experiments, the gradient descent filter had an RMSE that was

about half of the RMSE of the complementary filter. The gradient descent filter was

also able to match the peak to peak range of the actual CoM location by about 20%

more than the complementary filter. Both struggled with the hip swaying motion,

resulting in close RMSE values between the two filters.

One of the biggest assumptions the model makes is that the torso accounts for the

mass that is held in the arms, forearms, and hands (Chapter 2.4). By summing those

masses with the mass of the torso, the results are centralized closer to the medial plane

of the body. To alleviate this issue, other assumptions can be made, but ultimately

more IMU sensors should be used to monitor other body segment locations. This will

provide more accurate results on where the CoM is located.
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Chapter 7

Conclusion

This work has shown that there is potential in using a low number of inertial measure-

ment units in capturing and recording data that describes where a person’s center of

mass is located, however, more consideration will need to be put into the model of the

body that was used during analysis. This thesis focused on using three IMU sensors,

one located on each lower leg and one on the upper torso, to locate an individual’s

center of mass. The center of mass location generated was based on the angle of these

body segments. The final experiment in this thesis showed that the center of mass

could be located within three centimeters of accuracy, depending on which sensor

fusion algorithm was used. This was also done while the user was standing upright,

with both feet planted on the ground. To detect the center of mass location of a

person during gait, the algorithm used will need to be altered to take into account

more limb motion.

The most difficult and crucial part of this work depends on the fusion sensor

algorithm used for calculating rotation and angle of the inertial measurement units.

With lower number of IMU sensors being used, the gradient descent filter is the

best filter to use. It was able to track results more accurately than other filters

during dynamic movement. However, as more IMU sensors are added to the system,

the computational load becomes an issue. All of the analysis presented was done
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within MATLAB. Attempting to perform the gradient descent filter on the board

of a microcontroller can lead to errors due to the numerous calculations that are

being performed. Surprisingly, the complementary filter was able to provide good

results for such a simple algorithm. The complementary filter begins to lose accuracy

during high frequency activities, which becomes an issue in the context of developing

a system that can respond to falling actions and alert the user.

The assumptions made early when deciding where to place the IMU sensors (Chap-

ter 2.4) were overly simplistic. The results from the final experiment show that even

when excluding the forearms, arms, and hands from center of mass calculations, the

calculated location undershoots where the actual center of mass location is. By group-

ing extra limb segments into the torso segment, the center of mass location becomes

concentrated along the medial plane. This leads to inaccurate results. To develop a

more robust system, two or more extra sensors should be included in the system that

can monitor arm locations.

7.1 Future Work

The use of IMU sensors for motion and center of mass tracking is not a new concept,

however, there haven’t been major developments to making their systems easy to

use for all individuals, and the cost of these systems are prohibitive to a majority

of the populace. Because of that, this research poses new prospects to bringing this

technology to many individual’s who would benefit from a fall prevention method.

One of the next steps to take in this research would be to continue improving on

the equipment to make a more robust and faster system. The first thing that can

be changed is the choice in microcontroller. The Adafruit Adalogger was used in

this research because of it’s ease of use, low cost, and availability of on chip SD card

storage. However, other microcontrollers can offer further improvements in processing
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power, which would be necessary for performing IMU sensor filtering and center of

mass calculations.

Another piece of equipment that could be improved upon is the inertial measure-

ment units. The IMU sensors in this research were the lowest cost sensors found that

provided enough information at a fast enough speed. There are a multitude of other

IMU sensors that could be used, however their cost makes it prohibitive for a low

cost system. However, if higher accuracy is desired, then cost can be sacrificed. The

center of mass experiment performed showed that there were large errors between the

calculated location and the actual location. While the error most likely lies with the

model of the human body used during calculations, it is worth investigating if higher

cost, higher performance IMU sensors would lead to more accurate results.

Other than testing new pieces of equipment, the next thing to test would be

to investigate other sensor fusion algorithms. Some other filters were mentioned in

this paper, specifically the Kalman filter, but were never tested. While the Kalman

filter is a prevalent sensor fusion technique used in many applications, it is the most

prohibitive in computational power and complexity. Because of that, it was not tested

during the course of this research. However, now that a standard for center of mass

tracking has been established, it would be beneficial to attempt to implement it and

compare its results to the other filters used during this thesis. The filter could be

tested on MATLAB. If it shows significant improvement, then it can be tested on a

microcontroller with better computational power than the one used during this thesis.

In order to further validate the results of the center of mass location, other exper-

iments can be created that are validated through visual motion tracking systems. As

mentioned in Chapter 2, visual methods are the most common and accurate way of

determining an individual’s center of mass. By performing an experiment with this

form of validation, the center of mass can be tracked in 3 dimensions, while the final
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experiment of this thesis was only validated in one dimension.

Other experiments to conduct would be to observe how well these systems work

in more dynamic situations, specifically during higher frequency tasks, such as during

gait, running, walking up stairs, etc. The algorithms used focused primarily on

determining the sensor orientation during slower movements and while standing in

one place. The biggest issue with trying to monitor center of mass during gait is the

issue of detecting limb position in space. When both feet are planted on the ground,

or during slow movement, it is easy to detect where their position is. However,

while walking there needs to be continuous computations must be done to measure

translational motions of body segments, which would require an integration of the

acceleration signal. As seen with the gyroscopes, integrating signal data leads to

significant drift if not handled properly. Having to integrate the acceleration data

twice to determine position would lead to significant errors.

The results shown in this thesis point to a possibility of creating a low cost center

of mass tracking device. Future work would complete a device that can monitor and

record center of mass location and posture, while also alerting the user when a fall is

about to occur.
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Appendix

A.1 Discrete Vestibular Emulating Filter Algorithm

1 f unc t i on [ gphix , gphiy , gphiz ] = VestibularAHRS ( gyro , a , Ts )

2

3 %This func t i on takes in angular v e l o c i t y and l i n e a r a c c e l e r a t i o n

4 %measurements , as we l l as the sampling time , in order to de r i v e the

5 %o r i e n t a t i o n o f an i n e r t i a l measurement un i t . The o r i e n t a t i o n i s

6 %desc r ibed with three angles , generated from o r i e n t a t i o n o f a

7 %c a l c u l a t e d g rav i ty vec to r compared with the o r i e n t a t i o n o f a

8 %constant g rav i ty vec to r . This a lgor i thm i s based o f f o f the

9 %algor i thms crea ted by T. Mergner et a l .

10

11 %Organiz ing gyroscope measurements

12 gyrox = gyro ( : , 1) ;

13 gyroy = gyro ( : , 2) ;

14 gyroz = gyro ( : , 3) ;

15

16 %High pass f i l t e r f o r Gyro measurements

17 HPtau = 5 ;

18 HP = t f ( [ HPtau 0 ] , [ HPtau 1 ] ) ;

19 DHP = c2d (HP, Ts , 'ZOH ' ) ;

20 HPN1 = DHP. Numerator {1 ,1} (1) ;

21 HPN2 = DHP. Numerator {1 ,1} (2) ;

22 HPD1 = DHP. Denominator {1 ,1} (1) ;

23 HPD2 = DHP. Denominator {1 ,1} (2) ;

24

25 %Low pass f i l t e r f o r Acce lerometer measurements

26 LP = 1 − HP;
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27 DLP = c2d (LP, Ts , 'ZOH ' ) ;

28 LPN1 = DLP. Numerator {1 ,1} (1) ;

29 LPN2 = DLP. Numerator {1 ,1} (2) ;

30 LPD1 = DLP. Denominator {1 ,1} (1) ;

31 LPD2 = DLP. Denominator {1 ,1} (2) ;

32

33 % Set t ing up leaky i n t e g r a t o r

34 LIgain = 20 ;

35 LI = t f ( LIgain , [ LIgain 1 ] ) ;

36 DLI = c2d ( LI , Ts , 'ZOH ' ) ;

37 LIN2 = DLI . Numerator {1 ,1} (2) ;

38 LID1 = DLI . Denominator {1 ,1} (1) ;

39 LID2 = DLI . Denominator {1 ,1} (2) ;

40

41 %Set t ing up i t e r a t i v e v a r i a b l e s f o r cana l e s t imat ion

42 gyroxm1 = 0 ; gyroym1 = 0 ; gyrozm1 = 0 ;

43 omegacxm1 = 0 ; omegacym1 = 0 ; omegaczm1 = 0 ;

44

45 %Set t ing up i t e r a t i v e v a r i a b l e s f o r o t o l i t h e s t imat i on

46 axnormm1 = a (1 , 1) /norm( a (1 , : ) ) ;

47 aynormm1 = a (1 , 2) /norm( a (1 , : ) ) ;

48 aznormm1 = a (1 , 3) /norm( a (1 , : ) ) ;

49 omegaoxm1 = 0 ; omegaoym1 = 0 ; omegaozm1 = 0 ;

50 omegaestxm1 = 0 ; omegaestym1 = 0 ; omegaestzm1 = 0 ;

51

52 %Set t ing up v a r i a b l e s f o r g rav i ty e s t imat i on

53 a c c e l g a i n = 1/ LIgain ;

54 g = 9 . 8 0 6 7 ;

55 gxm1 = a (1 , 1) ;

56 gym1 = a (1 , 2) ;

57 gzm1 = a (1 , 3) ;
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58 gxdot = 0 ; gxdotm1 = 0 ;

59 gydot = 0 ; gydotm1 = 0 ;

60 gzdot = 0 ; gzdotm1 = 0 ;

61

62 %Gain Correc t ion

63 meana = s q r t (mean( a ( 1 : 1 0 0 , 1) )ˆ2+mean( a ( 1 : 1 0 0 , 2) )ˆ2+mean( a ( 1 : 1 0 0 , ←↩

3) ) ˆ2) ;

64 gc = −9.807/meana ;

65 a ( : , 1) = gc∗a ( : , 1) ;

66 a ( : , 2) = gc∗a ( : , 2) ;

67 a ( : , 3) = gc∗a ( : , 3) ;

68

69 f o r i i = 1 : l ength ( gyrox )

70 %Gyro high pass f i l t e r

71 omegacx = (HPN1∗gyrox ( i i ) + HPN2∗gyroxm1−HPD2∗omegacxm1) /HPD1;

72 omegacy = (HPN1∗gyroy ( i i ) + HPN2∗gyroym1−HPD2∗omegacym1) /HPD1;

73 omegacz = (HPN1∗ gyroz ( i i ) + HPN2∗gyrozm1−HPD2∗omegaczm1 ) /HPD1;

74 gyroxm1 = gyrox ( i i ) ; gyroym1 = gyroy ( i i ) ; gyrozm1 = gyroz ( i i ) ;

75 omegacxm1 = omegacx ; omegacym1 = omegacy ; omegaczm1 = omegacz ;

76

77 %a c c e l norma l i za t i on

78 amag = norm( a ( i i , : ) ) ;

79 axnorm = a ( i i , 1) /amag ;

80 aynorm = a ( i i , 2) /amag ;

81 aznorm = a ( i i , 3) /amag ;

82

83 %a c c e l d i f f e r e n t i a t i o n

84 axder = ( axnorm − axnormm1) /Ts ;

85 ayder = ( aynorm − aynormm1) /Ts ;

86 azder = ( aznorm − aznormm1) /Ts ;

87 axnormm1 = axnorm ;
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88 aynormm1 = aynorm ;

89 aznormm1 = aznorm ;

90

91 %c r o s s product f o r o t o l i t h angular v e l o c i t y

92 omegaox = ( ayder∗aznorm − aynorm∗ azder ) ;

93 omegaoy = −(axder∗aznorm − axnorm∗ azder ) ;

94 omegaoz = ( axder∗aynorm − axnorm∗ayder ) ;

95

96 %Oto l i th low pass f i l t e r

97 omegaestx = (LPN2∗omegaoxm1 − LPD2∗omegaestxm1 ) /LPD1;

98 omegaesty = (LPN2∗omegaoym1 − LPD2∗omegaestym1 ) /LPD1;

99 omegaestz = (LPN2∗omegaozm1 − LPD2∗omegaestzm1 ) /LPD1;

100 omegaoxm1 = omegaox ; omegaoym1 = omegaoy ; omegaozm1 = omegaoz ;

101 omegaestxm1 = omegaestx ;

102 omegaestym1 = omegaesty ;

103 omegaestzm1 = omegaestz ;

104

105 %Canal − Oto l i th f u s t i o n

106 omx = omegacx + omegaestx ;

107 omy = omegacy + omegaesty ;

108 omz = omegacz + omegaestz ;

109

110 %Cross Product f o r change in d i r e c t i o n o f g rav i ty

111 gxdot = gym1∗omz − gzm1∗omy + a c c e l g a i n ∗a ( i i , 1) ;

112 gydot = gzm1∗omx − gxm1∗omz + a c c e l g a i n ∗a ( i i , 2) ;

113 gzdot = gxm1∗omy − gym1∗omx + a c c e l g a i n ∗a ( i i , 3) ;

114

115 %Leaky I n t e g r a t o r

116 gravx = ( LIN2∗gxdotm1 − LID2∗gxm1) /LID1 ;

117 gravy = ( LIN2∗gydotm1 − LID2∗gym1) /LID1 ;

118 gravz = (LIN2∗gzdotm1 − LID2∗gzm1) /LID1 ;

53



119

120 gxm1 = gravx ; gym1 = gravy ; gzm1 = gravz ;

121 gxdotm1 = gxdot ; gydotm1 = gydot ; gzdotm1 = gzdot ;

122

123 %saving c a l c u l a t e d va lues

124 grav ( i i , : ) = [ gravx , gravy , gravz ] ;

125 end

126

127 %Fusing gyro and acce l e romete r data to come up with an ang le

128 acce lB iasZ = atan2 ( a (1 , 2) , a (1 , 1) ) ;

129 acce lBiasX = atan2 ( a (1 , 2 ) , a (1 , 3) ) ;

130 acce lBiasY = atan2 ( a (1 , 3) , a (1 , 1) ) ;

131

132 f o r i i = 1 : l ength (om)

133 gphix ( i i ) = atan2 ( grav ( i i , 2) , grav ( i i , 3) )−acce lBiasX ;

134 gphiy ( i i ) = atan2 ( grav ( i i , 3) , grav ( i i , 1) )−acce lBiasY ;

135 gphiz ( i i ) = atan2 ( grav ( i i , 2) , grav ( i i , 1) )−acce lB iasZ ;

136 end

137

138 end
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