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ABSTRACT 

An abstract of the thesis of Rabih Khodor for the Master of Science in Electrical and Comput­

er Engineering presented December 10, 1996. 

Title: Equalization of a Non-Linear Phase of a Low-Pass Filter 

In practice, an IIR filter can distort the information content of the signal because of its 

inherent non-linear phase characteristics introduced through the design of the filter. If the 

the receiver of the signal is the human ear, e.g., when a speech or music signal is to be pro­

cessed, phase distortion is quite tolerable. But, in other applications it can be rejected as 

phase characteristics is required to be fairly linear. Applications of this type include data 

transmission, where the signal is to be interpreted by digital hardware, and image processing, 

where the signal is used to reconstruct an image that is to be interepted by the human eye. 

This thesis deals with the problem by introducing an all-pass equalizing filter, whose 

magnitude response is unity, in cascade with the given filter to produce the same filter magni­

tude but with a linear-phase instead. This accomplished by solving the problem of minimiz­

ing the approximation error for the group delay by using a suitable optimization algorithm, 

the free parameters (poles and zeros) are varied in a way to minimize the approximation error 

according to the assumed error criterion. Those set of parameters found after optimization 

determines the desired linear filter. 
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CHAPTER I 

INTRODUCTION 

1.1 Digital Filter 

A filter, As a circuit block, having an input and an output, that restricts the frequen­

cy range of the signals at the input. For example, we may have an input signal with a range 

of frequencies from 2 Hz to 36,000 Hz going into an amplifier, but only we want to use 

frequencies from 20 to 20,000 Hz, so we include a filter to remove unwanted frequencies. 

Due to the nonlinear phase response of a filter some frequencies are delayed more 

than others. If two sine-waves, of lkHz and 2 kHz, applied to the input of an ideal low-pass 

filter (We> 2 kHz) and because phase-shift varies linearly with frequency, the 2 kHz input 

suffers twice the phase shift of the 1 kHz input. But, both signals are delayed by the same 

time period as shown in fig 1.1 below. Therefore, if signals were in phase at the input of 

the filter they are still in phase at the output. Linear phase response is important in data 

transmission, to prevent pulse distortion. The phase response in Infinite Impulse Recursive 

(IIR) filters are in general quite nonlinear because of two reasons. First, the design meth­

ods used in Butterworth, Chebyshev, inverse Chebyshev, and Elliptic approximations are 

inherently nonlinear-phase approximations [18]. Second, the warping effect tends to in­

crease the nonlinearity of the phase response. As a result of this, the group delay tends to 

vary with frequency and the application of these filters tends to introduce delay distortion. 

Constant group delay filters can sometimes be designed by using constant-delay approxi­

mations such as the Bessel approximation with design methods that maintain the linea1ity 
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in the phase response, for example, the invariant-impulse-response method. But, a 

constant delay and a given loss specifications are usually hard to achieve simultaneously. 
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Figure 1-1 Phase shift and time delay .vs. frequency 

1.2 Recursive (IIR) Instead of Non-Recursive Digital Filter 

Recursive digital filters are commonly referred to as infinite impulse response 

(IIR) filters. The term recursive intrinsically means that the output of the digital filter, 

y(n)T, is computed using the present input, x(n)T, and previous inputs and outputs, name-

ly,x(n-l )T, x(n-2)T, . .. , y(n-l )T, y(n-2)T, ... , respectively. Whereas, Non-recur-

sive digital filters [24] have a weighting sequence (impulse response), g(n)T, which is fi-

nite in length, and consequently this type of filter is commonly referred to as a finite 

impulse response (FIR) filter. The term non-recursive intrinsically means that the output 

of the filter, y(n)T, is computed using the present input, x(n)T, and the previous inputs, 
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x(n-l)T,x(n-2)T, . . .,and furthermore the filter has no inherent feedback, which means that 

previous output values, y(n-l)T, y(n-2)T, . .. , are not used in the computation of y(n)T 

Recursive digital filters are generally more economical in execution time and storage re­

quirements compared with their non-recursive counterparts. However, some types of re­

cursive digital filter have non linear phase characteristics which may produce unacceptable 

waveform distortion. This type of filter is an attractive, economical and useful recursive 

digital filter in some simple applications. 

A non-recursive filter has some advantages 

(1) they are always stable because: 

(a) there is no feedback between output and input, and 

(b) the impulse response is finite; and 

(2) the non-recursive digital filter can have a linear phase characteristic, if the impulse re­

sponse satisfies the symmetry conditions, thereby eliminating the possibility of phase dis­

tortion in the output waveform. 

The other disadvantage of non-recursive filters is 

(1) compared with a recursive counterpart, a non-recursive filter will generally use more 

memory and arithmetic for its implementation 

1. 3 The All-Pass Filter 

Rather than think in terms of phase shift, many filter engineers concentrate on the 

group delays introduced by filters. In many ways , this is more logical since a filter with 

a delay that is independent of frequency will pass a waveform without distorting it. This 

is a very simple criterion to have for a filter since most filters [22] introduce delay distor­

tion, that is, their delay is a function of frequency, various tricks are used to cancel, at least 

in part, this time-dependent delay. 
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The all-pass filter is the answer to the question 'When is a filter not a filter?'. In 

audio frequency work, it often happens that a filter is used that has precisely the required 

amplitude response but introduces a delay that is frequency dependent. To correct this we 

need a 'filter' that has a flat amplitude response together with a counteracting delay. It is 

not possible tocancel out a delay, since that would involve going backwards in time. The 

idea is to add to an existing delay, so that the overall delay is independent of frequency. 

This is the purpose of all-pass filter. 

1.4 Delay Compensation 

The design of constant-delay digital filters satisfying given loss specifications is almost 

accomplished in two steps. First a filter is designed satisfying the loss specifications ignor-

ing the group delay. Then a delay equalizer is designed which can be used in cascade with 

the filter to compensate for variations in the group delay of the filter. 

Let H p(z) and H E(z) be the transfer functions of the filter and equalizer, respec-

tively. The group delays of the filter and equalizer are given by 

'tp(W) 

respectively, where 

d8p(W) 
= - dw and -rE(w) = _ d8E(w) 

e p( w) = arg Hp( ejwT) and e E( w) = arg HE( e.iwT) 

The overall transfer function of the filter-equalizer combination is 

Hp£(z) = Hp(z)HE(z) 

Hence IHFE( ejwT)I = IHp( ejwT)I IHE( ejwT)I 

and the overall phase response is 
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8p£(w) = 8p(w) + 8£(w) 

Then from the previous equation the overall group delay of the filter-equalizer combina-

tion can be written as 

Lp£(w) = 'tp(W) + L£(w) 

Therefore, a digital filter that satisfies prescribed loss specifications and has constant group 

delay with respect to some passband wpl ::; w ::; wp2 can be designed using the following 

steps: 

1. Design a filter satisfying the loss specifications using bilinear transformation 

and prewarping method. 

2. Design an equalizer with 

IHE( e.iwT)I = 1 

and 

-rE(w) = r - -rp(w) 

for 0 ::; w < Ws - 2 

for Wp1 ::; w ::; wp2 

where r is a constant. 

From step 2, HE(z) must be an allpass transfer function of the form 

M 1 + cljz + Cojz2 

HE(z) = n c . + C1·Z + z 
j =I OJ J 

The equalizer can be designed by finding a set of values for C Oj, C lj, r, and M such that; 

(a) -r E( w) = -r - -r p( w) is satisfied to within a prescribed error in order to achieve approxi-

mately constant group delay with respect to the passband, and (b) the poles of HE(z) are 

inside the unit circle of the z plane to ensure that the equalizer is stable. Equalizers can 

be designed by using optimization methods. 
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1.5 Desi~n of Recursive Delay Equalizers 

Consider a filter characterized by the transfer function 

J a . + a1 .z + a2l2 n OJ J 
Hp(z) = Ho b . + b

1
.z + b

2
iz 

i =I OJ J . 

(1.1) 

The group delay of the filter [22] is given by 

"tp(W) = - d8F (OJ) (1.2) 

Where 

Sp (w) = arg Hp (ejwT) (1.3) 

From Eqs. (1.1) and (1.2), we can show that 

J N.i (w) J 15.i (w) 
'tp (w) = - T I N. (w) + T I 

j=l J j=l 

(1.4) 

Where 

- - 2 2 Nj (w) - a2j - a0j + a1/a2j - a0j) cos(wT) 

N.i (w) = (a2j - a05 )
2 + afj + 2a1/a2j + a0j) cos(wT) + 4a0ja2fos 2wT 

- - 2 2 D-(w) - b2. - b0. + b1.(b2. - b0.) cos(wT) 
J J J J J ~ 

D/w) = (b2j - b0j) 2 + bfj + 2b1/b2:i + b0.i)cos(wT) + 4b0jb2fos 2wT 

The group delay of the filter can be equalized with respect to a frequency range 

w 1 ::5 w ::5 w 1 by connecting an all-pass delay equalizer in cascade with the filter. 

Let the transfer function of the equalizer be 

2 
M 1 + C1l + CojZ 

HE(z) = n c . + c 1 ·Z + z 
j=l OJ J 

(1.5) 



The group delay of the equalizer can be obtained as 

'te(c, w) = - d8e(C, w)/dw 

Where 

Hence 

Where 

8 e( c, w) = arg He( ejwT) 

M C/w) 
'te(c, w) = 2T L C.(w) 

j = 1 J 

C/w) = 1 - c~j + c1/1 - c0j)coswT 

C/w) = (1 - c0)
2 + cfj + 2c1_p + c0.i)coswT + 4c0fos 2wT 

c = [ Co1· C11• Co2· C12· ... 'C1M ]T 
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(1.6) 

The equalizer is stable if and only if the transfer function coefficients satisfy the relations 

coj<l, c1j - coj<l, c1j + coj > -1 For j=l ,2,3,. . ., M . 

The region of stability in the (co,c1)-plane is illustrated in fig 1.2. This may be referred 

to as the feasible region of the parameter space. 

The group delay of the filter /equalizer combination can be expressed as 

'tfE(c,w) = 'tp(w) + 'tE(c,w) 

Where 'tp(w) and 'tE(c,w) are given by Eqs. (1.4) and (1.6), respectively. 

c1 

1.0 co 

Figure 1-2 The shaded area is the feasible region of (co,c1)-plane 



The required equalizer can be designed by solving the optimization problem 

Where 

And 

Minimize x E(X) 

L 

E(x) = I1ei(x)l
2
q 

i=l 

eJx) = i TpE(x, wJ - -r0 

l X= [cT,-roJ T' to=T 

W 1 ::; W i ::; W L 

8 

(1.7) 

(1.8) 

(1.9) 

The gradient of lei(x)I , which is required for the evaluation of VW(x) can be obtained by 

using the derivatives of ei(x) , and Maple V to solve for the following equations: 

ae/x) _ Um+ U 11coswiT + U 21cos2wiT + U 31cos3wiT 

acm - [ c1( w) )2 

ae/x) V 01 + V 11coswiT + V 21cos2wiT + V 31cos3wiT 

~ = [c1(wi))2 

aei(x) = - 1 
dTo 

For 

where 

1=1,2,3, ... ,M and i=l,2,3, ... ,L 

Um = 4[(1 - cm)2 - cmcf1] , U 11 = - 2c 11(1 + 6cm + c~1 + cf1) 

U 21 = - 8(1 + c~1 + cf1), U 31 = - 8c 11 

V 01 = - 4c110 - cm)O + cm), 

V 11 = - 2(1 - cm)O + 6cm + c~1 + cf 1) 

V 21 = 0, V 31 = 8(1 - Cm)Cm 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

(1.17) 
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The chapter that follows will classifies and introduce some optimization tech­

niques for Multi-dimensional methods (Indirect and Direct). For instance, Unconstrained, 

Lagrange Multipliers (Indirect), Steepest Descent, Fletcher-Reeves, and Davidon-Fletch­

er-Powell (Direct). 



CHAPTER II 

CLASSIFICATION OF OPTIMIZATION ALGORITHMS 

2.1 Optimization Techniques 

Numerical optimization algorithms can be classified according to the number of design 

variables and further according to the nature of the design space. Figure 2-1. shows a small 

part of the different groups of un--constrained optimization techniques 

I Optimization Techniques l 

Multi-Dimensional 

Indirect Methods 

Unconstrained Indirect 

Lagrange Multiplier 

I Direct Methods 

Gradient Methods 

Steepest Descent 

Fletcher Reeves 

Davidon-Fletcher-Powell 

Figure 2-1 The group of Optimization techniques 
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2.2 MULTIDIMENSIONAL SEARCH METHODS 

At first thought the designer may think that the difference between multi-dimen­

sional search techniques and single-dimensional search techniques is only one of increased 

effort, and if the designer were willing to spend a bit more time in the calculation process 

he or she could extend single-variable methods to N-dimensional methods. Unfortunate­

ly, this is not true since the nature of multi-dimensional space is considerably different 

from one-dimensional space. For one thing, as the number of dimensions increases, the 

likelihood that the objective function will be unimodal decreases. In addition, the size of 

multi-dimensional space is overwhelming. For instance, if in one-dimensional space 19 

evaluations are needed to achieve f=O. l, then 361 evaluations will be required to achieve 

the same accuracy in two dimensions, 6859 in three dimensions, 130,321 in four dimen­

sions, and 2,476,099 in five dimensions. Since it is not uncommon to have five or more 

design variables in a general optimization problem, the seriousness of multidimensionality 

becomes painfully obvious. 

Traditionally, optimization methods in multidimensional space are classified in 

terms of two broad categories called direct methods and indirect methods. Direct methods 

uses a comparison of functional evaluation; indirect methods employ the mathematical 

principles of maximization or minimization. Direct methods try to establish a way to 'zero 

in' on the optimum; indirect methods try to satisfy the conditions of the problem without 

examining non optimal points. In the following paragraphs we look only at direct methods 

now in use for multidimensional optimization. 

2.2.1 Indirect Optimization 

The treatment in [25] of multi-dimensional optimization would not be complete 

without a discussion of the calculus of stationary points. For a multi-dimensional function 
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to have a minimum, a maximum, or a saddle point, it is necessary that all first derivatives 

with respect to each of the n independent variables be zero. Thus for the function 

M(x) = F(x1,x2, .. . ,Xn) 

a stationary point will satisfy 

aF _ aF _ aF _ 
:I" - 0, :I" - 0, ... , :I" - 0 
uX 1 ux2 uX11 

To determine whether a stationary point is a minimum, a maximum, or a saddle 

point, it is necessary to examine the second derivatives of the function. A better way to 

describe the nature of the second derivatives is by means of the Hessian matrix, which is 

of the form 

a2p 

ax2 
1 

a2p 

H . I dX1dX2 ess1an = 

a2p 
dXndX1 

a~ a~ 
ox1ox2 ········· ········· ··········· dX10Xn 

a2p 

ax2 
2 

a2p 
.............................. dX20Xn 

a2p 

ax2 
n 

A necessary and sufficient condition for a stationary point to be a local minimum 

is that its Hessian matrix be positive definite. This means that all its eigen-values will be 

positive. A necessary and sufficient condition for a stationary point to be a local maximum 

is that its Hessian matrix be negative definite. This means that all its eigen-values will be 

negative. One way to mechanize this information is shown in Figure 2-2. First the system 

of equations corresponding to then first partial derivatives is found. This system must be 

solved for all-possible sets of design values that satisfy the equations. If these equations 

are linear, the problem is straightforward since only one solution set will exist. If the sys-

tern is nonlinear, as is most often the case, there may be many solutions sets. Once the solu-

tion sets are isolated, the designer must discard all the solution sets that are not of the de-
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sired extremum type. This requires a check of the eigen-values of the Hessian matrix of 

second partial derivatives evaluated at each of the solution design points. Once the solution 

sets have been reduced to a final group, the designer must check to see which of the group 

has the most desirable objective value. This one will be declared the optimum. 

Solve a system of N equations 
for N unknowns i:. = Oi = 1,2,3, .. . N 

l 

~ 

For each solution check 
the Hessian matrix 

~ 
Ignore any solution that 
is not of the proper 
extremum type 

! 
Choose the best solution 
from among those remaining 

Figure 2-2 The indirect method of optimization 

Although the previous technique does seem mathematically straightforward, it is, 

in fact, not extremely practical since the optimum in many design situations will occur at 

a boundary rather than at a stationary point. The technique does point out the need for meth­

ods to extract eigen-values and for methods to solve systems of nonlinear algebraic equa-

tions. 

One interesting extension of the technique of stationary points is the method of La-
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grange Multipliers. This technique has the advantage of allowing equality constraints of 

the form 

Ql(X1,X2, ... , Xn) = 0 

Qj (x 1,x2, ... , Xn) = 0 

to be satisfied in the optimization process. To facilitate the solution of this problem, a new 

objective function must be formed that is linear combination of the old objective function 

and each of the constraint equations multiplied by a unique constant. This new objective 

function will be 

M(xi,J..i) = F(xi) + J.. 1Q1 + J.. 2Q2 + ... + J..1Q; 

The Aj values are called Lagrange multipliers and are said to be treated as additional 

unknowns to be determined in the solution process. Thus the system used to locate station­

ary points consists of j + n equations and j + n unknowns. If each of the constraints is satis­

fied, the additional Aj terms each contribute nothing to the new objective function. In this 

case the optimization of Mis equivalent to the optimization of F. It should be noted that 

in the equations to be solved for the stationary point, the partial derivatives of the new ob­

jective function with respect to the unknown Lagrange multipliers revert to the constraint 

equations. 

2.2.2 Direct Optimizations 

A large number of direct multi-dimensional optimization algorithms depend in 

some way on gradient information. The basis for this fact can be seen in a simple illustra­

tion. Suppose that a mountain climber was blindfolded and told to climb to the top of a 

single peak mountain. Even without the benefit of being able to see the peak, the climber 
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could reach the top simply by remembering always to walk uphill. Since any rising path 

will eventually lead to the top, the path where the slope is steepest is the best, provided that 

the climber does not encounter a vertical cliff that he or she cannot scale. (The mathemati-

cal equivalent of a cliff would be a ridge caused by a constraint in the surface in question.) 

For now it will be assumed that the optimization problem is unconstrained. The optimiza-

tion equivalent of the steepest path idea is known as the method of steepest ascent or the 

method of steepest descent. The gradient vector is perpendicular to a contour and can be 

used to locate a new design point. To understand the logic behind the gradient methods, 

it is better to look into the nature of the gradient. Consider a system of independent unit 

vectors ei, e1, e3, ••• , en that are parallel with the design variable axes X1 , X2 , X3, ..• , x". 

The gradient vector for a general objective function F(xi. x2, x3 , ••• , .x,,) will be of the form 

. _ _ aF aF aF 
gradient - V'.F - -a- e1 +-a e2 + ... +-a en 

X1 X2 Xn 

where the partial derivatives are evaluated at the point being considered. This vector points 

in the upward or ascent direction and its negative points in the descent direction. The unit 

gradient vector is often written as 

where 

V'.F ---ge+ + IY'.FI - I I g2e2 · · · + gnen 

gi = 

aF 
axi 

n [( 2]1/2 

j~ ~[,) 
In some cases the nature of the objective function is better known to allow differ-

entiation to calculate the gradient vector components. If the partial derivatives can not be 

found in this way, they may be approximated by central finite difference formula to get 
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aF F(x]' X2, ... , xi + A.xi, ... , Xn) - F(xI, X2, ... ,Xi - A.xi, ... , Xn) 
~ = ~-'-~=--~~~~~~~~~~~~---=;..._--=-~~~~~~~~~~ 
~- 2Ax· l l 

where Ax; is a small difference along the x; direction. Once the gradient direction is known, 

it can be used in a variety of ways to implement a search strategy. In the chapter III and 

IV we will introduce and develop the different optimization methods that can be used to 

minimize a general function of n-variables starting from the steepest descent to Fletcher 

and Reeves, and up to the variable metric method of Davidon, Fletcher, and Powell. 



CHAPTER III 

STEEPEST ASCENT BY STEPS 

Some search methods move a fixed step up the gradient and recalculate the func-

tion. If an improvement has been found, a new gradient is calculated and the procedure 

is repeated, often with an increased step size. If no improvement or a negative improve-

ment is found, the step size from the previous best point is decreased and the procedure 

is repeated. The process continues until no improvement can be found by decreasing the 

step size. Some search methods use the data about the gradient to perform a one-dimen-

sional search along the direction of the steepest ascent or descent using the equation 

xi+ I = xi + .AS. 
l 

where .A is the new one-dimensional step-size parameter along the unit gradient s
1

• am! 

where xi+ 1 is the new point of search in the direction of the gradient and xi is the old point. 

The unit gradient vector for the direction of steepest descent is: 

s -
I 

_ aF 
dX; 

j~ [(~~)'r 
1= I, 2, 3, ... ,n 

Once the one-dimensional optimum along the gradient has been achieved, a new 

gradient is found and the process is repeated until no further improvement can be found. 

The primary advantage of this method is that the parameter .A may be used as the indepen­

dent variable for a Fibonacci search, Quadratic or Cubic Interpolation search, and thus the 

method tends to be efficient. One of the principal advantages of the steepest gradient meth­

ods is their ability to avoid saddle points on the objective surface. It should be noted that 
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the gradient techniques will find only local optimum when applied to multimodal (many 

peaks) surfaces. For this reason, if the nature of the surface is not well known, several start -

ing points should be considered to see if every start leads to the same optimum. Another 

difficulty that can restrict the efficiency of the gradient methods occurs when the technique 

encounters a ridge. Since a ridge represents a discontinuity in the slope of a contour line, 

it tends to give false information on the proper direction to move. Thus the search tech-

nique may slow down and zigzag back and forth across the ridge, making progress toward 

the optimum quite slow. In some cases the severity of this performance on a ridge is so 

slow that the algorithm must be abandoned. In reality, a large number of objective surfaces 

associated with problems from engineering design have one or more ridges. These ridges 

often point toward the optimum. 

Thus the complexity associated with ridges can sometimes be turned into an advan-

tage. Whenever a ridge is encountered, the best direction to move is along the 1idge rather 

than in the direction of the local gradient. 

3.1 STEEPEST DESCENT METHOD 

The use of the negative of the gradient vector as a direction for minimization was 

first used by Cauchy in 1847. In this method, we start from an initial guess point x1 and 

iteratively move towards the optimum point according to the equation 

xi+ 1 = xi + }. ; Si = xi - J. tv fi 

where ;.; is the optimal step length along the search directionSi = - Vfi The flow chart 

of this method is shown in Fig 3-1. The method of steepest descent may appear to be the 

best unconstrained minimization technique since each one-dimensional search starts in the 

"best" direction. However, because of the fact that the steepest descent direction is a local 

property, the method is not really effective in most of the problems. 
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In two-dimensional problems, the application of the steepest descent method leads 

to a path made up of parallel and perpendicular segments as shown in Fig. 3-2. It can be 

seen that the path is a zig-zag in much the same way as the one-dimensional method 

Seti = i + 1 

Start with X1 
Set i=l 

Find the search direction Si = - V' Fi 

Find Ai to minimize F(Xi + A.iS) 

* Set X-+ 1 = x. +A. .s. 
l I I I 

No 

Take Xopr = Xi+ 1 and Stop 

Figure 3-1 Flow chart for the steepest descent method 

In higher dimensions, the path may not be made up of parallel and perpendicular 

segments and hence the method may have different characteristics than the one-dimen-

sional method. For functions with great eccentricity, the methods converge into a steady 

n-dimensional zig-zag and the process will be unbearably slow. On the other hand, if the 
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contours of the objective function are not very much distorted, the method may converge 

faster as shown in Fig.3-2. The following criteria for terminating the iterative process can 

be used: 

X2 

L_--=----=::::~X1 
Figure 3-2 Convergence of steepest descent method showing 

the parallel and perpendicular segments 
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(i) ~(Xi+ i) - f(X;) 
1- !(Xi) I :::; EI (3.1) 

( .. ) I a1 I < . - 1 2 
11 <Jxi - E2, l - ' ' ... 'n (3.2) 

(iii) I xi+i - xi I :::; E3 
(3.3) 

3.2 MODIFICATION OF THE METHOD 

A lot of changes have been suggested over the years to accelerate the convergence 

of the steepest descent method. One of these changes is based on the concept of using the 

search direction 

si = xi - xi-l. i ~ 2 (3.4) 

from time to time instead of using the direction - v J(XJ always. This modifica­

tion was suggested by Forsythe and Motzkin [26]. The benefit expected from this change 

can be seen from Fig. 2. Notice that the search directions defined by Eq. (3.4) lie in the 

general direction of the minimum and therefore one can expect to achieve a faster conver-

gence by moving along these directions occasionally. 

Another change was suggested by Shah [17], which can be considered as an exten­

sion of the previous idea. In this method, the search directions are taken alternately as the 

steepest descent direction and the direction given by an equation similar to Eq. (3.4). This 

method is called a gradient based PARTAN (parallel tangents) method. The algorithm of 

this method can be stated as follows. 

(i) Start with an initial point X 1• 

(ii) Search for the minimum along the direction S1 = - VJ (X1), and set the new point 

as: X2 = X1 + /....~ S1. 
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(iii) Search along the direction S2 = - VJ (X2)., and obtain the new point X3• 

(iv) Find the next search direction as S3 = (X3 - X1), and obtain the new point X4 . 

(v) Take the new search direction as 

{
- Vf(Xi) for i = 4, 6, 8, ... , 2k 

s. = 
1 (xi - xi_ 2) fori = 5,7,9,. .. ,2k - 1, 

and find the new point as X;+i = X; + 1'.;*S; where"-;* is the optimal step length in the direc-

tion S;. 

It was shown that this method is a type of conjugate direction method by Pierre 

(14]. But, Sorenson [27] has shown that this gradient based PARTAN method is less effi-

cient compared to the conjugate gradient method while minimizing a quadratic function. 

3.3 FLETCHER-REEVES METHOD 

The convergence of the steepest descent method can be greatly improved by chang­

ing it into a conjugate gradient method. It has been shown that any minimization method 

that makes use of the conjugate directions is quadratically convergent. This characteristic 

of quadratic convergence is very useful because it ensures that the method will minimize 

a quadratic function inn steps or less. Since any general function can be approximated by 

a quadratic near the optimum point, any quadratically convergent method is expected to 

find the optimum point in a finite number of iterations. 

3. 3 .1. Development of the Conjugate Gradient Method 

The technique used in the development of the conjugate gradient method is similar 

to the Gram-Schmidt orthogonalization procedure. This technique sets up each new 

search direction as a linear combination of all the previous search directions, and the newly 

found gradient. 
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If the search directions in the minimization process, SI> S2, S3, ••• , S;, are mutually 

conjugate with respect to matrix A of the quadratic function f(X) = !xTAX + Brx + c. 

Then SfV!i+l = 0 fork= 1,2, .... ,i 

The gradient of the functionf, calculated at the point X;+ 1, is given by 

Vfi+l =A Xi+l + B 

Since X;+i is reached after i minimization steps, it can be written as 

Xi+I = X1 + A.i S1 + t..; S2 + ... + A.k: Sk + A.k:+1 Sk+l + ... + t..7 Si 

i 

= xi+1 + I t..j sj 
j=k+l 

(3.5) 

(3.6) 

where J....t is the minimizing step length in the direction s1 . In view of Eq. (3.5), Eq. (3.6) 

becomes Vfi+i =A [xk+i + I t..j sj] + n 
j=k+l 

i 

= Vik+ 1 + I t..j A sj 
j=k+l 

Multiplying both sides of Eq. (3.7) by sr, we get 

I 

T~ _ T~ ~ ~ * T Sk v'fi+l - Sk v'fk+l + L l\,j Sk A Sj 
.i=k+l 

(3.7) 

(3.8) 

The first term on the right-hand side of Eq.(3.8) is zero since A.: is the minimizing 

step length along the direction Sk, and the second term is zero since the search directions 

s1, S2, S3, ••• , S; are given to be A-conjugate. Therefore, we get the desired result 

SfV!i+l = 0, for k = 1,2, ... ,i (3.9) 

3.3.2. Developing The New Algorithm 

We are going to change the steepest descent method applied to a quadratic function 
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f (X) = ~ xr AX + Br X + C in the development of a new algorithm by forcing the condi-

tion that the successive directions be mutually conjugate. Let X1 be the starting point for 

the minimization and let the first search direction be the steepest descent direction. 

Then 

SI = - \7 JI = - A XI - B (3.10) 

and X2 = XI + A.iSI (3.11) 

where 1..r is the minimizing step length in the direction S 1 so that 

Sf Vflx2 = 0 (3.12) 

Equation (3.12) can be expanded as 

sr{A(xI +A.]" s1) + B} = 0 
or 

T 1* T T SI A XI + rq SI A gI + SIB = 0 

from which the value of A.]" can be obtained as 

* - Sf(AXI + B) _ Sf VfI 
J...I = Sf AgI - Sf ASI (3.13) 

Now express the second search direction as a linear combination of S1 and - Vf2 as 

S2 = - Vf2 + ~2 SI (3.14) 

where ~2 is to be chosen so as to make SI and S2 conjugate. This requires 

Sf A S2 = 0 (3.15) 



Substituting for S1 from Eq. (3.14), Eq. (3.15) becomes 

Sf A( - \lj2 + ~ 2 S1) = 0 

Since Eq. (3.11) gives 

(X2 - X1) 
S1 = Ai 

Eq. (3.16) can be written as 

T - (X2 - X1)T ( ) -
sl A S2 - - l * A \lf2 - ~2sl - 0 

1 

The difference of the gradients (\lf2 - \lf1) is given by 

(\!Ji - \lf1) = (AX2 + B) - (AX1 + B) = A(X2 - X1) 

From Eq. (3.19), Eq. (3.18) can be written as 

T 
(Vf2 - Vf1) (Vf2 - ~2 S1) = 0 

v/fv12 - v11T\!f 2 - ~1v1[s1 + ~1v1rs1 = o 
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(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

Since \ljr\lj2 = - SfVJi = 0 from Eq.(3.5), this equation gives the value of ~ 2 as 

(3.22) 

Next we let the third search direction as a linear combination of S1, S2 and - \lj3 as 

S3 = - Vf-,, + ~3S2 + 63S1 (3.23) 

where the values of ~3 and 63 can be found by making S3 conjugate to S1 and S2. 

First we consider 

sf AS3 = - sfAVf3 + ~3SfAS2 + 63SfAS1 = 0 (3.24) 

If we assume that S1 and S2 are already made conjugate, Sf A S2 = 0, and Eq .(3.24) 

gives 

STA \lf3 
1 

b3 = cTAS1 
1 

(3.25) 
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From Eq. (3.17), 63 can be expressed as 

(X2 - X 1) AVJ3 
b3 = 1 * STAS 

1 1 1 
(3.26) 

By using Eq. (3.19), Eq. (3.26) can be rewritten as 

T 

1 (Viz - Vf1) 'Vf-,, (3.27) 
b3 = 1* STAS 

11.1 1 1 

Since S1 = - Vf1 from Eq.(3.10), and S2 - ~ 2S 1 = - Vf2 from Eq.(3.14), we obtain 

'Vf2 - Vf1 = - S2 + S1(1 + ~z) (3.28) 

and Eq.(3.27) gives 

T 
b _ 1 {- S2 + S1(1 + ~z)) 'Vf3 

3 - A.* STAS 1 1 1 
(3.29) 

which we can deduce that Eq. (3.29) is equal to zero because of Eq. (3.9). Therefore 

Eq. (3.23) becomes S3 = - 'Vf3 + ~3S2 (3.30) 

The value of ~3 can be found by making S3 conjugate to S2. However, instead of 

finding the value of a specific~' we can derive a general formula for ~i' i = 2, 3, ... 

By generalizing Eq. (3.30), we can express the search direction in the ith step, 

Si, as a linear combination of - \!fi and Si_ 1, that is, 

s. = - \!+. + f.l. s. 1 
1 Ji 1-'1 1-

where the value of ~i can be found by making Si conjugate to Si-las 

v1rv1i 
f3i = Vff_ 1Vfi-l 

(3.31) 

(3.32) 

The search directions that have been considered so far, Eq. (3.31), are exactly the 

directions used in the Fletcher-Reeves method. 
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3.3.3 The Fletcher-Reeves Algorithm 

Using ofEqs. (3.31) and (3.32) for the minimization of general functions was first 

suggested by Fletcher and Reeves [10]. Let us state their algorithm briefly as follows: 

(i) Begin with an arbitrary initial point x1 

(ii) Let the first search direction s1 = - Vf(X1) = - \lf1 

(iii) Determine the point x2 according to the equation X2 = X1 + 'Ai S1 where /...{ is the 

minimum step length in the direction of S1 • Let i=2 and go to the next step. 

(iv) Determine \lf; = \lf(X;), and let 

S; = - \If;+ (I \!Ji 12/I \!fi-I 12) Si-I (3.33) 

(v) Calculate the minimum step length 'At in the direction of S;, and determine the new 

point Xi+l = X; + /...;* S; 

(vi) Test if the point X;+i is the minimum point. If the point is minimum, stop the process. 

Else, let the value of i = i + 1, and repeat steps (iv), (v) and (vi) until the convergence 

is achieved. 

The Fletcher and Reeves method was originally proposed by Hestenes and Stiefel 

[15] as a method for solving systems oflinear equations derived from the stationary condi­

tions of a quadratic. Since the directions S; used in this method are A-conjugate, the pro-

gram should converge in n-times or less for a quadratic function. But, for ill-conditioned 

quadratics (i.e. which possess a highly eccentric and distorted contours), the program may 

take more than n-times to converge. The reason for this has been found to be the total effect 

of rounding errors. Since S; is given by Eq.(3.33), any error as a consequence of the inaccu-

racies involved in finding /...(',is rippled through the vector S;. Thus the search directions 

S, will be progressively effected by these errors. Hence it is better to restart the method 

periodically after every m=n+ 1 steps, where n is the number of design variables, by taking 
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the new search direction as the steepest descent direction. Inspite of this, the Fletcher and 

Reeves algorithm is greatly superior to the steepest descent method, but it is rather less effi­

cient than the quasi-Newton and the variable metric methods, which we will consider in 

the next chapter. 



CHAPTER IV 

QUASI-NEWTON METHODS 

All the local minimax* of a continuously differentiable function/ satisfy the nee-

essary conditions 

g(X*) = \lj(X*) = 0 (4.1) 

Eq.(4.1) represents a set of n nonlinear equations which must be solved to get x*. One 

approach to the optimization off (X) is, to seek the solutions of the set of Eqs .( 4.1) by 

including a provision to ensure that the solution found does indeed correspond to a local 

minimum. The oldest method for solving a set of nonlinear equations is the Newton's 

method. We shall consider this method briefly and then turn to a class of methods which 

can be called "Quasi-Newton" methods since they can be regarded as approximations to 

the Newton's method in some sense. 

4.1 NEWTON'S METHOD 

To solve the system of nonlinear Eqs. (4.1) by the Newton's method, we first linea-

rize the set of equations about some point Xi (which is the ith approximation to the mini-

mum point X\ Thus if x* can be written as x* = Xi + S, the Taylor's series expansion 

of g(X*) gives 

g(X*) = g(Xi + S) = g(Xi) + Jx. S + · · · 
J 

(4.2) 

By neglecting the higher order terms in Eq. (4.2) and setting g(X*) = 0, we obtain 

gi +Ji s = 0 (4.3) 

where gi = g(Xi) and Ji = JI x is the matrix of second partial derivatives off evaluated 
J 
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at the point X;. 

If Ji is non-singular, the set of linear equations, Eqs. ( 4.3), can be easily solved for 

the vector g, and the desired minimum can be obtained as x* = Xi + S. Thus, Eqs. (4.3) 

give g = - Ji-ls (4.4) 

However, in general, the higher order terms in Eq. (4.2) are not negligible and 

hence an iterative procedure has to be used to find the improved approximations. The itera-

tive scheme is given by 

X-+ 1 = x. + s. = x. - J:- 1 g· 
l l l l l l 

(4.5) 

The sequence of points X1, X2, · · · , Xi+ 1 can be shown to converge to the actual 

solution x* from any initial point X1 sufficiently close to the solution x*, provided that 

J 1 is non-singular. These conditions are, however, very restrictive and the method fre-

quently fails to converge. If f (X) is a quadratic, we can find its minimum in a single step 

by using Eq. (4.5) since the Taylor's series expansion is exact. This can also be proved as 

follows: 

If f(X) = ! XT AX + BT X + C 

the minimum of f(X) is given byX* = - A - 1B. The iterative step of Eq. (4.5) gives 

Xi+l = xi - A -l (A xi+ B) (4.6) 

where X; is the starting point for the ith iteration. Thus Eq. (4.6) gives the exact solution 

X - x* - A- 1B i+l - - - . 

Lets try to minimize the function f(x 1,x2) = x1 - x2 + 2xiX2 + 2~i + x~, using Newton's 

Method, by starting with the point X1 = (0, O) . To find X2 according to Eq. ( 4.5), we need 

J1 1 where 
[ 

a
2

f a
2

f ] _ axi ax1CIX2 
J 1 - azf azf 

ax2ax1 ax~ 
X1 

= [ i ~] 
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• _ 1 1 [ + 2 - 2] [ + 0.5 - 0.5] A 
.. J 1 = 4 - 2 + 4 = - 0.5 + 1.0 . s 

_ [at/ax1] [ 1 + 4x1 + 2x2 ] [ 1 J gl - at/ axz = - 1 + 2x, + 2x2 = - 1 ' Equation ( 4.5) gives 
X1 ~~ 

X2 = X1 - J - t g1 = [ ~ J - [ _ i·.~ - 0i5 
] [ _ i J = [ 1.51] , To see whether X 2 is the 

optimum point or not, we evaluate 

_ [at I ax,] _ [ 1 + 4x, + 2x 2 ] _ [ o ] 
g2 - at I OXz - - 1 + 2x, + 2x2 - 0 . 

Xz (-1,1.5) 

As g2 = 0 , X 2 is the optimum point. Thus the method has converged in one iteration for 

this quadratic function. 

If f (X) is a non-quadratic function, the Newton's method may sometimes diverge, 

and it may converge to saddle points and relative maxima. The method can be improved 

considerably by modifying Eq. ( 4.5) as 

- i* - * -1 xi+1 - xi+ "'isi - xi - ;.i J; gi (4.7) 

where ;.; is the minimizing step length in the direction Si = - J;- 1g; . 

Let us apply the same method to minimize this non-quadratic function of two vari-

ables: f(x 1,x2) = - 1/{xi +xi+ 2) from the starting point X 1 = (4, 0) . The gradient g and 

the Hessian matrix J off are given by 

[
at/ ax,] 2 [x'] 

g = at/oXz =(xi +x~ + 2)2 Xz and 

J = 2 [ { - 3xi + x~ + 2) ( - 4x iXz) ] 

(xi + x~ + 2 )3 
( - 4xiX2) { - 3x~ +xi + 2) At X1 = [ 6} 

- [0.0247] J - [- 0.01580 0 ] d 
g - O ' - O 0.00617 ' an 
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J-1= 1 [0.00617 0 ]-[-63.4 0] . 
( - 0.0000975) O - 0.01580 - o 162.0 Hence Eq. (4.5) gives 

X2 = x1 - J)1 g1 = [5.g7]. If we compare the values off at X1 and X2, we find that 

f 1 = - 0.0556 and f 2 = - 0.0303. Thus f 2 is greater than f 1 and therefore the method is 

diverging (true minimum point is x• = [~] with f = - 0.5 ). But, if we use Eq. (4.7) 

instead of Eq. ( 4.5 ), the method can be made to converge to the minimum point.There 

is a number of advantages to this modification. First, it will converge to the minimum point 

in steps less than the original method. Second, it converges to the minimum point in all 

the cases whereas the original method may not converge in some cases. Third. it doesn't 

converge to a saddle point or a maximum. This method seems to he the most powerful 

minimization method. But, in spite of these advantages, this method is not generally used 

in practice because of these problems. 

(a) we need to store the ( n x n ) matrix J;, 

(b) it gets tedious and sometimes, impossible to compute the elements of the ma-

trix J;, 

(c) it requires the inversion of the matrix J; at each step, 

(d) it requires the evaluation of the quantity Ji-lg; at each step. 

For a large number of variables of complicated functions, the above problems make 

the Newton's method impractical. Since the Newton's method uses the second derivatives 

of the function, the method is sometimes called a second order method. The methods that 

use the first order derivatives of the function are called first order method, like the steepest 

descent and Fletcher-Reeves method. Just like the differences in the function value con-

tain information about the first derivatives, the differences in the gradient value contain 

information about the second derivatives. We can reduce the work by using the idea in-
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valved in computing J; in the Newton's method. If X; and X;~i are the approximations to 

the minimum obtained in two consecutive iterations, we can obtain, using Eq. (4.2), 

g(X*) = g(Xi + S) = g(Xi) + Jx S 
I 

(4.8) 

where x* = x. + s 
I (4.9) 

By denoting the new point found from the Newton's iteration as X;+i instead of x*, 

we can change Eqs (4.8) and (4.9) to : 

gi+1 - gi = Ji s = Ji (xi+1 - xi) (4.10) 

If we define 

Gi = gi+I - gi S· = X. I - X. 
I 1+ I ( 4.11) 

and Eq. (4.10) becomes 

G. = J.s. 
I I I 

or s. = J.- 1 G. 
I I I (4.12) 

provided that the matrix J; is non-singular. Equation ( 4.12) let us use the gradient differ-

ences to build up an approximation either to the matrix J; or to its inverse J;- 1
. 

To form the iterative procedure of quasi-Newton methods, let 

Si=HiGi, i=l,2, ... ,k (4.13) 

where H; is the approximation to J;- 1 in the ith step (we can choose an appropriate 

H 1 to start the iterative procedure). If we assume that Eq. (4.13) is satisfied in the (k+ l)th 

step also, we have 

Sk+I = Hk+I Gk+I = Hk+l (gk+2 - gk+l) (4.14) 

such that if the point Xk+ 2 found at the end of (k+ 1 )th step is to be a stationary point, 

we need to have gk+ 2 = 0, and Eq. (4.14) reduces to 

Sk+I = - Hk+I gk+l (4.15) 

clearly the above assumption is not true, in general, and the point Xk+ 2 may be a 

bad approximation to a stationary point. Therefore, we use Eq. (4.15) as a direction of 



search and find the new point Xk+z as 

Xk+2 = Xk+I + Sk+I 

where Sk+ 1 = - A.~+ 1 Hk+ 1 gk+ 1 

34 

(4.16) 

(4.17) 

where A.~+ 1 is the minimizing step length along the direction - Hk + 1 gk + 1. All the qua­

si-Newton methods are based on Eqs. (4.16) and (4.17). They differ from one another 

only in the methods they use in constructing Hk to satisfy Eq. (4.13), and in choosing A.~ 

in Eq. ( 4.17). The method of constructing Hk completely eliminates the need for evaluat­

ing second derivatives and performing matrix inversions and yet the sequence of iterations 

converges to the minimum point x*. In addition to that, we can show that the matrix, Hk, 

which is improved at each iteration, converges to J i- 1. In the following section, we will 

see one specific quasi-Newton method developed by Davidon, Fletcher, and Powell, also 

called the Variable Metric Method, is an optimization algorithm for finding the uncon­

strained minimum of a multivariable objective function of the form 

Objective = F(x1, x2, ... , Xn) 

derivatives of the objective function with respect to the independent variables are neces­

sary. Since the algorithm is based on the assumption of unimodality (having one peak 

or a valley), several alternative starting points are recommended if the objective surface 

is suspected to be multimodal. 

4.2 DAVIDON-FLETCHER-POWELL METHOD 

Very important developments have happened in the area of descent techniques with 

the introduction of the variable metric method by Davidon [16]. This method was ex­

tended by Fletcher and Powell in 1963 [9]. This method is the best general purpose uncon-



35 

strained optimization technique making use of the derivatives that is currently available. 

The iterative procedure of this method can be stated as follows: 

where 

(i) Start with an initial point X1 and an by n positive definite symmetric matrix 

H 1. Usually H 1 is set at the start of the iterative process to equal the identity 

matrix I. Set iteration number as i=l. 

(ii) Compute the gradient of the function, \lfi, at the point Xi, and set the search 

direction to : 

s. = - ff.\/+. 
l l Ji (4.18) 

(iii)Determine the optimal step length t..; in the direction Si and set the next point 

to: 

Xi+l = Xi+t..7Si ( 4.19) 

(iv)If the new point Xi+ 1 optimal, stop the iterative procedure. Otherwise, go to 

step (v). 

( v) Update the Hessian matrix H as 

and 

Hi+t = Hi+ Ai+ B; 

s.s! * l l 

A·=Ai STQ. 
l . l 

l 

B-= l 

(Hi Qi) (Hi Q;) 
QfH;Qi 

T 

Q; = 'Vf(Xi+1) - 'Vf(X;) = 'Vfi+I - 'Vfi 

(vi)Set the new iteration index k = i + 1, and go to step (ii). 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

The above method of Davidon-Fletcher-Powell was originally considered to be 

a variable metric method by Davidon. It can be considered as a quasi-Newton method and 
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also as a conjugate gradient method. This method is very powerful and converges quadrati-

cally because it is a conjugate gradient method. It is very stable and continues to move 

towards the minimum even while minimizing very distorted and eccentric functions. This 

stability of the method can be owed to the fact that the information obtained in previous 

iterations is carried through the matrix Hi. 

This method can be put to the test against a special function of Rosenbrock called 

the Banana Function. Although it is simple mathematically, the Rosenbrock objective 

function 

v = lOO(x - x 2) 2 + (1 - x )2 
. 2 1 I (4.24) 

contains a curved valley as shown in Figure 4-1. its contour plot is also shown in Figure 

4-2. The minimum location lies at the point ( 1.0, 1.0); however, if a starting value in the 

second quadrant is selected, convergence can sometimes be difficult to achieve. The algo­

rithm uses a special scheme proposed by Davidon to perform the one-dimensional search 

for an optimum along the gradient line. This special search scheme is done in two phases. 

4.2.1 Cubic Interpolation Technique 

In the first phase extrapolation moves are made to bracket the location of the one­

dimensional optimum. Then a cubic interpolation method based on a third-order polyno­

mial approximation to the function is used to locate the best possible value within the 

brackets. 
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This technique [ 1 O] solves the problem of finding the minimizing step length A* in four 

stages. It makes use of the derivative 

f (A) = ! = ~f(X +Ag) = gTVJ(X +Ag) (4.25) 
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The first stage normalizes the g vector so that a step size A = l is acceptable. The 

second stage establishes bounds on A.*, and the third stage finds the value of A.-* by approxi­

mating f(/.) by a cubic polynomial h(/.). If the 1.-* found in stage three does not satisfy the 

prescribed convergence criteria, the cubic polynomial is refitted in the fourth stage. 

Stage 1: Calculate :L = max I g i I 
i 

where I g i \ is the absolute value of the ith component of g, and divide each component of 

g by :L. Another type of normalization is to find 

:L = (gi + g~ + g~ + ... + g~) 1/2 (4.26) 

and divide each component of g by :L. 

Stage 2: To establish lower and upper bounds on the optimal step size A*, we have 

to find two points A and B at which the slope df/dA has different signs. We know that at 

l.=0, 

rlJ, I = g TVJ(X) < 0 , Since g = - Vf(X) 
UA A=O 

(4.27) 

since g is assumed to be a direction of descent. i.e., the angle between the direction of steep-

est descent and g will be less than 90°. Hence, to start with, we can take A= 0 and try to 

find a point A.= B at which the slope dfldA is positive. The point B can be taken as the first 

value out of to, 2 to, 3 to, 4 t0 , 8 to, ... at which f is nonnegative, where t0 is a preassigned 

initial step size. It then follows that A* is bounded in the interval A < A.* < B as shown in 

(Fig 4-3). 
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f(A.) 

0 A B 
Figure 4-3 Minimum ofj(A) lies between A and B. 

Stage 3: If the cubic equation 

h(A) = a + bA + cA 2 + dA 3 (4.28) 

is used to approximate the functionflA.) between the points A and B, we have to find the 

values 

I df I df . 
fA = f(A =A), fA = dA (A =A), fs = f(A = B) andfB = dA (A = B) m order 

to evaluate the constants, a, b, c and d in the cubic equation above Eq.(4.28). By assuming 

that A¥:- 0, we can derive a general formula for A.-*. From Eq.(4.28), we have 

where 

f A = a + bA + cA 2 + dA 3 

f B = a + bB + cB 2 + dB 3 

fA = b + 2cA + 3dA 2 

fB = b + 2cB + 3dB2 

Equations ( 4.29) can be solved to find the constants as 

a = fA - bA - cA 2 - dA 3 

(4.29) 

(4.30) 



and 

where 

i.e., 
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b- 1 [2' , - (A - B)2 B fA + A 2
fs + 2ABZ] (4.31) 

c = - (A~ B)2[BiA + Ais +(A+ B)Z] (4.32) 

d - 1 [, 
- 3(A - B)2 fA +is + 2Z] (4.33) 

Z = 3~A - !~) + VA +is] (4.34) 

The necessary condition for the minimum of h(A.) given by Eq.(4.28) is that 

dh = b + 2d + 3dA 2 = 0 
d). 

,( = - c ± (c2- 3bd)1/2 
3d 

(4.35) 

(4.36) 

Application of the sufficiency condition for the minimum of h(J...) leads to the condition 

* 
d2h I = 2c + 6df. > 0 
d).2 .( 

(4.37) 

By substituting the expression for b, c and d given by Eqs.(4.30) to (4.33) into Eqs. 

(4.36) and (4.37), we obtain 

,( = A + lfA + Z ± Q) 
(/A + fs + 2Z) (B - A) 

(4.38) 

where 

Q = (Z2 
- iAis) 1/ 2 (4.39) 

2(B - A)(2Z + iA + is)lfA + Z ± Q) 

- 2(B - A)<./} + Zis + 3ZiA + 2Z2) 
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- 2(B + A)J~fs > 0 (4.40) 

By specializing the Eqs.( 4.30) to ( 4.40) to the case where A = 0, we obtain 

a= fA 

b =!A 

j_' (IA+Z±Q) 
=B fA+fs+2Z 

(4.41) 

and Q = (z2 - /A/s)1;2 > o (4.42) 

where Z = 3(fA; fs) +/A + /s (4.43) 

The two values of A.-* in Eqs.( 4.38) and ( 4.41) correspond to the two possibilities for the 

vanishing of h'(J..), i.e., at a maximum and at a minimum. 

In order to avoid imaginary values for Q, we should ensure the satisfaction of the 

condition 

2 I I 

Z - fA!s ~ 0 (4.44) 

in Eq. (4.39). This inequality is automatically ensured as we are assuming fA < 0 and 

.fB :::::: 0. Furthermore, sufficiency condition when A= 0 requires that Q > 0, which is al­

ready satisfied. Now, we calculate A.-* according to the formula (4.41), and proceed to the 

next stage. 

Stage 4: The value of A.-* found in stage 3 is the true minimum of h(A.) and 

may not be close to the minimum of ft}.). Hence the following convergence criteria can 

be used before taking A.* approximately as A.-*. 

* * -
h(~ ) -/0- )I ::; E 1 

(4.45) 
f(A.) 

l!ltl = lgTVfi{I ::; E2 (4.46) 



where £1 and £2 are small numbers whose values depend on the accuracy desired. 

The latter criterion can be stated in non-dimensional form as 

'

gT\fj' $E2 

lgl IV.fl x* 
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(4.47) 

If the criteria stated in Eqs. ( 4.45) and ( 4.47) are not satisfied, a new cubic equation 

h'().) =a' + b), + c). 2 + d), 3 (4.58) 

can be used to approximate f('A). The constants a' , b' , c' , and d' can be determined 

by using the function derivative values at the hest two points out of the three points current­

ly available, namely, A, B, and 1...-*. Now the general formula given by Eq. (4.38) has to 

be used for finding the optimal step length 1...-*. If/(A_-*) < 0, the new points A and Bare 

taken as J..-* and B respectively; otherwise (if f (J.. -*) > 0 ), the new points A and B are taken 

as A and J..-*, and Eq. (4.38) is applied to find the new value of J,.-*. Equations (4.45) and 

(4.47) are again used to test for the convergence of J,.-*. If the convergence is achieved, 

J..-* is taken as /..*and the procedure is stopped. Otherwise, the whole procedure is repeated 

until the desired convergence. 
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4.2.2 Application Of Cubic Interpolation 

Find the minimum of f(J..) = ). 5 - SJ.. 3 - 20). + S by cubic interpolation method. 

Solution 

We take A= 0 and find that 

% (J.. = A = 0) = SJ.. 4 
- l SJ.. 2 

- 201;. = 0 = - 20 < O 

To find Bat which df!dJ.. is nonnegative, we start with to= 0.4 and evaluate the derivative 

at to, 2 to , 4 t0 , •• •• This gives 

j(t0 = 0.4) = S(0.4)4 - lS(0.4) 2 - 20.0 = - 22.272 

j(2t0 = 0.8) = S(0.8)4 - lS(0.8) 2 - 20.0 = - 27.SS2 

j(4t0 = 1.6) = S(l.6)4 - lS(l.6) 2 - 20.0 = - 2S.632 

/(8t0 = 3.2) = S(3.2)4 - 1S(3.2)2 - 20.0 = 3S0.688 

Thus we find that 

A = 0.0, fA = S.O, 

B = 3.2, fs = 113.0, 

and A<).* < B. 

Iteration 1 

j,.,, = - 20.0 

is= 3S0.688 

To find the value of J.,.-* and to test the convergence criteria, we first compute Zand Q as: 

z = 
3(S.O =-- _113.0) - 20.0 + 3S0.688 = 229.S88 

Hence 

1/2 
Q = [ 229.S882 + (20.0)(3S0.688)] = 244.0 

-* ( - 20.0 + 229.S88 ± 244.0 ) 
). = 3·2 - 20.0 + 3S0.688 + 4S9. l 76 = 1.84 or - 0.1396 

-* 
By discarding the negative value, we have ). = 1.84 

Convergence criterion: If J.,.-* is close to the true minimum, A*, then f (J...-*)=df("-*)I dJ.. 

should be approximately zero 
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Since I = 5.J.4 - 15.J. 2 - 20, 
* l<X ) = 5(1.84)4 - 15(1.84)2 - 20 = - 13.o 

Since this is not too small, we go to the next iteration or refitting. As 

and 

Therefore 

Iteration 2 

Hence 

* * I cX ) < 0, we take A = x 
-* 

fA = f(J. ) = (1.84)5 - 5(1.84)3 - 20(1.84) + 5 = - 41.70 

A = 1.84, fA = - 41.70, 

B = 3.2, fs = 113.0, 

-* 
A< J. < B. 

IA= - 13.0, 

Is = 350.688, 

z = 
3

< (3~~ 
7
_ -1.~~~-0) - 13.o + 350.688 = - 3.312 

1/2 
Q = [c- 3.312)2 + 03.0)(35o.688)] = 67.5 

;* 1 84 + ( - 13.0 - 3.312 ± 67.5 )(3 2 1 84) 2 05 
A = . - 13.0 + 350.688 - 6.624 . - . = . 

Since this value is large, we go to the next iteration with B = /...-* =2.05(as/(f...-*) > 0) 

and 

Therefore 

and 

Iteration 3 

fs = (2.05)5 - 5.0(2.05)3 - 20.0(2.05) + 5.0 = - 42.90 

A = 1.84, fA = - 41.70, IA = - 13.00, 

B = 2.05, fs = - 42.90, Is = 5.35, 

A<}.*< B. 

z = 
3

.0( ~-~~-~ ;8:~·90) - 13.00 + 5.35 = 9.49 

1/2 
Q = [ (9.49) 2 + (13.0)(5.35)] = 12.61 

-* (- 13.00 + 9.49 ± 12.61) . . J. = 1.84 + _ l3.00 + 5_35 + 18.98 (2.05 - 1.84) = 2.0086 
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convergence criterion: 

* j <X ) = 5.0(2.0086)4 - 15.0(2.0086)2 - 20.0 = o.855 

Assuming that this value is close to zero, we can stop the iterative process and 

* 
take J. * = X = 2.0086. 



CHAPTERV 

SIMULATION RESULTS 

This chapter presents a variety of nonlinear phase filters, that are cascaded with an 

all-pass filter to equalize their phase using the variable metric method of Davidon-Fletch­

er-Powell algorithm. The Program is first applied to the equalization of the group delay 

of a 4th-order low-pass elliptic filter that Deczky [ 18] used in his 1972 paper of Synthesis 

of Recursive Digital Filters Using the Minimum p-Error Criterion. The original group 

delay distortion of this filter was about 1 OT seconds and its specifications were as follows: 

5 .1 Equalization of a 4th-Order Elliptic Filter 

Maximum passband ripple is : 

Minimum stopband attenuation: 

0.5 dB 

32.0 dB 

0 $ </> $ 0.5 f n 

0.6/ n $ </> $ f n 

where fn = 1/2T, The Nyquist frequency coefficients as follows: 

k0 = 1.47295 * 10-01 

all = 1.62178, al2 = 0.71895, a21 = 1.0, a22 = 1.0 

bll = - 0.403133, b12 = 0.051401, b21 = 0.233280, b22 = 0.797295 

The passband group delay of this filter was next equalized using all-pass sections 

of the form: 

M ( Coj22 + C1j2 + 1) 
HE(z) = n (z2 + C1·Z + Coj) 

1=1 J 

The distance function used in this case was 

(5.1) 



L 

E1q(X) = i1 _I!ei(X)f2q 
qi=1 

ei(X) = -r~ wi) + -re(X , wi) - -r0 
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(5.2) 

(5.3) 

where 'tf is the group delay of the original filter, 'te is that of the equalizer, and -r0 is a 

constant delay whose value is to be determined by minimizing E 2q(X) with respect to -r0. 

x = [cT, -ro]T, 1'. 
'to= T (5.4) 

T 
C = r C01 , C11 , C02, C12, ... , C1 Ml is the vector matrix of the coefficients of an All-pass 

filter that will be used to equalize a low-pass IIR filter. Using a one-section equalizer 

which means (M = 1 ), an index 2q = 2, L= 15 sampling points, and the starting set of poles 

(in polar coordinates using normalized angles) are 

rP1 = 0.8 cpP1 = 0.18 i:0 = 0.0. 

The program converged to the solution (with an error criterion E = 10-s in Fletcher Powell 

algorithm, and CPU time = 6min) to 

Xmin = [ Rp, cpp, i:], where 

Rp = 0.3225, <t>p = - 0.4597, i: = 4.4414 

The group delay of this filter before and after equalization compared to Deczky's 

is shown in Figure. 5-1. The Poles-Zeros plot of the final All-pass filter (used to equalize 

the 4th-order elliptic filter ) and the overall plot of Poles-Zeros of final filter after equaliza-

tion are shown in figures. 5-2 and 5-3 , respectively. The final filter has linear phase and 

it is stable since its poles are located inside the unit circle in the z-domain plot. 
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Group delay of a 4th-order low-pass elliptic filter after equalization 

12..--~--~~--.-~~..--~----.-~~-.--~--,~~-, 

10 

8 De~zky' s resii~t 

§' 6- ........ ,. 
2 All-pass filter gr0up delay 

~hown as a Darker line 0 

4 ~ Elliptic .. filter 
equalization __ ..,....... 

2- ...... 

Original Elliptic Filter 

o---~---"-~~-'-~---"-~~_._~___.~~_._~--J 

0 0.5 1.5 2 2.5 3 3.5 
The digital frequency ffi (rads) > 

Figure 5-1 Group delay of the fourth-order low-pass elliptic filter after equalization 
by a one-section all-pass with index 2q=2, and L=15 samples/period. 
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Figure 5-2 The Poles and Zeros Plot of second order all-pass filter used to equalize 
fourth-order elliptic filter. 
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Figure 5-3 Poles and Zeros plot of a linear-phase 6-th order elliptic filter after 
being equalized by a one section second order all-pass filter 
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5.2 Egualization Of 14th-order Butterworth Filter 

In this example we consider the equalization of a 14th-order Butterworth filter 

from the given design specifications: 

61 = 0.01 , Maximum variation or Ripple in the Pass-Band. 0 ::s Wp ::s 0.4n. 

62 = 0.001, Maximum variation or Ripple in the Stop-Band. 0.6Jt ::S Ws ::s Jt. 

Using a all-pass equalizer , index 2q=2, sampling points L= 15, and initial set of poles( in 

polar coordinates using normalized angles): 

X0 = [0.2, 0.12, 0.0]. The converged after 5 minutes of CPU time ,with an error criterion 

E = 1.0 * e - 03, The Solution is : 

Xmin = [0.5512, - 0.3952, 10.3220), Minimum point reached. 

[ 

0.0083 - 0.0045 0.0307 l 
H = - 0.0045 0.0072 - 0.0115 , The Hessian matrix. 

0.0307 - 0.0115 0.1881 

[ 

483.4978 201.9645 - 66.4354 l 
A = H - l = 201.9645 238.0672 - 18.3262 , the Jacobian of second derivatives 

- 66.4354 - 18.3262 15.0000 

Vf Ix . = l.Oe -o4 * [0.1039, - 0.1561, - 0.0748], the gradient at the minimum point 
mm 

the Poles/Zeros for the required all-pass filter after equalization: 

P 1 = [0.5087 ± 0.2122i) and Z 1 = [l.6743 ± 0.6984i). The Solution is shown in the 

following graphs in Figures. (5-4) thru (5-10). 
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Figure. 5-4 The Magnitude and Phase response of a 14th-order low-pass 
Butterworth filter before equalization. 
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Figure 5-6 The Resulting Group delay of 2nd-order all-pass filter 
to equalize the 14th-order Butterworth filter 
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Figure 5-8 Magnitude and Phase of linear-phase 14th-order Butterworth 
filter after equalization by a 2nd-order all-pass filter 
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Figure 5-9 Zero-Pole plot of a 16th-order Butterworth IIR filter after 
being equalized by one-section all-pass filter. 
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Figure 5-10 The Group Delay of 14th-order Butterworth filter after equalization 
by one-section All-pass filter. 



60 

5.3 Equalization Of a 6th-Order Chebyshev Filter 

In this example we consider the equalization of a 6th-order Chebyshev filter from 

the given design specifications: 

61 = 0.01 , Maximum variation or Ripple in the Pass-Band. 0 :::; Wp :::; 0.4n. 

62 = 0.001, Maximum variation or Ripple in the Stop-Band. 0.6n :::; Ws :::; n. 

Using a all-pass equalizer, index 2q=2, sampling points L=15, and initial set of poles( in 

polar coordinates using normalized angles): 

X0 = [0.2, 0.12, 0.0]. The converged after 5 minutes of CPU time ,with an error criterion 

E = 1.0 * e - 03, The Solution is : 

Xmin = [0.5938, - 0.3448, 9.9993], Minimum point reached. 

[ 

0.0069 - 0.0030 0.0367] 
H = - 0.0030 0.0040 - 0.0108 , The Hessian matrix. 

0.0367 - 0.0108 0.2738 

A = H- 1 = 346.9652 430.3364 - 29.5085 , the Jacobian of second derivatives 
[ 

797.5245 346.9652 - 93.3025 l 
- 93.3025 - 29.6090 15.0000 

Vfl x . = 1.0e -o4 * [ - 0.2663, - 0.1825, 0.0299], the gradient at the minimum point 
mm 

the Poles/Zeros for the required all-pass filter after equalization: 

P 1 = [0.5588 ± 0.2007i] and Z 1 = [1.5951 ± 0.5692i]. The Solution is shown in the 

following graphs in Figures. (5-11) thru (5-15) 
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Frequency Response of low-pass Chebyshev filter. 
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Figure 5-13 The Magnitude and Phase response of Chebyshev filter 
before equalization by All-pass filter 
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5.4 Egualization Of a Fullband Linear Delay All-Pass Filter 

In this example we consider the equalization of a fullband linear delay all-pass fil­

ter discussed in [4]. The desired phase response is: 

PT(w) = (8 - n)w - 8w2/n, i .e. , the group delay of i:(w) = n - 8 + l6w/n is ex­

pected to be equalized. An 80th-order Chirp filter group delay was equalized: 61 = 0.01 

, Maximum variation or Ripple in the Pass-Band. 0 $ Wp $ 0.4n. 

62 = 0.001, Maximum variation or Ripple in the Stop-Band. 0.6n $ Ws $ n. 

Using a all-pass equalizer, index 2q=2, sampling points L=15, and initial set of poles( in 

polar coordinates using normalized angles): X0 = [0.2, 0.12, 0.0]. The converged after 5 

minutes of CPU time ,with an error criterion E = 1.0 * e - 03 , The Solution is: 

Xmin = [0.5938, - 0.3448, 9.9993], Minimum point reached. 

The Solution is shown in the following graphs in Figures. (5-16) thru (5-17). 
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Figure 5-16 Group delay the fullband 80th-order chirp filter and the 
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5.5 Egualization Of a 7th-Order Butterworth Filter 

In this example we consider the equalization of a 7th-order Chebyshev filter from 

the given design specifications: 

61 = 0.01 , Maximum variation or Ripple in the Pass-Band. 0 ~ Wp ~ 0.3n. 

62 = 0.001, Maximum variation or Ripple in the Stop-Band. 0.7n ~ Ws ~ Jt. 

Using a second-order all-pass equalizer, index 2q=2, sampling points L=25, and initial 

set of poles for second order all-pass equalizer ( in polar coordinates using normalized 

angles): X0 = [0.1, 0.8, 0.2, 0.12, 0.0]. with an error criterion E = 1.0 * e - 03
, The mini­

mum point reached after 20 minutes of CPU time : 

xmin = [0.4087, 0.5097, 0.1121, 0.6895, 11.1584], 

0.7185 0.3215 1.8839 0.5020 3.1879 
0.3215 0.3818 - 0.3570 0.1784 2.7704 

H = 11.8839 - 0.3570 11.4829 1.4239 1.7677 I, The Hessian Matrix 
0.5020 0.1784 1.4239 0.3983 1.8875 
3.1879 2.7704 1.7677 1.8875 21.9513 

the Poles/Zeros for the required all-pass filter after equalization: 

P 1 = [0.3932 ± 0.3242i, 0.4061 ± 0.0457i],and 

Z 1 = [l.5139 ± l.2482i, 2.4316 ± 0.2737i]. The Solution is shown in the following 

graphs in Figures. (5-18) thru (5-23). 



69 

9.--~~~---.,.~~~~---.,.-~~~~-.--~~~~.,.-~~~----, 

8-····· ............... . 

7 

5L .............. : ............. . 

~ 
Q) 
Q 
0.. 5 

8 
d 

4 

3- ......................... . 

2~ .... ············'··· ............ ············ 

1~~~~~~~~~~~~~~~~~~~-'--~~~--' 

0 0.5 1.5 2 

Digital Frequency w > 

Figure 5-18 The Group delay of a 7th-order Butterworth low-pass IIR 
filter before equalization 

2.5 



70 

0.02 ~--,-------,-------,-~r----,--------,-------r~r-----,----1 

0 .......... 

,-...._ -0.02 
o:::l 
"O 
'-' -0.04 ........... ······ ............ ·········· ........ , .. .... . ........... . 

OJ) 
ro 

::;s -0.06 

,-...._ 
OJ) 
0 

8 
0 

~ ..c:: 
0... 

-0.08 

-0.1 L_i_ _ _L__J______L-:-----:1:-----:-:-:----;;-:;-~-~---: 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

PF 
200r---,.---,------..--~--.--~---r--.---.,.....-------, 

100 

-100 ........ ' ......... ~ . . . . . . . . . .. . 

-200.__......___......__ _ _._ _ ___,__ _ ___,_ _ __,_ _ ___,_ _ _____J.____..._____, 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Digital Frequency w > 

Figure 5-19 Plots of Mag and Phase of the 7th-order Butterworth filter 
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Figure 5-20 Plot of desired group delay of a fourth- order all-pass filter 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

A rapidly convergent descent method for minimization has been developed which 

based on a procedure described by Davidon (1959). The powerful iterative descent method 

by Fletcher and Powell discussed for finding a local minimum of a function of several vari­

ables applied to various equalizations of different types of filters. The type of filter exam­

ples show clearly that the type of method given by Davidon is considerably superior to oth­

er methods previously available. The simple form of the algorithm makes it easier to write 

a program and seems not to hinder the speed of convergence. still needs some improve­

ments from local to global search method. The equalization of IIR filters is very important 

in Digital Signal Processing as far as non-linear phase filters are concerned that distort the 

signals that they pass through. The use of an all-pass filter is a good thing for designers 

because of its property of only effecting the phase of filters. 

6.2 Future improvements 

There is many ways to improve Fletcher and Powell method by modifying it from 

being a local search to a global search method , in this way , we do not have to worry about 

the choice of a feasible initial point. I think the most powerful improvement would be the 

elimination of the use derivatives in calculating gradients, because we may encounter 

places where derivatives are not defined. In fact, there are some methods that do not use 

derivatives, but not for global minimization. 
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