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ABSTRACT 

An abstract of the thesis of Chun-Ching Lin for the Master of Science in Electrical 

Engineering presented November 12, 1996. 

Title: Demodulation of Narrowband Radio Frequency Signals by Aliasing Sampling 

The objective of this thesis is to study the demodulation of narrowband radio 

frequency signals by aliasing sampling in order to reduce the sampling rate. The 

spectrum can be recreated at the lower frequency position by aliasing sampling. 

However, if the sampling rate is deviated from the desired one, error will occur. The 

sensitivity to the frequency error of aliasing sampling is studied. 

One main reason of the deviation of the sampling rate is the frequency drifting 

of the local oscillator. Being able to compensate the oscillator drifting errors 

inexpensively, automatic frequency control (AFC) loops are important at receivers. 

Two major digital AFC algorithms are studied. One is the Phase method AFC, and the 

other is the Magnitude method AFC. Study indicates that both methods perform 

almost equally well. One adaptive AFC algorithm is also proposed. The scheme of 

the adaptive AFC algorithm is to use Upper-bound and Lower-bound techniques to 

squeeze the frequency errors. It is shown that the adaptive AFC algorithm can achieve 
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up to 20 dB average signal-to-noise power ratio over the Magnitude method AFC 

under a noisy environment. 
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CHAPTER I 

INTRODUCTION 

DEMODULATION BY ALIASING SAMPLING 

In the world of communications, there are broad usages of radio frequency signals. 

For instance, amplitude modulation broadcast, television, cellular mobile radio, and 

satellite are some examples of application of radio frequency signals. In order to 

increase the efficiency of transmission, the baseband signal is modulated by a high 

frequency carrier. After the modulated waveform is received by the receiver, the goal 

of demodulation is to shift the spectrum to the final baseband signal frequency. This 

spectrum shifting can be accomplished by either analog or digital methods. 

In the analog demodulation process, the spectrum is shifted to an intermediate 

frequency first. This translation in frequency is called superheterodyne [ 1]. The 

accomplishment of superheterodyne is the multiplication of a modulated waveform by 

a locally generated sinusoidal signal. Since the oscillator's performances [2] are 

affected by temperature and power variation, superheterodyne could be inaccurate, and 

therefore the performances of the analog receivers will be degraded. 

Due to the flexibility of digital signal processing techniques, the frequency 

translation can also be accomplished by the digital methods mentioned earlier. 
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According to the sampling theorem [1], the sampling rate has to be higher than twice 

the bandwidth of the signal in order to reconstruct the signal faithfully. In other 

words, the sampling rate has to be high enough to sample the modulated waveform 

and to accomplish superheterodyne digitally. Because a low sampling rate is more 

cost effective than a high sampling rate, one way to reduce the sampling rate and 

achieve superheterodyne digitally is aliasing sampling if the modulated waveform is a 

narrowband signal. As the sampling rate is chosen properly, superheterodyne is 

performed digitally by producing each identical image of the spectrum at low 

frequency positions. Also, the spectrum of a narrowband signal can be shifted down 

to the baseband by using aliasing sampling. In other words, an image of the 

narrowband signal can be created at 0 Hz by a digital demodulation, if the assumed 

sampling rate is an integer submultiple of the carrier frequency [3]. One 

demonstration of the demodulation of a narrowband signal by aliasing sampling is 

shown in Figure 1. 
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Figure 1. Using aliasing sampling to demodulate a narrowband signal by creating an 
image of the spectrum at the baseband. 
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Therefore, aliasing sampling is a solution to avoid the high sampling rate as well as to 

accomplish superheterodyne digitally in the demodulation of narrowband radio 

frequency signals with high frequency carriers. 

Since the sampling clock is driven by a local oscillator, the accuracy of the 

sampling rate is governed by the oscillator's performances. If the sampling rate is not 

as accurate as expected, every image of the spectrum will deviate from its desired 

frequency position proportionally, i.e., the digital spectrum distortion will occur. 

Therefore, the accuracy of the sampling rate is important in a digital demodulation. In 

the first part of this thesis, the sensitivity to the frequency error of aliasing sampling 

will be investigated. 
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AUTOMATIC FREQUENCY CONTROL ALGORITHMS 

How to maintain the stability and accuracy of oscillators is a practical issue in 

analog and digital demodulations. In other words, to capture the carrier frequency 

with respect to the local oscillator's frequency is important in the process of 

demodulation. One solution is to use the high precision oscillators to perform the task 

at receivers. However, high precision also means high cost and the frequency errors 

may be from the carrier because of the noise. A more economical method is to replace 

oscillators of high cost by the AFC loops [ 4] at receivers. 

To compensate oscillator drifting errors, an AFC loop at a receiver is to detect the 

carrier. The function of an AFC loop is to produce a local sinusoidal signal with the 

same frequency as the carrier frequency. This sinusoidal signal can be sent to perform 

either superheterodyne in an analog demodulation, or to drive a sampling clock in a 

digital demodulation. Therefore, one AFC loop can operate either in an analog or a 

digital demodulation. 

The configuration of an AFC loop [4] is shown in Figure 2. 

Carrier 
Error 

Demodula 
Frequency signal Numerical 

ti on 

difference control 
detector oscillator 

l Local sfilusoidal signal 

Fi~ure 2. The configuration of an AFC loop. 
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The basic components of an AFC loop are a frequency difference detector and a 

numerical control oscillator (NCO). The input of an AFC loop is a carrier which is 

extracted from the modulated waveform. The frequency error between the carrier and 

the local oscillator can be converted into an error signal by the frequency difference 

detector. According to this error signal, the NCO generates a new local sinusoidal 

signal as a feedback to the frequency difference detector. Meanwhile this local 

sinusoidal signal of the carrier frequency is the output of the AFC loop. Although the 

oscillator drifting can occur at the transmitter or at the receiver, the :frequency errors 

can be reduced by the AFC loop. 

There are different digital AFC loops. To approach the real-time digital AFC 

processing, two digital AFC loops of simple algorithm will be studied in the second 

part, and in the third part, of this thesis, respectively. One is the Phase method AFC 

[5]. The other is the Magnitude method AFC which is a modified version of the 

discrete Fourier transform (DFT) AFC [6]. In the Phase method AFC, the carrier 

frequency is determined by the phase difference of two consecutive samples, while in 

the Magnitude method AFC, the carrier frequency is determined by the magnitude 

square difference at two discrete frequencies. It is found that both methods are fast but 

sensitive to noise. In order to improve the noise immunity of two digital AFC 

methods, averaging filters will be used to obtain the new estimates of the desired 

frequency difference between the carrier and the local oscillator. In the fourth part of 
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this thesis, the performances of these two methods using averaging filters will be 

presented. 

Finally, an adaptive AFC algorithm will be proposed. The scheme of the adaptive 

AFC algorithm is to use Upper-bound and Lower-bound techniques to squeeze the 

frequency error. In the last part of this thesis, the adaptive AFC algorithm will be 

studied and its performances will be presented. 

THESIS ORGANIZATION 

The organization of this thesis is as follow. The sensitivity to the frequency error 

of aliasing sampling is investigated in Chapter II. The Phase method AFC is described 

and its performances are presented in Chapter III. The Magnitude method AFC is 

described and its performances are presented in Chapter IV. The adaptive AFC 

algorithm is proposed and its performances are presented in Chapter V. The 

conclusion is given in Chapter VI. 



CHAPTER II 

SENSITIVITY TO THE FREQUENCY ERROR OF ALIASING SAMPLING 

INTRODUCTION 

The spectrum shifting in the process of demodulation can be achieved by aliasing 

sampling. However, if the sampling rate is deviated from the desired one, the digital 

spectrum distortion will occur. One demonstration of the digital spectrum distortion is 

shown in Figure 3. 
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Figure 3. The demodulation by aliasing sampling when the sampling rate is deviated. 
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The objective of this chapter is to study the sensitivity to the frequency error of 

aliasing sampling. It is difficult to approach this objective without having the 

baseband signal and the modulated waveform. The assumptions are made as follow. 

Let the baseband signal be f (t) = 

transform [1] are shown in Figure 4. 

f(t) 
1 

08 

06 

04 

02 

• 2 

sm
2 
~ t . The baseband signal and its Fourier 

7t t 

ol I I .~J I \,~, I I I Time, second 
.5 .4 .3 -2 ·1 0 1 2 3 4 5 

Magnitude 
1 

08 

06 

04 

02 
I 

0 Frequency, Hz 
.5 .4 .3 ·2 ·1 0 1 2 3 4 5 

Fi~. The baseband signal (Top) and its Fourier transform (Bottom). 

The bandwidth of the baseband signal is 1 Hz. Let the modulated waveform of an 

amplitude modulation system [1] be f(t)·cos(21tfct). Let the carrier frequency fc 

be 20 Hz in order to consider the error in concept directly. Let the sampling rate fs 
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be higher than twice the bandwidth of the baseband signal to meet the Nyquist 

criterion [I], i.e., fs > 2 Hz. 

FREQUENCY ERROR PREDICTION 

Suppose that the error is from the sampling rate only. In order to measure the 

sensitivity to the frequency error of aliasing sampling, the mean-square error to signal 

power ratio (ESR) is evaluated at the different sampling rates. The ESR is expressed 

as the following equation. 

ESR = 
l.:(x[n]-x[nJ')' x 100% 

n Ix[nf 
n 

, 
where x[ n] is obtained from sampling the baseband signal and x[ n] is obtained from 

samples of the modulated waveform, respectively. The demodulation of the 

modulated waveform by aliasing sampling is simulated and measured. The ESR 

against the sampling rate is shown in Figure 5. 
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Figure 5. ESRs at the different sampling rates. 
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In order to recover the baseband signal from the modulated waveform of an 

amplitude modulation system by aliasing sampling, an image of the spectrum is 

recreated at the baseband. Ideally, the ESR is 0% when one image of the spectrum is 

created by aliasing sampling at 0 Hz position exactly. In other words, the ESR is 0% 

when the sampling rate is an integer submultiple of the carrier frequency [3] as 

expressed in the following equation. 

f c 
fs - -

N 
20 20 20 

... >2 = -, 2' 3' 1 

where N is a positive integer such that fs meets the Nyquist criterion. 
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However, ifthe ESR is too high, it is an indication that the image of the spectrum is 

far away from the baseband. Assume that the sampling rate is deviated from the 

desired one such that the ESR is less than 100 %. As shown in Figure 5 before, the 

ESRs for the various sampling rates under the same carrier frequency are shown in 

Figure 6. 

ESR,% 
1co..--~.--~...-~~~~~.......-~......-~......-~-.-~--.-~-,. 

ESR,% 

8J 

eJ 

4J 

2J 

Carrier frequency= 20 Hz 

ol · · ~ · ~ · · I Sampling rate Hz 
95 96 97 98 99 10 101 102 103 104 105 ' 
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eJ 

4J 

2J 

O'--~~'--~~..__~_;::>=.~~..__~-=:e::...~~..__~~..__~~ Sampling rate, Hz 
4.2 38 385 39 3~ 4 4.C6 4.1 4.15 

Figure 6. ESRs at the different sampling rates under the same carrier frequency. 

It is observed that the ESR curves in Figure 6 are identical. If the carrier frequency 

of the modulated waveform is set to be 200 Hz and 2000 Hz, respectively, the 

demodulation of the modulation waveform by aliasing sampling is simulated and 

measured. The ESRs for the various carrier frequencies under the same sampling rate 

are shown in Figure 7. 
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ESR,% 
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Fi~ure 7. ESRs at the different carrier frequencies under the same sampling rate. 

It is observed that all ESR curves in Figure 6 and Figure 7 are identical. If the ESR 

is plotted against the sampling rate in terms of the frequency deviation percentage, 

there will be just one curve. Let IP denote the sampling rate in terms of the 

frequency deviation percentage as expressed in the following equation. 

Is - In x 100% Ip = !. 

f c 

where In is one of fc closest to the sampling rate. The ESR against the sampling 
N 

rate in terms of the frequency deviation percentage is shown in Figure 8. 
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ESR,% 

70 

eJ 

ff) 
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3J 
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10 

0 
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·1CD .BJ .eJ .4J .2() 0 20 4J eJ BJ 1CD 

FiEure 8. The ESR against the sampling rate in terms of the frequency deviation 
percentage. 

By finding a formula of the curve in Figure 8 via the polynomial curve fitting, the 

ESR will be predictable. Therefore, the ESR is higher than 100% if Ifs - !DI> JD . 
f c 

Otherwise, the ESR is approximated according to the following equation. 

ESR = C61fp/
6 

+ Cs/fp/
5 

+ C4/fp/
4 

+ C3/fp/
3 

+ C2/f P/
2 

+ C,/f P/ 

where c6 = 4.6862 

C5 = -14.0520 

C4 = 13.5126 

C3 = -4.1003 

c2 = i.0298 

c, = -0.0726 

The error of the polynomial curve fitting of the ESR is found to be less than 0.2 %. 
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SUMMARY 

When the sampling rate is an integer submultiple of the carrier frequency, the 

spectrum of a narrowband signal can be recreated at the baseband. The ESR is 

• 2 

. . h . b d . 1 f ( ) sm 7t t . mvest1gated under t e assumpt10n of the known base an s1gna t = 2 _ m 
1t t 

an amplitude modulation system. The contributions in this chapter are to investigate 

the sensitivity to the frequency error of aliasing sampling as follow. The ESR is more 

sensitive to the sampling rate deviated from the desired low sampling rate than to the 

one deviated from the desired high sampling rate as shown in Figure 6. The ESR is 

more sensitive to the deviated sampling rate at the high carrier frequency than to the 

deviated one at the low carrier frequency as shown in Figure 7. Also, the other 

contribution in this chapter is the prediction of the ESR as follow. The ESR lower 

than 100% can be predicted by fitting the ESR curve in terms of the frequency 

deviation percentage as shown in Figure 8. 



CHAPTER III 

DIGIT AL AUTOMATIC FREQUENCY CONTROL ALGORITHMS 

INTRODUCTION 

In the process of an analog or digital demodulation, the amount of the spectrum 

shifting in frequency depends on the frequency difference between the carrier and the 

local oscillator. Because the oscillator drifting could occur at the transmitter or at the 

receiver or both, the AFC loop [4] can be used to compensate the uncertainty of the 

frequency errors. In this chapter, algorithms of the Phase method AFC [5] and the 

Magnitude method AFC will be described. The performances of two methods with 

noise will be also evaluated. Before the configurations are examined, the following 

assumptions apply to both methods. 

The input of an AFC loop is a single frequency carrier s(t) with an initial phase 8 . 

s(t) = cos(2nfct+8)+AN(t)cos(2nfct+~(t)) (3.1) 

where the noise amplitude AN (t) is of the Rayleigh distribution, and the noise phase 

~ (t) is uniformly distributed between 0 and 2n [7]. The Rayleigh density function is 

expressed as follow. 



p,(x) ~ { :, ~;:: x20 

x<O 
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The input carrier frequency f c is assumed to be located in a pre-designated frequency 

interval [fww, f mGH] . This frequency interval is called the carrier band. The 

bandwidth of the carrier band is (f HIGH - f ww) . Let fl be the local oscillator's 

frequency (local frequency), and an initial value of fl can be set to be within that 

carrier band. The frequency deviation is !if= fl - fc. 

PHASE METHOD AFC ALGORITHM 

There are three sections to describe the Phase method AFC algorithm and evaluate 

its performances with noise. 

Configuration 

Without consideration of noise at the moment, the input earner is 

s(t) = cos(2n fct +e ), i.e., AN (t) = 0 in Equation (3.1). The Phase method AFC is to 

detect Ii f by the phase difference between two samples from a complex sinusoidal 

signal of !if Hz. The configuration is shown in Figure 9. 



17 

i[n] 
LPF AID 

s(t) 2cos2rrfLt 

Ts 
Carrier 

LPF AID 

-2 sin2rr flt 

!J,.f 

NCO Filter L x[ n ]- L x[ n - I] 

Local sinusoidal signal: cos2rr f Lt 

Fi~ure 9. The configuration of the Phase method AFC. 

The two mixers will produce the in-phase and the quadrature components of the input 

carrier. The outputs of the mixers are both frequency sum components and frequency 

difference components between the carrier and the local sinusoidal signal. The two 

low pass filters have the same bandwidth equal to the largest possible deviation 

frequency l~!I. The reasonable bandwidth of the low pass filter has to be at least the 

bandwidth of the carrier band. The low pass filters will reject frequency sum 

components and pass frequency difference components. The in-phase component i(t) 

becomes the real part, and the quadrature component q(t) becomes the imaginary part 

of a complex signal, respectively. Therefore, a complex sinusoidal signal x(t) of ~f 

Hz is created at the baseband. 



18 

x(t) = i(t) + Jq(t) 

= cos( 2n L\ ft + e) + j sin( 27t L\ ft + e) 
= e1(211t.f1+a) (32) 

In order to extract L\f from Equation (3.2), two consecutive samples, 

x[ 0] = x( ( n -1 )Ts) and x[ 1] = x( nTs), are taken from x(t) at the sampling period of 

T5 second. The complex sample x[ n] can be thought a phasor. The phase angle 

Lx[ n], of the phaser x[ n], is expressed as follow. 

_ 1 Im{ x[ n ]) + 7t 

tan Re( x[ n ]) if Re( x[ n ]) < 0 and Im( x[ n ]) > 0 

Lx[n] = 
_ 1 Im( x[ n ]) _ 7t 

tan Re( x[ n ]) if Re( x[ n ]) < 0 and Im( x[ n ]) < 0 

_1 Im(x[n ]) 
tan Re( x[ n ]) otherwise 

The phase difference between these two samples is 

Lx[l]-Lx[O] = (2nL\fnT5 +9)-(2nL\f(n-I)Ts +8) 
= 2nL\fT5 (3.3) 

The phaser subtraction of these two complex samples is shown in Figure 10. 
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x[n] x[n] = 
ej(21tt.fnTs+e) 

x[n-1] = ej(21tt.f(n-1)i:~+e) 

Lx[n] 

2n!:,.fTs 

Lx[n-1] 

Figure 10. The phasor subtraction of two complex samples in the Phase method AFC 
without noise. 

In order to obtain the correct !if from Equation (3.3), two requirements need to be 

addressed. First, ( Lx[ 1 ]- Lx[ 0 ]) must be the principal value of phase. Since the 

phase range of the subtraction of two phasors, (Lx[l]-Lx[o]), is [-2n, 2n], the 

result of Equation (3.3) is modified according to the following equation. 

{ 

Lx[l]- Lx[0]-2n 
Lx[l]-Lx[O] = Lx[l]-Lx[0]+2n 

Lx[l]-Lx[O] 

if Lx[I]- Lx[O] > n 
if Lx[l]- Lx[O] < -n 
otherwise 

Secondly, I's has to meet the Nyquist criterion. Since the local frequency could be 

higher or lower than the carrier frequency, the extreme values of !if could be positive 

or negative value of the bandwidth of the carrier band, i.e., 

-(f HIGH - f ww) < Ii f < (f HIGH - f ww), and hence the Nyquist criterion is 

11 Ts > 2 ·(/HIGH - fww) · 
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Therefore, ll f can be obtained according to the following equation. 

llf 
_ Lx[I]- Lx[O] 

2n T5 

(3.4) 

where ( Lx[ 1 ]- Lx[ 0 ]) is the principal value of phase and 1 I Ts > 2 ·(!HIGH - fww). 

After the frequency deviation is detected, llf is sent through a filter and to the 

NCO. The function of the filter is to reduce the effect of the noise, and it will be 

discussed in the next chapter. Finally, the next local frequency is set to be (IL - llf). 

So far one iteration of the Phase method AFC has been completed. Ideally, the 

carrier frequency can be grabbed by using two complex samples in the Phase method 

AFC. Now, let us consider the situation of the input carrier with noise. 

With noise 

After the input carrier, s(t) in Equation (3.1), going through the mixer and the low 

pass filters, the complex sinusoidal signal with noise x(t) is generated at the 

baseband. The quantity x(t) can be expressed as follow. 

x(t) = ej(21tC.ft+0) + AN(t)ej(2rtC.ft+,(t)) (3.5) 

Two consecutive samples, x[O]=x((n-I)Ts) and x[l]=x(nTs), taken from x(t) are 

used to obtain an estimate, ll j , of ll f . The phase angle LX[ n] , of the phasor x[ n], 

is expressed as follow. 
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-1 rm( x[ n ]) + 7t 
tan Re( x[ n ]) 

if Re( x[ n ]) < 0 and rm( x[ n ]) > 0 

Lx[n] = 
_ 1 rm( x[ n ]) _ 7t 

tan Re( x[ n ]) 
if Re( x[ n ]) < 0 and rm( x[ n ]) < 0 

_1 rm(x[n ]) 
tan Re( x[ n ]) 

otherwise 

The phaser subtraction of two complex samples with noise is shown in Figure 11. 

AN[n] 

AN(n-I) 

x[n -1) 

Fi~ure 11. The phaser subtraction of two complex samples in the Phase method AFC 
with noise. 

A 

In order to obtain an estimate, !::,,f, of !::,,f similar to Equation (3.4), two 

requirements need to be addressed. First, the phase range of the subtraction of two 

phasers, ( Lx[ 1] - LX[ 0 ]) is modified according to the following equation. 

{ 

Lx[1]-Lx[o]-21t 
Lx[1]-Lx[o] = Lx[l]-Lx[o] + 27t 

Lx[1]- Lx[o] 

if Lx[l]-Lx[O] > 7t 

if Lx[1]- Lx[o] < -7t 

otherwise 
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Secondly, Ts has to meet the Nyquist criterion. Therefore, similar to Equation (3.4), 

11] may be estimated according to the following equation. 

!if 
- Lx[I]- Lx[O] 

2nTs 
(3.6) 

where ( Lx[ 1 ]- LX[ 0 ]) is the principal value of phase and 1 I Ts > 2 · (f HIGH - f ww) . 

Finally, the next local frequency may be estimated by (fr - 11]). 

Performances with noise 

To investigate the performances of the Phase method AFC with noise, the root 

mean-square (RMS) values of !if are simulated and measured at different SNRs. 

The SNR is expressed as follow. 

SNR 0 1 
signal power = 1 og--_--­
nozse power 
I 

= 10 log 2
2 cr 

where cr 2 is the variance of AN (t) . From the visual inspection, the RMS frequency 

errors are measured at the steady state and the data are large enough to ignore the 

statistic error. The initial conditions of the simulations are as follow. The frequency 

interval of the carrier band is from 97.5 MHz to 102.5 MHz. The desired carrier 

frequency is 100 MHz. The initial local frequency is 98 MHz. The Nyquist rate is 

2(102.5-97.5)=10 MHz. The sampling rate is 25 MHz. The steady state RMS errors 
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as the percentages of the bandwidth of the carrier band at the different SNRs are 

shown in Figure 12. 

Steady state RMS errors as the percentages of the bandwidth of the carrier band, % 
2 
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Figure 12. The performances of the Phase method AFC with noise. 

The data are shown in Table I. 
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TABLE I 

THE PERFORMANCES OF THE PHASE METHOD AFC 

Steady state RMS error as the 
SNR percentage of the bandwidth 

of the carrier band 

OdB > 100% 
5 dB > 100% 
10 dB 25.0925% 
15 dB 14.1378% 
20dB 8.1047% 
25 dB 4.6140% 
30dB 2.7408% 
35 dB 1.4383% 
40dB 0.8265% 
45 dB 0.4742% 
50dB 0.2499% 

It is seen that when the SNRs are less than 10 dB, the RMS error percentages are close 

to 100%, i.e., the local frequency can not converge within the carrier band. It is also 

noted that, at SNR = 35 dB, !if is about 1 % of the bandwidth of the carrier band. 

MAGNITUDE METHOD AFC ALGORITHM 

There are three sections to describe the Magnitude method AFC algorithm and 

evaluate its performances with noise. 
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Confi EUration 

Without consideration of the noise at the moment, the Magnitude method AFC is to 

detect t:,. f by the magnitude square difference at two discrete frequencies in a digital 

spectrum from sampling a complex sinusoidal signal of !::,.f Hz. The configuration is 

shown in Figure 13. 

-2 sin2n fit 

4-point DFT 

llf 

jx(l]j2 -JX(3]j2 NCO Filter 

Local sinusoidal signal: cos 27t fr t 

FiEure 13. The configuration of the Magnitude method AFC. 

The generation of that complex sinusoidal signal is the same as the one in the Phase 

method AFC. After the input carrier s(t) passing through the mixers and the low pass 

filters, the complex sinusoidal signal x(t) is the same as the one from Equation (3.2). 

x(t) = ej(2"tif1+e) 
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Two consecutive samples, taken from x(t) at the sampling period of Ts second, and 

two padding zeros form a 4-point sequence x[ n]. 

x[ 0] = x( ( n - I )I's) = ej(211 ~f(n-1)i:,+a) 

x[I] = x(nTs) = ej(211~fnT.,+e) 

x[2] = O 

x[3] = O 

The DFT of x[ n] is the four complex samples X[ k] in the frequency domain [ 1]. 

N-1 .211 kn 

X[ k] = Ix[ n] e -1l1 
n=O 

where the length of the sequence N is 4, and the index k goes from 0 to 3. The 

magnitudes of the 4-point DFT without noise are shown in Figure 14 (Top). 

Magnitude 3....----------, 

2 

0'--__ ..._ ____ ....____, 

·1 -05 0 05 

Magnitude 3....-----------, 

0'-----"------'--~ 
-1 -05 0 05 

Magnitudes of the 4-point DFT without noise: o 

IX[t]I 
IX[3]1 

Frequency normalized to the sampling rate 

Magnitudes of the 4-point DFT with noise: o 

1x[1JI 
li[3]1 

Frequency normalized to the sampling rate 

Fi~ure 14. The magnitudes of the DFT of two complex samples in the Magnitude 
method AFC. (Top) Without noise. (Bottom) With noise. 
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The magnitude square of X[ k] is given by 

Jx[k]J
2 

= 2+2co{21t~fTs-~k) (3.7) 

The ~! can be extracted from the difference between Jx[1]J
2 

and JX[3]1
2

• 

Jx[1]i2-Jx[3]J
2 

= (2+2co{27t~fTs - ~ .1))-(2+co{27t~fTs - ~ ·3)) 

= 4 sin27t ~f Ts. 

Therefore, 

21t~fTs = sin-
1 
±(lx[I]l

2 
-JX[3]J

2
) (3.8) 

In order to obtain the correct ~f from Equation (3.8), two requirements need to be 

addressed. First, since the range of Jx[k ]1 2 
in Equation (3.7) is [O, 4], the range of 

±(lx[l]l
2 

-lx[3]12) in Equation (3.8) is [-1, 1]. 

1 

±(lx[l]i2 -lx[3]1
2

) = -1 

if ±(lx[l]i2 -Jx[311
2

) > 1 

if ±(lx[111
2 

-lx[311
2

) < -1 

± (Jx[ 111
2 

- Jx[ 311
2

) otherwise 

This is because that when the possible value of ±(lx[111
2 

-Jx[3]12) exceeds its range, 

it is an indication that the magnitude spectrum must have been heavily corrupted by 

the noise. Secondly, the sampling rate 1/Ts decides the range of ~f. From Equation 
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(3.8), the range of the function sin-1 is [-7t, 7t], and hence -7t <21t!J.fTs <~, 
2 2 2 2 

and the range of !J.f is [--
1
-, -

1
-]. Since the maximum of jtJ./j has to cover the 

4I's 4Ts 

bandwidth of the carrier band, the sampling rate I/Ts in the Magnitude method AFC 

has to be 4 times larger than the bandwidth of the carrier band. Therefore, !J.f is 

obtained according to the following equation. 

!J.f = -
1
-sin-1 .!.(lx[1Jl2 -lx[3]!2) 27t Ts 4 (3.9) 

where the range of ±(lx[1]!2 -IX[3]! 2
) is [-1, 1], and I/Ts >4·(/HIGH - fww)· 

Finplly, the next local frequency is set to be (!L - !J.f). The function of the filter will 

be discussed in the next chapter. 

So far one iteration of the Magnitude method AFC has been completed. Similar to 

the Phase method AFC, the Magnitude method AFC can capture the carrier frequency 

by using two complex samples and two padding zeros. Now, let us consider the 

situation of the input carrier with noise in the Magnitude method AFC. 

With noise 

The generation of the complex sinusoidal signal with noise is the same as the one in 

the Phase method AFC. From Equation (3.5), the complex sinusoidal signal with 

n01se is 
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x(t) = ej(2n6ft+e) + AN(t)ej(2n6ft+4>(t)) 

Two consecutive samples, x((n-l)Ts) and x(nTs), taken from x(t) at the sampling 

period T;, second, and two padding zeros form the 4-point sequence x[ n]. 

x[ 0] = x( ( n - 1) Ts) 

= ej(2n 6/(n-1)7:~+0) + AN( (n -1)7;; )/(2n 6/(n-l)Ts++((n-l)Ts )) 

_ J(2n6/(n-l)Ts+0) A [O] J(2n6/(n-l)Ts++[o]) 
- e + N e 

where AN[O]= AN((n-l)T;;) and ~[O]=~((n-l)Ts). 

x[l] = x(nTs) 
_ ej(in 6fn7:~+e) +A (nT )e1(2n 6fn7:~++(n7:~ )) 
- N S 

= ei(2n6fn7:,+e) + AN[l]eJ(2n6/n7:1·++[1]) 

where AN[l] = AN(nT;;) and ~[1] = ~(nT;,) . 

.x[2] = o 

x[3] = o 

The magnitudes of the 4-point DFT with noise are shown in Figure 14 (Bottom). The 

magnitude square difference between IX-[1]/2 and IX-[3]1
2 

can be used to obtain an 

~ 

estimate, flf , of flf . 

±(IX-[1]1
2 

-IX-PJl2) = sin27t flf T;, 

+AN [o]sin( 2n flf Ts +e - ~[o]) 

+AN[l]sin(2n flf Ts + ~[1]-8) 

+AN[O]AN [l]sin( 2n flf Ts+ ~[1]-~[o]) (3.10) 
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Two requirements of obtaining an estimate, /1 j , of /1 f need to be addressed. First, 

the range of ±(lx[1]J2 -IX-[3]j2) is modified according to the following equation. 

1 

±(lx[1Jl
2 
-lxPJl2) = -1 

if ±(lx[1Jl2 -lx[3Jl2) > 1 
if ±(lxu11

2 
-lxPJl

2
) < - 1 

±(lx[1]!2 -IX-[3]12) otherwise 

Secondly, the sampling rate has to be 4 times higher than the bandwidth of the carrier 

band. Therefore, similar to Equation (3.9), 11] may be estimated according to the 

following equation. 

A 1 1 (I A 12 I A 12) !if = -sin-I - X[l] - X[3] 
2n Ts 4 

(3.11) 

where the range of ±(IX-[1]12 -IX-[3Jl2) is [-1, 1], and l/Ts >4·(fmGH - fww)· 

Finally, the next local frequency my be estimated by (fL - 11J). 

Performances with noise 

To investigate the performances of the Magnitude method AFC with noise, the 

steady state RMS errors are simulated and measured at different SNRs. The initial 

conditions of the simulations are the same as the ones in the Phase method AFC. The 

frequency interval of the carrier band is from 97.5 MHz to 102.5 MHz. The desired 

carrier frequency is 100 MHz. The initial local frequency is 98 MHz. The lowest 
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sampling rate has to be 4(102.5-97.5)=20 MHz. The sampling rate used in the 

simulation is 25 MHz. The steady state RMS errors as the percentages of the 

bandwidth of the carrier band at the different SNRs are shown in Figure 15. 

Steady state RMS errors as the percentages of the bandwidth of the carrier band, % 
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Fi~ure 15. The performances of the Magnitude method AFC. 

The data are shown in Table II. 
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TABLE II 

THE PERFORMANCES OF THE MAGNITUDE METHOD AFC 

Steady state RMS error as the 
SNR percentage of the bandwidth 

of the carrier band 

OdB > 100% 
5 dB 59.8514% 
lOdB 27.1312% 
15 dB 15.0025% 
20dB 8.5342% 
25 dB 4.6997% 
30dB 2.6607% 
35 dB 1.5327% 
40dB 0.8103% 
45 dB 0.4845% 
50 dB 0.2581 % 

It is seen that when the SNRs are less than 5 dB, the RMS error percentages are close 

to 100 %, i.e. the local frequency can not converge within the carrier band. It is also 

noted that, at SNR = 35 dB, !:if is about 1 % of the bandwidth of the carrier band. 

SUMMARY 

In this chapter, two digital AFC algorithms have been examined and their 

performances with noise are presented. The contributions in this chapter are to 

investigate the performances of the Phase method AFC and propose the Magnitude 

method AFC. At high SNRs, both methods perform almost equally well. At low 
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SNRs, for example, at 5 dB, the steady state RMS errors of the Phase method AFC are 

larger than those of the Magnitude method AFC. In this regard, the Magnitude 

method AFC performs better than the Phase method AFC does. Theoretically, both 

digital AFC algorithms can grab the carrier frequency by using two samples only. 

Study indicates that the RMS errors are large at low SNR. In the following chapter, 

the averaging filters are used to improve the noise immunity of two digital AFC 

methods. 



CHAPTER IV 

NOISE REDUCTION BY FILTERING 

INTRODUCTION 

To minimize the noise impact upon both AFC methods, averaging filters are used 

to produce a new estimate of !if. The NCO will not adjust the local frequency until 

the new estimate of !if is available. There are three averaging filters of different 

length in the simulations. Those filters are called Filter 1, Filter 2, and Filter 3. The 

Filter 1 will produce a new estimate of !if from averaging the previous 10 !if. The 

A 

Filter 2 will produce a new estimate of !if from averaging the previous 100 !if. 

The Filter 3 will produce a new estimate of !if from averaging the previous 1000 

!if. In order to predict how the SNR is improved by the averaging filter, the 

following assumptions are made. 

Suppose that Yi, J; , · · ·, YL are random variables representing L consecutive 

estimates of Ii f made by a digital AFC method. Assume that Yi, J;, .. ·, YL are 

independent variables and each of them is with the same mean and the same variance 

cr 2 
• Suppose that Y is a random variable representing the output of an averaging 

filter. 
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y = _!_(Y. + Y. + ... + y ) L I 2 L 

1 1 1 
= -Y. +-Y. +·+-Y L I L 2 L L 

where L is the length of the averaging filter. The variance of Y is obtained according 

to the following equation. 

var(Y) = (~Y var(Yi)+(~Y var(i;)+··+(~Y var(YL) 

= ( ~r cr 
2 

+ ( ~r cr 
2 
+. +( ~r cr 2 

cr 2 

= 
L 

The SNR improvement by using the averaging filter is 

SNRWith Filter - SNRWithout Filter 

= 10 log signal power 
cr 2 

L 
=lOlogL (dB) 

- 10 log signal power 
cr 2 

(4.1) 

Therefore, the expectations of the SNR improvements by using the Filter 1, the Filter 

2, and the Filter 3 are lOloglO = 10 (dB), lOloglOO = 20 (dB), and 

lOloglOOO = 30 (dB), respectively. 

THE PHASE METHOD AFC WITH FILTERS 
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Lx[1]-Lx[o] . . 
In the Phase method AFC [5], in Equation (3.6) is the sample used 

2n Ts 

in the averaging filter. The averaging filter will average all the samples and obtain a 

new estimate of 11f according to Equation (3.6). The initial conditions of our 

simulation are the same as the one without filter in the Phase method AFC. The 

steady state RMS errors as the percentage of the bandwidth of the carrier band at the 

Filter 1, the Filter 2, and the Filter 3 are shown in Figure 16. 

Steady state RMS errors as the percentages of the bandwidth of the carrier band, % 
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Fi&ure 16. Noise reduction by using averaging filters in the Phase method AFC. 

The data are shown in Table III. 
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TABLE III 

THE PERFORMANCES OF THE PHASE METHOD AFC WITH FILTERS 

Steady state RMS error as the percentage of the bandwidth of the 
carrier band 

SNR No Filter Filter 1 Filter 2 Filter 3 
OdB > 100% 30.9186% 10.2179% 2.5540% 
5 dB > 100% 16.2892% 5.3829% 1.4732% 
lOdB 25.0925% 7.9828% 2.3822% 0.8434% 
15 dB 14.1378% 4.6453% 1.5882% 0.4261% 
20dB 8.1047% 2.5782% 0.8607% 0.2665% 
25 dB 4.6140% 1.3970% 0.4440% 0.1275% 
30 dB 2.7408% 0.7918% 0.2616% 0.0781% 
35 dB 1.4383% 0.4546% 0.1414% 0.0457% 
40dB 0.8265% 0.2454% 0.0700% 0.0253% 
45 dB 0.4742% 0.1420% 0.0407% 0.0137% 
50dB 0.2499% 0.0769% 0.0253% 0.0072% 

SNR 
improvement 
expected by OdB 10 dB 20dB 30dB 
the different 

filters 
Number of 
iterations 

before 100 50 10 10 
calculating the 

RMS error 
Number of 
iterations 

during 1000 500 100 100 
calculating the 

RMS error 

The approximate SNR improvements in the Phase method AFC by using the Filter 1, 

the Filter 2, and the Filter 3 are 10 dB, 20 dB and 30 dB, respectively. Three 
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averaging filters of different length meet the expectation of the SNR improvement in 

Equation (4.1). 

THE MAGNITUDE METHOD AFC WITH FILTERS 

In the Magnitude method AFC, from Equation (3.10), ±(lx[1Jl2 -IX-[3Jl2) with the 

modified range is the sample used in the averaging filter. The averaging filter will 

average all the samples and obtain a new estimate of tl.f according to Equation 

(3.11). The steady state RMS errors as the percentage of the bandwidth of the carrier 

band at the Filter 1, the Filter 2, and the Filter 3 are shown in Figure 17. 

Steady state RMS errors as the percentages of the bandwidth of the carrier band, % 
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Fi~ure 17. Noise reduction by using averaging filters in the Magnitude method AFC. 
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The data are shown in Table IV. 

TABLE IV 

THE PERFORMANCES OF THE MAGNITUDE METHOD AFC WITH FILTERS 

Steady state RMS error as the percentage of the bandwidth of the 
carrier band 

SNR No Filter Filter 1 Filter 2 Filter 3 
OdB > 100% 26.7059% 9.7584% 3.0848% 
5 dB 59.8514% 16.8008% 4.9791 % 1.4665% 
lOdB 27.1312% 9.0833% 2.5390% 0.7593% 
15 dB 15.0025% 4.4860% 1.4677% 0.4318% 
20dB 8.5342 % 2.4952% 0.8050% 0.2282% 
25 dB 4.6997% 1.4225% 0.4792% 0.1432% 
30 dB 2.6007% 0.7576% 0.2492% 0.0670% 
35 dB 1.5327% 0.4500% 0.1477% 0.0412% 
40dB 0.8103% 0.2515% 0.0802% 0.0251% 
45 dB 0.4845% 0.1395% 0.0453% 0.0154% 
50 dB 0.2581 % 0.0745% 0.0229% 0.0083% 
SNR 

improvement 
expected by OdB lOdB 20dB 30dB 
the different 

filters 
Number of 
iterations 

before 100 50 10 10 
calculating the 

RMS error 
Number of 
iterations 

during 1000 500 100 100 
calculating the 

RMS error 
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The approximate SNR improvements in the Magnitude method AFC by using the 

Filter 1, the Filter 2, and the Filter 3 are 10 dB, 20 dB and 30 dB, respectively. Three 

averaging filters of different length meet the expectation of the SNR improvement in 

Equation ( 4.1 ). One may wonder why the averaging filter averages the corresponding 

magnitudes rather than does every estimate of f).j from the Magnitude method AFC 

directly. This is because when the averaging filter averages the corresponding 

magnitudes in Equation (3 .10), the error of the estimate of /). f will not be introduced 

until the operation of sin-1 in Equation (3.11) is performed. However, when the 

averaging filter averages every estimation from the Magnitude method AFC in 

Equation (3 .11) directly, the error of the estimate of Ii f is introduced once after one 

iteration of the Magnitude method AFC is completed. Therefore, the RMS errors of 

averaging magnitudes are smaller than the ones of averaging estimates at low SNR, 

and both are almost the same at high SNR. The results are shown in Figure 18. 
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Fi~ure 18. The performances of the Magnitude method AFC with filters by averaging 
the predictions and by averaging the corresponding magnitudes. 

The data is shown in Table V. 
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TABLE V 

THE PERFORMANCES OF THE MAGNITUDE METHOD AFC WITH TWO 

AVERAGING PROCESSES 

Steady state RMS error as the percentage 
of the bandwidth of the carrier band 
Averaging the Averaging the 

SNR with Filter 1 consecutive corresponding 
estimates magnitudes 

OdB 26.0180% 26.7059% 

5 dB 18.9599% 16.8088% 

10 dB 9.6602% 9.0833% 

15 dB 4.5462% 4.4860% 

Steady state RMS error as the percentage 
of the bandwidth of the carrier band 
Averaging the Averaging the 

SNR with Filter 2 consecutive corresponding 
estimates magnitudes 

OdB 8.2009% 9.7584% 

5 dB 5.8091 % 4.9791% 

10 dB 2.7577% 2.5390% 

15 dB 1.4396% 1.4677% 

Steady state RMS error as the percentage 
of the bandwidth of the carrier band 
Averaging the Averaging the 

SNR with Filter 3 consecutive corresponding 
estimates magnitudes 

OdB 2.4412% 3.0848% 
5 dB 1.8582% 1.4665% 
10 dB 0.8615% 0.7593% 
15 dB 0.4451% 0.4318% 

Finally, the performances of both AFC methods with filters are shown in Figure 19. 



Steady state RMS errors as the percentages of the bandwidth of the carrier band, % 
10~~~~--~--..~~--~~--~~......-. 

' ' 
+-. ~ \ Phase method AFC: o 

10 

·' 10 

~.,. '!" Magnitude method AFC: + 

t 
.. '8. -=- ""e ..... ..... 

~ "t!b .... ~ 
~.. " 

i 'Iii:., "Ii.. '~, Without Filter 
c;" l ' .. ~ '\~~ ! ~ ~ .. --~ 

"9.. ... 'fojl " .. 'e.. "\~' .... ~.. l:\.~... ... .. ,.. ~ .... "<P..., 
~ ' ' ' .. ~ 'th. "a ' ' ' ~ ' With Filter I "' ~ '•... " 'e.. '• .. ~ .. 

""'* ·s "11 ~ ~ .... 
'~ ~ ... 

W .th F"l 2 ~~ '" ~ ~ 
I I ter r· ~~ <> ~ i:\, 

."'&.. .... ,"' .... 
'~--

With Filter 3 '"~~ct; 

10" 

10~ 

o 10 20 3J <0 aJ SNR, dB 

Fi~ure 19. The comparison of the performances of both the Phase method AFC and 
the Magnitude method AFC with the Filter 1, 2, and 3, respectively. 

Both AFC methods with filters perform equally well. 

SUMMARY 
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The SNR can be improved by using the averaging filter effectively. The 

contribution in this chapter is that, for both methods, 10 dB SNR improvement can be 

achieved by increasing the filter length by one order of magnitude. However, in order 

to maintain the performances of both digital AFC methods with filters, the averaging 

processes have to be kept continuously. In the next chapter, the adaptive AFC 

algorithm will be studied and proposed to minimize the frequency errors. 



CHAPTER V 

ADAPTIVE AUTOMATIC FREQUENCY CONTROL ALGORITHM 

INTRODUCTION 

In the non-adaptive Magnitude method AFC, the local frequency is adjusted by the 

A A 

amount llf after each new llf is computed, i.e., 

JL(next) = JL(previous)-ll] 

As observed in the previous section, if the SNR is not adequate, ll] can fluctuate 

greatly from estimate to estimate due to the noise. This tends to limit the 

performances of the AFC loop [4]. 

One possible way to improve the performances without filters is to decrease the 

amount of the frequency adjustment by controlling the step size as follow. 

{

JL(previous)-ll] if lllJI <a 
JL(next) = A A 

JL(previous)-a ·sign(llf) if jllJj ~a 

where a is an adjustable step size. Normally a will be large in the beginning and 

become smaller when the local frequency is close to the input carrier frequency. To 

describe the algorithm clearly, some notations have to be defined. 
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NOTATIONS 

The notations and parameters used in the adaptive AFC algorithm are described as 

follow. 

fl: the local frequency value. 

fHJGH: the highest frequency value of the carrier band. 

flow: the lowest frequency value of the carrier band. 

Step_Margin: the allowable maximum frequency adjustment to obtain the next local 

frequency value. 

Upper _Bound: the allowable highest frequency value to obtain the next local 

frequency value. 

Lower _Bound: the allowable lowest frequency value to obtain the next local 

frequency value. 

ExpandingJactor: a ratio of the next Step_Margin to the current Step_Margin when 

the adaptive AFC determines to increase the current Step_Margin. 

ShrinkingJactor: a ratio of the next Step_ Margin to the current Step_ Margin when 

the adaptive AFC determines to decrease the current Step_Margin. 

Hit_Up: a counter which value is increased by 1 ifthe next local frequency estimated 

by the Magnitude method AFC is equal to or higher than the current 

Upper _Bound. 

Hit_ Low: a counter which value is increased by 1 if the next local frequency estimated 
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by the Magnitude method AFC is equal to or lower than the current 

Lower Bound. 

Hit_None: a counter which value is increased by 1 if the next local frequency 

estimated by the Magnitude AFC is between the current Upper _Bound and 

Lower Bound. 

RANGES OF THE PARAMETERS 

Assume that the incoming carrier frequency is stable and within the carrier band. 

This information can be used to obtain the ranges of the following parameters. 

(1) The local frequency value is always within the carrier band. 

how ::;; h ::;; !HIGH 

(2) Step _Margin is a positive frequency value which is less than the 

bandwidth of the carrier band. 

O < Step_Margin ::;; !HIGH - how 

(3) Upper _Bound is always lower than or equal to !HIGH· 

Upper _Bound ::;; !HIGH 

( 4) Lower _Bound is always higher than or equal to how· 

Lower_ Bound ;;::: how 

(5) ExpandingJactor is larger than or equal to 1. 

ExpandingJactor ;;::: 1 

(6) ShrinkingJactor is between 0 and 1. 



0 < ShrinkingJactor ::;; 1 

INITIAL CONDITIONS 

The initial values of the parameters of the adaptive AFC algorithm are as follow. 

fl(initial) = a frequency value within the carrier band 

Step_Margin(initial) = the bandwidth of the carrier band = fHIGH - flow 

Upper _Bound(initial) = !HIGH 

Lower Bound(initial) = flow 

ExpandingJactor(initial) = a value in its range 

ShrinkingJactor(initial) = a value in its range 

Hit_ Up(initial) = 0 

Hit_ Low(initial) = 0 

Hit None(initial) = 0 

PROGRAM 
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To complete one iteration of the adaptive AFC algorithm, there are five operations. 

Determine the Next Local Frequency value 

When the Magnitude method AFC makes an estimate of the next local frequency, 

this frequency of estimate will be adjusted by the adaptive AFC according to the 
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following rules. If the frequency of estimate is higher than Upper _Bound, then the 

next local frequency is Upper_Bound. If the frequency of estimate is within 

Upper _Bound and Lower _Bound, then the next local frequency is the frequency of 

estimate. If the frequency of estimate is lower than Lower _Bound, then the next local 

frequency is Lower_ Bound. 

Adjust Hit Up Counter. Hit Low Counter. And Hit None Counter 

The rules to adjust Hit_Up counter, Hit_Low counter, and Hit_None counter have 

been described earlier, and here are some additional restrictions. If the value of any 

one of the three counters is increased by 1, then the values of the other two counters 

are set to be 0. If the value of any one of the three counters reaches its threshold value, 

then the values of all three counters are set to be 0 and the next Step_Margin will be 

adjusted as follow. 

Adjust the Next Stev Marg.in 

The following rules are used to adjust Step_Margin. If Hit_Up counter or Hit_Low 

counter reaches its threshold value, then the next Step _Margin is obtained by 

multiplying the current Step_Margin by ExpandingJactor. If the Hit_None counter 

reaches its threshold value, then the next Step_Margin is obtained by multiplying the 

current Step_ Margin by ShrinkingJactor. If none of three counters reach its 

threshold value, then Step_Margin remains unchanged. 
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Move the Next Upver Bound 

After the next local frequency and the next Step_ Margin are obtained, the adaptive 

AFC will move the next Upper_Bound as follow. If the value of the next local 

frequency plus Step_ Margin is higher than !HIGH• then the next Upper_ Bound is !HIGH· 

If the value of the next local frequency plus Step_ Margin is lower than or equal to 

fmGH• then the next Upper_ Bound is the next local frequency plus Step_ Margin. 

Move the Next Lower Bound 

After the next local frequency and Step_Margin are obtained, the adaptive AFC 

will move the next Lower _Bound as follow. If the value of the next local frequency 

minus Step_ Margin is lower than JI.ow. then the next Lower _Bound is JI.ow· If the 

value of the next local frequency minus Step _Margin is higher than or equal to JI.ow. 

then the next Lower _Bound is the next local frequency minus Step _Margin. 

After one iteration of the adaptive AFC algorithm is completed, the next local 

frequency is sent to the NCO. The flowchart for the adaptive AFC algorithm is shown 

in Figure 20. 
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Obtain !:J.f from the Magnitude method AFC 

' 
NC 0 

Determine the next local frequency value 

• 

Adjust Hit_Up counter, Hit_Low counter, and Hit_None counter 

Adjust the next Step_Margin 

' 

Adjust the next Upper_ Bound 

' 

Adjust the next Lower _Bound 

Fi~ure 20. The flowchart for the adaptive AFC algorithm. 
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EFFECTS OF THE PARAMETERS 

Study indicates that different performances of the adaptive AFC are affected by 

different combinations of the parameters, such as ExpandingJactor, ShrinkingJactor, 

Hit_Up counter, Hit_Low counter, and Hit_None counter. In the later simulation, 

three different configurations are chosen to demonstrate the effects of those 

parameters. The three configurations are shown in Table VI. 

TABLE VI 

DIFFERENT ADAPTIVE AFC CONFIGURATIONS 

Adaptive AFC configuration First Second Third 

ExpandingJactor 2 1.1 1.1 

The threshold value of the Hit_ Up counter 3 3 10 

The threshold value of the Hit Low counter 3 3 10 

ShrinkingJactor 0.9 0.9 0.9 
The threshold value of the Hit None counter 3 3 1 

In the first configuration, the adaptive AFC will expand Step_ Margin by 

multiplying the current Step_ Margin by 2 if the next local frequency has been hitting 

the previous Upper _Bound 3 times continuously or has been hitting the previous 

Lower _Bound 3 times continuously. On the other hands, the adaptive AFC will shrink 

Step_Margin by multiplying the current Step_Margin by 0.9 if the next local 

frequency has been hitting neither the previous Upper _Bound nor the previous 
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Lower_Bound 3 times continuously. In the second configuration, all the parameters 

are the same as the ones in the first configuration except ExpandingJactor which is 

smaller. In other words, the amount of increasing Step_ Margin in the second 

configuration is smaller than the one in the first configuration. In the third 

configuration, the amount and the chance of increasing Step_Margin are much smaller 

than the ones in the first configuration, as indicated by the higher threshold values of 

Hit_ Up counter and of Hit_Low counter. 

Performances at the Steady State 

The performances of the adaptive AFC algorithm at the steady state are simulated 

and measured as follow. The initial conditions of the adaptive AFC in the simulations 

are the same as the ones in the Magnitude method AFC. The frequency interval of the 

carrier band is from 97.5 MHz to 102.5 MHz. The desired carrier frequency is 100 

MHz. The initial local frequency is 98 MHz. The lowest sampling rate has to be 

4(102.5-97.5)=20 MHz. The sampling rate used in the simulation is 25 MHz. The 

performances of the adaptive AFC of different configurations are shown in Figure 21. 
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Steady state RMS errors as the percentages of the bandwidth of the carrier band, % 
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Figure 21. The performances of the adaptive AFC algorithm. 

The data are shown in Table VII. 
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TABLE VII 

THE PERFORMANCES OF THE ADAPTIVE AFC ALGORITHM 

Steady state RMS error as the percentage of the bandwidth of 
the carrier band 

SNR 1st configuration 2nd configuration 3rd configuration 

OdB 31.9282% 18.7645% 5.1809% 
5 dB 21.3128% 12.3719% 2.5465% 
lOdB 13.1789% 9.3377% 1.8851 % 
15 dB 7.4828% 3.3708% 0.7675% 
20dB 3.7392% 2.2153% 0.6790% 
25 dB 2.1801% 1.0918% 0.2324% 
30dB 1.1793% 0.7111 % 0.1568% 
35 dB 0.6970% 0.3665% 0.0885% 
40dB 0.3731% 0.2083% 0.0386% 
45 dB 0.2378% 0.1291% 0.0263% 
50dB 0.1196% 0.0750% 0.0153% 

The adaptive AFC of the first, the second, and the third configurations can achieve, 

approximately, 5 dB, 10 dB, and 20 dB SNR improvements over the Magnitude 

method AFC, respectively. Especially, in the adaptive AFC of the third configuration, 

the allowable steps become smaller gradually and become larger slowly. Therefore, 

the adaptive AFC of the third configuration has the least RMS errors if the input 

carrier frequency is stable. 

Performances at the Transient State 

The first and the third configurations are chosen to show the performances of the 

adaptive AFC algorithm at the transient state. The amount and the chance of 

increasing Step_ Margin in the third configuration are smaller than the ones in the first 
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configurations. There are more iterations for the third configuration to catch the 

unstable carrier frequency. Therefore, in the transient state, the third configuration 

needs more samples than the first configuration does if the input carrier has a step 

change in frequency. The initial conditions of the simulations are as follow. The 

frequency interval of the carrier band is from 97.5 MHz to 102.5 MHz. The desired 

carrier frequency is 100 MHz. The initial local frequency is 98 MHz. The lowest 

sampling rate has to be 4(102.5-97.5)=20 MHz. The sampling rate used in the 

simulation is 25 MHz. The SNR is 30 dB. After 500 samples used by the adaptive 

AFC algorithm, there is a step change of the carrier frequency from 100 MHz to 99 

MHz. The results are shown in Figure 22. 
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Fi Eure 22. The performances of the adaptive AFC algorithm if there is a step change 
of the carrier frequency. (Top) of the first configuration. (Bottom) of the third 
configuration. 
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SUMMARY 

In this chapter, the adaptive AFC is studied and the algorithm is proposed. The 

frequency errors are attenuated by limiting the frequency adjustments of the local 

oscillator. The contributions in this chapter are that the performances of the adaptive 

AFC algorithm are affected by the different combinations of the factors and the 

counters. The abilities of the adaptive AFC algorithm to catch the unstable carrier 

frequency are determined mostly by the factors. The performances of the adaptive 

AFC algorithm to hold the stable carrier frequency are determined mostly by the 

counters. Also, the other contribution is that the adaptive AFC algorithm with 

different configurations has, approximately, 5 to 20 dB SNR improvement over the 

Magnitude method AFC. 



CHAPTER VI 

CONCLUSIONS 

Aliasing sampling is an attractive way to demodulate the narrowband radio 

frequency signals with high frequency carriers. Since the uncertainty of the oscillator 

drifting is not avoidable, error will occur. The sensitivity of the aliasing sampling to 

the frequency error is investigated. Under the assumption of the one known baseband 

signal, the ESR is predicted at different sampling rates and at different carrier 

frequencies. 

To compensate the frequency error, two digital AFC algorithms are studied. The 

performances of the Magnitude method AFC are better than the ones of the Phase 

method AFC. Although both digital AFC method can catch the carrier frequency by 

using two samples, they are sensitive to the noise, especially, at low SNR. It has been 

shown that the averaging filters can improve the noise immunity according to the 

length of the averaging filters. Specifically, a 10 dB SNR improvement can be 

achieved by increasing the filter length by one order of magnitude. 

Then the adaptive AFC is studied and one algorithm is proposed. It is shown that 

the adaptive AFC algorithm has, approximately, 5 to 20 dB SNR improvement over 

the Magnitude method AFC with different parameter configurations. The 

performances of the adaptive AFC algorithm are affected by the different 
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combinations of the factors and counters. The parameters of the adaptive AFC 

algorithm of each configuration are set to be constants at all time. Further research 

will be to investigate the fast adaptive AFC by automatically varying those parameters 

according to its operating environment. 
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APPENDIX 

The following main programs are used to generate data for the ESR, the Phase 

method AFC, the Magnitude method AFC, the averaging filters, and the adaptive AFC 

algorithm. 



elf 
clear 
fl=2; 
fr=20; 
fdiv=.01; 
tl=-5; 
tr=5; 
for fs=fl:fdiv:fr 

ESR FROM 2 Hz TO 20 Hz 

t=l/fs*round(tl*fs): 1/fs: 1/fs*round(tr*fs); 
f=sin(pi *t ). *sin(pi *t )/pi/pi.It.It; 
f(round(5*fs)+ 1)=1; 
fin=f. *cos(2*pi *20*t); 
ntos((fs-fl)/fdiv + 1 )=((f-fin)*(f-fin)')/(f*f); 

end 
freq=fl:fdiv:fr; 
plot(freq,ntos* 100, 'w-') 
axis([2 20 0 200]) 
set(l, 'PaperPosition', [O 0 4.8 3.6]) 
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elf 
clear 
subplot(211) 
fl=9.5; 
fr=l0.5; 
fdiv=.01; 
for fs=fl:fdiv:fr 

ESR UNDER THE SAME CARRIER FREQUENCY 

t=-1/fs*round(S*fs): 1/fs: 1/fs*round(5*fs); 
f=sin(pi *t). * sin(pi *t )/pi/pi .It.It; 
f(round(5*fs)+ 1)=1; 
fin=f. *cos(2*pi *20*t); 
ntos((fs-fl)/fdiv + 1 )=((f-fin)*(f-fin)')/(f*f); 

end 
freq=fl:fdiv:fr; 
plot(freq,ntos*lOO, 'w-') 

subplot(212) 
fl=3.8; 
fr=4.2; 
fdiv=.004; 
for fs=fl:fdiv:fr 

end 

t=-1/fs*round(S*fs): 1/fs: 1/fs*round(5*fs); 
f=sin(pi *t ). * sin(pi *t )/pi/pi .It.It; 
f(round( 5*fs )+ 1 )=1; 
fin=f. *cos(2*pi*20*t); 
ntosl ((fs-fl)/fdiv + 1 )=((f-fin)*(f-fin)')/(f*f); 

freq=fl:fdiv:fr; 
plot(freq,ntosl *100, 'w-') 
axis([3 .8 4.2 0 100]) 

set(l, 'PaperPosition', [O 0 4.8 3.6)) 
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ESR UNDER THE DESIRED ALIASING SAMPLING RATE 

elf 
clear 
subplot(211) 
fl=9.95; 
fr=l0.05; 
fdiv=.001; 
for fs=fl:fdiv:fr 

end 

t=-1/fs*round(5*fs): l/fs: 1/fs*round(5*fs); 
f=sin(pi *t ). * sin(pi *t )/pi/pi.It.It; 
f(round(5*fs)+ 1)=1; 
fin=f. *cos(2 *pi *200*t ); 
ntos 1((fs-fl)/fdiv+1 )=((f-fin)*(f-fin)')/(f*f); 

freq=fl:fdiv:fr; 
plot(freq,ntos 1*100, 'w-') 
axis([9.95 10.05 0 100]) 

subplot(212) 
fl=9.995; 
fr=l0.005; 
fdiv=.0001; 
for fs=fl:fdiv:fr 

end 

t=-1/fs*round(5*fs): 1/fs: l/fs*round(5*fs); 
f=sin(pi *t). * sin(pi *t )/pi/pi.It.It; 
f(round(5*fs )+ 1)=1; 
fin=f. *cos(2*pi*2000*t); 
ntos2((fs-fl)/fdiv + 1 )=((f-fin)*(f-fin)')/(f*f); 

freq=fl:fdiv:fr; 
plot(freq,ntos2*100, 'w-') 
axis([9.995 10.005 0 100]) 

set(l, 'PaperPosition', [O 0 4.8 3.6]) 
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ESR AS THE FUNCTION OF THE FREQUENCY DEVIATION PERCENTAGE 

clear 
fl=9.5; 
fr=l0.5; 
fdiv=.005; 
for fs=fl:fdiv:fr 

end 
elf 

t=-1/fs*round(5*fs): 1/fs: 1/fs*round(5*fs); 
f=sin(pi *t). * sin(pi *t )/pi/pi .It.It; 
f(round(5*fs)+ 1)=1; 
fin=f. *cos(2 *pi *20*t ); 
ntos((fs-fl)/fdiv + 1 )=({f-fin)*(f-fin)')/(f"f'); 

fdev=-100:.05*20: 100; 
ntos 1=ntos*100; 
plot(fdev,ntosl, 'w-') 
set(l, 'PaperPosition', [O 0 4.8 3.6]) 



clear 
for db=0:5:50, 
db 
fs=25* 10/\6; 
fc=l 00* 10/\6; 
fl(l )=98* 10/\6; 
for n=0:2: 1600, 

theta=rand*2*pi; 
phi 1 =rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn(l ,2); 
noiseb=randn( 1,2); 

PHASE METHOD AFC ALGORITHM 

noisea=noisea *sqrt( 1/(101\( db/I 0) )/2 ); 
noiseb=noiseb*sqrt(l/(l 01\( db/I 0))/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

fl(n+2)=fl(n+ 1 ); 
x(l)=exp(j*(2*pi*(fl(n+l) - fc)*n/fs +theta))+ noise(l)*exp(j*(2*pi*(fl(n+l)­

fc)*n/fs + phil)); 
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x(2)=exp(j*(2*pi*(fl(n+2) - fc)*(n+ 1)/fs +theta))+ noise(2)*exp(j*(2*pi*(fl(n+2) -
fc)*(n+ 1 )/fs + phi2)); 

deltaphase=angle(x(2)) - angle(x(l)); 
if deltaphase > pi 

del taphase=deltaphase-2 *pi; 
end 
if deltaphase < -pi 

deltaphase=deltaphase+ 2 *pi; 
end 
fl(n+3)=fl(n+2) - fs*deltaphase/2/pi; 

end 

PFNmse( db/5+ 1 )= l/length(fl(l 000: 1500))*((fl(l 000: 1500)-fc )*(fl(l 000: 1500)-fc )'); 
plot( fl) 
pause 
clear fl 

% 
end 
save PFNmse PFNmse 



db=0:5:50; 
figure(l) 
semilogy(db, sqrt(PFNmse)/10"6, 'wo') 
hold on 
semilogy( db, sqrt(PFNmse )/10"6, 'w:') 
axis([-5 55 .001 5]) 
set(l, 'PaperPosition', [O 0 4.8 3.6]) 
% 
clear db 
clear deltaphase 
clear fc 
clear fl 
clear fs 
clear n 
clear noise 
clear noisea 
clear noiseb 
clear phil 
clear phi2 
clear theta 
clear x 
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PERFORMANCE OF THE PHASE METHOD AFC WITH NOISE 

clear 
elf 
figure(l) 
loadPFNmse 
fb=5*1 0"6; 
db=0:5:50; 
semi logy( db, sqrt(PFNmse )/fb* 100, 'ow') 
hold on 
semi logy( db, sqrt(PFNmse )/fb* 100, ':w') 
axis([-5 55 .1 100]) 
set(l, 'PaperPosition', [O 0 4.8 3.6]) 
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DTFT OF THE MAGNITUDE METHOD AFC WITH AND WITHOUT NOISE 

clear 
elf 
subplot(221) 
fs=25* 10"6; 
fc=l 00* 10"6; 
fl(l )=104* 10"6; 
n=O; 

theta=rand*2*pi; 
fl(n+2)=fl(n+ 1); 
x(l )=expG*(2*pi*(fl(n+ 1) - fc)*n/fs +theta)); 
x(2)=expG*(2*pi*(fl(n+2) - fc)*(n+l)/fs +theta)); 
x(3)=0; 
x(4)=0; 
X=abs(fft(x)); 
xstem=[O .25 .5 .75]; 
stem(xstem, X) 
hold on 
plot(xstem, X, 'wo') 
xone(l)=x(l); 
xone(2)=x(2); 
for m=3:100, 
xone(m)=O; 

end 
Xone=abs( fft( xone)); 
All(l: 1 OO)=Xone; 
All(l 01 :200)=Xone; 
xAll=-1: 11100: 1-11100; 
plot(xAll,All, 'w-') 
axis([-11 03]) 

subplot(223) 
plot(xAll, All, 'w:') 
axis([-1103]) 
hold on 
clear 
db=5; 
fs=25* 10"6; 
fc=IOO* 10"6; 
fl(l )=104* 10"6; 
n=O; 
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theta=rand*2*pi; 
phi 1 =rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn( 1,2 ); 
noiseb=randn( 1,2); 
noisea=noisea*sqrt(l/( 1 QA( db/1 Q))/2); 
noiseb=noiseb*sqrt(l/(1 QA( db/1 Q))/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

fl(n+2)=fl(n+ 1); 
x(l)=exp(j*(2*pi*(fl(n+ 1) - fc)*n/fs +theta))+ noise(l)*exp(j*(2*pi*(fl(n+ 1) -

fc)*n/fs + phil)); 

7Q 

x(2)=exp(j*(2*pi*(fl(n+2) - fc)*(n+l)/fs +theta))+ noise(2)*exp(j*(2*pi*(fl(n+2) -
fc )*(n+ 1 )/fs + phi2)); 

x(3)=Q; 
x(4)=Q; 
X=abs(fft(x)); 
xstem=[Q .25 .5 .75]; 
stem(xstem, X) 
plot(xstem, X, 'wo') 
xone(l)=x(l); 
xone(2)=x(2); 
for m=3: 1 QQ, 

xone(m)=Q; 
end 
Xone=abs( fft( xone)); 
All( 1: 1 QO)= Xone; 
All(l Ql :2QQ)=Xone; 
xAll=-1: 1/1QQ:1-1/1 QQ; 
plot(xAll,All, 'w-') 

set(l, 'PaperPosition', [Q Q 4.8 3.6]) 
figure( I) 



clear 
for db=0:5:50, 
db 
fs=25*10"6; 
fc=l 00* 10"6; 
fl(l )=98* 10"6; 
for n=0:2:1550, 

theta=rand *2 *pi; 
phi 1 =rand*2*pi; 
phi2=rand*2*pi; 

MAGNITUDE METHOD AFC ALGORITHM 

noisea=randn(l ,2); 
noiseb=randn(l,2); 
noisea=noisea*sqrt(l/(10"( db/10))/2); 
noiseb=noiseb*sqrt( 1/(10"( db/10))/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

fl(n+2)=fl(n+ 1 ); 
x(l)=expU*(2*pi*(fl(n+ 1) - fc)*n/fs +theta))+ noise(l)*exp(j*(2*pi*(fl(n+ 1) -

fc)*n/fs + phil)); 
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x(2)=expU*(2*pi*(fl(n+2) - fc)*(n+ 1)/fs +theta))+ noise(2)*expQ*(2*pi*(fl(n+2) -
fc)*(n+l)/fs + phi2)); 

x(3)=0; 
x(4)=0; 
X=abs(fft(x)); 

deltaffs = 1/2/pi*real(asin(X(2)*X(2)/4 - X(4)*X(4)/4)); 

fl(n+3)=fl(n+2) - fs*deltaffs; 

end %ofn 

JFNmse(db/5+ 1)=l/length(fl(l000: 1500))*((fl(l 000: 1500)-fc)*(fl(l 000: 1500)-fc )'); 
figure(2) 
plot(fl/10"6) 
pause 
clear fl 
end %of db 

save JFNmse JFNmse 



db=0:5:50; 
figure 
semilogy( db, sqrt(JFNmse )/fc* 100, '+') 
hold on 
semilogy(db, sqrt(JFNmse)/fc*lOO, ':') 
% 
clear db 
clear deltaffs 
clear fc 
clear fl 
clear fs 
clear n 
clear noise 
clear noisea 
clear noiseb 
clear phil 
clear phi2 
clear theta 
clear x 
clear X 
who 

% 
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PERFORMANCE OF THE MAGNITUDE METHOD AFC 

clear 
elf 
figure( I) 
load JFNmse 
fb=5 *I 0/\6; 
db=0:5:50; 
semi logy( db, sqrt(JFNmse )/fb* I 00, '+w') 
hold on 
semilogy( db, sqrt(JFNmse )/fb* I 00, ':w') 
axis([-5 55 . I I 00]) 
set(l, 'PaperPosition', [O 0 4.8 3.6]) 
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!date 
clear 
who 

PHASE METHOD AFC WITH FILTER 1 ALGORITHM 

for db=0:5:50, 
db 
fs=25*10"6; 
fc=l 00* 10"6; 
fl(l )=98* 10"6; 

for n=0:20: 11020, 

for o=0:2: 18, 
theta=rand * 2 *pi; 
phil=rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn( 1,2); 
noiseb=randn( 1,2); 
noisea=noisea*sqrt(l/(10"( db/l 0))/2); 
noiseb=noiseb*sqrt(l/(l 0"( db/10))/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

x(l)=exp(j*(2*pi*(fl(n+o+ 1) - fc)*(n+o)/fs +theta))+ 
noise(l )*exp(j*(2*pi*(fl(n+o+ 1) - fc )*(n+o )/fs +phi 1 )); 

fl(n+o+2)=fl(n+o+ 1 ); 

x(2)=exp(j*(2*pi*(fl(n+o+2)- fc)*(n+o+l)/fs +theta))+ 
noise(2)*exp(j*(2*pi*(fl(n+o+2) - fc)*(n+o+ 1)/fs + phi2)); 

fl(n+o+ 3)=fl(n+o+2); 

deltaphase(o/2+ l)=angle(x(2)) - angle(x(l)); 
if deltaphase( o/2+ 1) >pi 

deltaphase( o/2+ 1 )=deltaphase( o/2+ 1 )-2*pi; 
end 
if deltaphase( o/2+ 1) <-pi 

deltaphase( o/2+ 1 )=deltaphase( o/2+ 1 )+2*pi; 
end 

end %end ofo 

fl(n+21)=fl(n+20) - fs*mean(deltaphase)/2/pi; 
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clear deltaphase 
end %end ofn 

PFlmse( db/5+ 1)=1/length(fl(l001: 11OOO))*((fl(l001: 11000)-fc )*(fl(lOOl: 11000)­
fc )'); 

save PFlmse PFlmse 
plot( fl) 
pause 
clear fl 

end %end of db 

db=0:5:50; 

semilogy(db, sqrt(PFlmse)/fc*lOO, 'o') 
hold on 
semilogy(db, sqrt(PFlmse)/fc*lOO, ':') 

clear noisea 
clear phi2 
clear db 
clear fs 
clear noiseb 
clear theta 
clear deltaphase 
clear n 
clear o 
clear x 
clear fc 
clear noise 
clear phil 
!date 
% 
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!date 
clear 
who 

PHASE METHOD AFC WITH FILTER 2 ALGORITHM 

for db=0:5:50, 
db 
fs=25* 10"''6; 
fc= 100* 10"6; 
fl(l )=98* 10"6; 

for n=0:200:22200, 
n 

for o=0:2: 198, 
theta=rand*2*pi; 
phi 1 =rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn(l ,2); 
noiseb=randn( 1,2); 
noisea=noisea*sqrt(l/(10"( db/I 0))/2); 
noiseb=noiseb* sqrt( 1/(10"( db/I 0) )/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

x(l)=exp(j*(2*pi*(fl(n/200+ 1) - fc)*(n+o)/fs +theta))+ 
noise(l)*exp(j*(2*pi*(fl(n/200+ 1) - fc)*(n+o)/fs + phil)); 

x(2)=exp(j*(2*pi*(fl(n/200+1)- fc)*(n+o+l)/fs +theta))+ 
noise(2)*exp(j*(2*pi*(fl(n/200+ 1) - fc)*(n+o+ 1)/fs + phi2)); 

deltaphase( o/2+ I )=angle(x(2)) - angle(x(l )); 
if deltaphase( o/2+ 1) >pi 

deltaphase( o/2+ 1 )=deltaphase( o/2+ 1 )-2*pi; 
end 
if deltaphase( o/2+ 1) <-pi 

deltaphase( o/2+ 1 )=deltaphase( o/2+ 1)+2*pi; 
end 

end %end ofo 

fl(n/200+2)=fl(n/200+ 1) - fs*mean( deltaphase )/2/pi; 
clear deltaphase 

end %end ofn 
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plot( fl) 
pause 
PF2mse(db/5+ 1)=l/length(fl(l0: 109))*((fl(l 0: 109)-fc)*(fl(l 0: 109)-fc)'); 

save PF2mse PF2mse 
clear fl 
end %end of db 

db=0:5:50; 

semilogy( db, sqrt(PF2mse )/fc* 100, '*') 
hold on 
semi logy( db, sqrt(PF2mse )/fc* 100, ':') 

clear noisea 
clear phi2 
clear db 
clear fs 
clear noiseb 
clear theta 
clear deltaphase 
clear n 
clear o 
clear x 
clear fc 
clear noise 
clear phil 
!date 
% 
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!date 
clear 
who 

PHASE METHOD AFC WITH FILTER 3 ALGORITHM 

for db=O:S:SO, 
db 
fs=25*10"6; 
fc=100*10"6; 
fl(l )=98* 10"6; 

for n=0:2000:222000, 
n 

for 0=0:2:1998, 
theta=rand*2*pi; 
phi 1 =rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn(l ,2); 
noiseb=randn(l ,2); 
noisea=noisea *sqrt( 1/(10"( db/10) )/2); 
noiseb=noiseb*sqrt(l/(10"( db/10))/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

x(l)=exp(j*(2*pi*(fl(n/2000+ 1) - fc)*(n+o)/fs +theta))+ 
noise(l)*exp(j*(2*pi*(fl(n/2000+ 1) - fc)*(n+o)/fs + phil)); 

x(2)=exp(j*(2*pi*(fl(n/2000+1)- fc)*(n+o+l)/fs +theta))+ 
noise(2)*exp(j*(2*pi*(fl(n/2000+ 1) - fc)*(n+o+ 1)/fs + phi2)); 

deltaphase( o/2+ 1 )=angle(x(2)) - angle(x(l )); 
if deltaphase( o/2+ 1) >pi 

deltaphase( o/2+ 1 )=deltaphase( o/2+ 1 )-2*pi; 
end 
if deltaphase( o/2+ 1) <-pi 

deltaphase( o/2+ 1 )=deltaphase( o/2+ 1 )+2*pi; 
end 

end %end ofo 

fl(n/2000+2)=fl(n/2000+ 1) - fs*mean(deltaphase)/2/pi; 
clear deltaphase 
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end %end ofn 

PF3mse( db/5+ 1)=1/length(fl(l0: 109))*((fl(l 0: 109)-fc )*(fl(l 0: 109)-fc )'); 

save PF3mse PF3mse 
plot( fl) 
pause 
clear fl 
end %end of db 

db=0:5:50; 

semilogy( db, sqrt(PF3mse )/fc* 100, 'x') 
hold on 
semilogy( db, sqrt(PF3mse )/fc* 100, ':') 

clear noisea 
clear phi2 
clear db 
clear fs 
clear noiseb 
clear theta 
clear deltaphase 
clear n 
clear o 
clear x 
clear fc 
clear noise 
clear phil 
!date 
% 
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MAGNITUDE METHOD AFC WITH FILTER 1 ALGORITHM 

!date 
who 
for db=0:5:50; 
db 
fs=25* 1 Q/\6; 
fc=l 00* 10/\6; 
fl(l )=95* 10/\6; 

for n=0:20: 11020, 

for o=0:2: 18, 
theta=rand*2*pi; 
phi 1 =rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn(l ,2); 
noiseb=randn(l ,2); 

(AVERAGING ESTIMATE) 

noisea=noisea*sqrt(l/(1 QI\( db/10))/2); 
noiseb=noiseb* sqrt( 1/(10/\( db/I 0) )/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

x(l)=exp(j*(2*pi*(fl(n+o+l)- fc)*(n+o)/fs +theta))+ 
noise(l)*exp(j*(2*pi*(fl(n+o+ 1) - fc)*(n+o)/fs + phil)); 

fl(n+o+2)=fl(n+o+ 1 ); 

x(2)=exp(j*(2*pi*(fl(n+o+2) - fc)*(n+o+ 1)/fs +theta))+ 
noise(2)*exp(j*(2*pi*(fl(n+o+2) - fc)*(n+o+ 1)/fs + phi2)); 

fl(n+o+3)=fl(n+o+2); 
x(3)=0; 
x(4)=0; 
X=abs(fft(x)); 

deltaffsAve(o/2+1) = 1/2/pi*real(asin(X(2)*X(2)/4 - X(4)*X(4)/4)); 

end %ofo 

fl(n+ 21)=fl(n+20) - fs*mean( deltaff sA ve ); 
clear deltaffsAve; 

end %ofn 
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MFlmse(db/5+ 1)=1/length(fl(l001: 11OOO))*((fl(l001: 11000)-fc )*(fl(l 001: 11000)­
fc)'); 

save MFlmse MFlmse 
plot( fl) 
pause 
clear fl 

end %end of db 

db=0:5:50; 

semi logy( db, sqrt(MF 1 mse )/fc* 100, 'o') 
hold on 
semilogy(db, sqrt(MFlmse)/fc*lOO, ':') 

clear noisea 
clear phi2 
clear db 
clear fs 
clear noiseb 
clear theta 
clear deltaff s 
clear n 
clear o 
clear x 
clear fc 
clear noise 
clear phil 
clear X 
!date 
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MAGNITUDE METHOD AFC WITH FILTER 2 ALGORITHM 

!date 
who 
for db=0:5:50; 
db 
fs=25* I 0"''6; 
fc= I 00* I 0"6; 
fl(I )=95* 10"6; 

for n=0:200:22200, 

for 0=0:2:198, 
theta=rand*2*pi; 
phi I =rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn(l ,2); 

(A VERA GING ESTIMATE) 

noiseb=randn( 1,2); 
noisea=noisea*sqrt(l/(10"( db/I 0))/2); 
noiseb=noiseb*sqrt(l/(10"( db/I 0))/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

x(l)=exp(j*(2*pi*(fl(n+o+I)- fc)*(n+o)/fs +theta))+ 
noise(! )*exp(j*(2*pi*(fl(n+o+ I) - fc)*(n+o )Ifs+ phi I)); 

fl(n+o+ 2)=fl(n+o+ I); 

x(2)=exp(j*(2*pi*(fl(n+o+2) - fc)*(n+o+l)/fs +theta))+ 
noise(2)*exp(j*(2*pi*(fl(n+o+2) - fc)*(n+o+ 1)/fs + phi2)); 

fl(n+o+ 3)=fl(n+o+ 2); 
x(3)=0; 
x(4)=0; 
X=abs(fft(x)); 

deltaffsAve(o/2+ I)= I/2/pi*real(asin(X(2)*X(2)/4 - X(4)*X(4)/4)); 

end %ofo 

fl(n+20l)=fl(n+200) - fs*mean(deltaffsAve); 
clear deltaff sA ve; 

end %ofn 
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MF2mse( db/5+ 1 )=1/length(f1(2001 :22000))*((f1(2001 :22000)-fc)*(f1(2001 :22000)­
fc)'); 
plot( fl) 
pause 
save MF2mse MF2mse 
clear fl 

end %end of db 

db=0:5:50; 

semilogy(db, sqrt(MF2mse)/fc*100, '*') 
hold on 
semi logy( db, sqrt(MF2mse )/fc* 100, ':') 

clear noisea 
clear phi2 
clear db 
clear fs 
clear noiseb 
clear theta 
clear deltaff s 
clear n 
clear o 
clear x 
clear fc 
clear noise 
clear phi I 
clear X 
!date 

% 
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MAGNITUDE METHOD AFC WITH FILTER 3 ALGORITHM 

!date 
who 
for db=0:5:50, 
db 
fs=25* 101'6; 
fc=l 00* 10"''6; 
fl(l )=95* 10"6; 

for n=0:2000:222000, 
n 

for o=0:2: 1998, 
theta=rand*2*pi; 
phi 1 =rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn( 1,2); 

(AVERAGING ESTIMATE) 

noiseb=randn(l ,2); 
noisea=noisea*sqrt(l/(10"( db/10))/2); 
noiseb=noiseb*sqrt(l/( 10"( db/10))/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

x(l)=exp(j*(2*pi*(fl(n/2000+ 1) - fc)*(n+o)/fs +theta))+ 
noise(l )*exp(j*(2*pi*(fl(n/2000+ 1) - fc )*(n+o )/fs +phi 1 )); 

x(2)=exp(j*(2*pi*(fl(n/2000+1)- fc)*(n+o+l)/fs +theta))+ 
noise(2)*exp(j *(2*pi *(fl(n/2000+ 1) - fc )*(n+o+ 1 )/fs + phi2)); 

x(3)=0; 
x(4)=0; 
X=abs(fft(x)); 

deltafTsAve(o/2+ 1) = 1/2/pi*real(asin(X(2)*X(2)/4 - X(4)*X(4)/4)); 

end %ofo 

fl(n/2000+2)=fl(n/2000+ 1) - fs*mean(deltafTsAve); 
clear deltafTsA ve; 

end %ofn 
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plot( fl) 
pause 
MF3mse(db/5+ 1)=1/length(fl(l0: 109))*((fl(l 0: 109)-fc)*(fl(l 0: 109)-fc)'); 

save MF3mse MF3mse 

clear fl 
clear noisea 
clear phi2 
clear db 
clear fs 
clear noiseb 
clear theta 
clear deltafTs 
clear n 
clear o 
clear x 
clear fc 
clear noise 
clear phi! 
clear X 

end %end of db 

db=0:5:50; 
fc= 1 00* 10"6; 
semi logy( db, sqrt(MF3mse )/fc* 100, 'x') 
hold on 
semilogy(db, sqrt(MF3mse)/fc*IOO, ':') 

!date 
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MAGNITUDE METHOD AFC WITH FILTER I ALGORITHM 

!date 
clear 
who 
for db=Q:5:5Q; 
db 
fs=25*10/\6; 
fc= I QQ* I Q/\6; 
fl(l )=98* I Q/\6; 

for n=Q:2Q: I I Q2Q, 

for o=Q:2:I8, 
theta=rand*2*pi; 
phi I =rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn( I ,2); 
noiseb=randn( I ,2); 

(AVERAGING MAGNITUDE) 

noisea=noisea*sqrt(l/(I QI\( db/I Q))/2); 
noiseb=noiseb*sqrt(I/(I QI\( db/I Q))/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

x(I)=exp(j*(2*pi*(fl(n+o+ I) - fc)*(n+o)/fs +theta))+ 
noise(l)*exp(j*(2*pi*(fl(n+o+ I) - fc)*(n+o)/fs +phi I)); 

fl(n+o+2)=fl(n+o+ 1 ); 

x(2)=exp(j*(2*pi*(fl(n+o+2)- fc)*(n+o+I)/fs +theta))+ 
noise(2)*exp(j*(2*pi*(fl(n+o+2) - fc)*(n+o+ 1)/fs + phi2)); 

fl(n+o+ 3)=fl(n+o+2); 
x(3)=Q; 
x(4)=Q; 
X=abs(fft(x)); 

X24error( o/2+ I )=X(2)*X(2)/4-X(4)*X(4)/4; 
% deltaffsAve(o/2+ 1) = 1/2/pi*real(asin(X(2)*X(2)/4 - X(4)*X(4)/4)); 

clear x 
clear X 

end o/oofo 
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fl(n+21)=fl(n+20) - fs* 1/2/pi*real( asin(mean(X24error)) ); 
clear deltafTsA ve; 
clear X24error 

end %ofn 

JFlmse(db/5+ 1)=l/length(fl(lOOl:11OOO))*((fl(l001: 11000)-fc)*(fl(l 001: 11000)­
fc)'); 

save JFlmse JFlmse 
plot( fl) 
pause 
clear fl 

end %end of db 

db=0:5:50; 

semilogy(db, sqrt(JFlmse)/fc*lOO, 'o') 
hold on 
semilogy(db, sqrt(JFlmse)/fc*lOO, ':') 

clear noisea 
clear phi2 
clear db 
clear fs 
clear noiseb 
clear theta 
clear deltafTs 
clear n 
clear o 
clear x 
clear fc 
clear noise 
clear phil 
clear X 
!date 

% 
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MAGNITUDE METHOD AFC WITH FILTER 2 ALGORITHM 

!date 
clear 
elf 
who 
for db=0:5:50, 
db 
fs=25*10"'6; 
fc=l 00* 10"6; 
fl( 1)=98*10"6; 

for n=0:200:22200, 
n 

for 0=0:2:198, 
theta=rand*2*pi; 
phi 1 =rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn( 1,2); 
noiseb=randn(l ,2); 

(AVERAGING MAGNITUDE) 

noisea=noisea *sqrt( 1/(10"( db/ 10) )/2); 
noiseb=noiseb*sqrt(l/(l 0"( db/10))/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

x(l)=exp(j*(2*pi*(fl(n/200+1) - fc)*(n+o)/fs +theta))+ 
noise(l)*exp(j*(2*pi*(fl(n/200+ 1) - fc)*(n+o)/fs + phil)); 

x(2)=exp(j*(2*pi*(fl(n/200+1) - fc)*(n+o+l)/fs +theta))+ 
noise(2)*exp(j*(2*pi*(fl(n/200+ 1) - fc)*(n+o+ 1)/fs + phi2)); 

x(3)=0; 
x(4)=0; 
X=abs(fft(x)); 

X24error( o/2+ 1)=X(2)*X(2)/4-X(4)*X( 4)/4; 
% deltaffsAve(o/2+ 1) = 1/2/pi*real(asin(X(2)*X(2)/4 - X(4)*X(4)/4)); 

clear x 
clear X 

end %ofo 
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fl(n/200+2)=fl(n/200+1) - fs* 1/2/pi*real( asin(mean(X24error)) ); 
clear deltaff sA ve; 
clear X24error 

end %ofn 

plot(fl/l 0"6) 
pause 
JF2mse(db/5+ 1)=1/length(fl(l0: 109))*((fl(l 0: 109)-fc)*(fl(l 0: 109)-fc)'); 

clear fl 
clear noisea 
clear phi2 
clear db 
clear fs 
clear noiseb 
clear theta 
clear deltaff s 
clear n 
clear o 
clear x 
clear fc 
clear noise 
clear phil 
clear X 

end %end of db 

save JF2mse JF2mse 

db=0:5:50; 
fc=l 00* 10"6; 
semilogy( db, sqrt(JF2mse )/fc* 100, 'x') 
hold on 
semilogy(db, sqrt(JF2mse)/fc*100, ':') 

!date 

% 

89 



MAGNITUDE METHOD AFC WITH FILTER 3 ALGORITHM 

!date 
clear 
who 
for db=0:5:50, 
db 
fs=25* 10"6; 
fc= 100* 10"6; 
fl(l )=98* 10"6; 

for n=0:2000:222000, 
n 

for 0=0:2:1998, 
theta=rand*2*pi; 
phi 1 =rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn( 1,2); 
noiseb=randn( 1,2); 

(A VERA GING MAGNITUDE) 

noisea=noisea *sqrt( 1 I ( 10"( db/l 0) )/2); 
noiseb=noiseb*sqrt(l/(10"( db/l 0))/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

x(l)=exp(j*(2*pi*(fl(n/2000+1)- fc)*(n+o)/fs +theta))+ 
noise(l)*exp(j*(2*pi*(fl(n/2000+ 1) - fc)*(n+o)/fs + phil)); 

x(2)=exp(j*(2*pi*(fl(n/2000+1)- fc)*(n+o+l)/fs +theta))+ 
noise(2)*exp(j*(2*pi*(fl(n/2000+ 1) - fc)*(n+o+ l)/fs + phi2)); 

x(3)=0; 
x(4)=0; 
X=abs(fft(x)); 

X24error( o/2+ 1 )=X(2)*X(2)/4-X(4)*X(4)/4; 
% deltaffsAve(o/2+ 1) = l/2/pi*real(asin(X(2)*X(2)/4 - X(4)*X(4)/4)); 

clear x 
clear X 

end %ofo 

fl(n/2000+2)=fl(n/2000+ 1) - fs* 112/pi*real( asin(mean(X24error) ) ); 
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clear deltaff sA ve; 
clear X24error 

end %ofn 

plot(fl/10"''6) 
pause 
JF3mse(db/5+ 1)=1/length(fl(l 0: 109))*((fl(l 0: 109)-fc)*(fl(l 0: 109)-fc)'); 

save JF3mse JF3mse 

clear fl 
clear noisea 
clear phi2 
clear db 
clear fs 
clear noiseb 
clear theta 
clear deltaff s 
clear n 
clear o 
clear x 
clear fc 
clear noise 
clear phil 
clear X 

end %end of db 

db=0:5:50; 
fc= 100* 10"6; 
semilogy( db, sqrt(JF3mse )/fc* 100, 'x') 
hold on 
semilogy(db, sqrt(JF3mse)/fc*100, ':') 

!date 

% 
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PERFORMANCES OF THE PHASE METHOD AFC AND THE MAGNITUDE 

clear 
elf 
figure( I) 
load PFNmse 
load PFlmse 
load PF2mse 
load PF3mse 
fb=5* 10"6; 
db=0:5:50; 

METHOD AFC WITH FILTER 1, 2, AND 3 

semilogy( db, sqrt(PFNmse )/fb* 100, 'ow') 
hold on 
semilogy(db, sqrt(PFNmse)/fb*lOO, ':w') 
semilogy(db, sqrt(PFlmse)/fb*lOO, 'ow') 
semilogy(db, sqrt(PFlmse)/fb*lOO, ':w') 
semi logy( db, sqrt(PF2mse )/fb* 100, 'ow') 
semilogy(db, sqrt(PF2mse)/fb*100, ':w') 
semilogy( db, sqrt(PF3mse )/fb* 100, 'ow') 
semilogy( db, sqrt(PF3mse )/fb* 100, ':w') 
axis([-5 55 .005 100]) 
load JFNmse 
load JFlmse 
load JF2mse 
load JF3mse 
semi logy( db, sqrt(JFNmse )/fb* 100, '+w') 
hold on 
semilogy(db, sqrt(JFNmse)/fb*lOO, ':w') 
semilogy(db, sqrt(JFlmse)/fb*lOO, '+w') 
semilogy(db, sqrt(JFlmse)/fb*lOO, ':w') 
semi logy( db, sqrt(JF2mse )/fb* 100, '+w') 
semilogy(db, sqrt(JF2mse)/fb*100, ':w') 
semilogy( db, sqrt(JF3mse )/fb* 100, '+w') 
semi logy( db, sqrt(JF3mse )/fb* 100, ':w') 
axis([-5 55 .005 100]) 
set(l, 'PaperPosition', [O 0 4.8 3.6]) 
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clear 
for db=Q:5:5Q, 
db 
L=4QQQ; 
LStart=L-1 QQQ; 
fs=25* 10"'6; 
fc=l QQ* 1 QA6; 
fl(l )=98* 1 QA6; 
CB=5*1QA6; 
UBMax= 1Q2.5*1 QA6; 
LBMin=97.5*1QA6; 
UB( 1 )=UBMax; 
UB(2)=UB(l ); 
LB(l )=LBMin; 
LB(2)=LB(l); 
HitUp=Q; 
HitDown=Q; 
HitNone=Q; 
SM=5*1QA6; 
SMMax=5*IQA6; 
Expand= 1.1; 
Shrink=.9; 

for n=Q:2:L, 
theta=rand * 2 *pi; 
phi 1 =rand*2*pi; 
phi2=rand*2*pi; 
noisea=randn( 1,2); 
noiseb=randn(l ,2); 

ADAPTIVE AFC ALGORITHM 

noisea=noisea*sqrt(l/(l QA( db/1 Q))/2); 
noiseb=noiseb*sqrt(l/(1 QA( db/1 Q))/2); 
noise=sqrt(noisea. *noisea + noiseb. *noiseb ); 

fl(n+2)=fl(n+ 1 ); 
x(l)=exp(j*(2*pi*(fl(n+l) - fc)*n/fs +theta))+ noise(l)*exp(j*(2*pi*(fl(n+l) -

fc)*n/fs + phil)); 
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x(2)=exp(j*(2*pi*(fl(n+2) - fc)*(n+ 1)/fs +theta))+ noise(2)*exp(j*(2*pi*(fl(n+2) -
fc)*(n+l)/fs + phi2)); 

x(3)=Q; 
x(4)=Q; 



X=abs(fft(x)); 

deltaf = 1/2/pi*fs*real(asin(X(2)*X(2)/4 - X(4)*X(4)/4)); 

fl(n+3)=fl(n+2) - deltaf; 

if fl(n+3) >= UB(n+2) 
fl(n+3) = UB(n+2); 
Hit Up = HitUp+ 1; 
HitDown = O; 
HitNone = O; 

elseif fl(n+3) <= LB(n+2) 
fl(n+ 3)=LB(n+2); 
HitDown = HitDown+ 1; 
HitUp = O; 
HitNone = O; 

else 
HitUp = O; 
HitDown = O; 
HitNone = HitNone+ 1; 

end 

if (HitUp = 10) I (HitDown = 10) 
SM=SM * Expand; 
HitUp = O; 
HitDown = O; 
HitNone = O; 

elseifHitNone = 1 
HitUp = O; 
HitDown = O; 
HitNone = O; 
SM = SM * Shrink; 

end 

ifSM>SMMax 
SM=SMMax; 

end 
UB(n+ 3)=fl(n+ 3) + SM; 
LB(n+3)=fl(n+3) - SM; 
ifUB(n+3) > UBMax 

UB(n+ 3) = UBMax; 
end 
ifLB(n+3) < LBMin 
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LB(n+3) = LBMin; 
end 

UB(n+4)=UB(n+3); 
LB(n+4)=LB(n+3); 

end %ofn 

adaptivemse(db/5+1)=1/length(fl(LStart:L))*((fl(LStart:L)-fc)*(fl(LStart:L)-fc)'); 

figure( I) 
plot(fl/10"6) 
figure(2) 
elf 
subplot(211) 
qq=l:lOO; 
plot( fl( qq)/10"6) 
ylabel('Fl, MHz') 
hold on 
plot(UB( qq)/10"6,'g') 
plot(LB( qq)/10"6,'r') 
axis([ 1 100 min(LB( qq)/10"6) max(UB( qq)/10"6)]) 
subplot(212) 
plot((UB( qq)-LB(qq))/10"6) 
ylabel('Estimation band, MHz') 
figure(3) 
elf 
subplot(211) 
plot(LStart:L, fl(LStart:L )/10"6) 
hold on 
plot(LStart:L, UB(LStart:L )/10"6, 'g') 
plot(LStart:L,LB(LStart:L )/10"6, 'r') 
ylabel('FL, MHz') 
axis([LStart L min(LB(LStart:L )/10"6) max(UB(LStart:L )/10"6)]) 
subplot(212) 
stairs(LStart:L, UB(LStart:L)/1000 - LB(LStart:L)/1000) 
ylabel('Estimation band, KHz') 

db 
pause 
clear fl 
clear UB 
clear LB 
end %of db 
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save adaptivemse adaptivemse 
db=0:5:50; 
figure(4) 
load JFNmse 
semilogy(db, sqrt(JFNmse)/CB*IOO, 'yo') 
hold on 
semilogy(db, sqrt(JFNmse)/CB*IOO, ':') 
semilogy(db, sqrt(adaptivemse)/CB*lOO, 'rx') 
semi logy( db, sqrt( adaptivemse )/CB* 100, '--') 
axis([O 50 .01 100]) 
% 
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PERFORMANCES OF THE MAGNITUDE METHOD AFC AND THE 

clear 
elf 
figure(l) 
fb=5*10"6; 
db=0:5:50; 

ADAPTIVE AFC WITH DIFFERENT CONFIGURATIONS 

load JFNmse 
load adaptive 1 a 
load adaptive2a 
load adaptive3a 

semi logy( db, sqrt(JFNmse )/fb* 100, '+w') 
hold on 
semi logy( db, sqrt(JFNmse )/fb* 100, '-. w') 
semilogy(db, sqrt(adaptivela)/fb*lOO, '*w') 
semilogy(db, sqrt(adaptivela)/fb*lOO, '-.w') 
semilogy(db, sqrt(adaptive2a)/fb*100, 'ow') 
semilogy(db, sqrt(adaptive2a)/fb*100, '-.w') 
semilogy(db, sqrt(adaptive3a)/fb*100, 'xw') 
semilogy( db, sqrt(adaptive3a)/fb* 100, '-.w') 
axis([-5 55 .005 100]) 
set(l, 'PaperPosition', [O 0 4.8 3.6]) 
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