
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

2-15-1996

A PROLOG Lexical Phrase Computer Assisted A PROLOG Lexical Phrase Computer Assisted

Language Learning Module Language Learning Module

Yuji Gene Hirayama
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Bilingual, Multilingual, and Multicultural Education Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Hirayama, Yuji Gene, "A PROLOG Lexical Phrase Computer Assisted Language Learning Module" (1996).
Dissertations and Theses. Paper 5301.
https://doi.org/10.15760/etd.7173

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5301&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/785?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5301&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5301
https://doi.org/10.15760/etd.7173
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Yuji Gene Hirayama for the Master of Arts in TESOL were

presented February 15, 1996, and accepted by the thesis committee and the department.

COMMITTEE APPROVALS:
Beatrice Oshika, Chair

Suwako Watanabe
Representative of the Office of Graduate Studies

DEPARTMENTALAPPROVAL:
Beatrice Oshika, Chair
Department of Applied Linguistics

**

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY

b Olla<' '.AC~ ,,~ ·? /99C

ABSTRACT

An abstract of the thesis of Yuji Gene Hirayama for the Master of Arts in TESOL

presented February, 15, 1996.

Title: A PROLOG Lexical Phrase Computer Assisted Language Leaming Module

This thesis presents the design of a computer assisted language learning (CALL)

program written in the computer language, PROLOG. It will provide a practice exercise

to teach "lexical phrases" to second language learning students of English. Lexical

phrases are lexico-grammatical "chunks" of words, which possess specific pragmatic

functions within spoken discourse (Nattinger and DeCarrico, 1992). These form/function

composites of varying length aid conversational fluency.

The program presents a scenario where the participants are college students who

pass one another in the hallway. After they exchange initial greetings, the first participant

(i.e., the computer) informs the other student that a test, for some unknown class, will be

postponed till "next Tuesday". The second student answers with a smprised remark. The

first student responds that he/she could use the extra time for study, and then says, "good

bye". The dialog ends with when the second participant types in "good-bye".

The study sought to answer the following questions: 1) are lexical phrases

adaptable for use in computer assisted language learning (CALL) programs?; 2) what

problems arise when using lexical phrases on computers?; 3) is the dialog realistic and

does it offer a communicative alternative to traditional drills?

The results are that lexical phrases can be easily implemented in computer

assisted language learning (CALL) programs. Further, CALL programs using lexical

phrases in a communicative language teaching mode provide a framework for realistic

dialogs. It offers more interesting exercises compared to traditional language drills.

The only criteria for the computer-created dialog is its ability to produce realistic

responses. This program produces a realistic dialog, although it is highly invariable. A

major drawback to this study is its inability to implement any parsing capabilities into the

program; thus, there are restrictions on the database representation of any contextual

information.

Nevertheless, as computer software technology advances, the use of lexical

phrases in CALL programs will provide an effective means to aid the communicative

competence of second language learners of English.

A PROLOG LEXICAL PHRASE COMPUTER

ASSISTED LANGUAGE LEARNING MODULE

by

YUJI GENE HIRAYAMA

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF ARTS
m

TESOL

Portland State University
1996

ACKNOWLEDGEMENTS

I would like to express my deep appreciation and gratitude to Dr. Beatrice Oshika

for her guidance and her patience during my long thesis-writing process. I would also like

to thank Dr. Jeanette DeCarrico for her clarifying the principles underlying lexical phrase

theory.

Finally, this thesis is dedicated to the memory of Dr. James R. Nattinger, who

with Dr. Jeanette DeCarrico, wrote "Lexical Phrases and Language Teaching".

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. .iii

LIST OF TABLES ... iv

LIST OF FIGURES .. v

INTRODUCTION ... 1

1.1 Statement of problem .. 1

1.2 Lexical phrases .. 2

1.3 Natural language processing ... 5

1.4 Computer assisted language learning ... 9

1.5 Research questions .. 13

1.6 Limitations ... 13

REVIEW OF LITERATURE ... 15

2.1. Language acquisition studies ... 15

2.2. Neurolinguistics ... 16

2.3. Cognitive psychology ... 17

2.4. Frames .. 19

2.5. NLP frame-based systems .. 23

2.6. Pragmatics and discourse ... 26

METHOD .. 33

3.1. Limitations ... 34

3.2. Conversation structure ... 35

3.3. Exchange structures ... 38

3.4. Finite automaton .. 39

3.5. Moore machine .. 42

3.6. Prolog ... 44

3.7. Lexical phrase CALL program ... 52

3.8. Program details .. 57

DISCUSSION ... 64

BIBLIOGRAPHY .. 69

APPENDICES

A. INSTRUCTIONS ... 76

B. SAMPLE LESSON PLAN ... 78

C. COMPUTER PROGRAMS ... 79

LIST OF TABLES

TABLE PAGE

1. Lexical phrase characteristics .. 5

2. Lexical phrases for conversational maintenance 37

3. Lexical phrases for conversational purpose 37

4. Lexical phrases for discourse devices .. 37

5. State transition table for a Moore machine43

6. Steps in solving for likes(bill, baseball) .. 51

7. Possible openings in single-initiative mode 54

8. Possible responses in mixed-initiative mode 55

LIST OF FIGURES

FIGURE PAGE

1. Problem solving using speech acts ... 27

2. A simple finite automaton40

3. A Moore machine ... 43

4. Definition of the sister relationship in Prolog47

5. Structure of the dialogue ... 53

6. State transition diagram outlining the opening and
main message sections .. 56

7. The main message and closing sections ... 57

8. The structure of the program .. 58

9. Organization of the main control section .. 59

10. Dialog module ... 62

CHAPTER I

INTRODUCTION

1.1. Statement of problem

With the rapid advances in computer technology, language educators are

incorporating and developing software programs to assist students in their classes. There

are two significant problems associated with language software that have resulted in

relatively mixed showings. First, few theories exist to aid students in language

competency. Second, computers cannot yet process spoken discourse at the human

linguistic levels. The software complexity in developing intelligent human-machine

interfaces is significant.

A valid theory of discourse is necessary to aid students in language competency.

A dialogue is a sequence of conversation fragments, in which the participants share

common concepts, ideas and presuppositions. Each fragment is a conversational move

that has a particular function in the discourse (Reichman, 1985). Nattinger and DeCarrico

(Nattinger, 1980; Nattinger and DeCarrico, 1992) posit that humans acquire and facilitate

language functions through the use of lexical phrases. They define lexical phrases as

form/function composites that fall on a continuum between the lexicon and syntax

(Nattinger and DeCarrico, 1992, p. 36). These chunks of words, which are relatively

2

frozen in form, are often "called up" by the speaker to aid in conversational fluency. They

propose that language students learn lexical phrases to increase their communicative

competence as well as performance. This hypothesis has yet to be implemented on a

computer via a computer assisted-language learning (CALL) module.

The objective of the thesis is to create a short, simple, and somewhat realistic

dialog with a human host and a computer by using lexical phrases for language genera

tion. The vehicle to accomplish this task will be a simple computer assisted language

learning (CALL) software module that will teach a lexical phrase to second language

(L2) learners. The program will be a frame-based natural language processing (NLP)

application written in PROLOG, a declarative computer language used in artificial

intelligence (AI) applications.

1.2. Lexical phrases

Language researchers theorize that humans possess the ability to process language

because of three innate factors: the ability to match patterns, the ability to model the

world, and the ability to manipulate the environment to represent meaning (McClelland,

1989). One area of study is the role of language patterns in the generation and the

processing of linguistic input. Language acquisition studies note that first language

gestalt learners tend to reproduce whole segments as single utterances (Dore, 1975;

Peters, 1977). Likewise, second language acquisition (L2) studies note that, at early

3

stages of study, L2 learners use prepatterned, conventionalized forms of language to aid

in communicative competence (Hakuta, 1974; Huang and Hatch, 1975; Yorio, 1980,

Gatbonten and Segalowitz, 1988). Peters (1983) states:

A mature language user may find that certain ex
pressions or variations on expressions are so useful that it
would be convenient, as a device for conserving processing
time and effort, to be able to retrieve them in as
prefabricated a form as possible. Such prefabrications
could be in either of two forms: fused and invariant units,
and well-rehearsed (automatized) patterns that require
minimum of processing (e.g., in the form of insertion of
lexical items into a slot) in order to produce the desired
utterance (p. 100).

Lexical phrases are lexico-grammatical "chunks" of words, which possess specific

pragmatic functions within discourse (Nattinger and DeCarrico, 1992). These

form/function composites of varying length aid conversational fluency by guaranteeing

fast retrieval of phrases. Lexical phrase theory supports a "top-down processing" model

of language. That is, speakers can focus on the larger structure of discourse, rather than

on the individual words of each sentence.

Lexical phrases fall on a continuum between the lexicon and syntax (Nattinger

and DeCarrico, 1992). At one end of the continuum (i.e., the lexicon side) are idioms and

cliches, which are chunks of language that are relatively frozen in form. Idioms have

meanings that can be derived from the phrase as a whole, such as "raining cats and

dogs," "step on the gas," etc. Cliches, however, are larger phrases whose its meaning can

be derived from the individual words, such as "no doubt about it," "give 'em credit,"

4

"have a nice day," etc. Collocations are strings of lexical items that in some semantic and

pragmatic way go together, such as ''false teeth," "curry favor," etc. Collocations fall in

the center of the lexicon/syntax continuum by also including idioms and cliches. At the

end of the continuum (i.e., the syntax side) are lexical phrases. The difference between

idioms/cliches and lexical phrases is that the former phrases perform no particular prag

matic function in discourse, whereas the latter phrases do. Lexical phrases are colloca

tions that have specific discourse and pragmatic functions.

There are four types of lexical phrases: polywords, institutionalized expressions,

phrasal constraints, and sentence builders (Nattinger and DeCarrico, 1992, p. 37).

Polywords are short phrases that are non-variable and function like individual lexical

items, such as canonical forms, ''for the most part," or "in a nutshell." Noncanonical

forms include, "as it were," "by and large."

Institutionalized expressions are proverbs, aphorisms, and formulas for social

interaction that are used for quotation, allusion or direct use. Examples include "how are

you?", "long time no see."

Phrasal constraints are short-to-medium-length phrases that allow variation in

lexical and phrasal categories. Like polywords, they perform a variety of functions, such

as "a ago ("a long time ago"/"a while ago")", or "as far as! __ " ("as far as I

know"/ "as far as I am concerned").

Sentence builders are lexical phrases that provide the framework for whole

sentences. They contain slots or fillers ~hat provide arguments for expressing an entire

5

idea. "I think (that) I will go to the store," "my point is that TIME IS MONEY," "MODAL

+you + VP {for me) (Could you open the door for me?)" Nattinger and DeCarrico (1992)

believe that lexical phrases are part of the natural mechanism that aid in language

generation.

Grammatical Level:
Canonical/
Noncanonical:
Variable/Fixed:

Sentence
build
sentence
canonical

highly variable

Phrasal

word
both

somewhat
variable

Institutionalized
Pol d

sentence word
canonical both

fixed fixed

Table 1. Lexical phrase characteristics (Nattinger & DeCarrico, 1992, p. 45).

1.3. Natural language processing

Natural language processing (NLP) is a hybrid of two academic disciplines:

artificial intelligence (AI) and linguistics (Grishman, R. 1986). AI researchers construct

models for human intelligence and determine knowledge representation schemes

(Obermeier; 1989). Linguists construct models of grammar formalisms.

NLP researchers have a threefold objective in designing their systems. First, they

must adapt general linguistic theories for specific objectives, such as human-machine

interfaces, machine translations systems, etc. Second, they must consider in their designs

6

the degree of processing sophistication as well as the constraints involved in automated

language generation. Third, they must consider other important design factors, such as

system architecture, lexicon structures, and knowledge representations, which affect the

semantic processing of a natural language.

Weizenbaum (1966), a pioneer of artificial intelligence (AI) research, simulated

natural language discourse in his ELIZA program. The program's objective was to

determine the appropriate modality of interaction between a human and a computer.

Another objective was to demonstrate the potential emptiness of a system, which might

appear like it "knows" a language. The discourse model was based upon the responses of

a Rogerian psychotherapist to a patient undergoing a preliminary interview. Weizenbaum

chose this mode of interaction for three reasons: it involved mimicking an actual

psychiatric technique; the style of interaction helps lead the topic of discussion; and this

form of dyadic communication enables one speaker (i.e., ELIZA) to assume the position

of knowing nothing about the real world.

In actual human conversation, the listener will make initial assumptions about

his/her partner prior to the dialogue (Weizenbaum, 1966). As long as the partner's

responses are consistent with the listener's assumptions, the speaker's credibility of

his/her partner remains "undamaged". When the responses become self-contradictory or

incoherent, then the image of the conversational partner crumbles, and a negative image

emerges. In human-machine communication, the partner's conversational "plausibility" is

7

the key factor, not "credibility" as in human-human discourse (Weizenbaum, 1966). The

use of conventionalized language structures in ELIZA gave evidence that prepattemed

forms play a role in human natural language processing.

Technically, there are three main features of the ELIZA program. First, it has

built-in questions, which could be posed in response to certain triggering words. Second,

the program searches for particular keywords that triggers appropriate responses. Third,

ELIZA generates non-committal sentences as responses when information is insufficient

or when there are phrases that cannot be handled by the program. The program generated

dialog as follows (Weizenbaum, 1966, p. 37):

1 H(uman): Men are all alike.
2 E(LIZA): IN WHAT WAY
3 H: They're always bugging us about something or other.
4 E: CAN YOU THINK OF A SPECIFIC EXAMPLE
5 H: Well, my boyfriend made me come here.
6 E: YOUR BOYFRIEND MADE YOU COME HERE
7 H: He says I'm depressed much of the time.
8 E: I AM SORRY TO HEAR YOU ARE DEPRESSED
9 H: It's true. I am unhappy.
10 E: DO YOU THINK COMING HERE WILL HELP YOU NOT TO

BE UNHAPPY.
11 H: I need some help, that much seems certain.
12 E: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME

HELP
13 H: Perhaps I could learn to get along with my mother.
14 E: TELL ME MORE ABOUT YOUR FAMILY ...

The interesting aspect of ELIZA is its use of "lexical phrases". The program uses

templates, called decomposition rules, to decompose the sentence into various parts. The

8

computer only recognizes those words that matched the template. Reassembly rules are

then applied to form a response. For example, the sentence, "it seems that you hate me"

can be decomposed and reassembled as follows (Weizenbaum, 1966, p. 39):

sentence:
decomposition rule:

decomposed sentence:
reassembly rule:
reassembled sentence:

It seems that you hate me.
Xyou Yme
;where X and Y are an indefinite number of words
(I) it seems that (2) you (3) hate (4) me
WHAT MAKES YOU THINK I (3) YOU
WHAT MAKES YOU THINK I HATE YOU

ELIZA applies the decomposition rule to the input sentence and recognizes the keyword

"you" and "me." The words preceding "you" are in group one, and the word following

"you" is in group three. Next, ELIZA applies the reassembly rule to the decomposed sen-

tence. Group three (i.e., in this case, one word) fills the empty slot of the sentence. Thus,

ELIZA uses "sentence builder" lexical phrases for its language generation.

The program possesses two other features that creates realistic responses: trans-

formation rules and lists. First, the program uses transformation rules that change the

case of each pronoun (e.g. from "me" to "you") where necessary. Second, lists hold

keywords and their associated rules. A system of ranking prioritizes the keyword in each

text scan to form its response.

The program has two significant problems. One problem is the key-matching ap-

proach. ELIZA can "mimic" fluent conversation by using the pre-patterned phrases.

However, it cannot extract any semantic information from the responses without parsing

9

the input sentences. The test for understanding is not the ability to continue a conversa-

tion, but to draw conclusions from the content of the discussion (Weizenbaum, 1985).

The second problem is that ELIZA's responses are not coherent in the overall dialog.

After several conversational moves, ELIZA's responses would become repetitive.

Weizenbaum (1985) outlines the difficulty with this program:

ELIZA was a program consisting mainly of general methods for
analyzing sentences and sentence fragments, locating so called key words
in texts, assembling sentences from fragments, and so on. It had, in other
words, no built-in contextual framework or universe of discourse. This
was supplied to it by a 'script'. In a sense ELIZA was an actress who
commanded a set of techniques but who had nothing of her own to way.
The script, in tum, was a set of rules which permitted the actor to
improvise on whatever resources it provided. (p. 120).

1.4. Computer assisted language learning (CALL)

Computer assisted language learning (CALL) involves the use of computers to

teach language skills as either a self-managed system or as an auxiliary role to the

language teacher. The debate centers on what the exact role of the computer should be

within the language classroom, and by what method of language pedagogy the computer

should be used in curriculums.

The four basic models of language learning are: the behaviorist model, the

cognitive-code model, the communicative model, and the humanist model. The

10

audiolingual approach, based on a behaviorist theory of learning, claims that language is

learned through the acquisition of stimulus and response associations. The prime

example of this model is the use of language drills. The teacher presents a sequence of

teaching examples to the student. Through the use of repetitive drills, the student

acquires a language skill or behavior. Errors are deemed detrimental to learning, since

they prevent proper habit-formation. Thus, mechanical practice and the early elimination

of any errors are the most important factors in this method.

The audiolingual model has had a strong influence on CALL programs in the

1980s for two reasons. The first reason is due to the historical connections to the

"language lab". The language lab showed great promise during the 1960s and 1970s, but

ultimately led to its own demise, because of its many limitations in language teaching.

These limitations are that: 1) the student must correct himself or herself; 2) all responses

are prefabricated; thus, there is no actual semblance to communication; 3) the student is

a passive participant, rather than an active one; and 4) the program is inflexible.

The second reason is due to the nature of the computer itself Early computer

technology could only deal with natural language in a highly restricted form. It lends

itself well to exercises, where the language is controlled and the range of possible

responses for the student is limited. The main advantage of the computer over the

language lab is that the computer could give instant feedback and analysis on any

mistakes that are made during the drills.

11

The use of feedback led to the computer implementation of the cognitive code

model of teaching. The cognitive code model is designed to give the student conscious

knowledge of language rules. The student could apply these rules for later use. While the

audiolingual model emphasizes mechanical, repetitive practice, the cognitive code model

emphasizes careful attention to the rules of grammar. Conscious understanding of gram-

matical rules is the most important element in this learning mode.

The communicative model is based on the concept that people learn how to

communicate in a target language through active spoken discourse. The main objective is

to enable the students to experiment and to explore in the target language, so that they

can grasp the forms needed to communicate (Cook, 1987).

The humanistic model is based on the requirement that the process of language

learning will ultimately lead to the individual's own development. It should respond to

the needs of each student in a truly student-centered program. This approach requires

more research in terms of implementation on the computer.

Underwood (1984) outlines some points for a communicative approach to CALL

software. He states that the program should:

1) aim at acquisition, not learned practice; thus no drills.
2) have grammar lessons that are implicitly taught, not explicitly taught.
3) encourage the student to generate original utterances rather than manipulate

prefabricated language.
4) not judge or evaluate everything the student does.
5) avoid telling students that they are wrong, i.e., avoid wrong-try-again

approach.
6) not reward students with congratulatory messages.
7) not be cute.
8) use target language exclusively.
9) be flexible, i.e., multiple responses.

I 0) allow the student to explore subject matter.
11) create an environment in which using the target language feels natural, both

on and off screen.
12) never try to do anything that a book could do as well, i.e., no electronic

page-turners.
13) be fun with no exams or quizzes.

12

The communicative model has more potential for success in CALL applications

than the audiolingual and the cognitive code models, since many educators employ this

method in their classrooms.

Major CALL programs have been developed at major universities, but the

majority of exercises were drills based on the audiolingual model. Universities adopted

the audiolingual method due to the limitations of early software technology and to the

general inability of language teachers to program computers. With technological

advances and the use of artificial intelligence (AI) methodology, communicative CALL

software is producing promising results (Cook, 1988; Weischedel, Voge, and James,

1978; Last, 1989).

The objective of this study is to create a computer program usmg a

communicative CALL model to teach lexical phrases to second language (L2) learners.

13

1.5. Research Questions

1. Are lexical phrases adaptable for use in computer assisted

language learning (CALL) programs?

2. What problems arise when using lexical phrases on computers?

3. Is the dialog realistic and does it offer a communicative alternative

to traditional drills?

1.6. Limitations

The dialogue will be short to curtail problems that occur in NLP interfaces (i.e.,

indirect answers, anaphoric reference over sentence boundaries, sentence fragments,

conversational patterns). The rationale for a constrained context can be summed up by

Ringle and Bruce (1982):

A major obstacle to a free-form, user-initiated dialogue system lies
in the infinite variability of belief-models that users bring to a
conversation. One approach to this problem is to explore a domain in
sufficient depth to allow for a comprehensive description of all probable
goals and beliefs (including erroneous beliefs) that a user might have in a
given situation. By anticipating all of the relevant goal and belief states,
the system is able to accommodate a wide range of user-initiated
utterances (or written inputs). The dimension of user sensitivity is
reduced, in essence, to a parsing problem --that is, the problem of
mapping surface strings to a small, hierarchical goal tree (p.215)

14

Issues on resolving anaphoric reference over sentence boundaries, indirect speech acts,

and fragments are beyond the scope of this study. Solutions could not be addressed due to

the complexity of each problem.

Further, a reliable parser was not available for this project. Parsing enables

programs to extract structural information from a large set of responses. This program

was not able to utilize a parser that could sufficiently parse a sentence.

Despite these limitations, the criteria for the computer-created dialog is its ability

to produce realistic responses. Proper assessment of an NLP system is often vague. It will

be left to others to come up with some standards to evaluate and to properly assess this

NLP system.

CHAPTER II

REVIEW OF LITERATURE

2.1. Language acquisition studies

The role of prepatterned language forms and functions has played a prominent

role in first and second language acquisition. Peters (1977) finds that some first language

acquisition learners, termed gestalt learners, tend to reproduce whole segments as single

utterances, such as "whatsat." These utterances have specific pragmatic functions. Huang

and Hatch (1978) support this finding with the observation of a 5 year-old Taiwanese

boy, Paul, who began muttering, "Get out of here" without knowing what the phrase

meant. Paul uses other "memorized" utterances and uses them repeatedly in similar

situations as well as in extended forms. Dore (1975) posits that, in first language acqui

sition, children move from one-word utterances to two-word utterances with a pause

between words. Children, thus, tend to move from phrasal patterns to extended forms

using pattern variations.

In second language (L2) acquisition studies, Yorio (1980) notes that ESL students

who learn conventionalized forms of language can improve their communicative

competence. He notes that the two major forms are idioms and routine formulas. Their

function is to offer social support in awkward situations. Yorio defines an idiom as an

expression whose meaning cannot be predicted from its constituent syntactic/morphemic

16

structure. Routine formulas are conventionalized prepatterned expressions whose

meaning is tied to standardized communication situations. Both these categories overlap

at various times. For example, there are cases when idiomatic routine formulas include

euphemisms. Yorio notes, "conventionalized forms make communication more orderly

because they are regulatory in nature. They organize reactions and facilitate choices, thus

reducing the complexity of communicative exchanges. They are group identifying"

(1980, p. 438).

Hakuta (1974) theorizes that second language learners (L2) use acquisition

strategies that focus on patterned segments of speech. The L2 learners do not understand

the internal structure of these segments, but do understand the pragmatic contexts in

which these segments are used. Hakuta makes the distinction between prefabricated

patterns that incorporate slots and fillers, and prefabricated complete routines, such as,

"How are you?".

2.2 Neurolinguistics

Krashen and Scarcella (1977) note that the child L2 learner is placed in peer or

school situations that require interaction quickly before complete competence is attained.

The child's advanced short term memory allows him to retain the necessary formulas for

interaction. Krashen and Scarcella (p.285) note that, neurolinguistically, automatic

speech --conventional greetings, overused expressions, certain idioms, swearing, etc. -- is

localized in both hemispheres of the brain, whereas propositional language is lateralized

17

to the left hemisphere. Research has shown that speech routines and patterns are often

preserved in aphasia and hemispherectomy patients. However, contrary to Hakuta, they

note that speech patterns and routines cannot lead to acquisition, since they are distinct

from the creative construction process.

2.3 Cognitive Psychology

Studies in cognitive psychology (Stillings et al., 1987; Broadbent, D. A., 1975)

have found that information "chunking" and prepatterned forms are related to the mind's

information-processing capabilities. Theories state that the mind processes information in

two ways: controlled and automatic.

Controlled-processing is limited by a person's working memory. Working

memory is characterized by its small size, its rapid replacement by newly activated

information, and by its quick dissipation of its activation energy. The load on working

memory may consist of a three or four 'chunks' of information. The classic example is

recalling a new telephone number. By rehearsing and repeating the numbers in chunks,

the number can be recalled. This processing procedure, however, is rigidly sequenced in

a hierarchical manner.

Automatic-processing, on the other hand, makes little demands on working

memory. It is automatically triggered by patterns in currently activated information. They

are often referred to as a data-driven or pattern driven processes. They are evoked by

patterns in the informational data in the mind (Stillings et al., 1987, p. 52). Automatic-

18

processmg offers an advantage in that people can focus on other tasks during its

processing. Similarly, lexical phrases or prepattemed forms can be processed automati-

cally, while other discourse functions can be processed in a controlled-processing

manner.

Peters (1983) remarks that the lexical redundancy leads to automatization by use

of these prepattemed forms. She notes:

A mature language user may find that certain expressions or varia
tions on expressions are so useful that it would be convenient, as a device
for conserving processing time and effort, to be able to retrieve them in as
prefabricated a form as possible. Such prefabrications could be in either of
two forms: fused and invariant units, and well-rehearsed (automatized)
patterns that require minimum of processing (e.g., in the form of insertion
of lexical items into a slot) in order to produce the desired utterance.
(p. 87)

Research on the psychological effect on perceptual restoration has verified the

efficiency of prefabricated language forms. Warren (1970) conducted a phoneme

restoration experiment that took a phoneme [b] from the phrase "jump on the

bandwagon." The phoneme [b] was extracted and replaced by the phoneme [s]. A second

pass extraction of the phoneme [s] completed the task, so that the recording contained

"jump on the AND WAGON." The tape with the target sentence was played for some

listeners. In every instance, the listeners heard the phoneme [b], even though it was

omitted from the recording. It was concluded that the semantic context of an idiomatic

phrase, such as 'jump on the bandwagon" can allow for more efficient processing of any

19

target phonemes. Thus, lexical phrases are structures that can be processed with a high

degree of efficiency.

2.4. Frames

A central issue in AI research is how to structure and to retrieve information

about the world (Chandrasekaran, 1990; Haugeland, 1985; Rosenbaum, Weisler, Baker-

ward, 1987; Partridge & Wilks, 1990; Schank & Childers, 1984). This issue introduces

problematic questions involving philosophical and epistemological concerns.

Early efforts toward knowledge representation research are reflected in the theory

of "frames". Minsky (1975, 1982) proposes that human knowledge representation is in

the form of frames, which consists of "slots" and "fillers" :

We can think of a frame as a network of nodes and relations. The
"top levels" of a frame are fixed, and represent things that are always true
about the supposed situation. The lower levels have many terminals -
"slots" that must be filled by specific instances or data. Each terminal can
specify conditions its assignments must meet. (1975, p. 2)

Each frame is composed of a template-like network of nodes or slots that

represent a stereotypical event or situation. The top level of the network is assigned

values that are normally constant in a given situation. The bottom levels have terminals

or slots that can be filled with exceptions or specific data. This is a powerful and flexible

system, in which knowledge and rules are codified.

20

Frames, thus, are ideal for representing "chunks" of knowledge information that

allow for top-down, expectation-driven processing (Stillings et al., p. 152). The use of

frames utilizes a priori knowledge that provides a predictive component to its problem

analyses (Sharples, Hogg, Hutchinson, Torrance and Young, 1984). For example, repre-

sentation of a telephone number in Oregon begins with the expectation that the area code

starts with "503" (or "541 "). The remaining seven digits in the phone number fill the

empty slots of the frame. Conventionalized, stereotypical information drives one's under-

standing of new events. This information can be applied to new situations, rather than

built from scratch.

Hayes (1979) notes that Minsky's definition has two possible interpretations: a

metaphysical and a heuristic view. The metaphysical interpretation states that, in using

frames, one must make certain assumptions as to what entities exist in the representation

of a symbol. For example, the entities that represent the term "football" are "inflated oval

shaped ball", "brown color", "nicknamed 'pigskin"'. The heuristic interpretation is that

frames are a computational mechanism for organizing the processes of storage, retrieval,

and inference of representations in computer memory.

An example of a heuristic frame (Bobrow et al., 1977) specifying a certain DATE

is as follows:

FRAME
[DATE

SLOT FILLER
MONTH Name
DAY (BOUNDED INTEGER 1 31)
YEAR Integer (DEFAULT 1994)
WEEKDAY (MEMBER (Sunday Monday Tuesday Wednesday

Thursday Friday Saturday)
(TOFILL GETWEEKDA Y))]

21

The frame DATE contains slots (i.e., MONTH, DAY, YEAR, WEEKDAY) that can be

filled by fillers. Fillers comprise standard values (e.g. NAME), bounded values (e.g.

DAY), default values (YEAR), and a list of values (e.g. WEEKDAY has a list called

MEMBER comprising of the days of the week). The fillers can be procedures that require

some type of action should the slot be filled. In the above example, TOFILL is a

procedure that only is activated if the WEEKDAY information is needed. Procedures

also can be automatically activated once the slot is filled with some value. The latter

procedure is called a demon, while the former is called a servant (Bobrow et al; 1977; p.

15).

Minsky (1975; 1981) proposes that the concept of a frame is similar to the

concept of a "schemata" or a "paradigm". However, frames possess four distinctive fea

tures from schema. First, frames contain procedures that can be triggered and executed

automatically or on demand. Second, frames are conceptually related, allowing objects to

be "inherited" from objects higher up in a hierarchical structure. Third, frames are

organized in a clearly modular fashion. Finally, Minsky's proposal proposes a frame

based system, rather than a unit memory structure (i.e., schema).

There are, however, fundamental weaknesses with frames from an AI perspective.

First, frames are rigidly domain-specific and cannot be extended easily to other contexts.

In the previous example, the entities "inflated oval ball", "brown color", "nicknamed

'pigskin'", are valid only for those who interpret "football" as the ball used in the Ameri-

22

can sport. "Football" in England refers to an American "soccer-ball". Second, the philo-

sophical issue is whether it is possible to depict an everyday activity or entity by a set of

primitive values. Many philosophers pointed out that it was impossible to do so (Dreyfus,

1981). As a result, early AI research in symbolic processing suffered from its inability to

extend a particular context knowledge to the everyday world knowledge. Third, its use in

symbolic processing systems could not solve the "common sense knowledge" problem.

Commonsense background knowledge could not be fully encoded with facts or rules,

since it is so difficult to define these parameters. Thus, frames simply could not take

advantage of this background knowledge (Dreyfus and Dreyfus, 1988). Fourth, frames

may not be fully predictable as guaranteed in theory, since a frame could activate differ

ent frames (Brown & Yule, 1983). For example, the words, "base," "strike," "pitcher,"

"ball" are all syntactically unconnected, and could potentially activate four different

frames when only one frame, i.e., baseball, is necessary (Chamiak, 1982).

Despite the early enthusiasm with frame technology (Bobrow and Winograd,

1977; Chamiak, 1978; Hayes, 1979; Riesbeck, 1982, Waltz, 1982), many AI scientists

rejected symbolic processing techniques incorporating frame systems in favor of parallel

connectionist systems, called neural net architectures. AI researchers, therefore, conclude

that the human mind does not operate by manipulating small pre-determined sets of

primitives as exemplified by frame systems.

Frames, however, offer an excellent structural representation for sentence-builder

lexical phrases (Nattinger & DeCarrico, 1992), providing a framework that can be

23

implemented in English lesson plans. Nattinger and DeCarrico note that "students can

begin with a few basic ones (e.g. sentence-builder lexical phrases), together with their

functions, then practice several alternatives based in the same slot-and-filler frames"

(1992, p. 122). The actual use of a frames may, in fact, be useful for studying lexical

phrase generation in human language.

2.5. NLP Frame-based systems

Computational linguistics and NLP systems have resulted in functional systems

that account for prepatterned forms in human language production. These systems

require the lexicon to account for any semantic or pragmatic interpretations for any group

of lexical items. Thus, lexicons will tend to include phrasal patterns, such as idioms or

collocations, in addition to feature sets of individual lexical entries.

Bobrow et al. (1977) designed a frame-based dialog system (GUS, Genial

Understander System), that assumes the role of a travel agent. GUS's objective was to

generate realistic --versus real-- dialog within a human-machine interface.

Bobrow (1977) notes several problems that NLP system designers must address in

their projects. First, in natural dialog, each participant occasionally assumes topic

initiative during the course of a conversation. NLP researchers must determine if the

human or the machine or both have control of the topic initiative. GUS assumed control

throughout the dialogue. Second, indirect speech acts must be taken into account in any

dialog system. Speech acts look at utterances as performative acts (Austin, 1962). In

24

direct speech acts, the primary act is closely tied to the literal meaning of the utterance.

In indirect speech acts, one illocutionary act is performed indirectly by way of

performing another speech act. For example, "Can you reach the salt?" has the indirect

speech act meaning of "can you pass me the salt?" GUS possessed limited inferential

power to interpret indirect answers to direct questions, but was sufficient for the project

(Bobrow et al., 1977, p. 157). Third, the issue of anaphoric reference over sentence

boundaries is a central topic of research in NLP studies, and again arises in any dialog

system. GUS was able to handle this problem in a simple manner by using frames, but it

still could not handle pronominal reference (Bobrow et al., 1975, p. 171). Fourth, sen

tence fragments often occur in natural conversation, and a NLP system must be able to

process these structures. GUS assumed that fragments could function as fillers in a frame,

so that the reasoning component of the system was able to continue making the proper

inferences. Fifth, Bobrow notes that conversations conform to patterns that are used in

special circumstances. Thus, GUS used the specialized language of ticket agents

(Bobrow et al., 1977, p. 158).

Bobrow (1977) uses frames to direct the course of a conversation for a flight

scheduler. GUS assumes that the conversation will adhere to typical discourse structure

for making trip arrangements. The system first creates an "instance" (i.e., a working

frame) of the dialog frame and proceeds to fill the slots based on specifications in the

prototype. When the slots are filled by a different instance of another frame, called a

subframe, then the slots of this subframe are filled. Bobrow notes that control moves in a

25

depth-first, recursive process that completes work on a slot before continuing on to

another slot. From the previous example from Bobrow (1977, p. 15):

FRAME SLOT FILLER
[DATE MONTH Name

DAY (BOUNDED INTEGER 1 31)
YEAR Integer (DEFAULT 1994)]

An instance of the prototype is:
[ISA DATE MONTH May

DAY 28]

ISA indicates that it is an instance of the frame, whose name follows (i.e.,

DA TE). It is not always necessary to have the slots filled, but only relevant information is

necessary for its particular processing step. When a slot is filled by a new instance of a

frame, the slots of that instance are filled in the same way. This procedure operates in a

depth-first, recursive manner. The slots may occasionally be filled out of sequence either

through information given by the human or by procedures attached to previous slots

(Bobrow ,1977, p. 166).

26

2.6. Pragmatics and Discourse

Pragmatics is defined as the linguistic dimension of social interaction (Mey,

1993). Other definitions are "the sustained production of chains of mutually-dependent

acts, constructed by two or more agents each monitoring and building on the actions of

the other" (Levinson, 1983), and pragmatics as "the study of how utterances have

meanings in situations" across sentence boundaries (Leech, 1983).

Historically, linguistic researchers assigned pragmatics as a general "waste

basket" for contextual anomalies in their work (Mey, 1983). The Chomskian revolution

in syntax gave little importance to pragmatic studies. The modeling of grammatical

competence, the native speaker's knowledge of the language, was the focus of syntactic

study. The study of the use of language --pragmatics-- was relegated to a secondary

position in linguistics.

Austin (1962) noted the limitations of world-view truth conditional propositions

of semantic theory, which claim that declarative sentences are true or false, if they

contain a proposition about the world. However, some utterances, such as, "good luck,"

cannot possess a true or false condition, since they are not propositions. Austin stated

they are 'words that do things' or perform a certain act (or speech acts). Mey (1993)

notes that speech acts induce a change in the existing world.

Speech acts have different aspects or "forces" according to Austin. Levinson

(1983) notes that locutionary force is an utterance with determinate sense and reference.

The perlocutionary force deals with affecting change on the audience by means of

27

uttering a sentence. Illocutionary force occurs by "virtue of the conventional force

associated with the utterance, such as naming a statement, offer or promise" (Levinson,

1983; p. 236).

Searle (1975) noted that some utterances have a primary illocutionary act, but its

secondary meaning (i.e., illocutionary act) is not literal. For example, smokers are

familiar with the utterance, "do you have a light?" The uttered question is not asking

specifically if the listener has a match, but is requesting a match from the listener. In this

sense, the literal meaning is not accepted, but the secondary meaning is understood. The

force behind such utterances are called indirect speech acts.

Leech (1983) proposes that pragmatics, including speech acts, involve problem-

solving from both the speaker's and listener's perspective. In the case of speech acts, the

speaker must produce an utterance that can affect change in the listener. The listener

must interpret the speaker's intention.

G

I I I :1 2 I
a

1 = initial state
2 = final state
G = goal of attaining state 2
a = action by means of a speech act

Figure 1. problem solving using speech acts (Leech, 1983, p.36)

28

Pragmatics offers some principles that describe any discourse process. They are:

the cooperative principle, four maxims that make up this principle, and implicature that

can result from these maxims. Grice(1975) proposed maxims that guide cooperative

conversational behavior: the maxims of quality, quantity, relation and manner. The

maxim of quality requires that one try to make a truthful contribution. One should not say

what one believes to be false unless adequate evidence is provided by the speaker. The

maxim of quantity requires that your contribution be as informative as possible without

being excessively detailed. The maxim of relation requires that a contribution should be

relevant when presented in the conversation. The maxim of manner requires that expres

sions be clear; not obscure or ambiguous. These four maxims, which make up the

cooperation principle, have been widely accepted as a model for human-machine dialogs

(Gal et al., 1992).

Sperber and Wilson (1986) offer an alternative to Grice's Cooperative principle,

which they called the Relevance principle. This principle states that in any given context,

what people say has some relevance. The goal of conversation is to achieve successful

communication. Here the speaker is recognized as one who has something of relevance

to the topical framework of the conversation.

The utterance conveys the speaker's intention. Mey (1993) notes that Grice's

cooperative principle makes claims about "common purposes or set of purposes." Thus,

relevance theory states that the purpose of communication is to "enlarge mutual cognitive

environments" (Sperber & Wilson, 1986; p. 193) and not to "duplicate thoughts."

29

Grice (1975) notes that when one of the maxims of the cooperative principle is

violated, the utterance acquires a new meaning that can be inferred from the context

Such an utterance is called a conversational implicature. Some utterances are

conventionalized expressions of requests, invitations, and offers. These have implicit

meaning, and are called conventional implicatures or conventionalized indirect speech

acts (Searle, 1975).

Ethnomethodologists, a subgroup of anthropology, studied conversation and

found that it was highly structured and coherent. They devised a transcription method

that accounted for linguistic as well as non-linguistic phenomena, such as laughter (Mey,

1993). Their aim was to determine what "rules" or principles were followed in a

conversation through a process called conversation analysis (CA). This contrasted with

discourse analysis (DA), which Mey (1983; p. 194) associates with traditional field

linguistic methods. Mey notes that discourse analysis operates deductively and is "rule or

grammar" driven, whereas, conversation analysis uses inductive methods and is "data-

driven."

In CA, the basic unit of conversation is the "tum". Sacks (1975) defines a tum as

a shift in the speaking flow of a normal conversation. Mey (1983) notes, "yielding the

right to speak, or the 'floor', as it is often called, to the next speaker thus constitutes a

tum" (p. 217). Schegloff (1992) posits that a tum is constructed out of building blocks

called "tum constructional units". These units are made up of words, phrases, and

sentences that, upon possible completion, can be treated as the end of a tum.

30

Tums occur at points in a conversation that are called "transition relevance

places"(TRP) (Sacks; 1974). Examples of TRPs are pauses for breath, silence, and

ending one's contribution. The speaker can also bypass the TRP by moving ahead with

an utterance; creating an unnatural break --in midsentence-- and thus indicate the desire

to move ahead.

The hearer can support the conversation by "back-channeling." This involves

usmg short utterances for agreement to indicate that the hearer is involved in the

conversation. Forms of back-channeling include short phrases, such as, "/see," "right,"

"uh-huh," etc.). Languages, such as Japanese "aizuchi", use extensive back-channeling in

their conversations.

Searle (1992) regards the concept Schegloff's "turns" as lacking the explanatory

power to address the key issues in spoken discourse.

"Schegloff and I agree that units of speech in conversation come in
chunks. I think these chunks have to be defined intentionalistically, but the
boundaries of the chunks are not necessarily the boundaries of single
speech acts ... these chunks are what he is calling "tum construction units,'
and the boundaries of the chunks, he calls "transition relevant places.' .. But
what we now need to know is what is the explanatory status of the
description of the patterns? If the description of a pattern specifies the
intentional content of a rule that the agent is following then the
description has some explanatory force. But if the description just
identifies some regularity in behavior then so far no explanation has been
given." (p.146).

Studies have found that there exists speech/language mechanisms that aid in

discourse comprehension. Reichman (1985) defines one of these mechanisms as "dis-

31

course expectations," which speakers use to make predictions of future discourse, based

on surface linguistic forms. Reichman notes that certain surface linguistic forms, called

clue words, act as discourse expectations. They signal simultaneously that a discourse

item is in focus and that a conversational move (or "turn") has taken place (Reichman,

p.30). Conversation failure arises when clue words are not interpreted correctly as a

result of differing belief systems of the speaker and the listener (Ringle and Bruce, 1982).

Shared background knowledge aids speakers in their mutual understanding.

Reichman's clue words are utterances that "pre-sequence" to other utterances.

Mey (1993) notes that these presequences offer an initial exchange, after which the main

purpose of the dialog is expressed. For example, common presequences in shopping are

(Mey; p. 222):

Excuse me.
I wonder if you have any X. ..
Do you by any chance have X. ..
Does your store carry X. ..

where X is the item in question.

Pre-sequences offer a method to structure conversations. It is predictable in that

the adjoining response can be quickly ascertained. It signals what the utterance means

and what the utterance's function is. When two utterances by two different speakers are

adjacent to one another in a conversational exchange, these utterances are called

adjacency pairs (Schegloff & Sacks, 1973). They capture recurrent patterns in

conversation and are descriptors of conversational organization (Tsui, 1991).

32

Common adjacency pairs include greeting-greeting, order-compliance, request for

information-fulfilling the request, etc. The first part of an adjacency pair is a presequence

that predicts a likely response from the listener. Thus, given the first part of the pair, the

second part is immediately relevant and predictable.

Levinson (1983) argues that one cannot formulate any sequencing rules based on

adjacency pairs due to the unpredictability of the second utterance. Tsui (I 991)

challenges Levinson's view by emphasizing that the descriptive power of an adjacency

pair predicts what the second exchange utterance might be, rather than what it actually is

(p. 117).

The coherence of a conversation means that the speaker's utterances fit into the

topical framework and makes sense to the listener. Coherent utterances are cohesively

linked, lexically, grammatically, and interactionally with the immediate conversation

(Stenstrom, 1994). The coherence principle states that, "an utterance must be related to

either the illocutionary intention or the pragmatic presuppositions of the preceding

utterance or it will fail a coherent sequence," (Tsui; 1991, p.123).

CHAPTER III

METHOD

Lexical phrases are lexico-grammatical "chunks" of words, which possess specific

pragmatic functions within discourse (Nattinger and DeCarrico, 1992). These

form/function composites of varying length aid conversational fluency. Nattinger and

Decarrico (1992) further emphasize that lexical phrase theory accords with discourse

analysis and speech act theories (p.59).

This thesis presents the design of a computer assisted language learning (CALL)

program written in the computer language, PROLOG. It will provide a practice exercise

to teach a sentence-builder lexical phrase to second language learning students of

English. While the input will primarily be via the terminal, the purpose is to provide

some practice in improving conversational fluency. Nattinger and DeCarrico (1992)

stress that lexical phrases be practiced with sufficient variation. Thus, the program

should support sufficiently random variation. Once students have mastered these phrases,

they can focus on grammar lessons concerning any individual lexical units in a lexical

phrase.

The program presents a scenario where the participants are college students who

pass one another in the hallway. After they exchange greetings, the first participant

34

(i.e., the computer) informs the other student that a test, for some unknown class, will be

postponed till "next Tuesday". The second student answers with a surprised remark. The

first student responds that he/she could use the extra time for study, and then says, "good

bye". The dialog ends with when the second participant says "good-bye". At this time,

the program asks if the human participant would like to continue again or not. If yes, then

a new dialog is generated; if no, the program ends.

The scenario assumes that both participant have common knowledge that I) they

are classmates in a particular course, 2) they originally have a test in that course in the

near future, 3) the test is postponed to the next Tuesday, and 4) the test will be difficult

for at least one of the students (i.e., the first participant). This background knowledge is

not known to us, but can be inferred from the conversation.

3.1. Limitations

This program had three main limitations: I) parsing, 2) syntax, and 3) evaluation.

Parsing involves analyzing a sentence into its constituent parts. This enables programs to

extract categorical information from any responses, and to thereby exhibit a form of

"intelligence". A reliable parser, however, was not available for this project.

Second, issues of resolving anaphoric reference over sentence boundaries,

indirect speech acts, and fragments are beyond the scope of this study. Solutions could

35

not be addressed due to the complexity of each problem. Therefore, forms such as

sentence fragments, indirect speech acts, anaphoric reference, were not used in the

program's generated dialogue.

Proper assessment of an NLP system is often vague. It will be left to others to

come up with some standards to evaluate and to properly assess this NLP system.

3.2. Conversation structure

Conversational patterns vary from person to person and place to place. Nattinger

and DeCarrico (1992) note that conversations are made of collection.:; of discourse

patterns. Both participants contribute to the conversation. Once the participants are

finished, they close the dialogue (Nattinger and DeCarrico, 1992, p. 71). The basic

structure, however, can be characterized as an opening, followed by a message, and

ending on a closing (Stenstrom, 1994).

The discourse strategies vary in face-to-face conversations (Stenstrom, 1994).

Typically, these strategies have the following tendencies:

1). opening and closing sections may be lacking.

2). openings and closing are affected by the degree of formality.

3). topic changes, shifts and drifts are common.

4). body language plays an important role.

5). extralinguistic details play an important role (i.e., environment).

36

In openings, the two parties greet each other. Phatic talk involves general

questions about weather, health, personal matters, and polite phrases (Stenstrom, 1994, p.

150). Phatic talk tends to precede the main topic.

Topical strategies include introduction and termination of a theme; changing,

shifting and drifting from a topic; and digressing and resuming a given topic. Closings

involve the adjacency pair formats for pre-closings (it's getting late, right, all right, OK),

closings, thanks, and good-byes.

In conversation settings, lexical phrases of social interaction and necessary topics

play a significant role with the dialogue. Lexical phrases of social interaction fall under

two groups: conversational maintenance, conversational purpose. Conversational

maintenance involves how conversations begin, continue, and end (Nattinger and

DeCarrico, 1992, p. 60-61). Necessary topics are lexical phrases that are commonly

asked questions for obtaining information. Discourse devices are lexical phrases that

connect the meaning and structure of the discourse and play a lesser role in conversation

(Nattinger and DeCarrico, 1992, p. 71). Examples of these three types of lexical phrases

are seen in table 2, 3 and 4.

37

summomng excuse pardon me checking all righfl
how areyou'l comprehension understand (me)?

responding to how are you doing'.! shifting a topic by the way ..
summons what's going on? oh that reminds me ofX
nominating a topic what's X shifting turns so OK

clarifying:
(1) audience

(2) speaker

expressing
politeness
requesting

offering

refusing

asserting

have you heard about X? excuse pardon me
what did you mean by X? closing I must be going
excuse pardon me? I've got to run

what I mean is X parting good-bye
how shall I put it? see you later

Table 2. Lexical phrases for conversational maintenance
(Nattinger and DeCarrico, 1992, p. 62-63).

thanks (very much) questioning doyouX?
is/are there X?

Modal+ Pro+ VP? answering yes, (there/if/they isl are X
May IX?
Modal+ Pro+ VP? complying of course

I'd be glad to
of course not complimenting NP+ BE/LOOK+ intensifier+ Adj
I'd rather you X
it is (a fact that) X responding (yeah) I know
word has it that X (1) accepting (oh) I see, no kidding
it seems X

Table 3. Lexical phrases for conversational purpose
(Nattinger and DeCarrico, 1992, p. 62-63).

logical connectors as a result (of X) temporal connectors and then,

spatial connectors

exemplifiers

qualifiers

summanzer

after Xthen
around here fluency devices you know
over there it seems (to me) that X
in other words relators the thing Xis Y
it's like X not only X but also Y
it depends on X evaluators as far as I know/can tell
the catch is X there's no doubt about X
to make a long story short
my point is that X

Table 4. Lexical phrases for discourse devices
(Nattinger and DeCarrico, 1992, p. 64-65).

38

3.3. Exchange structures

Exchange structures, or adjacency pairs, are short dialogs involving two turns that

present expected sets of utterances. Common exchange structures include the following

(Nattinger and DeCarrico, 1992, p.119-120):

1) summons-response

Hi, how are you (doing)? - (I'm) fine, thanks (and you)?

Good morning/afternoon/evening. - Good morning/afternoon/evening.

2) asserting-accepting

Word has it that X - No kidding.

It seems (to me) thatX - I see.
where Xis a declarative sentence.

3) closing-parting

(It's been) nice talking to you. - (Well), so long (for now).

It's been nice talking to you, but I must be going. - Good-bye.

The program will use the above three exchanges to simulate a short dialogue

between the human subject and the computer. The conversation structure will process a

regular opening-main message-closing dialogue. The computer will assume the role of

the first speaker and the human subject will assume the role of second speaker.

39

The context is a university environment between two classmates who meet in

passing in the hallways. They exchange a brief greeting, then the first speaker brings up

the topic of the exchange, "Word has it that X" where X represents any declarative

sentence. In this project, X equals "the test is postponed till Tuesday." The human

subject then responds with an answer appropriate for the exchange structure. Finally, a

closing sequence will end the dialog.

3.4. Finite Automaton

Computer models began with general finite automata theory. A finite automaton

(FA) is a state machine which recognizes well-formed strings of a regular language. An

FA operates by having a finite number of states that transition to another state depending

on a particular input. It has three main components: a finite set of states, an alphabet of

possible input letters, and a finite set of transitions arcs. Minimally, an FA must have an

initial state and a final state with a transition arc connecting the two states.

In Figure 2, a three state FA is shown. State 1 is the initial state, and state 3 is the

final or terminal state, which is indicated by the double circles. State 1 and state 2 are

nonfinal states and are indicated with a single circle. A successful transition occurs when

the next symbol of the input strings matches the symbol on the arc. Each symbol is read

one letter at a time to recognize a string.

b

(a)

a b
1 2 0
2 3 2
3 0 0

(b)

Figure 2. A simple finite automaton. (a) a transition diagram, (b) a transition
table.

40

The transition diagram begins at state I and reads a symbol "a". Since it matches

the transition arc, it moves to state 2. At state 2, the second input symbol is read. If it is a

"b", then it loops back to state 2. If it is an "a", it moves to state 3. Since state 3 is the

final state and there are no more input symbols, the process has completed. In more

technical terms, the regular language L consists of an alphabet "a" and "b" and the

grammar {ab*a}, where the asterisk or Kleene star indicates any number of "b's"

(including zero b's). The language recognizes "well-formed" strings, such as "aa", "aba",

"abba", etc.

An alternative representation of a finite automaton is called a state transition

table. The rows represent the different states of the FA The columns represent the arcs

from one state to another. The symbols for each arc is placed at the head of each column.

A transition operates as follows (figure 2b): the FA begins at state I and reads the first

41

symbol in the input string, say "a". If the symbol matches a labeled arc, then it will

transition to state 2. When the input is read and matched against an arc symbol "a", then

the state will transition to state 2. The FA continues to read the input string symbol until

all of the symbols have been read. When all the symbols are read and the FA is in final

state (state 3), the FA is said to accept the string. If the FA is not in state 3 and all the

input has been read, then the string is rejected and the FA is said to have failed. The zero

in the transition refers to a trap state, which indicates that an transition to this state will

reject the string. In an FA, this state is equivalent to having no arc.

The simple model of a finite automaton is said to be deterministic in that it will

transition from one state to another given a single input. Thus, given a single input, the

FA will make a single transition to a different state in a one to one correspondence of

input to state. There are no choices as to which state to transition to, and there is no

history of what transitions occurred prior to the current state. An FA is called a

"machine," because it processes an input, then moves from one state to another state

depending if it matches a transition arc. The language that an FA can recognize is said to

be the language defined by the finite automaton. In the example in figure 2, the language

accepted by the FA has strings "ab, aab,abb,abab," etc. The input string "aaa" is invalid

and will be rejected by the FA

42

3.5. Moore Machine

A slightly more sophisticated model of a finite automaton is a Moore machine. A

Moore machine is a finite automaton with two additional components: a set of output

characters and an output table. Finite automata possess an alphabet of possible input

letters. A Moore machine has an alphabet of possible input letters, similar to an FA, and

an additional set of possible output characters. Further, a Moore machine has an output

table that displays what character is printed by each state that is entered. Figure 3

illustrates a simple Moore machine.

By normal convention, the first symbol printed, "X", is specified in the start state.

The operation is similar to an FA, except that as each state is entered an output character

is printed. If the first symbol in the input string matches the symbol on the transition arc

("a" in figure 3), then the machine goes to state 2. For example, as the Moore machine

enters state 2 after recognizing and matching the input letter "a", it will output the

character "X". Moore machines differ from finite automata in that they do not define a

language of accepted words, since every input string generates an output string (Cohen,

1981).

Further, Moore machines do not have a final state~ processing terminates when

the input letter is read and the last character is printed, regardless of the state it has

entered.

43

b

a b

Figure 3. A Moore machine.

Just as FA's had state transition tables, Moore machines also can have its

operation characterized in a state transition table (Figure 4). Note again the use of zero

trap states which move the state machine into a state that can neither be entered or

exited. This is analogous to having no arcs for a certain input character.

Old State

Q1
Qz
Q3

Transition Table
New State

After input "a" After input "b"

Qz
Q3
Q3

0
Qz
0

Output Table
(character printed in the old

state)

x
y

z

Table 5. State transition table for a Moore machine.

As mentioned previously, finite automata, like the Moore machine, are said to be

deterministic. A state machine is deterministic if its future path is predicted by the

current state that it is in. Accordingly, there is one course of action and one result. A

44

nondeterministic system has choices that make the final outcome uncertain. The Moore

machine illustrated previously is deterministic.

3.6. PROLOG

PRO LOG (PROgramming in LOGic) is a computer programming language that

evaluates relationships between objects. It was developed in the early 1970s for natural

language processing (NLP) applications and has been used extensively for artificial

intelligence projects. It is a declarative programming language that requires the

programmer to define the logical relationships between various objects.

Most programming languages are procedural in scope. That is, the problem, the

relationships between objects and the procedure (i.e., "how") to solve the problem must

be specified. The mechanisms behind Prolog are quite complex and are incidental to this

study. Therefore, the fundamental principles of Pro log will be presented in this chapter.

Based on predicate logic, a Prolog program consists of a set of facts, rules, and

questions (Clocksin and Mellish, 1994). A fact expresses a relationship between one or

more objects as an unconditional truth. For example, the declarative sentence, "Mary is

female" may be expressed as a unary or one-place relation.

female(mary).

45

A unary relation can only be used to determine yes or no, if "Mary is female,"

(Bratko, 1990). Since, a fact is always unconditionally true, then the program will

determine that "Mary is female" is a true condition.

A binary relation expresses relations between pairs of objects. For example, the

sentence "Tom is the parent of Mary" can be expressed as the following binary relation.

Similar to a unary relation, the binary relation verifies the truth of "Tom is the parent of

Mary".

parent(tom, mary).

The objects in brackets are called arguments. The name of the relationship that

defines the arguments is called the predicate. Thus, the predicate parent has two

arguments, tom and mary. Prolog programs have usually store a collection of facts, which

is called a database.

Rules are expressions that are either true or false depending on the truth

conditions of its elements. It is a general statement about the objects and their

relationships (Clocksin and Mellish, 1994). For example, the rule "p is true if q 1 is true

and q2 is true" is written as follows:

p :- ql, q2.

46

P represents the head, or proposition, of the rule, and q 1 and q2 form the body of the

rule. The body of a rule are conditions that determine, whether the head of a rule is true

or false.

A comma (",") separating the conditions indicates a logical AND relationship.

For a logical AND, both elements in the body must be true for the head to be true;

otherwise, the head is false. A semicolon ("; ") represents a logical OR relationship. That

is, one or both of the elements in the body must be true for the head to be true. If these

conditions are not met, then the head is false. The truth table for these relationships are

as follows:

AND I ql
F
F
T
T

q 1 I Result: p
F F
T F
F F
T T

OR I ql
F
F
T
T

q2 I Result: p
F F
T T
F T
T T

(a) (b)
Table 6. Truth condition tables for (a) logical AND, (b) logical OR.

F=False, T=True.

The head and body of a rule are represented in Prolog as a set of predicates and

its arguments. A predicate expresses its relationship with its arguments. For example

(Bratko, 1990):

sister(mary,john):-
parent(tom, mary),
parent(tom, john),
female(mary).

47

The rule expresses the declarative sentence "Mary is the sister of John, if Tom is the

parent of Mary and Tom is the parent of John and Mary is a female." If any of the objects

in the body is false, then "Mary is the sister of John" is false. The predicates are sister,

parent, and female; the arguments are mary, john, and tom. Rules and facts are grouped

into clauses.

Bratko(l990, p. 13) uses state diagrams to represent these relationships. Each

node or state in the graph represents the objects or arguments in the rule. The arcs

between each node represents the binary relations. The arrows point from the first

argument to the second argument. The dashed arrow represents the head of the rule. If

the "solid line" conditions are true, then the relation shown by the dashed arc will also be

true.

parent parent

female

Figure 4. Definition of the sister relationship.

Prolog, in many ways, is a conversational computer programming language. Once

the set of facts and rules has been established, then questions about these relationships

48

may be asked. When a question, or query, has been posed, it will search through the

database for any possible matches. Two facts match if their predicates and arguments are

the same. From a prior example, the question "is Tom the parent of Mary?" can be asked.

database:

query:

parent(tom, mary).

?- parent(tom, mary).
yes

(a)

parent(tom, mary).

?- parent(tom, bill).
no

(b)

Since the question (a) matches the fact, the program answers, "yes". In question (b), the

program answers "no," since a match could not be found. Technically, no does not mean

a given relation is false from a truth conditional perspective. It means that a match could

not be found; and thus, the question is not provable (Clocksin and Mellish, 1994).

Prolog can use names that stand for certain objects. These objects are determined

within the program and are called variables. When Prolog uses a variable, it is

instantiated (or not instantiated) to a particular object. Prolog distinguishes variables

from objects through capitalization.

database:

query:

parent(tom, mary).

?- parent(tom, X).
X = mary.

49

The query asks, "Tom is the parent of who?" In this case, X represents a variable that has

no particular value before the question is posed. When the program processes the

question, it searches the database for a matching predicate and arguments. Since parent

and the argument, tom, match, then the variable X gets instantiated with the object, mary.

Once X is instantiated, it has the value mary. The answer to the query responds with X is

mary.

Prolog's control structure is based on a procedure called unification. It matches

the data structures with any free variables. A variable can assume any type of data that is

assigned to it. (Prolog variables can only assume one value however.) An more

complicated example of unification is given in the following simple program.

likes(ellen,tennis).
likes(john,football).
likes(tom,baseball).

likes(bill,Activity) :- likes(tom, Activity).

The program has a rule and three facts. The rule states that, "Bill likes some general

unknown activity if tom likes some general unknown activity. Note that Activity begins

with a capitalized letter, which indicates that it is a variable with no initial value. The

program must search the database to arrive at an instantiated value for Activity.

50

A query searches for a solution to the question "does Bill like baseball?", and can

be entered as:

query:
answer:

likes(bill, baseball).
yes.

The program will attempt to match the predicates, "likes(bill,baseball)" to

"likes(bill, Activity)," where the capitalized object, Activity, is a variable. Since the

predicate, "likes(bill, Activity)," is a rule, the computer processes the condition,

"likes(tom, Activity)" by matching to a similar predicate. It first attempts a match with

"likes(ellen, tennis)". Since the first arguments in each predicate is different (i.e., ellen

and tom), then the match fails.

The computer moves on to the next fact to get a successful match. Once again,

tom and john do not match, and the match fails. Finally, the computer matches

"likes(tom, Activity)" to "likes(tom, baseball)". Since Activity represents a variable (i.e.,

it has no value until assigned one), it instantiates Activity with baseball. That is, Activity

has the argument baseball. Once a successful match has occurred, then the condition is

true, and control moves back to "likes(bill, Activity)." Since Activity now holds the

argument baseball, the head of the rule is now, "likes(bill, baseball)". This matches with

the query and results in a positive truth condition and a match. Thus, the computer prints

out a yes to confirm a successful match. Prolog programs operate in this fashion of

matching predicates with other predicates.

Table 6 indicates the steps the program used to solve for the query:

?- likes(bill,baseball).

Ste
1.
2.

3.
4.
5.

Predicate
likes(bill,Activity),
likes(tom,Activity),

likes(ell en, tennis),
likes(john,football),
likes(tom, baseball),

Action
-Activity is instantiated to baseball.
-Activity has value of baseball. attempts a

match for likes(tom, baseball).
-match fails. backtrack & try next predicate.
-match fails. backtrack & try next predicate.
-yes. match is successful.

Table 6. Steps in solving for ?-likes(bil/, baseball).

51

Prolog also has two other main mechanisms that help process its code:

backtracking and recursion. Prolog will attempt to find a successful match in its clause. If

it is processing the head of a rule, then it must evaluate all of the conditions for a truth. If

it finds a truth, then it advances in the body of the rule. If it fails, then it backtracks to the

last successful match.

Backtracking is important because it can offer a variety of results in a non-

deterministic manner (i.e., every input has a choice of which path to take). Whereas

without backtracking, the program must operate in a deterministic fashion (i.e., every

input has a single corresponding output), where each predicate matches successfully. An

example of backtracking was seen in table 6. The search for the predicate

likes(tom,baseball) failed on its first reading of likes(ellen,tennis). The program

backtracked to the last successful match, which was likes(tom,baseball). Next, it

52

likes(john,football), which also failed. The program backtracked again, and, on its next

attempt, made a successful match.

Recursion means that a rule can call itself within its own body. Recursion is an

important property of natural language. It enables the language to generate strings of

infinite length. Most procedural computer languages are not able to implement recursion

in their rules, since it causes difficulties in executing instructions. Prolog, however, uses

recursion extensively within its programming structure. Thus, the previous rule is

recursive since it calDits own predicate "likes".

likes(bill, Activity):- likes(tom, Activity).

3. 7. Lexical phrase CALL program

The lexical phrase computer assisted language learning (CALL) module is

designed for practicing communicative competence using these form/function

composites. It is written in the declarative programming language, PROLOG. The

dialog's control structure is a Moore model finite automaton with thirteen states.

The scenario is between two university classmates, who meet in passing in the

hallways. After an initial greeting, the first student mentions that an upcoming test will

be postponed till next Tuesday. The second student expresses some form of surprise as

he/she was not aware of the test's postponement. After this episode, both close the

53

meeting and depart. The dialogue consists of three components: the opening, the main

message, and the closing (figure 5).

--E I •I mam I •I closing ~

Figure 5. The structure of the dialogue.

The opening uses eight states. In this automaton, states SO, Sl, and S2 are all

potential start states. The program will generate a random number between zero to two to

determine which state to enter. State SI will output hello. State S2 will output how are

you doing?. State SO will output the union of states one and two, and will print, hello,

how are you doing?.

The possible input responses are good, I'm fine, o.k., busy, and hello. From these

inputs, the automaton will go directly to the main message state. In this mode, it will

retain the initiative (i.e., single initiative mode) in the dialog before completing the tum.

A tum is defined as any utterance speaker A says before speaker B takes over (Stenstrom,

1994).

An additional set of possible responses may be used in place of the first level

responses. That is, when the initial phrase is hello (state 1), an alternative acceptable

response is hi, instead of hello. Each first level response has an alternative second level

response (Table 7).

54

STATES
Sl S2 so

initial phrases hello. how are you doing? hello, how are vou doing?
possible responses
1. first level hello. 1) hello., 2) good., 3) I'm fine., 4) o.k., 5) busy.
2. second level hi. 1) hi, 2) great., 3) fine., 4) so so, 4a) fair. 5) swamped.
mam message 1) word has it that the test is postponed till Tuesday.

2) it seems that the test is postponed till Tuesday.

Table 7. Possible openings in single-initiative mode.

The opening component also handles mixed-initiative mode. With the output how

are you doing?, the valid responses include, how are you? or fine. how are you? The

human subject responds by reciprocating the greeting, and is expecting some reply to his

greeting. The computer must regain the initiative in the dialog by making a counter

response, and then by bringing up the main message of the dialog (Table 8). An

alternative response is a reply with the addition of and you?. The response can be, for

example, good. and you? The initial participant must reply, and then present the main

message. In summary, the how are you doing? responses are grouped into response A; the

good, and you? responses are grouped into response B. The main message is presented in

response group C. If the possible response is from group A, then proceed to response

group C. If the possible response is from group B, then proceed to response group C.

55

STATES
Sl S2 so

initial phrases hello. how are you doing? hello, how are you doing?
Note: if A, then C;

else B, then
c.

1) how are you doing?
A) possible 2a) how are you?, 2a) how's it going?
response

1. first level
2. second level

B) possible
response hello. [1) hello., 2) good., 3) I'm fine., 4) o.k., 5)
1. first level hi. busy.]+AND YOU?
2. second level [1) hi, 2) great., 3) fine., 4) so so, 4a) fair. 5)

swamped.l+AND YOU?
C)counter [1) hello., 2) good., 3) I'm fine., 4) o.k., 5) busy]+ main message
responses
mammessage 1) word has it that the test is postponed till Tuesday.

2) it seems that the test is postponed till Tuesday.

Table 8. Possible responses in mixed-initiative mode.

The main message section uses the sentence builder lexical phrases, word has it

that_, and it seems that_. The program generates a random number between 0 and 1.

If the number is zero, then the lexical phrase, word has it that _ is outputted first. If

the number is one, then it seems that_ is printed. The declarative sentence that fills the

slot is "the test is postponed till Tuesday." The acceptable responses are I see and no

kidding. Both input sentences have variants that are also acceptable responses. These are:

no way, is that so?.

busy

and you?

it seems that

Figure 6. State transition diagram outlining the opening and main
message sections.

56

The closing section ends with the first participant outputting I could use the extra

time ... Gotta run. See you later. The acceptable responses are: See you later, and good-

bye. The variants are: so long, and bye. When the final response of good-bye is read by

the program, then it completes the dialogue and returns to the beginning.

57

it seems that word has it that

no kidding.

I could use the extra time . Gotta run.

See you later.

good-bye

Figure 7. The main message and closing sections

3.8. Program details

The program consists of subroutines that call other modules (figure 8). The first

module is the main control section of software that initializes all states and flags as well

as creates the windowing environment. From the main control module, the dialog reads

the responses from the terminal. The generation section prints out the output associated

with each state. The analysis section determines the state of the response. The transition

section enables the move to the next state. It is equivalent to the arc transitions in a finite

automaton. The final section is the lexicon, which holds all of the lexical phrase data.

The generation, analysis, and transition sections all access the lexicon.

58

main control

dialog
extract

generate

analyze lexicon

transition

Figure 8. Structure of the program.

The main control module first initializes the state counter to zero. The state

counter keeps track of the current state the program is in. This is important so that the

proper sequencing through the state machine can be achieved.

The windows for the scenario area and the dialogue are set up. The scenario

window explains the contextual background of the dialogue. In principle, the program

could be set up for any number of contexts. Thus, an initial explanation of the context

would be needed for the users of this program. The dialogue window is used for aesthetic

purposes only, and is not necessary in program.

Next, a random number generator determines a number from zero to two, which

will be used as the start state of dialogue. The random number generators offers some

variety in the dialogue. As mentioned previously, If the number is a one, then the output

is hello. If the number is two, then the program outputs how are you doing?. If the first

59

random number is a zero, then the union of states 1 and 2 is outputted, i.e., hello, how

are you doing?.

Once a dialogue has ended, the program asks the participant if he/she would like

to start over. If the answer is yes, then the program loops to the beginning. If no, the

program quits.

main control

set_state(O).

I makewindow(.). I
jrandom(3,N).

I dialog(N).

Quit? (N).

Figure 9. Organization of the main control section.

The dialog section first checks if the current state is the final state (i.e., state 13).

If the current state is not the final state, the program will generate the lexical phrase,

which is associated with the present state of the program. The lexicon is always accessed

by the current state of the program. Once the lexical phrase is outputted, then the state

counter is updated to the new state. The code for generating a lexical phrase is as

follows:

generate(CurrentState):
data(Frame, , ,CurrentState),
write(":! ", Frame, "\n"),
set_state(CurrentState).

!*generates the lexical phrase*/
I* access the lexicon *I
I* output the lexical phrase*/
!* update the state counter *I

60

When the lexical phrase has been outputted to the terminal, the program reads the

response that is typed in by the participant. Each response must be terminated with a

period. The program uses the "extract" module to determine if each response is properly

terminated with a period. This is particularly important for stacked lexical phrases, such

as I'm fine. and you? and (in response to how are you doing?) good. how are you? The

extract module splits up the lexical phrases, so that the lexicon can be accessed

successfully with one lexical phrase. (The code for the extract module is in appendix B.)

Once the response has been read from the terminal, the program analyzes the

input by comparing it to the lexicon. The analyze section takes the lexical phrase and

matches it to a corresponding predicate in the lexicon. When there is a successful match,

the state of the response is read, then used to transition to another state. The code for this

module is as follows:

analyze(Response):
data(Response,_,_,NewState),
transition(NewState).

/* analyze the typed in response *I
/*access lexicon and get new state*/
/*transition to the new state*/

The transition module uses the present state of the response to jump to the next

state. The transitions are essentially jump arcs that move from one state to another state.

In order to get variation in the program, the random number generator is used to access

the next jump state. That is, a random number from zero to one is generated. If the

number is zero, then the current state is set to S8. If the number is one, then the match

61

N=O fails, and the program must backtrack and try the next clause that matches with

transition (I). Since there is another clause, the predicate is accessed, and the state is set

to S9.

transition(I):
random(2,N),
N=O,

set_ state(8).

transition(I):
set_ state(9).

/* transition for state SI *I
/* generate a random number from zero to one *I
/* if N=O continue; N= I then match fails. backtrack

& try again. */
I* set the current state to state S8. */

I* since N=I use this transition*/
!* set the current state to state S9 */

The last part of the dialog module gets the current state of the program, after the

transition has been made to a new state. The program then loops again to the beginning

of the dialog module until the final state has been reached. Once the current state equals

the final state (i.e., state 13), then the dialog module returns to the main control module.

At this point, the state counter is cleared, so that the program can begin again.

62

Dialog

final state?

[generate

I read response

I extract

analyze

transition

get new state

Figure 10. Dialog module.

Finally, the lexicon contains all of the lexical phrases for use in this program.

There are two main lexical phrase structures in the lexicon.

I) data(lexical phrase, a_ kind_ of, phrase type, state).

2) data(lexical phrase, an_instance_of, original lexical phrase, state).

The main lexical phrases have the label a kind of There is additional
- -

information, such as phrase type that ranges from greetings, response, understanding, etc.

These parameters are not important to the program itself The important parameters are

the lexical phrase, and its state. That is, the number in the last column refers to the state

that the lexical phrase is associated with.

63

Any alternatives of the main lexical phrases are designated with an _instance of

label. When the program reads a lexical phrase, it makes a match with the lexicon. If the

initial search fails, it will try again to make a match with another lexical phrase. For

example, given the input no way, the program will first search for any response with the

corresponding labels. It will first find the lexical phrase I see, and attempt to match to it.

Since this does not match the input, it will backtrack again for a corresponding match.

On the second attempt, it matches successfully with the lexicon entry for no way.

Examples of the lexicon are as follows:

data("hello.", a_kind_of', "greeting", 1).
data("how are you doing?", a _kind_of, "greeting", 2).
data("good", a_ kind_ of, "response", 4).
data("it seems that", a_kind_of, "lexical phrase", 8).
data("the test is postponed till Tuesday.", a_ kind_ of, "filler", 8).
data("I see.", a_ kind_ of, "understanding", 10).
data("hi.", an_instance_of, "hello", 1).
data("how' s it going?", an_ instance_ of, "how are you doing?", 2).

The lexicon has only one lexical phrase in each entry. This is designed to keep the

lexicon small. In cases that require stacked lexical phrases, the program splits up any

stacked phrases using the extract module. Once the lexical phrase has been split up, then

each individual phrase can be used to match a corresponding predicate in the lexicon.

The context for this module can be changed by replacing the lexicon with any

alternative phrases appropriate to that particular setting. This program can provide the L2

students of English the opportunity to practice lexical phrases in varying contexts with a

variety of possible responses.

CHAPTER IV

DISCUSSION

Lexical phrases permit communicative fluency through efficient retrieval from

memory. These prefabricated language structures have specific pragmatic functions.

They enable speakers to focus on the converation in a top-down manner, rather than

focusing on discrete lexical items. Lexical phrases are ideal for second language students

of English to aid their conversation fluency (Nattinger and DeCarrico, 1992). The

pedagogical application of lexical phrases for computers is the topic of this study.

The major problems associated with this program were: the constrained context

or scenario; the lack of parsing capabilities; the mixed-initiative mode was implemented

in only one section; the overall robustness of the program.

The dialog was kept short to curtail the problems that occur in NLP dialogue

interfaces (i.e., indirect answers, anaphoric reference over sentence boundaries, sentence

fragments, conversational patterns). Issues on resolving anaphoric reference over

sentence boundaries, indirect speech acts, and fragments are beyond the scope of this

project.

65

Although constrained contexts lead to stilted and repetitive conversations, the

rational for it involves the difficulty in computionally modeling the belief systems and

knowledge of the participants. That is, the background knowledge needed to generated

dialogue in a complex environment is extensive. This will place a computational burden

on the size of the lexicon and the processing time of a natural language processing

system. Ringle and Bruce (1982) summarize the problems associated with constrained

contexts.

A major obstacle to a free-form, user-initiated dialogue system lies
in the infinite variability of belief-models that users bring to a conversa
tion. One approach to this problem is to explore a domain in sufficient
depth to allow for a comprehensive description of all probable goals and
beliefs (including erroneous beliefs) that a user might have in a given
situation. By anticipating all of the relevant goal and belief states, the
system is able to accommodate a wide range of user-initiated utterances
(or written inputs). The dimension of user sensitivity is reduced, in es
sence, to a parsing problem --that is, the problem of mapping surface
strings to a small, hierarchical goal tree (Ringle and Bruce, 1982, p. 215).

The only criteria for the computer-created dialog is its ability to produce realistic

responses. This program does produce realistic dialog, but it is highly invariable. One

major drawback to this study was the inability to implement any parsing capabilities into

the program. Parsers extract information from sentences by breaking them up into its

constituent parts. Thus, programs with parsing capabilities can achieve a semblance of

"intelligence".

66

Since no parser was used, the program could not adequately accept any slot fillers

by the human subject. For example, this program could not switch roles: the human

subject is speaker A, the computer is speaker B. If the human subject filled the slot of a

lexical phrase with "Word has it that Prof. Henry postponed the test till next week," the

program should have been able to accept such an input provided that parsing capabilities

existed. Without a parser, the lexicon must contain any and all anticipated responses by

the human subject, which would be nearly impossible to accomplish. Ideally, the use of

lexical phrases coupled with parsing capabilities would make an efficient system.

The first section of the program, the opening, involved mixed-initiative mode.

That is, speaker A does not retain the initiative in the conversation, but alternates with

speaker B. Natural language involves mixed-initiative mode since the participants are

negotiating a conversation (Stenstrom, 1994). The complexity of mixed-initiative lies in

its variability, which places an added computational load on the program. The program

must process a greater number of choices and options. Thus, the software must

sufficiently handle these options.

Conversation is far more complex than its representation as a collection of linear

exchange structures. However, for its purposes, the program offers somewhat realistic

dialogs for practice. (Appendix B contains one lesson plan to be used with this program.)

67

The difficulty in creating the lexicon was the infinite variability of the interaction. For

example, the following dialogs were created by the program.

(1) A: hello.
B: hi.
A: word has it that the test is postponed till Tuesday.
B: no kidding.
A: we could use the extra time!. .. Gotta run. See you later.
B: good-bye.

(2) A: hello.
B: how are you?
A: I'm fine it seems that the test is postponed till Tuesday.
B: no way.
A: we could use the extra time! ... Gotta run. See you later.
B:bye.

(3) A: hello. how are you doing?
B: good. and you?
A: okay word has it that the test is postponed till Tuesday.
B: I see.
A: we could use the extra time! ... Gotta run. See you later.
B: see ya.

In terms of the responses by the computer, there is high degree of variability in

the opening module . The main message offers only two lexical phrase choices: "word

has it that_" and "it seems that __ ". The closing module has no variability.

The program could be improved in terms of the variability of its responses by

programming more choices into the system. The degree of difficulty ranges from a single

choice (e.g. as seen in the main section) to a mixed-initiative mode. The human subject

68

has a high degree of variability in terms of typing in responses. The process of

recognizing phrases is considerably easier than generating these phrases.

This program has many flaws, but with advanced use of parsers, faster processors,

speech synthesis and recognition systems for computers, the prospects for improved

CALL programs is exciting. Naturally, this can be extended to improving lexical phrase

teaching programs. Further, the program itself is not very robust. That is, the program

must accept any lexical phrase that matches exactly with the lexicon. Any accidentally

carriage return or the pressing of any key would cause an error.

Future study could include several topics related to lexical phrases. A natural

language processing study can be made based on a program that incorporates a parser

with lexical phrases. The testing of the program can be studied in an actual classroom

environment with more extensive contexts and scenarios.

In summary, the use of lexical phrases are adaptable for use in computer assisted

language learning (CALL) programs. The communicative language teaching model

would provide realistic dialogs. It offers more interesting exercises compared to

traditional language drills. The problems of encoding contextual information with

effective parsers in computer programs are still in a rudementary stage of research. As

computer technology advances, the use of lexical phrases in CALL programs will provide

an effective means to aid the communicative competence of second language learners of

English.

69

BIBLIOGRAPHY

Austin, J. L. (1962). How to do things with words. Oxford: Clarendon Press.

Becker, J. (1975). The phrasal lexicon. In B. Webber-Nash & R. Schank (Eds.),
Theoretical issues in natural language processing 1. Cambridge: Bolt, Beranek,
and Newman.

Bobrow, D. G, Kaplan, R. M., Kay, M., Norman, D. A, Thompson, H., & Winograd, T.
(1977) Gus, a frame-driven dialog system. Artificial Intelligence, 8, 155-173.

Bobrow, D. G., & Winograd, T. (1977). An overview ofKRL, a knowledge
representation language. Cognitive Science, 1(1), 3-46.

Bratko, I. (1991). PRO LOG: Programming for artificial intelligence (2nd ed.).
Reading: Addison-Wesley.

Brown, G., & Yule, G. (1983). Discourse analysis. Cambridge: Cambridge University
Press.

Chandrasekaran, B. (1990). What kind of information processing is intelligence? In
Partridge, D. & Y. Wilks (Eds.), The foundations of Artificial Intelligence.
Cambridge: Cambridge University Press, .

Chamiak, E. (1978). On the use of framed knowledge in language comprehension.
Artificial Intelligence, 11, 225-265.

Chamiak, E. (1982). Context recognition in language comprehension. In W. G. Lehnert
& M. H. Ringle (Eds.), Strategies for natural language processing (pp. 435-
454). Hillsdale:Erlbaum.

70

Cohen, P.R., Perrault, C.R., & Allen, J. F. (1982). Beyond question answering. In W. G.
Lehnert & M. H. Ringle (Eds.), Strategies for natural language processing
(pp. 245-274). Hillsdale:Erlbaum.

Cook, V. J. (1987). Designing CALL programs for communicative teaching. ELT
Journal, 42(2),262-271.

Clocksin, W. F. & Mellish, C. S. (1994). Programming in Prolog (4th ed.).
Berlin: Springer-Verlag.

Dore, J. (1975). Holophrases, speech acts and language universals. Journal of Child
Language, 2, 21-40.

Dreyfus, H. L. (1981). From micro-worlds to knowledge representation: AI at an impasse.
In J. Hauge land (Ed.), Mind Design (pp.161-204). Cambridge: MIT Press.

Dreyfus, H. L. (1988). Making a mind versus modelling the brain: Artificial intelligence
back at a branchpoint. Daedalus, 117(1), 15-43.

Gatbonton, E., & Segalowitz, N. (1988). Creative automatization: Principles for
promoting fluency within a communicative framework. TESOL Quarterly, 22
(3), 473-492.

Gal, A, Lapalme, G., Saint-Dizier & P., Somers, H. (1991). Prolog for natural language
processing, Chichester: John Wiley & Sons.

Grice, H. P. (1975). Logic and conversation. In P. Cole & J. Morgan (eds.) Syntax and
Semantics Vol. 3. New York: Academic Press.

Grishman, R. (1986). Computational Linguistics. Cambridge Univ. Press, London.

Hakuta, K. (1974). Prefabricated patterns and the emergence of structure in second
language acquisition. Language Learning 24, 287-97.

Hauge land, J. (1985). Artificial Intelligence: The Very Idea. Cambridge: MIT Press.

71

Hayes, P. (1979) The logic of frames. In D. Metzing (Ed.), Frame Conceptions and Text
Understanding (pp. 46-61). Berlin: Gruyter and Co.

Hobbs, J. R. (1982). Towards an understanding of coherence in discourse. In W. G.
Lehnert & M. H. Ringle (Eds.), Strategies for natural language processing
(pp. 223-243). Hillsdale:Erlbaum.

Huang, J., & Hatch, E. M. (1978). A Chinese child's acquisition of English. In E.M.
Hatch (Ed.), Second language acquisition: a book of readings (pp. 118-131).
Rowley, MA: Newbury House.

Krashen, S. D. & Scarcella, R. (1978). On routines and patterns in language acquisition
and performance. Language Learning 28: 283-300.

Last, R. W. (1989). Artificial intelligence techniques in language learning. Chichester:
Ellis Harwood.

Leech, G. N. (1983). Principles of Pragmatics. London: Longman.

Levinson, S. (1983). Pragmatics. Cambridge: Cambridge University Press.

Lehnert, W. G., & Ringle, M. H. (1982). Strategies for natural language processing.
Hillsdale: Erlbaum.

McClelland, J. L. (1989). Explorations in parallel distributed processing: a handbook
of models, programs and exercises. Cambridge: MIT Press.

Mey, J. L. (1993). Pragmatics: an introduction. Cambridge: Blackwell.

Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.),
The Psychology of Computer Vision. New York: McGraw-Hill.

Minsky, M. (1981). A frame for representing knowledge. In J. Haugeland (Ed.), Mind
Design (pp. 95-128), Cambridge: MIT Press.

Nattinger, J. R. (1980). A lexical phrase grammar for ESL. TESOL Quarterly, 19(3),
337-344.

Nattinger, J. R., & DeCarrico, J. S. (1992). Lexical Phrases and Language Teaching.
Oxford: Oxford University Press.

72

Obermeier, K. K. (1989). Natural Language Processing Technologies in Artificial
Intelligence: The Science and Industry Perspective. Chichester: Ellis Horwood.

Parret, H. & Verschueren, J. (1992). (On) Searle on conversation. Philadelphia:John
Benjamins.

Partridge, D., & Wilks, Y. (Eds.). (1990). The foundations of artificial intelligence: A
sourcebook. Cambridge: Cambridge University Press.

Pereira, F.C.N., & Shieber, S. M. (1987). Prolog and natural language analysis. Menlo
Park: CSLI.

Peters, A M. (1977). Language learning strategies: Does the whole equal the sum of the
parts? Language, 53, 560-573.

Peters, A M. (1983). The units of language acquisition. Cambridge: Cambridge
University Press.

Reichman, R. (1985). Getting computers to talk like you and me. Cambridge: MIT
Press.

Riesbeck, C. K. (1982). Realistic language comprehension. In W. G. Lehnert & M.
H.Ringle (Eds.), Strategies of natural language processing (pp. 37-54).
Hillsdale: Erlbaum.

Ringle, M. H., Bruce, B. C. (1982). Conversation failure. In W. G. Lehnert & M. H.
Ringle (Eds.), Strategies for natural language processing (pp. 203-221).
Hillsdale: Erlbaum.

Rosenbaum, D. A, Weisler, S. E., & Baker-ward, L. (1987). Cognitive Science.
Cambridge: MIT Press.

Sacks, H., Schegloff, E. & Jefferson, G. (1974). A simplest systematics for the
organizatoin of tum-taking for conversation. Language 50: 696-735.

Searle, J. (1975). Indirect speech acts. In P. Cole and J. Morgan (Eds.), Syntax and
Semantics, Volume 3: Speech Acts. New York: Academic Press.

73

Searle, J. (1992). Searle on Searle. In H. Parret and J. Verschueren (Eds.) (On) Searle on
conversation. (pp. 50-64). Philadelphia: John Benjamins.

Schank, R. C. & Childers, P. G. (1984). The cognitive computer. Reading: Addison
Wesley.

Schegloff, E. (1992). Conversational analysis. In H. Parret and J. Verschueren (Eds.)
(On) Searle on conversation. (pp. 32-48). Philadelphia: John Benjamins.

Sharples, M., Hogg, D., Hutchinson, C., Torrance, S., & Young, D. (1984). Computers
and thought: a practical introduction to artificial intelligence. Cambridge:MIT
Press.

Sperber, D. & Wilson, D. (1979). Relevance: communication and cognition.
Cambridge: Harvard University Press.

Stenstrom, A (1994). An Introduction to Spoken Interaction. London: Longman.

Sterling, L., & Shapiro, E. (1986). The art of Prolog. Cambridge: MIT Press.

Stillings, N. A, Feinstein, M. H., Garfield, J. L., Rissland, E. L., Rosenbaum, D. A,
Weisler, S. E., & Baker-Ward, L. (1992). Cognitive science: An introduction.
Cambridge: MIT Press.

Tsui, A. B. M. (1991). Sequencing rules and coherence in discourse. Journal of
Pragmatics, 15, 111-129.

Underwood, J. H. (1984). Linguistics, computers and the language teacher. Rowley:
Newbury House.

Waltz, D. L. (1982). The state of the art in natural language understanding. In W. G.
Lehnert & M. H. Ringle (Eds.), Strategies for natural language processing
(pp. 3-32). Hillsdale, N.J.: Erlbaum.

Warren, D. (1970). Phonemic restoration. Scientific American, 7, 45-65.

Weischedel, R. M., Voge, W. M., & James, M. (1978). An artificial intelligence
approach to language instruction. Artificial Intelligence, 10, 225-240.

Weiskamp, K., & Hengl, T. (1988). Artificial intelligence programming with Turbo
Prolog. New York: John Wiley.

74

Weizenbaum, J. (1966). Eliza--a computer for the study of natural language communica
tion between man and machine. Communications of the Association of
Computing Machinery, 9(1),36-45.

Weizenbaum, J. (1976). Computer power and human reason: from judgement to
calculation. San Francisco: W.H. Freeman.

75

Yorio, C. A (1980). Conventionalized language forms and the development of communi
cative competence. TESOL Quarterly,14(4), 433-442.

APPENDIX A

INSTRUCTIONS ON RUNNING
THE PROGRAM

76

The program runs on any version of DOS operating system. To start the program,

insert the disk into drive A, then enter:

A> lexical <hit enter>

To end the program at any time, enter "bye" as a response.

The possible responses for the program are as follows:

I.) Openings:

1. hello.
la. hi.

2. how are you doing?
2a. how's it going?
2b. how are you?

3. good.
3a. great.

4. I'm fine.
4a. fine.

5. o.k.
5a. so so.
5c. fair.

77

6. busy.
6a. swamped.

II) Responses to the main message

-mam message: it seems that the test is postponed till Tuesday.

word has it that the test is postponed till Tuesday.

-response:

7. I see.

7a. no kidding.

7b. is that so?

7c. you don't say.

7d. no way.

III) Closing responses:

8. good-bye.

8a. bye.

8b. so long.

8c. see you later.

8d. see ya.

8e. later.

78

APPENDIXB

EXAMPLE LESSON PLAN

PURPOSE
This exercise helps learners to use lexical phrases in conversational settings. This

is designed for first year second language learners of English.

MATERIALS
1) IBM PC or compatible with DOS 5.0 operating system.
2) Picture of two people in a hallway.

TIME
Ten minutes.

INSTRUCTIONS
1. The instructor should present the lexical phrase to the class. The pragmatic

functions of the phrase as well as its meaning should be explained with a few
examples.

2.. For homework, the students should work on the computer to practice the lexical
phrase. Each student should be teamed with another student in pairs. Then, they
should read the instructions and the list of lexical phrases.

3. Run the lexical phrase tutor by inserting the disk and by entering at the DOS
prompt: lexical.

4. The student should read the scenario, then push the space bar when he/she is
ready to begin.

5. The student should type in the lexical phrase responses that fit the situation.

6. When the dialogue has finished, the students should write down the script. For
homework, they should practice the script and present it at the next class period
with their partner. The student should try to figure out some alternative sentences
that could be used with word has it that _ or it seems that _ and perform
these in class. In other words, they should try to fill in the blanks with some other
examples.

79

APPENDIXC

THE PROGRAM

I* LEXICAL.PRO by G. Hirayama
This program helps second language learners of English practice lexical phrases.

Lexical phrases are prepattemed phrases that aid communicative competency and helps
the student of English gain speaking fluency.

The program is written in PDC Prolog version 3.30 and can be run on any DOS
based system.

To run the program, enter at the prompt: lexical <enter>. */

~ ----------------------------------- THE PROGRJ\1\1 --------------------------------------
nowammgs

I* Define the domains and initialize the database *I
domains
frame=string
slot=syrnbol
type=string
datum=data(frame,slot,type,states)

database
current_ state(states)
current_ flag(states)
data(frame,slot, type,states)

include "a:extract.pro"

I* This section defines the predicates in the program. PDC Prolog requires that all
predicates be defined at the start of the program. */

predicates
run
clear state
clear_flag
set state(states)
get_ state(states)
get_ flag(states)
final state(states)

analyze(string)
transition(states)
generate(states)
repeat
dialog(integer)
get_ end(char)

!*The main control module*/

clauses
run:
set_state(O),
set_flag(O),
repeat,

% initial the state counter to zero
% initial the flag to zero

80

makewindow(l,7,7,"LEXICAL PHRASE",l,1,22,78), % make the outside window
makewindow(2,48,7," PRACTICE ", 5,5,10,70), % make the dialogue window
makewindow(3,48,7," The Scenario ",16,10,5,60), % make the scenario window
write(" You are a college student. You are walking to a class in","\n",
"Neuberger Hall. A classmate from another class walks by","\n",
" and greets you briefly."),
readcharLJ,
removewindow,
random(3,N),
dialog(N),
write("\n\n", "Quit? [YIN]"),
readchar(C),
get_end(C),
clearwindow,
removewindow,
removewindow,
run.

get_end('y'):- l,
exit.

get_end('n'):- !.

% call the dialog module
% loop ifN, quit if Y.

!* predicates to check for final state and for current state *I
final_ state(l 3): - current_ state(13), ! .
set_state(Sn):- asserta(current_state(Sn)).
get_state(Sn):- current_state(Sn),!.

clear_ state:- retract(current_ stateLJ),fail.
clear state.

set_ flag(Sn):- asserta(current_ flag(Sn)).
get_ flag(Sn):- current_ flag(Sn),!.

clear_flag:- retract(current_flagLJ), fail.
clear_ flag.

repeat.
repeat:- repeat.

!*The dialog module*/
dialog(N):-
N<l3,
generate(N),
write(":! "),
readln(Response),
extract(Response,NewS),
analyze(NewS),
get_state(N2),
dialog(N2).

dialog(l3):- !,
clear_ flag,
clear state.

% if the program is at the final state, clear counter and flag.

!* These predicates generate the responses in the program. *I
generate(O):- !,
data(Frame,_," greeting", 1),
write(":!", Frame),
data(Frame2,_, "greeting" ,2),
write(" " Frame2 "\n")

' ' '
set_ state(2).

generate(3):-
current_ flag(1),
random(4 ,N),
Nl=N+4,
data(Frame,_,_,N 1),
write(":! ",Frame," ... "),
random(2,X),
N2=X+8,
data(Frame2,_,_,N2),
data(Frame3,_, "filler",_),

81

write(Frame2, Frame3,"\n"),
set state(N2).

generate(3):-
current_ flag(1),
random(4,N),
Nl=N+4,
data(Frame,_,_,N I),
write(":! ",Frame," ... "),
data(Frame2,_,_,9),
data(Frame3,_,"filler",_J,
write(Frame2,Frame3),
set_ state(9).

generate(&):-!,
data(Frame,_,_,8),
write(":I ",Frame),
data(Frame2,_, "filler",_),
write(Frame2, "\n"),
set_ state(8).

generate(9):- !,
data(Frame,_,_,9),
write(":I ",Frame),
data(Frame2,_, "filler",_),
write(Frame2, "\n"),
set_ state(9).

generate(N):- !,
data(Frame,_,_,N),
write(":I ",Frame, "\n"),
set_ state(N).

82

I* These predicate analyzes the typed in responses by the student and determines the next
state.*/

analyze(S):
data(S,_,_,N),
set_ state(N),
final_ state(N).

analyze(S):-
data(S, , ,Curr state),!, -- -
transition(Curr _state).

analyzeL):-
write("Sorry .. .I can't understand a word you're saying .. !"),nl.

!* TRANSITIONS: These transitions move from one state to another. */

transition(]):
random(2,N),
N=O,
set state(&).

transition(!):
set_ state(9).

transition(2):
get_ flag(Sn),
Sn=l,
set state(3).

transition(2):
random(4,N),
Nl=N+3,
set_ state(Nl),
transition(N 1).

transition(3):- !.

transi ti on(N): -
N<8,
random(2,X),
X=O,
set state(8).

transition(N):
N<8,
set_ state(9).

transition(N):
N=8; N=9,
random(2,X),
X=O,
set_ state(l 0).

83

transition(N):
N=8;N=9,
set state(11).

transition(10):
set state(l 2).

transition(11):
set_ state(l 2).

I* LEXICON: The lexicon for all the phrases used in the program. */

data("hello. ", a_ kind_ of," greeting", 1).
data("how are you doing?", a_kind_of, "greeting", 2).
data("and you?",a_kind_of,"greeting",3).

data("good.", a_kind_of, "response", 4).
data("I'm fine.", a_kind_of, "response", 5).
data("okay.", a_kind_of, "response", 6).
data("busy. ",a_ kind_ of, "response", 7).

I* the main lexical phrases. The slot is filled by the declarative sentence "the test..." *I
data("it seems that ",a_kind_of, "lexical phrase", 8).
data("word has it that ",a_kind_of, "lexical phrase", 9).
data("the test is postponed to Tuesday.", a_kind_of, "filler", 8).

data("I see.", a_ kind_ of, "understanding", 10).
data("no kidding.", a_kind_of, "exclamation", 11).
data("We could use the extra time! ... Gotta run. See you later." ,a_ kind_ of,

"closing", 12).
data("goodbye.", a_kind_of, "closing", 13).

data("hi.", an_instance_of, "hello", 1).
data("how's it going?", an_instance_of, "hello",1).
data("how are you?", an_instance_of, "how are you doing", 2).
data("great.", an_instance_of, "good", 4).
data("fine.", an_instance_of, "I'm fine.", 5).
data("so so.", an_instance_of, "okay", 6).
data("fair.", an_instance_of, "okay", 6).
data("swamped", an_instance_of, "busy", 7).

data("is that so?", an_instance_of, "I see", 10).

84

data("you don't say.", an_instance_of, "I see", 10).
data("no way.", an _instance_ of, "no kidding" ,11).

data("bye. ", an _instance_ of, "closing", 13).
data("see ya. ",an_instance_of,"closing", 13).
data("so long." ,an _instance_ of, "closing", 13).
data("see you later." ,an _instance_ of, "closing", 13).
data("later.", an_instance_of, "closing", 13).

!* -------------------------------------- extract. pro--
This program separates stacked lexical phrases so that they can be properly accessed

from the database. *I

domains
tokenlist=symbol *
states=integer

predicates
extract(string,string)
search(string,char,integer,integer)
findc(string,char,integer ,integer)
check_ target(string,string,string)
rightx(string,string,integer,integer)
setparam(integer,integer,integer)
set_ flag(states)

clauses
extract(S,S2):
data(S, , ,N),
N=2,
concat(". ",S,S 1),
set_ flag(I),
search(S l ,'. ',Pos,Size),
rightx(S l ,Target,Pos,Size),
check_ target(S l ,S2, Target).

extract(S,S 1):-
search(S,'. ',Pos,Size),
rightx(S, Target,Pos,Size),
check_ target(S,S 1, Target).

check _target(S,S l,""):-

85

Sl=S,!.
check _target(_,S l ,T):
search(T,' ',1,Size),
rightx(T,T2, I ,Size),
Sl=T2,
set_flag(l).

check _target(_,S l ,T):
S 1 =T.

search(Src,C,Pos,Size):
str _len(Src,Size),
findc(Src,C,Pos,Size), ! .

findc(Str,_,_,_):
str _len(Str,O),fail.

findc(Str,C,Pos,Size):
frontchar(Str,Fc,Rest),
C=Fc,
str _len(Rest,Subl),
Pos=Size-Subl.

findc(Str,C,Pos,Size):
frontchar(Str ,_,Rest),
findc(Rest,C,Pos,Size).

rightx(Src, Trg,N _pos,Size):
setparam(N _Pos,Size,C _pos),
frontstr(C _Pos,Src,_,Trg).

setparam(N _pos,Size,C _Pos):
N _pos <= Size,
N_pos >= 1,
C _pos=N_pos, ! .

setparam(N _pos,Size,C _pos):
N _pos>Size,
C _pos=Size-1, ! .

setparam(N _pos,_,C _pos):
N_pos<l,
C_pos=O.

86

	A PROLOG Lexical Phrase Computer Assisted Language Learning Module
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1575495047.pdf.V7Rg_

