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ABSTRACT 

An abstract of the thesis of Muralidharan Janakiraman for the Master of Science 

degree in Computer Science presented May 1, 1996. 

Title : Abstract Index Interfaces 

An index in a database system interacts with many of the software modules in the 

system. For systems supporting a wide range of index structures, interfacing the index code 

with the rest of the system poses a great problem. The problems are an order of magnitude 

more for adding new access methods to the system. These problems could be reduced 

manifold if common interfaces could be specified for different access methods. It would be 

even better, if these interfaces could be made database-system independent. 

This thesis addresses the problem of defining generic index interfaces for access 

methods in database systems. It concentrates on two specific issues: First, specification of a 

complete set of abstract interfaces that would work for all access methods and for all 

database systems. Second, optimized query processing for all data types including user

defined data types. 

An access method in a database system can be considered to be made up of three 

specific parts: Upper interfaces, lower interfaces, and type interfaces. An access method 

interacts with a database system through its upper interfaces, lower interfaces and type 

interfaces. Upper interfaces consist of the functions an index provides to a database system. 

Lower interfaces are the database-system dependent software modules an index has to 

interact with, to accomplish any system related functions. Type interfaces consist of the set of 

functions an index uses, which interpret the data type. These three parts together 

characterize an access method in a database system. 



This splitting of an access method makes it possible to define generic interfaces. In 

this thesis, we will discuss each of these three different interfaces in detail, identify 

functionalities and design clear interfaces. The design of these interfaces promote 

development of type-independent and database-system independent access methods. 
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1 INTRODUCTION 

1.1 ADTs in Database Systems 

The collection of built-in data types such as integers, floats, characters, and built-in 

operators such as plus, minus, multiplication, and division, in a database management 

system were motivated by the needs of business data processing applications. These built-in 

data types are not adequate for new and emerging database applications including 

information and knowledge-based systems, engineering test and measurement, hardware and 

software design, and geographical applications[Stonebraker 1983; Stonebraker 1986]. 

For example, a geographical application may be better served by a database 

management system that includes points, lines, circles, and polygons as its basic data types 

and operators such as intersection, containment, and overlapping as its basic operators 

along with its standard built-in data types and operators. A scientific application may require 

complex numbers and time series with appropriate operators. Even a business application 

can make better use of user-defined data types. For example, it may be advantageous to 

define data types like date or time, and to define addition, subtraction and comparison 

operations on them. Most of the commercial database systems have started to support date, 

time and even interval as their built-in data types. Detailed discussions on new types in 

relational database systems can be found in [Stonebraker 1983; Stonebraker 1986]. 

While it is clear that addition of non-conventional data types to the basic type 

collection and facilities for user-defined data types do provide many advantages to the user of 

a database system, one might ask how these new data types affect the storage structures and 

indexing in the system. 
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1.2 Indices in Database Systems 

Most of the commercial and research systems implement 8-tree[Comer 1979] and 

hashing as access methods for better retrieval performance. These access methods work 

very well for the standard built-in data types. These may also be extended to support some 

user-defined data types, such as date and time without affecting the retrieval performance. 

However, these classical one-dimensional indexing structures are not appropriate for multi

dimensional spatial searching. 

A number of index structures have been proposed in the literature for handling multi

dimensional data, and a survey of methods can be found in [Bentley 1979]. Index structures 

such as A-trees, KDB-trees etc., promise better retrieval efficiency for multi-dimensional data 

types[Chapter 2 discusses this in detail]. As different access methods work well for different 

data types, it becomes necessary for a database system supporting a wide collection of data 

types to use appropriate indexing structures, to provide better overall retrieval performance. 

Moreover, a type extensible system may also have to provide facilities to add new access 

methods to the existing collection. 

Supporting many different access methods in the system brings a host of challenges 

to the access method designers. We discuss these issues in the next section. 

1.3 About This Work 

An access method in a database system interfaces with many of the software 

modules in the system. For systems that support many different access methods, interfacing 

the index code with the rest of the system poses a great challenge. More than fifty percent of 

the complexity and effort [Stonebraker 1986] in any access method implementation, results 

from interfacing the index code with the rest of the system. The problems are an order of 

magnitude greater when adding new access methods to the system. 
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Moreover, for systems that support a wide collection of built-in data types and user

defined data types, the access method implementations have to provide a type-independent 

interface, in order that they can be made use of without any modifications to the original 

code. 

These problems could be reduced manifold, if generic interfaces that would work for 

all access methods and for all data types could be specified for access methods in database 

management systems. In this work, we address the problem of defining generic type

independent interfaces for all access methods in database systems. We start with specifying 

the design goals. 

1.3.1 Design Goals 

Following are the major design goals we intend to meet in this work. 

• The interface set must work for all access methods( Subject to the limitation 

discussed in Section 1.3.2 ) and must be type-independent. 

• The interface set must be complete. It should provide a complete set of operations 

that can be provided by an access method to a database system and it should include 

a complete set of interfaces for interfacing the index code with the rest of the 

database system to accomplish all database-system dependent functionalities .. 

• The interface design should not target any specific database system, and must be 

generic enough to work for any database system with little or no changes. 

• Design should not sacrifice query optimization effectiveness for generality. 

1.3.2 Design Limitations 

In Chapter 3, we will identify a set of type-dependent functions, some of which are 

access method specific. One such example is a hash function. Although, we do not know of 

any other access method requiring a special type-dependent operator such as hashing, the 
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existence of access-method dependent type operators limit the scope of our design. The finite 

set of type-dependent operators we identify in Chapter 3 is based on the needs and 

requirements of a finite set of access methods. The access methods we have taken into 

consideration for the interface design are listed in Appendix A. Our interface is designed to 

work only for this finite set of access methods. However, as existence of access method 

specific type operators are limited, we expect our interface design to work for most of the 

available access methods. Any reference to the term "all access methods" in this thesis, only 

means all the access methods listed in Appendix A. 

1.3.3 Benefits Of This Work 

Some of the major benefits of our work are : 

• It provides uniform interfaces to all access methods in the system. 

• It allows usage of existing access methods for user-defined data types. 

• It permits optimized query processing for user-defined datatypes as well as built-in 

datatypes. 

• It makes it easier to add new access methods to the system as implementation of an 

access method is not tied to a specific database system. 

1.4 Related Work : 

The concept of abstract index interfaces has already been discussed in the literature. 

Some research database systems have implemented these concepts in varying degrees of 

abstraction. We expect the current commercial systems to have implemented some level of 

abstraction in their index interface design. 

Modular and extensible database systems such as Postgres, Genesis, and Exodus 

have discussed and implemented these concepts in greater detail. Of these three systems, 

Postgres more closely supports the concepts discussed in this thesis. Though these systems 
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support extensibility in the areas of adding new datatypes, new access methods and 

extending existing access methods to new data types, we believe their basic motivation was 

not to identify "Generic Index Interfaces" that would work for many database systems. Their 

index interfaces are tied to their respective systems. In the next paragraphs of this Section, 

we discuss some of the major differences between our work and the existing work that has 

motivated us to take up this research. 

The first difference has to do with the functionality provided by the existing index 

interfaces and the completeness of the existing interfaces. Most of these systems provide 

index interfaces to create, destroy, open or close an index and to insert, retrieve, delete and 

modify records in the index. We believe an index could provide more functionality than that. 

In this thesis, we identify two other areas: support for the optimizer, and support for the log

recovery sub-system which could be provided by an index to any database system. 

The next major difference is in interfacing the index with the rest of the system. In 

Exodus, the index sits on top of the storage manager. In Genesis, the index ( the FILE 

manager ) sits on top of the NODE manager. Both these systems are page-oriented. In other 

words, the access methods are not involved in transaction or logging. Though this 

architecture is simple, it is not efficient. For instance, one can not do event logging or take 

advantage of special concurrency protocols possible on different index structures. On the 

other hand, Postgres provides all this features. A new access method could be added to the 

system by implementing 13 new functions. But Postgres interfaces are tied to the system. 

One has to be aware of Postgres page-structure, Postgres way of pinning and unpinning 

pages from buffer and Postgres locking techniques. In our work, we try to remove this 

dependency on the system-related details. 

The third major difference has to do with extending the existing access methods to 

work for new data types. In this area, we believe Postgres provides the best support for 

extensibility. But, Postgres also has some drawbacks. First, one can not extend an index for 
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any constructed type. Indices work only on basic types. Second, extending an index to a new 

type is not trivial. There are many system catalog entries to be made. The system could crash 

if the entries happen to be wrong. In this thesis, we try to provide extensibility without any 

limitation. In addition, our solution provides more type-safety and it lets the compiler do most 

of the job with very minimal dependency on the system catalog. 

1.5 Organization of the Remaining Chapters 

In the next chapter, we discuss in detail various access methods and try to identify 

different characteristics that uniquely distinguish the many different access methods. Chapter 

2 also defines a modular perspective for access methods in database systems, and identifies 

three major layers of interfaces. Chapters 3, 4, and 5 discuss each of these three layers in 

detail, identify functionality to be supported in each layer, and specify clear interfaces for 

each of the identified functions. In Chapter 6, we provide an overview of our prototype 

implementation. Chapter 7, summarizes the discussion and concludes the thesis. 
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2 ACCESS METHODS 

In order to reduce the number of accesses to secondary storage, which is relatively 

slow compared to main memory, most database systems employ associative search 

techniques in the form of indices that map key or attribute values to locator information, with 

which database objects can be retrieved. Typically, in relational systems, an attribute value is 

mapped to a tuple or record identifier. 

A number of index structures have been described in the literature, e.g.,[Bayer 1972; 

Becker 1991; Beckmann et al. 1990; Bentley 1975; Finkel 197 4; Guenther 1991; Gunther 

1987; Gunther 1989; Guttman 1984; Henrich 1989; Hoel 1992; Hutflesz 1988a, 1988b, and 

1990; Jagadish 1991; Kemper 1987; Kolovson 1991; Kriegel 1987, and 1988; Lo met 1990a; 

Lomet 1992; Neugebauer 1991; Robinson 1981; Samet 1984]. Although all indices are based 

on the same basic concept - keys and reference fields - the wide variety of access methods 

can be described by some characteristics that pertain to the physical structure of the index, 

the layout, and use of pages on disk. These characteristics distinguish them from one another 

making each index uniquely suitable for different applications. 

In this chapter, we survey a number of access methods based on their characteristics 

and define a modular perspective for indices in database management systems. 

2.1 

1 

Access Methods - A Survey 

The best known and most-often used database index structure is the B-tree[Bayer 

1972; Comer 1979]. A large number of extensions to the basic structure and its algorithms 

have been proposed, e.g., B+-trees for faster scans, fast bulk loading from a sorted file, 

increased fan-out and reduced depth by prefix and suffix truncation, B*-trees for better space 

utilization in random insertions, and top-down B-trees for better locking behavior through 

1 Most of the discussion in this section has been taken from [Graefe 93]. 
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preventive maintenance[Guibas 1978]. 8-trees are still a active research topic, in particular 

with respect to concurrency control[Srinivasan 1991 ], improved space utilization[8aeza

Yates1989], parallelism[Seeger 1991 ], and on-line creation of 8-trees for very large 

databases. On line re-organization and modification of storage structures become a important 

topic as databases become larger and larger and are spread over many disks and many 

nodes in parallel and distributed systems. 

While 8-trees are the most commonly used index structure in database systems, 

there exists a wide variety of index structures, which have potential for use in database 

systems. The large variety of index structures can be described by the following 

characteristics. 

First, is the index structure static or dynamic?. Either the index structure allocates a 

fixed number of buckets when it is first created and resorts to overflow pages if buckets 

cannot hold all data items that logically belong in them, or it reorganizes itself incrementally 

as items are inserted and deleted. Database systems prefer dynamic structures such as 8-

trees as they adapt gracefully to growing data volumes. Static structures such as ISAM do 

have a distinct advantage with respect to concurrency control and recovery, since their 

internal nodes do not change on insertions and deletions, except during re-organization. 

Second, is the index support range retrievals and ordered scans, or only exact-match 

equality retrievals? This is the main difference between sort-based indices such as 8-trees 

and hash-based indices. Indices that support ordered key domains tend to have logarithmic 

insertion, deletion, and search costs, while index and storage structures based on hashing 

typically have constant average maintenance complexity. 

Third, does the index structure support only single-dimensional data or also data 

representing multiple-dimensions? There are a number of application areas where it is very 

common to perform searches using the values of several attributes. Examples of such areas 

include geographic or geometric data, VLSI design, and certain kinds of document retrieval. 
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Where multiple-attribute searches are the rule and single-attribute searches the exception, 

there are advantages to using one multi-attribute index compared with several single-attribute 

indexes[Note that a multi-attribute index can be implemented using one single multi

dimensional index or with several single-dimensional index structures]. First, the clustering of 

index terms and data on disk can dramatically reduce the number of 1/0 accesses needed for 

the search. Second, when new records are inserted, a multi-attribute organization needs only 

a single update of its index. Multiple single-attribute indices require multiple updates. True 

multi-dimensional indices support all dimensions as equals. Another issue closely related with 

dimension is, do the indices support point data or range data? Range data have two data 

points in each dimension; the standard example is the case of two-dimensional rectangles. 

A number of structures have been proposed for handling multi-dimensional point 

data and range data and a survey of methods can be found in [Bentley 1979]. Cell 

methods[Bentley 1977; Guttman 1982; Yuval 1975] are not good for dynamic structures 

because the cell boundaries must be decided in advance. Quad trees[Finkel 197 4] and k-d 

trees[Bentley 1975] do not take paging of secondary memory into account. K-D-B trees are 

designed for paged memory but are useful only for point data. The use of index intervals has 

been suggested in[Wong 1977], but this method cannot be used in multiple dimensions. 

Corner stitching [Ousterhout 1982] is an example of a structure for two-dimensional spatial 

searching suitable for data objects of non-zero size, but it assumes homogeneous primary 

memory and is not efficient for random searches in very large collections of data. Grid files 

[Hinrichs 1983] handle non-point data by mapping each object to a point in a higher

dimensional space. H-B trees [Lomet 1990] are derived from K-D-B trees and k-d trees. R

tree [Guttman 1984] is one of the most general multi-dimensional index structure that has 

been actually implemented in a complete database management system -

Postgres[Stonebraker 1990]. 
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Finally, most index implementations can be switched to accept or reject duplicate 

keys. Thus, indices are used to enforce uniqueness constraints, particularly for identifying 

keys in database systems. 

Table 1 shows some example index structures classified on the above basis. 

10 



Classification of Some Access Methods 

Structure Ordered Dynamic Multi-dim Range References 

Data 

ISAM Yes No No No [Larson 
1981] 

B-trees Yes Yes No No [Bayer 1972; 
[Comer 
1979] 

Quad-trees Yes Yes Yes Yes [Finkel 
1974] 

KO-trees Yes Yes Yes No [Bentley 
1975] 

KDB-trees Yes Yes Yes No [Robinson 
1981] 

HS-trees Yes Yes Yes No [Lo met 
1990a] 

R-trees Yes Yes Yes Yes [Guttman 
1984] 

Extendible 
Hashing No Yes No No [Fagin et al 

1979] 
Linerar 
Hashing No Yes No No [Litwin 1980] 

Grid-Files Yes Yes Yes No [Nievergelt 
1984] 

2 

Table 1 : Classification of Some Access Methods. 

2 Source: [Graefe 93] 
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2.2 An Index in a Database System - A Modular Perspective 

In the last section, we discussed various index structures and compared them using 

different characteristics that pertain to their physical structure, the layout, and use of pages on 

disk. In this section, we will analyze how an index or access method fits in a database 

system. 

An index in a database system interacts with many of the software modules in the 

system. On one hand, it provides a set of DDL and DML functions to the higher-level software 

in the system for defining and manipulating the underlying data. On the other hand, it 

interacts with various lower level system modules for physical manipulation of data and for 

maintaining database consistency. In this section, we attempt to classify this set of modules 

into three specific layers and outline the interaction of the index with each layer. The 

classification we define here forms the basis for designing abstract interfaces. Chapters 3, 4 

and 5 will discuss each layer in detail. 

An access method in a database management system can be considered to be made 

up of three major parts: Upper interfaces, lower interfaces, and type-dependent interfaces. 

Figure 1 illustrates how an index fits in a database management system and how the three 

different parts relate to one another and to the index. 

Upper interfaces are the set of functions an index provides to the higher level 

software in the system. A facility to create an index or insert a record in an index are some of 

the functions that will typically fit in as upper interfaces. This interface depends only on the 

functionality an index can provide to the system. To design abstract interfaces one must first 

identify a complete set of functions that an index can provide to the system. 
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Modular Perspective of An Index In a Database Management System 

Upper 

DDL DML Optimizer og 

Type 
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B-tree Hash R-tree 
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Disk Record Buffer Catalog Log-Recovery 

Figure 1 
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On the lower level, an index interfaces with many of the software modules in the 

system to accomplish database system related functions such as file management, 

transactions, logging, etc. We call this set of modules the lower interface. The lower interface 

depends on the functionality supported by the database system. 

An index in any system often handles data of various types. The data types may be 

standard built-in types such as integers, characters, strings or may be any user-defined data 

type. To build a type-independent access method one must identify the functions that really 

need to interpret the data type. For example, a 8-tree can be built using only two type

dependent operators: compare and copy. Compare is an operator that takes two keys as its 

input and determines whether one key is greater, less, or equal to another key. Copy is an 

operator that takes a key and an address of a memory location as its input and copies the key 

to the specified memory location. By providing a compare operator and a copy operator for 

different key types, we could make the B-tree work for all key types. These are only examples 

and different access methods may require different type-dependent operators. We call this 

set of functions type-dependent functions. 

These three different parts together characterize an index in a database system. An 

index interacts or communicates with the database system through its upper interfaces, lower 

interfaces and type-dependent interfaces. We will define generic index interfaces by 

identifying and defining common interfaces for these three sets. 

In the next three chapters, we discuss each of these three interfaces in detail. 
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3 TYPE-DEPENDENTINTERFACES 

Chapter 2 gave a brief introduction to type-dependent interfaces. In this chapter, we 

will identify a set of type-dependent functions and will show how this set can be organized in 

the system. The set of type-dependent functions we identify here will be based on the needs 

and requirements of all access methods listed in Appendix A. 

Our success here lies in identifying a correct and complete set of type-dependent 

functions that would work for all access methods( Section 1.3.2 ) and for all data types, 

without having to extend or modify the index code. The design should permit optimized query 

processing for all data types, including the user-defined data types, as that would be possible 

if the index has been coded for a particular data type. 

Section 3.1 discusses the problem of identifying a finite set of type- dependent 

functions. In section 3.2., we specify the type-dependent interfaces. 

3.1 Design Considerations 

The first step towards building a type-independent access method is to identify the 

functions that really need to interpret the data type. For any access method, the set of 

functions that need to interpret the data type are dependent on the access method and on the 

data types the database system deals with. For example, a hash index requires a "hash" 

operator which is type-dependent. A B-tree requires a "compare" operator. Most multi

dimensional indices such as R-tree, and KDB-tree require an "overlaps" or a "contains" 

operator to check how two regions covered in a k-dimensional space relate to one another. 

Like wise, every access method requires its own set of type-dependent operators. Of course, 

some of the operators may be common to all access methods. For example, almost all 

indices require a "copy" operator. 
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In our opinion, the type-dependent operators of an access method can be classified 

into two different sets. One set that depends on the requirements of the index construction, 

traversal and maintenance algorithms. The other set that depends on the type of retrieval 

operations possible for a given key type. For example, let us consider a R-tree consisting of 

data on two-dimensional boxes. The R-tree can be constructed using an "overlap" and a 

"compare" operator (Overlap is used to determine whether a given box overlaps the region 

covered by the other box. Compare determines whether a region covered by one box is 

greater than the region covered by the other). These two operators are enough to create, 

traverse and maintain a R-tree. 

Let us now examine the retrieval operations possible for this data type. Given that the 

data type stored in the R-tree is a box data type, all the following operations make 

sense[Stonebraker 1983). 

Retrieve all the boxes that are contained in an unit square. 

Retrieve all the boxes that intersect the unit square. 

Retrieve all the boxes that are to the left of the unit square, 

Retrieve all the boxes that are to the right of the unit square. 

For a box data type the above retrieval operations are only a few. There are many 

more possible and it should be possible to perform retrieval using any operator that is 

appropriate for this box key type. Note that these retrieval operators depend more on the key 

type rather than on the access method. If the same R-tree is used to store a single 

dimensional integer key type, the retrieval options available may not be this many. On the 

other hand a 4 or a 5 dimensional data type may throw in a lot of different retrieval options. 

From the ongoing discussions we could conclude that the set of type-dependent 

functions cannot only include all the operators that are required by the algorithms of different 

access methods but should also take into account various retrieval operations possible on any 

given key type. This distinction is important because, though we may be working with a finite 
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set of access methods(Appendix A), we are not working with a finite set of data types. That 

means the set of type-dependent operators are not finite because of the retrieval needs. 

3.2 Interface Specification 

We will adopt the following strategy to arrive at a finite set of type-dependent 

operators from the seemingly infinite set of type-dependent operators. We will divide the 

type-dependent operators into two sets. One set will consist of all the functions that are 

access method dependent. The other set will consist of a single abstract function which can 

be used for all retrieval operations for all data types. 

These two sets are organized as two classes: KEY class and MATCH class. 

Both are base interface classes with pure abstract functions. In the base class these abstract 

functions are defined to provide only default error semantics. The implementation classes 

that derive from the base classes have to re-define these abstract functions for any 

meaningful operations. In the following sections, we specify these two classes and discuss 

them in detail. 

3.2.1 KEY class 

KEY class abstracts the concept of a "key" in a relational system. It provides a data 

structure for efficient storage of a key value of any type and defines functions that operate on 

this value. KEY class defines two sets of functions., one set as part of its public interface and 

the other as its protected interface. The functions in the public interface define all the 

functionality provided by the KEY class. These are concrete functions and are defined in the 

base class itself. Most of the functions in the public interface do only the error checking and 

call on the implementations of their counterparts in the protected interface for semantic 

processing. 
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The functions in the protected part of the KEY class are forwarding functions. This set 

of functions consist of the access method dependent type operators. These are defined to be 

no-ops in the base class. Providing an equivalent counter part in the public interface shifts the 

burden of error checking to the base class, simplifying the implementations. 

In the design of the KEY class, we have associated each "KEY" type with an unique 

identifier. It is expected that the system provides an unique identifier for both the built-in data 

types and for the user-defined data types. For the user-defined data types an unique identifier 

may be returned when the data types are registered with the system. Note that this unique id 

has been added only for operational convenience, for example, simplified error checking and 

it is not a design constraint. 

Before specifying the KEY class, we will first present the data structure used for 

storing a key record. Section 3.2.1.2 defines the KEY class. 

3.2.1.1 Key Record 

The design of KEY record permits efficient storage for key of any type. Key can be 

single dimensional or multi-dimensional and can be of range or point values. The design 

doesn't permit a key to consist of range value in some dimensions and point value in other 

dimensions. All dimensions have to be of range or point values. The key record contains 

information only about the key and not about the information associated with a key. 

A key record consists of three parts. The first part contains header information. The 

second part consists of slot vectors that has some information about each dimension. 

Number of slot vectors depend on the number of dimensions of the key. The third part 

contains the actual data for all dimensions. The following is a schematic representation of a 

key record. 
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1------------1----------------------1-----------1-----------1---------1----------1---------1 

I 1 I 2 I ... In I 

31------------1----------------------1-----------1-----------1---------1--------- 1---------1 

Header Slot Vectors dim n dim n-1 ..... dim 21 dim 1 

The next section details the data structure. We define only the main components of 

the data structure here. The other structures and typedefs used here are defined in 

Appendix B. 

II Header details of a key record 

typedef struct KEY _HDR { 

TYPE_ID type_id; 

REC_NO 

BOOL 

KEY_LEN 

} KEY_HDR; 

dim; 

range; 

data_len; 

II Single entry in a dope vector 

typedef struct KEY _SLOT { 

KEY_LEN 

}KEY_SLOT; 

key_len, 

offset; 

II Identifier for a type. This is the identifier 

II returned by the database system when a 

II new type is registered with the system. 

II Dimensions of a key 

II True if self refers to a range value 

II Total length of the key record including headers 

II Length of each dimension 

II Offset of a key at a particular dimension. 

II offset from the beginning of data portion. 

3 This structure is similar to the page structure used in Volcano[Graefe 1993a). 
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II A key record 

typedef struct KEY _REC { 

KEY_HDR 

union { 

} data; 

} KEY_REC; 

KEY_SLOT 

char 

3.2.1.2 KEY Class Definition 

hdr; II Header details 

slot[1 ]; II var - length array 

data_[1 ];II var - length array 

This section defines the KEY class. Detailed definitions of the member functions are 

discussed in the next section. 

class KEY { 

friend class MATCH; 

public: 

/* 

* Constructors, Destructors, and Validators 

*I 

KEY(); 

KEY(const KEY& key); 

KEY(const KEY _REC& rec); 

-KEY(); 

BOOL 

Status 

BOOL 

/* 

*Operators 

*I 

void 

is_valid() canst ; 

error_code() canst; 

same_types( canst KEY& key ) canst; 

operator= ( canst KEY& key ) ; 
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BOOL 

BOOL 

BOOL 

BOOL 

BOOL 

BOOL 

int 

BOOL 

BOOL 

BOOL 

BOOL 

/* 

*Mutators 

*I 

KEY 

KEY_LEN 

KEY_REC 

REC_NO 

BOOL 

TYPE_ID 

operator== ( const KEY& key ) const; 

operator != ( const KEY& key) const; 

operator>= ( const KEY& key) const; 

operator > ( const KEY& key ) const; 

operator < ( const KEY& key) const; 

operator<= ( const KEY& key ) const; 

compare( const KEY& key) const; 

overlaps( const KEY& key) const; 

overlaps( const KEY& low, const KEY& high) const; 

contains( const KEY& key) const; 

contains( const KEY& low, const KEY& high ) const; 

clone() const; 

length() const; 

*key_record() const; 

dim() const; 

range() const; 

type() const; 

II Mutators for each dimensions 

KEY_LEN 

KEY_LEN 

void* 

int 

/* 

*Modifiers 

*I 

Status 

key_length( REC_NO dim) const; 

offset( REC_NO dim ) const; 

key( REC_NO dim ) const; 

hash() const; 

store_data( const KEY _REC& rec ); 
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KEY 

KEY 

KEY 

KEY 

protected: 

I* 

build_region(); 

build_region( canst KEY& key); 

add_to_region( canst KEY& key ); 

subtract_from_region( canst KEY& key ); 

* All the protected are forwarded functions. 

* Sub classes have to re-define these 

*I 

hash_() canst; 

compare_( canst KEY& key) canst; 

virtual int 

virtual int 

virtual BOOL 

virtual BOOL 

overlaps_( canst KEY& key1, canst KEY& key2, BOOL range ) canst; 

contains_( canst KEY& key1, canst KEY& key2, BOOL range ) canst; 

}; 

virtual Status 

virtual KEY 

virtual KEY 

Status 

KEY_REC 

store_data_( canst KEY _REC& rec ); 

build_region_( canst KEY& key); 

modify_region_( canst KEY& key, BOOL add ); 

status_; 

*rec_; 

II Maintains the state of self. 

II Specifies self's value. 

3.2.1.3 Detailed Specification and Member Function Definition 

In this section, each member function is explained in detail along with the default 

implementation. 

KEV::KEV() 

Purpose 

Input 

Output 

Error 

Details 

Default constructor. Produces an uninitialized KEY object. 

None 

Uninitialized KEY object 

None 
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The state of the produced object will be "notlnitialized." This constructor doesn't 

allocate any storage and the member "rec_" is set to NULL. No valid operations will be 

possible in this state. 

Implementation 

KEY::KEY(): 

{ ;} 

status_ ( notlnitialized ), 

rec_ (NULL) 

KEY::KEY( const KEY& key) 

Purpose 

Input 

Output 

Error 

Details 

Copy constructor. Produces a KEY object similar to 

that of the specified KEY object. 

Reference to a KEY object 

KEY object 

None 

The constructed object will have the same state as that of the input object. This 

method allocates storage. The produced object will have it's own copy of "rec_". 

Implementation 

KEY::KEY( const KEY& key): 

status_( key.error_code() ), 

store_data_( (const)key.data() ) 

{;} 

KEY::KEY( const KEY _REC& rec ) 

Purpose 

Input 

Output 

Error 

Details 

Produces an initialized KEY object. 

Reference to a KEY _REC structure 

Initialized KEY object 

None 

Constructor allocates storage and sets values for status_ and rec_. 

rec_ will have a value of "rec", and the status will indicate the success of 

the operation that stores "rec". 
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Implementation 

KEY::KEY( const KEY _REC& rec ) : 

status( store_data_( rec ) ){;} 

KEY::-KEY{) 

Purpose 

Input 

Output 

Error 

Details 

Destructor 

None 

None 

None 

Destructor frees the storage. 

KEY::-KEY() 

{ 

if( rec_) 

delete rec_; 

} 

BOOL 

KEY::is_valid{) const 

Purpose 

Input 

Output 

Error 

Details 

Checks the validity of self 

None 

Boolean 

None 

Returns TRUE if the object has a OK status 

Implementation 

BOOL 

KEY::is_valid() const{ 

return ( status_ == OK ); 

Status 

KEY::error_code{) const 

Purpose 

Input 

To get the status of the object. 

None. 
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Output 

Error 

Details 

Status. 

None. 

Returns the status of self. 

Implementation 

Status 

KEY::error_code const{ 

return status_; 

BOOL 

KEY::same_types{ const KEY& key) const 

Purpose 

Input 

Output 

Error 

Details 

Determine whether two keys are of the same type. 

Reference to a KEY object. 

TRUE if self and key are of same type. 

None. 

Return TRUE if both self and key are of same type. 

Implementation 

BOOL KEY::same_type( const KEY& key) const { 

return (type{)== key.type{) ); 

KEY 

KEY::clone{) const 

Purpose 

Input 

Output 

Error 

Details 

Returns a copy of self. 

None. 

KEY object. 

None. 

Returns a deep copy of self. Obeys value semantics. 

Implementation 

KEY KEY::clone() const{ 

return key; 
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KEY_REC * 

KEY::key_record() const 

Purpose 

Input 

Output 

Error 

Details 

Provides access to the data value of self. 

None. 

Pointer to KEY _REC. 

Output will be a NULL reference. 

Returns a pointer to the data value of key. If self is invalid returned pointer will be a 

NULL reference. It is the responsibility of the caller to check for the validity of the pointer. 

Implementation 

KEY_REC 

KEY::key_record() canst 

if( is_valid() ) 

return ( rec_); 

return NULL; 

KEY_LEN 

KEY::length{) const 

Purpose 

Input 

Output 

Error 

Details 

Gets the length of the data value of self. 

None. 

Length of the data part of self. 

Output will be 0 in case of errors. 

Returns the length of self. The length will be O if self's status is invalid. 

Implementation 

KEY_LEN 

KEY::length() canst 

} 

if( is_valid() ) 

return rec_->hdr.data_len; 

return O; 
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REC_NO 

KEY::dim() const 

Purpose 

Input 

Output 

Error 

Details 

Gets the dimensions of self. 

None. 

Number of dimensions of self. 

Output will be 0 in case of errors. 

Invalid object will return a value of 0. 

Implementation 

REC_NO 

KEY::dim() const{ 

} 

if( !is_valid() ) 

return O; 

return ( rec_.hdr.dim ); 

BOOL 

KEY::range() const 

Purpose 

Input 

Output 

Error 

Implementation 

BOOL 

KEY::range() const{ 

if( !is_valid() ) 

return FALSE; 

Determine whether self represents a range value. 

None. 

TRUE if self represents a range value. 

Output will be FALSE in case of errors. 

return ( rec_.hdr.range == TRUE ); 

} 

KEY_LEN 

KEY::key_length( REC_NO dim) const 

Purpose Get the length of the key at dimension "dim." 

27 



Input 

Output 

Error 

Implementation 

KEY_LEN 

Dimension of the key. 

Length of the key at dimension "dim." 

Output will be 0 in case of errors. 

KEY::key_length( REC_NO dim) const{ 

if( !is_valid() ) 

return O; 

if( dim>= dim() II dim< 1 ) 

return O; 

return ( rec_->data.slot[dim - 1].key_len ); 

KEY_LEN 

KEY::offset( REC_NO dim) const 

Purpose 

Input 

Output 

Error 

Implementation 

KEY_LEN 

Get the offset of the key at dimension "dim". 

Dimension of the key. 

Offset of the key at dimension "dim." 

Output will be O in case of errors. 

KEY::offset( REC_NO dim) const{ 

if( !is_valid() ) 

return O; 

if( dim>= dim() II dim< 1) 

return O; 

return ( rec_->data.slot[ dim -1 ].offset); 

} 

void* 

KEY::key( REC_NO dim) const 

Purpose 

Input 

Output 

Error 

Get a pointer to the key at dimension "dim." 

Dimension of the key. 

Pointer to the key at dimension "dim." 

Output will be NULL in case of errors. 
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Implementation 

void* 

KEY::key( REC_NO dim ) const { 

if( !is_valid() ) 

return NULL; 

if( dim>= dim() II dim< 1 ) 

return NULL: 

return ( (void *)(rec_->data + offset( dim ) ) ); 

TYPE_ID 

KEY::type() const 

Purpose 

Input 

Output 

Error 

Implementation 

TYPE_ID 

KEY::type() const{ 

} 

void 

if( !is_valid() ) 

return noType; 

return rec_.hdr.type_id; 

Return the type identifier of self. 

None. 

Type identifier of self. 

Output will be no Type in case of errors. 

KEY::operator=( const KEY& key) 

Purpose 

Input 

Output 

Error 

Details 

Assignment operator. 

Reference to a KEY object. 

None. 

None. 

Assigns key to self. Self will reflect key in all respects. Obeys value semantics. 

Implementation 

void 

KEY::operator=( const KEY& key) : 
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status_( key.error_code() ), 

store_data_( key) { 

BOOL 

KEY::operator==( const KEY& key) const 

Purpose 

Input 

Output 

Error 

Implementation 

BOOL 

Check for equality. 

KEY object. 

TRUE if self and key are alike. 

Output will be FALSE if any of the object is invalid. 

KEY::operator==( const KEY& key) const{ 

return ( compare( key) == 0 && compare( key ) != argErr ); 

} 

BOOL 

KEY::operator!=( const KEY& key) const 

Purpose 

Input 

Output 

Error 

Implementation 

BOOL 

Check for inequality. 

KEY object 

True if self and key are not alike. 

Output will be FALSE if any of the object is invalid. 

KEY::operator!=( const KEY& key) const{ 

return( compare( key) != 0 && compare( key ) != argErr ); 

BOOL 

KEY::operator>=( const KEY& key) const 

Purpose 

Input 

Output 

Error 

Implementation 

Check whether self is greater than or equal to key. 

KEY object. 

TRUE if self is greater than or equal to key. 

Output will be FALSE if any of the object is invalid. 
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BOOL 

KEY::operator>=( canst KEY& key) canst{ 

return ( compare( key ) >= 0 && compare( key) != argErr ); 

BOOL 

KEY::aperatar>( canst KEY& key) canst 

Purpose 

Input 

Output 

Error 

Implementation 

BOOL 

Check whether self is greater than key. 

KEY object. 

TRUE if self is greater than key. 

Output will be FALSE if any of the object is invalid. 

KEY::operator>( canst KEY& key) canst{ 

return( compare (key)> O && compare( key) != argErr ); 

BOOL 

KEY::aperatar<( canst KEY& key) canst 

Purpose 

Input 

Output 

Error 

Implementation 

BOOL 

Check whether self is less than key. 

KEY object. 

TRUE if self is less than key. 

Output will be FALSE if any of the object is invalid. 

KEY::operator<( canst KEY& key) canst{ 

return( compare( key ) < O && compare( key ) != argErr ); 

} 

BOOL 

KEY::aperatar<=( canst KEY& key) canst 

Purpose 

Input 

Output 

Error 

Check whether self is less than or equal to key. 

KEY object. 

TRUE if self is less than or equal to key. 

Output will be FALSE if any of the object is invalid. 

31 



Implementation 

BOOL 

KEY::operator<( const KEY& key ) const{ 

return( compare( key) <= O && compare( key ) != argErr ); 

int 

compare( con st KEY & key ) con st 

Purpose 

Input 

Output 

Error 

Details 

Determine whether key is greater, equal to or 

less than self. 

A reference to KEY object. 

-1 if self is less than key. 

O if both are equal. 

1 if self is greater than key. 

Error state of the object. 

In case of errors the error code will be returned as return value. 

implementation 

int compare( const KEY& key ) const{ 

if( !is_valid() ) 

return argErr; 

if( !key.is_valid() ) 

return argErr; 

if( !same_type( key ) ) 

return argErr; 

return ( compare_( key ) ); 

} 

Status 

KEY::store_data( const KEY _REC& rec) 

Purpose 

Input 

Output 

Error 

Set the rec_ value of self. 

A reference to KEY _REC structure. 

Status of the operation. 

Check the state of self for error. 

noMemory 

32 



Details 

Sets the value of rec_ to rec. Uses the virtual function "store_data_" to do 

the job. Storage will be allocated. Any previous reference of rec_ will be lost. Status of self 

will reflect any errors. This method will return error and not do any operation if the state of self 

is other than ok or notlnitialized. 

Implementation 

Status 

KEY::store_data( canst KEY _REC& rec){ 

int 

if( !is_valid() && error_code != notlnitialized) 

return status_; 

if( rec_) 

delete rec_; 

return( store_data_( rec ) ); 

KEY::hash() const 

Purpose Returns a hash value for self. 

None. Input 

Output Hash value. 

Error Error state of self. 

Details 

Uses the virtual method hash_() to do the job. Execution of this method will not affect 

the status of self. If self is invalid, self status will be returned as return value. 

Implementation 

int 

KEY::hash() canst{ 

} 

BOOL 

if( !is_valid() ) 

return (int)status_; 

return( hash_() ); 

KEY::overlaps( const KEY& key) const 

Purpose Check whether self overlaps key. 
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Input 

Output 

Error 

Details 

KEY object. 

TRUE if self overlaps key. 

Output will be FALSE in case of invalid objects. 

Returns TRUE if self overlaps the region occupied by key. That is one of the points of 

self falls in the region bounded by key. This will return FALSE, if self or key is invalid or low 

doesn't contain a region. 

Implementation 

BOOL 

KEY::overlaps( const KEY& key ) const{ 

BOOL 

if( !is_valid() II !key.is_valid() II !range() II !same_type(key)) 

return FALSE; 

return( overlaps_( key, NULL, FALSE ) ); 

KEY::overlaps( canst KEY& low, canst KEY& high) canst 

Purpose Check whether self overlaps the region bounded 

by low and high. 

Input 

Output 

Error 

Two KEY objects. 

TRUE if self overlaps the region bounded by 

low and high together. 

Output will be FALSE if any of the object is invalid. 

Implementation 

BOOL KEY::overlaps( const KEY& low, const KEY& high ) const{ 

} 

if( !is_valid() II !low.is_valid() II !high.is_v alid() II !same_type(low) II 

!same_type(high) II low.dim() !=high.dim()) 

return FALSE: 

return ( overlaps_( low, high, TRUE ) ); 
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BOOL 

KEY::contains( const KEY& key) const 

Purpose 

Input 

Output 

Error 

Details 

Check whether self is contained in key. 

KEY object. 

TRUE if self is contained in key. 

Output will be FALSE if any of the object is invalid. 

Containment is TRUE when all points of self lies within the region bounded by key. 

Implementation 

BOOL 

KEY::contains( const KEY& key ) const{ 

BOOL 

if( !is_valid() II !key.is_valid() II !same_type(key) II !key.range()) 

return FALSE; 

return (contains_( key, NULL, FALSE) ); 

KEY::contains( const KEY& low, const KEY& high) const 

Purpose 

Input 

Output 

Error 

Implementation 

Check whether self is contained within the region 

bounded by low and high. 

Two KEY objects. 

TRUE if self is contained within the region 

bounded by high and low. 

Output will be FALSE if any of the object is invalid. 

BOOL KEY::contains( const KEY& low, const KEY& high) const{ 

if( !is_valid() II !low.is_valid() II !high.is_valid() II !same_type(low) II 

!same_type(high) II low.dim() !=high.dim() ) 

return FALSE; 

return( contains_( low, high, TRUE) ); 

KEY 

KEY::build_region() 

Purpose Build a region bounded by self. 
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Input 

Output 

Error 

Details 

None. 

A KEY object that refers to a range value. 

Check the status of the returned object. 

Builds a region that specifies the region bounded by self. The output will be similar to 

self if self already refers a region. The status of the returned object will reflect the success of 

the operation. State of self will remain unchanged. 

Implementation 

KEY 

KEY::build_region(){ 

if( !is_valid() ) 

return *this; 

return( build_region_( clone() ); 

KEY 

KEY::build_region( const KEY& key) 

Purpose 

Input 

Output 

Error 

Details 

Build a region bounded by self and key. 

KEY object. 

KEY object that refers to a range value. 

Check the status of the returned object. 

Builds a region that specifies the region bounded by self and key. This method will 

succeed if and only if both self and key refer to "non-regions" or "regions". This will fail if one 

of them is a region and the other is not. The state of self will remain unaffected in all cases. 

Implementation 

KEY 

KEY::build_region( const KEY& key){ 

if( !is_valid() ) 

return *this; 

if( !key.is_valid() ) 

return key; 

KEY key; 

36 



if( dim() ! key.dim() II range() !=key.range() II ! same_type(key) ){ 

key.status_= errorCreation; 

return key; 

return( build_region_( key) ); 

KEY 

KEY::add_to_region( const KEY& key) 

Purpose 

Input 

Output 

Error 

Details 

Add the value of key to self. 

KEY object. 

KEY object. 

Check the status of the returned object. 

This method returns a region that covers the region bounded by self and key. This 

method will fail if either self or key or both is not already a region. State of self will remain 

unaffected in all cases. 

Implementation 

KEY KEY::add_to_region( canst KEY& key){ 

if( !is_valid() ) 

return *this; 

if( !key.is_valid()) 

return key; 

KEY k; 

if( !same_type(key) II !range() II !key.range() II dim() != key.dim() ) 

return k; 

return( modify_region_( key, TRUE) ); 

KEY 

KEY::subtract_from_region( const KEY& key) 

Purpose 

Input 

Output 

Subtract the region occupied by key from self. 

KEY object. 

KEY object. 
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Error 

Details 

Check the status of the returned object. 

This method returns a region that covers the region bounded by self and not by key. 

This method will fail if either self or key or both is not already a region. State of self will 

remain unaffected in all cases. 

Implementation 

KEY 

KEY::subtract_from_region( canst KEY& key){ 

if( !is_valid() ) 

return *this; 

if( !key.is_valid()) 

return key; 

KEYk; 

if( !same_type(key) II !range() II !key.range() II dim() !=key.dim() ) 

k.status_ = errorCreation; 

return k; 

return( modify_region_( key, FALSE) ); 

/* 

* Following are forwarded functions. 

* These are defined to be no-ops in the base class. 

*/ 

Status 

KEY::store_data_{ const KEY _REC& rec ) 

Purpose 

Input 

Output 

Error 

Details 

Set the value of self to that of rec. 

Reference to a KEY _REC structure. 

Status of the operation. 

State of the object, noMemory. 

This method will allocate necessary storage and will store 'rec' in the data member 

'rec_'. For any errors this method will change the status of self to reflect the error status. 

Value returned will correspond to error status. 
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Default Implementation : 

Status 

KEY::store_data_( const KEY _REC& rec ){ 

return noOp; 

int 

KEY::compare_( const KEY& key) const 

Purpose 

Input 

Output 

Error 

Details 

Compare self to key. 

Reference to a KEY object. 

-1 if self is less than key, 

O if self is equal to key, 

1 if self is greater than key. 

Error state of the object, 

notSameTypes 

It is expected that this method will provide a comparison logic for all types of keys. 

Default Implementation : 

int 

KEY::compare_( const KEY& key ) const{ 

return noOp; 

} 

int 

KEY::hash_() const 

Purpose 

Input 

Output 

Error 

Details 

Return a suitable hash value of self. 

None. 

Hash value. 

Error state of the object. 

It is up to the implementation to decide on the hashing technique. 

Default Implementation : 

int KEY::hash_() const{ 

return noOp; 

39 



KEY 

KEY::build_region_( const KEY& key) 

Purpose 

Input 

Output 

Error 

Details 

Build a region bounded by self and key. 

Reference to a KEY object. 

KEY 

Check the status of returned KEY object. 

This method returns a region bounded by self and key. 

Default Implementation : 

KEY 

KEY::build_region_( canst KEY& key ){ 

return key; 

KEY 

KEY::modify_region_( const KEY& key, BOOL add) 

Purpose 

Input 

Output 

Error 

Details 

Modify the region bounded by self by adding or 

subtracting the region bounded by key. 

Reference to a KEY object. 

KEY object. 

If the flag add is TRUE the region returned will reflect the region bounded by self and 

key. If not, the resulting region will reflect the region covered by self and not by key. 

Default Implementation : 

KEY KEY::modify_region_( canst KEY& key, BOOL add){ 

return key; 
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BOOL 

KEY::overlaps_( const KEY& low, const KEY& high, BOOL range) const 

Purpose 

Input 

Output 

Error 

Details 

Check whether self overlaps the region bounded by 

self and low or low and high together. 

Reference to KEY objects. 

Boolean condition. 

TRUE if self overlaps. 

Output will FALSE in case of invalid objects. 

If range is TRUE, this method will return TRUE if self overlaps the region bounded by 

low and high. If not, "high" will be ignored and will return TRUE if self overlaps the region 

occupied by low. 

Overlapping is TRUE if any of the points of self falls in the region bounded by low or 

low and high together. 

Default Implementation : 

BOOL 

KEY::overlaps_( canst KEY& low, canst KEY& high, BOOL range) canst{ 

return FALSE; 

BOOL 

KEY::contains_( const KEY& low, const KEY& high, BOOL range) const 

Purpose 

Input 

Output 

Error 

Details 

Determine whether self is contained in low or 

low and high together. 

Reference to two KEY objects. 

Boolean condition 

TRUE if self is contained in. 

Output will be FALSE in case of invalid objects. 

If "range" is TRUE this method will return TRUE if self contains the region bounded 

by low and high. If not, high will be ignored and containment will be checked with the region 

bounded by low. Contains is TRUE if and only if all the points of self fall with in the region 

covered by or low and high together. 

41 



Implementation: 

BOOL KEY::contains_( const KEY& low, const KEY& high, BOOL range) const{ 

return FALSE; 

3.2.2 MATCH CLASS 

Match class consists of a single match function defined in the public interface that 

can be used for different retrieval options possible for different key types. As in the case of 

KEY class, the public match function has an equivalent counter part in the protected interface 

of MATCH class. The public part does all the error checking and calls on the implementation 

of protected counter part for semantic processing. The protected interface is defined to be a 

pure abstract function and it is a no-op in the base class. Classes that derive from MATCH 

has to provide the necessary implementation. As MATCH class is defined to be a friend of 

KEY class, direct access to the data is available to this class. 

3.2.2.1 Class Definition 

class MATCH 

public: 

BOOL match( const KEY& key1, const KEY& key2 ) const; 

protected: 

virtual BOOL match_( const KEY& key1, const KEY& key2 ) const; 

}; 

3.2.2.2 Detailed Definition 

BOOL 

MATCH::match( const KEY& key1, const KEY& key2 } const; 

Purpose Determine whether key1 matches key2. 

Matching criteria depends on the 
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Input 

Output 

Error 

Details 

implementation of the protected function "match_()". 

Reference to KEY objects. 

Return, 

TRUE if key1 matches key2, 

else FALSE. 

Output will be FALSE in case of invalid objects. 

This method determines whether one key matches another key. This method does 

only error checking and depends on the implementation for matching criteria. If this method 

returns TRUE, the record associated with that key will be returned. This method will return 

FALSE tor all errors. 

Implementation : 

BOOL 

match( const KEY& key1, const KEY& key2 ) const{ 

if( !key1 .is_ valid() II !key2.is_valid() ) 

} 

BOOL 

return FALSE; 

if( ( key1 .dim() != key2.dim()) II ( key1 .range()!= key2.range() II 

!same_type( key ) ) 

return FALSE; 

return match_( key1, key2 ); 

MATCH::match_( const KEY& key1, const KEY& key2 ) const; 

Purpose 

Input 

Output 

Determine whether key1 matches key2. 

The matching criteria is not specified. It is 

up to the implementation to incorporate 

appropriate matching criteria. 

Typically the matching criteria will depend 

on the kind of operations possible for the key 

type. 

Reference to KEY objects. 

Return, 

TRUE if key1 matches key2, 

else FALSE. 
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Error 

Details 

Output will be FALSE in case of invalid objects. 

This method determines whether one key matches another key. The criteria for 

matching is up to the implementation. The access method implementor makes use of this 

method to determine whether a key in the index matches the search key. If this method 

returns TRUE, the record associated with that key will be returned. Hence, it is upto the user 

of the index to determine what matching criteria would satisfy his query and accordingly 

implement this method. 

Default Implementation : 

BOOL 

match_( const KEY& key1, const KEY& key2 ) const{ 

return FALSE; 

} 

3.3 Usage 

All the type dependency needs of an index can be met using the KEY class and 

MATCH class member functions. In this section, we will show how an access method 

designer and the application programmer could make use of these functions to meet the 

various needs of different access methods and applications. We will start with building an 

implementation for both KEY and MATCH class. 

3.3.1 Implementation Class - An Example 

As noted earlier, the implementation of the base KEY and MATCH classes provide 

only default error semantics. For any meaningful operation, a KEY or a MATCH object has to 

be associated with a concrete implementation. In the typical design, the database system will 

provide implementation for all the built-in data types and the application programmer will 

provide implementations for all the user-defined data types. In this section, we will show how 

the designer of a database system or an application programmer could go about building an 
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implementation for a particular data type. In this example, we will build an implementation for 

a single dimensional "string" data type. 

3.3.1.1 STRING_KEY Implementation 

STRING_KEY class is a concrete class providing an implementation for base class 

KEY for single dimensional "string" data type. The class definition includes all forwarding 

functions of the base class and its own utility functions. 

3.3.1.1.1 Class Definition 

class STRING_KEY : public KEY { 

}; 

public: 

STRING_KEY(); 

STRING_KEY( const STRING_KEY& key); 

STRING_KEY( const KEY _REC& rec ); 

-STRING_KEY() 

protected: 

int compare_( const KEY& key) const; 

BOOL overlaps_( const KEY& key1, const KEY& key2, BOOL range ) const; 

BOOL contains_( const KEY& key1, const KEY& key2, BOOL range ) const; 

Status store_data_( const KEY _REC& rec ); 

KEY build_region_( const KEY& key ); 

KEY modify_region_( const KEY& key, BOOL add ); 

private: 

void copy( KEY& k, const KEY& k1, const KEY& k2, REC_NO i ); 

void add( KEY& k, const KEY& k1, const KEY& k2); 

void subtract( KEY& k, const KEY& k1, const KEY& k2); 

BOOL between( char *k, char *low, char *high, 

KEY _LEN k_len, KEY _LEN low_len, KEY _LEN high_len ) const; 
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3.3.1.1.2 Class Implementation 

STRING_KEY::STRING_KEY 

STRING_KEY::STRING_KEY() 

: KEY() 

{;} 

STRING_KEY::STRING_KEY 

STRING_KEY::STRING_KEY(const STRING_KEY& key) 

: KEY( key) 

{;} 

STRING_KEY::STRING_KEY 

STRING_KEY::STRING_KEY(const KEY _REC& rec ) 

: KEY( rec) 

{;} 

STRING_KEY::-STRING_KEY 

STRING_KEY::-STRING_KEY() 

{;} 

STRING_KEY::compare_() const 

int 

STRING_KEY::compare_( const KEY& key) const 

{ 

return strncmp( (char *)key_record(1), (char *)key.key_record(1), 

max( key_length(1 ), key.key_length(1) ); 

}// STRING_KEY::compare() 

STRING_KEY::hash_() const 

int STRING_KEY::hash_() const 

long ret; 

for( int i = 1, dims = dim() ; i <= dims; i++ ){ 
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char *key= (char *)key_record(i); 

tor( j = O; j <= key_length(i); j++ ){ 

ret += keyO]; 

return ( ret /length() ); 

}// STRING_KEY::hash_() 

STRING_KEV::store_data_() 

Status 

STRING_KEY::store_data_( const KEY _REC& rec ) 

rec_= (KEY _REC * )new [ rec.hdr.data_len ]; 

if( !rec_){ 

status_ = noMemory; 

return status_; 

rec_->hdr.dim = rec.hdr.dim; 

rec_->hdr.range = rec.hdr.range; 

rec_->hdr.data_len = rec.hdr.data_len; 

II This is a generalized version. Can copy multiple dimensions of 

II "string" types. 

for( int i = O; i < rec_->hdr.dim ; i++ ){ 

rec_->data.slot[i].key _len = rec.data.slot[i]. key _len; 

rec_->data.slot[i].offset = rec.data.slot[i].offset; 

strncpy( rec_->data + rec_->data.slot[i].offset, 

return status_; 

rec->data + rec->data.slot[i].offset, 

key_length(i+ 1) ); 

}// STRING_KEY::store_data_() 
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STRING_KEY::overlaps_() const 

BOOL STRING_KEY::overlaps_( const KEY& low, const KEY& high, BOOL range ) const 

low.build_region( high ); 

for( int i = 1, j = 1, dims = dim(); i <=dims; i++ ){ 

if( between( (char *)key_record(i), (char *)low.key_record(i) ), 

(char *}low.key_recordO+ 1 ), key_length(i), low.key_length(i), 

low.key_length(i+1) ){ 

return TRUE; 

if( (i % 2) == 0 ) j++; 

}//for loop 

return FALSE; 

}//STRING_KEY::overlaps_() 

STRING_KEY::contains_() const 

BOOL 

STRING_KEY::contains_( const KEY& key1, const KEY& key2, BOOL range ) const 

low.build_region( high ); 

for( inti= 1, j = 1, dims= dim(); i <dims; i++ ){ 

if( between( (char *)key_record(i), (char *}low.key_record(i), 

(char *)low.key_recordO+ 1 ), key_length(i), 

low.key_length(i), low.key_length(i+ 1) ){ 

return TRUE; 

if ( (i % 2) == 0 ) 

j++; 

return FALSE; 

}// STRING_KEY::contains_(); 

STRING_KEY::build_region_() 

KEY 

STRING_KEY::build_region_( const KEY& key) 
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KEYk; 

k.rec_ =(KEY _REC*) new char[ length(); 

offset= length(); 

for( int i = 1, dims = dim(); i <= dims ; i += 2 ){ 

if( strncmp( (char *)key_record(i), key.key_record(i), 

max( key_length(i), key.key_length(i) ) 

<= 0 ){ 

copy( k, *this, key, i ); 

else{ 

copy( k, key, *this, i ); 

}//for loop 

return k; 

}//STRING_KEY::build_region() 

STRING_KEY::modify_region_{} 

KEY 

STRING_KEY::modify_region_( const KEY& key, BOOL add ){ 

int length= max( length(), key.length()); 

k.rec_ = (KEY _REC *)new[ length ]; 

k.rec_->hdr.dim =dim(); 

k.rec_->hdr.range = TRUE; 

k.rec_->hdr.length = length; 

int offset = length - sizeof( KEY _HDR ); 

if (add){ 

add( &k, *this, key); 

else 

subtract( &k, *this, key ); 

return k; 

}//STRING_KEY::modify_region_() 
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STRING_KEY::copy() 

void 

STRING_KEY::copy( KEY& r, const KEY& k1, const KEY& k2, inti) 

int offset= r.length() - sizeof( KEY _HOR); 

r.rec_->slot[i].keylen = k1 .key_length(i); 

offset-= r.key_length(i) ; 

r.rec_->slot[i].offset = offset ; 

strncpy( r.rec_->data. + r.offset(i), k1 .key_record(i), r.key_length(i) ); 

if( key2 ){ 

r. rec_ ->slot[i+ 1]. key I en = k2. key _length(i+ 1); 

offset-= r.key_length(i+ 1) ; 

r. rec_->slot[i+ 1 ].offset = offset ; 

strncpy( r->data. + r.offset(i+1), k2.key_record(i+1), r.key_lenth(i+1) ); 

} 

}//STRING_KEY::copy() 

STRING_KEY::add() 

void 

STRING_KEY::add( KEY& k, const KEY& k1, const KEY& k2 ){ 

for( int i = 1, dims = dim(); i <=dims ; i++ ){ 

II Low dimension 

if ( i % 2 != 0 ){ 

} 

if( strncmp( (char *)k1 .key_record(i), (char *)k2.key_record(i), 

max( k1 .key_length(i), k2.key_length(i) ) <= O ){ 

copy( k, *k1, NULL, i-1 ); 

else { 

copy( k, k2, NULL, i-1 ); 

else{// Inverse is TRUE for higher level ranges. 

if( strncmp( (char *)k1 .key_record(i), (char *)k2.key_record(i), 

50 



else { 

}//For loop 

}// STRING_KEY::add 

STRING_KEY::subtract() 

max( k1 .key_length(i), k2.key_length(i) ) <= O ){ 

copy( k, k2, NULL, i-1 ); 

copy( k, k1, NULL, i-1 ); 

void STRING_KEY::subtract( KEY& k, const KEY& k1, const KEY& k2 ){ 

for( int low= 1, high = 2, dims = dim(); high <= dims; low++, high++ ){ 

} 

/* 

* If the region to be subtracted falls within - adjust the 

* current position. Else leave it as it is. 

*/ 

if( between( k2.key_record(low), k1 .key_record(low), k1 .key_record(high) 

k2.key_length(low), k1 .key_length(low), k2.key_length(low) ){ 

copy( k, k2, NULL, low ) 

else{ copy( k, k1, NULL, low) 

}// STRING_KEY::subtract 

STRING_KEY::between() 

void 

STRING_KEY::between( char *k, char *low, char *high, KEY _LEN k_len, 

KEY _LEN low_len, KEY _LEN high_len ){ 

if( ( strncmp( k, low, min( k_len, low_len)) > 0) && 

( strncmp( k, high, min( k_len, high_len )) < O) ){ 

return TRUE; 
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return FALSE; 

}//STRING_KEY::between(); 

3.3.1.2 STRING_MATCH Implementation 

The last section provided an implementation for class KEY. Here we will provide an 

example implementation tor MATCH class. While there is only one implementation tor a KEY 

class for any single data type, there may be many implementations for a MATCH class. This 

is because, as noted earlier, there may be many retrieval operations possible for a data type 

and each retrieval operator requires an unique MATCH class implementation. 

The following implementation defines an exact match operation. 

3.3.1.2.1 Class Definition 

Class STRING_EXACT_MATCH: public MATCH { 

BOOL match( const KEY& key1, const KEY& key2 ) const; 

}; 

3.3.1.2.2 Class Implementation 

BOOL 

STRING_EXACT _MATCH::match( const KEY& key1, const KEY& key2 ) const 

for( int i = 1, dims = key1 .dim(); i <= dims; i++ ){ 

} 

if( strncmp ( key1 .key_record(i), key2.key_record(i), 

min( key1 .key_length(i), key2.key_length(i) ) 

!= 0 ){ 

return FALSE; 

return TRUE; 

}//::match() 
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3.3.2 Application Design 

Having provided an implementation for KEY and MATCH classes, applications can 

call on the index interfaces with the appropriate "KEY" type. For example, to insert a key of 

"STRING_KEY" type in an existing index an application would typically proceed as follows. 

II Create a key of type STRING_KEY 

STRING_KEY string_key( key_rec ); 

//This is an index interface call. Refer chapter 4 for details. 

insert( open_id, string_key, record, rec_len ); 

3.3.3 Index Interfaces Implementation 

In this section, we will discuss how an access method designer will make use of these 

"KEY" and "MATCH" classes to implement a type-independent index. 

The access method designer will meet all the type-dependent needs using only the 

functionality provided by the base interface classes "KEY" and "MATCH". The 

implementation of these classes( for example, STRING_KEY and STRING_MATCH) are not 

the concern of access method designer. The functionality provided by the KEY class are to 

be used for any index construction, loading, traversal and maintenance algorithms. The 

retrieval operations are to be performed using only the functionality provided by the MATCH 

class. In a retrieval operation, the match operator of the MATCH class will be applied only to 

the data records and not for traversal within the index to reach the data record. 

3.4 Discussion 

In this section, we will discuss how our design supports optimized quay processing 

for user-defined data types, analyze the completeness of the set and try to identify possible 

weaknesses of the design. 
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Consider a query seeking to retrieve all the boxes that overlap the unit square, from a 

multi-dimensional index storing 2-dimensional boxes. If the overlap operator is not directly 

supported by the access method, the query can be processed only by retrieving all the boxes 

and then comparing to see whether a retrieved box overlaps the unit square or not. Note that 

this comparison has to be done outside the index as the index doesn't have direct support for 

the overlap operator. This will typically be the case for all user-defined data types. In our 

design, the retrieval is done using a user-supplied implementation of MATCH class. By 

instantiating the match operator with a suitable implementation class, one could reject all the 

unwanted records within a single index call. That means, an index call will never produce an 

unwanted record, resulting in one hundred percent success rate. This will result in fewer index 

calls. The fewer index calls may result in reduced locking overhead. 

Let us now analyze the completeness of our set. We have arrived at this set of type

dependent operators working with a finite set of access methods. The only reason why we 

have to work with a finite set of access methods, is the existence of access method specific 

type-dependent operators. But, as noted earlier, we have not come across any access 

method, other than the hash method that requires a specific type-dependent operator. Though 

it is not guaranteed, we believe the interfaces will work for other access methods as well, 

other than those listed in appendix A. 

We have been discussing the advantages of our design. In the following, we try to 

identify weaknesses of the design. The obvious disadvantage is the instantian overhead. Any 

retrieval call has to instantiate the MATCH class before a retrieval can be done. But given the 

advantages of type independence and optimized query processing for all data types, this 

overhead must be overlooked. It is also not possible to avoid this overhead in any effort 

towards type-independent access methods, irrespective of any organization one may choose 

to employ. 
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4 UPPER INTERFACES 

We gave a brief introduction to upper interfaces in Chapter 2. In this chapter, we 

identify and specify a complete set of upper interfaces that would work for all the access 

methods specified in Appendix A. We have divided upper interfaces into three groups: DDL 

and DML interfaces, Optimizer Support Interfaces, and finally Log Support Interfaces. DDL 

and DML interfaces consist of the standard set of functions for performing DDL and DML 

operations. These are covered in Section 4.1. Optimizer and Log support interfaces are our 

addition to index functionality. Section 4.2 discusses optimizer support interfaces and Section 

4.3 discusses the log support interfaces. 

The data structures used in the definition of the upper interfaces are defined in 

Appendix B. All these interfaces return a "okay" status on success. In case of errors they 

return the appropriate error code. Appendix B details all the error codes. 

4.1 Data Definition and Data Manipulation Language Interfaces 

DDL and DML interfaces provide a standard set of functions for creating, altering, 

deleting indices and for inserting, updating and deleting records. The set also includes 

functions for bulk loading, lookup, and range retrievals. Most of the interfaces are designed 

as iterators with open, next, and close calls. The following section specifies the interfaces. 

4.1.1 Interface specification 

Create 

Status create 

( TRANSACTION_ID tid, const CREATE_PARAM& create_param, FILE_ID& file_id ); 

Purpose 

Input 

Output 

Create a new index with the specified parameters. 

tid - Transaction identifier. 

create_param - Specifies all create parameters. 

file_id - Permanent file identifier for this index -
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Details 

A handle for this index that can be used for 

open and destroy operations. 

This method creates a new index by creating a new file, using the "create_file" 

interface of the disk manager. Create_param contains the "file_param" for the "create_file" 

interface. The "index_type" field of create_param determines the type of index to be created. 

This method also creates a new index header entry in the index catalog using the 

"write_catalog" interface of the catalog manager. Part of the details for the index header entry 

are given by the "index_param" field of "create_param". 

The "file_id" returned by this method is the same as the "file_id" returned by the 

"create_file" interface. This file identifier will remain valid until the index is destroyed. The file 

identifier serves as the handle for any further operations on this index. 

Destroy 

Status destroy( TRANSACTION_ID tid, FILE_ID file_id ); 

Purpose 

Input 

Output 

Details 

Remove an existing index from the system. 

tid - transaction identifier. 

file_id - Permanent id of the index returned by 

a create call. 

Status code. 

This method deletes an index from the database by deleting the index header entry in 

the index catalog and by freeing all the relevant data blocks. This method makes use of the 

"delete_file" interface of disk manager for freeing the data blocks. 

Open 

Status open 

( TRANSACTION_ID tid, FILE_ID file_id, MODE mode, OPEN_FILE_ID& open_id ); 

Purpose 

Input 

Output 

Open an existing index for reading, writing or both. 

tid - Transaction identifier. 

file_id - Permanent file id returned by a create call. 

mode - Indicates the opening mode for the index. 

No other operations other than those for which the file is 

opened will be allowed. 

open_id - An handle for the open file that is to be 
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Details 

used for subsequent read, write, and close 

operations. 

This method opens the index using the "open_file" interface of disk manager. The 

"open_id" returned is the same as the "open_id" returned by the "open_file" interface. Before 

returning, this method will associate this open_id with the index header entry of this index. 

The "open_id" returned will remain valid till the index is closed with an explicit close 

call. An index can be opened any number of times and each open call will return an unique 

"open_id". 

Close 

Status close( OPEN_FILE_ID open_id ); 

Purpose 

Input 

Output 

Details 

Close an open index. 

open_id - File handle returned by an open call. 

Status code. 

This method calls on the "close_file" interface of disk manager to close the file. The 

"open_id" will be disassociated from this index making it available for other open calls. 

Closing an index that was never opened will not result in error. 

Insert 

Status insert 

( OPEN_FILE_ID open_id, const KEY& key, const RECORD record, REC_LEN rec_len ); 

Purpose 

Input 

Output 

Details 

Insert a single record in an open index, opened 

for writing. 

open_id - Valid file handle returned by an open call. 

key - Key of the record to be inserted. 

record - Pointer to the record to be inserted. 

rec_len - Length of the record to be inserted. 

Status code. 

The new record to be inserted must meet the integrity constraints specified. 

If the index permits duplicate records, insertion of any new record associated with an already 

existing key will always be appended to the end of the records associated with the same key. 

If duplicates are not supported an error will be returned. 
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This method will modify the index header record to reflect the current status of the 

index. 

Delete 

Status delete( OPEN_FILE_ID open_id, canst KEY& key); 

Purpose 

Input 

Output 

Details 

Delete an existing record from an open index, 

using a key value. 

open_id - Valid file handle returned by an open call. 

key - Key of the record to be deleted. 

Status code. 

This method deletes an existing record from the index. The value of "key" will be 

used for finding and deleting the record. If the index contains duplicate records the first record 

matching the "key" will be deleted. The other records associated with the same key will 

remain unaffected. All the records pertaining to a key can be deleted by successive calls 

until the Status returned is "recordDoesNotExist." 

Whether the deleted space is immediately reclaimed or not would vary from 

implementation to implementation. We do not specify any constraints here and it is left to the 

implementation. This method will modify the index header record to reflect the current status 

of the index. 

Status delete( OPEN_FILE_ID open_id, REC_ID rec_id ); 

Purpose 

Input 

Output 

Details 

Delete an existing record using a record identifier. 

open_id - Valid file handle returned by an open call. 

rec_id - Identifier of the record to be deleted. 

Status code. 

Deletes using this method are expected to be faster than the deletes using a "key" 

value as this method doesn't do a search to find a record. Apart from efficiency 

considerations, this method is the only way a "particular" record can be deleted in case of 

duplicate records. This method will modify the index header record to reflect the current 

status of the index. All other constraints listed for the delete method with the "KEY" option 

holds for this delete method as well. 
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Modify 

Status modify 

( OPEN_FILE_ID open_id, const KEY& key, const RECORD new_record, 

REC_LEN new_rec_len ); 

Purpose 

Input 

Output 

Details 

Modify the data portion of an existing record from 

an open index, opened for writing. 

open_id - Valid file handle returned by an open call. 

key - Key of the record to be modified. 

new_record - New data portion of the record. 

new_rec_len - Length of the new record. 

Status code. 

This method modifies the data portion of an existing record. Modifications involving 

changes to the key value can not be done through this method. Key value changes can be 

achieved through a delete followed by an insert call. 

This method uses the value of "key" for finding the record to be modified. In case of 

duplicate records, the first record that matches the key will be modified and the call will 

return. Use the modify method with the "rec_id" option for modifying a specific record. Scan 

can be used to get rec_id details. 

In cases where the modified record length is less than the existing record, the 

reclamation of space is left to the implementation. It is also left to the implementation to deal 

appropriately, if the modified record length is more than the existing record. 

This method will modify the index header record to reflect the current status of the index. 

Status modify 

( OPEN_FILE_ID open_id, REC_ID rec_id, const RECORD new_record, 

REC_LEN new_rec_len ); 

Purpose 

Input 

Output 

Details 

Modify the data portion of an existing record from 

an open index, opened for writing. 

open_id - Valid file handle returned by an open call. 

rec_id - Identifier of the record to be modified. 

new_record - New data portion of the record. 

new_rec_len - Length of the new record. 

Status code. 
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This method is similar to the modify method with the "KEY" option in all respects 

except that this uses a "rec_id" to find the record to be modified. Use of this method is 

recommended, if a specific record is to be modified. Scan can be used to get rec_id details. 

Modification using this method may be faster than modifying using a key value. 

Lookup 

Status lookup 

( OPEN_FILE_ID open_id, const MATCH& match, const KEY& key, RECORD& record, 

REC_LEN& rec_len, REC_ID& rec_id ); 

Purpose 

Input 

Output 

Details 

Retrieve the record associated with the specified 

key from an open index. 

match - Reference to the MATCH library implementing 

the match criteria. 

open_id - Valid file handle returned by an open call. 

key - Key value of the record required. 

record - Pointer to the data portion of the record. 

rec_len - Length of the record retrieved. 

rec_id - Record identifier of the record retrieved. 

This method looks up in the index and returns the record associated with the 

specified key value. The type of association is determined by the specified "MATCH" criteria 

and not by the implementation. 

In case a matching record is found, the output parameters record, rec_len and rec_id 

will be set to reflect the appropriate values. This method doesn't make any assumption about 

the type of the record and it is up to the caller to appropriately interpret it. 

In case of duplicate records, the first record that matches the key will be returned. 

Scan can be used if details of all the records associated with a key are required. 

The "record pointer" returned points to the buffer page containing the record and no 

copying is done. This pointer is guranteed to be valid untill a next call on this file. The next 

call can be any index interface call that uses the same "open_id" used in this lookup call. 

Open_ scan 

Status open_scan 

( TRANSACTION_ID tid, FILE_ID file_id, const MATCH& match, const KEY& interval, 

BOOL forward, OPEN_SCAN_ID& open_scan_id ); 
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Purpose 

Input 

Output 

Details 

Open an existing index for a range search. 

tid - Transaction id. 

file_id - Permanent file id returned by a create call. 

match - Pointer to the MATCH class library specifying 

the criteria for matching. 

interval - Range interval for the scan. This 

represents the region covered between low and 

high scan ends inclusive of low and high values. 

forward - If TRUE records will be returned in the 

increasing order of key value. 

open_scan_id - Handle for further scan operations. 

This method opens an index for doing a range search. The validity of the interval is 

determined by existence of atleast one record falling in the specified range. The 

"open_scan_id" returned can only be used for subsequent scanning operations, such as 

"next_scan" and I or "close_scan". No other operations can be carried out using this 

"open_scan_id". 

The boolean argument "forward" determines whether the scan is to be done in the 

increasing order( from low to high ) or in the decreasing order. This however may not make 

sense for all access methods. For example, in a multi-dimensional index like R-tree the next 

physical record may not be the next logical one in terms of increasing or decreasing order. 

On performance reasons, it would make perfect sense to return the next physical record if it 

falls in the scan region instead of finding and retrieving the next record that logically falls in 

order. The order in which records are returned will only apply to access methods that truly 

support ordering. 

This method makes use of the "open_file" interface of the disk manager to physically 

open the index. The "open_scan_id" returned will pertain to a new entry created by this 

method in the "open_scan_table". This new entry in the "open_scan_table" will associate with 

it, the "open_id", and the index header record pertaining to this index. It is the responsibility of 

this method to fill up the other fields of "open_scan_table" and to do whatever is necessary to 

facilitate a "next_scan" call. A call to the "next_scan" returns the next record that falls within 

the scan range. 

Constraints relating to allowing multiple "open_scans" are left to the implementation. 

The design of "open_scan_table" permits multiple scans to run concurrently on the same 

index. 
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Next_scan 

Status next_scan 

( OPEN_SCAN_ID open_scan_id, RECORD& record, REC_LEN& rec_len, 

REC_ID& rec_id ); 

Purpose 

Input 

Output 

Details 

Retrieve the next record for the current scan. 

open_scan_id - Handle returned by an 

open_scan call. 

record - Pointer to the record retrieved. 

rec_len - Length of the record. 

rec_id - Identifier of the retrieved record. 

This method returns the next record in the current scan. An "endOfFetch" status will 

be returned on reaching end of scan. End of scan is marked by reaching the 

"scan_end_interval" or end of file. 

This method maintains the internal state of the scan across invocations. The state is 

maintained until a "close_scan" is called. The "SCAN_LIST" field of the "open_scan_table" 

serves to maintain the internal state. Maintaining the state of the scan prevents multiple 

traversal of the index, thereby improving the scan efficiency. 

The "record" pointer returned points directly into the buffer page that contains the 

record and no copying is done for performance reasons. This pointer is guranteed to be valid 

until a next call that uses the same "open_scan_id" used in this call. 

Close_scan 

Status close_scan( OPEN_SCAN_ID open_scan_id ); 

Purpose 

Input 

Details 

Close a currently running scan. 

open_scan_id - Id returned by an open_scan call. 

Closing a scan is marked by closing the index, deleting the entry in the 

"open_scan_table", and by releasing the "open_scan_id" and "open_id". The index will be 

closed by calling on the "close_file" interface of the disk manager. 

Any scan initiated by a call to "open_scan" has to be explicitly closed. There is no 

automatic closure of scans. 
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Open_load 

Status open_load 

( TRANSACTION_ID tid, FILE_ID file_id, OPEN_LOAD_ID& open_load_id ); 

Purpose 

Input 

Output 

Details 

Open an index for bulk loading operations. 

tid - Transaction identifier. 

file_id - Permanent file identifier returned by a 

create call. 

open_load_id - Handle for further loading operations. 

This method opens an existing index for bulk loading operations. The "open_load_id" 

returned by this method can only be used for subsequent "next_load" and "close_load" 

operations. No other operations can be carried out using the "open_load_id". 

Similar procedure followed by the "open" method will be followed by this "open_load" 

method for physically opening the index. In other words, this method will make use of the 

"open_file" interface of the disk manager for opening the index. The "open_id" returned by the 

"open_file" interface will be associated with the index header record pertaining to this index. 

The major difference between "open" and "open_load" method is the "open_load_id" returned 

is not the same as "open_id". This method creates a separate entry in the "open_load_table". 

The "open_load_id" returned pertains to this entry and it is associated with the "open_id". 

This extra effort is required for the following reasons. First, it is not possible to open 

an index multiple times simultaneously for loading. Second, no other data manipulations can 

be made possible during a loading operation. In addition to this, each access method may 

also impose some more loading constraints. For example, a B-tree index may not allow 

loading in an existing index. On the other hand, in an access method such as R-tree, loading 

may be carried out using an insert algorithm, in which case loading in an existing index can 

be allowed. 

For the above reasons, we will not specify here the required conditions for a 

successful open_load call. The success of an open_load call will differ from access method to 

access method and will depend on the implementation. Implementations may choose to 

disallow loading depending on the state of the index. 

This method also sets up the other fields of "open_load_table" which are used to 

maintain the internal state of the load. It is important to maintain the internal state of load, as 

loading can be spread over many invocations of "nexUoad". 
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Next_load 

Status next_load 

( OPEN_LOAD_ID open_load_id, const KEY& key, const RECORD record, 

REC_LEN rec_len ); 

Purpose 

Input 

Output 

Details 

Load a single record in the index. 

open_load_id - Load handle returned by an 

open_load call. 

key - Key of the record to be loaded. 

record - Data portion of the record. 

rec_len - Length of the record portion. 

Status code. 

This method loads a single record in an index opened for loading. It is the 

responsibility of this method to maintain the internal state of loading. This will be done by 

updating the appropriate fields of "open_load_table". This method will modify the index 

header record to reflect the current status of the index. 

Close_load 

STATUS close_load( OPEN_LOAD_ID open_load_id ); 

Purpose 

Input 

Output 

Details 

Close loading. 

open_load_id - Handle for loading returned by 

an open_load call. 

Status code. 

Close load closes the index opened for loading with an explicit "open_load_call". As 

in the case of "close" interface, this method will make use of the "close_file" interface of disk 

manager to physically close the index. The "open_load_id" and the "open_id" will be 

disassociated from the index and will be made available for further use. 

4.1.2 Discussion 

The DDL and DML interfaces have been designed to provide ease of operation and 

complete functionality. The interface design works for all access methods. However, it is 

possible that not all access methods support all these interfaces. For example, the original 
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paper on R-tree does not talk about bulk loading on A-trees. In cases like this, each access 

method implementation may either return a "notSupported" status or can indirectly map one 

method to another. As an example, loading can always be implemented using an insert 

method, though it will not be as efficient as in the case of direct algorithmic support for 

loading. 

The decision to maintain separate open tables and provide unique handles for 

loading and scanning is based on the following reasons. Many access methods that have 

direct support for loading may not allow other data manipulation operations in the index 

during loading. Also, loading and scanning have to maintain the current state, as these both 

can be spread over many invocations of next calls. Maintaining the internal state improves 

the efficiency as it reduces the traversal of the index for each call. It becomes easier to 

provide these facilities using unique handles, instead of using the same handle for all data 

manipulation operations. 

4.2 Optimizer Support Interfaces 

In this section, we specify optimizer interfaces. Optimizer interfaces consist of cost 

and selectivity functions that support the optimizer in deciding on the most economical 

access path for evaluating a query. Optimizer interfaces are not one of the standard set of 

interfaces, one provides as part of index functionality. In our desire to provide a complete set 

of index interfaces, we try to identify a set of functions that an index on its own can provide 

to an optimizer. 

4.2.1 Design Considerations 

A basic query block is represented by a SELECT list, a FROM list, and a WHERE 

tree, containing respectively the list of items to be retrieved, the relation(s) referenced, and 
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the Boolean combination of predicates specified by the user. A single SOL statement may 

have many query blocks because a predicate may have one operand, which is itself a query. 

In the conventional query processing model, an optimizer, a separate software 

module that is not part of the index code, determines the most economical access path based 

on the current status of referenced relations. It is obvious that the optimizer has to have 

access to the meta-data of all the referenced relations or all the relations in the database, to 

make such a decision. 

In our case, we are working in the context of a single relation. An index has access to 

its own meta data only and does not have access to another index's meta data. With that 

constraint, we will try to identify some interfaces that will make the job of an optimizer easier. 

Our intention here is to provide the optimizer with all the information, an optimizer may ever 

want from an index. 

In the next section, we specify the optimizer support interfaces. The discussions 

following that sketches a query processing model using these interfaces. 

4.2.2 Interface Specification 

Statistics 

Status statistics( FILE_ID file_id, INDEX_STATS& index_stats ); 

Purpose 

Input 

Output 

Error 

Details 

To get the statistical information about an 

existing index. 

file_id - Permanent id of the existing index 

index_stats - Pointer to the structure containing the index 

statistics. 

Status code. 

This method returns a pointer to an "INDEX_STATS" data structure that contains the 

statistical information about an index. 
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Cost_and_selectivity 

Status cost_and_selectivity 

( FILE_ID file_id, PREDICATE &predicate, REC_NO& selectivity, COST& cost); 

Purpose 

Input 

Output 

Details 

Get the selectivity and cost of accessing this 

index for satisfying the given predicate. 

file_id - Id of the existing index. 

predicate - Pointer to the structure containing the 

predicate details. 

Selectivity and Cost will be set. 

This method returns selectivity and cost details for the given predicate. Selectivity is 

the fraction of records expected to satisfy a given predicate. A predicate is considered to be 

valid if and only if it can be handled within the context of this index. For example, a predicate 

having a reference to a column of another index will be considered to be invalid. 

We have not specified here the unit of cost. There are different ways to model the 

unit of cost. Some systems may find the number of I/O's to be the unit of cost. For some, the 

time spent may also be a factor in determining the unit of cost. We feel it makes more sense 

to leave it to the implementation to incorporate the appropriate cost model as they deem fit. 

4.2.3 Discussion 

The statistics method provides access to some statistical information about an index 

to the caller. The cost and selectivity provide cost and selectivity details for evaluating a 

predicate using this index. In this section, we will try and analyze the changes these 

interfaces bring to the query processing model and the additional benefits they provide. 

Note that whether these methods exist or not, a typical optimizer would in any case 

work out these details for all the relations a query predicate may reference. By making 

"statistics()," "cost_and_selectivity()" part of the index interfaces, we have shifted a portion of 

the job of query optimization from the optimizer to every access method in the system. 

Abstraction and modularity are the foremost benefits of this design. An optimizer could be 

designed and developed without being aware of where the meta data of an index are stored 

or how they are stored. These information could be obtained by simple calls to the index 
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manager. That means the design of the optimizer need not be tied to the storage structure of 

a system. 

The meta data of an index is part of that index and can be accessed only through its 

interfaces. It provides freedom to the access method designer in choosing where to keep this 

information, and what kind of structure to use. A decision on these issues can be made on 

how fast and frequently the information can be kept updated to reflect the most recent state 

of an index. The design and implementation of selectivity and cost methods have become 

access method specific. While we have not analyzed the immediate benefits of these, it looks 

as though more accurate information could be provided to the optimizer than that would be 

possible by following a generic cost model for the entire system. 

Inclusion of optimizer support interfaces as part of index functionality doesn't result in 

major changes to the existing query processing model. The optimizer would start the 

optimization process, evaluating the predicates. If the predicates are of the form "Column(s) 

Comparison-Operator Value(s)," they can be directly passed to the appropriate indices for 

evaluation. For complex predicates involving many boolean combinations and referencing 

columns from many indices, the optimizer has to break down the predicates to simple 

predicates that can be handled by a single index. The predicates that can be handled by a 

single index are limited to the predicates that are of the form "Column(s) Comparison

Operator Value(s)" where the column or columns are all part of the same index. For each 

simple predicate, calls have to be made to the appropriate index for any cost or selectivity 

information. The final cost for the entire predicate has to worked out by the optimizer, using 

the details available for each simple predicate. The same model of processing will hold good 

for complex predicates of any type, including queries involving sub-queries and co-related 

queries. 
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4.3 Log Support Interfaces 

In Section 5.5, we discuss in detail index lower interfaces for Log-Recovery sub

system and issues related to physical logging and logical logging. In the case of logical 

logging, we will argue in Section 5.5 that each access method provides a redo and undo 

procedure for each event, to help the log manager in the recovery phase. In this section, we 

will design interfaces for these two procedures to support the log manager during crash 

recovery. 

Most of the data definition and data manipulation operations result in changes to the 

database. Section 5.5 describes all the events that result in changes to the database. For 

example an insert or a delete call changes the data content of an index. Apart from the 

changes to the data pages, an insert or a delete might also affect the structure of the index ( 

As an example, the internal nodes in a 8-tree index might also get affected ). Note that we 

have taken insert or delete as an example only. Other events may also affect the structure of 

the index. The degree of changes to the storage structure of the index depend on the state of 

the index and on the algorithms that do the insert or delete. In other words, these are access 

method specific. We believe it would be more appropriate to make each access method 

provide interfaces for redoing or undoing an event and let the log manager of the database 

system call on these interfaces, when ever an event is to be re-done or un-done. The next 

section defines these interfaces. 

4.3.1 Interface Specification 

The interfaces we design here pertain only to logical logging. In our opinion physical 

logging can be carried out transparent to the index. For detailed discussions refer to section 

5.5. 

69 



Redo 

Status redo 

( FILE_ID file_id, EVENT _ID event_id, RECORD log_record, REC_LEN log_rec_len ); 

Purpose 

Input 

Output 

Details 

Redo the event. 

file_id - Permanent file identifier. 

event_id - Type of event for which redo is 

required. 

log_record - This is the information provided by the 

index to the log manager, when the event was 

logged. 

log_rec_len - Length of the log record. 

Status code. 

This method idempotently re-does the operation indicated by "event_id". 

The format and content of the "log_record" should remain the same as it was, when that log 

record was created by this index. The implementation of this method is specific to the access 

method. It is also up to the access method to store appropriate information in the log record, 

during the creation of log record, to carry out a successful redo. 

Undo 

Status undo 

( FILE_ID file_id, EVENT _ID event_id, RECORD log_record, REC_LEN log_rec_len ); 

Purpose 

Input 

Output 

Details 

Undo the event and restore the state of the index. 

file_id - Permanent file identifier. 

event_id - Type of event for which redo is 

required. 

log_record - This is the information provided by the 

index to the log manager, when the event was 

logged. 

log_rec_len - Length of the log record. 

Status code. 

This method idempotently un-does the event and restores the index to the previous 

state that existed before the occurrence of the event that is being re-done. The format and 

content of the "log_record" should remain the same as it was, when that log record was 
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created by this index. Implementation of this method is access method specific. It is also up 

to the access method to store appropriate information in the log record, during the creation of 

log record, to carry out a successful undo. 

4.3.2 Discussion 

In the above two interfaces, we have specified two constraints: first, the idempotency 

of the operations and second, the immutability of the log record. The implementation of these 

two functions are left to the access method designer as these interfaces are also access 

method specific as the other upper interfaces. As we will see in section 5.5, it is the 

responsibility of the access method to create appropriate log records for each event. The 

access method designer should take care to store all relevant information necessary to 

perform a redo or undo. As this log record will be interpreted only by the access method that 

created it, it is the choice of the access method designer to have his own structure for the log 

record. 

The design of the log-support interfaces reduces the burden on the log-recovery 

subsystem. During the recovery phase, the log manager has to only call on the redo or undo 

interface of the appropriate index depending on whether a transaction has committed or 

aborted. Since the access methods create their own log records using the lower log manager 

interface, the log manager's responsibility is limited to associating these log records with the 

relevant transaction, and storing and retrieving these log records as and when needed. 

In this chapter, we discussed upper interfaces. The inclusion of support for the 

optimizer and the log-recovery sub-system completes the abstraction of an index in the 

system promoting the concept of an index ADT. 

In the next chapter, we discuss the lower interfaces that lead to development of 

system-independent access methods. 
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5 LOWER INTERFACES 

An index in a database system interacts with many of the software modules in the 

system to accomplish the index file management functions, memory management functions, 

and some database system specific functions such as logging and recovery. All these 

functions are database-system dependent and we call these system-dependent software 

modules, the lower interfaces. In this chapter, we deal with the problem of interfacing the 

index code with the database-system dependent software modules. We try to identify a set of 

software modules an index will depend on, in a database system, and design interfaces for all 

the identified modules. Our success here will depend on identifying the right set of software 

modules that will facilitate development of system-independent index implementations . 

This chapter is organized is as follows. In the next section, we detail the design 

considerations and give a brief road map of how we are going to design generic lower 

interfaces. In the rest of the chapter, we will discuss and specify interfaces for each of these 

software modules in detail. 

5.1 Design Considerations 

The set of lower interfaces an index in a database system interacts with, depend on 

the functionality supported by the database system. The functionalities a database 

management system support vary from system to system. A sophisticated system may 

include support for partitioning, clustering, logical and physical logging, crash-recovery, and 

transaction processing. On the other hand, a less sophisticated system may just support 

buffer management and file management. In some cases, even buffer manager and file 

manager may not exist. In these cases, the index has to directly interact with the operating 

system for all its file management and memory management activities. 
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As our goal is to design generic interfaces that will work for all database systems, we 

will adopt the following strategy. We will first identify a superset of functions a sophisticated 

database system supports. This set will be decided on the basis of functionalities supported 

by various commercial and research database systems. From this set, we will identify the set 

of software modules an index will depend on to implement those system-dependent 

functionalities. Finally, we will design interfaces to interface the index code with the set of 

software modules we identified. 

We will design our interfaces as simple procedure calls that are callable from the 

index code. We will leave it to the access method designer to either incorporate them or not 

to incorporate them based on whether the functionality in question is supported by the 

database system or not. Note that if a functionality is not supported by a database system and 

if it is not incorporated in the index code, then the same index code will not work for another 

database system that supports the functionality. The alternate and correct choice would be to 

implement the index with all the lower interfaces as listed in this chapter and provide stubs for 

unsupported functionalities where ever necessary. This would lead to development of 

portable index code. 

5.1.1 Software Modules An Index Interacts With in a DBMS 

We have arrived at a superset of database functionalities based on the functionalities 

supported by the following commercial and research systems: lnformix, Oracle, Sybase, 

XPRS[Stonebraker 1988], System-R[Astrahan 1976], lngres[Held 1975], 02[Deux 1990], and 

Volcano[Graefe 1993c]. Based on the analysis, we note that most of the systems include 

support for logical & physical logging, concurrent transaction processing, crash recovery, 

different kinds of partitioning, clustering, and buffer management. Including support for 

cataloging, abstract file operations (Section 5.2), and abstract record operations (Section 5.3), 

the software modules an index will depend on in a high end database system are as follows. 
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Disk Manager. 

Record Manager. 

Buffer Manager. 

Log/Recovery Sub-system 

Lock Manager. 

Transaction Manager. 

Catalog Manager. 

In the following sections, we discuss in detail the operations of the above modules. 

5.2 Disk Manager 

Our upper interfaces provided four different DDL operations such as "create(}" for 

creating a file, "destroy()" for deleting a file, "open()" for opening a file and finally "close(}" for 

closing a file. To accomplish these operations, an index has to directly interact with the 

operating system, if no other abstraction is provided by the database management system. If 

the access methods are to be generic and uniform, it is necessary to isolate the index from 

these operating system related details. The disk manager performs this part of the work by 

providing the index with an abstract set of file operations, isolating the index from the 

operating system related details. 

The "create" function of our upper interfaces returned an unique permanent file 

identifier for every new index in the system. As every index will be mapped to a separate 

operating system file at the lower level, we will make it the responsibility of the disk manager 

to set unique permanent identifiers for each new file created in the system. The "open" 

function of the upper interfaces returned an unique open file handle for every open call. This 

open file handle associated the transaction that opened the file with it. As in the case of 

"create," we will make it the responsibility of the disk manager to set up unique identifiers for 

every open file and associate the transaction that opened the file with the open file handle. 
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This means that the disk manager, apart from providing a complete set of file operations, has 

to maintain appropriate data structures to support permanent file identifiers and open file 

identifiers. 

The next section specifies the interfaces provided by the disk manager. 4 

5.2.1 Interface Specification 

Create_file 

Status create_file 

( TRANSACTION_ID tid, const FILE_PARAM & file_param, FILE_ID& file_id ); 

Purpose 

Input 

Output 

Details 

Create a new file with the specified file parameters. 

tid - Id of the transaction creating the file. 

file_param - Specifies system related parameters 

for the file. 

file_id - Unique file handle for the created file. 

This method creates a new file in the database and assigns an unique handle for the 

file, which can be used for further operations on this file. The unique handle returned by this 

method should remain valid until a "destroy" call, and the handle should facilitate "open" and 

"destroy" operations on this file. While it is specified that an unique handle be assigned to the 

file, we do not specify the other associations of this handle. The system may choose to 

incorporate any other associations with this handle as may be demanded by the system's file 

structure. 

Destroy _file 

Status destroy_file( TRANSACTION_ID tid, FILE_ID file_id ); 

Purpose 

Input 

Output 

Details 

Remove an existing file from the system. 

tid - Id of the transaction destroying the file. 

file_id - Permanent id of the file to be destroyed. 

Status Code. 

This method removes a file from the database. Removing a file frees up the disk 

space occupied by the file. The "file_id" will be made available for reuse. 

4 The disk manager interfaces are almost similar to Cascades[Chapter 6] interfaces. 
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Open_file 

Status open_file 

( TRANSACTION_ID tid, FILE_ID file_id, MODE mode, OPEN_FILE_ID& open_id ); 

Purpose 

Input 

Output 

Details 

Open an existing file for reading, writing, or for both. 

tid - Id of the transaction opening the file. 

file_id - Permanent file id returned by a create call. 

mode - Mode in which the file is to be opened. 

open_id - File handle that would permit read 

and write operations on this file. 

This methods opens an existing file for reading, writing, or both. On success, this 

method is expected to return an unique identifier that would remain valid until a "close_file" 

call is made with that identifier. The identifier returned would serve as a handle for all data 

manipulation and lookup operations on this file. The identifier must associate the "file_id" with 

this "open_id". 

This method is also expected to associate the "open_id" with the identifier of the 

transaction that opened the file. The database system may have further associations with this 

"open_id." Note that this method should permit multiple opens for the same transaction. 

Close 

Status close_file( OPEN_FILE_ID open_id ); 

Purpose 

Input 

Output 

Details 

Close an open file. 

open_id - File handle returned by an open call. 

Status code. 

This method closes the file. In case, the file has been opened multiple times, the file 

will not get closed until the closure of all opens. Irrespective of whether the file is closed or 

not, the "open_id" will be disassociated from this file and this will be available for re-use. For 

all practical purposes, the "open_id" will be no longer valid. 

Alloc_page 

Status alloc_page( OPEN_FILE_ID open_id, PAGE_ID& page_id ); 

PURPOSE : Allocate a new disk page and attach it to the 
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Input 

Output 

Details 

specified file. 

open_id - File handle returned by an open call. 

page_id - Logical page id of the new page. 

This method attaches a new disk page to the specified file and returns a logical page 

identifier, which can be used for referring to this new page. This "page_id" must remain valid 

until the page is deallocated. It must also be possible to write to this page or read from this 

page directly using this "page_id". 

Note that we are only specifying here that a new page be added to the file on each 

call. On efficiency reasons it may be necessary to allocate contiguous pages to a file. 

Depending on the type of file system, it is possible that a fixed number of contiguous pages 

may get allocated to each file when the file gets created. When ever this is the case, the disk 

manager must maintain a repository of free pages for each file and allocate from the free list 

a new page to the caller of this method. 

Dealloc_page 

Status de_alloc_page( OPEN_FILE_ID open_id, PAGE_ID page_id ); 

Purpose 

Input 

Output 

Details 

Disassociate and release a disk page from the 

given file. 

open_id - File handle returned by an open call. 

page_id - valid page_id returned by an alloc_page 

call. 

Status code. 

This method disassociates a page from the given file. 

Get_ id 

Status get_id( OPEN_FILE_ID open_id, FILE_ID& file_id, TRANSACTION_ID& tid ); 

Purpose 

Input 

Output 

Details 

Get permanent file id and transaction id 

associated with the specified open_id. 

open_id : Identifier returned by an open call. 

file_id : Permanent file identifier. 

tid : Id of the transaction that opened the file. 
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This method returns the permanent file identifier and the transaction identifier 

associated with the specified open file identifier. Providing this detail isolates the index from 

the open file table structure which is database-system dependent. 

5.2.2 Discussion 

With the inclusion of alloc_page and de_alloc_page interfaces, disk manager 

provides a complete set of interfaces, isolating the index from operating system related 

details. The abstraction provided by the disk manager is a necessary requirement for our 

interface design. The structure details of ''file_param", and the associations of "file_id" and 

"open_id" have not been specified intentionally, as these will vary from system to system. 

5.3 Record Manager 

Record manager is not one of the standard modules found in every database system. 

In order to isolate the page structure details from index, we have designed record manager as 

a layer of abstraction in between the buffer manager and the index. Record manager 

provides a rich set of record level operations, hiding the page structure details from the index. 

Our success here will depend on identifying a complete set of operations that an 

index may need to interpret the page structure. Page oriented index structures such as 8-

tree, A-tree etc., operate at the level of pages by writing or reading records from a specific 

page. These indices would also require page related information such as number of records in 

a page, and free space in a page to determine whether or not to split a page. Any design 

should take these factors into consideration. Another constraint to be addressed here is 1/0 

efficiency. Providing record level operations can not lose out on the 1/0 efficiency possible on 

page level operations. 

The following section specifies the interfaces provided by the record manager. 5 

5 Some of the record manager interfaces are similar to Cascades[Chapter 6] interfaces. 
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5.3.1 Interface Specification 

Read_record 

Status read_record 

( OPEN_FILE_ID open_id, REC_ID rid, RECORD& record, REC_LEN& rec_len ); 

Purpose 

Input 

Output 

Details 

Read a record from an open file. 

open_id - File handle returned by an open call. 

rid - Id of the record to be read. 

record - Pointer to the record read. 

rec_len - Length of the record read. 

This method reads a record from an open file. The input param "rid" specifies the 

identifier of the record to be read. On success, the output parameters "record" will point to 

the beginning of the record and "rec_len" will specify the length of the record. 

In addition to reading a record, this method also fixes the corresponding page in 

memory by increasing the "fix_count" of that page. This page will remain in buffer unless and 

until the page is explicitly unfixed with an "unfix" call. This automatic fixing of page avoids 

redundant copying of the record and improves 1/0 efficiency. 

Append_record 

Status append_record 

( OPEN_FILE_ID open_id, PAGE_ID page_id, const RECORD record, REC_LEN rec_len, 

BOOL compact, REC_ID& rid) 

Purpose 

Input 

Output 

Details 

Append a new record at the end of the specified page. 

open_id - File handle returned by an open call. 

page_id - Id of the page where the record is to be written. 

record - Pointer to the record to be written. 

rec_len - Length of the record to be written. 

compact - set to TRUE if page is to be compacted. 

Identifier of the new record. 

This method appends a new record at the end of the specified page and returns a 

new identifier for the inserted record. The append will fail if there is no enough free space in 

the page. If "compact" is set to FALSE, free space at the end of the page will only be 

considered for appending the record. If "compact" is TRUE and if the new record can not be 
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accommodated within the available free space at the end of the page, the page will be 

compacted and then the append will be tried. 

Compaction will not be done if there is no necessity even if "compact" is TRUE. This 

method calls the "compact" method of record manager for compacting a page. 

Each "append_record" call fixes the page in the buffer by increasing the fix count of 

the page by one. The caller must explicitly unfix the page. This automatic fixing is done to 

ensure the page is readily available, if another write is to be done immediately. 

lnsert_record 

Status insert_record 

( OPEN_FILE_ID open_id, REC_ID rid, const RECORD record, REC_LEN rec_len, 

BOOL compact ) 

Purpose 

Input 

Insert a new record in the specified page at the specified slot. 

open_id - File handle returned by an open call. 

Output 

Details 

rid - Expected id of the record. 

record - Pointer to the record to be written. 

rec_len - Length of the record to be written. 

compact - set to TRUE if page is to be compacted. 

Status code. 

This method inserts a new record in the specified page at the specified slot. If the 

new record gets inserted in between existing records, all the records after the new record will 

get shifted maintaining the same ordering of records. This shifting doesn't mean physical 

shifting of the records. Only the record numbers of the shifted records will go up by one. 

Insert record guarantees that no record will ever get shifted out of the page. 

Insert will fail if there is no free space to accommodate the record. This method by 

default will only look at the free space available at the end of the page for insertion. This 

behavior can be changed by setting the flag "compact" to be TRUE. Look at the 

"append_record" method for compaction semantics. 

Each "write_record" call fixes the page in the buffer by increasing the fix count of the 

page by one. The caller must explicitly unfix the page. 

Write_record 

Status write_record 

( OPEN_FILE_ID open_id, REC_ID rid, const RECORD record, REC_LEN rec_len ); 
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Purpose 

Input 

Output 

Details 

Modify the information content of an existing record. 

open_id - File handle returned by an open call. 

rid - Expected id of the record. 

record - Pointer to the record to be written. 

rec_len - Length of the record to be written. 

Status code. 

This method modifies the information or data content of an existing record. 

If the modified record is smaller than the original record it will result in internal fragmentation. 

No compaction will be done in this case. If the modified record is longer than the existing 

record, records in the page may get shifted. When ever this happens the page will be 

automatically compacted. The write will fail if there is no enough space, even after 

compaction, to accommodate the modified record. In case of failures the record to be 

modified will still contain the old information though the page may have been compacted. 

Each "write_record" call fixes the page in the buffer by increasing the fix count of the 

page by one. The caller must explicitly unfix the page. 

Delete_record 

Status delete_record 

( OPEN_FILE_ID open_id, REC_ID rid, BOOL reclaim_space ); 

Purpose 

Input 

Output 

Details 

Delete a record from an open file, opened for 

writing and reclaim space, if specified. 

open_id - File handle returned by an open call. 

rid - Id of the record to be deleted. 

reclaim_space - Can be set to TRUE or FALSE. 

If TRUE the space occupied by the deleted record 

will be reclaimed immediately. 

Status code. 

This method removes the specified record from the file. By default, this method will 

return after marking the deleted record invalid and adjusting the header information to reflect 

the current status of valid and invalid records. If the "reclaim_space" option is TRUE, in 

addition to the default behavior all the other records following the deleted record will be 

shifted forward removing any internal fragmentation caused by the delete. This method also 
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fixes the page in the buffer to facilitate subsequent operations on the page. The caller must 

explicitly unfix the page. 

Get_page_details 

Status get_page_details 

( OPEN_FILE_ID open_id, PAGE_ID page_id, REC_NO& total_recs, REC_NO& valid_recs, 

REC_LEN& free_bytes ); 

Purpose 

Input 

Output 

Definitions 

Details 

Get page related details. 

open_id - File handle returned by an open call. 

page_id - Id if the page for which details are required. 

total_recs - Reference to the total number of records 

in the page including invalid records. 

valid_recs - Reference to the number of valid records 

in the page. 

free_bytes - Total number of free bytes in the page. 

total_recs - Includes valid records and invalid records. 

valid_recs - Only valid records. 

invalid_records - Records that are deleted but for 

which, space has not yet been reclaimed. 

free_bytes - Means only the contiguous free bytes 

at the end of a page. Doesn't include the space 

occupied by invalid records. 

This method gets certain relevant details about a page. "Free_bytes" indicates only the 

contiguous free bytes. Internal fragmentations are not taken into account. The reason for this 

is because, all the three "write" methods ( append, insert and write ) by default will only look 

for contiguous free bytes at the end of a page, to write a new record or modify a record on the 

page. 

Compact_page 

Status compact_page( OPEN_FILE_ID open_id, PAGE_ID page_id ); 

Purpose 

Input 

Compact a page by reclaiming all the space 

occupied by all invalid records in the page and 

make them contiguous. 

open_id - file handle returned by an open call. 
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Output 

Details 

page_id - Id of the page to be compacted. 

Status code. 

This method compacts a page by removing all the internal fragmentations and 

grouping all valid records together. After a "compact_page" call the total number of records 

and the valid records in the page will be same and the free bytes will truly reflect the total free 

bytes in the page. This method guarantees the ordering of records in the page, though the 

record numbers of the records might possibly get changed. 

Unfix 

Status unfix( OPEN_FILE_ID open_id, PAGE_ID page_id, REC_NO count); 

Purpose 

Input 

Output 

Details 

Unfix a page from buffer. 

open_id - File handle returned by an open call. 

page_id - Id of the page to be unfixed. 

count - Specifies the unfix count. 

Status code. 

This method unfixes the "fix_count" of a page by the specified count. If the 

"fix_count" becomes zero, the page is set free to be flushed to the disk. An error will be 

returned if "count" exceeds the existing "fix_count" on that page. In this case, no unfixing will 

be done. 

5.3.2 Discussion 

The interface set of record manager meets all the 1/0 needs of all access methods. It 

is expected that the access method designer will route all his 1/0 calls using the record 

manager interfaces. Except the unfix interface, all the other interfaces of record manager 

fixes the read page in the buffer by increasing the fix count on that page by one. This 

mechanism is provided for 110 efficiency. The access method designer can make use of it to 

his advantage by completing all possible operations on the page before unfixing the same. 

The "reclaim_space" option in the "delete_record" interface has also been provided for 

efficiency reasons. Reclamation of deleted space is an expensive operation as it may involve 
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moving records within the page. Instead of reclaiming the deleted space immediately after 

every delete, the access method designer may choose to reclaim space, only when it is really 

necessary, improving the overall delete performance. 

Get page details interface is provided for page oriented index structures. The 

information provided by "get_page_details" can be made use of to take a decision on 

compacting a page or splitting a page. Unfix provides a facility to unfix all the fix-counts in a 

single call. 

No specific interface has been provided for updates involving modifications to the key 

value. We expect this updates to be carried out by a delete followed by an insert call. 

5.4 Buffer manager 

The basic idea of buffer management in any system is to increase 1/0 efficiency. 

The basic services of a buffer manager include reading a disk page in to memory, writing a 

buffer page to disk, fixing a page in memory or unfixing a page, and flushing all memory 

pages to disk in some pre-determined ordering. 

In our desire to keep the page structure details isolated from the index, we have 

designed a layer of abstraction between the buffer manager and the index, the record 

manager. As all our 1/0 operations are routed through the record manager, the interaction of 

an index with the buffer manager is rather limited. Of course, the record manager has to 

interact with the buffer manager for all its 1/0 needs. 

In the following section, we just provide one interface to allow the index to set the 

order in which the pages are to be written to disk. This is provided for supporting transactions. 

Database systems that support transactions have to log the changes to the data pages and 

these log pages have to be flushed to the disk prior to the corresponding data pages. The 

"order" interface of buffer manager is designed to serve this purpose. 
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5.4.1 Interface Specification 

Order 

Status order( OPEN_FILE_ID open_id, PAGE_ID first, PAGE_ID second); 

Purpose 

Input 

Output 

Details 

Determine the ordering of buffer pages for disk write. 

open_id - File id returned by an open call. 

first - Id of the page to be written to disk first. 

second - Id of the page to be written to disk second. 

Status code. 

An error will be returned if the specified pages are not in memory or the pages do not 

belong to the specified file. 

5.4.2 Discussion 

The buffer manager interface is provided for the access method designer to force the 

log pages to stable storage before the data pages are written to disk, a necessary 

requirement for write-ahead logging. The buffer manager interface is also to be used for 

maintaining the consistency of the index structures. For example, in case of updates 

involving modifications to the index structure, it is always better to write the data pages first to 

disk before the internal pages are written to disk, since writing bottom up avoids dangling 

pointers. The access method designer can make use of the "order" function to achieve the 

index consistency. Note that this consistency has to be maintained by the access method 

irrespective of whether it is a logging database or a non-logging database. 

5.5 Log-Recovery Sub-System 

In this section, we discuss the interfaces for logging and crash recovery. If the 

database management system or the underlying operating system supports transaction by 

physically logging pages, the access method need not concern itself with transaction 

management and logging. Higher-level software will begin and end transactions, and the 
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access method can freely read and write records using the interfaces provided by the record 

manager. 

6However, most of the systems have a variety of special code to perform logical 

logging of events rather than physical logging of changes of bits. There are at least two 

reasons for this method of logging. First, changes to the schema( e.g. Create an index ) often 

require additional work besides changes to the system catalog( e.g. Creating an OS file ). 

Undoing a create command because a transaction is aborted will require deletion of the newly 

created file. Physical back out cannot accomplish such extra function. Second, some 

database updates are extremely inefficient when physically logged. For example, if a relation 

is modified from a hash to 8-tree, then the entire relation will be written to the log. It may be 

written more than once depending on the implementation of the modify utility. This costly 

extra 1/0 can be avoided by simply logging the command that is being performed. In the 

event that this must be re-done because of a crash, the command can be re-run to make the 

changes anew. For undo recovery, of course, the inverse of the command must be executed. 

In our case, we must have a modify utility to modify the relation from 8-tree to hash. That 

means, such inverse commands or DML statements must be generated automatically as part 

of the regular recovery activity. Event logging, of course, sacrifices performance at recovery 

time for a compression of the log by several orders of magnitude. 

As designers of generic index interfaces, we are not interested in guiding the 

selection of a particular type of logging. On the other hand, we are interested in providing an 

interface that works for any type of logging the system may choose to employ. For systems 

performing physical logging of pages , no separate interfaces with the log/recovery sub

system are necessary. Logging can be done transparent to the index. The record manager 

can log the modified pages without the index being aware of the logging process. For event 

logging however, an index has to interface with the log/recovery sub-system. 

6 The content of the discussion in this paragraph are taken from Stonebraker[1986]. 
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The following section specifies our log interface. 

5.5.1 Interface Specification 

Log 

Status log 

( FILE_ID file_id, TRANSACTION_ID tid, EVENT _ID event_id, const RECORD log_record, 

REC_LEN log_rec_len ) 

Purpose 

Input 

Output 

Details 

Write a new log record to the log. 

file_id - Permanent file identifier. 

tid - Id of the transaction logging the event. 

event_id - Id of the event to be logged. 

log_record - Pointer to the log record to be written to log. 

log_rec_len - Length of the log record. 

Status code. 

This method writes a new log record to the system's log file. The system may add to 

the contents of the log record as demanded by the system's recovery logic. For example, 

systems may choose to chain the log records of a transaction for faster recovery. 

5.5.2 Discussion 

Viewed from a macro level, the index operations or events that result in schema or 

data changes can be summarized as follows. 

Create Index. 

Destroy Index. 

Insert Record. 

Delete Record. 

Modify Record. 

Load Records. 

Each of the above operations will be identified with an unique identifier. As seen in 

Section 4.3, each access method in the system provides a redo and undo method for each of 
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the events noted above. The access method designer will make use of the log interface to 

create appropriate log records. As the information stored in the log record will only be 

interpreted by the access method that created it, each access method in the system can 

decide the content and format of this log record. The event_id identifies the event to be re

done or un-done during recovery. 

The design of the log interfaces and log support interfaces greatly simplify the log 

manager's responsibilities, which is reduced to associating the log records with transactions, 

storing and retrieving the log records, and invoking the appropriate redo or undo interfaces of 

the index during a recovery. The log manager can also choose to store additional information 

as part of the log record to facilitate recovery. For example, the log manager may want to 

chain all the log records that pertain to a single transaction. 

5.6 Lock manager 

In a multi-user environment, concurrent access of processes to an index structure 

must be supported. The problem of concurrent access is that of allowing a maximum number 

of processes to operate on the index, without impairing the correctness of their operations. 

A simple-minded solution for the problem of concurrent access would be to strictly 

serialize all updaters, by requiring each updater to gain exclusive control of the index - e.g., 

by placing an exclusive lock on the whole index, thus, preventing all other updaters and 

readers from altering or reading the index while the specific update takes place. Readers, on 

the other hand, could access the structure concurrently with other readers. Serializing access 

to index structures can create an unacceptable bottleneck for the entire system. Thus, there is 

a need for locking protocols that can assure integrity for each access, while at the same time 

providing a maximum possible degree of concurrency. Another feature required from these 

protocols is that they be deadlock free, since the cost to resolve a deadlock may be high. 
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Locking protocols differ for different access methods. Most access methods require 

more control over concurrency decisions. For example, most B-tree implementations do not 

hold write locks on index pages which are split, until the end of the transaction that performed 

the update. It appears easiest to provide specific lock and unlock calls for different 

granularities and leave it to the access method designer to implement appropriate locking 

protocols as permitted by that access method. The next section specifies the locking 

interfaces. 

5.6.1 Interface Specification 

Lock 

Status lock 

( OPEN_FILE_ID open_id, OBJECT object, OBJECT_ TYPE object_type, 

LOCK_MODE lock_mode ); 

Purpose 

Input 

Output 

Details 

Lock an object in the specified mode. 

Object can be a file, a page, or a record. 

Mode can be any mode, the system permits. 

open_id - File handle returned by an open call. 

object - Id of the object to be locked. 

object_type - Indicates the type of the object. Can 

be a file, a page, or a record. 

lock_mode - Mode of the lock required. 

Status code. 

This method locks an object in the specified mode. The object can be a file, a page or 

a record and it is indicated by "object_type." This method guarantees the following behavior. 

The caller will be put on wait if the request cannot be satisfied. If the caller is currently holding 

a lock on the specified object and if the request cannot be satisfied immediately, the caller 

will continue to hold the current lock and will be put to wait for the requested lock. 
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Unlock 

Status unlock 

( OPEN_FILE_ID open_id, OBJECT object, OBJECT_ TYPE object_type ); 

Purpose 

Input 

Unlock an object. 

open_id - File handle returned by an open call. 

object - Id of the object to be unlocked. 

object_type - Type of the object to be unlocked. 

Output : Status code. 

5.6.2 Discussion 

As discussed earlier, special case concurrency possible on an index depends 

on the access method, and each access method requires more independent control over 

concurrency decisions. We believe that any effort to identify uniform locking protocols that 

can work for all access methods can only have serious limitations on the degree of 

concurrency and will fail to exploit any special-case parallelism possible on many access 

methods. Leaving the locking protocols to the access method designer and providing just 

mechanisms for locking and unlocking allows development and usage of more appropriate 

locking protocols that can provide maximum degree of concurrency without deadlocks for 

each different access method. 

For the same reason, we have not defined the locking modes. Leaving it to the 

implementation supports development and usage of appropriate protocols. 

5. 7 Transaction manager 

One of the hard problem of index interface design is interfacing the index code with 

the transaction management code[Stonebraker 86]. The major issues involved in transaction 

management are concurrency control, logging, crash recovery and interfaces to support 

begin, commit and abort semantics. We have already covered part of the issues of 

transaction management: the concurrency issues and log-recovery issues in the lock 
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manager and log/recovery sub-system sections. In this section, we will address the higher

level components of transaction management: begin, commit, and abort, and analyze 

whether it is necessary for an index to support begin, commit, and abort. 

For systems that use physical page level logging, and executing one of the popular 

concurrency control algorithms for page size granules[Brown 81; Popek 81; Spector 83; 

Stonebraker 85] the index need not concern itself with transaction management. Locking can 

be implemented through the record manager interface, as an open file id uniquely maps to a 

transaction. Higher-level software will begin and end transactions and the access method 

need not be aware of the concept of a transaction. For these systems, the access method 

does not have to log the events and no special case concurrency need be employed using 

our lock manager interface. It is only in the case of event logging and finer granularity 

locking, one need to think whether begin, commit, and abort should become part of the 

access method interface. 

There are two ways to look at this. On one hand, we could treat the index manager as 

a resource manager and make it a participant in a commit or abort decision. In this case, the 

index manager is aware of the concept of transactions and all index operations are performed 

at the level of transactions. That means that on the upper level the index manager should 

provide a begin, commit, and abort interface to the higher level software in the system. On 

the lower level, more interfaces with the buffer manager and log/recovery subsystem will 

become necessary. For example, one may need a FLUSH interface with the buffer manager 

to flush all the data pages pertaining to a transaction to be flushed to disk, when a commit is 

to be performed. The index manager will have to maintain appropriate data structures to keep 

track of active transactions, the data pages associated with each transaction, and the 

operations performed by each transaction. This scenario will be acceptable if a relation's 

primary representation is an index structure as in Tandem's Non-Stop SOL and Sybase's SQL 

Server. But, we could choose to represent some relations as simple files and as well have 
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index representation tor some relations. In this case, making an index manager handle begin, 

commit, and abort will result in duplication of code and effort. This duplication of work may 

also lead to inconsistencies if not properly implemented. 

On the other hand, we believe it is possible to remove the concept of transaction 

from the index interface and provide begin, commit, and abort as modules implemented by 

the higher level softwares in the system. This can be achieved using only our existing lock 

manager, log manager and buffer manager interfaces. In the next few paragraphs we go back 

to these interfaces and explain how adding or removing begin, commit and abort do not add 

or sacrifice any index functionality or performance. 

Our lock manager provided two simple interfaces for locking and unlocking at 

different granularities. These interfaces are provided for taking advantage of any special-case 

concurrency possible in an access method. The protocol to be used tor locking and the 

granularity of locking is dependent on the access method. One cannot possibly have a better 

degree of concurrency or no extra benefit will arise by making begin, commit and abort part 

of the index code. 

With regard to event logging, we have made it the responsibility of the access 

method designer to decide on the nature of events to log, when to create a log record, and 

what type of information to store in a log record to effectively perform a redo or undo. As redo 

and undo are part of the index code, the event logging activities are independent of the 

system. The design of "log" interface of the log manager, the "order" interface of the buffer 

manager, and the "redo" and "undo" of the upper log support interfaces provide this 

independence. Making begin, commit and abort as part of index interfaces cannot possibly 

have any effect on this design. 

Based on the above considerations, we believe adding the transaction code ( begin, 

commit, and abort) will only add to the index overhead, and will not add any functionality or 

performance benefit. It is possible and seems better to make begin, commit and abort as part 
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of the higher level modules and leave it to the higher level modules to begin and end 

transactions, removing the concept of transaction from the index interface. 

5.8 Catalog Manager 

The catalog manager interface is provided for manipulating index catalogs. Here, we 

will model every index as being associated with an unique index header record that contains 

index specific information such as : index identifier, index storage type related information( 

type of index, KEY type ), index access information( the root page id, height of the index ), 

index statistical information( record cardinality, key cardinality ), and index constraint 

information( low and high key limits ). Except the index storage type related information, all 

the other information is directly manipulated by the index. Storage type related information is 

set during index creation and they remain the same as long as the index exists. 

In the next section, we specify an index header record that is required to support our 

interface design, and design catalog interfaces for reading and writing these records. The 

index header record designed here contains only the minimum required information that is 

necessary for our interface design. Based on other needs of the system, the system may 

choose to store more information as part of the index header record. Also, it is not a 

necessary part of the design to have a separate index catalog. The system may choose to 

store all the index header records as part of some other relation catalog and do away with the 

index catalog altogether. 

5.8.1 Index Header Record 

The index header record is specified as a C structure. 

typedef struct INDEX_HDR_RECORD 

FILE_ID file_id; // Permanent index identifier 
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INDEX_PARAM index_param; II Holds create parameters and 

II integrity constraint Details. 

INDEX_ACCESS index_access;/I Holds access information. 

INDEX_STATS index_stats; II Holds statistical information. 

} INDEX_HDR_RECORD; 

INDEX_PARAM, INDEX_ACCESS, and INDEX_STATS are defined in Appendix B. 

5.8.2 Interface Specification 

Read_ catalog 

Status read_catalog( FILE_ID file_id, INDEX_HDR *index_hdr ); 

Purpose 

Input 

Output 

Write_catalog 

Read an index header record from the index catalog. 

file_id - Permanent identifier of the index returned 

by a create call. 

index_hdr - Pointer to the index_hdr record. 

Status write_catalog( FILE_ID file_id, const INDEX_HDR& index_hdr ); 

Purpose 

Input 

Output 

5.8.3 Discussion 

Write an index_header record to the index catalog. 

file_id - Permanent identifier of the index returned 

by a create call. 

index_hdr - Index header record to be written to the 

catalog. 

The "read_catalog" and "write_catalog" methods provide access to the catalog 

information. The index manager and all higher-level software modules can access the catalog 

information only through the above interfaces. 

The design of the catalog manager interface completes our lower interface design. As 

these interfaces have been designed for a superset of database functionalities, we expect 

these interfaces to work for most of the database systems. Where ever a database system 

does not support some or all of the functionalities discussed here, the indices in those 

systems will not have to make calls to the respective software modules. However, as noted, 
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system support is required for the "record manager" and "disk manager" interfaces for our 

interfaces to work correctly. 

The design of the lower interfaces completes our abstract index interface design. In 

the next chapter, we discuss our prototype implementation. 
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6 PROTOTYPE IMPLEMENTATION 

We tested our interface design, implementing two different access methods and 

interfacing these access methods with a research prototype database management system 

called Cascades. The next section gives a brief description of Cascades, and Section 6.2 

details the access methods implementation. 

6.1 Cascades 

Cascades is an extensible and modular database management system that was 

being developed to provide a testbed for database systems education and research at 

Portland State University, Portland, Oregon. The development of Cascades is currently 

suspended and as of this writing only the file system has been implemented. The design and 

implementation of Cascades follows many of the ideas outlined by Volcano[Graefe 1993a], 

an extensible and parallel dataflow query processing system. Cascades's file system is rather 

conventional. It includes modules to manage devices, buffer pools, files, records, B+-tree, 

and R-tree access methods. Support for logging, recovery and transaction has not been 

implemented. The interaction of indices with the lower level modules are limited to record 

manager, buffer manager, and disk manager. As there is no support for concurrent 

transactions and logging, the buffer manager does not support the order interface. The 

interfaces supported by record manager and disk manager are not exactly similar to the 

interfaces designed in this thesis. There are some differences and Section 6.1.1 specifies all 

the index interfaces of Cascades. On the upper level, the B+-tree and R-tree indices currently 

do not interact with any higher-level modules as no query processing routines have been 

implemented yet. 
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6.1.1 Index Interfaces of Cascades 

In this section, we specify the lower interfaces supported by Cascades which includes 

support for file management and record management. The buffer manager interfaces of 

Cascades are not listed here as the index doesn't interface with the buffer manager. We 

begin with the definition of the relevant data structures. 

6.1.1.1 Data Structures 

#define MAX_NO_OF _DEVS (10) II Limit on size of striped files 

typedef int STATUS; 

typedef int BOOLE; 

II Types associated with files 

typedef int FILE_ID; 

typedef int OPEN_FILE_ID; 

II Record id's and related types 

typedef short DEV _NO; 

typedef int PAGE_NO; 

typedef int REC_NO; 

typedef int REC_LEN; 

typedef int FIX_COUNT; 

typedef int EXT _SIZE; 

typedef short CLU_SIZE; 

II Cluster Identifier 

typedef struct CLU_ID 

DEV_NO dev_no; 

CLU_SIZE clu_size; 

PAGE_NO page_no; 

} CLU_ID; 

II Return values 

II Permanent file id 

II Id for open files 

II Id of a device 

II Id of a page within a cluster 

II Id of a record within a page 

II Length of a record 

II Fix count of a page 

II Extent size in clusters 

II Cluster size in pages 
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II Record identifier 

typedef struct REC_ID 

CLU_ID clu_id; 

REC_NO rec_no; 

}REC_ID; 

II File types. 

typedef en um TAG 

EMPTY, BASE, STRIPE, LIST, RECORD 

}TAG; 

II Access status of a file 

typedef enum MODE 

FILE_MODE_WRITE, FILE_MODE_READ 

} MODE; 

II Create Parameters for a base file 

typedef struct BASE_FILE_CR_PARAM 

{ 

EXT_SIZE 

EXT_SIZE 

CLU_SIZE 

DEV_NO 

} BASE_FILE_PARAM; 

prim_ext_size; 

secnd_ext_size; 

cluster _size; 

dev_no; 

II Create parameters for a stripe file 

typedef struct STRIPE_FILE_CR_PARAM 

int no_of_disks; II# of disks in striped file. 

int no_of_clusters; II# of clusters per partition 

DEV_NO stripe_dev_no[ MAX_NO_OF _DEVS ];II dev_no of each disk. 

} STRIPE_FILE_CR_PARAM; 
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II Create parameters for a list file 

typedef struct LIST _FILE_CR_PARAM 

DEV _NO dev_no; II device of component file 

} LIST _FILE_CR_PARAM; 

II Create parameters for a composite file 

typedef struct COMPOSITE_FILE_CR 

{ 

TAG tag; 

union { 

struct BASE_FILE_CR_PARAM *base_info; 

struct STRIPE_FILE_CR_PARAM *stripe_info; 

struct LIST _FILE_CR_PARAM *list_info; 

} create_param; 

COMP _PTA next_component; 

}COMPOSITE_FILE_CR; 

II Create parameters for a file of records. 

typedef struct RF _CREATE 

REC_LEN threshold; 

TAG comp_tag; 

II Minimum free bytes for space reclamation 

II File type 

COMPOSITE_FILE_CR *composite; II Create parameters 

} RF _CREATE; 

6.1.1.2 File Management 

Cascades file manager supports four file operations: create, destroy, open and close. 

These interfaces are almost similar to that supported by our disk manager and they differ only 

in the data structures. The following section specifies the interfaces. 
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Rf_ create 

STATUS rt_create 

(RF _CREATE create_param, DEV_NO dev_no, OPEN_FILE_ID *open_id, 

FILE_ID *closed_id ) 

Purpose 

Input 

Output 

Details 

Create a file of records. 

create_param - Specifies the parameters for the file 

to be created. 

dev _no - device where the file resides. 

The status of the created file is open for writing. The cluster prepared for 

writing is the first in the file. 

Rf_ destroy 

STATUS rf_destroy( FILE_ID closed_id, DEV_NO dev_no ); 

Purpose 

Input 

Output 

Details 

Destroy a file of records. 

closed_id - Permanent file id returned by create 

dev_no - Device identifier 

Status code. 

All related data structures are placed on free lists and for all practical purposes are 

gone. The data can often be restored to valid status if the space originally occupied by the file 

has not been reclaimed. 

Rf_ open 

STATUS rt_ open 

( FILE_ID closed_id, DEV_NO dev_no, MODE mode, OPEN_FILE_ID *open_id ); 

Purpose 

Input 

Output 

Details 

Open a file for a specified mode. 

closed_id - Id returned by a create call. 

dev_no - Id of the device. 

mode - Mode for open. 

open_id - Id of the open file. 

Depending on the mode, a cluster from some position within the file is loaded to the 

buffer and a pointer to this cluster is returned to the caller. 
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Rf_ close 

STATUS rf_close( OPEN_FILE_ID open_id ); 

Purpose 

Input 

Output 

Details 

Close a file. 

open_id - Id returned by an open call. 

Status code. 

It is assumed at the time of this call that all clusters belonging to this file have been 

unfixed in the buffer. Call will fail if this is not true. 

6.1.1.3 Record Management 

The record manager interfaces supported by Cascades are not similar to that 

supported by our design. They differ in the variety and type of interfaces, the data structures 

they use and in the operations they perform. 

Cascades interfaces have the concept of implicit current cluster which is non-existent 

or non-visible to the index in our design. Most of the Cascades interfaces read and write from 

this "current cluster", when no cluster is specified explicitly. When a file is created or opened, 

a cluster is loaded on to memory for that file and that is called the current cluster. For an 

existing file, the last cluster on which an operation was done is called the current cluster. The 

other major difference has to do with forwarding a record to a new cluster. Most of the 

interfaces of Cascades that do an append, insert, or update forward the record to another 

cluster if the specified record can not be accommodated in the current or the specified 

cluster. The other differences have to do with the data structures and the variety of operations 

supported. 

Rf_append 

STATUS rf_append 

( OPEN_FILE_ID open_id, REC_LEN length, BOOLE this_clu, char **addr, REC_ID *rid ); 

Purpose 

Input 

Append a new record to an open file. 

open_id - Id returned by an open call. 
101 



Output 

Details 

length - Length of the record. 

this_clu - set to TRUE if to be appended only in 

the current cluster. 

addr - Address for the new record 

rid - Id of the new record. 

This call, if results in success returns an address for the record to be appended to be 

copied in. If there is no enough free space and if "this_clu" is TRUE the call will fail. If 

"this_clu" is not set to TRUE, this method witl try the append in other clusters. This method 

doesn't reclaim free space. The caller must explicitly unfix the cluster. 

Rf_append_new 

STATUS rf_append_new 

( OPEN_FILE_ID open_id, REC_LEN length, char **addr, REC_ID *rid ); 

Purpose 

Input 

Output 

Details 

open_id - Id returned by an open call. 

length - Length of the record. 

addr - Address for the record. 

rid - Id of the record. 

Appends a record to a brand new cluster. 

Rf_insert 

STATUS rf_insert 

( OPEN_FILE_ID open_id, REC_LEN length, REC_ID hint, BOOLE strict_hint, 

BOOLE this_clu, char **addr, REC_ID *rid ); 

Purpose 

Input 

Output 

Insert a new record. 

open_id - Id returned by an open call. 

length - Length of the record 

hint - Specifies the expected id of the record. 

strict_hint - If TRUE call will fail if "hint" can not be 

accommodated. 

this_clu - set to TRUE if to be inserted in 

this cluster only. 

addr - Address for the new record. 

rid - Id of the inserted record. 
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Details 

This method reclaims space if there is no enough free space to insert the new record. 

If there is not enough free space even after compaction this method will try to reclaim space 

from a cluster on the free list. If there is no enough space on the free list clusters, a new 

cluster will be appended to the file. 

The caller may give a "hint" in the form of cluster id as to where the record should be 

inserted. If "strict_hint" is TRUE call will fail if there is no free space in the specified cluster. 

The boolean "this_clu" restrict the insert to the current cluster. Call will fail if current cluster 

doesn't have a free space. 

Rf_newreclen 

STATUS rf_newreclen 

( OPEN_FILE_ID open_id, REC_LEN length, REC_ID rid, BOOLE saveold, 

BOOLE this_clu, char **addr ); 

Purpose 

Input 

Output 

Details 

Change the length of an existing record. 

open_id - Id returned by an open call. 

length - New length 

rid - Id of the record. 

saveold - If TRUE old data will remain good. 

this_clu - If TRUE try within current cluster. 

addr - Address for the new record. 

If there is no enough free space in the current cluster then the record is forwarded to 

a new cluster unless "this_clu" is TRUE. 

Rf_delete 

STATUS rf_delete 

( OPEN_FILE_ID open_id, REC_ID rec_id, BOOLE reclaim ); 

Purpose 

Input 

immediately. 

Output 

Details 

Delete an existing record. 

open_id - Id returned by an open call. 

rec_id - id of the record to be deleted. 

reclaim - If TRUE deleted space will be reclaimed 

Status code. 
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The deleted space will be on free list if not reclaimed. It is possible to undelete a 

record if the space has not yet been reclaimed. 

Rf_ scan 

STATUS rt_scan 

( OPEN_FILE_ID open_id, BOOLE physical_order, char **addr, REC_ID *rid); 

Purpose 

Input 

Output 

Details 

open_id - Id returned by an open call. 

physical_order - If TRUE forward records are returned. 

addr - Address of the record. 

rid - id of the record. 

Scan a file one record at a time. If the flag "physical_order" is TRUE, forwarded 

records are read only when the actual data is encountered. If not they will be read when the 

forwarder is encountered. 

Rf_unfix 

STATUS rf_unfix( OPEN_FILE_ID open_id, REC_ID rid, REC_NO count); 

Purpose 

Input 

Output 

Details 

Release fix counts on a cluster. 

open_id - Id returned by an open call. 

rid - Specifies the cluster. 

count - Number of times to unfix. 

Status code. 

Releases "count" rights to the cluster specified in rid. 

Slot_info 

STATUS slot_info 

( OPEN_FILE_ID open_id, CLU_ID clu_id, REC_NO *used_slots, REC_NO valid_slots, 

REC_LEN *lowest_offset, REC_LEN bytes_avail ); 

Purpose 

Input 

Output 

Get cluster information. 

open_id - Id returned by an open call. 

clu_id - Id of the cluster for which info is requested. 

used_slots - Total records in the cluster including 

invalid ones. 

valid_slots - Total valid records. 
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Rf_ read 

STATUS rt_read 

lowest_offset - The lowest offset for the next record. 

bytes_avail - Free contiguous bytes available. 

( OPEN_FILE_ID open_id, REC_ID rid, char **addr, REC_LEN *length ); 

Purpose 

Input 

Output 

Details 

Read a record. 

open_id - Id returned by an open call. 

rid - Id of the record to be read. 

addr - Memory address of the record. 

length - Length of the record. 

Get memory address for the specified record. The caller must explicitly unfix the 

page when the address is no longer needed. 

6.2 Access Methods Implementation 

We decided to test our design with three different access methods. Our natural 

choice was to select B+-tree and hash indices as these are the most commonly used access 

methods in many database systems. For the third, we decided on R-trees, a dynamic, multi

dimensional, page-oriented index structure that is increasingly being used in database 

systems. Other than the reasons of popularity, the major deciding factors were, first, the type 

needs of these three different access methods differ from one another and Second, the 

inclusion of a multi-dimensional index structure gives us an opportunity to test different non

conventional data types. The efficiency of the MATCH class could be thoroughly tested as 

one could define many different retrieval operations for a multi-dimensional data type. 

As of this writing, B+-tree and R-tree indices have been fully implemented. The hash 

index has not been implemented. The implementation of B+-tree and R-tree indices support 

the same set of upper interfaces except the optimizer support interfaces and log support 

interfaces. We have not implemented both the optimizer and log support interfaces as 

Cascades do not have support for logging and it does not have an optimizer yet. The type-
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dependent needs are met through the KEY and MATCH class libraries. The lower interfaces 

are different from the interfaces specified in Chapter 4. This is because of the differences in 

Cascades interfaces. As development of Cascades is suspended now, we modified our lower 

interfaces to that supported by the current implementation of Cascades[Section 6.1.1 ]. 

As the underlying system does not include support for transaction, logging and 

recovery, the current implementation of these two access methods do not support 

concurrency, logging, and recovery. These access methods can be modified to include 

support for the above three functionalities with very little effort. This is intact, one of the major 

advantages of our work. All that, one has to do to include support for concurrency, logging 

and recovery is to make calls to the respective interfaces at the appropriate places in the 

existing code. No other change need be made with the existing code. 

6.2.1 B+-tree Implementation 

The B+-tree implementation supports top-down split. Deletion does not shrink the 

tree. This is to support better performance at the cost of space. The leaf pages are chained 

together for fast scanning. A range search in a B+-tree implementation traverses the index 

from root to leaf only once. Subsequent "next_scans" have to only follow the chain for the 

next record. The B+-tree implementation allows duplicates. The code of the B+-tree 

implementation is in both "C" and "C++". Total lines of code is approximately 2500 lines. 

6.2.2 R-tree implementation 

The A-tree implementation uses "liner-cost" algorithm[Guttman 1984] for splitting 

nodes. As A-trees do not have direct algorithmic support for bulk-loading, we have 

implemented loading using the insert algorithms. Scanning in a A-tree is also bit inefficient 

compared to a B+-tree. In a R-tree, it is not possible to chain the leaf pages, as the next 

physical record need not be the next logical record as per index ordering. The "scan_list" data 
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structure helps to bring in some efficiency by storing relevant information to avoid re-traversal 

all the time. However, we couldn't avoid re-traversal altogether, as moving to the next leaf 

page involves referring to the parent-node. The R-tree implementation allows duplicates. The 

code of the R-tree implementation is in both "C" and "C++". Total lines of code is 

approximately 3500 lines. 

6.2.3 Testing 

Both the B+-tree implementation and the R-tree implementation were compiled and 

tested on a "sunos" platform using a "cfront" based "C++" compiler. Our basic testing strategy 

was to create many different B+-tree and R-tree indices each storing different data types, and 

to perform data manipulation and retrieval calls through the upper interfaces. As the query 

processing routines of the underlying system are yet to be implemented, we could only test 

our upper interfaces by making direct index calls through test programs, and not through a 

query language interface. The test program code is in both "C" and "C++". Total lines of code 

is approximately 500 lines. Creating indices with different data types and performing retrieval 

with different operators were done by providing different implementation classes for KEY and 

MATCH class libraries, for each tested data type and retrieval operator respectively. The B+

tree implementation was tested by creating three different indices with int, float, and string 

data types. The R-tree implementation was tested by creating three different indices with 

three different data types. The three data types are, 

1, A "box" data type( a 4 dimensional string type data). 

2, A "line" data type( a 2 dimensional int type data). 

3, A "point" data type( a 1 dimensional float type data ). 

We executed all the tests with both duplicate data and non-duplicate data. The test 

program tested all the upper interfaces supported by both the B+-tree and R-tree 
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implementations. For the 8+-tree implementation selection of records were based on both 

exact-match and range queries for all the three indices. 

The selection criteria for the R-tree implementation differed for different data types. 

For the "box" data type we used "containment", overlapping", "exact-match", "area greater 

than", and "area less than" relationships. Area here indicates the area covered by the box. For 

the line data type we used "containment", "overlapping", "exact-match", "distance greater 

than", and distance less than" relationships. Distance here indicates the distance between the 

two data points of the line. For the "point" data type we used both exact-match and range 

queries. These different selection criterions were imposed through different implementations 

of MATCH class. 

We did not do any performance studies, as our main goal in the prototype 

implementation was to test the applicability of the interfaces. The tests would have been 

more complete if we had interfaced the implemented access methods with different database 

systems. So far, we have not had an opportunity to do so. 
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7 SUMMARY AND CONCLUSIONS 

In this thesis, we have defined type-independent generic index interfaces that would 

work for a large set of access methods and for many database management systems. We 

started our work by identifying how an index fits in a database system. We identified three 

different levels of interfaces that completely characterize an index in a database system. 

These were: upper interfaces, lower interfaces, and type-dependent interfaces. This modular 

perspective of indices in database systems led to the possibility of developing type

independent generic interfaces. 

Under upper interfaces, we first identified a complete set of functions that an index 

can provide to a database management system. Support for the optimizer and the log 

manager completes the set of upper interfaces. Our work in type-dependent interfaces was 

to identify a complete set of type-dependent functions for a finite set of access methods. We 

had to work with a finite set of access methods because of the existence of access method 

specific type-dependent functions. We grouped the identified type-dependent functions into 

two classes, one that depends on the access method and the other that depends on the 

retrieval operators. 

We designed the lower interfaces, first by identifying a set of software modules an 

index has to depend on in a database system to accomplish database system related 

functions, and designed interfaces for interfacing the index code with these modules. We 

have modelled the index interaction with a database system as simple procedure calls 

callable from the index code. This design promotes portability of an access method to any 

database system. 
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7.1 Conclusions 

Our research proves that it is possible to design type-independent abstract index 

interfaces that would work for a major set of access methods and database systems. There 

are two major areas that restrict the development of type-independent and database

independent access methods. They are, the type-dependent needs of an access method and 

the dependency on the database system software to accomplish the database system 

dependent functions. Our research has shown that it is possible to abstract both these issues 

with appropriate interface design. 

Our design of abstract interfaces makes it possible to develop generic access 

methods that can be purchased from a third party vendor like any other ready made software 

component and fit into any database system. 

7.2 Future work 

In this section, we identify areas where there are possibility for improvements. The 

current design of KEY class expects all dimensions to be either of range values or point 

values. It doesn't allow some dimensions to be of range and some to be of point types. This 

restriction can be overcome by modifying the "KEY _REC" structure and changing some of 

the protected virtual functions. It may also be necessary to add few more functions to support 

this combination. 

7.2.1 Single Interface 

Another change we would like to see in the "KEY" class relates to usage of the class. 

We discuss this with examples. 

As per the current design, an application would declare "KEY" objects of two different 

types as follows. Supposing class STRING_KEY relates to a string implementation and class 
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INT _KEY refers to an integer implementation, the objects of both classes would be declared 

as, 

STRING_KEY skey; 

INT _KEY ikey; 

This truly doesn't support the interface-implementation paradigm. We see differences 

of type at the interface level. Instead, it should be possible to declare a "KEY" object as "KEY 

key;" and this "key" instance should behave as a "string key" or "int key" depending on the 

implementation it is associated with. To make this feasible, we need to have a producer, for 

example a "Key Manager" which will produce keys of required types. This products will have 

an implementation associated with them and their behavior will depend on this association. It 

may require more research to identify whether the benefit would worth the effort. 

7.2.1 Templates 

We have provided type abstraction using C++ virtual functions. This may have some 

impact on the run time performance as virtual functions will be bound only at run time. 

Alternatively, it may be possible to provide the same abstraction using "template" classes 

such as the one supported by C++. Since "templates" are compile-time bound they offer an 

extra layer of type safety. The factors that will guide the selection of one or the other would 

be functionality, type safety and run time performance. More research needs to be done to 

arrive at a decision. 

7.2.2 Multi-threading 

An important issue we have not addressed so far is multi-threading. In 

systems that support shared libraries, it is possible that the same implementation of a "KEY" 

class or a "MATCH" class may be shared by multiple threads. If critical sections are not 

guarded against concurrent access, the internal data structures of the implementation may 
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stand corrupted. It is essential that the implementations be coded appropriately for multi

thread safety. 
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APPENDIX A 

Here, we list the access methods taken into consideration for our design. The type 

dependent interface has been designed based on this list of access methods. 

B-tree and all its variants 

Extendible Hashing 

Grid-Files 

Hbtrees 

ISAM 

Kdtrees 

KDB-trees 

Linear Hashing 

Quad-trees 

A-trees 

- Bayer 1972, Comer 1979 

- Fagin et al 1979 

- Nievergelt 1984 

- Lomet 1990 

- Larson 1981 

- Bentley 1975 

- Robinson 1981 

- Litwin 1980 

- Finkel 1974 

- Guttman 1984 
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typedef int TRANSACTION_ID; 

typedef int FILE_ID; 

typedef int OPEN_FILE_ID; 

typedef long REC_LEN; 

typedef int REC_NO; 

typedef short BOOLE; 

typedef int CLU_SIZE; 

typedef int PAGE_NO; 

APPENDIX 8 

Data Structure Definitions 

I* Here, we are modelling cost as number of I/O's performed. 

* It is up to the system to incorporate appropriate cost model. 

*/ 

typedef float COST; 

typedef short DEV _NO; 

typedef void *RECORD; 

II File access. 

typedef enum MODE 

FILE_MODE_READ, FILE_MODE_WRITE 

}MODE; 

II Type of events to log 

typedef enum EVENT 

Create, Destroy, Insert, Delete, Modify, Load 

} EVENT; 

II Type of objects for locking. 

typedef enum OBJECT_ TYPE 
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{ File, Page, Record } OBJECT_ TYPE; 

II Contains predicate information. 

typedef struct PREDICATE 

opr_id; 

column; 

II Id of the operator. 

II Array of column names 

OPERATOR_ID 

RECORD 

REC_LEN 

REC_NO 

RECORD 

REC_NO 

*column_length; //Array of column lengths 

column_count; II Number of columns in the array 

values; II Pointer to the list of values. 

val_ count; II Number of values in the list. 

} PREDICATE; 

/* 

* Page identifier. This is an example. As page structure and file structure are 

* system dependent, system may choose to have its own page identification. 

*I 

typedef struct PAGE_ID 

DEV_NO 

PAGE_ SIZE 

PAGE_NO 

} PAGE_ID; 

dev_no; 

page_size; 

page_no; 

II Record identifier. Would depend on page_id. 

typedef struct REC_ID 

REC_NO 

PAGE_ID 

} REC_ID; 

II Object for locking. 

typedef union OBJECT 

REC_ID 

PAGE_ID 

rec_no; 

page_id; 

rid; 

page_id; 
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FILE_ID 

}OBJECT; 

file_id; 

/* Contains information to perform iterative loading. 

*The design of the structure permits iterative loading in all access 

* methods listed in appendix - A. 

*I 

typedef struct LOAD_LIST 

page_id 

RECORD 

REC_LEN 

struct LOAD_LIST 

} LOAD_LIST; 

/* 

page_id; 

load_information; 

load_rec_len; 

*next; 

II Id of the page being loaded. 

II Any specific load related info. 

II Length of the information. 

II Pointer to the next element. 

* This is an example implementation of open_load_table. 

* It is not necessary to have open_load_table if the load_status information 

* can be directly associated with open_id. 

*I 

typedef struct OPEN_LOAD _TABLE 

OPEN_FILE_IDopen_id; II Load Information 

LOAD_STATUS *root; 

}OPEN_LOAD_ TABLE 

II Contains information about active scan pages 

typedef struct SCAN_LIST 

REC_ID 

struct SCAN_LIST 

} SCAN_LIST; 

rid; II Id of the current scan record. 

*next; II Pointer to the next page in the scan. 

II Example implementation of open scan table. 

typedef struct OPEN_SCAN_ TABLE 
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OPEN_FILE_ID 

MATCH 

KEY 

SCAN_LIST 

}OPEN_SCAN_ TABLE; 

open_id; 

*match; 

II open_file file handler. 

II Pointer to match library 

*scan_interval; II Scan interval. 

*root; II Pointer to scan list. 

lllNDEX_PARAM - Contains user supplied information for creating an index. 

typedef struct INDEX_PARAM 

II User must specify these details during index creation. 

INDEX_ TYPE indexType; 

KEY_ TYPE keyType; 

BOOLE duplicates; 

/* 

* Integrity Constraints.- It is not a must for the user to supply 

* this information during index creation. However, if these are not 

* specified at creation time, index will not enforce key limits. 

*I 

KEY 

BOOLE 

} INDEX_PARAM; 

low_key[], 

high_key[]; 

enforce_limits; 

II Contains statistical information about an index. 

typedef struct INDEX_STATS 

REC_NO 

KEY 

} INDEX_STATS; 

key_cardinality, 

record_cardinality, 

num_data_pages, 

num_index_pages; 

min, 

max; 

II Min key values in each dimension 

II Max key values in each dimension 
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II Holds access information. 

typedef struct INDEX_ACCESS 

PAGE_ID 

int 

} INDEX_ACCESS; 

II Index header record. 

typedef struct INDEX_HDR 

INDEX_PARAM 

INDEX_STATS 

INDEX_ACCESS 

}INDEX_HDR; 

II FILE_PARAM 

root_id; 

height; 

index_param; 

index_stats; 

index_access; 

II This is not specified. The information content of the structure 

II depends on the system and its file structure. The design of this 

II structure would depend on what details the system expects from the 

II user to create a file in the system. 

typedef struct FILE_PARAM 

} FILE_PARAM; 

llCREATE_PARAM-Parameters for creating an index. 

typedef struct CREATE_PARAM 

INDEX_PARAM 

FILE_PARAM 

}CREATE_PARAM; 

II Status : Error Codes 

enum Status { 

okay, 

noOP, 

index_param; 

file_param; 

II Call Succeeded in all respects 

II Not a valid operation 
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argErr, 

dimErr, 

duplicate, 

endOfFetch, 

endOfFile, 

errorCreate, 

internalErr, 

indexDoesNotExist, 

invalidlnterval, 

invalidPredicate, 

noFreeSpace, 

notAllowed, 

notSupported, 

pageDoesNotExist, 

recordDoesNotExist, 

}Status; // Error Codes 

II Wrong type or Unexpected value 

II Dimension out of range 

II Duplicate key. 

II All reqd records fetched 

II No more records in the index 

II Error during creation 

II Some internal error. 

II Wrong file_id or open_id 

II Interval value out of range. 

II Predicate references multiple

// columns or a non-existent 

II column. 

II Page is full. 

II Operation not permitted 

II Feature not supported 

II Invalid page_id 

II Invalid rec_id 

119 



REFERENCES 

Astrahan 1976 : M.M. Astrahan, et al. System R: A relational approach to database 
management.( ACM Tarns. Database Syst. 1, 2 (June 1976) 97-137. 

Batory 1986 : D. S. Batory, GENESIS: A project to Develop an Extensible Database 
Management System, Proc. lnt'I Workshop on Object-Oriented Database Sys., Pacific Grove, 
CA, September 1986, 207. 

Bayer 1972 : R. Bayer and E. McCrieghton, Organization and Maintenance of Large Ordered 
Indices, Acta Informatica 1, 3(1972), 173. 

Baeza-Yates 1989: R. A. Baeza-Yates and P.A. Larson, Performance of B+-Trees with 
Partial Expansions, IEEE Trans. on Knowledge and Data Eng. 1, 2(June 1989), 248. 

Becker 1991 : B. Becker, H. W. Six, and P. Widmayer, Spatial Priority Search: An Access 
Technique for Scaleless Maps, Proc, ACM SIGMOD Cont, Denver, CO, May 1991, 128. 

Beckmann et al. 1990 : N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, The R*
Tree: An Efficient and Robust Access Method for Points and Rectangles, Proc, ACM 
SIGMOD conf, Atlantic City, NJ, May 1990, 322. 

Bentley 1975 : J. L. Bentley, Multi-dimensional Binary Search Trees Used for Associative 
Searching, Comm. of the ACM 18, 9(September 1975), 509. 

Bentley 1977 : J. L. Bentley and D. F. Stanat and E. H. Williams, Jr., The Complexity of 
Fixed-Radius near neighbor searching, Inf. Proc. Lett. 6, 6(December 1977), 209-212. 

Bentley 1979 : J. L. Bentley and J. H. Friedman, Data Structures for Range Searching, 
Computing Surveys 11, 4 (December 1979), 397. 

Carey 1986 : M. J. Carey, D. J. DeWitt, J. E. Richardson and E. J. Shekita, Object and File 
Management in the EXODUS Extensible Database System, Proc. lnt'I Cont. on Very Large 
Data Bases, Kyoto, Japan, August 1986, 91. 

Comer 1979 : D. Comer, The Ubiquitous B-tree, ACM Computing Surveys 11, 2(June 1979), 
121. 

Deux 1990 : 0. Deux et al., The Story of 02, Transactions on knowledge and data 
engineering 2(1 ): 91-108. 

Finkel 1974 : R. A. Finkel and J. L. Bentley, Quad Trees: A Data Structure for Retrieval on 
Composite Keys, Acta Informatica 4, 1 (1974), 1. 

Graefe 1993 : G.Graefe, Options in Physical Database Design, ACM SIGMOD record, 22(3), 
September 1993. 

Graefe 1993a : G. Graefe, Volcano, An Extensible and Parallel Dataflow Query Processing 
System, IEEE Trans. on Knowledge and Data Eng. 5, 6 ( December 1993 ). 

Guenther 1991 : 0. Guenther and J. Bilmes, Tree-Based Access Methods for Spatial 
Databases: Implementation and Performance Evaluation, IEEE Trans. on knowledge and 
Data Eng. 3, 3(September 1991 ), 342. 

120 



Guibas 1978 : L. Guibas and R. Sedgewick, A Dichromatic Framework for Balanced Trees, 
Proc. 19th Symp. on the Found. of Comp. Sci., 1978. 

Gunther 1987 : 0. Gunther and E. Wong, A Dual Space Representation for Geometric Data, 
Proc, Int'! Cont. on Very Large Data Bases, Brighton, England, August 1987, 501. 

Gunther 1989 : 0. Gunther, The Design of the Cell Tree: An Object-Oriented Index Structure 
for Geometric Data, Proc, Int'! Cont. on Data Eng., Kobe, Japan, April 1991, 23. 

Guttman 1982 : A. Guttman and M. Stonebraker, Using a Relational Database Management 
System for Computer Aided Design Data, IEEE Database Engineering 5, 2(June 1982). 

Guttman 1984 : A. Guttman, A-Trees: A Dynamic Index Structure for Spatial Searching, Proc, 
ACM SIGMOD Cont., Boston, MA, June 1984, 47. 

Henrich 1989 : A. Henrich, H. W. Six, and P. Widmayer, The LSD Tree: Spatial Access to 
Multi-Dimensional Point and Non-point Objects, Proc. Int'! Cont. on Very Large Data Bases, 
Amsterdam, The Netherlands, August 1989, 45. 

Held 1975 : G.D. Held, M. Stonebraker, and E. Wong, INGRES - A relational data base 
management system. Proc. AFIPS 1975 NCC, Vol. 44, AFIPS Press, Montvale, N.J., 1975, 
pp.409-416. 

Hinrichs 1983 : K. Hinrichs and J. Nievergelt, The Grid File: a Data Structure Designed to 
Support Proximity Queries on Spatial Objects, Nr. 54, lnstitut fur lnformatik, Eidgenossiche 
technische Hochschule, Zurich, July 1983. 

Hoel 1992 : E. G. Hoel, and H. Samet, A Qualitative Comparison Study of Data Structures for 
Large Linear Segment Databases, Proc. ACM SIGMOD Cont., San Diego, CA, June 1992, 
205. 

Hutflesz 1988a: A. Hutflesz, H. W. Six, and P. Widmayer, Twin Grid Files: Space Optimizing 
Access Schemes, Proc. ACM SIGMOD Cont., Chicago, IL, June 1988, 183. 

Hutflesz 1988b: A. Hutflesz, H. W. Six, and P. Widmayer, The Twin Grid File: A Nearly 
Space Optimal Index Structure, Lecture Notes in Comp. Sci. 303(April 1988), 352, Springer 
Verlag. 

Hutflesz 1990 : A. Hutflesz, H. W. Six, and P. Widmayer, The Rfile: An Efficient Access 
Structure for Proximity Queries, Proc. IEEE Int'! Cont. on Data Eng., Los Angles, CA, 
February 1990, 372. 

Jagadish 1991 : H. V. Jagadish, A Retrieval Technique for Similar Shapes, Proc. ACM 
SIGMOD cont., Denver, CO, May 1991, 208. 

Kemper 1987 : A. Kemper and M. Wallrath, An analysis of Geometric Modelling in 
Database Systems, ACM Computing SuNeys 19, 1 (March 1987), 148. 

Kolovoson 1991 : C. P. Kolovoson and M. Stonebraker, Segment Indexes: Dynamic Indexing 
Techniques for Multi-dimensional lnteNal Data, Proc, ACM SIGMOD Cont. Denver, CO, May 
1991, 138. 
Kriegel 1987: H.P. Kriegel and B. Seeger, Multidimensional Dynamic Hashing is Very 
Efficient for Non-Uniform Record Distributions, Proc. IEEE lnt'I Cont. on Data Eng., Los 
Angles, CA, February 1987, 10. 

121 



Lomet 1990 : D. Lomet and B. Salzberg, The hb-tree: A Multi-attribute Indexing Method 
with Good Guaranteed Performance, ACM Trans. on Database Sys. 15, 4(December 1990), 
625. 

Lomet 1992 : D. Lomet, A Review of Recent Work on Multi-attribute Access Methods, ACM 
SIGMOD Record 21, 3(September 1992), 56. 

Neugebauer 1991 : L. Neugebauer, Optimization and Evaluation of Database Queries 
Including Embedded Interpolation Procedures, Proc. ACM SIGMOD Cont. Denver, CO, May 
1991, 118. 

Robinson 1981 : J. T. Robinson, The K-D-B Tree: A Search Structure for Large Multi
Dimensional Indices, Proc. ACM SIGMOD Cont., Ann Arbor, Ml, April-May 1981, 10. 

Samet 1984 : H. Samet, The Quadtree and Related Hierarchial Data Structures, ACM 
Computing Surveys 16, 2(June 1984), 187. 

Seeger 1991 : B. Seeger and P. A. Larson, Multi-Disk B-trees, Proc. ACM SIGMOD Cont., 
Denver, CO, May 1991, 436. 

Stonebraker 1983 : M. Stonebraker, et. al., Application of Abstract Data Types and Abstract 
Indices to CAD Data, Proc. Engineering Applications Stream of Database Week/83, San 
Jose, Ca., May 1983. 

Stonebraker 1986 : M. Stonebraker, Inclusion of New Types in Relational Database Systems, 
Proc. 1986 IEEE Data Engineering Conference, 262-269. 

Stonebraker 1988 : M. Stonebraker, R. Katz, D. Patterson, and J. Ousterhout, The Design of 
XPRS, Proc. lnt'I Cont. on Very Large Data Bases, Los Angeles, CA, August 1988, 318. 

Stonebraker 1990 : M. Stonebraker, L. A. Rowe, and M. Horohama, The implementation of 
Postgres, IEEE Trans. on Knowledge and Data Eng. 2, 1 (March 1990), 125. 

Srinivasan 1991 : V. Srinivasan and M. J. Carey, Performance of B-tree Concurrency Control 
algorithms, Proc. ACM SIG MOD Cont., Denver, CO, May 1991, 416. 

Yuval 1975 : G. Yuval, Finding Near Neighbors in k-dimensional Space, Inf. Proc. Lett. 3, 
4(March 1975), 113-114. 

Wong 1977 : K. C. Wong and M. Edelberg, Interval Hierarchies and Their Application to 
Predicate Files, ACM Transaction on Database Systems 2, 3(September 1977), 223-232. 

122 


	Abstract Index Interfaces
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1575401132.pdf.BKHFm

