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Abstract 

    It is essential that cities adopt new approaches to stormwater management in 

the face of changing precipitation regime. In some locations, ecoroofs have been 

incorporated into city plans as a stormwater control measure, and thus their real-

world performance under current conditions can assist with adequate planning. In 

this study rainfall retention data collected during a three year period, between 

2014-2017, is analyzed for 75mm and 125mm ecoroof plots in Portland, Oregon, 

USA. There is no difference in annual rainfall retention performance between the 

shallower and deeper plots. However, the 36% mean annual retention of the 

ecoroof plots is a significant improvement over the conventional rooftop. The two 

ecoroof plots exhibit similar performance, despite their difference in substrate 

depth, under high, medium, or low precipitation events, as defined by local 

meteorological conditions. Additionally, the 125mm ecoroof plot exhibits 

significantly greater performance during low intensity versus high intensity 

storms. The range of rainfall retention for the 125mm ecoroof under a 

precipitation event of low intensity ranges from 32% to 100%, with an average 

retention of 81%, while the high intensity events see a mean retention of 26%. 

The general trend of ecoroof behavior indicates that rainfall retention capacity 

shows a negative correlation (rho = -0.37, p=0.00) with increasing precipitation 

intensity for the 125mm plot. Overall, these findings indicate that extensive 

ecoroofs of shallower depths are capable of retaining a substantial amount of 

stormwater. However, their performance is at its worst during the high intensity 
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events that have the potential to overload sewer systems. Further investigation 

into rainfall retention capabilities of these ecoroofs is warranted to provide more 

information about design principles, such as vegetation type and diversity, which 

could also be impactful.   
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1. Introduction 

With changing climate characteristics and increasing impervious surface area 

due to development, stormwater runoff is anticipated to become a greater 

concern in urbanizing areas. These changes have many implications regarding 

future stormwater management as observed shifts in stormwater runoff 

characteristics such as volume and quality (Redfern et al. 2016) could affect the 

potential for urban flooding by overloading sewer systems (Rosenzweig et al. 

2018). Stormwater green infrastructure (SGI) is becoming a more commonly 

adopted stormwater management approach during planning (McPhillips and 

Matsler 2018), an effort to moderate existing water issues and plan for future 

system stress.  

One specific design of SGI, which is increasingly popular, both in 

application (van der Meulen 2019) and literature, is the ecoroof. This architectural 

feature is engineered to mimic a natural vegetated system, practical for exposed 

urban rooftops (BES 2009). Ecoroofs are an SGI facility that may be installed 

either during the process of new construction or retrofitted to existing roofs, 

taking advantage of otherwise barren urban space. They consist of multiple 

layers, all designed to systematically increase the roof’s functionality through a 

combination of man-made and natural materials, ultimately providing an array of 

socio-eco-hydrological benefits (van der Meulen 2019). Social benefits include 

increased value over the life of the roof and aesthetic value of the property (Berto 

et al. 2018), as well as health benefits associated with the thermal regulating 

1 
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capacity of the roofs (Nardini et al. 2012) and improved air quality (Tan et al. 

2017). Ecological benefits are known to be great, with many ecoroof designs 

incorporating vegetation that may sustain urban insects and small animals (BES 

2010). Hydrological benefits (Figure 1) include a reduction in stormwater runoff 

and increased evapotranspiration (Mentens et al. 2005, Starry et al. 2016, De-

Ville et al. 2018), which lessen the stress on sewer systems (Berto et al. 2018). 

As rooftops account for substantial urban impervious surface area, sometimes up 

to 40-50% (Mentens et al. 2005, Zhang and Guo 2013), the potential for urban 

space to benefit from ecoroofs as an alternative is large.  

The ability of ecoroofs to serve as a control measure for the reduction of 

stormwater runoff is well documented (Table 1) as the facilities are designed to 

capture incoming precipitation, reducing peak-flow and stormwater volume (Palla 

et al. 2010). Recent literature has explored the ability of ecoroofs to mitigate 

flooding, such as the ability to reduce flash-flood area (Liu et al. 2017). Other 

studies suggest that under the Pacific Northwest climate regime ecoroofs exhibit 

the potential to retain anywhere from 12% to 17% (Spolek 2008) or 23.2% to 

32.9% (Schultz et al. 2018) of precipitation annually, depending on the roof. 

Previous studies show that rainfall retention capacity (RRC) of ecoroofs may vary 

by season in temperate climates, sometimes much higher in the summer season 

than in the winter (DeVille et al. 2018), with reported average seasonal values 

ranging from 20% to 48% over multiple locations (Mentens et al. 2006), and 12% 

to 42% in Portland, Oregon, USA (Spolek 2008). It is also common for the 

reported runoff reduction per event to have a broad range, such as the 6.4% to 
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100% reported by Cipolla et al. (2016). This variation is mostly attributed to 

differences in the volumetric water content of the soil between precipitation 

events, as well as differences in seasonal evapotranspiration (Hill et al. 2017). 

Literature is indicating that there is a significant geographic dependency 

on the ability of an extensive ecoroof to retain incoming precipitation. Studies of 

retention performance over a range of climates, such as those performed by 

Talebi et al. (2019) and Viola et al. (2017) find that performance variability can be 

drastic between locations. Due to the complexity of variables driving rainfall 

retention capacity (RRC), such as precipitation event characteristics (Stovin et al. 

2010), temporal components (Bouzouidja et al. 2018, De-Ville et al. 2018) and 

vegetation (Szota et al. 2017), most authors agree that the RRC values should 

not be extrapolated to other climates, indicating that location-specific studies are 

necessary (Burszta-Adamiak et al. 2019, Viola et al. 2017).  Furthermore, Akther 

et al. 2018 found statistically significant differences in ecoroof performance by 

different climate classifications. With the influence of climate as one of the driving 

factors of ecoroof performance, local meteorological conditions must be 

considered with near equal importance to design principles.  

Due to the relatively new impetus toward incorporating ecoroofs in city 

plans, a large proportion of recent literature focuses on the roof design 

characteristics that provide the most functionality. The design determines 

whether the roof is intensive or extensive, a designation related to substrate 

depth, substrate composition, vegetation, as well as the maintenance 

requirements (Palla et al. 2010, Soulis et al. 2017). As extensive roofs are 
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thinner, at < 150mm of substrate, they tend to be a preferred choice for builders 

with their lighter and cheaper installation (Soulis et al. 2017, Feitosa & Wilkinson 

2016) and lower maintenance requirements. Thus, understanding the 

relationship between substrate depth and RRC of ecoroofs is necessary to 

ensure that locally adopted standards are being met by newly installed ecoroofs. 

Studies have indicated that substrate depth is one of the most important design 

features of an ecoroof in determining its ability to retain stormwater, even more 

so than the slope of the roof or the vegetation type (Liu et al. 2019). It has also 

been established that antecedent dry weather periods (ADWPs) are pivotal in 

predicting green roof performance (Burszta-Adamiak et al. 2019, Schultz et al. 

2018). As the ADWPs affect the inter-event recovery of storage capacity and 

influence changes in hydraulic conductivity (Feitosa & Wilkinson 2016), the link 

between precipitation event characteristics and climate on the ability of substrate 

to retain water on an individual storm basis becomes more obvious. This again 

stresses the need for geographically specific determination of ideal substrate 

depth, as these characteristics must be accounted for.  

 As the compounding impacts of urbanization result in incidents such as 

overloaded greywater systems during storms (Liu et al. 2017), they require 

planned remediation and proactive controls. Cities such as Portland, OR are 

confronting them directly in city plans. An example of this is Portland’s Central 

City 2035 plan, passed in 2018, which requires large new construction projects 

within the plan boundaries to incorporate, at minimum, an extensive ecoroof (City 

of Portland 2018). Understanding the relationship between substrate depth and 
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RRC of ecoroofs is necessary to ensure that adopted standards are being met by 

newly installed ecoroofs. With cost also being a significant consideration in the 

benefit of ecoroof installation (Thuring & Grant 2015), the determination of a 

minimum ecoroof depth capable of providing the intended stormwater control 

benefits must occur, securing both functionality and feasibility. 

    Figure 1: Model of ecoroof as a stormwater control measure in an urban setting 

To increase practical knowledge surrounding the potential for functional 

application of ecoroofs in urban environments, their performance over time and 

space must undergo continuous study. Prior to passing the Central City 2035 

requirements promoted the installation of ecoroofs both privately and publicly 
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through a 2008-2012 incentive program (BES. nd), resulting in a higher 

concentration of facilities. As the city continues to engage with designs intended 

to promote future climate resilience, they have been monitoring select ecoroof 

facilities for performance. This is crucial in local stormwater management, as 

Portland is projected to see a combination of higher intensity precipitation events 

(Cooley & Chang 2017), as well as higher volume of precipitation in the winter 

months (Rupp et al. 2017). Combined with a steady population growth (Oregon 

Metro. 2016) and associated development and increased impervious surfaces, this 

stresses the need for localized longer-term studies focused on SGI approaches. 

This research extends and expands on previous work by Shultz et al. (2018), in 

that it identifies behavior under a successive multi-year period. In turn, this study 

may increase recognition that ecoroofs remain a viable option for supporting 

hydrological system health in urbanized environments. For these reasons, this 

project proposes to answer the following questions: 

1. What are the annual stormwater retention capacities of each ecoroof section?

2. Does a deeper (125mm) or shallower (75mm) ecoroof substrate provide better

annual stormwater runoff reduction performance?

3. Does either the 125mm or 75mm ecoroof provide significantly better rainfall

retention capacity under a range of precipitation intensities?
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Table 1: Relevant literature that reports rainfall retention values for similar extensive ecoroofs 

under a range of climates and scenarios 

Authors Date Study 
Area 

Methodology Roof Depth Duration Retention 

Bouzouidja 
et al. 

2018 laboratory Laboratory 140mm - 73% +/- 10

Burszta-
Adamiak  et 
al. 

2018 Poland empirical 100mm 5 year 81.20% 

Hill  et al. 2012 Canada, 
Toronto 

empirical 100mm-150mm Summer 70% 

Liu et al. 2019 China empirical 
/simulation 

50mm - 150mm - 25.4-28.9% 

Schultz et al. 2018 USA, Portland Empirical 75mm, 125mm 1 year 23.2%, 32.9% 

Shafique et 
al. 

2018 Korea, Seoul empirical 30mm 3 days-June 10%- 60% 

Spolek, 
Graig 

2008 USA, Portland empirical 150mm 3 years 25% 

Talebi et al. 2019 Canada, 
various 

model 80 mm - 220 mm March- Oct, 7 
years 

17% - 50% 

Viola et al. 2017 Global model 90mm 100 years 48%-52.8% 
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2. Data and Methods

2.1 Study Area 

The ecoroof referenced in this study is located within the city of Portland, 

OR. The city is relatively large at about 375 km2 and contains 653,000 residents 

(US Census 2018). It has a Csb climate designation according to Köppen 

classification, a Mediterranean type regime characterized by drier summers and 

wetter winter months. The average temperature is mild for years 1981-2010, at 

12.45°C and precipitation averages 913.89 mm annually, with 667.77 mm of that 

occurring between October and March (U.S.climatedata 2019).  

The greater Portland area has been subject to many stormwater concerns, 

with reduction in combined sewer overflows a noted priority in management (BES 

2016). The city also aims to reduce pluvial flooding, which causes damage 

through events such as basement sewer backups (BES 2016, Michelson and 

Chang 2019). Not all stormwater is treated before discharging into the Willamette 

River, which transects the more urbanized city center, influencing stormwater 

management requirements as well. 

The roof was constructed in 2013, containing 3,441 m2 of vegetated 

surface. It has three segments, the first consisting of a control section made of 

traditional roofing design, a second which has a depth of 75mm, and a third 

which has 125mm substrate. All three of these segments have been recorded 

and are available for this purpose of this analysis. 
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2.2 Data 

 

                                Table 2. Hydroclimate data used in the current study 

 

   

 

 

Data has been collected by the City of Portland at the Walmart ecoroof in 

Portland, OR (Table 2). The data spans a period from October 1, 2014 to 

September 30, 2017. The Walmart ecoroof provided flow data using Plasti-fab 

extra-large 60-degree trapezoidal flumes with Hack US9001 Down-looking 

ultrasonic depth sensors, recorded every five minutes from the section outlets 

draining both the 125mm and 75mm ecoroof sections. This same collection 

Variable Source Resolution Location 

Precipitation HYDRA 
Station 
220 

1 hour 49.5956, -
122.6794 

Outflow BES 5 minute 49.5956, -
122.6794 

Figure 2: Ecoroof study site located in Portland, OR, USA 
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process was repeated for the larger traditional roof section, which is to serve as 

the experimental control. Hourly precipitation data was derived from the USGS 

HYDRA network (2018), with hourly precipitation data collected from on-site rain 

gages located atop the Walmart roof.          

 

2.3. Methods  

 2.3.1 Data Preparation  

 Ecoroof outflow values for the conventional, 75mm, and 125mm plots at 

the Walmart location were aggregated to an hourly timescale spanning the 

October 1, 2014 to September 30, 2017 study period. The discharge and 

precipitation data were converted to mm, accounting for differences in plot area. 

Precipitation events were defined as any time period where there is > 2mm of 

precipitation following an ADWP of at least 12 hours (Buffman et al. 2017). This 

is more substantial than the 6 hour ADWP used to distinguish between 

precipitation events in other literature (Stovin et al. 2013, Burszsta-Admiak et al. 

2018, Palla et al. 2018). For the purpose of this study, the longer ADWP was 

used as the distinguishing time period, a means to account for an overall gap in 

practical knowledge regarding the actual duration of ecoroof discharge following 

a precipitation event in this climate. As the intention of this study is to observe 

and assess real-world behavior, it was prioritized that the behavior of individual 

events be captured in addition to establishing event independence. The longer 

ADWP also ensures that the substrate has adequate time to recover storage 

capacity in between the events, assuming the different depths might require 
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varied dry periods to accomplish this. However, under the climate regime of this 

locality, a longer ADWP means that there is a substantial range in precipitation 

event length, spanning from only a few hours to multiple days.  

 

2.3.2 Assumptions  

 Due to the number of potentially impactful factors on ecoroof performance, 

certain assumptions had to be made in order to complete this comparative 

analysis.  We assumed that all the ecoroof plots had identical design 

characteristics, varying only in their relative substrate depth. The substrate used 

for both plots was an industry standard mixture of pumice, sandy loam soil, and 

composted organic materials. However, it is possible that exact characteristics 

could have changed over time. Weathering, the addition of organic material (De-

Ville et al. 2018), and other processes could indicate that the plots are no longer 

identical to their design specifications (Bouzouidja et al. 2018). As the 

precipitation gauge was located on the conventional roof section, the climatic and 

meteorological conditions were assumed to be identical. This eliminates the need 

to incorporate other possible contributing factors of RRC, such as conditions 

impacting the potential evapotranspiration values of the rooftops which might 

vary over city area.  

 

   2.3.3 Statistical Analysis  

 All data preparation and statistical analysis were performed in the program 

R version 3.5.1, using packages such as lubridate (Grolemund & Wickham 
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2011), dplyr (Wickham et al. 2018), and lfstat (Gauster 2016) to clean, analyze, 

and visualize data.  

 After precipitation events and their corresponding outflow were 

determined, the proportion of discharge to precipitation (runoff ratio) was 

calculated. We subtracted runoff ratio from 1 and multiply by 100 to derive event-

level RRC (Eq. 1), where Q = hourly event discharge and P = hourly event 

precipitation. 

 

𝑅𝑅𝐶 = (1 − (
𝑄

𝑃
)) ∗ 100     (Eq. 1) 

 

These event-level values were then used to compare behavior by plot 

substrate depth and year. Event intensity was calculated as the total volume of 

precipitation divided by the length of precipitation in hours. This value is included 

because it adds context to each individual storm scenario, which would be lost if 

the length of precipitation was not considered. However, since one 

representative observation is used to represent each storm, the peak discharge 

is not calculated.  

 Data points indicative of outliers, often falling outside of the Cook’s 

Distance, are not removed from the final dataset unless necessary to improve 

model fit as indicated by R GLM model plots, as each event and its 

corresponding RRC have been visually verified. This methodology is used under 
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the assumption that any extreme runoff or precipitation behavior results from 

practical scenarios, and as such is valid in determining real-world behavior.  

 

 2.3.3.1 Retention by depth  

 Storm event data from each ecoroof plot as well as the conventional 

rooftop were compared to determine the effect of depth on RRC. Because the 

data are not normally distributed even after the application of transformations, we 

used a non-parametric test. The Kruskal-Wallis Rank Sum Test was chosen to 

determine whether there are differences between groups, in this case the 

retention values recorded for each of the three ecoroof plots. To investigate 

noted trends further, a Dunn’s Test of Multiple Comparisons was applied post 

hoc to identify groups contributing to model significance.  

 To visualize the potential differences in RRC of the roofs by season, the 

data were divided into wet season and dry season following the categorization 

specified by Chen and Chang (2019), with the wet season subdivided further into 

beginning (October-November), middle (December-February), and end (March-

May) of season. A box-and-whisker plot was created to compare the distribution 

of RRC values among the different plots between seasons.   

 

 2.3.3.2 Retention by depth and intensity 

The relationship between event-level RRC and storm intensity was 

analyzed for the entire study period using multiple statistical approaches. Initially, 

a direct correlation between intensity and retention was assessed using a 
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Spearman’s Rank Correlation Coefficient. Additionally, a binary Generalized 

Linear Regression with a logit link function was used to investigate the 

relationship between intensity and retention given the logistic distribution of the 

RRC. From this model, regression coefficients and significance values were 

determined. Model deviance residuals and fitted values were used to determine 

goodness-of-fit, and thus the appropriateness of model choice.  

 

 2.3.3.3 Retention by depth and grouped intensity 

For this portion of the analysis, the conventional rooftop was compared to 

the 125mm section, and the 75mm section was compared to the 125mm section. 

The first combination was included as a control measure, and the second 

combination was to improve the sensitivity of the analysis in regard to significant 

variance in RRC of the two roof depths, intensity dependent. The intensity of 

events were divided into three groups, notated as low (0.31 mm hr-1 - 1.09 mm 

hr-1), medium (1.10 mm hr-1 – 2.11 mm hr-1), and high (2.12 mm hr-1 - 4.06 mm 

hr-1) intensity, with 104, 63, and 14 observations returned, respectively (See 

Appendix). This was accomplished using a Jenks natural breaks function, as 

equal breaks might not capture behavior under the types of high intensity events 

that could result in stormwater concerns. As extreme events often occur much 

less frequently than smaller events, the higher intensity events should not be 

equally represented in number of observations within this real-world data set, so 

this approach assists win maximizing the variance between intensity categories 

Additionally, using a certain threshold value to define high intensity events is 



15 
 

difficult under these circumstances, as the limited presence of these events over 

the three year period would make a statistical analysis unreliable. For example, 

behavior during the 10-year design storm criteria of 8.64mm over a 24 hour 

period used to determine requirements of other types of SGI (BES 2016) cannot 

be adequately referenced under these circumstances. 

To begin investigating the relationship between intensity and depth, a 

comparison of all test plots, with retention as the response variable and depth 

and intensity group as the independent variables was performed. This specific 

combination of variables was used to establish a difference between ecoroofs 

and conventional rooftop, as well as to determine whether there is a difference 

between the two ecoroof plot depths and their response to precipitation events of 

different intensities. A binary generalized linear model with a logit link was 

chosen for section of the analysis, with attention paid to the potential interaction 

between the two grouping variables included. The results of the GLM were then 

input to a two-way type III ANOVA using the car (Fox et al. 2019) package in R, 

capable of accepting the GLM model format. If a significant interaction between 

depth and grouped intensity was observed, the final GLM included this 

interaction and both grouping variables. If there was no interaction as determined 

by the ANOVA results, the final linear regression only included significant 

variables. The deviance of residuals and fitted values were again inspected using 

qqplots and other methods, to visually confirm a good model fit. 

To determine the response of individual plots to precipitation intensity 

groups, a Kruskal-Wallis Rank Sum Test was run for the retention values of the 



16 
 

0mm and 125mm ecoroof sections. A Dunn’s Test of Multiple Comparisons was 

performed on the model to derive additional information.  
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3. Results & Discussion 

3.1 Annual Rainfall Runoff Capacity 

 

There were a total of 181 individual storm events (Table 3) determined for 

the three year period. They varied in duration, with longer events spanning 

multiple days, and shorter events just few hours. This provides a range of 

precipitation scenarios under which to determine the annual retention capabilities 

of the roof sections. The conventional roof exhibited an average RRC of 23% 

(Table 4), which is comparable to the 19% retention observed for non-greened 

roofs in Brussels by Mentens et al. (2006). These authors hypothesized that the 

retention provided by the non-vegetated rooftop could result from permeability of 

materials used, as well as depression storage. The 75mm rooftop showed an 

annual RRC of 40%, and the 125mm rooftop an annual retention of 31%. The 

highest rainfall retention was observed for the 75mm rooftop for the 2014-2015 

water year, at 56%.  

Mean annual rainfall retention volume of an ecoroof plot calculated in this 

study was 134,028.17 gallons (507.35 m3), with a total volume reduction of 

804,131 gallons (3043.97 m3) for both plots over the entire study period. These 

volumes could greatly reduce the stormwater load entering the greywater system 

at that location, and given the relative percentages of RRC noted above, could 

be considered appropriately representative of an ecoroof of this size in this 

climate. Even with the rainfall volume reduction of the conventional control plot 
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considered, an ecoroof plot still managed to reduce rainfall runoff by an 

additional 44,998.50 gallons annually.  

 

 

 

 

 

Interestingly, this year also saw the lowest amount of precipitation, at only 

75% of the next highest year. These values are well-aligned with, albeit slightly 

improved, over the 25% retention observed over a three year period of 

Water year Total ppt (mm) n events Max event 
length (hr) 

Max event 
intensity 
(mm hr-1) 

2014-2015 861.57 54 52 4.06 
2015-2016 1143.00 67 62 2.79 
2016-2017 1478.78 60 77 2.90 

Water 
year 

0mm 75mm 125mm Eco-
roof 
Mean 

 Retention 
(%) 

Volume 
(gal) 

Retention 
(%) 

Volume 
(gal) 

Retention 
(%) 

Volume 
(gal) 

 

2014-
2015 

32 105460 56 188620 41 135401 48 

2015-
2016 

15 53336 41 148662 25 91478 33 

2016-
2017 

23 108293 24 111130 27 128878 26 

Total  
(gal) 

     267088  448372  355759  

Table 3: Event characteristics by water year 

Table 4: Total annual volumetric rainfall retention ratio for each roof depth, calculated using 

the annual sum total of P and annual sum total Q for each plot. Total runoff volume reduction 

(gallons) for each section is listed on the bottom row.  
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monitoring another Portland, OR ecoroof (Spolek 2008), which implies that a 

long-term temporal dependent performance study should be considered.   

 

3.2 Retention by depth  

  There is a significant relationship between the depth of ecoroof plot and 

the retention performance as indicated by the Kruskal-Wallis rank sum test (p-

value = 0.00). Further analysis indicates that this significance is observed 

between the 0mm conventional rooftop and the 75mm and the 0mm and 125mm 

ecoroof plots over the three year period. Although the 75mm ecoroof exhibited 

higher rainfall retention than the 125mm ecoroof for two years of the three year 

study period, there is no significant difference observed between the two ecoroof 

plots (Table 5). The differences between the ecoroof plots and the conventional 

rooftop, serving as a control, were anticipated given the potential RRC 

performance of ecoroofs documented within literature (Table 1). However, the 

absence of observable difference in RRC behavior between the two ecoroof 

plots, despite their variation in substrate depth, was more surprising. This finding 

could serve as particularly influential in regard to local planning, as the structural 

load requirements of an ecoroof can vary greatly with substrate depth, with 

requirements ranging from 100 kg/m2 to 3200 kg/m2 by increasing depth of a 

saturated sandy loam soil by 150 cm (Castiglia Feitosa & Wilkinson 2016). This 

implies that there is will be a structural and financial benefit to installing the 

slightly thinner ecoroof, with weight as a consideration.  
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 Depth p-value 

Dunn Test 0 vs 75mm 0.00 *** 

 0 vs 125mm 0.00 *** 

 75mm vs 125mm 0.83 

Kruskal-Wallis chi-squared 85.34 

 p-value 0.00 *** 

 

        

 

Other studies have observed a difference between ecoroof plot depth and 

RRC (Feitosa & Wilkinson 2016, Talebi et al. 2019). Talebi et al. (2019) noted 

that changes in substrate depth are only impactful on retention capacity if that 

moisture is actually available for evapotranspiration, otherwise the additional 

storage of the deeper roof is not available for retention (2019). We hypothesize 

that this is the driving factor behind the similar performance of ecoroof plots in 

this study, as it is possible that the deeper ecoroof plot simply takes longer to 

fully dry out, meaning that the actual available storage volume for both roofs 

could be similar at storm onset. This is supported by the knowledge that Sedum 

species are often considered low-water users (Szota et al. 2017), meaning that 

they will restore substrate storage capacity more slowly than other common 

ecoroof vegetation options. A study by Li et al. (2018) elucidates the role of root 

depth and biomass on RRC, indicating that perhaps the observed trend is 

developing from inaccessible capillary water existing in the deeper portions of the 

Table 5: Results of statistical tests comparing differences between roof 

plot depth and rainfall retention capacity p-sig <0.05 
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substrate after all of the gravitational water has passed through and been 

registered as discharge, as a result of root structure. It is also possible that this 

discrepancy could result partially from differences in overall precipitation regime, 

and therefore intensity of events by frequency, which was not considered in this 

study. Although there is a 12 hour ADWP, ecoroof discharge can continue well 

past the precipitation event itself, indicating that there is the possibility that 

storage capacity has not been fully restored between events 

The seasonal and sub-seasonal temporal component appears to impact 

RRC of all the three roof sections (Figure 3). This variability in behavior does 

appear to remain consistent between the 125mm and 75mm ecoroof plots within 

each category, based on RRC values. The plot indicates that the greatest RRC 

for ecoroof plots is observed during the dry season, where 85% retention 

accounts for all but outliers for both plots, independently. The opposite is 

observed for middle wet season, where the median RRC is lowest for the 

ecoroofs, as well as lower values for the bottom of the lower interquartile range. 

A Mann-Whitney U Test performed between the 125mm retention observations 

for wet season (n= 139) and dry season (n= 23) exhibits a highly significant 

difference (p = 0.00) between the hourly retention values of the two seasons. 
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3.3 Retention by intensity and depth 

Results of the effects of intensity and ecoroof plot presence and depth 

were not surprising. Overall, a negative Spearman correlation is observed 

between intensity and retention for the control roof (p = 0.03, rho = -0.17) as well 

as the 125mm roof (p=0.00, rho = -0.37). The relationship between intensity and 

retention shows a negative correlation within the range of observed storm events 

(Figure 4). Results from the GLM (Table 6) reveal that there is a lower likelihood 

that the ecoroof plots will experience a 100% RRC event compared to the 

conventional roof, when intensity is considered. All independent variables except 

for continuous intensity display significance within this model. 

 

 

Figure 3: Boxplot exhibiting the RRC of the three roof plots, divided by dry 

season (n = 23) and beginning (n= 31), middle (n = 61), and end (n = 47) of wet 

season. Depth in mm.  
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As shown in Figure 5 the means of the high intensity 0mm and 125mm 

RRC are quite similar. However, the range of RRC values is visibly broader for 

the ecoroof. The reasons for this require further investigation, as this could 

indicate an unknown factor. Viewing the RRC of both the 75mm and 125mm 

roofs, it is obvious that this wide range of RRC values, with some storms 

exhibiting > 90% retention, is consistent for both plots. Viewing the data in this 

format, it appears as though the RRC of the ecoroofs is greatest for the low 

intensity events, which is expected due to the available storage capacity of the 

substrate after a 12 hour ADWP, and the volume of water which can be held 

during these shorter duration or lower volume events.  

Figure 4: Linear trends associated with event-level retention as a function of intensity, by 

plot depth. Depth in mm. 
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GLM  Coefficient (logit) p-value 

Intercept -1.10 0.00 *** 
Intensity  0.74 0.05 
Depth 75mm  1.33 0.00 *** 
Depth 125mm  1.43 0.00 *** 
Intensity x 75mm -1.88 0.00 *** 
Intensity x 125mm -1.91 0.00 *** 

AIC 610.94 

 

 

 

 

 

 

Neither grouped storm intensity nor plot depth has a direct significant 

influence on the RRC of the 0mm and 125mm roofs, with interaction between 

depth and intensity considered (Table 7). However, the highly significant 

Figure 5: Boxplot exhibiting intensity by group, comparing all three plots. Depth 

in mm (n= 104 low, n = 63 med, n = 14 high).  

Table 6: Generalized linear regression model results, depth vs continuous intensity, 

all roof plots. p-sig <0.05. AIC = Akaike information criterion 
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interaction between the two grouping variables (p= 0.00) indicates that there is 

likely a joint influence, and thus more investigation is necessary. This is not the 

case when comparing the 75mm and 125mm plot sections, where there is a clear 

relationship between intensity group and RRC, but no difference by depth. These 

results are consistent with the findings that there is no significant difference 

between the overall RRC of the 75mm and 125mm plots, and we can now 

conclude that this is true under all intensity scenarios. This test, however, does 

not indicate under which grouped intensity scenarios the significant differences in 

RRC are observed.  

 
 

 

 

 

 

The 125mm section was analyzed (Table 7) to determine under which 

intensity scenarios difference in RRC are occurring (Table 8). The results 

indicate that there is a highly significant difference (p=0.00) observed between 

the RRC of the ecoroof plot during high intensity and low intensity storms. For the 

conventional control plot, a significant difference is observed between the 

retention of low versus medium intensity events, but not between low and high 

intensity events (Table 8), illustrating another difference between conventional 

ANOVA 0mm & 125mm 75mm & 125mm 

 p-value p-value 

Depth 0.46 0.68 

Intensity group 0.36 0.00 *** 

Depth : group 0.003 ** - 

Table 7: ANOVA results for models investigating the relationship between depth and 

intensity group on roof retention. p-sig <0.05 
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and ecoroof plots. Although RRC might be decreasing for medium vs low 

intensity events, the difference is not enough to be highly significant (p= 0.08). 

This could be attributed to the ecoroof’s capability of retaining a greater 

proportion of input from both the low and medium intensity storms, with a 

progressive decline in ability as the intensity values increase past a certain 

range. This likely results from a combination of saturated soil and immediate 

surface runoff, as there is evidence that ecoroof substrate can exhibit greater 

hydraulic conductivity under certain circumstances (Castiglia Feitosa & Wilkinson 

2016). Once the input volume has surpassed a certain maximum storage 

capacity, it might be assumed that all additional input would be lost to saturation 

overland flow.  

 
 

 

 

 

 

 

 

 

 

The overall indication of these findings is that the 75mm and 125mm 

ecoroof sections are both capable of managing a wide range of precipitation 

events. However, they might not be adequate for handling the highest intensity 

  conventional 125mm 

 Intensity p-value p-value 

Dunn Test low-med 0.01 ** 0.08 

 med-high 0.93 0.64 

 low-high 0.19 0.00 *** 

Kruskal-Wallis chi-squared 10.10 21.59 

 p-value 0.01 ** 0.00 *** 

Table 8: Results of tests comparing differences between retention by grouped 

intensity. p-sig <0.05  
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events, which means that a combination of stormwater green infrastructure types 

and grey infrastructure (Zhang et al. 2018) might be a better approach to 

controlling stormwater during periods of higher flood risk. Further comparative 

analysis between the two ecoroofs under even higher intensity events, or even a 

comparison of behavior under events containing shorter-duration but higher peak 

intensity, could elicit any additional underlying variations in behavior. Additionally, 

comparisons of events matching local return period values (See Appendix) could 

provide more insight into future performance scenarios.  

A thorough analysis of the mechanisms by which the 75mm and 125mm 

ecoroof plots are functioning so similarly when controlling rainfall should also be 

conducted. Measurements of organic material in the substrate, root structure, 

and below-ground biomass could assist in determining potential sources of 

influence for this observed behavior. Changes in RRC over time should also be 

assessed, as functional aspects of the design could shift.  
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4. Conclusions 

        The results of this study imply that both 75mm and 125mm ecoroofs will 

provide an equivalent level of functionality in regard to controlling stormwater 

runoff in Portland, OR. Both ecoroofs offer a significant annual improvement over 

the conventional rooftop spanning the three-year period, providing an average of 

40.4% rainfall retention capacity for the 75mm plot and 31.1% for the 125mm 

plot. When comparing the two ecoroof’s performance under precipitation events 

of varying intensities, it is observed that performance is significantly improved 

under low intensity events as opposed to high intensity events. Overall, there is a 

negative relationship between precipitation intensity and RRC.  

       These findings are applicable to local planning, as they inform decision-

makers of the minimum specifications necessary to meet specific performance 

requirements. It can be assumed that, since the two ecoroof plots exhibit similar 

performance, the shallower depth would be a preferable planning option, as it 

requires less materials and results in less of a weight burden on the associated 

structure. This study could benefit from a further analysis looking at the real-

world functionality of an ecoroof in this region over a longer time period, to 

capture more of the larger-scale precipitation events. Knowledge would also be 

benefited by a local study with a focus on assessment of long-term temporal 

shifts in ecoroof RRC in order to detect potential changes in the roof’s capacity to 

manage incoming precipitation.   

 

 



29 
 

Citations 

Akther, Musa, Jianxun He, Angus Chu, Jian Huang, and Bert van Duin. A 
Review of Green Roof Applications for Managing Urban Stormwater in 
Different Climatic Zones. 2018. Sustainability. 10, 2864.  

Berto, Raul, Carlo Antonio Stival, and Paolo Rosato. 2018. Enhancing the 
Environmental Performance of Industrial Settlements: An Economic 
Evaluation of Extensive Green Roof Competitiveness. Building and 
Environment 127: 58-68. https://doi.org/10.1016/j.buildenv.2017.10.032 

BES. n.d. Ecoroof Incentive. City of Portland. Web. Accessed June 2018. 
https://www.portlandoregon.gov/bes/article/547491 

BES. 2007. Sewer and Drainage Facilities Design Manual. Web. Accessed 
May 2019. https://www.portlandoregon.gov/bes/article/360710 

BES. 2009. Ecoroof Floor Area Ratio Bonus Option. Web. Accessed May 
2019. https://www.portlandoregon.gov/bes/article/474490 

BES. 2010. Portland Ecosystem Guide. City of Portland. Web. Accessed 
June 2018. https://www.portlandoregon.gov/bes/article/331490 

BES. 2016. City of Portland Stormwater Management Manual. City of 
Portland. Web. Accessed June 2018. 
https://www.portlandoregon.gov/bes/64040 

Bouzouidja, R, G. Sere, R. Claverie, S. Ouvrard, L. Nuttens, D. Lacroix. 
2018. Green roof againg: Quantifying the impact of substrate evolution 
on hydraulic performances at the lab-scale. Journal of Hydrology. 564: 
416-423. https://doi.org/10.1016/j.jhydrol.2018.01.032.  

Burszsta-Adamiak, Ewa, J. Stanczyk and J. Lomotowski. 2018. Hydrological 
perfomrance of green roofs in the context of the meteorological factors 
during the 5-year monitoring period. Water and Environment Journal. 
33:144-154. http://doi.org/10.1111/wej.12385. 

Castiglia Feitosa, R., and Sara Wilkingson. 2016. Modelling green roof 
stormwater response for different soil depths. Landscape and Urban 
Planning. 153:170-179. 

Chen, Junjie and Heejun Chang. 2019. Dynamics of wet-season turbidity in 
relation to precipitation, discharge, and land cover in three urbanizing 
watersheds, Oregon. River Research and Applications. 2019: 1-13. DOI: 
10.1002/rra.3487. 

Cipolla, S.S., Maglionico, M., Stojkov, I., 2016. A long-term hydrological 
modelling of an extensive green roof by means of SWMM. Ecological 
Engineering 95, 876–887. https://doi.org/10.1016/j.ecoleng.2016.07.009 

Cooley, Alexis and Heejun Chang. 2017. Precipitation Intensity Trend 
Detection Using Hourly and Daily Observations in Portland, Oregon. 
Climate 5, no. 1: https://doi.org/10.3390/cli5010010. 

De-Ville, Simon, Manoj Menon, and Virginia Stovin. 2018. Temporal 
Variations in the Potential Hydrological Performance of Extensive Green 
Roof Systems.Journal of Hydrology 558: 564–78. 
https://doi.org/10.1016/j.jhydrol.2018.01.055. 

https://doi.org/10.1016/j.buildenv.2017.10.032
https://www.portlandoregon.gov/bes/article/547491
https://www.portlandoregon.gov/bes/article/360710
https://www.portlandoregon.gov/bes/article/474490
https://www.portlandoregon.gov/bes/64040
https://doi.org/10.1016/j.jhydrol.2018.01.032
https://doi.org/10.1016/j.ecoleng.2016.07.009
https://doi.org/10.3390/cli5010010
https://doi.org/10.1016/j.jhydrol.2018.01.055
https://doi.org/10.1016/j.jhydrol.2018.01.055
https://doi.org/10.1016/j.jhydrol.2018.01.055


30 
 

Fox, John and Sanford Weisberg (2019). An {R} Companion to Applied 
Regression, Third Edition. Thousand Oaks CA: Sage. 
URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ 

Garrett Grolemund, Hadley Wickham (2011). Dates and Times Made Easy 
with lubridate. Journal of Statistical Software, 40(3), 1-25. 
URL http://www.jstatsoft.org/v40/i03/. 

Hill, Jenny, Jennifer Drake, Brent Sleep, and Liat Margolis. 2017. Influences 
of Four Extensive Green Roof Design Variables on Stormwater 
Hydrology. Journal of Hydrologic Engineering 22, no. 8: 04017019. 
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001534. 

Koffler, Daniel, Tobia Gauster, and Gregor Laaha. 2016. Calculation of low 
flow statistics for daily stream flow data. R-package version 0.9.4. 
https://CRAN.R-project.org/package=lfstat 

Liu, Chunlu, Yan Li and Jun Li. 2017. Geographic information system-based 
assessment of mitigating flash-flood disaster from green roof systems. 
Computers, Environment and Urban Systems. 64: 321-331. 
https://doi.org/10.1016/j.compenvurbsys.2017.04.008. 

Liu, Wen, Qi Feng, Weiping Chen, Wei Wei and Ravinesh Deo. 2019. The 
influence of structural factors on stormwater runoff retention of extensive 
green roofs: new evidence from scale-based models and real 
experiments. Journal of Hydrology. 569:230-238. 
https://doi.org/10.1016/j.hydrol.2018/11.066. 

Michelson, K., and Chang, H. (2019) Spatial Characteristics and Frequency 
of Citizen-Observed Pluvial Flooding Events in Relation to Storm Size in 
Portland, Oregon, Urban Climate 

McPhillips, Lauren E., and A. Marissa Matsler. 2018. Temporal Evolution of 
Green Stormwater Infrastructure Strategies in Three US Cities. Frontiers 
in Built Environment 4. https://doi.org/10.3389/fbuil.2018.00026. 

Mentens, Jeroen, Dirk Raes, and Martin Hermy. 2006. Green Roofs as a 
Tool for Solving the Rainwater Runoff Problem in the Urbanized 21st 
Century? Landscape and Urban Planning 77, no. 3: 217–26. 
https://doi.org/10.1016/j.landurbplan.2005.02.010. 

Nardini, Andrea, Sergio Andri, and Maurizio Crasso. 2012. Influence of 
substrate depth and vegetation type on temperature and water runoff 
mitigation by extensive green roofs: shrubs versus herbaceous plants. 
Urban Ecosystems. 15:697-708.  

Oregon Metro. 2016. Portland region nears 2.4 million residents, growing by 
41,000 last year. Web. Accessed June, 
2018.https://www.oregonmetro.gov/news/portland-region-nears-24-
million-residents-growing-41000-last-year 

Palla, Anna, Ilaria Gnecco, and Luca Lanza. 2010. Hydrologic Restoration in 
the Urban Environment Using Green Roofs. Water 2, no. 2: 140–54. 
https://doi.org/10.3390/w2020140. 

Quickfacts. Portland City, OR. US Census Bureau. Web. Accessed June 
2019. https://www.census.gov/quickfacts/portlandcityoregon 

https://socialsciences.mcmaster.ca/jfox/Books/Companion/
http://www.jstatsoft.org/v40/i03/
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001534
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001534
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001534
https://cran.r-project.org/package=lfstat
https://doi.org/10.1016/j.compenvurbsys.2017.04.008
https://doi.org/10.1016/j.hydrol.2018/11.066
https://doi.org/10.1016/j.landurbplan.2005.02.010
https://doi.org/10.1016/j.landurbplan.2005.02.010
https://doi.org/10.1016/j.landurbplan.2005.02.010
https://www.oregonmetro.gov/news/portland-region-nears-24-million-residents-growing-41000-last-year
https://www.oregonmetro.gov/news/portland-region-nears-24-million-residents-growing-41000-last-year
https://doi.org/10.3390/w2020140
https://doi.org/10.3390/w2020140
https://doi.org/10.3390/w2020140
https://www.census.gov/quickfacts/portlandcityoregon


31 
 

Redfern, Thomas W., Neil Macdonald, Thomas R. Kjeldsen, James D. Miller, 
and Nick Reynard. 2016. Current Understanding of Hydrological 
Processes on Common Urban Surfaces. Progress in Physical 
Geography 40, no. 5: 699–713. 
https://doi.org/10.1177/0309133316652819. 

Rosenzweig, B., McPhillips, L., Chang, H., Cheng, C., Welty, C., Matsler, M., 
Iwaniec, D. (2018) Urban pluvian flood risk and opportunities for 
resilience, Wires Water DOI: 10.1002/wat2.1302 

Rupp, D, J. Abatzoglou, P. Mote. 2017. Projections of 21st century climate of 
the Columbia River Basin. Climate Dynamics. 49:1783-1799.fo 

Schultz, Isaac, David J. Sailor, and Olyssa Starry. 2018. Effects of Substrate 
Depth and Precipitation Characteristics on Stormwater Retention by Two 
Green Roofs in Portland OR. Journal of Hydrology: Regional Studies 18: 
110–18. https://doi.org/10.1016/j.ejrh.2018.06.008. 

Shafique, Muhammad, Reeho Kim, and Kwon Kyung-Ho. 2018. Green Roof 
for Stormwater Management in a Highly Urbanized Area: The Case of 
Seoul, Korea. Sustainability 10, no. 3: 584. 
https://doi.org/10.3390/su10030584. 

Soulis, Konstantinos X., Nikolaos Ntoulas, Panayiotis A. Nektarios, and 
George Kargas. 2017. Runoff Reduction from Extensive Green Roofs 
Having Different Substrate Depth and Plant Cover. Ecological 
Engineering 102: 80–89. https://doi.org/10.1016/j.ecoleng.2017.01.031. 

Spolek, Graig. 2008. Performance Monitoring of Three Ecoroofs in Portland, 
Oregon. Urban Ecosystems 11, no. 4: 349–59. 
https://doi.org/10.1007/s11252-008-0061-z. 

Starry, Olyssa, John Lea-Cox, Andrew Ristvey, and Steven Cohan. 2016. 
Parameterizing a Water-Balance Model for Predicting Stormwater Runoff 
from Green Roofs. Journal of Hydrologic Engineering 21, no. 12: 
04016046. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001443. 

Stovin, Virginia, Simon Poë, and Christian Berretta. 2013. A Modelling Study 
of Long Term Green Roof Retention Performance. Journal of 
Environmental Management 131: 206–15. 
https://doi.org/10.1016/j.jenvman.2013.09.026. 

Stovin, Virginia, Gianni Vesuviano, and Simon De-Ville. 2017. Defining 
Green Roof Detention Performance. Urban Water Journal 14, no. 6: 
574–88. https://doi.org/10.1080/1573062X.2015.1049279. 

Szota, Christopher, Claire Farrel, Nicholas Williams, Stefan Arndt, Tim 
Fletcher. 2017. Drought-avoiding plants with low water use can achieve 
high rainfall retention without jeopardising survival on green roofs. 
Science of the total Environment. 603-604:340-351.  

Talebi, Ashkan, Scott Bagg, Brent Sleep, Denis O’Carroll. 2019. Water 
retention performance of green roof technology: A comparison of 
canadian climates. Ecological Engineering. 126:1-15. 

U.S. climate data. Climate Portland-Oregon. Web. Accessed June 2019. 
www.usclimatedata.com 

https://doi.org/10.1177/0309133316652819
https://doi.org/10.1016/j.ejrh.2018.06.008
https://doi.org/10.1016/j.ejrh.2018.06.008
https://doi.org/10.3390/su10030584
https://doi.org/10.3390/su10030584
https://doi.org/10.3390/su10030584
https://doi.org/10.1016/j.ecoleng.2017.01.031
https://doi.org/10.1016/j.ecoleng.2017.01.031
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001443
https://doi.org/10.1080/1573062X.2015.1049279
https://doi.org/10.1080/1573062X.2015.1049279


32 
 

USGS. 2018. HYDRA Rainfall Network. 
https://or.water.usgs.gov/nonusgs/bes/raingage_info/clickmap.html 

Viola, F, M. Hellies, and R. Deidda. 2017. Retention performance of green 
roofs in representative climates worldwide. Journal of Hydrology. 
553:763-772. 

Voyde, E., Fassman, E., and Simcock, R., 2010. Hydrology of an extensive 
living roof under sub-tropical climate conditions in Auckland. New 
Zealand. Journal of Hydrology, 394 (3 – 4), 384– 395. 

Wickham, Hadley, Romain Francois, Lionel Henry and Kirill Muller. 2018. 
dplyr: A grammar of data manipulation. R package version 0.7.6. 
https://CRAN.R-project.org/package=dplyr 

Zhang, Kun, and Ting Fong May Chui. 2018. A Comprehensive Review of 
Spatial Allocation of LID-BMP-GI Practices: Strategies and Optimization 
Tools. Science of The Total Environment 621: 915–29. 
https://doi.org/10.1016/j.scitotenv.2017.11.281. 

Zhang, Shouhong, and Yiping Guo. 2013. Analytical Probabilistic Model for 
Evaluating the Hydrologic Performance of Green Roofs. Journal of 
Hydrologic Engineering 18, no. 1: 19–28. 
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000593. 

 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://or.water.usgs.gov/nonusgs/bes/raingage_info/clickmap.html
https://doi.org/10.1016/j.scitotenv.2017.11.281
https://doi.org/10.1016/j.scitotenv.2017.11.281
https://doi.org/10.1016/j.scitotenv.2017.11.281
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000593
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000593
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000593


33 
 

Appendix: Supplemental Analysis 

 

  Table 9: Frequency of events within each precipitation intensity group, by year 

 low medium high 

2014-2015 64.6% 29.2% 6.3% 

2015-2016 60.0% 33.8% 6.2% 

2016-2017 54.2% 37.3% 8.5% 
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Figure 6: Individual high, medium, and low intensity storm behavior for the 125mm 

and conventional roof sections. Peak hourly intensity is 4.572mm hr-1, 2.54mm hr-

1, 1.27mm hr-1, respectively. All peak values fall within a one year design-storm 

recurrence interval for the Portland area (BES 2007).   
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