
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

12-3-2019

Local Radiance Local Radiance

Scott Peter Britell
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Britell, Scott Peter, "Local Radiance" (2019). Dissertations and Theses. Paper 5339.
https://doi.org/10.15760/etd.7212

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5339&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5339&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5339
https://doi.org/10.15760/etd.7212
mailto:pdxscholar@pdx.edu

Local Radiance

by

Scott Peter Britell

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Committee:
Lois Delcambre, Chair

David Maier
Paolo Atzeni

Gerald Recktenwald

Portland State University
2019

c© 2019 Scott Peter Britell

i

ABSTRACT

Recent years have seen a proliferation of web applications based on content man-

agement systems (CMS). Using a CMS, non-technical content authors are able to

define custom content types to support their needs. These content type names

and the attribute names in each content type are typically domain-specific and

meaningful to the content authors. The ability of a CMS to support a multitude

of content types allows for endless creation and customization but also leads to

a large amount of heterogeneity within a single application. While this meaning-

ful heterogeneity is beneficial, it introduces the problem of how to write reusable

functionality (e.g., general purpose widgets) that can work across all the different

types.

Traditional information integration can solve the problem of schema hetero-

geneity by defining a single global schema that captures the shared semantics of

the heterogeneous (local) schemas. Functionality and queries can then be writ-

ten against the global schema and return data from local sources in the form of

the global schema, but the meaningful local semantics (such as type and attribute

names) are not returned. Mappings are also complex and require skilled developers

to create.

Here we propose a system that we call local radiance (LR) that captures both

global shared semantics as well as local, beneficial heterogeneity. We provide a

formal definition of our system that includes domain structures—small, global

schema fragments that represent shared domain-specific semantics—and canonical

ii

structures—domain-independent global schema fragments used to build generic

global widgets. We define mappings between local, domain, and canonical levels.

Our query language extends the relational algebra to support queries that radi-

ate local semantics to the domain and canonical levels as well as inserting and

updating heterogeneous local data from generic global widgets. We characterize

the expressive power of our mapping language and show how it can be used to

perform complex data and metadata transformations. Through a user study, we

evaluate the ability of non-technical users to perform mapping tasks and find that

it is both understandable and usable. We report on the ongoing development (in

CMSs and a relational database) of LR systems, demonstrate how widgets can be

built using local radiance, and show how LR is being used in a number of online

public educational repositories.

iii

DEDICATION

To Beth and Sam, whose support and encouragement give me the strength to

accomplish the hardest challenges.

iv

ACKNOWLEDGMENTS

This work would not be possible without the guidance and patience of my advisor,

Lois Delcambre, to whom I owe many thanks. She has helped me grow into someone

who sees opportunities instead of problems. Through peaceful disagreement and

violent agreement, she has helped me become a better writer, researcher, and

mentor to others.

Thanks also to Dave Maier, my co-advisor, who has patiently listened and

supported my work and helped with the smallest details.

I give my sincere thanks to Paolo Atzeni for his support throughout the years

not only as a member of my committee, but also as a co-author on numerous

papers. Paolo has guided us through the various iterations of formalism presented

in this work. He has patiently read more versions of this work than one might

reasonably expect.

Thanks to Gerald Recktenwald for joining my committee midway through this

process, supporting my work, and for being deeply interested in more things than

one generally has time for.

I would like to thank Bernhard Thalheim for shepherding us through HERM

and helping us better understand the nature of our work.

This work began with the creation of a website to host Randy Steele’s and

Don Domes’s K-12 robotics curriculum. This website has been the testing ground

for the work described in this thesis. I owe a great debt of gratitude to Randy

for allowing us to experiment and for his dedication and support throughout the

v

years.

Without the hard work of many students there would be no local radiance

systems. Thanks to the ASE apprentices Ananth Mohan, Stanley Cen, Sarah

Lemieux, and Austin Chang who were able to take my ideas and make them reality.

Thanks to Jason Owens who taught me the right way to do many things. The

Drupal query and mapping interfaces exist due to Andrew Hobbs and Cameron

Hobbs. Thanks to Laura DeWitt for helping build the mapping specifications and

widget development. Special thanks to Iman Bilal for her help in getting IRB

approval and setting up user studies.

I thank all of the faculty and students that were part of the Ensemble team.

I especially thank our collaborators Ed Fox, Lillian Cassel, Dan Garcia, Richard

Furuta, Peter Brusilovsky, Greg Hislop, Frank Shipman, Weiguo Fan, and Bob

Siegfried for their advice and encouragement. I also owe thanks to Monika Akbar

and Yilin Chen for teaching me all the gory details under the hood of the Ensemble

site.

To Abdusullam Alawini, Dave Archer, Hisham Benotman, Rafael de Jesus

Fernández Moctezuma, Michael Grossniklaus, Veronika Megler, Christoph Schütz,

Jeremy Steinhauer, Kristin Tufte, and all the members of Datalab, I am grateful

for many years of discussion and friendship. I particularly thank Len Shapiro for

starting me on this journey.

This work was supported, in part, by National Science Foundation grants

0840668 and 1250340.

vi

CONTENTS

Abstract i

Dedication iii

Acknowledgments iv

List of Tables ix

List of Figures x

Chapter 1: Introduction 1

1.1 Our Solution . 9

1.2 Structure of This Document . 12

Chapter 2: Structures and Mappings 13

2.1 Structures and Mappings . 17

2.2 Allowed Mappings . 24

2.2.1 Local to Domain Mappings 25

2.2.2 Straightforward Mappings 27

2.2.3 One-Local-Attribute-to-Many-Domain-Attributes Mappings 28

2.2.4 Conditional Mappings . 29

2.2.5 Many-Local-Attributes-to-One-Domain-Attribute Mappings 30

2.2.6 Combinations and Algorithmically Building TGDs 32

2.2.7 Domain-to-Canonical Mappings 35

2.3 User Study . 37

2.3.1 Design of the User Study . 37

2.3.2 User Behaviors . 43

2.3.3 Results . 47

2.4 Related Work . 49

2.5 Chapter Summary . 52

vii

Chapter 3: Query Language 53

3.1 Apparent and Underlying Models 54

3.2 Overview . 57

3.3 Structures and Mappings . 60

3.4 Implementation . 62

3.5 Apply . 63

3.5.1 Simple Mappings . 64

3.5.2 Unmapped Domain Attributes 73

3.5.3 Multiple Local Attributes Mapped to One Domain Attribute 76

3.5.4 Conditional Mapping Predicates 79

3.5.5 Combinations . 85

3.6 Canonical Apply . 85

3.7 Apparent Model and Type operations 92

3.8 Optimizations . 96

3.8.1 Optimized Apply . 96

3.8.2 Optimized Canonical Apply 102

3.8.3 Removing Joins From Apply 106

3.9 Performance Analysis . 109

3.10 Related Work . 111

3.11 Summary . 113

Chapter 4: Beyond Local Radiance to Local Insert and Update 114

4.1 Local Insert and Update . 115

4.1.1 Update . 125

4.1.2 Insert . 126

4.2 Case Study STEMRobotics . 127

4.2.1 Domain Structures Used in the Cloning and Exploration

Widgets . 130

4.2.2 Mappings Used in the Cloning and Exploration Widgets . . 131

4.2.3 Widgets . 132

4.3 Related Work . 139

4.4 Chapter Summary . 140

Chapter 5: Extending Local Radiance to Support Data-Metadata

Transformations 142

5.1 Introduction . 142

viii

5.2 Unpivot (Metadata-to-Data) . 146

5.2.1 Case Study: Ensemble and Faceted Browse 148

5.3 Pivot (Data-to-Metadata) . 152

5.4 Comparison to other Systems and Related Work 155

5.5 Chapter Summary . 157

Chapter 6: Implementations 158

6.1 First Drupal Iteration . 160

6.2 Bringing Local Radiance to WordPress 164

6.3 The Query Interface . 165

6.4 The Mapping Interface . 169

6.5 Widget Specifications . 172

6.6 PostgreSQL . 175

6.7 Chapter Summary . 176

Chapter 7: Conclusions and Future Work 178

7.1 Future Work . 182

7.1.1 Join-Path Mappings . 182

7.1.2 Enhancing and Extending Local Radiance Infrastructure . . 183

7.1.3 Reasoning Over Mappings and Semantic Web Integration . . 184

References 186

Appendix A: Canonical Versions of Local Insert and Update Op-

erators 197

ix

LIST OF TABLES

2.1: Aggregated user feedback showing satisfaction with the system for

each task and overall and a scale of one (Strongly Disagree) to five

(Strongly Agree). 48

3.1: Performance comparison of our system in a best-case scenario (USb)

and worst-case scenario (USw) to a hard-coded (HC) single query

widget (an optimal but most labor intensive solution) and to the

Drupal (D) page rendering system (a generic widget that can render

arbitrarily complex types). All three systems tested with 2, 10, and

20 attributes. All times in milliseconds. 110

3.2: Performance data for pushing projection and selection operators into

the optimized apply operator. 111

4.1: Extended query operators. 116

5.1: Comparison of Data-Metadata Transformation Systems 156

6.1: Implementations . 158

x

LIST OF FIGURES

1.1: A course webpage produced by the Drupal CMS showing attribute

names like “Overview”, “Education Level”, “Focus Subject”, “HW

Platform”, “SW Platform”, and “Interactivity Style” with their as-

sociated data. Relationships to other content types are also shown

with links to a “Course Instruction Guide” and “Units in this course”. 3

1.2: A challenge-based course webpage produced by the Drupal CMS

showing the attribute names “Overview”, “Education Level”, “HW

Platform”, and “SW Platform” with their associated data. The

relationship between the course and its instructional materials is

shown with the links to “Challenges”. 4

1.3: A tree-based navigation widget for the course in Figure 1.1. 8

1.4: A schema fragment for a parent-part hierarchy. 8

1.5: A generic widget model. 9

2.1: Examples of domain structures from the educational (left), financial

(middle), and sports (right) domains. 14

2.2: Three examples of canonical structures. 15

2.3: Three local schemas within the educational domain. These schemas

have been simplified for clarity in the examples throughout this

chapter. 18

2.4: Mappings are shown between the “ModuleOf” domain structure and

the “UnitFor” local relationship (blue, solid lines) and the “Lesson-

For” local relationship (green, dashed lines). Correspondence ids are

added to show the correspondences listed in Result Set 2.3. Corre-

spondences ids are auto-generated by the system and not visible to

end-users. 21

2.5: A mapping is shown between the parent-part canonical structure

and the educational module domain structure. 23

xi

2.6: An example mapping between the “lr1” local relation and the “dr1”

domain relation with predicate “P1”, where there are correspon-

dences between local attirbute “la1” and domain attribute “da1”

(with id “cid1”) and local attribute “la2” and domain attribute

“da2” (with id “cid2”) . 25

2.7: A straightforward mapping where each local and domain attribute

only exists in a single correspondence. Correspondences ids are left

out of this (and the following) figure since they are not needed to

explain the TGD creation process (they would still be created au-

tomatically by the system). 27

2.8: One local attribute to many domain attributes mapping where the

“City” local attribute has correspondences to both the “Branch”

and “Location” domain attributes. 29

2.9: A conditional mapping where the predicate “Ageă=18” has been

added to the mapping. 30

2.10: A many local to one domain mapping where the “GradeLevel”, “Fo-

cusSubject”, and “MaterialType” local attributes all have corre-

spondences to the “Metadata” domain attribute. 31

2.11: A local to domain mapping that combines all of the above cases. . . 32

2.12: The training task website showing a library, a collection, a book,

and a chapter webpage. Links to related content types are in red

inside the white boxes. 39

2.13: A local library schema (top, shown in a simplified ER diagram that

only has enitities and has directional arrows representing the links in

the website), the library domain structure (middle), the parent-part

canonical structure (bottom), and mappings between the three. . . 40

2.14: An instance of the navigation widget used in the training task of

the user study with mappings between the “Library-to-Collection”,

“Collection-to-Book”, and “Book-to-Chapter” local relationships

and the “Literary-Unit-to-Literary-Module” domain relationship. . . 40

xii

2.15: In the mapping interface, a user first selects the domain relation

to which they want to create a mapping from a dropdown list (not

shown here). Then, a user selects a content type (on the left) and

then is shown all possible relationships to other content types (on the

right). Here, a mapping is created between “Library-to-Collection”

local relationship and the “Literary-Unit-to-Literary-Module” do-

main relationship. 41

2.16: Three mappings are shown: between the “Library-to-Collection”,

“Collection-to-Book”, and “Book-to-Chapters” and the “Literary-

Unit-to-Literary-Module” domain relationship. Users can select a

specific mapping to delete, save the entire set of mappings, or delete

the entire set of the mappings. 41

2.17: Schema for first task in the study (shown in a simplified ER diagram

that only has enitities and has directional arrows representing the

links in the website). 42

2.18: Schema for second task in the study. 43

2.19: Legend for the color coding shown in Figures 2.20, 2.21, 2.22, 2.23,

and 2.24. 44

2.20: Timelines of user sessions showing length of training, Task 1, and

Task 2. The x-axis shows session time, the longest session lasting

50 minutes. 44

2.21: Normalized timelines (where all sessions are stretched to an hour in

length) of user sessions showing the comparative length of training,

Task 1, and Task 2. 45

2.22: A study session of Task 2 demonstrating the preview, test and check,

and the entity-centric behaviors. 46

2.23: A study session of Task 1 demonstrating the preview, delete and

start over, and the random behaviors. 46

2.24: A study session of Task 2 demonstrating the browse, large, and

entity-centric behaviors. Darker rectangles represent browsing be-

havior, mappings are displayed above the lighter colored squares,

and the dark square at the end saves all mappings. 46

3.1: Local database schemas for the university tennis team (left) and

football team (right). 56

xiii

3.2: Data from the Employee and Student subsets of the football and

tennis local databases (left). The Employee and Student local enti-

ties mapped to the Person entity in the domain structure (right). . 57

3.3: Domain structure query result in the apparent model. 57

3.4: Domain structure query result in the underlying model. 57

3.5: An overview of our query language and query interface for widgets.

The top section shows the conceptual model of our query interface.

The middle section shows our query operators at the various levels.

The bottom section shows data at the four levels from the middle

section. The local (far left) and canonical apparent (far right) levels

are in the relational model while the domain underlying (middle

left) and canonical underlying (middle right) levels are in the nested

relational model. 58

3.6: Two straightforward mappings. Above, a mapping between the

“Employee” local relation and the “Person” domain relation with

correspondences between “EmployeeId” and “PersonId”, and “Em-

ployeeName” and “GivenName”. Below, a mapping between the

“Student” local relation and the “Person” domain relation with

correspondences between “StudentId” and “PersonId”, and “Stu-

dentName” and “GivenName” . 66

3.7: Above, a mapping between domain and local where all domain at-

tributes are mapped. Below, a mapping where the “PersonAddress”

domain attribute has no correspondences with any local attribute. . 73

3.8: Above, an example of a mapping with two correspondences con-

taining the same domain attribute (“OrganizationalUnit”). Below,

a straightforward mapping. 77

3.9: Domain relation-local relation mappings are shown between the

“Female” domain relation and the “Employee” and “Student” lo-

cal relations respectively. The upper mapping contains two corre-

spondences between “EmployeeId” and “FemaleId” and “Employ-

eeName” and “FName”. The mapping has the condition that the

“Gender” local attribute value must be equal to ‘f’. The lower

mapping contains two correspondences between “StudentId” and

“FemaleId” and “StudentName” and “FName”. This mapping has

the condition that the “Sex” local attribute value must be equal to

‘female’. 81

xiv

3.10: Domain relation-local relation mappings are shown for the “Male”

domain relation to the “Employee” and “Student” local relations

respectively. The upper mapping contains two correspondences

between “EmployeeId” and “MaleId” and “EmployeeName” and

“MName”. The mapping has the condition that the “Gender” local

attribute value must be equal to ‘m’. The lower mapping contains

two correspondences between “StudentId” and “MaleId” and “Stu-

dentName” and “MName”. This mapping has the condition that

the “Sex” local attribute value must be equal to ‘male’. 82

3.11: A canonical relation-domain relation mapping is shown (top) with

added domain relation-local relation mappings shown (middle and

bottom). 88

3.12: A domain-relation-to-canonical-relation mapping is shown from the

“Person” domain structure (containing the “Organizational Unit”

domain attribute) to the “Subject” canonical structure. 94

4.1: The course local schema. 128

4.2: The book local schema. 128

4.3: Widgets for cloning a course (left) and a book (right). 129

4.4: The cloned course page created by the course cloning widget on the

left side of Figure 4.3. 129

4.5: Exploring a clone of a course. 131

4.6: The Parent-Part domain structure. 132

4.7: The clone domain structure. 132

4.8: One mapping of the Parent-Part DS to the course schema 133

4.9: One mapping of the Parent-Part DS to the book schema 133

4.10: One mapping of the CloneOf DS to the course schema 134

4.11: One mapping of the CloneOf DS to the book schema 134

4.12: The “STEM Robotics 101” course level web page. 136

4.13: A clone of “STEM Robotics 101” course. 136

4.14: The “Hardware, Software, Firmware” unit from “Stem Robotics 101”.137

4.15: A clone of the “Hardware, Software, Firmware” unit. 137

xv

5.1: Above, a standard schema; below, a schema where the email, ext,

home, and cell attributes have been unpivoted into a single contact

attribute and the metadata (i.e., attribute names) from the em-

ployee table is transformed into data in the contact type attribute

in the gen emp table. 143

5.2: Abovea, a directory web widget using a classical schema (Name,

Email, Phone). Belowb, a directory web widget where the Name

and Title attributes are in a classical format but the Phone, Fax,

and Email attributes have been unpivoted. 144

5.3: A university webpagec where columns 1 and 3 contain unpivoted

data and columns 2 and 4 are normal. 145

5.4: A local employee schema (below) is mapped to perform an unpivot

operation to a generic employee domain structure (top). 146

5.5: An unpivot using our query operators and the correspondences and

domain structure shown in Figure 5.4 147

5.6: The local schema (bottom) for collections in the Ensemble portal

and the domain structure (top) used for the faceted browse widget. 148

5.7: An hierarchical navigation widget in the Ensemble portal without

faceting. 148

5.8: A faceted-browse widget in the Ensemble portal where the collection

has been faceted by “Class Week” and then “Week 02” has been

faceted “Computational Thinking Practice”. By clicking the facet

diamond next to the plus or minus symbols, a user can further facet

the relevant sub-hierarchy. The circled 2 shows the facets available

for sorting the resources below the “Abstraction” heading. Each

facet shows the count of resources underneath it (the circled 3).

Leaf level resources are shown by the circled 4. 149

5.9: An example mapping showing standard correspondences for id and

name attributes and using a conditional correspondence to map

local contact data into the domain ext attribute where the local

contact type attribute is equal to “ext”. 153

5.10: The complete set of correspondences to pivot the local schema into

the domain structure. A user can create a regular correspondence

and then chose to add a condition (in this case the specific pivot

conditions) for the contact attribute correspondences. 154

xvi

5.11: The pivot operation, using the local and domain structures from

Figure 5.10 with example employee data. 155

6.1: The navigation widget in STEMRobotics generically shows different

course types with local type information. 161

6.2: The overview attribute for the “lesson” content type is stored in the

“field data field overview” relation in the Drupal backend database. 162

6.3: The summative assessment relationship between the “lesson” con-

tent type and the “assessment” content type is stored in the

“field data field summative” relation in the Drupal backend database.162

6.4: A small subset of the mappings between Drupal content types and

the “structural unit” canonical structure (su cs). 163

6.5: Left, metadata information is aggregated and presented for a course

and unit in STEMRobotics. Right, when a search result is clicked

(under the search results) the “Structural Awareness” tab on the

right is populated with all the courses in the site that contain the

selected resources (in this case, “STEMRobotics 101” and “NXT

Tutorial by Dale Yocum” both contain the “Move Blocks” resource). 163

6.6: A query to build the parent-part canonical structure in WordPress. 165

6.7: Installation structure of the query interface implementation. The

query interface is built upon the operators shown in the “quick-

draw qi” directory. Each operator is defined as a subclass of the base

“quickdraw qi operator PHP class. Domain structures are stored in

YAML files in the “quickdraw ds” directory which can be reused in

different applications and instantiations. Examples of the YAML

files are shown in Figure 6.8. 166

6.8: Domain structures (in YAML) are shown for the “Parent-Part” do-

main relationship (left), the “course” domain entity (center), and

the “facet node” domain entity (right). 167

6.9: The query to find all facets and facet types for the course with node

id “291”. The query is built by combining query operators and using

the apply operator with the domain structure ids from Figure 6.8. . 168

6.10: The first screen in the mapping interface allows the users to choose

which domain structure that they would like to create a mapping for.170

xvii

6.11: Once the user selects a domain structure they are presented with

all of the possible content types in the system (left screen). After

choosing a content type the user is present with all possible fields

for the type (both attributes of the type and relationships to other

types; middle screen). If the chosen field is a relationship the user is

presented with a choice of related content type (since Drupal allows

higher order relationship types; right screen). 171

6.12: The widget previewer allows a user to preview their mappings in

widgets in the system. First a widget is chosen, then the user chooses

which content to preview (this field is pre-populated with a node id

based on the selected mapping). 172

6.13: An instance of the naviation menu showing how different instance of

educational materials may appear as “Primary” or “Differentiated”. 173

6.14: The mapping specification widget is shown for the mapping pre-

viewed in Figure 6.12. 175

6.15: The navigation tree shown in Figure 6.12 is modified by the cluster

created in the specification in Figure 6.14. 176

6.16: The PostgreSQL implementation of the apply operator. 177

1

Chapter 1

INTRODUCTION

There are currently over 1.5 billion websites on the World Wide Web [42]. Of

those sites, almost 57% (or roughly 850 million) use a content management system

(CMS) [83] that allows non-technical end-users to create complexly structured

data that is shown and manipulated in websites and web applications. Using a

CMS, non-technical users are able to define custom content types to support their

needs. For example, in a repository of educational materials, a teacher may decide

to create content for a course, its units, lessons, assessments, and instructional

materials. To do so, the teacher creates content types for each part of the course

with a field for the title of the content and separate fields for different data for

each of these content types. For example, for a course there may be a field for the

appropriate grade level of the material, for a unit there may be a field for subject

area, and for an instructional material there may be a field for the presentation

type of the content. Once the content types are created and populated the data is

immediately available in the CMS and presented as webpages where the attribute

names of each content type are displayed along with the data itself. These features

of the CMS allow each user to create a set of content types with a conceptual

model that suits their needs.

Figure 1.1 shows a course webpage in the STEMRobotics educational reposi-

tory1 created by a middle school teacher using the Drupal CMS [33]. The course

1https://stemrobotics.cs.pdx.edu, accessed 11-10-2019

2

has fields for “Overview”, “Education Level”, “Focus Subject”, “HW Platform”,

“SW Platform”, and “Interactivity Style”. Some fields may hold directly entered

text like the “Overview” field, while others may hold a value chosen from a con-

trolled vocabulary such as “Education Level”, “Focus Subject”, “HW Platform”,

“SW Platform”, and “Interactivity Style”. The course webpage also has links to

an instruction guide, course resources, and units. This course is designed to pro-

vide teachers with all the materials necessary to teach robotics to middle school

students and comprises units that have lessons which, in turn, have different types

of assessments and instructional materials.

A high school teacher using the same STEMRobotics repository created the

challenge-based course shown in Figure 1.2. This course also has a text entry

field for “Overview” and fields for “Education Level”, “HW Platform”, and “SW

Platform”. This course is self-directed, where students are expected to figure out

how to finish each challenge and pass the course by demonstrating the successful

completion of all challenges. In both figures, the title is shown at the top of the

webpage, just after the content-type name.

Both teachers were able to easily create course structures that suited their own

needs even though neither one is a web developer. The ability of a CMS to support

a multitude of content types allows for endless creation and customization, but

also can lead to a large amount of heterogeneity within a single application. For

example, if ten teachers each want a custom course structure, they can each build

one. We see this heterogeneity as important and useful. For example, challenges,

quizzes, and oral exams are all forms of assessment in the educational domain.

However, a challenge may have associated instructional materials and oral exams

may have time limits and committees. This additional information is important;

if we were to impose a fixed assessment structure we could lose this information.

We call this type of heterogeneity with semantically meaningful names, beneficial

heterogeneity.

3

Figure 1.1: A course webpage produced by the Drupal CMS showing attribute names

like “Overview”, “Education Level”, “Focus Subject”, “HW Platform”, “SW Platform”,

and “Interactivity Style” with their associated data. Relationships to other content types

are also shown with links to a “Course Instruction Guide” and “Units in this course”.

4

Figure 1.2: A challenge-based course webpage produced by the Drupal CMS show-

ing the attribute names “Overview”, “Education Level”, “HW Platform”, and “SW

Platform” with their associated data. The relationship between the course and its in-

structional materials is shown with the links to “Challenges”.

5

For some, just creating a website with their data is enough, but for most website

creators there is a need or desire to add further functionality to their website. For

example, a teacher may want to show the hierarchical structure of a course in a

tree-based browsing widget; or, for a particular term that a course is offered a

teacher may wish to have the dates that lessons are taught appear in a calendar

widget; or, a course that is taught in various locations may benefit from a map

widget. A user of the site may also wish to search for all assessments, regardless of

the type of course they appear with and regardless of the local fields they include.

We would like to distinguish between the types of users of a CMS. The non-

technical content creators described above we call content authors. Content authors

have a deep understanding of their content domains and typically can create their

own types and populate them with data. But often they do not have the techni-

cal expertise to create or install widgets. Users that create, install, and manage

widgets we call widget developers.

Currently, to enable a widget in a CMS a user must use the predefined content

types associated with the widget. For example, calendar widgets will typically

use a “Calendar Entry” type and a map will use a “Location” type. If the types

are not used (or even not fully populated in many cases) the widgets will fail to

work. These fixed types can also cause beneficial heterogeneity to be lost by forcing

content authors to conform to the widget types. The functionality of the widgets

is also predefined and any content author wanting to have the widget work slightly

differently for their content will need to work with a developer to reconfigure the

widget in the CMS or possibly redevelop the widget altogether.

The current situation raises the question: how can we enable the use of generic

widgets while maintaining beneficial heterogeneity? If we look to the field of infor-

mation integration [48], we can see the conceptual model created by our content

authors as analogous to local schemas and the model of the widgets as analogous

6

to global schemas. The global schema captures the shared semantics of the het-

erogeneous local schemas and users (with the appropriate technical skills) create

mappings between the local and global schemas. Functionality and queries work

against the global schema and an information integration system uses the mappings

to retrieve data from the local schemas.

This approach exists in the web most notably through the semantic web [6].

Technologies such as XML [88], GRDDL [38], RDF [71], and OWL [84] allow the

semantics of webpages to be formally defined and mapped to global ontologies

(schemas). Functionality and queries working against a global schema in the web

often take the form of widgets that can be placed in a web page.

However, there are a number of limitations to this type of (traditional) informa-

tion integration. Widgets written against the global schema are only able to access

data in the form of the global schema. Beneficial heterogeneity is not accessible

through the widgets. The local schema names are not available from the global

schema which prevents the website users from seeing the content type names and

field names (from the local schema) that were originally chosen by the content

author. These names are likely meaningful and useful to website users because

they are likely familiar with the domain.

Global schemas are usually also large and fixed which can fail to capture smaller

independent shared semantics. For example, there may be prerequisite relation-

ships between courses at different granularities, such as intercourse prerequisite

relationships for some courses and intra-course relationships (e.g., lesson sequenc-

ing) for others. In this case, a fixed global schema containing both course and

lesson structures would then need multiple different prerequisite relationships even

though they are conceptually the same relationship (e.g., from the point of view

of a widget displaying such dependencies). Large global schemas are also typically

time-consuming and difficult to build, requiring the agreement of the local schema

participants. Within the semantic web, the goal has been to define unified or deep

7

ontologies, but the usage of these ontologies has been slow to materialize. In 2010,

Anderson and Lee wrote about the relatively slow uptake of the semantic web after

10 years of use and asked experts whether the original semantic web vision is likely

to be achieved by the year 2020 [2]. In response, the experts felt the most obvious

explanations for the slow uptake were that it requires too much work and that the

benefits are not clear enough to warrant a wholesale migration.

Another limitation to this type of integration is the work involved in creating

mappings between user content and global schema. Mappings often need to be de-

fined in formats and query languages not accessible to non-technical users. Global

schemas often also need be fully mapped before they are functionally useful.

If fully mapping global schemas is difficult, can we achieve this type of func-

tionality using schema fragments or small patterns? Within the semantic web, this

concept has been realized through the use of technologies such as RDFa [70] and

Microformats [55], which allow content creators to embed RDF relationships or

schema fragments directly within a webpage. Embedding known schema elements

from sources such as Schema.org [74] allows content creators to quickly add seman-

tics to their content and to take advantage of search engine and other functionality

that exploits these schema elements. A similar web mashup tool, Paggr [60], uses

the collection of RDF data known on the web to build reusable and extensible

web page widgets written using SPARQL [77] as a common interface to the web

of data. That approach allows widgets to show information contained within the

web of data, but can only show data that has been directly mapped in RDF. These

systems also require users to understand RDF and create RDF mappings within

their sites leading to the question: how can we provide a way to map information

that does not require complex technical knowledge? In information integration,

the Clio project [57] showed that schema mapping could be achieved using graph-

ical interfaces where users simply drew lines between local and global schemas.

Can we also bring this style of mapping to content authors in a CMS?

8

Figure 1.3: A tree-based navigation widget for the course in Figure 1.1.

Figure 1.4: A schema fragment for a parent-part hierarchy.

It is often the case that a widget uses a very small schema. For example,

a navigation widget, shown in Figure 1.3, for the course-unit structure from the

website in Figure 1.1 is built with a generic data model such as that shown in

Figure 1.4. The widget only needs to know the title of a resource and the recursive

relationship with the children of the resource. The widget developer does not need

to know that a resource and its children have different types and fields.

Another widget, for searching, may use a model of a generic entity with a

title and a number of attributes with which it indexes and creates facets with a

model like that shown in Figure 1.5. A developer may understand what the various

attributes are for, but it is unlikely that the content author will understand this

model. What happens when the model of a widget is so generic that a content

author may not understand or know how to use it?

One solution to this problem is to introduce domain information in to the wid-

get schemas. Solutions such as topic maps [81] and structured maps [31] provide

9

Figure 1.5: A generic widget model.

domain meta-models that encompass common semantics and structures within a

domain, and are generally designed to provide better browsing and searching of

source objects in that domain. The information in the map may not exist explic-

itly in the source objects. Superimposed information [52] systems have provided

methods for easily mapping base information models to these types of meta-models

through the use of marks, where a mark is an address for a segment of base in-

formation. Using this type of system, a user can easily highlight and extract the

information of interest within their source data to enable functionality at a global

level, without having to modify their existing data. These systems work in large

part because the meta-models are domain-specific and understandable by their

information creating users (content authors) and end users. How can we leverage

the power of domain models and superimposed information to enable our content

authors to more easily benefit from the power generic schema of widgets, while not

forcing authors to modify their existing data?

1.1 OUR SOLUTION

While all of these techniques provide some part of a solution to providing generic

functionality to end-user-developed sites, none of them will directly allow us to

bring beneficial heterogeneity to the global level. Take the navigation widget

in Figure 1.3, for example. The local type names (e.g., “Course”, “Unit”, and

“Guide”) are meaningful and let the website user know that there is a difference

between resources that appear at the same level of the hierarchy. We believe local

names are important, especially when they differ from the base semantic concept

10

that they specialize (otherwise why were they chosen by the content authors?).

This thesis presents our system, which we call Local Radiance (LR), where local

radiance refers to the capability to let local schema (and data) “shine” through

to the global level. It is built upon the principle tenets that local content authors

understand their own data and have chosen names that are important to them,

understand their domain, and can create mappings between their data and domain

concepts. Our aim is to answer the following research questions.

How can we enable information integration that retains local ben-

eficial heterogeneity? Chapters 2 and 3 present our LR system. We define

canonical structures that are small global schema fragments that widgets are writ-

ten against. We define domain structures that are small domain-specific schema

fragments that capture shared semantics within a domain. We show how users

create mappings between canonical and domain levels as well as between domain

and local levels. We then define an extended relational query language that can

be used from the canonical or domain levels to write queries that can present data

mapped to the canonical or domain levels while radiating local schema names.

How can we enable non-technical end-user schema mapping and in-

formation integration? Traditional information integration and schema map-

ping is difficult; it often requires in-depth knowledge of both local and global

schemas as well as complex technical knowledge to create mappings. We limit the

type of mappings that can be created in our system to a simple form such that

it will be understandable to non-technical users. By making schema mapping as

easy as possible and limiting mappings to be between just one entity at the domain

level just one entity at the local level, we believe users will be able to understand

the process and complete it correctly. We offer widgets as an incentive for content

authors to create mappings. In Chapter 2, we present the results of a user study

to test this hypothesis.

11

How can we build generic widgets that capture beneficial hetero-

geneity? Our base query language, presented in Chapter 3, provides operators

for integrating and accessing local information from the domain and canonical level

as well as operators that radiate local type and attribute names to the domain and

canonical levels. We show how queries using our operators return all local type and

attribute names, which can be used to build widgets for searching, browsing, and

navigation. While the base LR system is defined using a nested relational model,

we show how the system can act as a standard relational system minimizing the

impact on widget developers such that they need only learn to use a few new

operators instead of learning to use an entirely new model and query language.

Can we leverage local radiance to create generic local data-creation

and data-manipulation widgets? Our base LR system provides read-only

querying capabilities similar to views with the addition of access to local bene-

ficial heterogeneity. While this capability is important and enables a wide range

of useful widgets (e.g., searching, browsing, and navigation), is it also possible to

build widgets that create and update local data when there is beneficial hetero-

geneity? And, can we do so when local schemas are mapped only to small schema

fragments and maybe only partially mapped? Chapter 4 presents extensions to our

base query language that enables widgets to access all local information even when

there is only a partial mapping. We define operators for both insert and update

of local data that can be used generically at the canonical and domain levels.

Can we empower end-users to perform complex data transforma-

tion tasks? In Chapter 5 we show that our system can be extended to perform

data-to-metadata and metadata-to-data transformations. We extend our mapping

definitions and show how widgets can be built that allow end-users to perform

complex data transformation tasks.

What is the best way to formalize and implement an LR system?

Chapters 2 and 3 present the formalism of our LR system. In Chapter 6 we

12

present the evolution of local radiance. We show how each step in the evolution

furthered the development of LR as well as its formal description.

1.2 STRUCTURE OF THIS DOCUMENT

Chapter 2 presents a formal definition of the conceptual model of the LR system.

We introduce our common global patterns: domain and canonical structures and

explain why both levels are needed. We define our mapping model and we present

the results of our user study.

Chapter 3, presents our base query language. We define the apply and type

operators that integrate local data and radiate local schema names respectively.

These operators allow widgets to use polymorphic queries. We also show how to

optimize queries using these operators.

Chapter 4 extends our query language with operators for insert and update of

local data from queries against global schema. Generic widgets use these operators

for local data manipulation.

Chapter 5 demonstrates how our system can be extended to perform data-

metadata transformations used for traditional transformation tasks such as pivot

and unpivot. We demonstrate these transformations in a digital library widget

that creates complex, faceted searching.

Chapter 6 describes the different iterations of the implemented LR system

and their associated formal definitions. We present the ways in which generic

widgets have been written in the system. We show how widgets can be modified

through the use of mapping specifications to enable content authors to modify

widget functionality through mappings.

We conclude in Chapter 7 with a presentation of future work possibilities and

a description of publications to date.

13

Chapter 2

STRUCTURES AND MAPPINGS

Technologies such as web development frameworks have democratized the creation

of complex systems by allowing non-technical (non-developer) content authors to

define their own content types and create complex data models (i.e., conceptual

models), while abstracting away the complexities of database and application cre-

ation. As a consequence, content authors who are experts in their own data can

choose schema names that are meaningful. We call content-author-created schemas

local schemas and their associated data local databases.

Modern web frameworks also allow developers to create widgets that plug into

any site built upon that framework. Widgets typically add features beyond the

data presentation of the site, such as browsing, searching, maps, calendars, etc.

These widgets use a schema (conceptual model) of the developer’s choosing that

is typically related to the functionality of the widget.

Traditionally, in order for a widget to work on a user’s web site, there are two

choices. A developer may rewrite the same widget multiple times for the different

conceptual models of the end systems. For example, in the case of a calendar

widget, the developer could modify the widget to work with each different event

type. Or, the end systems could rename their schema elements to match the model

of the widget; in the case of the calendar widget, each end-user would have to use

the event type defined by the widget. The latter is the common case in use today

by most web development frameworks.

We present a different solution to this problem. We want to entice users to per-

form traditional schema-mapping and data-integration tasks by providing generic

14

Educational
Resource

Title
Resource_Id

Grade Level
Focus Subject

Author

Financial
Instrument

Responsible_Party
Fin-instr_id

Accounting
Item

ItemValue Source

Education Financial Sports

Educational
Submodule

ModuleOf

Educational
Module

Title

Title

ModuleId

SubmoduleId
Sub-

organization

Has

Organization Title

Title

Org_id

Sub-org_id
Leader

Position
Vital StatisticPlaysForCoaches

Team
Name

Person
GivenName

Team_id

Person_id

Contender

Competes

Competition
Location
Date

Title

Competition_id

Contender_id

Figure 2.1: Examples of domain structures from the educational (left), financial (mid-

dle), and sports (right) domains.

widgets that can be added to existing websites. We begin by introducing interme-

diary conceptual models, that we call domain structures, that represent notable,

commonly occurring patterns within a domain. For example, in Figure 2.1 we

see domain structures for the educational, financial, and sports domains. The ed-

ucational domain structure (left side of the figure) shows a relationship pattern

between educational modules and submodules as well as the pattern for an edu-

cational resource that contains common attributes of educational resources (i.e.,

“Grade Level” and “Focus Subject”). The patterns within the financial domain

structure (middle of the figure) appear structurally similar to those of the educa-

tional patterns but are semantically quite different (an organizational structure of

a business versus that of courses and materials, and financial instruments versus

educational resources). The sports domain structures (right side of the figure) is

structurally different from the previous two with a relationship describing con-

tenders in competitions (such as teams playing a match or boxers in a fight) and

the relationships and entities that define a team structure (teams that have players

and coaches).

15

Item
Title
Item_id

Attribute
Item

Title
Item_id

Attribute1
Attribute2
AttributeN
…

Part

Has

Parent Title

Title

Parent_id

Part_id

Figure 2.2: Three examples of canonical structures.

We then define models for the widgets, that we call canonical structures. A

canonical structure is usually rather simple, essentially a “data pattern”, on top

of which widget code is implemented. A canonical structure often involves a single

entity (such as those shown in the middle and right in Figure 2.2), to be used

by widgets that manage (search, analyze, update, etc.) objects (such as those

described by either of the “Item” entities) of a given data type (phone books,

recent messages, calendars, etc.). And widgets will often manage collections or

hierarchies of things which can be captured with the “Parent”–“Part” relationship

on the left side of the figure. A widget can often be reused across a variety of

domains and therefore benefits from a generic structure that can be instantiated

many times.

We define mappings (such as those used in traditional information integra-

tion [48] and schema mapping [57]) between the different levels (local schemas-

domain structures and domain structures-canonical structures). Content authors

can create local schemas with meaningful names and widget developers can create

generic widgets with canonical structures. And, we allow the generic widgets to

show the local schema names using what we call local radiance.

Our system can be used by people in three main roles. We consider the content

author to be a domain expert since someone creating an application for their data

should understand their domain. The content author is responsible for deciding

the local schema and data which will be used in the system. This person will

16

enable widgets by creating mappings between the local schemas and the domain

structures.

As described in the previous chapter, we call the developer responsible for

creating generic widgets the widget developer. This person writes widget code that

interacts with generic schemas, the canonical structures, that produce information

that can be displayed on a webpage or used elsewhere in a web framework.

We define domain structures that are (typically small) schemas with names that

are understandable to a content author representing common semantics within a

domain of interest. We then add a third role to the two traditional roles: the

domain developer, whose responsibility it is to create mappings between the schema

of the domain structures and the generic schemas (the canonical structures) of the

widgets. The domain developer usually has some (possibly in-depth) knowledge of

the domain but their main responsibility is more likely IT-based (database, web,

or application development) rather than content creation. Domain structures will

typically be defined by a domain developer. This person may work with the content

author to create the website and may work with widget developers to allow the

generic widgets to be used in specific application areas.

In this chapter we will show how schema is defined for use by each of these

types of users and how mappings can be created between the schema levels. We

present the conceptual model of our system and its formalism and we make the

following contributions:

• We define local databases that are typically end-user- (content author-) cre-

ated schemas and databases.

• We define domain structures that represent common patterns within a spe-

cific domain.

• We define canonical structures that represent generic structures used across

many domains.

17

• We define our mapping system that allows mappings between local databases

and domain structures; and, between domain structures and canonical struc-

tures, thereby enabling generic widgets to work with heterogeneous local

databases.

• We define the scope of mappings with our system and compare how our

mappings compare to traditional tuple-generating dependencies, a common

mechanism for database information integration.

• We evaluate the use of our mapping system by non-technical and technical

users through a user study.

2.1 STRUCTURES AND MAPPINGS

We show representations of our structures using the Entity-Relationship (ER) [25]

model to illustrate schema and mappings. In implementations, local databases, do-

main structures, and canonical structures use the relational model to present data

to end-users. We use the nested relational model [73] to represent local, domain,

and canonical schemata as well as mappings (equivalent to a system catalog). We

show examples in the ER, relational, and nested relational models.

We present local, domain, and canonical schemata and mappings formally

through the use of a running example. Figure 2.3 shows three local schemas

within an educational domain. The leftmost structure represents a traditional

course where the “Course” is made up of one or more “Units” and each “Unit”

consists of one or more “Lessons”. A “Lesson” may have associated instructional

materials. A standards-based course, as shown in the right side of Figure 2.3 has

a structure that is similar to a lesson in the traditional course but with different

names for relationships than those used in lessons. The middle structure in Fig-

ure 2.3 shows a “Tutorial Course” which consists of “Tutorial Units” where each

unit may consist of any number of instructional materials that are tutorials.

18

Unit

Lesson

LessonFor

Title

Title

UnitFor

Focus Area

Education Level

Course
Title

Instructional
Material

MaterialFor

Title Author

CourseId

UnitId

LessonId

IMId

Tutorial
Unit

Tutorial

Tutorial-For

Tutorial-
Unit-for

Title

Title

Tutorial
Course

Title
id

id

id

Instructional
Material

Instructional-
Material-For

Title

Educational
Standard

Title
id

id Assessment

Assessment-For

Title
id

Figure 2.3: Three local schemas within the educational domain. These schemas have

been simplified for clarity in the examples throughout this chapter.

We describe how the local database schemas are represented in our system

much as relational databases store system catalogs (here, we use a nested relational

model); this information can be used later by widgets to extract local type names

generically (based on the mappings that have been created).

Local DBs:

ldbpid, lrspname, key, attrspnameqqq

A local database is defined by a tuple in the nested relation ldb. Each database

is defined by an identifier id and a nested relation of the local relation names in the

database. Each nested local relation tuple contains the name of a local relation,

the name of the key attribute of the local relation, and a nested relation of the

attribute names in that local relation. Our system has been designed within the

world of web information systems and databases and as such each entity (i.e., each

relation in the local schema or, equivalently, each content type) will have a unique

identifier (commonly a URL). Working in the environment of the web where all

data is converted into strings for display on web pages, we ignore local datatypes

19

and treat all canonical and domain attributes as strings.

Result Set 2.1 shows the definition of the local schema on the left of Figure 2.31.

The “Course”, “Unit”, “Lesson”, and “Instructional Material” entities have been

directly translated into local relations and the three relationships are also repre-

sented by relations and have an associated identifier for each participant.

Result Set 2.1
id | lrs
--------------+---
StandardCourse| {(Course,CourseId,{CourseId,CourseTitle}),

| (Unit, UnitId, {UnitId, UnitTitle, EducationLevel}),
| (Lesson, LessonId, {LessonId, LessonTitle, FocusArea}),
| (InstructionalMaterial, IMId, {IMId, IMTitle, MaterialType}),
| (UnitFor, UnitForId, {UnitForId, CourseId, UnitId}),
| (LessonFor, LessonForId, {LessonForId, UnitId, LessonId}),
| (MaterialFor, MaterialForId, {MaterialForId, LessonId, IMId})}

To help clarify our definition of the the local database we show the standard

relational schema of the “StandardCourse” local database below (key attributes

are underlined).

CoursepCourseId, CourseT itleq

UnitpUnitId, UnitT itle, EducationLevelq

LessonpLessonId, LessonT itle, FocusAreaq

InstructionalMaterialpIMId, IMTitle,MaterialTypeq

UnitForpUnitForId, CourseId, UnitIdq

LessonForpLessonForId, UnitId, LessonIdq

MaterialForpMaterialForId, LessonId, IMIdq

We define domain structures in a similar fashion to the local databases.

Domain Structures:

dspid, drspname, key, attrspnameqqq

1Note, throughout this chapter we will use result sets to show the nested relational examples.
The result sets are available from a PostgreSQL implementation of our formalism and will be
explained in further detail in the next chapter.

20

A domain structure is defined by a tuple in the nested relation ds. Each

domain structure is defined by an identifier id and a nested relation of the domain

relation names in the structure. Each nested domain relation tuple contains the

name of a domain relation, the name of a key attribute, and a nested relation of the

attribute names in that domain relation. The key attribute of the domain structure

is not a traditional relational key, but rather, is generated in the mapping process

(described below), and uniquely identifies the local database, local relation, and

local tuple from which the domain relation tuple was derived. This key may or

may not uniquely identify the domain relation tuple depending on the mapping

that was used to create the tuple. This nested relation, ds, stores the schema of all

domain structures. For example, the educational domain structure from Figure 2.1

is represented below in Result Set 2.2.
Result Set 2.2

id | drs
--------------+---
EducationalDS | {(EducationalResource,ResourceId,{ResourceId,Title,GradeLevel,

| FocusSubject,Author}),
| (EducationalModule, ModuleId,{ModuleId,Title}),
| (EducationalSubmodule, SubmoduleId,{SubmoduleId,Title}),
| (ModuleOf, ModuleOfId, {ModuleOfId, ModuleId, SubmoduleId})}

The domain structure contains the following four relations.

EducationalResourcepResourceId, T itle, GradeLevel, FocusSubject, Authorq

EducationalModulepModuleId, T itleq

EducationalSubmodulepSubmoduleId, T itleq

ModuleOfpModuleOfId,ModuleId, SubmoduleIdq

Mappings can then be created between the local databases and the domain

structures (typically by the local database creator or content author). Figure 2.4

shows two mappings that have been created between the “ModuleOf” domain

relation (left side of Figure 2.1) and the “StandardCourse” local database (left side

of Figure 2.3). Each set of colored lines represents a single mapping consisting of a

21

Educational
Submodule

ModuleOf

Educational
Module

Title

Title

ModuleId

SubmoduleId

Unit

Lesson

LessonFor

Title

Title

UnitFor

Focus Area

Education Level

Course
Title

Instructional
Material

MaterialFor

Title Author

CourseId

UnitId

LessonId

IMId

DomainLocal

100

102

101

110

111

112

Figure 2.4: Mappings are shown between the “ModuleOf” domain structure and the

“UnitFor” local relationship (blue, solid lines) and the “LessonFor” local relationship

(green, dashed lines). Correspondence ids are added to show the correspondences listed

in Result Set 2.3. Correspondences ids are auto-generated by the system and not visible

to end-users.

number of individual correspondences. As shown in the figure, each correspondence

has its own id, shown as a number with the line of the correspondences and each

mapping will have its own id. Mapping and correspondences ids will not typically

be user-generated, but rather system-generated as users create mappings through

simple-to-use interfaces.

Local DB - Domain Structure Mappings:

ds ldb mpid, ldbid, dsid, dr lr mspid, lr, dr, p, corrspid, la, daqqq

The set of all local database to domain structure mappings is defined in the

ds ldb m nested relation. A mapping is defined as one tuple in the relation with

an identifier id, the local database in the mapping ldbid, the domain structure in

22

the mapping dsid, and a nested relation of the relations mapped dr lr ms. Each

mapping tuple (between a domain relation and a local relation) in dr lr ms consists

of an identifier id, the local relation lr, the domain relation dr, a predicate p, and a

nested relation of the correspondences between local and domain attributes. Each

correspondence consists of an identifier id, the local attribute name la and the

domain attribute name da. The predicate in a mapping will be used in conditional

mappings and described in more detail in Section 2.2.4. The conditions for a well-

formed mapping are presented in Section 2.2.1. The mappings from Figure 2.4 are

shown below in Result Set 2.3.
Result Set 2.3

id | ldbid | dsid | dr_lr_ms
---+----------------+---------------+--
1 | StandardCourse | EducationalDS |{(10,UnitFor,ModuleOf,TRUE,{(100,UnitForId,ModuleOfId),

| (101,CourseId, ModuleId),
| (102,UnitId, SubmoduleId)}),
| (11,LessonFor,ModuleOf,TRUE,{(110,LessonForId,ModuleOfId),
| (111,UnitId, ModuleId),
| (112,LessonId, SubmoduleId)})}

Canonical structures are defined similarly to local databases and domain struc-

tures.

Canonical Structures:

cspid, crspname, key, attrspnameqqq

Each canonical structure is defined by a tuple in the nested relation cs. Each

canonical structure is defined by an identifier id and a nested relation of the canon-

ical relation names in the structure. Each nested canonical relation tuple contains

the name of a canonical relation, the name of a key attribute, and a nested rela-

tion of the attribute names in that canonical relation. The key attribute value of

the canonical relation will come directly from the key attribute value from each

domain relation that is mapped to the canonical relation. Hence, the key may

or may not uniquely identify tuples in the canonical relation depending on the

local-relation-to-domain-relation mapping that created the key value. This nested

relation contains the schema for all canonical structures. For example, the left two

canonical structures from Figure 2.2 are represented in the system as shown below

23

Educational
Submodule

ModuleOf

Educational
Module

Title

Title

ModuleId

SubmoduleId

CanonicalDomain
60001

60000

60002

Part

Has

Parent Title

Title

Parent_id

Part_id

Figure 2.5: A mapping is shown between the parent-part canonical structure and the

educational module domain structure.

in Result Set 2.4.
Result Set 2.4

select * from cs;
id | crs

--------------+--
ItemCS | {(Item,ItemId,{ItemId,Title,Attribute})}

ParentPartCS | {(Parent,ParentId,{ParentId,Title}),
| (Part,PartId,{PartId,Title}),
| (Has,HasId,{HasId,ParentId,PartId})}

Mappings can then be created between domain structures and canonical struc-

tures, such as that shown in Figure 2.5, where each mapping is comprised of a

set of correspondences. Here, there is a mapping between the “ModuleOf” domain

relation and the “Parent-Part” canonical relation. The mapping consists of a set of

correspondences between the relationships and the “ModuleId” domain attribute

and “parent id” canonical attribute and the “SubmoduleId” domain attribute and

“part id” canonical attribute.

Mappings between canonical and domain structures are defined similarly to

mappings between domain structures and local databases.

Domain Structure - Canonical Structure Mappings:

cs ds mpid, dsid, csid, cr dr mspid, dr, cr, corrspid, da, caqqq

24

The set of all domain-structure-to-canonical-structure mappings is defined in

the cs ds m nested relation. A mapping is defined as one tuple in the relation with

an identifier id, the domain structure in the mapping dsid, the canonical structure

in the mapping csid, and a nested relation of the relations mapped cr dr ms. Each

relation mapping tuple in cr dr ms consists of an identifier id, the domain relation

dr, the canonical relation cr, and a nested relation of the correspondences between

domain and canonical attributes. Each correspondence consists of an identifier

id, the domain attribute name da, and the canonical attribute name ca. Unlike

local-to-domain mappings, domain-to-canonical mappings do not allow predicates

in the correspondences. The mapping from Figure 2.5 is shown below in Result

Set 2.5.
Result Set 2.5

select * from cs_ds_m;
id | dsid | csid | cr_dr_ms

-----+-------------+------------+--
600 |EducationalDS|ParentPartCS| (6000,ModuleOf,Has,{(60000,ModuleOfId,HasId),

(60001,ModuleId,ParentId),
(60002,SubmoduleId,PartId)})

2.2 ALLOWED MAPPINGS

One of our main goals is to be able to facilitate non-technical content authors to be

able to create their own mappings from their local databases to domain structures.

To that end, we limit the types of mappings that are allowed in our system. In this

section we describe the types of mappings that can be created in our system and

compare how they relate to mappings described with traditional tuple-generating

dependencies (TGDs) [36, 57].

The definition of a tuple-generating dependency is as follows:

@xpφSpxq Ñ DypψT px, yqq

where φ and ψ are conjunctions of atomic formula over the source S and target

T schemas respectively. This definition allows for arbitrarily complex mappings

between source and target schemas. We next present the different forms of limited

mappings we allow and show how they are expressed as TGDs.

25

DomainLocal

cid1

cid2

P1

dr1da1
da2

dk1 da3
lr1 la1

la2

k1

Figure 2.6: An example mapping between the “lr1” local relation and the “dr1” domain

relation with predicate “P1”, where there are correspondences between local attirbute

“la1” and domain attribute “da1” (with id “cid1”) and local attribute “la2” and domain

attribute “da2” (with id “cid2”) .

2.2.1 Local to Domain Mappings

In the general case, a local-database-to-domain-structure mapping in our system

consists of a set of local-relation-to-domain-relation mappings, each of which is

comprised of a set of correspondences. For example suppose we have the local

database and domain structure shown in Figure 2.6 and below in Result Set 2.6.
Result Set 2.6

ldb(id,lrs(name,key,attrs))

ldb1 | {lr1,k1,{k1,la1,la2}}

ds(id,drs(name,key,attrs))

ds1 | {dr1,dk1,{dk1,da1,da2,da3}}

The local database, ldb1, has a single local relation, lr1, which has a key attribute,

k1, and two non-key attributes, la1 and la2. The domain structure, ds1, has

a single domain relation, dr1, which has a key attribute, dk1, and three non-

key domain attributes, da1, da2 and da3. Consider the local-database-to-domain-

structure mapping as shown in Figure 2.6 and below in Result Set 2.7.
Result Set 2.7

ds_ldb_m(id,ldbid,dsid,dr_lr_ms(id,lr,dr,p,corrs(id,la,da)))
--
dsldbm1 | ldb1 | ds1 | {mid1,lr1,dr1,P1,{cid1,la1,da1},

{cid2,la2,da2}}

This local-database-to-domain-structure mapping exists between the local

database, ldb1, and the domain structure, ds1, described above in Result Set 2.6,

26

and contains a single local-relation-to-domain-relation mapping with mapping id

mid1. This local-relation-to-domain-relation mapping has the predicate P1 and

contains two correspondences. The first, with id cid1, is between the la1 local

attribute and the da1 domain attribute. The second, with id cid2, is between the

la2 local attribute and the da2 domain attribute.

This mapping is then described in the TGD shown below.

@k1, la1, la2 lr1pk1, la1, la2q^P1 Ñ

dr1pGKpk1, ldb1, lr1,mid1q, la1, la2, ‘NULL’q

The function GK is used to generate a key for each tuple in the domain relation

based on the key of the local relation, the local database, the local relation, and

the mapping of which it is a part2. This key uniquely identifies the tuple from the

local database and local relation from which the domain-relation tuple is derived.

Key generation is done automatically creating an implicit mapping between the

key of the local relation and the key of the domain relation. This TGD states

that for every tuple in the local relation lr1, if the predicate P1 is true, there

will be a corresponding tuple in the domain relation dr1 that has its domain-

relation key defined by the function GK, has the local attribute la1 value for the

domain attribute da1, has the local attribute la2 value for the domain attribute

da2, and has the null value for the domain attribute da3 since da3 does not have

a correspondence in this mapping.

In general the form of the TGDs that represent our allowed mappings in our

system must conform to the following rules:

• The left-hand side of the implication can only contain a single local relation

and a predicate (that only contains attributes from the local relation).

• The right-hand side can only have atoms from a single domain relation (there

2This key-generation function will be described in detail in the following chapter.

27

Educational
Resource

Title
Resource_Id

Grade Level
Focus Subject

Author
Instructional

Material

Title
IMId
Author

Grade Level
Material Type

DomainLocal

Figure 2.7: A straightforward mapping where each local and domain attribute only

exists in a single correspondence. Correspondences ids are left out of this (and the

following) figure since they are not needed to explain the TGD creation process (they

would still be created automatically by the system).

may be more than one atom from the same domain relation which will be

discussed below).

• There cannot be any existential variables on the right-hand side of the im-

plication. All right-hand side variables must be from the left-hand side or

the literal ‘NULL’ value.

We next describe how a TGD is constructed in our mapping system through

the four basic cases allowed in our system and their combinations. A mapping is

well-formed if it is one (or a combination of any) of the four base cases.

2.2.2 Straightforward Mappings

Straightforward mappings are mappings where each correspondence references

unique domain and local attributes. For example, Figure 2.7 shows a straight-

forward mapping between the “Educational Resource” domain entity and the “In-

structional Material” local entity. Each mapped domain attribute is in a single cor-

respondence with one local attribute. Note that not all domain or local attributes

need be included in the mapping; for example, neither the “Focus Subject” domain

attribute nor the “Material Type” local attribute are included in this mapping.

28

Based on the definition of the local and domain relations:

InstructionalMaterialpIMId,Author, T itle, GradeLevel,MaterialTypeq

EducationalResourcepResourceId, Author, T itle, GradeLevel, FocusSubjectq

we construct the TGD such that the local relation is on the left-hand side of the

implication, all local variables are universally quantified, the key attribute of the

domain relation is replaced by the key generating function GK3, all other domain

variables that exist in correspondences are replaced by their corresponding local

variables, and all unmapped domain variables are replaced by the literal ‘NULL’.

A TGD that defines this mapping is as follows:

@i, a, t, g,m InstructionalMaterialpi, a, t, g,mq Ñ

EducationalResourcepGKpiq, a, t, g, ‘NULL’q

In this case, where no predicate has been defined for the mapping, the left-hand

side of the implication contains only the local relation.

2.2.3 One-Local-Attribute-to-Many-Domain-Attributes Mappings

We also allow the case where the same local attribute may be in correspondences

to multiple domain attributes4. Figure 2.8 shows this where there is a local entity,

“Office” that represents an office branch for a company. It has a name, a manager,

and a city where the branch is located. On the right side of the figure there is a

domain entity, “Company”, that represents an entire company and has attributes

for the company name, a branch office, a manager, and its location. In this case,

the city attribute of the local “Office” entity signifies both its branch and its

location so there are two correspondences between the local “City” attribute and

the “Branch” and “Location” domain attributes. The domain and local relations

3Note, we simplify the representation of GK here (and the rest of the section) by omitting
the additional input parameters of the local database, local relation, and mapping id.

4We separate this case from the straightforward case above to explicitly show what is allowed
in our system even though these two cases are technically quite similar.

29

Office
Name
City
Manager

DomainLocal

Company
Name
Branch

ManagerLocation

Id Did

Figure 2.8: One local attribute to many domain attributes mapping where the “City”

local attribute has correspondences to both the “Branch” and “Location” domain at-

tributes.

are defined as follows:

OfficepId,Name,City,Managerq

CompanypDid,Name,Branch, Location,Managerq

The mapping is then represented by the following TGD.

@i, n, c,m Officepi, n, c,mq Ñ CompanypGKpiq, n, c, c,mq

In this case, any local attribute that has correspondences to multiple domain at-

tributes will be represented by the local variable being repeated in the domain

relation for every correspondence. In this case, the “Branch” and “Location” do-

main attributes will get the value for the local “City” attribute.

2.2.4 Conditional Mappings

In the definitions above we mentioned that predicates may be attached to a map-

ping. These types of mappings are often needed when only a subset of the local

data should appear in a domain relation. For example, Figure 2.9 shows the case

where the “YouthAthlete” domain entity represents athletes eighteen years old or

younger. In order to create a mapping between a local “Player” entity that may

contain athletes of all ages, we need to specify that only athletes eighteen years

old or younger should be in the mapping, we add predicates to the mapping by

adding the directional line from the local relation to the domain relation with the

30

YouthAthlete
Name
IdRank

DomainLocal

Player
Name
PlayerId
Rank

Age

Age <=18

Figure 2.9: A conditional mapping where the predicate “Ageă=18” has been added

to the mapping.

desired predicate. The domain and local relations are defined as follows:

PlayerpPlayerId,Name,Rank,Ageq

YouthAthletepId,Name,Rankq

The mapping is then represented by the following TGD.

@p, n, r, a Playerpp, n, r, aq ^ pa ă“ 18q Ñ YouthAthletepGKppq, n, rq

In this case, all the variables are mapped like in the straightforward case but there

is now the addition of the predicate to the left-hand side of the implication. Note

that the predicate must be well formed and only reference attributes from the

single local relation in the mapping.

2.2.5 Many-Local-Attributes-to-One-Domain-Attribute Mappings

Beyond the straightforward case, we also allow mappings where there exists mul-

tiple correspondences from different local attributes to a single domain attribute.

For example, Figure 2.10 shows a mapping between the “DigitalLibraryResource”

domain entity and the “AltInstructionalMaterial” local entity. The “DigitalLi-

braryResource” domain entity represents a case in which resources in a digital

library have some fixed data attributes and then may have a number of metadata

values to facilitate searching and indexing but that do not have their own at-

tributes. In this case, the “AltIMId”, “Author”, and “Title” local attributes have

31

DigitalLibrary
Resource

Title
ResourceId

Metadata

Author
AltInstructional
Material

Title
AltIMId

GradeLevel
FocusSubject

Author MaterialType

DomainLocal

Figure 2.10: A many local to one domain mapping where the “GradeLevel”, “Focus-

Subject”, and “MaterialType” local attributes all have correspondences to the “Meta-

data” domain attribute.

straightforward correspondences to the domain entity. But, the “GradeLevel”,

“FocusSubject”, and “MaterialType” attributes all have correspondences to the

“Metadata” domain attribute. The local relation and domain relation are defined

as follows:

AltInstructionalMaterial(AltIMId,Author,Title,GradeLevel,Subject,MatType)

DigitalLibraryResource(ResourceId,Author,Title,Metadata)

The mapping is then represented by the following TGD.

@aid, a, t, g, s,m AltInstructionalMaterialpaid, a, t, g, s,mq Ñ

DigitalLibraryResourcepGKpaidq, a, t, gq

^ DigitalLibraryResourcepGKpaidq, a, t, sq

^ DigitalLibraryResourcepGKpaidq, a, t,mq

This TGD states that for every tuple in the local “AltInstructionalMaterial” re-

lation there will be three tuples in the “DigitalLibraryResource” domain relation.

One tuple for the domain relation will be added for each local attribute that is

mapped to the same domain attribute5. For each instance of the domain relation in

the TGD, the “ResourceId”, “Author”, and “Title” domain attributes are defined

5Note, this represents a typical DB unpivot operation, therefore, GK(aid) will not be a key
for the resulting tuples in the relational model. Chapter 3 shows how this key will be maintained
using our operators in the nested relational model.

32

DomainLocal
P

lr1 la1
la2

k1

la3
dr1da1

da2

dk1

da3

da4

Figure 2.11: A local to domain mapping that combines all of the above cases.

as above in the straightforward case.

2.2.6 Combinations and Algorithmically Building TGDs

We now consider how these base cases can be combined into any allowable mapping

in our system and show an algorithm for creating the appropriate TGD based

on the mappings. Consider the mapping shown in Figure 2.11. This mapping

combines all of the previous cases, it has a predicate P , a straightforwardly mapped

domain attribute da1, two multiply mapped local attributes la1 and la2, and two

multiply mapped domain attributes da2 and da3.

Algorithm 2.1 shows how we build TGDs generally. We will explain the algo-

rithm using the example from Figure 2.11. The local relation and domain relation

are shown below in Result Set 2.8 and the mapping is shown in Result Set 2.9.

Result Set 2.8
ldb
id | lrs(name,key,attrs)

-----+--------------------------
ldb1 | {lr1,k1,{k1,la1,la2,la3}}

ds
id | drs(name,key,attrs)

----+---------------------------------
ds1 | {dr1,dk1,{dk1,da1,da2,da3,da4}}

Result Set 2.9
ds_ldb_m

id |ldbid |dsid | dr_lr_ms(id,lr,dr,p,corrs(id,la,da))
--------+------+-----+---------------------------------------
dsldbmC | ldbC | dsC | {mid1,lr1,dr1,P, {cid1,la1,da1},

{cid2,la1,da2},
{cid3,la2,da2},
{cid4,la2,da3},
{cid5,la3,da3}}

Following the algorithm we begin by creating the left hand side of the TGD in

lines 3 to 9

33

Algorithm 2.1 Algorithm for building TGDs from local to domain mappings.

1: procedure BuildTGD(dr lr m, lr, dr)
2: ŹWhere dr lr m, lr, and dr are the nested relations defined as dr lr m(mid,

lr, dr, P, corrs(cid, la, da)), lr(name, key, attrs), dr(name, key, attrs)
3: lhsÐ‘@’
4: lr Ð‘ lr.namep’
5: for all la in lr.attrs do
6: lhsÐ lhs`‘la,’
7: lr Ð lr`‘la,’
8: end for
9: lhsÐ lhs` lr`‘q’

10: if dr lr m.P exists then
11: lhsÐ lhs`‘^’`dr lr m.P
12: end if
13: da corrsÐ dictionarypq
14: for all da in dr.attrs do
15: da corrsrdas “ setpq
16: end for
17: for all corr in dr lr m.corrs do
18: da corrsrcorr.das.appendpcorr.laq
19: end for
20: for all da in dr.attrs do
21: if lengthpda corrsrdasq ““ 0 then
22: da corrsrdas.appendp‘NULL’q
23: end if
24: end for
25: da corrsrdr.keys.appendp‘GK(’`lr.key`‘)’qq
26: dr instancesÐ listplistpqq
27: for all da in dr.attrs do
28: temp listÐ listplistpqq
29: for all instance in dr instances do
30: for all la in da corrsrdas do
31: temp instanceÐ instance
32: temp list.appendptemp instance.appendplaqq
33: end for
34: end for
35: dr instances “ temp list
36: end for

34

Algorithm 2.1 Continued from previous page

37: for all instance in dr instances do

38: rhsÐ‘dr.name(instanceq^’

39: end for

40: return lhs`‘Ñ’`rhs

41: end procedure

@k1, la1, la2, la3 lr1pk1, la1, la2, la3q.

Then in lines 10 to 12 we add the predicate if there is one, in this case “P”, so

now we have

@k1, la1, la2, la3 lr1pk1, la1, la2, la3q ^ P .

We create a dictionary of sets to represent all the correspondences indexed by

the domain attributes in lines 13 to 19. In this case we create the dictionary below.

da_corrs[dk1]={}
da_corrs[da1]={la1}
da_corrs[da2]={la1,la2}
da_corrs[da3]={la2,la3}
da_corrs[da4]={}

For any non-key domain attribute that is not in any correspondence we then add

‘NULL’ (lines 20 to 24). The entry for da4 then becomes

da_corrs[da4]={‘NULL’}.

We add the implicit key generating mapping in line 25.

da_corrs[dk1]={GK(k1)}

We then do a recursive list comprehension of the correspondences to create the

lists of variables for the right hand side atoms of the TGD (lines 26 to 35) which

produces the following list of lists.

dr_instances=((GK(k1),la1,la1,la2,‘NULL’),
(GK(k1),la1,la2,la2,‘NULL’),
(GK(k1),la1,la1,la3,‘NULL’),
(GK(k1),la1,la2,la3,‘NULL’))

Then we create the right hand side in lines 36 to 38 which creates

35

dr1(GK(k1),la1,la1,la2,‘NULL’)^
dr1(GK(k1),la1,la2,la2,‘NULL’)^
dr1(GK(k1),la1,la1,la3,‘NULL’)^
dr1(GK(k1),la1,la2,la3,‘NULL’)

Lastly, we combine the left hand and right hand sides in line 39 resulting in

the following TGD.

@k1, la1, la2, la3 lr1pk1, la1, la2, la3q ^ P Ñ dr1pGKpk1q, la1, la1, la2, ‘NULL’q

^dr1pGKpk1q, la1, la2, la2, ‘NULL’q

^dr1pGKpk1q, la1, la1, la3, ‘NULL’q

^dr1pGKpk1q, la1, la2, la3, ‘NULL’q

2.2.7 Domain-to-Canonical Mappings

We assume, generally, that domain structures will map fairly directly onto canon-

ical structures and therefore require that a mapping will always be of the straight-

forward case described above. We expect that a domain structure and a canonical

structure will often be isomorphic, differing only in their names. The algorithm to

produce TGDs is shown in Algorithm 2.2.

Up through line 22, this algorithm is essentially the same as the local-to-domain

algorithm minus the predicate. In line 22, the key from the domain relation is

automatically mapped to the canonical relation but retains the value generated by

GK. Then the right hand side is created in lines 23 to 27. Since the only case that

is possible is the straightforward case, there can be at most one correspondence for

each attribute and only a single atom on the right hand side, so we do not need to

use the list comprehension from the previous algorithm.

36

Algorithm 2.2 Algorithm for building TGDs from domain to canonical mappings.

1: procedure BuildTGD(cr dr m, dr, cr)
2: Ź Where cr dr m, dr, and cr are the nested relations defined as

cr dr m(id,dr,cr,corrs(id,da,ca)),dr(name,key,attrs),cr(name,key,attrs)
3: lhsÐ‘@’
4: dr Ð‘ dr.namep’
5: for all da in dr.attrs do
6: lhsÐ lhs`‘da,’
7: dr Ð lr`‘da,’
8: end for
9: lhsÐ lhs` dr`‘q’

10: ca corrsÐ dictionarypq
11: for all ca in cr.attrs do
12: ca corrsrcas “ setpq
13: end for
14: for all corr in cr dr m.corrs do
15: ca corrsrcorr.cas.appendpcorr.daq
16: end for
17: for all ca in cr.attrs do
18: if lengthpca corrsrcasq ““ 0 then
19: ca corrsrcas.appendp‘NULL’q
20: end if
21: end for
22: ca corrsrcr.keys.appendpdr.keyq
23: rhsÐ‘cr.name(’
24: for all ca in cr.attrs do
25: rhsÐ rhs` ca corrsrcas`‘,’
26: end for
27: rhsÐ rhs`‘)’
28: return lhs`‘Ñ’`rhs
29: end procedure

37

2.3 USER STUDY

Here we present the results of our user study where seven departmental staff at

our university (responsible for creating content on the university web site) with

a range of technical expertise, were asked to provide mappings. The study was

performed with human subjects approval from our university institutional review

board. Subjects were provided a short training session and then required to use our

system to create mappings for a widget in a website that they had not seen before.

The overriding goal of the study was to evaluate the feasibility of our mapping

approach through discount usability testing [59] where the usability (effectiveness,

efficiency, and satisfaction) of a system is tested through small and simple scenarios

that lead to quick feedback but are not statistically significant. Our goal is to show

that our system is usable but since we are not user interface developers, we do not

expect nor attempt to evaluate the user interface of our mapping system.

2.3.1 Design of the User Study

We designed our user study to test whether subjects could create mappings between

local schemas and domain structures. Subjects were asked to complete three tasks;

one training task in which participants were guided through the process of creating

mappings in a site with a fairly simple schema; and, two tasks where participants

worked on their own to create mappings in two different sites (one with a simple

schema and one with a more complex schema).

Subjects were given a demographic questionnaire at the beginning of the ses-

sion, evaluation questionnaires at the end of each of the two testing tasks, and

an overall evaluation questionnaire at the end of the session. As we expect our

tool to be used by domain-savvy users, our test was limited to sites in a single

domain (in this case, an educational domain) and our users were chosen from staff

of different departments within our university that are responsible for updating

38

their departmental web pages.

For the training task, subjects used a website built using the library local

schema shown in Figure 2.13. This schema has a simple (one-directional) hierarchy

between “Library”, “Collection”, “Book”, “Chapter”, and “Section”. There is also

a bidirectional relationship between “Category” and “Book” so that the subjects

could create recursive mappings using the tool. The subjects were shown the

structure of the site using only the hypertext links in the webpages within the

operational website (shown in Figure 2.12).

The goal of the training task was to show the subjects how to create different

instances of the navigation widget shown in Figure 2.14. The widget is a hierarchi-

cal navigation widget that allows a structured website to be shown in a hierarchical

tree. The figure shows an instance of a library with two collections, where each

collection has a number of books, and each book has a number of chapters. In this

case the “Category”-“Book” relationship is not mapped, therefore no categories

appear in this instance of the widget.

The subjects were then shown the mapping tool (Figure 2.15) that, for a given

domain structure, allows the user to select a content type from a list of all possible

content types in the site and then choose a relationship associated with that type.

Part of the mapping interface is a preview widget that shows how the navigation

widget in the site would look using the given mappings. The tool then allows

users to delete a specific mapping, save all of their mappings, or delete all of their

mappings (Figure 2.16).

In the training tasks, the subjects were asked to create a number of specific

mappings and encouraged to make additional mappings, as desired. There may

be many different mappings that can be created within any given site for any

number of reasons, so we explicitly allowed our subjects to create whatever map-

pings they felt were appropriate. Since the choice of mappings is subjective, we

did not test to see if subjects would create any specific mappings. Mappings were

39

Figure 2.12: The training task website showing a library, a collection, a book, and a

chapter webpage. Links to related content types are in red inside the white boxes.

40

Library Collection Book Chapter Section

Category

Literary	
Unit			

Literary	
Module										

Domain Structure

Local
Schema

Mappings to Domain

Parent Part Canonical Structure

Mappings to Canonical

Figure 2.13: A local library schema (top, shown in a simplified ER diagram that only

has enitities and has directional arrows representing the links in the website), the library

domain structure (middle), the parent-part canonical structure (bottom), and mappings

between the three.

Figure 2.14: An instance of the navigation widget used in the training task of the

user study with mappings between the “Library-to-Collection”, “Collection-to-Book”,

and “Book-to-Chapter” local relationships and the “Literary-Unit-to-Literary-Module”

domain relationship.

41

Figure 2.15: In the mapping interface, a user first selects the domain relation to which

they want to create a mapping from a dropdown list (not shown here). Then, a user

selects a content type (on the left) and then is shown all possible relationships to other

content types (on the right). Here, a mapping is created between “Library-to-Collection”

local relationship and the “Literary-Unit-to-Literary-Module” domain relationship.

Figure 2.16: Three mappings are shown: between the “Library-to-Collection”,

“Collection-to-Book”, and “Book-to-Chapters” and the “Literary-Unit-to-Literary-

Module” domain relationship. Users can select a specific mapping to delete, save the

entire set of mappings, or delete the entire set of the mappings.

42

Journal

Volume

Issue

Article

Section

Figure 2.17: Schema for first task in the study (shown in a simplified ER diagram that

only has enitities and has directional arrows representing the links in the website).

only deemed incorrect if the end result produced irregular widget behavior (i.e.,

duplicate mappings or disjoint mappings). After the scripted part of the training

session, participants were allowed to explore the training site and the mapping tool

for as long as they desired.

After the training task, participants were then asked to create mappings they

saw as appropriate for a website with the schema shown in Figure 2.17. This

schema is a simple hierarchy of an academic journal using unidirectional relation-

ships only. For the second testing task, participants were asked to create mappings

they saw as appropriate for a website based on a university schema shown in Fig-

ure 2.18. The schema includes bidirectional relationships and cycles.

Participants for the study were recruited from the pool of departmental ad-

ministration staff from the university who are in charge of updating the university

webpage for their respective departments. All participants had working knowledge

of Journals, Libraries, and Universities. The participants had varying degrees of

technical expertise ranging from three to more than ten years of website configu-

ration experience and none to more than ten years of database experience.

43

University

Department

Research
Lab

CourseProfessor

Student

Figure 2.18: Schema for second task in the study.

2.3.2 User Behaviors

We showed participants how to browse the site (based on the schema in Fig-

ure 2.13), see a preview of the widget, and create large and small mappings. We

emphasized the use of the preview functionality as we believed it would aid the

creation and checking of mappings.

Figure 2.20 shows an overview of the study subjects’ sessions. Figure 2.19

shows the legend for the color codes shown in Figure 2.20 and the following figures

in this section. Each subject’s session is represented in a horizontal bar beginning

with their anonymous id. The sessions are broken into boxes for each task, the first

(pink) box shows the training task, the second (blue) box shows the first testing

task, and the last (green) box shows the second testing task. The smaller boxes

inside each box represent the various actions performed by the subject within the

task (explained below). The longest session lasted a little less than 50 minutes

and the shortest was less than 20 minutes. This variation is unsurprising given

the open-ended nature of the tasks. In most sessions, subjects took a longer time

with the second task, likely due to the more complex nature of the local schema

for the site in that task. For the two subjects who completed the second task in

44

Figure 2.19: Legend for the color coding shown in Figures 2.20, 2.21, 2.22, 2.23, and

2.24.

Figure 2.20: Timelines of user sessions showing length of training, Task 1, and Task 2.

The x-axis shows session time, the longest session lasting 50 minutes.

the shortest times, one created a single set of mappings for the university, without

cycles, and decided they were done while the second appeared to rush through the

task and saved a set of mappings that included duplicate mappings. This was the

only subject to save a set of mappings we deemed to be incorrect; other subjects

created structures that had duplicate mappings or contained disjoint parts of the

schema but in all cases these subjects discovered and deleted their bad mappings.

In Figure 2.21 all of the timelines have been scaled up to an hour in length so

that we can compare the relative amount of time each user spent on each task. As

each task (including the training task) was open ended, the amount of time spent

45

Figure 2.21: Normalized timelines (where all sessions are stretched to an hour in

length) of user sessions showing the comparative length of training, Task 1, and Task 2.

in each task varied greatly.

As mentioned above, we believed that the preview feature of our tool would be

useful for checking and evaluating mappings. We found that some of our partic-

ipants chose to use the preview feature while others chose to browse through the

live site and see the live widget in the context of the actual webpages. Figure 2.22

shows an example of the use of the preview. In this case the subject starts the task

by creating six mappings, uses the preview function to check the mappings, deletes

two mappings, uses the preview again, and then saves the set of mappings. This

subject continues creating a few mappings and checking with preview. Figure 2.23

shows another example of a previewer where the user starts by creating a single

mapping, previews that mapping, and then saves the set of mappings. This user

continues previewing after each new mapping. Contrast the preview behavior with

Figure 2.24, where the subject creates five mappings, browses the site, creates two

more mappings, browses the site again, creates six more mappings, and then saves

the set of mappings.

Figures 2.22 and 2.23 also demonstrate two other behavior patterns observed

in the test. In Figure 2.22, the subject creates a few mappings, checks them with

preview, then deletes a mapping or two before saving the set of mappings. Compare

that with Figure 2.23, where the subject often creates a number of mappings and

when they decide that they are incorrect or not to their liking they delete the

46

Figure 2.22: A study session of Task 2 demonstrating the preview, test and check, and

the entity-centric behaviors.

Figure 2.23: A study session of Task 1 demonstrating the preview, delete and start

over, and the random behaviors.

Figure 2.24: A study session of Task 2 demonstrating the browse, large, and entity-

centric behaviors. Darker rectangles represent browsing behavior, mappings are dis-

played above the lighter colored squares, and the dark square at the end saves all map-

pings.

47

entire set of mappings and start over.

The three examples shown thus far also demonstrate the two different ways

subjects approached the process of mapping. In Figures 2.22 and 2.24 the subjects

created larger navigational structures (with more mappings). These structures

were also built in an entity-centric way, where the subject starts at one type,

created all the mappings related to that type and then moved to the next. Contrast

that to Figure 2.23, where the subject creates many small structures and the

mappings are often created in what appears to be a random fashion.

2.3.3 Results

With regard to our main goal, the study showed that domain-savvy users can per-

form the mapping tasks using our system. All participants were able to complete

the given tasks within a reasonable time frame (we designed the test to take no

more than one hour with the caveat that the open-ended nature could have made

it take longer) and, although they could leave at any time during the test, no one

left the test prematurely. (One participant inadvertently failed to complete the

final questionnaire, but completed all tasks and task questionnaires.) Participants

were asked to rate the overall usefulness of the tool and enjoyment of mapping on a

scale of one (Strongly Disagree) to five (Strongly Agree) with the average response

for both questions being 3.7.

An interesting aspect of the behaviors listed above is how groups of differing

behaviors corresponded to satisfaction results of the tool and mapping. Table 2.1

shows some of this detail. Though not statistically significant due to our sample

size, we observed that the group of subjects that used preview was also the group

with more than five years of experience. Those with less experience tended to

exhibit more browsing behavior.

Overall those with less technical experience tended to find the system more

useful than those with more experience. In the questionnaires related to the tasks,

48

Table 2.1: Aggregated user feedback showing satisfaction with the system for each task

and overall and a scale of one (Strongly Disagree) to five (Strongly Agree).

Satisfaction

Behavior Group Task1 Task2 Overall

Previewer and

Experienced (n=4)
2.8 3.4 3.6

Non Previewer

and Inexperienced (n=3)
5 2 4

Larger and

Entity-centric (n=4)
4 3.25 4.7

Smaller and

Random (n=3)
2.7 2.7 2.7

those participants with more experience expressed some frustration that they were

limited to what the tool could do when they knew how to edit HTML directly to

get the results they wanted. Also of note is that even though inexperienced users

preferred the tool overall, they were less satisfied with the interface during the

second more complex task.

Table 2.1 also shows the difference between the large mapping/entity-centric

mappers and the small mapping and random mappers. We see that across the

board, the larger and entity-centric mappers were more satisfied with the tool

on each of the tasks and overall. It is likely that these subjects had a better

understanding of the structure of the sites, our tool, and the tasks.

49

2.4 RELATED WORK

Our work on domain structures is based on the Entity-Relationship conceptual

model [25, 79] (with a straightforward representation as a relational schema). Do-

main structures can be viewed as design patterns similar to those proposed in data

modeling [8], the co-design and metastructure approach [51, 80], and ontology cre-

ation [37, 67]. Blaha [8] defines domain-independent (like canonical structures)

patterns that compose generic data model constructs and domain-dependent seed

models that can be used as a starting point for a schema (like domain structures).

Similarly, ontology design patterns [67] represent domain-independent (like canon-

ical) models that may be elaborated for a domain. In both of these approaches, the

patterns are used to build new systems; existing systems are not mapped to these

patterns. We approach pattern use in the opposite manner: we overlay patterns

on existing systems in order to extend their functionality (by allowing the content

author to place widgets in their site). Our domain structures can also be seen as

abstract superclasses of the various local schema types to which the domain struc-

tures have been mapped, similar to view integration and view cooperation [79].

Generic schemas and functionality have been explored extensively in program-

ming and data management, and bring with them many benefits. Generic schemas

aid in development by allowing functions, code, and constraints to be defined gener-

ically and aid in the definition and creation of new (more complex) schemas and

systems and allow for a greater reuse of schema [62]. Using generic schemas can

provide faster development, even with complex models, while minimizing develop-

ment complexity [62]. Generic types in programming languages such as Java [43]

or C# [27] can provide common functionality to many different heterogeneous

types. We take this approach (where our canonical schemas are generic schemas)

and add the ease of use of schema mapping systems such as CLIO [57], to enable

non-technical users to make use of generic functionality by inserting a user-friendly

50

schema (domain structures) between the generic (canonical) schema and the local

schema.

Web development frameworks [33] also often provide a generic relational map-

ping to convert complex user-defined schemas into generic formats in their database

back-ends. Often an instance of a content type created by a user in the web front-

end is stored in the database with a table for each field of the object plus an instan-

tiation of some base class. In contrast, Object-Relational Mappers (ORMs) [46]

provide an algorithmic mapping between an object and a relational table that con-

tains attributes for each of the fields in the object. Web-development frameworks

can provide some basic generic functionality for building pages and websites, but

more complex widgets are limited to predefined models (e.g., a typical calendar

widget uses a single defined event type or an address-book widget has a predefined

contact type). Our system brings generic widgets to the front-end of these systems,

which accommodates the semantic heterogeneity of the underlying systems.

Conceptual models have been used as the basis for building Web information

systems in projects such as WebML [24] and Araneus [4, 5, 54]. These approaches,

like content management systems and web development frameworks, provide richly

structured websites and facilitate the creation of these sites via modeling instead of

coding. These approaches have many of the same constraints to generic function-

ality that web-development frameworks have. We could extend conceptual model-

based information systems in the same fashion as we extend web-development

frameworks.

We take inspiration from systems such as CLIO [57] for our mapping system.

Like Clio, we want users to create mappings by simply drawing lines from local

schemas to domain structures. In contrast, we expect users to map local schemas,

perhaps many times, to our small domain structures instead of trying to cre-

ate entire schema mappings to a single global schema. Domain-structure-specific

mappings adds flexibility in how the domain structures may be later composed

51

and means that end users need not understand every domain structure that could

be mapped (only the domain structures of interest to the user for a specific in-

stantiation of a widget). Since we do not seek to fully integrate our local schemas,

we avoid the problem of merging heterogeneous schemas present in data integra-

tion [48], model management [7], or ontology alignment [35].

The flexibility of our mappings is also inspired by pay-as-you-go data integra-

tion, such as that proposed by Madhavan [29]. Our widgets work with as many or

as few mappings as are provided, allowing us to create widget previews that can

then help users create further mappings.

Our work has been strongly influenced by work in schema mapping [32] and

ETL [57] where users can draw simple lines between source and target schemas.

While these tools are automated to facilitate the schema-mapping process, the

mappings themselves and the tools to use them are targeted at expert database

developers. We adapt this approach to allow non-expert users to do similar map-

pings, but limited to a very simple form.

We are also inspired by the field of end-user programming [44, 50] whose goal

is to get non-developer users of software to create, modify, and extend that soft-

ware. Current end-user web-programming paradigms [72, 85] focus on allowing

end-users to create “mashups” of existing widgets and data on the Internet. While

these “mashups” are useful for users of existing systems, modern web development

tools have facilitated end-user website creation, which cannot leverage these tools

without conforming to their pre-existing schemas. Our system brings end-user

programming to the level of widget population through mapping, which can then

be used in conjunction with existing web end-user programming.

Our domain and canonical structures can be viewed as a form of superimposed

information [52] on top of local databases. Earlier work on superimposed informa-

tion provide methods for uniform access to a variety of base information sources

52

(e.g., word processing documents, web pages, data files). Superimposed appli-

cations can then access the heterogeneous base information sources, for example

building web mashups [58] from base sources such as web pages and PDFs (analo-

gous to a widget built against a canonical structure in our system). We profit from

having homogeneous base and superimposed models (the relational model) and

avoid many of the challenges faced in a typical superimposed information scenario.

Through the use of marks a superimposed information system can also determine

the base context (base specific information such as font type and size in a word

processing document or the row and column numbers of data from a spreadsheet)

of information presented at the superimposed layer. In a similar fashion, we want

to bring the context of our local databases through to the domain and canonical

levels (where context in our system means local relation and attribute names).

2.5 CHAPTER SUMMARY

In this chapter we formally defined the various levels of schema within our system:

local, domain, and canonical. We discussed how we relate to the current state of

the art.

We defined how mappings can be created between the various levels. We

demonstrated how these mappings work. We defined the types of mappings that we

allow in our system and demonstrated how they compare to full tuple-generating

dependencies.

We also provided the results from a user study of our mapping system using

both technical and non-technical users. We show that all subjects of the study were

able to successfully use the mapping system. We also show that users generally

enjoyed using our system.

53

Chapter 3

QUERY LANGUAGE

In Chapter 2 we showed how domain and canonical structures can be defined to

support domain-specific patterns and domain-independent generic patterns, re-

spectively. In order to use these structures, we define a query language in this

chapter that is able to return meaningful results by using queries that we generate

against the local databases based on queries written for widgets that were origi-

nally expressed in the form of the canonical or domain structure. The query result

retains the local database semantics (the attribute names). We do this by defining

four new operators as an extension to the nested relational and relational algebras.

In this chapter we build on the formalism presented in Chapter 2 to define our

new operators. We make the following contributions:

• We define the apparent and underlying models used within our systems for

query and storage. These models allow developers to use the system at

the canonical, domain, and local database levels as relational databases (the

apparent model) while the internal system uses a nested relational format

(the underlying model). We discuss the reason for each of these models and

the definitions of the models in the next section.

• We define the apply (α) operator at the domain level, which creates corre-

sponding queries against local databases that return integrated data from all

mapped local databases in the nested relational form of the domain structure

(i.e., in the underlying model). The apply operator is designed to work in a

54

number of different scenarios; we provide examples of typical cases for which

it may be used.

• We define the canonical apply (θ) operator that is introduced into queries

at the canonical level, which creates corresponding queries against domain

structures that return integrated data from all mapped domain structures in

the nested relational form of the canonical structure (i.e., in the underlying

model). We provide an example to demonstrate the operator.

• We define the apparent model (κ) operator that provides a relational pro-

jection of the underlying model of a canonical or domain structure into the

apparent model. We also provide an example of its use.

• We define the type (τ) operator that provides local type information to the

canonical or domain level. This operator supports what we call local radiance

because it allows the schema names from the local database to appear in

widget output, for example.

• We define relational equivalences that can be used with our operators and

show how they can be used to optimize performance in the implementation

of our query interface.

• We evaluate the performance of our implemented query interface against

hand-written integration queries as well as queries produced by widgets coded

in a web development framework (Drupal [33]).

3.1 APPARENT AND UNDERLYING MODELS

From a query-writing perspective our goal is to maintain a familiar interface (i.e.,

the relational model) that allows developers to not worry about the complexities

of our query interface, while benefiting from its power. We start with a small

55

example. Figure 3.1 shows two local databases, one describing football teams

and another describing university tennis teams. The bottom of the figure shows

the ER representation of the local schemas. The top of the figure shows the

representation of the local relations in those schemas using the formalism from the

previous chapter. Figure 3.2 shows subsets of the tennis and football databases.

Each subset has a single entity, “Employee” and “Student” respectively, and they

are each mapped to the “Person” entity in the domain structure (right side of

figure). Local data is shown on the left side of the figure.

Our goal is to allow developers to use a query such as “#select * from Person;”

and receive the result shown in Figure 3.3, which allows the developer to treat our

system like any other relational database. We call this relational model interface

in our system the apparent model.

From a system perspective, we need to retain more information than is shown

in the apparent model, including local type information as well as the provenance

of the mappings that populated the data. To do that our query interface uses

the nested relational model as our underlying model. The output of the apply

and canonical apply operators defined below are expressed in the nested relational

model. For each tuple returned from a local database we first create a new identifier

based on the local mappings and the local identifiers, and then for each domain

or canonical attribute in the domain or canonical structure we define a nested

attribute that contains the mapping and local type information, as shown in Fig-

ure 3.4. Specifically, an identifier will be generated with provenance information

and then for each attribute ai in the domain or canonical relation there will be

a nested attribute of the form ai(value, meta(mid, cid, type)), where mid is the

mapping id, cid is the correspondence id, and type is the local attribute name.

The rest of this chapter will show how we use the underlying model to enable

our query operators. We do not expect nor require end users or widget developers

to use or understand the underlying nested relational model.

56

Fo
ot
ba
llD
B

Te
nn
is
D
B

=>
se
le
ct

*

fr
om

ld
b;

 i
d

|
 l
rs
(n
am
e,
lr
id

,a
t
tr

s(
n
am
e
))

--
--
--
--
--
--
+-

--
-
--

--
-
--
-
--

--
-
--
-
--

--
-
--
-
--

--
-
--
-
--

--
-
--
-
--

--
-
--
-
--

--
-
--
-
--

--
-
--
-
--

--
-
--
-
--

-
Te
nn
is
DB

|
(C
om
pe
te
s,
Co
m
pe
t
es
I
d,

{C
o
mp
e
te

sI
d
,T
e
nn

is
M
at
c
hI

d,
S
tu
d
en

tI
d
})

Te
nn
is
DB

|
(T
en
ni
sM
at
ch
,
Te
n
ni
s
Ma

tc
h
Id
,
{T

en
n
is
M
at

ch
I
d,
L
oc

at
i
on
,
Da

te
}
)

Te
nn
is
DB

|
(T
en
ni
sT
ea
m,
T
en
n
is
T
ea

mI
d
,{
T
en

ni
s
Te
a
mI

d,
S
ch
o
ol

})
Te
nn
is
DB

|
(S
tu
de
nt
,S
tu
d
en
t
Id
,
{S

tu
d
en
t
Id

,S
t
ud
e
nt

Na
m
e}
)

Te
nn
is
DB

|
(P
la
ys
,P
la
ys
I
d,
{
Pl
a
ys

Id
,
St
u
de

nt
I
d,
T
en

ni
s
Te
a
mI

d,
W
or
l
dR

an
k
})

Fo
ot
ba
ll
DB

|
(P
la
ys
Fo
r,
Pl
a
ys
F
or
I
d,

{P
l
ay
s
Fo

rI
d
,F
o
ot

ba
l
lT
e
am

Id
,
Po
s
it

io
n
,G
o
al

s,
E
mp
l
oy

ee
I
d}
)

Fo
ot
ba
ll
DB

|
(F
oo
tb
al
lT
ea
m
,F
o
ot
b
al

lT
e
am
I
d,

{F
o
ot
b
al

lT
e
am
I
d,

Fo
o
tb
a
ll

Te
a
mN
a
me

})
Fo
ot
ba
ll
DB

|
(E
mp
lo
ye
e,
Em
p
lo
y
ee
I
d,

{E
m
pl
o
ye

eI
d
,E
m
pl

oy
e
eN
a
me

,A
d
dr
e
ss

})
Fo
ot
ba
ll
DB

|
(A
ga
in
st
,A
ga
i
ns
t
Id
,
{A

ga
i
ns
t
Id

,F
o
ot
b
al

lT
e
am
I
d,

Fo
o
tb
a
ll

Ga
m
eI
d
})

Fo
ot
ba
ll
DB

|
(M
an
ag
es
,M
an
a
ge
s
Id
,
{M

an
a
ge
s
Id

,F
o
ot
b
al

lT
e
am
I
d,

Em
p
lo
y
ee

Id
}
)

Fo
ot
ba
ll
DB

|
(F
oo
tb
al
lG
am
e
,F
o
ot
b
al

lG
a
me
I
d,

{F
o
ot
b
al

lG
a
me
I
d,

Ci
t
y,
D
ay

})

Fo
ot

ba
ll

Te
am

Em
pl

oy
ee

M
an

ag
es

G
oa

ls
Pl

ay
sF

or

Fo
ot

ba
ll

Te
am

N
am

e

Po
si

tio
n

Em
pl

oy
ee

N
am

e
Ad

dr
es

s

C
ity

Fo
ot

ba
ll

G
am

e
D

ay

Ag
ai

ns
t

Em
pl

oy
ee

Id

Fo
ot

ba
ll

Te
am

Id
Fo

ot
ba

llG
am

eI
d

Te
nn

is

Te
am

Sc
ho

ol

W
or

ld
R

an
k

Pl
ay

s

Te
nn

is
M

at
ch

Lo
ca

tio
n

D
at

e

C
om

pe
te

s

St
ud

en
t

St
ud

en
tN

am
e

St
ud

en
tId

Te
nn

is
Te

am
Id

Te
nn

is
M

at
ch

Id

F
ig
u
re

3
.1
:

L
o
ca

l
d

at
a
b

as
e

sc
h

em
as

fo
r

th
e

u
n

iv
er

si
ty

te
n

n
is

te
am

(l
ef

t)
an

d
fo

ot
b

al
l

te
am

(r
ig

h
t)

.

57

Result Set 3.1
employeeid | employeename | address

------------+--------------+-----------------
9760 | Raja Ryan | 882-7477 Neque St.
4187 | Mary Stone | P.O. Box 903, ...

Result Set 3.2
studentid | studentname

-----------+---------------
800 | Callie Reese
801 | Kibo Nolan

Local Domain

PersonGivenName
PersonId

PersonGivenName
PersonId

Student StudentName
StudentId

Employee EmployeeName
Address

EmployeeId

21

210

211

11

110

111

FootballSmallDB

TennisSmallDB

Figure 3.2: Data from the Employee and Student subsets of the football and tennis

local databases (left). The Employee and Student local entities mapped to the Person

entity in the domain structure (right).

Result Set 3.3
#select * from Person_Apparent;
personid | givenname
-----------+---------------
9760 | Raja Ryan
4187 | Mary Stone
800 | Callie Reese
801 | Kibo Nolan

Figure 3.3: Domain structure query result in the apparent model.

3.2 OVERVIEW

Figure 3.5 shows an overview of our query interface with its query language. The

upper part of the figure shows examples of local-domain mappings and domain-

canonical mappings, local schemas are on the left and domain structures are in

the middle. Local to domain (DS-LDB) mappings are created between local and

Result Set 3.4
#select * from Person_Underlying;

id |personid(value,meta(mid,cid,type)| givenname(value,meta(mid,cid,type)
---------------------------+-------------------------------+-----------------------------------
FootballDB.Employee.21.9760| {(9760,(21,210,EmployeeId))} |{(Raja Ryan,(21,211,EmployeeName))}
FootballDB.Employee.21.4187| {(4187,(21,210,EmployeeId))} |{(Mary Stone,(21,211,EmployeeName))}
TennisDB.Student.11.800 | {(800,(11,110,StudentId))} |{(Callie Reese,(11,111,StudentName))}
TennisDB.Student.11.801 | {(801,(11,110,StudentId))} |{(Kibo Nolan,(11,111,StudentName))}

Figure 3.4: Domain structure query result in the underlying model.

58

DS-LDB
Mappings

CS-DS
Mappings

Local Domain Canonical

Employee EmployeeName
Address

EmployeeId

Student StudentName
StudentId

PersonGivenName
PersonId

PersonAddress SubjectSubjectName
SubjectId

SubjectDetail

SELECT id,
GivenName as SubjectName
FROM 𝛼(Person)

Website Widgets

SELECT SubjectName,SName_Type
FROM 𝜅(Subject)
NATURAL JOIN 𝜏(SubjectName)

SELECT GenID() as id,
EmployeeName

as GivenName
FROM Employee
UNION
SELECT GenID() as id,

StudentName
as GivenName

FROM Student

SELECT id,
SubjectName

FROM 𝜃(Subject)

STUDENT
studentid | studentname

-----------+---------------
800 | Callie Reese
801 | Kibo Nolan

EMPLOYEE
employeeid| employeename | address
-----------+--------------+--------
9760 | Raja Ryan | 882-7477
4187 | Mary Stone | P.O. Box

SUBJECT_app
SubjectName | Type
-------------+------------
Raja Ryan |EmployeeName
Mary Stone. |EmployeeName
Callie Reese|StudentName
Kibo Nolan. |StudentName

SUBJECT
id | SubjectName

---------------------------+-------------------------------------
FootballDB.Employee.21.9760|{(Raja Ryan,(21,211,EmployeeName))}
FootballDB.Employee.21.4187|{(Mary Stone,(21,211,EmployeeName))}
TennisDB.Student.11.800 |{(Callie Reese,(11,111,StudentName))}
TennisDB.Student.11.801 |{(Kibo Nolan,(11,111,StudentName))}

Person
id | GivenName

---------------------------+------------------------------------
-
FootballDB.Employee.21.9760|{(Raja Ryan,(21,211,EmployeeName))}
FootballDB.Employee.21.4187|{(Mary Stone,(21,211,EmployeeName))}
TennisDB.Student.11.800 |{(Callie
Reese,(11,111,StudentName))}
TennisDB.Student.11.801 |{(Kibo Nolan,(11,111,StudentName))}

Local (Apparent)

Domain (Underlying)

Canonical (Underlying)

Canonical (Apparent)

Figure 3.5: An overview of our query language and query interface for widgets. The

top section shows the conceptual model of our query interface. The middle section shows

our query operators at the various levels. The bottom section shows data at the four

levels from the middle section. The local (far left) and canonical apparent (far right)

levels are in the relational model while the domain underlying (middle left) and canonical

underlying (middle right) levels are in the nested relational model.

59

domain structures. Canonical structures are on the right and domain-structure-to-

canonical-structure (CS-DS) mappings are created between domain and canonical

structures.

The middle section of Figure 3.5 shows how queries work in our query interface

from the apparent canonical level back to the local database. Starting on the right

side of the figure, a website widget is written using a query against the apparent

canonical model. This query asks for the “SubjectName” from the canonical rela-

tion “Subject” as well as using our type operator (τ) to ask for the local attribute

names for each returned tuple. The query uses the apparent model operator (κ)

so that the query answer will be in the apparent model of the canonical structure.

Following the green arrow to the left, the apparent model query then is translated

into a query against the underlying model of the canonical structure. This query

includes an id attribute that contains mapping and type provenance that will be

used by the type operator in the first query. It then uses the canonical apply (θ)

to retrieve results from all mapped domain structures via the translated query to

the left following the blue arrow. The domain level query renames domain-level

names to canonical-level names and uses the apply (α) operator to query the local

databases. Based on the apply operator, the queries at the local level (left of the

orange arrow) are generated. For each mapped local relation a query is generated

by the apply operator that creates an id based on mapping provenance and re-

names local attributes to domain names. Results from mapped local relations (in

the local databases) are unioned together.

The bottom section of Figure 3.5 shows how results from the local database

are transformed into the apparent canonical form. Relational data from the local

databases is renamed and nested into attributes containing provenance at the do-

main and canonical levels. That provenance is used at the canonical apparent level

by the type operator1. A detailed explanation of this process is presented below

1As well as the operators introduced in the next chapter.

60

as we discuss the formalism and operation of each of the operators.

3.3 STRUCTURES AND MAPPINGS

In the following sections we define operators that make use of the nested relational

formalism of local, domain, and canonical structures and the mappings between

them that were defined in Chapter 2. We repeat these definitions in order to

facilitate the understanding of the following sections.

Local DBs:

ldbpid, lrspname, key, attrspnameqqq

A local database is defined by a tuple in the nested relation ldb. Each database

is defined by an identifier id and a nested relation of the local relation names in the

database. Each nested local relation tuple contains the name of a local relation,

the name of the key attribute of the local relation, and a nested relation of the

attribute names in that local relation. This nested relation stores the schema of

all local databases.

Domain Structures:

dspid, drspname, key, attrspnameqqq

A domain structure is defined by a tuple in the nested relation ds. Each domain

structure is defined by an identifier id and a nested relation of the domain relation

names in the structure. Each nested domain relation tuple contains the name

of a domain relation, the name of a key attribute, and a nested relation of the

attribute names in that domain relation. This nested relation stores the schema

of all domain structures.

Local DB - Domain Structure Mappings:

ds ldb mpid, ldbid, dsid, dr lr mspid, lr, dr, p, corrspid, la, daqqq

The set of all local-database-to-domain-structure mappings is defined in the

ds ldb m nested relation. A mapping is defined by a tuple in this relation with

an identifier id, the local database in the mapping ldbid, the domain structure in

61

the mapping dsid, and a nested relation of the relations mapped dr lr ms. Each

relation mapping tuple in dr lr ms consists of an identifier id, the local relation lr,

the domain relation dr, a predicate p, and a nested relation of the correspondences

between local and domain attributes. Each correspondence consists of an identifier

id, the local attribute name la, the domain attribute name da. The predicate in a

mapping will be used in conditional mappings.

Canonical Structures:

cspid, crspname, key, attrspnameqqq

Each canonical structure is defined by a tuple in the nested relation cs with an

identifier id and a nested relation of the canonical relation names in the structure.

Each nested canonical-relation tuple contains the name of a canonical relation, the

name of a key attribute, and a nested relation of the attribute names in that canon-

ical relation. This nested relation contains the schema for all canonical structures.

Domain Structure - Canonical Structure Mappings:

cs ds mpid, dsid, csid, cr dr mspid, dr, cr, corrspid, da, caqqq

The set of all domain-structure-to-canonical-structure mappings is defined in

the cs ds m nested relation. A mapping is defined by a tuple in this relation with

an identifier id, the domain structure in the mapping dsid, the canonical structure

in the mapping csid, and a nested relation of the relations mapped cr dr ms. Each

relation mapping tuple in cr dr ms consists of an identifier id, the domain relation

dr, the canonical relation cr, and a nested relation of the correspondences between

domain and canonical attributes. Each correspondence consists of an identifier

id, the domain attribute name da, and the canonical attribute name ca. Unlike

local-to-domain mappings, domain-to-canonical mappings do not allow predicates

in the mappings.

We add two new definitions that tell our query interface which defined mappings

will be relevant for a given query. We add this information for both the domain

and canonical levels.

62

When a domain structure is used in an application or a widget, it is typically

the case that only a subset of mappings will be used instead of all mappings that

exist. In order to specify which mappings to use, we define domain structure

applications.

Domain Structure Application:

dsapid, dsid, ds ldb mspds ldb midqq

The domain-structure-application relation consists of an identifier id, the do-

main structure dsid, and a nested relation of local-database-to-domain-structure

mappings ds ldb ms, where each mapping is specified by its identifier ds ldb mid.

We then also define canonical structure applications so that we can specify

which domain-structure-applications to use with a domain-structure-to-canonical-

structure mapping.

Canonical Structure Application:

csapid, csid, cs ds mspdsaid, cs ds midqq

We define the canonical-structure-application relation, which consists of an

identifier id, the canonical structure csid, and a nested relation of domain-

structure-to-canonical-structure mappings cs ds ms, where each mapping is speci-

fied by the domain structure application dsaid it uses and its identifier cs ds mid.

We show in depth examples below that use domain-structure-applications and

canonical-structure-applications.

3.4 IMPLEMENTATION

Throughout this chapter we will show examples of our formalism as query results

from an implementation of our formalism in a PostgreSQL database. We have

implemented the above local-database, domain-structure, canonical-structure, and

mapping definitions as nested relations within the database. While a full imple-

mentation of our query interface handles multiple local databases with a separate

database for domain and canonical level structures, in this implementation we

63

simplify to a single database instance where each local database (with its data) is

stored in its own namespace (what Postgres calls a “schema”) and we store the

definitions above in a separate namespace.

While Postgres is not a full nested-relational database, we use a combination

of “row” attribute types and arrays to achieve equivalent functionality. Postgres

supports the nest and unnest operations on these types, so we are able to fully

translate our formalism into Postgres functions, which can then be used in queries

against the canonical and domain levels.

In the following sections, examples will be shown using results from this im-

plementation. Most examples start with a query and return results that are either

part of the formalism or data from the local databases. All data from the imple-

mentation is labeled as a “Result Set”, as shown above in Figures 3.2, 3.3, and

3.4.

3.5 APPLY

A query over a traditional database begins by choosing which relations to query and

implicitly includes a tablescan operation to allow the rest of the query operators

to address the result of that scan. We define the apply (α) operation that acts

analogously to a tablescan for each domain relation in a query at the domain level;

for example in Figure 3.5 we use the apply operator against Person (αpPersonq)

in the domain level query. The result of the apply operator to a domain relation

is a query against mapped local databases that returns data in the format of

the domain relation in the underlying model. Once the apply operator has been

used on a domain relation, there will be a nested relational result in the underlying

model that can be used with standard nested relational algebra operations—union,

difference, projection, product, join, selection, rename—without any change in

definition.

Given a domain structure application with id dsaid and a domain relation

64

named dr, the apply operator is defined as shown in Equation 3.1. We describe

the operator in detail below through the use of a number of examples. The apply

operator is designed to handle all cases allowed by our mapping system, from simple

mappings to more complex mappings. For each of these cases, different parts of

the formal definition come into play. In order to show how these different parts

work, we present four examples. These examples are meant to demonstrate how

all the various parts of the formalism work, they do not represent an exhaustive

set of possible mappings in our system. After the examples, we will discuss how

they can be combined to handle all possible mappings allowed by our system.

3.5.1 Simple Mappings

We begin with a set of simple mappings where each domain attribute is mapped a

single time to a distinct local attribute for each local database. Figure 3.6 shows

a subset of the tennis and football databases described above. Here they have

been named “TennisSmallDB” and “FootballSmallDB” and each contains a single

entity, “Student” and “Employee” respectively. The domain structure is a subset

of the team domain structure named “ExampleDS” from Chapter 2 containing only

the “Person” domain entity. In each mapping, the “PersonId” and “GivenName”

domain attributes have been mapped to local attributes. This example shows

how apply works in this straightforward case as well as showing how it deals with

unmapped local attributes, which is to project them out of any result from the

local database.

We will proceed through this example following the functions defined in Equa-

tion 3.1. To begin, let us look at the data within the system catalog for the local

databases and domain structures in Figure 3.6.

Result Set 3.5
#select * from ldb;

id | lrs
-----------------+---
FootballSmallDB | (Employee,EmployeeId,{EmployeeId,EmployeeName,Address})
TennisSmallDB | (Student,StudentId,{StudentId,StudentName})

65

α
pd
r,
d
sa
id
q
“

ď

p
ld
b
id
,d
r
lr
m
q
P

d
s
a

m
a
p
p
in

g
s
p
d
r,
d
s
a
id
q

´

m
a
p
p
e
d
pl
d
bi
d
,d
r
lr
m
q
ˆ
n
o
t
m
a
p
p
e
d
pd
r,
d
r
lr
m
,d
sa
id
q¯

(1
)

d
sa

m
a
p
p
in
g
sp
d
r,
d
sa
id
q
“
π

d
s
ld
b
m
.l
d
b
id
,

d
s
ld
b
m
.d
r
lr
m
s

˜

σ
d
s
ld
b
m
.d
r
lr
m
s
.d
r
“
d
r

^
d
s
a
.i
d
“
d
s
a
id

´

d
s
ld
b
m

’
d
s
ld
b
m
.i
d
“
d
s
a
.d
s
ld
b
m
id
pµ

d
s
ld
b
m
s
pd
sa
qq

¯

¸

(2
)

m
a
p
p
e
d
pl
d
bi
d
,d
r
lr
m
q
“

p
ro

j
ty

p
e
n
e
st
pd
a
1
,l
d
bi
d
,d
r
lr
m
q’
id
..
.’
id
p
ro

j
ty

p
e
n
e
st
pd
a
n
,l
d
bi
d
,d
r
lr
m
q

(3
)

@
d
a
i
P
π
d
r
lr
m
.c
o
r
r
s
.d
a
pd
r
lr
m
q

p
ro

j
ty

p
e
n
e
st

pd
a
,l
d
bi
d
,d
r
lr
m
q
“

ν
v
a
lu
e
,m
e
ta

:r
d
a
s˜

ď

c
o
r
r
P
π
d
r

lr
m

.c
o
r
r
s
p
σ
d
r

lr
m

.c
o
r
r
s
.d

a
“

d
a
p
d
r
lr
m
q
q

´

(4
)

`

π
g
e
n

k
e
y
p
ld
b
id
,d
r
lr
m
q
Ñ
id
,

rc
o
r
r.
la
sÑ

v
a
lu
e

pσ
d
r
lr
m
.p
pt
a
b
le

sc
a
n
pl
d
bi
d
,d
r
lr
m
.l
rq
qq
˘

ą

pd
r
lr
m
.i
d
,c
or
r.
id
,c
or
r.
la
q

Ñ
m
e
ta
p
m
id
,c
id
,t
y
p
e
q

¯

¸

g
e
n

k
e
y
pl
d
bi
d
,d
r
lr
m
q
“
ld
bi
d
||
.|
|d
r
lr
m
.l
r|
|.
||
d
r
lr
m
.i
d
||
.|
|r
π
ld
b
.l
r
s
.k
e
y
pσ
ld
b
.l
r
s
.n
a
m
e
“
d
r
lr
m
.l
r

^
ld
b
.i
d
“
ld
b
id

pl
d
bq
s

(5
)

n
o
t
m
a
p
p
e
d
pd
r,
d
r
lr
m
,d
sa
id
q
“

ą

d
a
P
d
a
t
t
r
s
p
d
r,
d
s
a
id
q
^

is
e
m

p
ty
p
σ
d
r

lr
m

.c
o
r
r
s
.d

a
“
r
d
a
s
p
d
r
lr
m
q
q

pN
U
L
L
,p
d
r
lr
m
.i
d
,N

U
L
L
,N

U
L
L
qq

Ñ
rd
a
sp
v
a
lu
e
,m
e
ta
p
m
id
,c
id
,t
y
p
e
q
q

(6
)

d
a
tt
rs
pd
r,
d
sa
id
q
“
π
d
s
.d
r
s
.a
tt
r
s
pσ

d
s
.d
r
s
.n
a
m
e
“
rd
r
s

^
d
s
a
.i
d
“
rd
s
a
id
s

pd
s

’
d
s
.i
d
“
d
s
a
.d
s
id
d
sa
qq

(7
)

W
h

er
e

th
e
ta

b
le

sc
a
n
pl
d
bi
d
,l
rq

fu
n

ct
io

n
p

er
fo

rm
s

a
ta

b
le

sc
a
n

o
p

er
a
ti

o
n

o
n

th
e

lo
ca

l
re

la
ti

o
n
lr

in
th

e
lo

ca
l

d
a
ta

b
a
se
ld
bi
d

a
n

d
th

e

is
e
m
p
ty
pq
u
er
y
q

fu
n

ct
io

n
re

tu
rn

s
a

b
o
ol

ea
n

:
tr

u
e

if
th

e
in

p
u

t
q
u

er
y

re
tu

rn
s

n
o

ro
w

s,
fa

ls
e

o
th

er
w

is
e.

E
q
u

a
ti

o
n

3
.1

:
A

p
p

ly

66

Local Domain

PersonGivenName
PersonId

PersonGivenName
PersonId

Student StudentName
StudentId

Employee EmployeeName
Address

EmployeeId

21

210

211

11

110

111

FootballSmallDB

TennisSmallDB

ExampleDS

ExampleDS

Figure 3.6: Two straightforward mappings. Above, a mapping between the “Employee”

local relation and the “Person” domain relation with correspondences between “Em-

ployeeId” and “PersonId”, and “EmployeeName” and “GivenName”. Below, a mapping

between the “Student” local relation and the “Person” domain relation with correspon-

dences between “StudentId” and “PersonId”, and “StudentName” and “GivenName”

As described above and shown in Figure 3.6, we have two local databases,

“FootballSmallDB” and “TennisSmallDB”, each with a single relation, “Employee”

and “Student”; each relation has a key attribute, “EmployeeId” and “StudentId”.

The “Employee” relation has three attributes, “EmployeeId”, “EmployeeName”,

and “Address”; and the “Student” relation has two attributes, “StudentId” and

“StudentName”.
Result Set 3.6

select * from ds;
id | drs

-----------+---
ExampleDS | (Person,PersonId,{PersonId,GivenName})

The domain structure is named “ExampleDS” and has a single domain relation,

“Person”, which has attributes “PersonId” (which is the key attribute) and “Given-

Name”.

For the sake of these examples each database has a small amount of data shown

below.

67

Result Set 3.7
select * from student;
studentid | studentname

-----------+---------------
800 | Callie Reese
801 | Kibo Nolan
802 | Aiko Sweet
803 | Elton Duncan
804 | Macaulay Hess

Result Set 3.8
select * from employee
employeeid | employeename | address

------------+---------------+----------------------------------
9760 | Raja Ryan | 882-7477 Neque St.
4187 | Mary Stone | P.O. Box 903, 4348 Eget St.
7040 | Amelia Little | P.O. Box 399, 2901 Ut Avenue
5271 | Hasad Wagner | 8767 Faucibus St.
1578 | Dylan Miles | P.O. Box 194, 2522 Facilisis St.

The mappings shown in Figure 3.6 are represented in the implementation as

follows:
Result Set 3.9

select * from ds_ldb_m;
id | ldbid | dsid | dr_lr_ms

----+-----------------+-----------+---
1 | TennisSmallDB | ExampleDS | (11,Student,Person,TRUE,{(110,StudentId,PersonId),

(111,StudentName,GivenName)})
2 | FootballSmallDB | ExampleDS | (21,Employee,Person,TRUE,{(210,EmployeeId,PersonId),

(211,EmployeeName,GivenName)})

The red mapping in the top of Figure 3.6 is shown in the second tuple with id “2”.

This mapping is between the local database “FootballSmallDB” and the domain

structure “ExampleDS”. It consists of mapping “21” between the “Employee” local

relation and the “Person” domain relation, which contains correspondences “210”

(between the “EmployeeId” local attribute and the “PersonId” domain attribute)

and “211” (between the “EmployeeId” local attribute and the “PersonId” domain

attribute). The predicate for the mapping is “TRUE”, the default predicate, which

means that all local tuples will be passed to the domain level based on these

correspondences.

The green mapping in the bottom of Figure 3.6 is shown in the first tuple

with id “1” between the local database “TennisSmallDB” and the “ExampleDS”

domain structure.

For this example we have a domain-structure-application that uses these two

mappings, shown below with id “3”.

68

Result Set 3.10
select * from dsa;
id | dsid | ds_ldb_mid

----+-----------+------------
3 | ExampleDS | {1,2}

In order to produce the output of the apply operator on the “Person” domain

structure using the domain structure application with id “3” above, αpPerson, 3q,

we will show the various steps of the formalism using the Postgres implementation.

Recall from Function 3.1.1 that we need to first determine which mappings will be

used in the union using the dsa mappings function (Function 3.1.2). Note, for

clarity, the functions in the implementation have been modified from the formalism

to pass and return the ids of mappings instead of full mappings.
Result Set 3.11

select * from dsa_mappings_id(’Person’,’3’);
ldb | mid

-----------------+-----
TennisSmallDB | 11
FootballSmallDB | 21

We see that the dsa mappings function returns the two local-relation-to-

domain-relation mappings specified in the two local-database-to-domain-structure

mappings in the “dsa” relation above. For each of these two mappings, we explain

the apply operation by examining what happens in each of its functions. For the

first mapping, with id “11”, we start by looking into the mapped function, Func-

tion 3.1.3. The mapped function combines the output of the proj type nest

function for each domain attribute in the specified mappings. We see from above

that there are two attributes in mapping “11”, “PersonId” and “GivenName”. The

result of proj type nest for the “PersonId” domain attribute is shown below.
Result Set 3.12

select * from projtypenest_id(’PersonId’,’TennisSmallDB’,’11’);
id | personid(value,meta(mid,cid,type))

------------------------------+-----------------------------------
TennisSmallDB.Student.11.800 | {(800,(11,110,StudentId))}
TennisSmallDB.Student.11.802 | {(802,(11,110,StudentId))}
TennisSmallDB.Student.11.801 | {(801,(11,110,StudentId))}
TennisSmallDB.Student.11.803 | {(803,(11,110,StudentId))}
TennisSmallDB.Student.11.804 | {(804,(11,110,StudentId))}

The first attribute in the output above is the “id” attribute. This attribute is gen-

erated by the gen key function (Function 3.1.5) by combining the local database

69

(“TennisSmallDB”), the local relation (“Student”), the mapping id (“11”), and

the key from the local database (in this case the “StudentId”). The second nested

attribute is created by the second and third lines of the proj type nest function

(Function 3.1.4). The “value” nested attribute is created by the table scan on

the local database based on correspondence “110” in mapping “11” (in this case

the values “800”, . . . , “804” come from the “StudentId” attribute from the “Stu-

dent” local relation as shown in Result Set 3.7). This correspondence contains

the local attribute “StudentId” and the mapping has the predicate “TRUE”, so

on line two of the proj type nest function (Function 3.1.4) the relational select

will select all tuples from the local database and the project operator will project

out the “StudentId” attribute and rename it to “value”. This renaming is done in

the rcorr.las Ñ value argument to the project operator. Note, we use the square

brackets to reference the dynamic variable corr.la, which is populated from the

correspondence from the input mapping and we use the right arrow to indicate the

renaming syntax within the project operator. Lastly, we create the nested “meta”

attribute in line three of the proj type nest function (Function 3.1.4) with the

mapping id, “11”, the correspondence id, “110”, and the local attribute name,

“StudentId”. These three attributes are nested in the “meta” attribute with the

attribute naming operator (Ñ). The “meta” attribute is then cross joined with the

rest of the output and then nested with the “value” attribute using the nest oper-

ator, ν, on line one of the proj type nest function (Function 3.1.4). The “value”

and “meta” attributes are nested into a new attribute called “PersonId” from the

domain attribute of the correspondence. Once again we use the square bracket

notation to denote that da is dynamically populated from the correspondence.

As we see in the mapped function (3.1.3), we will perform the proj type nest

function for each attribute in the mapping returned from the dsa mappings

function. In this case, for the “TennisSmallDB” database, we perform the

proj type nest function for the “PersonId” attribute shown above and the

70

“GivenName” attribute shown below.
Result Set 3.13

select * from projtypenest_id(’GivenName’,’TennisSmallDB’,’11’);
id | givenname(value,meta(mid,cid,type))

------------------------------+--
TennisSmallDB.Student.11.800 | {(Callie Reese,(11,111,StudentName))}
TennisSmallDB.Student.11.802 | {(Aiko Sweet,(11,111,StudentName))}
TennisSmallDB.Student.11.801 | {(Kibo Nolan,(11,111,StudentName))}
TennisSmallDB.Student.11.803 | {(Elton Duncan,(11,111,StudentName))}
TennisSmallDB.Student.11.804 | {(Macaulay Hess,(11,111,StudentName))}

As with the “PersonId” attribute, we first generate the “id” attribute and then

we create a nested attribute for “GivenName”. In this case, the local attribute in

correspondence “111” is “StudentName”, so we retrieve the local data for “Stu-

dentName” and then create the “meta” attribute accordingly.

Once the results of the proj type nest function for each of the mapped at-

tributes of mapping “11” have been returned, the mapped function (3.1.3) joins

the result of each proj type nest function using the generated “id” attribute to

recombine the local data back into tuples similar in structure to the original local

database tuples2.

Result Set 3.14
select * from mapped_id(’ExampleDS’,’Person’,’TennisSmallDB’,’11’);

id | personid | givenname
------------------------------+---------------------------+--------------------------------------
TennisSmallDB.Student.11.800 |{(800,(11,110,StudentId))} |{(Callie Reese,(11,111,StudentName))}
TennisSmallDB.Student.11.802 |{(802,(11,110,StudentId))} |{(Aiko Sweet,(11,111,StudentName))}
TennisSmallDB.Student.11.801 |{(801,(11,110,StudentId))} |{(Kibo Nolan,(11,111,StudentName))}
TennisSmallDB.Student.11.803 |{(803,(11,110,StudentId))} |{(Elton Duncan,(11,111,StudentName))}
TennisSmallDB.Student.11.804 |{(804,(11,110,StudentId))} |{(Macaulay Hess,(11,111,StudentName))}

With the results above, we now have the output from the apply operation

on the “Person” domain relation for a single local database (“TennisDBSmall”).

We next repeat the steps above for all remaining mappings returned from the

dsa mappings function shown in Result Set 3.11, in this case mapping “21”,

the green lines shown in Figure 3.6 and the second tuple in Result Set 3.9. Like

the first mapping described, this mapping also contains correspondences to the

“PersonId” and “GivenName” domain attributes, this time from the “EmployeeId”

2In the coming examples below we discuss why we break apart and reassemble the original
tuples. Also, later in this chapter we will discuss optimizations in the cases where we can avoid
doing so.

71

and “EmployeeName” local attributes in the “Employee” local relation in the

“FootballSmallDB” local database. For this mapping we then repeat the mapped

function which starts by running the proj type nest function for “PersonId”

shown below.
Result Set 3.15

select * from projtypenest_id(’PersonId’,’FootballSmallDB’,’21’);
id | personid(value,meta(mid,cid,type))

----------------------------------+------------------------------------
FootballSmallDB.Employee.21.4187 | {(4187,(21,210,EmployeeId))}
FootballSmallDB.Employee.21.7040 | {(7040,(21,210,EmployeeId))}
FootballSmallDB.Employee.21.5271 | {(5271,(21,210,EmployeeId))}
FootballSmallDB.Employee.21.9760 | {(9760,(21,210,EmployeeId))}
FootballSmallDB.Employee.21.1578 | {(1578,(21,210,EmployeeId))}

As before, the “id” attribute is generated with the local database name, the local

relation name, the mapping id, and then the key attribute from the local database;

in this case “FootballSmallDB.Employee.21” and the local key data which is from

the “EmployeeId” local attribute. Recall that this key attribute is shown in the

first tuple in Result Set 3.5. Then, following the proj type nest function (Func-

tion 3.1.4), we project the “EmployeeId” attribute from the “Employee” relation,

rename it to “value”, and then nest it with the generated “meta” attribute into

the “PersonId” attribute. We repeat the proj type nest function for the next

mapped attribute, “GivenName”.
Result Set 3.16

select * from projtypenest_id(’GivenName’,’FootballSmallDB’,’21’);
id | givenname(value,meta(mid,cid,type))

----------------------------------+---
FootballSmallDB.Employee.21.4187 | {(Mary Stone,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.7040 | {(Amelia Little,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.5271 | {(Hasad Wagner,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.9760 | {(Raja Ryan,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.1578 | {(Dylan Miles,(21,211,EmployeeName))}

As with the “PersonId” attribute, we first generate the “id” attribute and then

we create a nested attribute for “GivenName”. In this case the local attribute

in correspondence “211” is “EmployeeName”, so we retrieve the local data for

“EmployeeName” and then create the “meta” attribute accordingly.

As above, the returned results from the proj type nest functions are joined

on the generated “id” attribute and the results of the mapped function are shown

below3.

3Note that attribute values have been shortened to fit the page using “. . . ”, the attributes

72

Result Set 3.17
select * from mapped_id(’ExampleDS’,’Person’,’FootballSmallDB’,’21’);

id | personid | givenname
--------------------------------+----------------------------+---------------------------------
FootballSmallDB.Employee.21.4187|{(4187,(21,210,EmployeeId))}|{(Mary...,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.7040|{(7040,(21,210,EmployeeId))}|{(Amelia...,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.5271|{(5271,(21,210,EmployeeId))}|{(Hasad...,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.9760|{(9760,(21,210,EmployeeId))}|{(Raja...,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.1578|{(1578,(21,210,EmployeeId))}|{(Dylan...,(21,211,EmployeeName))}

We now have the results of all mapped domain attributes from all the local

databases. This examples also shows what happens to local attributes that are

not included in mappings, in this case the “Address” attribute from the “Foot-

ballSmallDB” was not included in mapping “21”. Each time the proj type nest

function ran, the “Address” attribute was not included in the project list and

therefore not included in any results4.

With the results from the mapped function for all the mappings returned, the

last step in the apply operator (α) (applied to the “Person” domain relation for

this example) is to union the results as shown below.
Result Set 3.18

select * from alpha_id(’Person’,’3’);
id | personid | givenname

--------------------------------+----------------------------+-----------------------------------
TennisSmallDB.Student.11.800 |{(800,(11,110,StudentId))} |{(Callie ...,(11,111,StudentName))}
TennisSmallDB.Student.11.802 |{(802,(11,110,StudentId))} |{(Aiko ...,(11,111,StudentName))}
TennisSmallDB.Student.11.801 |{(801,(11,110,StudentId))} |{(Kibo ...,(11,111,StudentName))}
TennisSmallDB.Student.11.803 |{(803,(11,110,StudentId))} |{(Elton ...,(11,111,StudentName))}
TennisSmallDB.Student.11.804 |{(804,(11,110,StudentId))} |{(Macaulay...,(11,111,StudentName))}
FootballSmallDB.Employee.21.4187|{(4187,(21,210,EmployeeId))}|{(Mary...,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.7040|{(7040,(21,210,EmployeeId))}|{(Amelia...,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.5271|{(5271,(21,210,EmployeeId))}|{(Hasad...,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.9760|{(9760,(21,210,EmployeeId))}|{(Raja...,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.1578|{(1578,(21,210,EmployeeId))}|{(Dylan...,(21,211,EmployeeName))}

In this example, all domain attributes in the domain relation have been mapped

in each mapping, so the not mapped function (Function 3.1.6) was not used. We

will discuss its functionality next.

contain the data shown in Results Sets 3.15 and 3.16. This convention will be used throughout
this chapter.

4We will show in the next chapter how this local data can still be accessed from the domain
and canonical levels.

73

3.5.2 Unmapped Domain Attributes

In this example, we explain what happens when there are domain attributes for

which there are no correspondences to a local database in a mapping. This example

will demonstrate the not mapped function (3.1.6), the only function not used in

the previous example. Figure 3.7 closely resembles the schema and mappings shown

in Figure 3.6; the difference is that the domain relation “Person” now has a third

attribute “PersonAddress”. A correspondence (“212”) has been added between

the “Address” attribute in the “Employee” local relation and the “PersonAddress”

domain attribute. The “Student” local relation has no applicable attribute, in this

case the “PersonAddress” domain attribute is unmapped.

Local Domain

Student StudentName
StudentId

Employee EmployeeName
Address

EmployeeId
PersonGivenName

PersonId

PersonAddress

PersonGivenName
PersonId

PersonAddress

21

210
211

11

110

111

212

FootballSmallDB

TennisSmallDB

Figure 3.7: Above, a mapping between domain and local where all domain attributes

are mapped. Below, a mapping where the “PersonAddress” domain attribute has no

correspondences with any local attribute.

For this example the local databases and local data remained unchanged from

those used in the previous example shown in Result Sets 3.5, 3.7, and 3.8. The

domain structure is updated by adding the “PersonAddress” domain attribute

shown below in Result Set 3.19 highlighted in red.
Result Set 3.19

select * from ds;
id | drs

-----------+---
ExampleDS | (Person,PersonId,{PersonId,GivenName,PersonAddress})

The local-database-to-domain-structure mappings shown in Result Set 3.9 are

74

updated by adding the new correspondence (“212”) between the “Address” at-

tribute in the “Employee” local relation and the “PersonAddress” attribute in the

“Person” domain relation. The new correspondence is reflected below in Result

Set 3.20, highlighted in red.
Result Set 3.20

select * from ds_ldb_m;
id | ldbid | dsid | dr_lr_ms

----+-----------------+-----------+--
2 | FootballSmallDB | ExampleDS | (21,Employee,Person,TRUE,{(210,EmployeeId,PersonId),

(211,EmployeeName,GivenName),
(212,Address,PersonAddress)})

1 | TennisSmallDB | ExampleDS | (11,Student,Person,TRUE,{(110,StudentId,PersonId),
(111,StudentName,GivenName)})

Since the local-database-to-domain-structure mapping ids and local-relation-

to-domain-relation mapping ids have remained the same, we use the same domain-

structure-application shown in Result Set 3.10. Then the output of the apply

operator on the “Person” domain relation using domain structure application with

id “3”, αpPerson, 3q, will be produced with the following steps. Since the mapping

ids have not changed from our previous example the result from the dsa mappings

function (Function 3.1.2) will be the same as that shown in Result Set 3.11.

Starting with the mapping from the “Employee” local relation (“21”) where all

domain attributes are mapped, we proceed as in the example above. The mapped

function (3.1.3) will combine the output from the proj type nest function (3.1.4)

for each mapped domain attribute. The results for “PersonId” and “GivenName”

were shown previously in Result Sets 3.15 and 3.16. We combine those outputs

with the output of the proj type nest function for the new correspondence to

the “PersonAddress” attribute, shown below in Result Set 3.21.
Result Set 3.21

select * from projtypenest_id(’PersonAddress’,’FootballSmallDB’,’22’);
id | personaddress(value,meta(mid,cid,type))

---------------------------------+--
FootballSmallDB.Employee.22.7040 | {(P.O. Box 399, 2901 Ut Avenue,(22,221,Address))}
FootballSmallDB.Employee.22.9760 | {(882-7477 Neque St.,(22,221,Address))}
FootballSmallDB.Employee.22.5271 | {(8767 Faucibus St.,(22,221,Address))}
FootballSmallDB.Employee.22.1578 | {(P.O. Box 194, 2522 Facilisis St.,(22,221,Address))}
FootballSmallDB.Employee.22.4187 | {(P.O. Box 903, 4348 Eget St.,(22,221,Address))}

These results are then combined in the mapped function (3.1.3) as follows in

Result Set 3.22.

75

Result Set 3.22
select * from mapped_id(’ExampleDS’,’Person’,’FootballSmallDB’,’22’);

id | personid |givenname| personaddress
-----------------------+--------------------------+---------+------------------------------------
Foot...DB.Emp...22.7040|{(7040,(22,222,Emp...Id))}|{(Amel...|{(P.O. Box 399...,(22,221,Address))}
Foot...DB.Emp...22.9760|{(9760,(22,222,Emp...Id))}|{(Raja...|{(882-7477 Neq...,(22,221,Address))}
Foot...DB.Emp...22.5271|{(5271,(22,222,Emp...Id))}|{(Hasa...|{(8767 Faucibu...,(22,221,Address))}
Foot...DB.Emp...22.1578|{(1578,(22,222,Emp...Id))}|{(Dyla...|{(P.O. Box 194...,(22,221,Address))}
Foot...DB.Emp...22.4187|{(4187,(22,222,Emp...Id))}|{(Mary...|{(P.O. Box 903...,(22,221,Address))}

Thus far we have shown only mapped attributes. We now present how the

not mapped function (3.1.6) works in the case of the “Student” local relation,

which does not have any attributes that correspond to the “PersonAddress” domain

attribute in mapping “11”. To begin, we perform the mapped function (3.1.3) for

the attributes that do have correspondences. For “PersonId” and “GivenName”

domain attributes the mapped function invokes the proj type nest function

(3.1.4) as in Result Sets 3.12 and 3.13, that produces the same output for the

mapped function as Result Set 3.14. Which leaves the “PersonAddress” domain

attribute, which does not appear in any correspondences in mapping “11”, so will

produce a result from the not mapped function (3.1.6). The not mapped func-

tion will produce a single tuple as its output that contains all domain attributes

that were not mapped. We get all domain attributes in the relation using the

da P dattrs line in the cross product and then check each domain attribute to

see if it was not mapped by making sure that there are no correspondences con-

taining the domain attribute using the is empty function. Having determined

in this case that the “PersonAddress” attribute does not have a correspondence,

the function produces a single tuple with a single nested attribute shown below in

Result Set 3.23.
Result Set 3.23

select * from not_mapped_id(’ExampleDS’,’Person’,’TennisSmallDB’,’11’);
personaddress(value,meta(mid,cid,type))

--
{(NULL,(11,NULL,NULL))}

This result corresponds to the right side of the not mapped function (3.1.6).

A tuple is produced with “NULL” values for the “value”, “cid”, and “type” nested

76

attributes, since there were no corresponding mappings or local data or type in-

formation. The attribute is named using our naming operator (Ñ) to produce a

result using the schema of a domain attribute. This result is then crossed with the

result of the mapped function as per the first line of the apply operator (3.1.1) as

shown in Result Set 3.24.
Result Set 3.24

select * from mapped_id(’ExampleDS’,’Person’,’TennisSmallDB’,’11’),
not_mapped_id(’ExampleDS’,’Person’,’TennisSmallDB’,’11’);
id | personid | givenname | personaddress

------------------------------+----------------------------+-----------+---------------
TennisSmallDB.Student.11.800 | {(800,(11,110,StudentId))} | {(Call... | {(NULL,(11,NULL,NULL))}
TennisSmallDB.Student.11.802 | {(802,(11,110,StudentId))} | {(Aiko... | {(NULL,(11,NULL,NULL))}
TennisSmallDB.Student.11.801 | {(801,(11,110,StudentId))} | {(Kibo... | {(NULL,(11,NULL,NULL))}
TennisSmallDB.Student.11.803 | {(803,(11,110,StudentId))} | {(Elto... | {(NULL,(11,NULL,NULL))}
TennisSmallDB.Student.11.804 | {(804,(11,110,StudentId))} | {(Maca... | {(NULL,(11,NULL,NULL))}

Results Sets 3.22 and 3.24 are then unioned to produce the result of the apply

operator, shown below in Result Set 3.25.
Result Set 3.25

select * from alpha_id(’Person’,’3’);
id | personid | givenname | personaddress

---------------------------+----------------------------+-----------------+--
Tennis...DB.Student.11.800 |{(800,(11,110,StudentId))} |{(Callie Rees...}| {(NULL,(11,NULL,NULL))}
Tennis...DB.Student.11.802 |{(802,(11,110,StudentId))} |{(Aiko Sweet,...}| {(NULL,(11,NULL,NULL))}
Tennis...DB.Student.11.801 |{(801,(11,110,StudentId))} |{(Kibo Nolan,...}| {(NULL,(11,NULL,NULL))}
Tennis...DB.Student.11.803 |{(803,(11,110,StudentId))} |{(Elton Dunca...}| {(NULL,(11,NULL,NULL))}
Tennis...DB.Student.11.804 |{(804,(11,110,StudentId))} |{(Macaulay He...}| {(NULL,(11,NULL,NULL))}
Foot...DB.Employee.22.7040 |{(7040,(22,222,EmployeeId))}|{(Amelia Litt...}| {(P.O. Box 399, 2901 Ut Avenue,(22,221,Address))}
Foot...DB.Employee.22.9760 |{(9760,(22,222,EmployeeId))}|{(Raja Ryan,(...}| {(882-7477 Neque St.,(22,221,Address))}
Foot...DB.Employee.22.5271 |{(5271,(22,222,EmployeeId))}|{(Hasad Wagne...}| {(8767 Faucibus St.,(22,221,Address))}
Foot...DB.Employee.22.1578 |{(1578,(22,222,EmployeeId))}|{(Dylan Miles...}| {(P.O. Box 194, 2522 Facilisis St.,(22,221,Address))}
Foot...DB.Employee.22.4187 |{(4187,(22,222,EmployeeId))}|{(Mary Stone,...}| {(P.O. Box 903, 4348 Eget St.,(22,221,Address))}

3.5.3 Multiple Local Attributes Mapped to One Domain Attribute

In this example we explain what happens when there are multiple correspondences

from different local attributes to the same domain attribute in a single mapping.

This example will demonstrate why we use the nested relational model for each

of our attributes. Figure 3.8 shows an example of this case. In this example, we

extend the domain relation “Person” from the simple case (Figure 3.2) with a new

domain attribute “OrganizationalUnit”. The “Employee” local relation is extended

with both “Division” and “Region” attributes, which represent the league and the

geographical region within which the team plays, respectively. Correspondences

“214” and “213” have been added between “Division” and “OrganizationalUnit”

and “Region” and “Organizational Unit”, respectively. The “Student” local re-

lation is extended with a “Department” attribute, which represents the academic

77

department within which the student studies and the correspondence “112” be-

tween “Department” and OrganizationalUnit”.

Local Domain

PersonGivenName
PersonId

OrganizationalUnit

PersonGivenName
PersonId

OrganizationalUnit

Employee EmployeeName
Division

EmployeeId

Region

Student StudentName
StudentId

Department

21

210

211

11

110

112

214
213

111

FootballSmallDB

TennisSmallDB

Figure 3.8: Above, an example of a mapping with two correspondences containing the

same domain attribute (“OrganizationalUnit”). Below, a straightforward mapping.

The local database definition is updated to reflect the new local attributes as

shown below in Result Set 3.26 in red.
Result Set 3.26

select * from ldb;
id | lrs

-----------------+--
FootballSmallDB | (Employee,EmployeeId,{EmployeeId,EmployeeName,Division,Region})
TennisSmallDB | (Student,StudentId,{StudentId,StudentName,Department})

The domain-structure definition is updated to reflect the new domain attribute

as shown below in Result Set 3.27 in red.
Result Set 3.27

select * from ds;
id | drs

-----------+--
ExampleDS | (Person,PersonId,{PersonId,GivenName,OrganizationalUnit})

Sample data for the two local relations is shown below in Result Sets 3.28 and

3.29.
Result Set 3.28

select * from student;
studentid | studentname | department

-----------+---------------+-------------
800 | Callie Reese | physics
801 | Kibo Nolan | math
802 | Aiko Sweet | english
803 | Elton Duncan | french
804 | Macaulay Hess | biology

Result Set 3.29
select * from employee;
employeeid | employeename | division | region

------------+---------------+----------+---------
9760 | Raja Ryan | league 1 | europe
4187 | Mary Stone | league 2 | america
7040 | Amelia Little | league 2 | america
5271 | Hasad Wagner | league 1 | europe
1578 | Dylan Miles | league 2 | america

78

As in the previous examples, the new correspondences are added to the map-

pings, shown in red in Result Set 3.30. For the football database, the first new

correspondence is between the “Region” local attribute and the “Organization-

alUnit” domain attribute with id “213” and the second is between the “Division”

local attribute and the “OrganizationalUnit” domain attribute with id “214”. For

the student database, we add the new correspondence between the “Department”

local attribute and the “OrganizationalUnit” domain attribute with id “112”.
Result Set 3.30

select * from ds_ldb_m;
id | ldbid | dsid | dr_lr_ms

----+-----------------+-----------+---
2 | FootballSmallDB | ExampleDS |(21,Employee,Person,TRUE,{(210,EmployeeId,PersonId),

(211,EmployeeName,GivenName),
(213,Region,OrganizationalUnit),
(214,Division,OrganizationalUnit)})

1 | TennisSmallDB | ExampleDS |(11,Student,Person,TRUE,{(110,StudentId,PersonId),
(111,StudentName,GivenName),
(112,Department,OrganizationalUnit)})

Since the local-database-to-domain-structure mapping ids and local-relation-

to-domain-relation mapping ids have remained the same, we use the same domain-

structure-application shown in Result Set 3.10. Since the “TennisSmallDB”

database remains a case of simple mappings we do not repeat the description

of the steps to produce the results of the mapped function, shown below in Result

Set 3.31.
Result Set 3.31

#select * from mapped_id(’ExampleDS’,’Person’,’TennisSmallDB’,’11’);
id | personid |givenname| organizationalunit

----------------------------+--------------------------+---------+-------------------------------
TennisSmallDB.Student.11.800|{(800,(11,110,StudentId))}|{(Call...|{(physics,(11,112,Department))}
TennisSmallDB.Student.11.801|{(801,(11,110,StudentId))}|{(Kibo...|{(math,(11,112,Department))}
TennisSmallDB.Student.11.802|{(802,(11,110,StudentId))}|{(Aiko...|{(english,(11,112,Department))}
TennisSmallDB.Student.11.804|{(804,(11,110,StudentId))}|{(Maca...|{(biology,(11,112,Department))}
TennisSmallDB.Student.11.803|{(803,(11,110,StudentId))}|{(Elto...|{(french,(11,112,Department))}

The portion of interest in this example occurs in the proj type nest func-

tion (Function 3.1.4 in Equation 3.1) for the “FootballSmallDB”. Without the

nest operator at the beginning, the function would produce tuples of the form

pid, value,metaq where “value” is the local data value and “meta” is the nested

provenance and type information. In this case, where multiple local attributes

(“Region” and “Division”) have been mapped to the same domain attribute (“Or-

ganizational Unit”), the union operator over all correspondences for this domain

79

attribute will then produce multiple tuples for each id. The nest operator then

causes the “value” and “meta” attributes to be nested into a new attribute with

the name of the domain attribute prdasq where we use the bracket operators to

signify that this is the value of the da parameter passed into the function. The

nested result from the football database is shown below in Result Set 3.32.
Result Set 3.32

select * from projtypenest_id(’OrganizationalUnit’,’FootballSmallDB’,’21’);
id | organizationalunit(value,meta(mid,cid,type))

----------------------------------+--
FootballSmallDB.Employee.21.5271 | {(europe,(21,213,Region)),(league 1,(21,214,Division))}
FootballSmallDB.Employee.21.9760 | {(europe,(21,213,Region)),(league 1,(21,214,Division))}
FootballSmallDB.Employee.21.7040 | {(america,(21,213,Region)),(league 2,(21,214,Division))}
FootballSmallDB.Employee.21.4187 | {(america,(21,213,Region)),(league 2,(21,214,Division))}
FootballSmallDB.Employee.21.1578 | {(america,(21,213,Region)),(league 2,(21,214,Division))}

The nested result from the proj type nest function is then joined into the

mapped and apply functions and then unioned together like usual, shown below

in Result Sets 3.33 and 3.34.
Result Set 3.33

select * from mapped_id(’ExampleDS’,’Person’,’FootballSmallDB’,’21’);
id | personid |givenname| organizationalunit

--------------------------+----------------------------+---------+------------------------------
Foot...DB.Employee.21.5271|{(5271,(21,210,EmployeeId))}|{(Hasa...|{(europe,(21,213,Region)),

(league 1,(21,214,Division))}
Foot...DB.Employee.21.9760|{(9760,(21,210,EmployeeId))}|{(Raja...|{(europe,(21,213,Region)),

(league 1,(21,214,Division))}
Foot...DB.Employee.21.7040|{(7040,(21,210,EmployeeId))}|{(Amel...|{(america,(21,213,Region)),

(league 2,(21,214,Division))}
Foot...DB.Employee.21.4187|{(4187,(21,210,EmployeeId))}|{(Mary...|{(america,(21,213,Region)),

(league 2,(21,214,Division))}
Foot...DB.Employee.21.1578|{(1578,(21,210,EmployeeId))}|{(Dyla...|{(america,(21,213,Region)),

(league 2,(21,214,Division))}

Result Set 3.34
select * from alpha_id(’Person’,’3’);

id | personid |givenname| organizationalunit
--------------------------+----------------------------+---------+--------------------------------
Tennis...DB.Student.11.800|{(800,(11,110,StudentId))} |{(Call...|{(physics,(11,112,Department))}
Tennis...DB.Student.11.801|{(801,(11,110,StudentId))} |{(Kibo...|{(math,(11,112,Department))}
Tennis...DB.Student.11.802|{(802,(11,110,StudentId))} |{(Aiko...|{(english,(11,112,Department))}
Tennis...DB.Student.11.804|{(804,(11,110,StudentId))} |{(Maca...|{(biology,(11,112,Department))}
Tennis...DB.Student.11.803|{(803,(11,110,StudentId))} |{(Elto...|{(french,(11,112,Department))}
Foot...DB.Employee.21.5271|{(5271,(21,210,EmployeeId))}|{(Hasa...|{(europe,(21,213,Region)),

(league 1,(21,214,Division))}
Foot...DB.Employee.21.9760|{(9760,(21,210,EmployeeId))}|{(Raja...|{(europe,(21,213,Region)),

(league 1,(21,214,Division))}
Foot...DB.Employee.21.7040|{(7040,(21,210,EmployeeId))}|{(Amel...|{(america,(21,213,Region)),

(league 2,(21,214,Division))}
Foot...DB.Employee.21.4187|{(4187,(21,210,EmployeeId))}|{(Mary...|{(america,(21,213,Region)),

(league 2,(21,214,Division))}
Foot...DB.Employee.21.1578|{(1578,(21,210,EmployeeId))}|{(Dyla...|{(america,(21,213,Region)),

(league 2,(21,214,Division))}

3.5.4 Conditional Mapping Predicates

In this example, we present a use case that demonstrates why the predicate exists

within the local-to-domain mappings. For this example, we extend the simple case

80

(Figure 3.2) by adding attributes to the “Student” and “Employee” local relations

to include gender, “Sex” and “Gender” respectively. These attributes are shown

in Result Set 3.35 in red.
Result Set 3.35

select * from ldb;
id | lrs

-----------------+---
FootballSmallDB | (Employee,EmployeeId,{EmployeeId,EmployeeName,Gender})
TennisSmallDB | (Student,StudentId,{StudentId,StudentName,Sex})

Sample local data for the two local relations is shown below in Result Sets 3.36

and 3.37.
Result Set 3.36

studentid | studentname | sex
-----------+---------------+--------
800 | Callie Reese | female
801 | Kibo Nolan | male
802 | Aiko Sweet | female
803 | Elton Duncan | male
804 | Macaulay Hess | male

Result Set 3.37
employeeid | employeename | gender

------------+---------------+--------
9760 | Raja Ryan | f
4187 | Mary Stone | f
7040 | Amelia Little | f
5271 | Hasad Wagner | m
1578 | Dylan Miles | m

For this use case, we modify the domain structure where we replace the person

domain relation with two new domain relations “Female” and “Male” shown in

Result Set 3.38. Each domain relation has attributes for id and name, “FemaleId”

and “FName” for the “Female” domain relation; and, “MaleId” and “MName” for

the “Male” domain relation.
Result Set 3.38

select * from ds;
id | drs

-----------+--------------------------------
ExampleDS | (Female,FemaleId,{FemaleId,FName})
ExampleDS | (Male,MaleId,{MaleId,MName})

Figure 3.9 shows the mappings between the two local relations and the “Female”

domain relation. Each of these mappings contain two correspondences. From the

“Employee” local relation there is a correspondence between the “EmployeeId” lo-

cal attribute and the “FemaleId” domain attribute; and, a correspondence between

the “EmployeeName” local attribute and the “FName” domain attribute. With

81

this mapping, we add the condition that for each of these mappings the “Gender”

local attribute has to be equal to ‘f’. For the “Student” local relation, there is a

correspondence between the “StudentId” local attribute and the “FemaleId” do-

main attribute; and, a correspondence between the “StudentName” local attribute

and the “FName” domain attribute. The conditional mapping visual syntax is

used to denote the condition that for the mapping, the “Sex” local attribute has

to be equal to ‘female’.

Local Domain

Employee EmployeeName
Gender

EmployeeId

Student StudentName
StudentId

Sex

Gender=‘f’

Sex=‘female’

FemaleFName
FemaleId

FemaleFName
FemaleId

25

250

251

15

150
151

FootballSmallDB

TennisSmallDB

Figure 3.9: Domain relation-local relation mappings are shown between the “Female”

domain relation and the “Employee” and “Student” local relations respectively. The up-

per mapping contains two correspondences between “EmployeeId” and “FemaleId” and

“EmployeeName” and “FName”. The mapping has the condition that the “Gender”

local attribute value must be equal to ‘f’. The lower mapping contains two correspon-

dences between “StudentId” and “FemaleId” and “StudentName” and “FName”. This

mapping has the condition that the “Sex” local attribute value must be equal to ‘female’.

Figure 3.10 shows the mappings between the two local relations and the “Male”

domain relation. Each of these mappings contain two correspondences. From the

“Employee” local relation, there is a correspondence between the “EmployeeId”

local attribute and the “MaleId” domain attribute; and, a correspondence between

the “EmployeeName” local attribute and the “MName” domain attribute. With

these correspondences, the visual conditional correspondence is used to add the

82

condition that for the mapping the “Gender” local attribute has to be equal to ‘m’.

For the “Student” local relation, there is a correspondence between the “StudentId”

local attribute and the “MaleId” domain attribute; and, a correspondence between

the “StudentName” local attribute and the “MName” domain attribute. The

conditional correspondence visual syntax is used to denote the condition that for

this mapping, the “Sex” local attribute has to be equal to ‘male’.

Local Domain

MaleMName
MaleId

MaleMName
MaleId

Employee EmployeeName
Gender

EmployeeId

Student StudentName
StudentId

Sex

Gender=‘m’

Sex=‘male’

24

240

241

14

140
141

FootballSmallDB

TennisSmallDB

Figure 3.10: Domain relation-local relation mappings are shown for the “Male” do-

main relation to the “Employee” and “Student” local relations respectively. The upper

mapping contains two correspondences between “EmployeeId” and “MaleId” and “Em-

ployeeName” and “MName”. The mapping has the condition that the “Gender” local

attribute value must be equal to ‘m’. The lower mapping contains two correspondences

between “StudentId” and “MaleId” and “StudentName” and “MName”. This mapping

has the condition that the “Sex” local attribute value must be equal to ‘male’.

The correspondences for both domain relations are then represented as shown

below in Result Set 3.39. In the first mapping, for the football database (“3”), there

are two correspondences between the “Employee” local relation and the “Male”

domain relation: correspondence “240” between the “EmployeeId” local attribute

and the “MaleId” domain attribute with the condition “gender=‘m’ ”; and, corre-

spondence “241” between the “EmployeeName” local attribute and the “MName”

domain attribute with the condition “gender=‘m’ ”. In the second mapping, for the

83

football database (“4”), there are two correspondences between the “Employee” lo-

cal relation and the “Female” domain relation: correspondence “250” between the

“EmployeeId” local attribute and the “FemaleId” domain attribute with the condi-

tion “gender=‘f’ ”; and, correspondence “251” between the “EmployeeName” local

attribute and the “FName” domain attribute with the condition “gender=‘f’ ”. In

the third mapping, for the tennis database (“1”), there are two correspondences

between the “Student” local relation and the “Male” domain relation: correspon-

dence “140” between the “StudentId” local attribute and the “MaleId” domain at-

tribute with the condition “sex=‘male’ ”; and, correspondence “141” between the

“StudentName” local attribute and the “MName” domain attribute with the con-

dition “sex=‘male’ ”. In the fourth mapping, for the tennis database (“2”), there

are two correspondences between the “Student” local relation and the “Female”

domain relation: correspondence “250” between the “StudentId” local attribute

and the “FemaleId” domain attribute with the condition “gender=‘f’ ”; and, cor-

respondence “251” between the “StudentName” local attribute and the “FName”

domain attribute with the condition “sex=‘female’ ”.
Result Set 3.39

select * from ds_ldb_m;
id | ldbid | dsid | dr_lr_ms

----+-----------------+-----------+---
3 | FootballSmallDB | ExampleDS | (24,Employee,Male,gender=’m’,{(240,EmployeeId,MaleId),

(241,EmployeeName,MName’)})
4 | FootballSmallDB | ExampleDS | (25,Employee,Female,gender=’f’,{(251,EmployeeName,FName),

(250,EmployeeId,FemaleId)})
1 | TennisSmallDB | ExampleDS | (14,Student,Male,sex=’male’,{(141,StudentName,MName),

(140,StudentId,MaleId)})
2 | TennisSmallDB | ExampleDS | (15,Student,Female,sex=’female’,{(150,StudentId,FemaleId),

(151,StudentName,FName)})

Functionally, this case is very similar to the simple mapping example above.

The only part of the apply operator that will be used for the first time here is

in the proj type nest function (Function 3.1.4 in Equation 3.1); the select op-

erator after the table scan operation will filter the results of the table scan by

the predicate p within the mapping. For the “Female” domain relation, the re-

sults of the proj type nest function for the “FName” domain attribute for the

tennis database are shown below in Result Set 3.40 and in Result Set 3.41 for the

84

football database. The results in each have been filtered by “sex=‘female’ ” and

“gender=‘f’ ” respectively.
Result Set 3.40

select * from projtypenest_id(’FName’,’TennisSmallDB’,’15’);
id | fname(value,meta(mid,cid,type))

------------------------------+---
TennisSmallDB.Student.15.800 | {(Callie Reese,(15,151,StudentName))}
TennisSmallDB.Student.15.802 | {(Aiko Sweet,(15,151,StudentName))}

Result Set 3.41
select * from projtypenest_id(’FName’,’FootballSmallDB’,’25’);

id | fname(value,meta(mid,cid,type))
----------------------------------+---
FootballSmallDB.Employee.25.4187 | {(Mary Stone,(25,251,EmployeeName))}
FootballSmallDB.Employee.25.7040 | {(Amelia Little,(25,251,EmployeeName))}
FootballSmallDB.Employee.25.9760 | {(Raja Ryan,(25,251,EmployeeName))}

The “FemaleId” domain attribute is produced in a similar fashion and there

are no changes in how the mapped or apply operators behave. The result of the

apply operator on the “Female” domain relation is shown below in Result Set 3.42.
Result Set 3.42

select * from alpha_id(’Female’,’8’);
id | fname | femaleid

----------------------------+---------------------------------------+-----------------------------
TennisSmallDB.Student.15.800|{(Callie Reese,(15,151,StudentName))} |{(800,(15,150,StudentId))}
TennisSmallDB.Student.15.802|{(Aiko Sweet,(15,151,StudentName))} |{(802,(15,150,StudentId))}
Foot...DB.Employee.25.4187 |{(Mary Stone,(25,251,EmployeeName))} |{(4187,(25,250,EmployeeId))}
Foot...DB.Employee.25.7040 |{(Amelia Little,(25,251,EmployeeName))}|{(7040,(25,250,EmployeeId))}
Foot...DB.Employee.25.9760 |{(Raja Ryan,(25,251,EmployeeName))} |{(9760,(25,250,EmployeeId))}

In the same fashion, for the “Male” domain relation, the proj type nest func-

tion (Function 3.1.4 in Equation 3.1) will filter data from the local relations by

“sex=‘male’ ” and “gender=‘m’ ” shown below in Result Sets 3.43 and 3.44.
Result Set 3.43

select * from projtypenest_id(’MName’,’TennisSmallDB’,’14’);
id | mname(value,meta(mid,cid,type))

------------------------------+--
TennisSmallDB.Student.14.801 | {(Kibo Nolan,(14,141,StudentName))}
TennisSmallDB.Student.14.803 | {(Elton Duncan,(14,141,StudentName))}
TennisSmallDB.Student.14.804 | {(Macaulay Hess,(14,141,StudentName))}

Result Set 3.44
select * from projtypenest_id(’MName’,’FootballSmallDB’,’24’);

id | mname(value,meta(mid,cid,type))
----------------------------------+--
FootballSmallDB.Employee.24.1578 | {(Dylan Miles,(24,241,EmployeeName))}
FootballSmallDB.Employee.24.5271 | {(Hasad Wagner,(24,241,EmployeeName))}

The result of the apply operator on the “Male” domain relation is shown below

in Result Set 3.45.
Result Set 3.45

select * from alpha_id(’Male’,’7’);
id | mname | maleid

----------------------------+--------------------------------------+------------------------------
TennisSmallDB.Student.14.801|{(Kibo Nolan,(14,141,StudentName))} |{(801,(14,140,StudentId))}
TennisSmallDB.Student.14.803|{(Elton Duncan,(14,141,StudentName))} |{(803,(14,140,StudentId))}
TennisSmallDB.Student.14.804|{(Macaulay Hess,(14,141,StudentName))}|{(804,(14,140,StudentId))}
Foot...DB.Employee.24.1578 |{(Dylan Miles,(24,241,EmployeeName))} |{(1578,(24,240,EmployeeId))}
Foot...DB.Employee.24.5271 |{(Hasad Wagner,(24,241,EmployeeName))}|{(5271,(24,240,EmployeeId))}

85

3.5.5 Combinations

The examples above represent typical mapping scenarios within our system. The

comprehensive set of mapping types we allow in our system (as described in our

previous chapter) is any combination of the above mapping scenarios. A single

local-database-to-domain-structure mapping may contain simple mappings, one

local attribute mapped to multiple domain attributes, multiple local attributes

mapped to one domain attribute, and conditional correspondences. A domain-

structure-application may contain multiple different combinations of these map-

pings as well. The apply operator handles all these cases by considering each one

separately.

The first union operation in the apply operator causes each separate local-

relation-to-domain-relation mapping to be considered separately. Then we process

each domain attribute in a separate proj type nest function and they are then

joined back together, allowing the same local attribute to be mapped to multiple

domain attributes. This process of separating and joining does add flexibility to

our query interface, but it comes at the cost of doing the joins; we will discuss

later how simpler mappings can avoid this step. Then, the union operation within

each proj type nest function processes each correspondence separately, letting

multiple local attributes be mapped to the same domain attribute.

3.6 CANONICAL APPLY

In order to perform a similar tablescan-like operation at the canonical level, we de-

fine canonical apply (θ), which creates queries against mapped domain structures

that will return results from mapped local databases. For example, in the bottom

section of Figure 3.5, a canonical apply is used against the “Subject” canonical

structure to produce the results shown under the box labeled “Canonical (Un-

derlying)”. Like the apply operation, the canonical apply operation returns data

86

in the format of the canonical relation using the (underlying) nested relational

model. The resultant nested relation can then be used with standard nested-

relational-algebra operations.

Given a canonical relation named cr and a canonical structure application id

csaid, the canonical apply operator is defined in Equation 3.2.

We will explain the steps of the operator in the following example, based on the

mapping shown in the top portion of Figure 3.11. In this mapping, there is a canon-

ical relational named “Subject” that contains three canonical attributes (“Sub-

jectId”, “SubjectName”, “SubjectDetail”). The “Subject” canonical structure is

mapped to the “Person” domain relation used previously in this chapter. The

mapping contains correspondences between the “SubjectId” canonical attribute

and the “PersonId” domain attribute as well as the “SubjectName” canonical at-

tribute and the “GivenName” domain attribute. The “SubjectDetail” canonical

attribute is unmapped.

Before we get into the details of the canonical apply operator, we describe the

example using the implementation.

The canonical structure is described below in Result Set 3.46. The “Exam-

pleCS” canonical structure has a single canonical relation “Subject” with three

canonical attributes (“SubjectId”, “SubjectName”, and “SubjectDetail”).
Result Set 3.46

select * from cs;
id | crs

--------------+---
ExampleCS | (Subject,SubjectId,{SubjectId,SubjectName,SubjectDetail})

The domain structure is described below in Result Set 3.47. The “ExampleDS”

domain structure has a single domain relation “Person” with two domain attributes

(“PersonId” and “GivenName”).
Result Set 3.47

select * from ds;
id | drs

-----------+---
ExampleDS | (Person,PersonId,{PersonId,GivenName})

The mapping shown in the top portion of Figure 3.11 is shown below in Result

87

θp
cr
,c
sa
id
q
“

ď

p
d
s
a
id
,c
r
d
r
m
q
P

c
s
a

m
a
p
p
in

g
s
p
c
r,
c
s
a
id
q

´

c
s
m
a
p
p
e
d
pd
sa
id
,c
r
d
r
m
q
ˆ
c
s
n
o
t
m
a
p
p
e
d
pc
r,
cr
d
r
m
,c
sa
id
q¯

(1
)

c
sa

m
a
p
p
in
g
sp
cr
,c
sa
id
q
“
π

c
s
a
.d
s
a
id
,

c
s
d
s
m
.c
r
d
r
m
s

˜

σ
c
s
a
.i
d
“
c
s
a
id

^
c
s
.c
r
s
.n
a
m
e
“
c
r

´

cs
d
s
m

’
c
s
d
s
m
.i
d
“
c
s
a
.c
s
d
s
m
id
pµ

c
s
d
s
m
s
pc
sa
qq

¯

¸

(2
)

c
s
m
a
p
p
e
d
pd
sa
id
,c
r
d
r
m
q
“
π
id
,t
rd
a
sÑ
rc
a
s|
p
d
a
,c
a
q
P
π
c
r
d
r
m
.c
o
r
r
s
.d
a
,

c
r
d
r
m
.c
o
r
r
s
.c
a

p
c
r
d
r
m
q
u
pα
pc
r
d
r
m
.d
r,
d
sa
id
qq

(3
)

c
s
n
o
t
m
a
p
p
e
d
pc
r,
cr
d
r
m
,c
sa
id
q
“

ą

c
a
P
c
a
t
t
r
s
p
c
r,
c
s
a
id
q
^

is
e
m

p
ty
p
σ
c
r

d
r

m
.c

o
r
r
s
.c

a
“
r
c
a
s
p
c
r
d
r
m
q
q

pN
U
L
L
,p
N
U
L
L
,N

U
L
L
,N

U
L
L
qq

Ñ
rc
a
sp
v
a
lu
e
,m
e
ta
p
m
id
,c
id
,t
y
p
e
q
q

(4
)

c
a
tt
rs
pc
r,
cs
a
id
q
“

π
c
s
.c
r
s
.a
tt
r
s
pσ

c
s
a
.i
d
“
rc
s
a
id
s

^
c
s
.c
r
s
.n
a
m
e
“
rc
r
s

pc
s

’
c
s
.i
d
“
c
s
a
.c
s
id
cs
a
qq

(5
)

E
q
u

a
ti

o
n

3
.2

:
C

a
n

o
n

ic
a
l

A
p

p
ly

88

Domain Canonical

PersonGivenName
PersonId

SubjectSubjectName
SubjectId

SubjectDetail

Local Domain

Employee EmployeeName
Address

EmployeeId

Canonical

PersonGivenName
PersonId

SubjectSubjectName
SubjectId

SubjectDetail

Local Domain Canonical

PersonGivenName
PersonId

SubjectSubjectName
SubjectId

SubjectDetail
Student StudentName

StudentId

5000 50000

50001

5000 50000

50001

5000 50000

50001

21
210

211

11
110

111

FootballSmallDB

TennisSmallDB

Figure 3.11: A canonical relation-domain relation mapping is shown (top) with added

domain relation-local relation mappings shown (middle and bottom).

Set 3.48. In the domain-structure-to-canonical-structure mapping with id “500”,

there exists one mapping, “5000”, between the “Person” domain relation and the

“Subject” canonical relation that contains two correspondences (“50000”, between

the “PersonId” domain attribute and the “SubjectId” canonical attribute, and

“50001”, between the “GivenName” domain attribute and the “SubjectName”

canonical attribute).

Result Set 3.48
select * from cs_ds_m;
id | dsid | csid | cr_dr_ms

-----+-----------+--------------+---
500 | ExampleDS | ExampleCS | (5000,Person,Subject,{(50000,PersonId,SubjectId),

(50001,GivenName,SubjectName)})

The local databases are described below in Result Set 3.49. The “FootballS-

mallDB” database has a single relation, “Employee”, with two attributes (“Em-

ployeeId” and “EmployeeName”). The “TennisSmallDB” has a single relation

89

“Student” with two attributes (“StudentId” and “StudentName”).
Result Set 3.49

#select * from ldb;
id | lrs

-----------------+---
FootballSmallDB | (Employee,EmployeeId,{EmployeeId,EmployeeName})
TennisSmallDB | (Student,StudentId,{StudentId,StudentName})

The local-database-to-domain-structure mappings in the middle and bottom

portions of Figure 3.11 are shown below in Result Set 3.50. The red mapping “21”

shown in the middle portion of the Figure is between the “Employee” local relation

and the “Person” domain relation with correspondences “210” (between the “Em-

ployeeId” local attribute and the “PersonId” domain attribute) and “211” (between

the “EmployeeName” local attribute and “GivenName” domain attribute). The

green mapping “11” shown in the bottom of Figure 3.11 is between the “Student”

local relation and the “Person” domain relation, with correspondences “110” (be-

tween the “StudentId” local attribute and the “PersonId” domain attribute) and

“111” (between the “StudentName” local attribute and “GivenName” domain at-

tribute).
Result Set 3.50

select * from ds_ldb_m;
id | ldbid | dsid | dr_lr_ms

----+-----------------+-----------+---
1 | TennisSmallDB | ExampleDS | (11,Student,Person,TRUE,{(110,StudentId,PersonId),

(111,StudentName,GivenName)})
2 | FootballSmallDB | ExampleDS | (21,Employee,Person,TRUE,{(210,EmployeeId,PersonId),

(211,EmployeeName,GivenName)})

In this example we have a single domain-structure-application “3” that contains

mappings “1” and “2”, shown below in Result Set 3.51.
Result Set 3.51

select * from dsa;
id | dsid | ds_ldb_mid

----+-----------+------------
3 | ExampleDS | {1,2}

There is a single canonical-structure-application that contains the domain

structure application “3” from above and the domain-structure-to-canonical-

structure mapping “500”, shown below in Result Set 3.52. Note that the

“cs ds ms” attribute is nested, since there may be multiple canonical structure

to domain structure mappings used in a single canonical-structure application.

90

Result Set 3.52
select * from csa;
id | csid | dsaid | cs_ds_ms

-------+--------------+-------+----------
csa3 | ExampleCS | 3 | {500}

Now we describe the details of the canonical apply operator. Given the canon-

ical relation “Subject” and the canonical structure application id “csa3”, we begin

with Function 3.2.1, where θ(Subject, csa3) will return the cross product of the

cs mapped and cs not mapped functions on all the domain-structure applica-

tion and domain-relation-to-canonical-relation mapping tuples returned from the

csa mappings function (3.22) and union their results.

Given the canonical relation “Subject” and the canonical-application id “csa3”,

the csa mappings function (Function 3.2.2) unnests the “cs ds ms” attribute

from the “csa” relation (shown in Result Set 3.52) and joins that with the “cs ds m”

relation (shown in Result Set 3.48) using the mapping id. That result is then fil-

tered by the input canonical relation and canonical-structure-application id and

the domain-structure-application id from the “csa” relation. The domain-relation-

to-canonical-relation mappings (“cr dr ms”) from the “cs ds m” relation are pro-

jected into the result, shown below in Result Set 3.53.

Result Set 3.53
select * from mapping_applications(’Subject’,’csa3’);
dsaid | cr_dr_ms

-------+---
3 | (5000,Person,Subject,{(50000,PersonId,SubjectId),

(50001,GivenName,SubjectName)})

Using the domain-structure-application id and domain-relation-to-canonical-

relation mappings returned from csa mappings, the canonical apply operation

returns the local data for all mapped canonical attributes using the cs mapped

function (Function 3.2.3). This function begins by performing the apply operation

on the domain relation specified in the input domain-relation-to-canonical-relation

mapping (“Person”) using the input domain-structure-application id (“3”). As-

suming the local data for the “Student” and “Employee” relations shown below

91

in Result Sets 3.54 and 3.55, the result of the apply operation is shown in Result

Set 3.56.
Result Set 3.54

select * from student;
studentid | studentname

-----------+---------------
800 | Callie Reese
801 | Kibo Nolan

Result Set 3.55
select * from employee;
employeeid | employeename

------------+---------------
9760 | Raja Ryan
4187 | Mary Stone

Result Set 3.56
select * from alpha_id(’Person’,’3’);

id | personid | givenname
---------------------------------+----------------------------+----------------------------------
TennisSmallDB.Student.11.800 |{(800,(11,110,StudentId))} |{(Call...,(11,111,StudentName))}
TennisSmallDB.Student.11.801 |{(801,(11,110,StudentId))} |{(Kibo...,(11,111,StudentName))}
FootballSmallDB.Employee.21.4187|{(4187,(21,210,EmployeeId))}|{(Mary...,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.9760|{(9760,(21,210,EmployeeId))}|{(Raja...,(21,211,EmployeeName))}

The cs mapped function (Functon 3.2.3) then renames all the domain at-

tributes to canonical attributes using the tuples of domain-attribute-canonical-

attribute pairs projected from the input domain-relation-to-canonical-relation

mapping. The function projects the id and canonical attributes. The results are

shown below in Result Set 3.57.
Result Set 3.57

select * from cs_mapped(’3’,’Subject’,’5000’);
id | subjectid | subjectname

--------------------------------+----------------------------+----------------------------------
TennisSmallDB.Student.11.800 |{(800,(11,110,StudentId))} |{(Call...,(11,111,StudentName))}
TennisSmallDB.Student.11.801 |{(801,(11,110,StudentId))} |{(Kibo...,(11,111,StudentName))}
FootballSmallDB.Employee.21.4187|{(4187,(21,210,EmployeeId))}|{(Mary...,(21,211,EmployeeName))}
FootballSmallDB.Employee.21.9760|{(9760,(21,210,EmployeeId))}|{(Raja...,(21,211,EmployeeName))}

Using the domain-structure-application id and domain-relation-to-canonical-

relation mappings returned from csa mappings, the canonical apply operation

then adds any canonical attributes that were not contained in the mapping, using

the cs not mapped function (3.2.4). The cs not mapped function finds un-

mapped canonical attributes by finding all the attributes in the canonical relation

using the cattrs function (3.2.5) where there are no correspondences in the input

mapping (using the is empty function while selecting the canonical attributes

from the mapping). In this case, we have one canonical attribute that was not

mapped (“SubjectDetail”), so the function will create a nested attribute named

92

“SubjectDetail” with “NULL” values for the “value”, “mid”, “cid”, and “type”

attributes as shown in Result Set 3.58.
Result Set 3.58

select * from cs_not_mapped(’3’,’5000’,’csa3’);
subjectdetail(value,meta(mid,cid,type))

--
{(NULL,(NULL,NULL,NULL))}

The last step in the canonical apply is to take the cross product of the

cs mapped and cs not mapped functions, the result is shown below in Result

Set 3.59.
Result Set 3.59

select * from theta(’Subject’,’csa3’);
id | subjectid | subjectname | subjectdetail

----------------+---------------------------+---------------------------------+-----------------
Tennis...11.800| {(800,(11,110,StudentId))}| {(Call...,(11,111,StudentName))}| {(NULL,(NULL...}
Tennis...11.801| {(801,(11,110,StudentId))}| {(Kibo...,(11,111,StudentName))}| {(NULL,(NULL...}
Foot...21.4187 | {(4187,(21,210,Emp...Id))}| {(Mary...,(21,211,Emp...Name))} | {(NULL,(NULL...}
Foot...21.9760 | {(9760,(21,210,Emp...Id))}| {(Raja...,(21,211,Emp...Name))} | {(NULL,(NULL...}

3.7 APPARENT MODEL AND TYPE OPERATIONS

We have shown how the apply and canonical apply operators work. Both operators

return a nested relational result in the underlying model, but recall from Figure 3.5

that to meet our goal of simplicity we do not expect our end users to interact with

or understand the nested relational model; we instead provide the apparent model.

To do that we define the apparent model operator (κ) shown in Equation 3.3. The

apparent model operator will work on the result of either an apply or canonical

apply operator, since both have the same format. We focus on the definition of

the apparent model operator using the canonical apply, as that is the most likely

use case.

κpcr, csaidq “ πid,rca1s,...,rcansp ρ
valueÑrca1s

pµ
rca1s

p. . . p ρ
valueÑrcans

pµ
rcans

pθpcr, csaidqqqqqqq

(3.3)

@cai P cattrspcr, csaidq

Recalling that cattrs is defined in Function 3.2.5 above as

cattrspcr, csaidq “ π
cs.crs.attrs

pσ csa.id“csaid
^cs.crs.name“cr

pcs ’
cs.id“csa.csid

csaqq

93

The apparent model operator functions like a tablescan operator at the canon-

ical level in a query, returning a relational result that can then be combined with

any standard relational operators. The apparent model operator takes a canonical

relation name and a canonical-structure-application id, then produces the result of

the canonical apply for those inputs, unnests each canonical attribute and renames

the “value” attribute to the canonical attribute name and projects the id and the

renamed attributes. For example, the result of the apparent model operator on the

canonical relation “Subject” with the canonical structure application id “csa3” will

first run the canonical apply, producing the results above in Result Set 3.59. The

renamed and projected result would then be as follows in Result Set 3.60.
Result Set 3.60

make_apparent(’Subject’,’csa3’);
id | subjectid | subjectname | subjectdetail

-----------------------------+-----------+---------------+--------------
TennisDB.Student.30.800 | 800 | Callie Reese | NULL
TennisDB.Student.30.801 | 801 | Kibo Nolan | NULL
FootballDB.Employee.70.4187 | 4187 | Mary Stone | NULL
FootballDB.Employee.70.9760 | 9760 | Raja Ryan | NULL

A consequence of the unnesting in the apparent model operator is that the

id attribute may no longer be a key for the resulting relation. Such is the case

when multiple local attributes are mapped to the same domain attribute, resulting

in nested tuples in the domain attribute. For example, suppose the “Person”

domain structure with the “Organizational Unit” domain attribute is mapped to

the “Subject” canonical structure, as shown in Figure 3.12. The result from the

apply operator was described above and shown in Result Set 3.34. The result of

the canonical apply operator would be as follows in Result Set 3.61.
Result Set 3.61

select * from theta(’Person’,’csa3’);
id | subjectid |subjectname| subjectdetail

--------------------------+----------------------------+-----------+-----------------------------
Tennis...DB.Student.11.800|{(800,(11,110,StudentId))} |{(Call... |{(physics,(11,112,Depar...))}
Tennis...DB.Student.11.801|{(801,(11,110,StudentId))} |{(Kibo... |{(math,(11,112,Depar...))}
Foot...DB.Employee.21.4187|{(4187,(21,210,EmployeeId))}|{(Mary... |{(america,(21,213,Region)),

(league 2,(21,214,Division))}
Foot...DB.Employee.21.9760|{(9760,(21,210,EmployeeId))}|{(Raja... |{(europe,(21,213,Region)),

(league 1,(21,214,Division))}

The result of the apparent model operator on this instance of the “Subject”

canonical structure is then as follows in result Set 3.62.

94

Domain

PersonGivenName
PersonId

OrganizationalUnit SubjectSubjectName
SubjectId

SubjectDetail

5000 50000

50002

50001

Figure 3.12: A domain-relation-to-canonical-relation mapping is shown from the “Per-

son” domain structure (containing the “Organizational Unit” domain attribute) to the

“Subject” canonical structure.

Result Set 3.62
make_apparent(’Subject’,’csa3’);

id | subjectid | subjectname | subjectdetail
-----------------------------+-----------+---------------+--------------
TennisDB.Student.30.800 | 800 | Callie Reese | physics
TennisDB.Student.30.801 | 801 | Kibo Nolan | math
FootballDB.Employee.70.4187 | 4187 | Mary Stone | america
FootballDB.Employee.70.4187 | 4187 | Mary Stone | league 2
FootballDB.Employee.70.9760 | 9760 | Raja Ryan | europe
FootballDB.Employee.70.9760 | 9760 | Raja Ryan | league 1

In order to radiate local information to the canonical level in the apparent

model we then also define the type operator, τ , to extract local type information.

The type operator (Equation 3.4) takes a canonical-relation name “cr”, a canonical-

attribute name “ca”, and a canonical-structure-application id “csaid” and returns

a relation containing an id, the value for that id, and the local type information.

This result can then be used alone or combined with the canonical apply operator

(like the query in Figure 3.5 where the natural join is used to combine the type

operator with the results of a canonical apply operator) to show local data and

type information.

τ pcr, ca, csaidq “ πid,value,typepµmetapµrcaspθpcr, csaidqqqq (3.4)

The operator takes the given canonical relation and canonical-structure-

application id, runs the canonical apply for those inputs, unnests the given can-

nonical attribute and its nested “meta” attribute, and then projects out the “id”,

“value”, and “type” attributes. Continuing with the example above, the type

95

operator on the “Subject” canonical relation, for the “SubjectName” canonical at-

tribute, with canonical structure application id “csa3” produces the result shown

in Result Set 3.63.
Result Set 3.63

select * from tau(’Subject’,’SubjectName’,’csa3’);
id | value | type

----------------------------------+---------------+--------------
TennisSmallDB.Student.11.800 | Callie Reese | StudentName
TennisSmallDB.Student.11.801 | Kibo Nolan | StudentName
FootballSmallDB.Employee.21.4187 | Mary Stone | EmployeeName
FootballSmallDB.Employee.21.9760 | Raja Ryan | EmployeeName

We also want to provide access to the local relation name (in addition to the

local attribute names). We overload the type operator and define a version that

only takes two parameters (as opposed to the three above). This version takes

the canonical relation and canonical-structure-application id as parameters and

returns the id and local relation name. This version of the operator allows the

local type information for the relation (i.e., the relation name) to be radiated to

the canonical level.

τ pcr, csaidq “ πid,splitpid,‘.’qr1sÑtypepθpcr, csaidqq (3.5)

This version of the type operator projects the id from the canonical apply and

then extracts the local relation type from the id using the split function (which

returns an array of strings by splitting an input string on a given delimiter—in

this case the period) and then renames the second element of the split array to

“type”. Using the example above, the local type information for the canonical

relation “SubjectName” would be:

Result Set 3.64
select * from tau(’Subject’,’csa3’);

id | type
---------------------------------+----------
TennisSmallDB.Student.11.800 | Student
TennisSmallDB.Student.11.801 | Student
FootballSmallDB.Employee.21.4187 | Employee
FootballSmallDB.Employee.21.9760 | Employee

96

3.8 OPTIMIZATIONS

While our system introduces overhead by processing all mappings individually and

adding information about mappings, correspondences, and types, the naive imple-

mentation based on the formalism can be optimized for faster query processing. We

introduce modified versions of the apply and canonical apply operators that allow

common relational equivalences to be performed by an optimizer. For example a

query that projects only the “SubjectName” from the “Subject” canonical relation

in Figure 3.12, i.e., πSubjectNamepθpSubjectqq, need not process the “SubjectDetail”

canonical attribute, which in turn means we need not process the “Organization-

alUnit” domain attribute from the “Person” domain relation. Similarly, if we have

a selection query, such as σSubjectName“‘Mary Stone1pθpSubjectqq, we want to push that

selection predicate down to the individual local databases so that we only have to

bring the relevant tuples to the domain and canonical levels. We present our new

operators and equivalences to be used with them. We expect that the use of the

optimized operators will be done by a query optimizer and not query writers, as we

still expect query writers to either be working in an apparent model or be using the

standard form of the operator. We also present an optimized apply operator that

eliminates many of the joins in the standard optimized apply operator in certain

mapping cases, which will be described below.

3.8.1 Optimized Apply

The optimized version of apply shown in Equation 3.6 allows projection and selec-

tion operators to be pushed into apply. Changes to the original operator are shown

in red in the formalism. The modified operator takes additional parameters pred

and pattrs. The pred parameter5 is used to pass the predicate of a selection into

5Note that this is a predicate from a selection query being pushed into the apply operator and
different from the predicate that may be supplied with a mapping.

97

the operator; we require that only mapped domain attributes are referenced in the

predicate. The pattrs parameter passes the projection list into the operator; we

require that the attribute list contains only domain attributes for the given domain

relation, dr, but may contain mapped or unmapped attributes.

In the first line of the operator (Equation 3.6), the new parameters are passed

along to the mpopt function (which takes both parameters) and the nmpopt func-

tion (which only takes the pattrs parameter since we assume the predicate does

not reference unmapped attributes)6.

The dsa mappings function (Function 3.6.2 in Equation 3.6) remains un-

changed from the definition in Equation 3.1.

The mpopt function (Function 3.6.3) passes the predicate pred into each ptnopt

function that is run. Since the ptnopt function is run for each domain attribute in

the domain relation, we use the predicate list pattrs to run only the ptnopt functions

for domain attributes appearing in the attribute list, avoiding unnecessary work.

Note that if the developer wants all the attributes then there will be no project

and the predicate list will be empty, i.e., pattrs “ NULL. In that case, ptnopt is

run for all mapped domain attributes.

The ptnopt function (Function 3.6.4) pushes the predicate pred into the selec-

tion operator directly after the table scan. The replace pred function is used to

rename all domain attributes in the predicate to their respective local attribute

names. Since we require that all attributes referenced in the predicate have been

mapped, we can push this predicate into all ptnopt functions, as they all reference

the same local relation for a given mapping. This prevents us from having to

determine which term in the predicate needs to be sent to each ptnopt function.

The predicate list pattrs is used in the nmpopt function (Function 3.6.7) to limit

6For the sake of brevity in Equation 3.6 the function names have been abbreviated from
their names in the apply operator (Equation 3.1); mapped to mp, not mapped to nmp,
proj type nest to ptn, and dr lr m to dlm.

98

the number of attributes created by only adding attributes to the cross product if

the domain attribute is in the attribute list pattrs.

Note that if the pred parameter is true and pattr parameter is empty (“

NULL), the operator functions the same as the original apply operator.

Using the optimized apply operator we propose the following equivalences to

facilitate query execution and optimization. First we show how a relational pro-

jection operator can be pushed into the optimized apply.

Theorem 3.1. πpattrspαpdr, dsaidqq ” αoptpdr, dsaid, true, pattrsq

In the following proof (and those that follow in this section) we abbreviate parts

of the functions that remain unchanged by the steps of the proof. Justifications

for each step of the proof begin on the line below each numbered proof statement.

Proof.

π pattrspαpdr, dsaidqq ” πpattrsp
ď

pmp
ą

nmpqq (1)

by the definition of the apply operator, Equation 3.1.

”
ď

pπpattrspmpq
ą

πpattrspnmpqq (2)

by the equivalences πωpE0 Y E1q ” πωpE0q YπωpE1q

and πωpE0 ˆ E1q ” πωpE0q ˆπωpE1q [1, 26].

”
ď

pπpattrspptnpda1q ’ . . . ’ ptnpdanqq
ą

πpattrspnmpqq (3)

by the definition of the mapped function (Function 3.1.3).

”
ď

ppπpattrsptnpda1q ’ . . . ’ πpattrsptnpdanqq
ą

πpattrspnmpqq (4)

by the equivalence πωpE0 ’ E1q ” πωpE0q ’ πωpE1q [1, 26].

”
ď

pp’ ptnpdaiq|dai P pattrsq
ą

πpattrspnmpqq (5)

99

α
op
tp
d
r,
d
sa
id
,p
re
d
,p
a
tt
rs
q
“

ď

p
ld
b
id
,d
lm
q
P

d
s
a

m
a
p
p
in

g
s
p
d
r,
d
s
a
id
q

´

m
p
o
p
t
pl
d
bi
d
,d
lm
,p
re
d
,p
a
tt
rs
q
ą

n
m
p
o
p
t
pd
r,
d
lm
,d
sa
id
,p
a
tt
rs
q¯

(1
)

d
sa

m
a
p
p
in
g
sp
d
r,
d
sa
id
q
“
π

d
s
ld
b
m
.l
d
b
id
,

d
s
ld
b
m
.d
r
lr
m
s
Ñ
d
lm

˜

σ
d
s
ld
b
m
.d
r
lr
m
s
.d
r
“
d
r

^
d
s
a
.i
d
“
d
s
a
id

´

d
s
ld
b
m

’
d
s
ld
b
m
.i
d
“
d
s
a
.d
s
ld
b
m
id
pµ

d
s
ld
b
m
s
pd
sa
qq

¯

¸

(2
)

m
p
o
p
t
pl
d
bi
d
,d
lm
,p
re
d
,p
a
tt
rs
q
“

p
tn

o
p
t
pd
a
1
,l
d
bi
d
,d
lm
,p
re
d
q’ id

..
.’
id
p
tn

o
p
t
pd
a
n
,l
d
bi
d
,d
lm
,p
re
d
q

(3
)

@
d
a
i
P
σ
d
a
P
p
a
tt
r
s
_
p
a
tt
r
s
“
N
U
L
L
pπ

d
lm
.c
o
r
r
s
.d
a
pd
lm
qq

p
tn

o
p
t

pd
a
,l
d
bi
d
,d
lm
,p
re
d
q
“

ν
v
a
lu
e
,m
e
ta

:r
d
a
s˜

ď

c
o
r
r
P
π
d
lm

.c
o
r
r
s
p
σ
d
r

lr
m

.c
o
r
r
s
.d

a
“

d
a
p
d
lm
q
q

´

(4
)

`

π
g
e
n

k
e
y
p
ld
b
id
,d
lm
q
Ñ
id
,

rc
o
r
r.
la
sÑ

v
a
lu
e

pσ
d
lm
.p
^

r
e
p
la
c
e

p
r
e
d
pp
r
ed
,d
lm
q

pt
a
b
le

sc
a
n
pl
d
bi
d
,d
lm
.l
rq
qq
˘

ą

pd
lm
.i
d
,c
or
r.
id
,c
or
r.
la
q

Ñ
m
e
ta
p
m
id
,c
id
,t
y
p
e
q

¯

¸

g
e
n

k
e
y
pl
d
bi
d
,d
lm
q
“
ld
bi
d
||
.|
|d
lm
.l
r|
|.
||
d
lm
.i
d
||
.|
|r
π
ld
b
.l
r
s
.k
e
y
pσ
ld
b
.l
r
s
.n
a
m
e
“
d
lm
.l
r

^
ld
b
.i
d
“
ld
b
id

pl
d
bq
s

(5
)

re
p
la
c
e
p
re

d
pp
re
d
,d
lm
q
“

st
ri
n
g
re

p
la
c
e
pp
re
d
,d
a
,l
a
q@
pd
a
,l
a
q
P
π
d
lm
.c
o
r
r
s
.d
a
,

d
lm
.c
o
r
r
s
.l
a
pd
lm
q

(6
)

n
m
p
o
p
t
pd
r,
d
lm
,d
sa
id
,p
a
tt
rs
q
“

ą

rd
a
sP
d
a
t
t
r
s
p
d
r,
d
s
a
id
q
^

is
e
m

p
ty
p
σ
d
lm

.c
o
r
r
s
.d

a
“
r
d
a
s
p
d
lm
q
q
^

p
rd
a
sP
p
a
tt
r
s
_
p
a
tt
r
s
“
N
U
L
L
q

pN
U
L
L
,p
d
lm
.i
d
,N

U
L
L
,N

U
L
L
qq

Ñ
rd
a
sp
v
a
lu
e
,m
e
ta
p
m
id
,c
id
,t
y
p
e
q
q

(7
)

d
a
tt
rs
pd
r,
d
sa
id
q
“
π
d
s
.d
r
s
.a
tt
r
s

´

σ
d
s
.d
r
s
.n
a
m
e
“
rd
r
s

^
d
s
a
.i
d
“
rd
s
a
id
s

pd
s

’
d
s
.i
d
“
d
s
a
.d
s
id
d
sa
q¯

(8
)

E
q
u

a
ti

o
n

3
.6

:
O

p
ti

m
iz

ed
A

p
p

ly

100

since the results of the ptn function for any dai not in the project list cannot

be in the results of the function by the definition of the project operator.

”
ď

pp’ ptnpdaiq|dai P pattrsq
ą

πpattrspdan`1 ˆ . . .ˆ damqq (6)

by the definition of the not mapped (nmp) function (Function 3.1.6 in

Equation 3.1). Here dan`1, . . . , dam are the domain attributes that are not

in the current mapping and dan was the last mapped attribute in the

mapped function.

”
ď

pp’ ptnpdaiq|dai P pattrsq
ą

pˆdaj|daj P pattrsqq (7)

since any unmapped dai not in the project list cannot be in the results

of the function by the definition of the project operator. Here

daj P tdan`1, . . . , damu and we use ˆ daj to represent the cross-product of all

such da.

” αoptpdr, dsaid, true, pattrsq (8)

by the definition of the optimized apply operator (Equation 3.6).

We also provide an equivalence that allows selection predicates to be pushed

into the optimized apply operator. We assume that the predicate only contains

literals or domain attributes from the given dr.

Theorem 3.2. σpredpαpdr, dsaidqq ” αoptpdr, dsaid, pred,NULLq

Proof.

σpred pαpdr, dsaidqq ” σpredp
ď

pmp
ą

nmpqq (1)

101

by the definition of the apply operator, Equation 3.1.

”
ď

pσpredpmpq
ą

nmpq (2)

by the equivalences σωpE0 Y E1q ” σωpE0q YσωpE1q

and σωpE0 ˆ E1q ” σωpE0q ˆσωpE1q [1, 26] and the requirement that only

mapped attributes and literals exist in pred.

”
ď

pσpredpptnpda1q ’ . . . ’ ptnpdanqq
ą

nmpq (3)

by the definition of the mapped function (Function 3.1.3 in Equation 3.1).

”
ď

ppσpredptnpda1q ’ . . . ’ σpredptnpdanqq
ą

nmpq (4)

by the relational algebra equivalence σωpE0 ’ E1q ” σωpE0q ’ σωpE1q [1, 26].

”
ď

ppσpredpνp
ď

pπid,laÑdapσcorr.pplrqqqq ’ . . .q
ą

nmpq (5)

by the definition of the proj type nest function (Function 3.1.4).

”
ď

ppσpredpνp
ď

pπid,dapρlaÑdapσcorr.pplrqqqqq ’ . . .q
ą

nmpq (6)

by the definition of the project with renaming operator [49].

”
ď

ppνp
ď

pπid,dapρlaÑdapσ corr.p^
replace predppredq

plrqqqq ’ . . .q
ą

nmpq (7)

by the definition of the nested selection operator [49], the relational algebra

equivalence σωpE0 Y E1q ” σωpE0q YσωpE1q, the relational

algebra equivalence σωpπδpE0qq ” πδpσωpE0qq, and the definition of the

rename operator [49], which means that pred and replace predppredq are

the same.

” αoptpdr, dsaid, pred,NULLq (8)

102

by the definition of the optimized apply operator (Equation 3.6).

3.8.2 Optimized Canonical Apply

The optimized version of canonical apply shown in Equation 3.7 allows projection

and selection operators to be pushed into apply. Changes to the original operator

are shown in red in the formalism. The modified operator takes additional pa-

rameters pred and pattrs. The pred parameter is used to pass the predicate of a

selection into the operator; we assume here that only mapped canonical attributes

are referenced in the predicate. The pattrs parameter passes the projection list

into the operator; we assume here that the attribute list only contains canonical at-

tributes for the given canonical relation, cr, but may contain mapped or unmapped

attributes.

Both the pred and pattrs parameters are then passed into the cs mpopt func-

tion7 while only the pattrs parameter is passed into the cs nmpopt function, since

we require that no unmapped canonical attributes are referenced in the predicate.

The cs mapped function (Function 3.2.3) is then modified (Function 3.2.3). A

condition is added that is used to build the attribute list of the projection operator

such that the canonical attribute must be in the input attribute list pattrs or, if

pattrs is empty, then it should operate as before in Equation 3.2. The function is

modified to use the optimized apply operator. The pred and pattrs parameters are

transformed to replace all canonical attributes with domain attributes before being

passed to the optimized apply operator using the replace pred and replace pattr

functions.

The cs not mapped function (Function 3.2.4) is modified in (Function 3.2.4)

by adding a condition to the cross product such that only unmapped attributes

7As with the optimized apply operator we also abbreviate function names here; cs mapped
to cs mp, cs not mapped to cs nmp and cs ds m to cdm.

103

are created if they exist in pattrs or if pattrs is empty all unmapped attributes

are added.

We provide two relational algebra equivalences that can be used with the op-

timized canonical apply operator. We show how a relational projection operator

can be pushed into the optimized canonical apply.

Theorem 3.3. πpattrspθpcr, csaidqq ” θoptpcr, csaid, true, pattrsq

Proof.

π pattrspθpcr, csaidqq ” πpattrsp
ď

pcs mp
ą

cs nmpqq (1)

by the definition of the canonical apply operator, Equation 3.2.

”
ď

pπpattrspcs mpq
ą

πpattrspcs nmpqq (2)

by the equivalences πωpE0 Y E1q ” πωpE0q YπωpE1q

and πωpE0 ˆ E1q ” πωpE0q ˆπωpE1q [1, 26].

”
ď

pπpattrspπrdaisÑrcaispαpdr, dsaidqqq
ą

πpattrspcs nmpqq (3)

by the definition of the cs mapped function (Function 3.2.3).

”
ď

pπpattrspπrcaispρrdaisÑrcaispαpdr, dsaidqqqq
ą

πpattrspcs nmpqq (4)

by the definition of the project with renaming operator [49].

”
ď

pρ
rdaisÑrcais

pπpattr1pαpdr, dsaidqqq
ą

πpattrspcs nmpqq (5)

by the definition of the rename operator [49] and where

pattr1 “ replace pattrppattrs, cdmq.

”
ď

pπrcaispρrdaisÑrcaispαoptp. . . , pattr
1
qqq

ą

πpattrspcs nmpqq (6)

by Theorem 3.1.

104

θ o
p
tp
cr
,c
sa
id
,p
re
d
,p
a
tt
rs
q
“

ď

p
d
s
a
id
,c
d
m
q
P

c
s
a

m
a
p
p
in

g
s
p
c
r,
c
s
a
id
q

´

c
s
m
p
o
p
t
pd
sa
id
,c
d
m
,p
re
d
,p
a
tt
rs
q
ˆ
c
s
n
m
p
o
p
t
pc
r,
cd
m
,c
sa
id
,p
a
tt
rs
q¯

(1
)

c
sa

m
a
p
p
in
g
sp
cr
,c
sa
id
q
“
π

c
s
a
.d
s
a
id
,

c
s
d
s
m
.c
r
d
r
m
s
Ñ
c
d
m

˜

σ
c
s
a
.i
d
“
c
s
a
id

^
c
s
.c
r
s
.n
a
m
e
“
c
r

´

cs
d
s
m

’
c
s
d
s
m
.i
d
“
c
s
a
.c
s
d
s
m
id
pµ

c
s
d
s
m
s
pc
sa
qq

¯

¸

(2
)

c
s
m
p
o
p
t
pd
sa
id
,c
d
m
,p
re
d
,p
a
tt
rs
q
“

π
id
,

rd
a
sÑ
rc
a
s|
p
d
a
,c
a
q
P
π
c
d
m
.c
o
r
r
s
.d
a
,

c
d
m
.c
o
r
r
s
.c
a

p
c
d
m
q
^
p
rc
a
sP
p
a
tt
r
s
_
p
a
tt
r
s
“
N
U
L
L
(

(3
)

´

α
o
p
t
pc
d
m
.d
r,
d
sa
id
,r
e
p
la
c
e
p
re

d
pp
re
d
,c
d
m
q,
re

p
la
c
e
p
a
tt
rp
p
a
tt
rs
,c
d
m
qq

¯

c
s
n
m
p
o
p
t
pc
r,
cd
m
,c
sa
id
,p
a
tt
rs
q
“

ą

c
a
P
c
a
t
t
r
s
p
c
r,
c
s
a
id
q
^

is
e
m

p
ty
p
σ
c
d
m

.c
o
r
r
s
.c

a
“
r
c
a
s
p
c
d
m
q
q
^

rc
a
sP
p
a
tt
r
s
_
p
a
tt
r
s
“
N
U
L
L
q

pN
U
L
L
,p
N
U
L
L
,N

U
L
L
,N

U
L
L
qq

Ñ
rc
a
sp
v
a
lu
e
,m
e
ta
p
m
id
,c
id
,t
y
p
e
q
q

(4
)

c
a
tt
rs
pc
r,
cs
a
id
q
“

π
c
s
.c
r
s
.a
tt
r
s

´

σ
c
s
a
.i
d
“
rc
s
a
id
s

^
c
s
.c
r
s
.n
a
m
e
“
rc
r
s

pc
s

’
c
s
.i
d
“
c
s
a
.c
s
id
cs
a
q¯

(5
)

re
p
la
c
e
p
re

d
pp
re
d
,c
d
m
q
“

st
ri
n
g
re

p
la
c
e
pp
re
d
,c
a
,d
a
q@
pc
a
,d
a
q
P
π
c
d
m
.c
o
r
r
s
.c
a
,

c
d
m
.c
o
r
r
s
.d
a
pc
d
m
q

(6
)

re
p
la
c
e
p
a
tt
rp
p
a
tt
rs
,c
d
m
q
“
t
d
a
|p
ca
,d
a
q
P
π
c
d
m
.c
o
r
r
s
.c
a
,

c
d
m
.c
o
r
r
s
.d
a
pc
d
m
q
^
ca
P
p
a
tt
rs
u

(7
)

E
q
u

a
ti

o
n

3
.7

:
O

p
ti

m
iz

ed
C

a
n

o
n

ic
a
l

A
p

p
ly

105

”
ď

pcs mpoptpdsaid, cdm, true, pattrsqqq
ą

πpattrspcs nmpqq (7)

by the definition of the cs mpopt function (Function 3.7.3).

”
ď

pcs mpoptpdsaid, cdm, true, pattrsqqq
ą

πpattrspca1 ˆ . . .ˆ canqq (8)

by the definition of the cs not mapped function (Function 3.2.4).

Here ca1, . . . , can are the canonical attributes not in the mapping cdm.

”
ď

pcs mpoptpdsaid, cdm, true, pattrsqqq
ą

pˆcaj|caj P pattrsqq (9)

by the definition of the project operator [49]. Here caj P tca1, . . . , canu and we

use ˆ cajto represent the cross-product of all such ca.

” θoptpcr, csaid, true, pattrsq (10)

by the definition of the optimized canonical apply operator (Equation 3.7).

We also provide an equivalence that allows selection predicates to be pushed

into the optimized canonical apply operator. We assume that the predicate is

well-formed and only contains literals or canonical attributes from the given cr.

Theorem 3.4. σpredpθpcr, csaidqq ” θoptpcr, csaid, pred,NULLq

Proof.

σ predpθpcr, csaidqq ” σpredp
ď

pcs mp
ą

cs nmpqq (1)

by the definition of the canonical apply operator, Equation 3.2.

”
ď

pσpredpcs mpq
ą

cs nmpq (2)

by the relational algebra equivalences σωpE0 Y E1q ” σωpE0q YσωpE1q

and σωpE0 ˆ E1q ” σωpE0q ˆσωpE1q [1] and the requirement that only

106

mapped domain attributes and literals exist in pred.

”
ď

pσpredpπrdaisÑrcaispαpdr, dsaidqqq
ą

cs nmpq (3)

by the definition of the cs mapped function (Function 3.2.3).

Here all cai are in the mapping passed to cs mapped.

”
ď

pσpredpπrcaispρrdaisÑrcaispαpdr, dsaidqqqq
ą

cs nmpq (4)

by the definition of the project and renaming operators [49].

”
ď

pπrcaispρrdaisÑrcaispσpred1pαpdr, dsaidqqqq
ą

cs nmpq (5)

by the relational algebra equivalence σωpE0 Y E1q ” σωpE0q YσωpE1q,

the associative relational algebra equivalence σωpπδpE0qq ” πδpσωpE0qq

and the definition of the rename operator [49], which means that pred and

pred1 will be the same, where pred1 “ replace predppred, cdmq. (6)

”
ď

pπrcaispρrdaisÑrcaispαoptpdr, dsaid, pred
1, NULLqqq

ą

cs nmpq (7)

by Theorem 3.2.

” θoptpcr, csaid, pred,NULLq (8)

by the definition of the optimized canonical apply operator (Equation 3.7).

3.8.3 Removing Joins From Apply

If all local-relation-to-domain-relation mappings in a domain-structure application

contain only correspondences where there are one or fewer correspondences to

each domain attribute from unique local attributes, we can use a form of the apply

operator that removes extraneous union and join operations. The optimized apply

107

without joins operator (Equation 3.8) is based on the optimized apply operator

(Equation 3.6), so it can leverage previous optimizations.

The optimized apply operator is modified by replacing the mp function with a

single instance of the ptnnj function. The ptnnj function (Function 3.8.3) com-

bines all the project, select, and nest operations against a single table scan oper-

ation. The project and nest operations are limited by the attributes in pattr and

the select operator includes the passed in pred parameter, transformed to work

against local attributes.

Using the optimized apply without joins operator when we are in the appropriate

specific mapping case, we provide the following equivalence.

Theorem 3.5. αoptpdr, dsaid, pred, pattrsq ” αnjpdr, dsaid, pred, pattrsq if and

only if the domain-structure application contains only mappings where each domain

attribute exists in a single correspondence for each local-relation-to-domain-relation

mapping.

Proof.

αopt pdr, dsaid, pred, pattrsq ”
ď

pmpopt
ą

nmpoptq (1)

by the definition of the optimized apply operator (Equation 3.6).

”
ď

ppptnoptpda1q ’id . . . ’id ptnoptpdanqq
ą

nmpoptq (2)

by the definition of the mappedopt function (Function 3.6.3).

”
ď

ppνda1p
ď

pπid,la1Ñda1plrqqq ’id . . .q
ą

nmpoptq (3)

by the definition of the proj type nestopt function (Function 3.6.4).

”
ď

ppνda1pπid,la1Ñda1plrqq ’id . . .q
ą

nmpoptq (4)

by the requirement there is a unique correspondence per domain attribute.

108

α
n
j
pd
r,
d
sa
id
,p
re
d
,p
a
tt
rs
q
“

ď

p
ld
b
id
,d
lm
q
P

d
s
a

m
a
p
p
in

g
s
p
d
r,
d
s
a
id
q

´

p
tn

n
j
pl
d
bi
d
,d
lm
,p
re
d
,p
a
tt
rs
q
ą

n
m
p
o
p
t
pd
r,
d
lm
,d
sa
id
,p
a
tt
rs
q¯

(1
)

d
sa

m
a
p
p
in
g
sp
d
r,
d
sa
id
q
“
π

d
s
ld
b
m
.l
d
b
id
,

d
s
ld
b
m
.d
r
lr
m
s
Ñ
d
lm

˜

σ
d
s
ld
b
m
.d
r
lr
m
s
.d
r
“
d
r

^
d
s
a
.i
d
“
d
s
a
id

´

d
s
ld
b
m

’
d
s
ld
b
m
.i
d
“
d
s
a
.d
s
ld
b
m
id
pµ

d
s
ld
b
m
s
pd
sa
qq

¯

¸

(2
)

p
tn

n
j
pl
d
bi
d
,d
lm
,p
re
d
,p
a
tt
rs
q
“

ν
t
v
a
lu
e
i
,m
e
ta

i
:r
d
a
i
s|

rc
o
r
r
i
.d
a
sP
π
d
lm

.c
o
r
r
s
.d

a
p
d
lm
q
^

p
rc
o
r
r
i
.d
a
sP
p
a
tt
r
s
_
p
a
tt
r
s
“
N
U
L
L
q
u

˜

(3
)

´

π
g
e
n

k
e
y
p
ld
b
id
,d
lm
q
Ñ
id
,

t
rc
o
r
r
i
.l
a
sÑ

v
a
lu
e
i
|

rc
o
r
r
i
.d
a
sP
π
d
lm

.c
o
r
r
s
.d

a
p
d
lm
q
^

p
rc
o
r
r
i
.d
a
sP
p
a
tt
r
s
_
p
a
tt
r
s
“
N
U
L
L
q
u

pσ
d
lm
.p
^

r
e
p
la
c
e
pp
r
ed
,d
lm
q

pt
a
b
le

sc
a
n
pl
d
bi
d
,d
lm
.l
rq
qq

¯

ą

´

pd
lm
.i
d
,c
or
r 1
.i
d
,c
or
r 1
.l
a
q

Ñ
m
e
ta

1
p
m
id
,c
id
,t
y
p
e
q

,.
..
,p
d
lm
.i
d
,c
or
r n
.i
d
,c
or
r n
.l
a
q

Ñ
m
e
ta

n
p
m
id
,c
id
,t
y
p
e
q

¯

¸

@
d
a
i
P
σ
d
a
P
p
a
tt
r
s
_
p
a
tt
r
s
“
N
U
L
L
pπ

d
lm
.c
o
r
r
s
.d
a
pd
lm
qq

g
e
n

k
e
y
pl
d
bi
d
,d
lm
q
“
ld
bi
d
||
.|
|d
lm
.l
r|
|.
||
d
lm
.i
d
||
.|
|r
π
ld
b
.l
r
s
.k
e
y
pσ
ld
b
.l
r
s
.n
a
m
e
“
d
lm
.l
r

^
ld
b
.i
d
“
ld
b
id

pl
d
bq
s

(4
)

re
p
la
c
e
pp
re
d
,d
lm
q
“

st
ri
n
g
re

p
la
c
e
pp
re
d
,d
a
,l
a
q@
pd
a
,l
a
q
P
π
d
lm
.c
o
r
r
s
.d
a
,

d
lm
.c
o
r
r
s
.l
a
pd
lm
q

(5
)

n
m
p
o
p
t
pd
r,
d
lm
,d
sa
id
,p
a
tt
rs
q
“

ą

d
a
P
d
a
t
t
r
s
p
d
r,
d
s
a
id
q
^

is
e
m

p
ty
p
σ
d
lm

.c
o
r
r
s
.d

a
“
r
d
a
s
p
d
lm
q
q
^

p
rd
a
sP
p
a
tt
r
s
_
p
a
tt
r
s
“
N
U
L
L
q

pN
U
L
L
,p
d
lm
.i
d
,N

U
L
L
,N

U
L
L
qq

Ñ
rd
a
sp
v
a
lu
e
,m
e
ta
p
m
id
,c
id
,t
y
p
e
q
q

(6
)

d
a
tt
rs
pd
r,
d
sa
id
q
“
π
d
s
.d
r
s
.a
tt
r
s

´

σ
d
s
.d
r
s
.n
a
m
e
“
rd
r
s

^
d
s
a
.i
d
“
rd
s
a
id
s

pd
s

’
d
s
.i
d
“
d
s
a
.d
s
id
d
sa
q¯

(7
)

E
q
u

a
ti

o
n

3
.8

:
O

p
ti

m
iz

ed
A

p
p

ly
w

it
h

o
u

t
jo

in
s

109

”
ď

pνda1,
...,
dan

pπid,la1Ñda1,
...,

lanÑdan

plrqq
ą

nmpoptq (5)

since id is the key for the relation lr and no local attribute is repeated.

” αnjpdr, dsaid, pred, pattrsq (6)

by the optimized apply without joins operator (Equation 3.8).

3.9 PERFORMANCE ANALYSIS

Our system has been designed to facilitate non-technical users in performing map-

ping tasks and developers in using those mappings. If however, those features come

at too great a cost, the system will not be used. Here, we evaluate the overhead

imposed by our system from our extra layers of modeling and mappings.

We compare our system against a hard-coded custom widget that performs

queries directly against its own schema and stores all data in a single table, re-

quiring no joins in the resultant query. For the results in Table 3.9, this system

is referred to as HC (hard-coded). Since the hard-coded system does not perform

any of the overhead associated with our system, we consider the hard-coded sys-

tem to be a good target for fast performance that we would hope to achieve in our

best case. Our best-case scenario (USb) has only simple mappings and uses the

optimized apply without joins operator described above.

We also compare ourselves to the default Drupal rendering system (labeled D

in Table 3.9). Drupal stores each attribute of an entity in a separate database

table, so, in order to render a page, it must create a join query joining all the

tables of all the attributes. This is similar to our worst-case (USw) performance

because if a user has composed complex mappings that involve multiple conditional

correspondences mappings, our system performs a similar join query. Note also

110

Table 3.1: Performance comparison of our system in a best-case scenario (USb) and

worst-case scenario (USw) to a hard-coded (HC) single query widget (an optimal but

most labor intensive solution) and to the Drupal (D) page rendering system (a generic

widget that can render arbitrarily complex types). All three systems tested with 2, 10,

and 20 attributes. All times in milliseconds.

Rows HC2 HC10 HC20 D2 D10 D20

100 6.2 7.2 8 6.6 29.6 47

1000 8.8 16.9 19.9 7.5 40.3 72.9

10000 31.5 79.1 129.6 40 145.7 326.5

Rows USb2 USb10 USb20 USw2 USw10 USw20

100 6.5 9.9 12.6 7.3 33.5 52.6

1000 9.4 27.4 39.5 9.9 53.3 93.7

10000 46.9 174.5 322.9 67.9 245.3 524.8

that, like Drupal (and most other web systems), these costs are usually one-time

costs, since the output of these queries can be cached.

Table 3.9 shows the results of the performance test. Our system is shown in

both the best-case (USb) and worst-case (USw) scenarios. All systems were tested

with 2, 10, and 20 attributes and on a database with 100, 1000, and 10000 entries.

Times are shown in milliseconds and are the average of 10 runs each. All tests

were performed on a server with an Intel I7 processor and 8GB of RAM.

From Table 3.9 we see that, in our best-case scenario, we are competitive to

a hard-coded solution for a smaller number of rows, which is a great result for

our naive implementation directly written against the formalism. This naive im-

plementation introduces constants for mapping and type information for every

attribute in every row which, unsurprisingly, leads to the slower performance at

larger row and attribute sizes. Even with this overhead, we are comparable to

111

Drupal in our worst-case scenario and the same or better in our best-case, even at

larger row sizes. Note that our system is performing local radiance, which is not

done by either the hard-coded or Drupal system.

The test above compared systems using all attributes and data so the selection

and projection optimizations of the optimized apply operator were not used. To

test selection and projection optimizations, we used the same system as above and

queried a domain relation with three domain attributes. The domain relation was

mapped to twenty different local relations, each populated with 500,000 rows of

data. We tested a selection operator with an equality predicate returning a single

row. We also tested a projection operator that projected out a single domain

attribute. Each query was run 100 times and the average of the times is shown in

Table 3.2.

Table 3.2: Performance data for pushing projection and selection operators into the

optimized apply operator.

Unpushed Pushed

Select 1,170.70ms 16.58ms

Project 1,168.73ms 37.11ms

In both cases we see a decrease of two orders of magnitude compared to the

unoptimized operators as a baseline. The minimal overhead of having to check if

an attribute list or predicate has been passed to the optimized operator can result

in drastic performance improvement.

3.10 RELATED WORK

Our apply and canonical apply operators use a global-as-view model similar to tra-

ditional integration [48], but where traditional integration enforces a rigid singular

global schema, we use many small global schema fragments (domain and canonical

112

structures). Our domain and canonical structures can also be seen as abstract

superclasses of the various local schema types to which the domain structures have

been mapped, similar to view integration and cooperation [79]. We extend these

by bringing the local semantics through to the integrated functionality using our τ

operator. The flexibility of our mappings and our operators’ ability to handle in-

complete to full mappings is also inspired by pay-as-you-go data integration, such

as that proposed by Madhavan [29].

Bringing local schema metadata to a global integration has been studied and

developed in systems such as SchemaSQL [47] and the Federated Interoperable

Relational Algebra (FIRA) [87] and has been added to systems like Clio [40].

These systems address the problem that when integrating heterogeneous schemata

it is often the case that data in one schema may exist as metadata in another

schema (e.g., one schema may have city as an attribute of a company table whereas

another schema may have one table for every city the company has an office in).

Such systems often use the pivot and unpivot operation [78, 86] to transform

schema into data (unpivot) or data into schema (pivot). In contrast, we bring local

schema metadata to our domain and canonical structures in order to bring the local

semantics to the global level through the use of the type operator. We also attempt

to lower the complexity by performing local radiance by letting users add the local

type operator to any domain or canonical relation at any point in a query by simply

using another relational algebra operator. We believe using our operators is more

intuitive than using database variables (in the case of SchemaSQL), having to deal

with (possibly large) extraneous data as a result of the down operator in FIRA,

or being limited solely to the attribute metadata in the case of pivot and unpivot.

One trade-off of our lowered complexity is that we limit the possible mappings in

our system, meaning that we have also lowered the possible transformations that

can be expressed in our system.

As the usage of the semantic web [6] has grown, the number and variety of

113

schemata within it has also increased, requiring the introduction of integration

concepts long known in databases. Ontologies have replaced global schemas [61]

and traditional integration techniques have been used, but again, this type of infor-

mation integration lacks flexibility. In contrast, other systems use small schemas

(e.g. shallow or lightweight ontologies [75]) for search engines and other web inte-

grations, such as those expressed in Microformats [55]. The use of Microformats

requires that the schema elements are directly tied to the local data, making it

difficult to compose different schemas and requiring editing the existing data to

add global schema elements. These small schemas, as well as larger ontologies,

have been used to create web widgets [53, 60] similar to our widgets, but they are

limited to presenting the data in the form of the global schema, e.g., schema.org

or an ontology, whereas our widgets can bring local semantics through.

3.11 SUMMARY

In this chapter we formally defined the apply, canonical apply, apparent model,

and type operators. We presented examples cases for each operator and showed

how the local, domain, and canonical structures and their associated mappings

(presented in Chapter 2) can be used with the operators to provide a query system

at the domain and canonical levels.

We presented optimizations to the apply and canonical apply operators and

equivalences that allow the optimized versions to be used in conjunction with other

relational equivalences to optimize queries in our system. Performance results show

that the overhead added by our system is comparable to that of standard web

content management systems and that using our optimized operators can speed

up queries.

114

Chapter 4

BEYOND LOCAL RADIANCE TO LOCAL INSERT AND UPDATE

The previous chapters have shown how we facilitate the construction of generic

widgets (such as a structured navigation menu) that work with all mapped ele-

ments of local databases in a system. Local radiance allows us to bring local type

information from the various databases for use by the generic widgets.

Here, we consider how to enable generic widgets to insert and update local

data—including local data that is not mapped to the global schema. The challenge

then is how to generically modify data in the various local schemas using a domain

structure1 that is (by design) not complete. That is, how can we access local

schema and data that sit outside the mappings?

In this chapter, we present extensions to our query language, originally defined

in Chapter 3, that enable access to all local schema and data from the domain

level (specifically to access the elements of the local relation that have not been

mapped as long as at least one attribute of the local relation is mapped) as well

as the ability to update and insert data locally from the domain level.

We make the following contributions:

• We define the local document operator (β) that, given a domain relation, will

return a document for every tuple in the result of an apply operator on that

domain relation. Each returned tuple contains the schema (from the local

1Note, as the work in this thesis has progressed we believed that we would only need do-
main structures and then later decided that we needed both domain and canonical structures.
When the work of this chapter was performed we believed we only needed domain structures.
This chapter therefore references domain structures as the end query model and not canonical
structures.

115

relation) and data for all attributes from the local tuple that corresponds to

the mapped tuple.

• We define the empty document operator (ε) that, given a domain relation,

will return an empty document in the schema of each local relation that has

been mapped to the domain relation.

• We define insert and update operators that use β and ε to insert and update

local data from the domain level.

• We present a case study that demonstrates the use of the new operators.

4.1 LOCAL INSERT AND UPDATE

We introduce the four operators that enable global manipulation of local data in

Table 4.1. The first two are the local document operator (β) and empty document

operator (ε). Each of these operators, given a domain relation (dr) and a domain

structure application (dsaid), will add an attribute to the query result containing

a self-describing document that represents the full local schema of the elements in

the local relation to which the domain relation has been mapped. The difference

between the two operators is that β will generate a document populated with data

from the local database whereas ε will generate an empty document with no data

(but with the full local schema structure).

The insert and update operators allow local data creation and modification from

the global level. Given a self-describing document (Doc)—such as those created

by the β and ε operators, the insert operator (InsertDocumentpDocq) translates

the document into the appropriate insert statement for the local database. The

update operator (UpdateDocumentpDocq) translates a given document into the

appropriate local update statement. Inserts or updates may fail if local schema

constraints (e.g., not null or cardinality constraints) are not met.

116

Table 4.1: Extended query operators.

Operator Name

βpdr, dsaidq Local Document Operator

εpdr, dsaidq Empty Document Operator

InsertDocumentpDocq Insert Document Operator

UpdateDocumentpDocq Update Document Operator

The limitation of our mapping system—that a domain relation may only be

mapped to a single local relation and not a join of multiple local relations—allows

us to avoid the view update problem of updating over a join path. Since the local

documents we produce contain the full schema of the local relations, not just the

parts mapped to domain structures, we need not worry about the view update

problem due to projection.

Local Document Operator

Given a domain relation (dr) and a domain structure application identifier (dsaid)

the local document operator (β) is defined as shown below in Equation 4.1. The lo-

cal document operator uses the operators and structures within our system defined

in Chapters 2 and 3, repeated below.

Relations for local and domain structures and mappings.

Local DBs:

ldbpid, lrspname, key, attrspnameqqq

Domain Structures:

dspid, drspname, key, attrspnameqqq

Domain Structure - Local DB Mappings:

ds ldb mpid, ldbid, dsid, dr lr mspid, lr, dr, p, corrspid, la, daqqq

Domain Structure Application:

117

dsapid, dsid, ds ldb mspds ldb midqq

Also, recall the type of the result from the apply operator, α, is:

namepid, attr1pvalue,metapmid, cid, typeqq, . . . ,

attrnpvalue,metapmid, cid, typeqqq

where name P πds.drs.namepdsq and every

attri P πds.drs.attrs.namepσds.drs.name“namepdsqq appears in this expression.

We provide an example to help explain how the local document operator func-

tions. For this example, we continue with the sports databases from the previous

chapters; in particular we will focus on the local relations shown below.
Result Set 4.1

select * from ldb;
id | lrs(name,key,attrs(name))

-----------+---
FootballDB | (Employee,EmployeeId,"{EmployeeId,EmployeeName,Address}")
TennisDB | (Student,StudentId,"{StudentId,Name,gpa}")

Here, the football database has a single local relation (“Employee”) that has three

local attributes (“EmployeeId”, “EmployeeName”, and “Address”). The tennis

database has a single local relation (“Student”) that has three local attributes

(“StudentId”, “Name”, and “gpa”). Example local data for these two databases

is shown below.
Result Set 4.2

select * from tennisdb.student;
studentid | name | gpa
----------+-------+-----
1 | Alice | 4.0
2 | Bob | 3.5

select * from footballdb.employee;
employeeid | employeename | address
-----------+--------------+---------------
999 | Sue | 123 Main St.
1001 | John | 34 Union Ave.

For this example, we use the following domain structure (“TeamDS”) that has

a single domain relation, (“Person”) that has two domain attributes (“PersonId”

and “GivenName”)
Result Set 4.3

select * from ds;
id | drs(name,key,attrs(name))

-----------+--
TeamDS | (Person,id,{PersonId,GivenName})

118

β
pd
r,
d
sa
id
q
“

ď

m
id
P
m

id
s
p
d
r,
d
s
a
id
q

b
u
il
d

lo
c
a
lp
m
id
q

(1
)

m
id
sp
d
r,
d
sa
id
q
“
π

S
P
L
IT
p
id
,‘
.’
q
r2
s
pα
pd
r,
d
sa
id
qq

(2
)

b
u
il
d

lo
c
a
lp
m
id
q
“

ν
m
id
,l
d
b
,l
r,
lr
k
e
y
,a
tt
r
s
:l
o
c
a
l
d
o
c

ˆ

ν
lr
k
e
y
a
tt
r
,l
r
k
e
y
v
a
lv
a
lu
e
:l
r
k
e
y

ˆ

ν
n
a
m
e
,v
a
lu
e
:a
tt
r
s

ˆ

ď

p
ld
b
id
,l
r,
lr
k
e
y
,a
tt
r
q
P

lo
c
a
l
fr
o
m

m
id
p
m
id
q

`

π
“
rl
d
b
id
s|
|.
||
rl
r
s|
|.
||
rm
id
s|
|.
||
rl
r
k
e
y
s2
Ñ
id
,

“
rm
id
s2
Ñ
m
id
,“
rl
d
b
id
s2
Ñ
ld
b
,“
rl
r
s2
Ñ
lr
,

“
rl
r
k
e
y
s2
Ñ
lr
k
e
y
a
tt
r,
rl
r
k
e
y
sÑ

lr
k
e
y
v
a
l

“
ra
tt
r
s2
Ñ
n
a
m
e
,

ra
tt
r
sÑ

v
a
lu
e

pt
a
b
le

sc
a
n
pl
d
bi
d
,l
rq
q˘
˙
˙
˙

(3
)

lo
c
a
l
fr
o
m

m
id
pm
id
q
“

π
ld
b
.i
d
Ñ
ld
b
id
,

ld
b
.l
r
s
.n
a
m
e
Ñ
lr
,

ld
b
.l
r
s
.k
e
y
Ñ
lr
k
e
y
,

ld
b
.l
r
s
.a
tt
r
s
.n
a
m
e
Ñ
a
tt
r

ˆ

pσ
d
s
ld
b
m
.d
r
lr
m
s
.i
d
“
m
id
pd
s
ld
b
m
qq

’
d
s
ld
b
m
.l
d
b
id
“
ld
b
.i
d
^

d
s
ld
b
m
.d
r
lr
m
s
.l
r
“
ld
b
.l
r
s
.n
a
m
e

ld
b˙

(4
)

W
h

er
e

th
e
ta

b
le

sc
a
n
pl
d
bi
d
,l
rq

fu
n

ct
io

n
p

er
fo

rm
s

a
ta

b
le

sc
a
n

o
p

er
a
ti

o
n

o
n

th
e

lo
ca

l
re

la
ti

o
n
lr

in
th

e
lo

ca
l

d
a
ta

b
a
se
ld
bi
d
;

an
d

,
th

e
S
P
L
IT

(s
,d

)
fu

n
ct

io
n

sp
li
ts

a
st

ri
n

g
(s

)
o
n

a
d

el
im

it
er

(d
)

a
n

d
re

tu
rn

s
a
n

a
rr

ay
o
f

th
e

re
su

lt
in

g
su

b
st

ri
n

g
s.

E
q
u

a
ti

o
n

4
.1

:
L
oc
a
l
D
oc
u
m
en

t
O

p
er

a
to

r
(β

)

119

Mappings between the local databases and the domain structure are defined

below.
Result Set 4.4

select * from ds_ldb_m;
id | ldbid | dsid | dr_lr_ms(id,lr,dr,p,corrs(id,la,da)

----+------------+--------+---
2 | FootballDB | TeamDS | (70,Employee,Person,TRUE,{(700,EmployeeId,PersonId),

(701,EmployeeName,GivenName)})
1 | TennisDB | TeamDS | (30,Student,Person,TRUE,{(300,StudentId,PersonId),

(301,Name,GivenName)})

The local football database has a mapping between the “Employee” local rela-

tion and the “Person” domain relation with two correspondences (between the

“EmployeeId” local attribute and “PersonId” domain attribute and between the

“EmployeeName” local attribute and “GivenName” domain attribute). The lo-

cal tennis database has a mapping between the “Student” local relation and the

“Person” domain relation with two correspondences (between the “StudentId” lo-

cal attribute and “PersonId” domain attribute and between the “Name” local

attribute and “GivenName” domain attribute).

Given these structures and mappings we will show how each step of the local

document operator (βpPerson, 1q) works, where 1 is the id of the domain structure

application that contains the two mappings described above and shown below.
Result Set 4.5

select * from dsa;
id | dsid | ds_ldb_mid
---+--------+------------
1 | TeamDS | {1,2}

To start building the local documents for each tuple of the domain relation, we

first find all the mapping ids using the midspdr, dsaidq function (Function 4.1.2).

This functions runs the apply operator on the domain relation and then extracts all

the mapping ids from the id attribute of the domain relation. The apply operator,

α, acting upon this instance of the two local databases results in the following

relation.
Result Set 4.6

select * from alpha(’Person’,’1’)
id | PersonId | GivenName

---------------------------+----------------------------+------------------------------
TennisDB.Student.30.2 |{(2,(30,300,StudentId))} |{(Bob,(30,301,Name))}
TennisDB.Student.30.1 |{(1,(30,300,StudentId))} |{(Alice,(30,301,Name))}
FootballDB.Employee.70.1001|{(1001,(70,700,EmployeeId))}|{(John,(70,701,EmployeeName))}
FootballDB.Employee.70.999 |{(999,(70,700,EmployeeId))} |{(Sue,(70,701,EmployeeName))}

120

The mids function (Function 4.1.2) then extracts the mapping ids from the

“id” attribute using a string split function to retrieve the third element of the dot

delimited string of the generated id, in this case “30” and “70”.
Result Set 4.7

select * from mids(’Person’,’1’);
mid

30
70

Based on the mapping ids retrieved, the β operator retrieves all the local at-

tributes for each local relation (“Student” and “Employee”) in the mappings refer-

enced by the mapping ids (“30” and “70”), and then builds a nested relation that

includes all the local relation attributes and values using the build local function

(Function 4.1.3).

At a high level, the build local function gets the set of all local attributes in

the local relation mapped in the given mapping (mid) (from the local from mid

function), projects each individual attribute from the local relations as “name”-

“value” pairs, unions all the attribute pairs and then nests the results into a local

document that contains the mapping id, the local database name, the local relation

name, the local relation key, and a nested relation of all local attributes with their

names and values. We discuss this function in detail below.

The build local function first uses the local from mid function (Function

4.1.4) to find all local attributes of the local relation (whether or not they have

been mapped). Using the mapping information from ds ldb m (shown in Result

Set 4) and the local database information from ldb (shown in Result Set 1), the

local from mid function projects the local database id, the local relation name,

the local relation-key name, and each attribute in the local relation. Here we

use the nested-relational version of project, which unnests the ldb.lrs.attrs nested

relation and produces one tuple of output for each nested tuple in ldb.lrs.attrs.

The results of this function for the first mapping id (“30”) are shown below.

121

Result Set 4.8
select * from local_info_from_mid(’30’);
ldbid | lr | lrkey | attr

---------+---------+-----------+-----------
TennisDB | Student | StudentId | StudentId
TennisDB | Student | StudentId | Name
TennisDB | Student | StudentId | gpa

For each local attribute from the local from mid function the build local

function projects the domain relation id attribute, mapping id, local database id,

local relation name, local relation key attribute name, local relation key value, and

the local attribute name and value which are then combined in the union operation.

The domain relation id is generated by the apply operator and includes the local

database, local relation, mapping id, and key value which will make the result of

the operator joinable with the results of an apply or canonical apply operation.

This part of the function for the mapping id “30” produces the relational result

below.
Result Set 4.9

id | mid| ldbid | lr | lrkeyattr | lrkeyval | attr | value
----------------------+----+----------+---------+-----------+----------+-----------+--------
TennisDB.Student.30.1 | 30 | TennisDB | Student | StudentID | 1 | StudentId | 1
TennisDB.Student.30.1 | 30 | TennisDB | Student | StudentID | 1 | Name | Alice
TennisDB.Student.30.1 | 30 | TennisDB | Student | StudentID | 1 | gpa | 4.0
TennisDB.Student.30.1 | 30 | TennisDB | Student | StudentID | 2 | StudentId | 2
TennisDB.Student.30.1 | 30 | TennisDB | Student | StudentID | 2 | Name | Bob
TennisDB.Student.30.1 | 30 | TennisDB | Student | StudentID | 2 | gpa | 3.5

The “name” and “value” for each id are then nested into the “attrs” nested relation,

which produces the following nested relational result:
Result Set 4.10

id |mid| ldbid | lr |lrkeyattr|lrkv| attrs(attr,value)
---------------------+---+--------+-------+---------+----+---------------------------------------
TennisDB.Student.30.1| 30|TennisDB|Student|StudentID| 1 |{(StudentId,1),(Name,Alice),(gpa,4.0)}
TennisDB.Student.30.2| 30|TennisDB|Student|StudentID| 2 |{(StudentId,2),(Name,Bob),(gpa,3.5)}

The local relation key attribute name and value are nested in the “lrkey” nested

relation as shown below.
Result Set 4.11

id |mid| ldbid | lr |lrkey(lrka,lrkv)| attrs(attr,value)
---------------------+---+--------+-------+----------------+--------------------------------------
TennisDB.Student.30.1| 30|TennisDB|Student| {StudentId,1} |{(StudentId,1),(Name,Alice),(gpa,4.0)}
TennisDB.Student.30.2| 30|TennisDB|Student| {StudentID,2} |{(StudentId,2),(Name,Bob),(gpa,3.5)}

The mapping id and local database id are then nested with the “lrkey” and

“attrs” relations to create the local document. The build local function (Function

4.1.3) for mapping id “30” will then return the following result:

122

Result Set 4.12
select * from build_local(’30’);

id | local_doc(mid,ldbid,lr,lrkey(lrkeyattr,lrkeyvalue),attrs(attr,value))
-----------------------+--
TennisDB.Student.30.1 |{30,TennisDB,Student,{StudentId,1},{(StudentId,1),(Name,Alice),(gpa,4.0)}}
TennisDB.Student.30.2 |{30,TennisDB,Student,{StudentId,2},{(StudentId,2),(Name,Bob),(gpa,3.5)}}

In a similar fashion, for the mapping above with id “70” the local from mid

function (Function 4.1.4) will then return the local attributes as follows:
Result Set 4.13

select * from local_from_mid(’70’);
ldbid | lr | lrkey | attr

-----------+----------+------------+--------------
FootballDB | Employee | EmployeeId | EmployeeId
FootballDB | Employee | EmployeeId | EmployeeName
FootballDB | Employee | EmployeeId | Address

The build local function (Function 4.1.3) for mapping id “70” will then return

the following tuples:
Result Set 4.14

select * from build_local(’70’);
id |local_doc(mid,ldbid,lr,lrkey(lrkeyattr,lrkeyvalue),attrs(attr,value))

---------------------------+---
FootballDB.Employee.70.1001|{70,FootballDB,Employee,{EmployeeId,1001},{(EmployeeId,1001),

(EmployeeName,John),
(Address,34 Union Ave.)}}

FootballDB.Employee.70.999 |{70,FootballDB,Employee,{EmployeeId,999},{(EmployeeId,999),
(EmployeeName,Sue),
(Address,123 Main St.)}}

The local document operator (β) (Function 4.1.1) will then return the union of the

results of the build local function (Function 4.1.3) for all returned mapping ids

as shown below.
Result Set 4.15

select * from beta(’Person’,’1’);
id |local_doc(mid,ldbid,lr,lrkey(lrkeyattr,lrkeyvalue),attrs(attr,value))

---------------------------+---
TennisDB.Student.30.1 |{30,TennisDB,Student,{StudentId,1},{(StudentId,1),(Name,Alice),

(gpa,4.0)}}
TennisDB.Student.30.2 |{30,TennisDB,Student,{StudentId,2},{(StudentId,2),(Name,Bob),

(gpa,3.5)}}
FootballDB.Employee.70.1001|{70,FootballDB,Employee,{EmployeeId,1001},{(EmployeeId,1001),

(EmployeeName,John),
(Address,34 Union Ave.)}}

FootballDB.Employee.70.999 |{70,FootballDB,Employee,{EmployeeId,999},{(EmployeeId,999),
(EmployeeName,Sue),
(Address,123 Main St.)}}

Empty Document Operator

Given a domain relation (dr) and a domain structure application id (dsaid), the

empty document operator is defined as shown in Equation 4.2. The empty document

123

operator is similar to the local document operator and uses the same mids and

local from mid functions as the local document operator. The only difference is

in the build empty local function (Function 4.2.3). Continuing with the example

above, the empty document operator will produce all the same results up through

Result Set 7. Before nesting, the build empty local function will produce the

following result for all attribtues returned from the local from mid function for

mapping “30”:
Result Set 4.16

id | mid| ldbid | lr | lrkeyattr | lrkeyval | attr | value
-----+----+----------+---------+-----------+----------+-----------+--------
NULL | 30 | TennisDB | Student | StudentID | NULL | StudentId | NULL
NULL | 30 | TennisDB | Student | StudentID | NULL | Name | NULL
NULL | 30 | TennisDB | Student | StudentID | NULL | gpa | NULL

The build empty local function then builds a local document by nesting the

above result in the same process as used above in Result Sets 9 and 10 to produce

the following:
Result Set 4.17

select * from build_empty_local(’30’);
id | local_doc(mid,ldbid,lr,lrkey(lrkeyattr,lrkeyvalue),attrs(attr,value))

-----+---
NULL | {30,TennisDB,Student,{StudentId,NULL},{(StudentId,NULL),(Name,NULL),(gpa,NULL)}}

The results of the build empty local function for mapping id “70” is then

shown below.
Result Set 4.18

select * from build_empty_local(’70’);
id | local_doc(mid,ldbid,lr,lrkey(lrkeyattr,lrkeyvalue),attrs(attr,value))

-----+--
NULL | {70,FootballDB,Employee,{EmployeeId,NULL},{(EmployeeId,NULL),(EmployeeName,NULL),

(Address,NULL)}}

The empty document operator (ε) (Function 4.2.1) then returns the union of the

results of the build empty local function for each mapping id as shown below.
Result Set 4.19

select * from epsilon(’Person’,’1’);
id | local_doc(mid,ldbid,lr,lrkey(lrkeyattr,lrkeyvalue),attrs(attr,value))

-----+---
NULL | {30,TennisDB,Student,{StudentId,NULL},{(StudentId,NULL),(Name,NULL),(gpa,NULL)}}
NULL | {70,FootballDB,Employee,{EmployeeId,NULL},{(EmployeeId,NULL),(EmployeeName,NULL),

(Address,NULL)}}

In the next two subsections we show how local documents and empty documents

are used for update and insert operations, respectively.

124

εp
d
r,
d
sa
id
q
“

ď

m
id
P
m

id
s
p
d
r,
d
s
a
id
q

b
u
il
d

e
m
p
ty

lo
c
a
lp
m
id
q

(1
)

m
id
sp
d
r,
d
sa
id
q
“
π

S
P
L
IT
p
id
,‘
.’
q
r2
s
pα
pd
r,
d
sa
id
qq

(2
)

b
u
il
d

e
m
p
ty

lo
c
a
lp
m
id
q
“

ν
ld
b
,l
r,
a
tt
r
s
:l
o
c
a
l
d
o
c

ˆ

ν
lr
k
e
y
a
tt
r
,l
r
k
e
y
v
a
lv
a
lu
e
:l
r
k
e
y

ˆ

ν
n
a
m
e
,v
a
lu
e
:a
tt
r
s

ˆ

ď

p
ld
b
id
,l
r
,l
r
k
e
y
,a
tt
r
q
P

lo
c
a
l
fr
o
m

m
id
p
m
id
q

`

N
U
L
L
,r
m
id
s,
rl
d
bi
d
s,
rl
rs
,r
lr
k
ey
s,
N
U
L
L
,r
a
tt
rs
,N

U
L
L

Ñ
p
id
,m
id
,l
d
b
,l
r
,l
r
k
e
y
a
tt
r,
lr
k
e
y
v
a
l,
n
a
m
e
,v
a
lu
e
q

˘

˙
˙
˙

(3
)

lo
c
a
l
fr
o
m

m
id
pm
id
q
“

π
ld
b
.i
d
Ñ
ld
b
id
,

ld
b
.l
r
s
.n
a
m
e
Ñ
lr
,

ld
b
.l
r
s
.k
e
y
Ñ
lr
k
e
y
,

ld
b
.l
r
s
.a
tt
r
s
.n
a
m
e
Ñ
a
tt
r

ˆ

pσ
d
s
ld
b
m
.d
r
lr
m
s
.i
d
“
m
id
pd
s
ld
b
m
qq

’
d
s
ld
b
m
.l
d
b
id
“
ld
b
.i
d
^

d
s
ld
b
m
.d
r
lr
m
s
.l
r
“
ld
b
.l
r
s
.n
a
m
e

ld
b˙

(4
)

W
h

er
e

th
e
ta

b
le

sc
a
n
pl
d
bi
d
,l
rq

fu
n

ct
io

n
p

er
fo

rm
s

a
ta

b
le

sc
a
n

o
p

er
a
ti

o
n

o
n

th
e

lo
ca

l
re

la
ti

o
n
lr

in
th

e
lo

ca
l

d
a
ta

b
a
se
ld
bi
d
;

an
d

,
th

e
S
P
L
IT

(s
,d

)
fu

n
ct

io
n

sp
li
ts

a
st

ri
n

g
(s

)
o
n

a
d

el
im

it
er

(d
)

a
n

d
re

tu
rn

s
a
n

a
rr

ay
o
f

th
e

re
su

lt
in

g
su

b
st

ri
n

g
s.

E
q
u

a
ti

o
n

4
.2

:
E
m
p
ty

D
oc
u
m
en

t
O

p
er

a
to

r
(ε

)

125

4.1.1 Update

If the data of an existing local tuple has been changed in a local document, those

changes can be propagated to the local database using the update document oper-

ator (defined in Algorithm 4.3 below).

Algorithm 4.3 Algorithm for building local updates from a local document.

1: procedure UpdateDoc(local doc)
2: updatesÐ arraypq
3: for all pattr, valueq in local doc.attrs do
4: sets.appendpattr||‘=’||valueq
5: end for
6: EXECUTE UPDATE local doc.ldb.local doc.lr SET updates.joinp, q

WHERE local doc.lrkey.lrkeyattr = local doc.lrkey.lrkeyval
7: end procedure

The update document operator executes an SQL update statement using the

attribute names and values in the local document provided. An empty array is

created to store strings of the form “attr = value”. The operator then returns

an empty statement by joining the update strings delimited by commas and only

updating the record referenced by the local key in the local document. In or-

der to avoid determining which attributes may have been updated, we take the

straightforward approach of updating all local attributes.

So, for example, say the document for “Sue” above in the insert section was

updated with a new gpa as follows:

{30,TennisDB,Student,{StudentId,‘3’},{(StudentId,‘3’),(Name,‘Sue’),(gpa,‘4’)}}

The update document operator would first create the “updates” array:

updates = {StudentId=‘3’,Name=‘Sue’,gpa=‘4’}

An update statement is then produced using the local relation referenced in the

local document (local doc.ldb.local doc.lr) and limited to the record in the docu-

ment using the “WHERE” clause and the local key from the document

126

(local doc.lrkey.lrkeyattr = local doc.lrkey.lrkeyval). The algorithm then pro-

duces the following update statement:

UPDATE TennisDB.Student SET StudentId=‘3’,Name=‘Sue’,gpa=‘4’ WHERE StudentId=‘3’

4.1.2 Insert

Once a generic widget has populated an empty document, we provide an operator

for inserting that data into the appropriate local database. Given a local document

local doc our system will run the insert document operator, described below in Al-

gorithm 4.4, on the local database referenced in the local document (local doc.ldb).

Algorithm 4.4 Algorithm for building local inserts from a local document.

1: procedure InsertDoc(local doc)
2: attrsÐ arraypq
3: valuesÐ arraypq
4: for all pattr, valueq in local doc.attrs do
5: attrs.appendpattrq
6: values.appendpvalueq
7: end for
8: EXECUTE INSERT INTO local doc.ldb.local doc.lr pattrs.joinp, qq VAL-

UES pvalues.joinp, qq
9: return local doc.lrkey.lrkeyval

10: end procedure

The insert document operator builds an SQL insert statement based on the

attribute names and values in the local document. First, two empty arrays are

created for the attribute names and values (lines 2 and 3) and are populated with

the data from the attributes in the local document (local doc.attrs). The join

function converts the arrays into comma-delimited strings, producing an insert

statement of the following form:

INSERT INTO local relation (attr1,...,attrn) VALUES (value1,...,valuen)

As an example, consider the local document created from the mapping to the

tennis database above in Result Set 4.19.

127

{30,TennisDB,Student,{StudentId,NULL},{(StudentId,NULL),(Name,NULL),(gpa,NULL)}}

If a widget populates this document as follows:

{30,TennisDB,Student,{StudentId,‘3’},{(StudentId,‘3’),(Name,‘Sue’),(gpa,‘3.5’)}}

The insert document operator for this document will then populate the two arrays:

attrs = {StudentId,Name,gpa}
values = {‘3’,‘Sue’,‘3.5’}

The operator will then execute the following insert statement by performing the

join operation on the two arrays:

INSERT INTO TennisDB.Student (StudentId,Name,gpa) VALUES (‘3’,‘Sue’,‘3.5’);

The local relation key value is then returned, which allows auto-generated key

values to be known at the domain level if they were not populated in the local

document.

4.2 CASE STUDY STEMROBOTICS

We demonstrate the use of all of the document operators in two widgets in the

STEMRobotics2 repository of educational materials. The repository contains

schemas for different course structures, as well as books and other educational

materials. One course schema is shown in Figure 4.1, where a course has units

and a unit has lessons. A book schema (shown in Figure 4.2) has a book that has

chapters and a chapter has sections.

The repository hosts master curricula that have been created to help teachers

who are new to a subject. These curricula are often used alongside a professional

development program where new teachers spend a week or two learning the mate-

rials in order to be ready to teach students. After using the materials as-is once or

twice, teachers may find that they prefer to use the materials in a different order,

2http://stemrobotics.cs.pdx.edu

128

Unit

Lesson

Lesson-for

Title

Title

Unit-for

Focus Area

Education Level

Course
Title

C-copy-Of

Original

Copy

U-copy-Of

Original

Copy

L-copy-Of

Original

Clone

id

id

id

Figure 4.1: The course local schema.

Chapter

Section

Section-for

Heading

Heading

Chapter-for

Subject

Book
Title

B-based-On

Original

New

C-Based-On

Original

New

S-based-On

Original

New

id

id

id

Figure 4.2: The book local schema.

add additional materials, or omit some materials. It is useful for them to create

their own copy of the course, which they then modify to suit their specific needs.

These same actions may also happen with a book. Our local schemas shown in Fig-

ures 4.1 and 4.2 include “X-copy of” and “X-based on” relationships, respectively,

to track these copy and modify actions.

As an example, in the repository, the “STEM Robotics 101” course has been

taught in numerous professional development programs. It is used by teachers

throughout the United States in middle and high school classrooms as well as

after-school programs. In many cases, a teacher has decided to rearrange and

augment the master curriculum. To facilitate the teachers, we created the drag-

and-drop cloning widget shown in Figure 4.3. The left side of the figure shows a

clone of the “STEM Robotics 101” course being created. The user has selected

the course guide, the classroom resources, all of unit 3, and lessons 1, 2, and 6

from unit 1. The user also moved unit 3 to come before unit 1. The right side of

Figure 4.3 shows a similar process occurring for a book.

The repository supports cloning generically, across heterogeneous local

129

Figure 4.3: Widgets for cloning a course (left) and a book (right).

Figure 4.4: The cloned course page created by the course cloning widget on the left

side of Figure 4.3.

130

schemas. Cloning requires creating new local content (such as populating “clone-

of” relationships in the local schema and creating the new “cloned” items) so the

global functionality must be able to perform local inserts and updates. And cloning

requires the use of potentially all local fields—not just those that were mapped—in

order to create the tree structured widget. This cloning widget and the following

exploration widget will both be described in further detail below.

Seeing how the master course has been cloned and modified is important to

the original author, because new materials added to clones can be valuable for

other teachers using the original course. Additionally, since the master course

is not static, it is useful for a teacher of the cloned course to see the differences

between the master course and the clone. To view these modifications, we have

developed a clone exploration widget, shown in Figure 4.5, to show the structural

differences between a clone and the original. In the figure, a unit and its clone

are being compared. The squares on the right represent the original unit and its

lessons, while the squares on the left represent the cloned resources. Lines between

the squares represent “Part Of” relationships (vertically oriented) and “Clone of”

relationships (horizontally oriented). Additionally the widget can show if resources

in the clone have been reordered compared to the originals. Here, all but one of

the lessons have been cloned and one lesson is used as it is in the original in the

clone (the small square in the middle of the figure linked to both units).

The generic clone exploration widget is written against a global schema. But

in order to accurately compare the clones and the originals, we must extract ev-

erything about the local records, not just what is available through the mappings

to the global schema.

4.2.1 Domain Structures Used in the Cloning and Exploration Widgets

To build the hierarchy used in the clone widget (Figure 4.3) we use the “Parent-

Part” domain structure shown in Figure 4.6. The domain structure contains two

131

Figure 4.5: Exploring a clone of a course.

domain entities (“Parent” and “Part”), and a domain relationship (“Has”); each

domain entity has an “id” and a “title” domain attribute. To populate local clone

relationships and to enable the clone exploration widget, we use the clone domain

structure shown in Figure 4.7. This structure consists of a single domain entity

(“Thing”) with “title” and “id” domain attributes, and the “Clone-Of” domain

relationship with labels “Original” and “Clone” for the two ends of the domain

relationship.

4.2.2 Mappings Used in the Cloning and Exploration Widgets

Figure 4.8 shows a set of mappings, drawn at the entity-relationship level, of

the “Parent-Part” domain structure to the course schema. Here, correspondences

have been drawn between the “Parent” domain entity and the “Course” local

entity, as well as their respective “title” attributes. The “Has” domain relationship

corresponds to the “Unit-for” local relationship. Correspondences have been drawn

132

 Has

Part
title
part_id

Parent
title
parent_id

Figure 4.6: The Parent-Part domain

structure.

Clone-Of

Thing

Original Clone

title
thing_id

Figure 4.7: The clone domain struc-

ture.

from the “Part” domain entity and its “title” domain attribute to the “Unit” local

entity and its “title” attribute.

Figure 4.9 shows a similar set of mappings of the “Parent-Part” domain struc-

ture to the book local schema. Correspondences have been drawn from the “Par-

ent” domain entity to the “Chapter” local entity, from the “Has” domain relation-

ship to the “Section-For” local entity, and from the “Part” domain entity to the

“Section” local entity.

To build the entire hierarchy shown in the clone widget, the “Parent-Part”

domain structure is mapped to all levels of the course and book schemas. Figures

showing these mappings have been omitted for the sake of brevity.

Figures 4.10 and 4.11 show mappings of the “Clone-Of” domain structure to

the course and book local schemas: the “Thing” domain entity is mapped to a

local entity and the “Clone-Of” relationship is mapped to the local relationship

attached to the mapped local entity.

4.2.3 Widgets

We have implemented our mapping and query interface using the Drupal [33]

content management system. Widgets are added to Drupal by writing modules

that can be enabled in a given site. Queries are written in our extended algebra

and, when posed to the query interface, return a database result object identical

133

Unit

Lesson

Lesson-for

Title

Title

Unit-for

Focus Area

Education Level

Course
Title

C-copy-Of

Original

Copy

U-copy-Of

Original

Copy

L-copy-Of

Original

Clone

id

id

id

Domain Local

Has

Part
title
part_id

Parent
title
parent_id

Figure 4.8: One mapping of the Parent-Part DS to the course schema

Chapter

Section

Section-for

Heading

Heading

Chapter-for

Subject

Book
Title

B-based-On

Original

New

C-Based-On

Original

New

S-based-On

Original

New

id

id

id

Domain Local

Has

Part
title
part_id

Parent
title
parent_id

Figure 4.9: One mapping of the Parent-Part DS to the book schema

134

Unit

Lesson

Lesson-for

Title

Title

Unit-for

Focus Area

Education Level

Course
Title

C-copy-Of

Original

Copy

U-copy-Of

Original

Copy

L-copy-Of

Original

Clone

id

id

id

Clone-Of

Thing

Original Clone

title
thing_id

Domain Local

Figure 4.10: One mapping of the CloneOf DS to the course schema

Chapter

Section

Section-for

Heading

Heading

Chapter-for

Subject

Book
Title

B-based-On

Original

New

C-Based-On

Original

New

S-based-On

Original

New

id

id

id

Clone-Of

Thing

Original Clone

title
thing_id

Domain Local

Figure 4.11: One mapping of the CloneOf DS to the book schema

135

in structure to the original database query objects defined in the base Drupal

system. Using the query interface, developers can then write widgets as they

would normally in Drupal, but gain the benefit of our integrated queries.

The Clone and Structural Edit Widget

The cloning widget shown in Figure 4.3 can both clone hierarchically structured

data and rearrange existing data (what we call structural editing).

The cloning widget first issues a query against the “Has” domain structure,

described above, that recursively builds the course tree by querying for the children

of each level of the tree. The widget then uses the local document operator to

retrieve all the local data associated with each level of the tree so that each clone

has all local attributes. Figure 4.12 shows the course level page of the “STEM

Robotics 101” course. The only part of this course page that is accessible from

the “Parent” domain relation is the title, but if we wish to create a clone of the

course (Figure 4.13) we need to also access the “Overview” attribute, for example.

Or, when cloning the “Hardware, Software, Firmware” unit (Figure 4.14), the new

clone (Figure 4.15) should contain all the data from the “Overview”, “Education

Level”, “Focus Area”, “HW Platform”, “SW Platform”, and “Interactivity Style”

attributes3.

As well as creating clones of the resources selected in the interface (Figure 4.3),

the widget must populate the local “Unit-For” and “Lesson-For” relations in order

to store the hierarchy of the clone of the course. We retrieve the local documents

for the hierarchy of the existing course (using the “Has” domain relation) and

then also retrieve empty documents that will be populated with the new clone ids

based on the existing course. The new hierarchy is then inserted back into the

local database using the insert document operator.

3Note, “britell:” is automatically added as a prefix by the clone widget to specify the name
of the clone and is not part of the resource type.

136

Figure 4.12: The “STEM Robotics 101” course level web page.

Figure 4.13: A clone of “STEM Robotics 101” course.

137

Figure 4.14: The “Hardware, Software, Firmware” unit from “Stem Robotics 101”.

Figure 4.15: A clone of the “Hardware, Software, Firmware” unit.

138

Lastly, the widget populates the “X-copy-Of” relations, so that the clones can

be linked back to their original resources (for example the red boxed link at the

bottom of the cloned unit (Figure 4.15) that shows the link back to the original

unit). An empty document for the “CloneOf” domain relation is retrieved, popu-

lated with the original and cloned ids, and then inserted into the local database.

We can also use the cloning interface (Figure 4.3) as a structural-editing inter-

face to allow users to rearrange their existing content. This function of the widget

only requires local documents from the “Has” domain relation, as it only updates

the structure of the course and does not need to know the resource attributes.

These documents are then updated in the local database to reflect the changes

made in the widget.

The Exploration and Comparison Widget

The clone-exploration widget shown in Figure 4.5 uses local documents from the

“CloneOf” domain relation and the “Has” domain relation to compare a resource

and its clone and also compares one level of hierarchy below these two resources.

The widget takes the ids of two resources as inputs. For each input resource, the

widget retrieves the children of each resource using the “Has” domain relation.

The widget uses the “CloneOf” domain relation to retrieve local documents for

the two input resources and all of their children.

The widget then shows if children have been reordered by coloring the lines

yellow that connect the root resource to the children. Then, using a basic com-

parison of the local documents, the widget shows whether any attributes of the

clone have been modified from the original resource. If there have been changes,

the horizontal line connecting the resources will be colored red, otherwise it will

be green.

139

4.3 RELATED WORK

The combination of the restrictions we impose in our mapping system (i.e., that

mappings can only exist between attributes of a single domain relation and a single

local relation) and the presence of the full schema and data from local relations

in our local documents (even when there are only partial mappings between do-

main and local relations) allows us to perform inserts and updates from a domain

level view while eschewing many of the problems one would typically face due to

the view update problem [30] (i.e., can updates against a set of views be trans-

lated into correct updates against the schemas over which the views have been

defined?). Most relational databases solve the problem by limiting updates over

views to cases where the resultant rows of the execution of the view can be identi-

fied unambiguously in their base tables, similar to the restrictions of our mappings.

Other solutions to the problem, such as Relation Lenses [9] or the channel in the

GUAVA [78] system, limit the operations that can be used to create views to sets

of bi-directional operators that are known to be updatable. Both of these solutions

support updating views over arbitrary joins created with their respective operators.

While our mapping restrictions limit a domain relation to act as a view over a sin-

gle local relation, creating a view at the domain level in our system that arbitrarily

joins domain relations will still be updatable as long as the domain attributes have

not been aggregated in a way that removes the nested “meta” attribute from the

view.

Our use of self-describing local documents is inspired by the many standards

and systems used for data exchange and processing—most notably XML [88]. The

combination of self-describing documents and relational databases has also been

extensively studied and built into most major relational databases, such as the

SQL/XML standard introduced in SQL:2003 [34] used in Oracle [64] and Post-

greSQL [66] database systems, and pureXML in IBM DB2 [68]. These systems

140

allow users to store, query, and update XML documents as well as transform rela-

tional data into XML formats and vice versa. XML views can also be created that

map relational tables to XML data structures that can be used in XPATH [89]

queries and used to update relational data. Our local documents are, in essence, a

complete view of the local relations to which the domain relation has been mapped.

These views suffer from the same view update problems listed above, as well as

additional complexity due to the differences between the flat relational model and

the hierarchical nature of XML. To solve this problem, these systems typically

limit updatable XML views to those where there is an unambiguous mapping be-

tween the XML view and the relational database, similar to the restrictions that

we impose through our mapping system.

Modern databases and NoSQL document stores [23] often use the JSON [45]

self-describing document format to provide access to semi-structured or unstruc-

tured data. Much work has gone into providing relational, SQL, access to these

types of data stores [3, 22, 82]. This is typically to enable system compatibility

and to provide relational-like query interfaces instead of the diverse programmatic

query paradigms of each system. We take the opposite approach of providing the

self-describing view of our various relational sources for programmatic use.

4.4 CHAPTER SUMMARY

In this chapter we introduced local documents. We have shown how to update

and insert local data through domain widgets using populated and empty local

documents. We also demonstrated how all data from a mapped local relation

(whether or not all the local attributes have been mapped) can be accessed gener-

ically using local documents. We formally defined the local document operator,

empty document operator, and insert document and update document operators.

We presented the use of the new operators in the “STEMRobotics” digital

curricular repository, highlighting common use cases for these operators that can

141

be easily transferred to any domain that requires the reuse and restructuring of

existing data.

While this chapter presents the use of the local document and empty document

operators from the domain level, the operators can be used from the canonical

level in an identical fashion. Redefining the operators to work at the canonical

level requires replacing the apply operator in their definitions with the canonical

apply operator. Updated versions of the operators are shown in Appendix A.

142

Chapter 5

EXTENDING LOCAL RADIANCE TO SUPPORT DATA-METADATA

TRANSFORMATIONS

5.1 INTRODUCTION

One of the key aspects of local radiance is the ability to show local metadata in

domain and canonical query results (using the type operator). We have shown

that non-technical content authors can create mappings and that those mappings

can be used in widgets that use the type operator (τ) to perform basic metadata

to data transformations. In addition, we allow content authors to perform more

complex database transformations. In this chapter, we explore using our system

to perform both metadata-to-data and data-to-metadata transformations.

The standard DB unpivot operation has been studied extensively in the context

of databases [28, 86] and information integration, schema integration, and data

exchange [40, 47, 87]. The unpivot operation moves information from schema

(metadata) to data as shown in Figure 5.1, moving from top to bottom. The top

of the figure shows the schema in a classical form for an employee table (simplified

here), with attributes for id, name, email, ext (extension), home (phone), and

cell (phone). The unpivoted version of this table is shown on the bottom of the

figure; email, ext, home, and cell (formerly attribute names) have been unpivoted

and appear in the data. One can choose to unpivot however many attributes one

wants except the key; here, for example, the name attribute is not unpivoted.

Each employee row on the top has multiple rows on the bottom—one for each of

the non-null, unpivoted attributes. Conversely, the standard DB pivot operation

143

employee
id name email ext home cell
1 Alice a@pdx.edu 5-3456 555-9823 555-2342
2 Bob b@pdx.edu 5-2414 555-0394

gen_emp
id name contact contact_type
1 Alice a@pdx.edu email
1 Alice 5-3456 ext
1 Alice 555-9823 home
1 Alice 555-2342 cell
2 Bob b@pdx.edu email
2 Bob 5-2414 ext
2 Bob 555-0394 home

Figure 5.1: Above, a standard schema; below, a schema where the email, ext, home, and

cell attributes have been unpivoted into a single contact attribute and the metadata (i.e.,

attribute names) from the employee table is transformed into data in the contact type

attribute in the gen emp table.

transforms data with a schema similar to the one on the bottom (consisting of id,

name, attribute name, attribute value) into data with a schema like the one on

the top, moving information from data to schema (metadata).

We believe that structured information shown on a web page presents a con-

ceptual model of the data being displayed. Even for simple, structured data, e.g.,

contact information on a public web site for employees at a university, the con-

ceptual model can vary, based on the choices made with regard to data versus

metadata. That is, the web page might display (possibly a mix of) unpivoted as

well as classical forms of data. Consider the widgets from public web pages show-

ing directory information for university personnel in Figure 5.2. The upper widget

shows a classical conceptual model for an employee where the schema is shown as

column headers. The bottom widget in Figure 5.2 shows a mix of classical and un-

pivoted data. Notice that the unpivoted attribute names Phone, Fax, and E-mail

are shown immediately preceding the data value, rather than in a column header,

144

Figure 5.2: Abovea, a directory web widget using a classical schema (Name, Email,

Phone). Belowb, a directory web widget where the Name and Title attributes are in a

classical format but the Phone, Fax, and Email attributes have been unpivoted.
ahttp://www.pdx.edu/education/gse-faculty-and-staff-directory, accessed 3-17-2016

bhttp://www.pdx.edu/chla/faculty-staff, accessed 3-17-2016

analogous to the DB unpivot operation. We also see that the faculty name and

title are shown as data values only (without schema information).

The second and fourth columns of Figure 5.3 also have a classical structure,

with the schema name in the column header and data shown in the rows. But

the first column and third columns in Figure 5.3 each display data of two different

types drawn from two different attributes in the underlying local, classical schema:

name and rank are both shown in the column labeled FACULTY and email and

phone number are both shown in the column labeled CONTACT INFORMATION.

In order to transform data from a classical data model (as shown in the top of Fig-

ure 5.2) into the form shown in Figure 5.3, a user must combine the two attributes

(name and rank or email and phone number) into a single attribute (FACULTY

or CONTACT INFORMATION) and then display both the results in a single row

for each entity.

145

Figure 5.3: A university webpagec where columns 1 and 3 contain unpivoted data and

columns 2 and 4 are normal.
chttp://www.pdx.edu/mme/faculty-directory, accessed 3-17-2016

These web pages suggest that these conceptual models, with varying amounts

of classical and unpivoted data, can be easily understood by end-users.

The focus of this chapter is on allowing domain specialists to fluidly move

data of interest in and out of the schema, using data-metadata transformations,

including the ability to pivot and unpivot data. In this chapter we make the

following contributions:

• We show how correspondences between domain structures1 and local schemas

can support data-metadata transformations.

• We present a case study that shows a complex, faceted browse widget in a

digital library that uses data-metadata transformation.

• We extend our simple correspondences to include a predicate, in order to

support the classical database pivot operation.

• We compare our system against similar systems that perform data-metadata

transformations.

1As in the previous chapter, at the time of this work we believed we only needed domain
structures. This chapter therefore references domain structures as the end query model and not
canonical structures.

146

employee
ext
home
cell

id
name
email

gen_emp
contactid

name

Domain

Local

Figure 5.4: A local employee schema (below) is mapped to perform an unpivot opera-

tion to a generic employee domain structure (top).

5.2 UNPIVOT (METADATA-TO-DATA)

To see how simple correspondences (those without predicates) and domain struc-

tures used in our system can support an unpivot operation, consider Figure 5.4.

The local schema, shown at the bottom of the figure, has a classical structure with

five descriptive attributes plus the id attribute for the employee entity. The do-

main structure at the top shows a generic employee entity (named gen emp) with

an id and name attribute and an attribute called contact. In this example, the

local id and name attributes have been mapped to the id and name attributes

in the domain structure, respectively. The email, ext, home, and cell attributes

are all mapped to the contact attribute in the domain structure. These four corre-

spondences to the contact attribute do part of the unpivot operation; they combine

data from the four local attributes into a single attribute in the domain structure.

We can use the type operator to perform the rest of the unpivot operation.

The queries needed to transform the employee table based on these correspon-

dences are shown in Figure 5.5. The apply (α) operator operates on the generic

employee entity in the domain structure (gen emp) to produce the intermediate

result shown in the middle of the figure. The result of the type operator (τ) is then

natural joined to this intermediate result (joining on id and contact) to extract the

147

employee
id name email ext home cell
1 Alice a@pdx.edu 5-3456 555-9823 555-2342
2 Bob b@pdx.edu 5-2414 555-0394

id name contact
1 Alice a@pdx.edu
1 Alice 5-3456
1 Alice 555-9823
1 Alice 555-2342
2 Bob b@pdx.edu
2 Bob 5-2414
2 Bob 555-0394

id name contact
1 Alice a@pdx.edu
1 Alice 5-3456
1 Alice 555-9823
1 Alice 555-2342
2 Bob b@pdx.edu
2 Bob 5-2414
2 Bob 555-0394

𝛼(𝑔𝑒𝑛_𝑒𝑚𝑝,𝑑𝑠𝑎𝑖𝑑)

𝛼 𝑔𝑒𝑛_𝑒𝑚𝑝,𝑑𝑠𝑎𝑖𝑑 ⋈ 𝜏(𝑔𝑒𝑛_𝑒𝑚𝑝,𝑐𝑜𝑛𝑡𝑎𝑐𝑡)
id contact contact_type
1 a@pdx.edu email
1 5-3456 ext
1 555-9823 home
1 555-2342 cell
2 b@pdx.edu email
2 5-2414 ext
2 555-0394 home

⋈

id name contact contact_type
1 Alice a@pdx.edu email
1 Alice 5-3456 ext
1 Alice 555-9823 home
1 Alice 555-2342 cell
2 Bob b@pdx.edu email
2 Bob 5-2414 ext
2 Bob 555-0394 home

Figure 5.5: An unpivot using our query operators and the correspondences and domain

structure shown in Figure 5.4

148

local type (schema) name from the local schema for the data values that appears

in the contact attribute. The final result is shown at the bottom of the figure.

5.2.1 Case Study: Ensemble and Faceted Browse

As part of the Ensemble2 project, we helped develop a number of digital library

collections in the Ensemble portal. The portal was limited to standard browsing

and searching features. The bottom half of Figure 5.6 shows the basic ER model of

collections in Ensemble (with a subset of the full attribute set). The portal has two

entities (collection and dublin core record) with the single contains relationship.

contains

collection
title
id resource

title facet
id

contains

dublin core
record

title
author

audience

id
material_type
education_level

collection
title
id

Domain

Local

Figure 5.6: The local schema (bottom) for collections in the Ensemble portal and the

domain structure (top) used for the faceted browse widget.

1

Figure 5.7: An hierarchical navigation widget in the Ensemble portal without faceting.

A collection of digital library records is shown in the standard Ensemble hier-

archical navigation widget in Figure 5.7 with the collection entity instance entitled

2http://computingportal.org, accessed 11-10-2019

149

2

3

4

Figure 5.8: A faceted-browse widget in the Ensemble portal where the collection has

been faceted by “Class Week” and then “Week 02” has been faceted “Computational

Thinking Practice”. By clicking the facet diamond next to the plus or minus symbols, a

user can further facet the relevant sub-hierarchy. The circled 2 shows the facets available

for sorting the resources below the “Abstraction” heading. Each facet shows the count

of resources underneath it (the circled 3). Leaf level resources are shown by the circled

4.

“The Beauty and Joy of Computing”3, a curriculum for introductory computer

science, with all of its educational resources. Given the simple ER structure in the

local schema, resources could only be browsed as a basic list under a collection

(the circled 1).

To facilitate browsing of collections, we leverage the use of unpivot in our lo-

cal radiance system to implement a faceted-browse widget—where the collection

in the hierarchical navigation widget can be partitioned at any level by any of

the attributes of the resources in the collection. Figure 5.8 shows the same col-

lection after it has been faceted by class week. The new symbol to the left of

the plus or minus symbol is our facet symbol. After being faceted by week, we

see that we can now also facet any week by any of the remaining attributes that

have been mapped to the facet domain attribute (as shown in Figure 5.6). For

3http://computingportal.org/node/11172, accessed 11-10-2019

150

example, we see that “WEEK 02” has been faceted by computational-thinking

practice. Each level of the hierarchy is able to be faceted differently, enabling

users to quickly see resources partitioned by any combination of facets. The “Ab-

stracting” computational-thinking practice could be further faceted by the facets

listed in the drop down menu (the circled 2) shown in the figure, e.g., “Education

Level” or “Format”.

We show how we can use the domain structure and correspondences from Fig-

ure 5.6 and our query language in a widget to build our faceted browsing interface.

First, to build the original hierarchical browsing structure (Figure 5.7) we re-

turn all resources in the collection (the circled 1) with a collection id of cid using

the Resources function defined below.

Resourcespcidq “ πresource id,resource titlep

resource ’
resource.id“contains.resource id

pσcollection id“cidpαpcontains, dsaidqqqq

The apply operator on the contains domain structure returns all resource ids (the

projection) in the correct collection (the selection). For example, to produce the

widget for Figure 5.7, we need to retrieve all the resources in “The Beauty and Joy

of Computing” collection with id “11172” (this id is used by the system internally).

The results of the Resources function is shown below.
Result Set 5.1

resources(11172)
id | title

-------+---------------------------
11172 | Why Software is Eating the World
11173 | Program or be Programmed: Author Speech
11174 | AP CS Pinciples: Course Annotations
11175 | AP CS Principles: Big Ideas
11176 | Professor Harvey’s Introduction to Abstraction

The widget then uses this result to populate the navigation tree.

Next, we find all facet types and values used in the collection with id id by

joining the Contains domain relationship with the Resource domain entity on

resource id for a collection with id cid using the Facets function defined below.

This function returns all the facet types and values in the given collection using

151

the τ operator.

Facetspcidq “ πfacet typepσid“cidpτpresource, facet, dsaidqqq

For example, the facets for “The Beauty and Joy” collection are as follows:
Result Set 5.2

facets(11172)
facet_type

Class Week
Computational Thinking Practice
Education Level
Format
Relation
Subject
Creator

The widget then uses this result to rebuild the navigation tree. The widget also

stores which facets have already been used in a given tree path and makes sure

they are not duplicated. For example, Figure 5.8 shows the tree has already been

faceted by “Class Week” and “Computational Thinking Practice”, so those facets

do not appear in the facet list produced at the circled 2.

Once we have all of the facet types and values (i.e., an unpivot) the widget

creates the faceted-browse interface by providing the count of the resources within

each facet (as shown in the circled 3 in Figure 5.8). To do so, we first define the

Facet Resources function that given a facet type (ft) and a value (fv) we can find

all resources in a given collection (cid) that have that facet value as follows:

Facet Resourcespcid, ft, fvq “ πresource.id

ˆ

σ facet type“ft^facet“fv^
resource.idPπresource idpResourcespcidqq

`

αpresource, dsaidq ’ τpresource, facet, dsaidq
˘

˙

The count of resources below a facet value in the tree is then determined by

the path of facet types and values from the root of the tree, which we call the

facet path. The count of resources with a given facet value existing in a facet path

consisting of the facet types and values (pft1, fv1q, . . . pftn, fvnq) is found with

the following query that uses the standard relational algebra extended with the

grouping operator [39] (γ). If the facet path exists then the query is modified by

152

filtering the resource ids based on the conjunction of facet types and values in the

tree path by modifying the select clause of the query.

γfacet,Countpresource.idq

ˆ

σ facet type“ftype^
resource.idPπresource idpResourcespcidqq^
resource.idPFacet Resourcespid,ft1,fv1q^

...
resource.idPFacet Resourcespid,ftn,fvnq

`

αpresource, dsaidq ’ τpresource, facet, dsaidq
˘

˙

The widget can then populate the resources under a given facet path by filtering

the results of the Resources function above, using the same conjunction of facet

types and values, producing the results in the circled 4 in Figure 5.8 with the

following query:

πresource id,resource title

ˆ

σresource.idPFacet Resourcespid,ft1,fv1q^
...

resource.idPFacet Resourcespid,ftn,fvnq

`

αpresource, dsaidq
˘

˙

5.3 PIVOT (DATA-TO-METADATA)

In this section we show how our system can be used for the standard pivot opera-

tion and more generally for data-to-metadata transformation. Figure 5.9 shows a

mapping that contains standard correspondences for local id and name attributes

but also pivots local contact data into the ext domain attribute. In the local

schema, the contact attribute stores all of the contact information and the corre-

sponding type is in the contact type attribute. We would like this data to appear

in a pivoted form, where contact information is broken out into the email, ext,

home, and cell domain attributes.

In order for to perform this pivot, we must tell the system which data from the

local schema should end up in the ext domain attribute, for example. First recall

153

employee
ext
home
cell

id
name

local_emp
contactid

name contact_type

email
Domain

Local

Figure 5.9: An example mapping showing standard correspondences for id and name

attributes and using a conditional correspondence to map local contact data into the

domain ext attribute where the local contact type attribute is equal to “ext”.

from Chapter 2, a correspondence in our system is in the domain structure-local

DB mappings relation

ds ldb mpid, ldbid, dsid, dr lr mspid, lr, dr, p, corrspid, la, daqqq

and is of the form

corr “ pid, la, daq

where each correspondence has an id, a local attribute la, and a corresponding

domain attribute da. While a mapping contains the predicate p at the mapping

level, in order to perform a pivot operation, we need to specify a predicate at the

correspondence level.

A conditional correspondence adds a predicate cp to the correspondence and

has the form

c “ pid, la, da, cpq

and we extend the definition of the local DB to domain structure mappings relation

to ds ldb mpid, ldbid, dsid, dr lr mspid, lr, dr, p, corrspid, la, da, cpqqq

Then, when the correspondence is used in an apply operation, data from the

local attribute la will only be in the query result for domain attribute da when the

predicate cp evaluates to true. We make one small change to the apply operator;

where the select operator in line 2 of the proj type nest function (Function 3.1.4

in Chapter 3) was previously “σdr lr m.p” it is now “σdr lr m.p^corr.cp”.

154

employee
ext
home
cell

id
name
email

local_emp
contactid

name contact_type

Domain

Local

Figure 5.10: The complete set of correspondences to pivot the local schema into the

domain structure. A user can create a regular correspondence and then chose to add a

condition (in this case the specific pivot conditions) for the contact attribute correspon-

dences.

We add new visual syntax for (a limited form of) the correspondence level pred-

icate, shown in Figure 5.9; a regular correspondence (the solid line) is augmented

by the dot with a dotted line. This visual syntax is translated into a predicate for

the correspondence where data from the local attribute with the solid line will ap-

pear in the domain attribute only when data in the local attribute with the dotted

line is equal to the name of the domain attribute. The correspondence shown in

Figure 5.9 results in the predicate

cp “ pcontact type “ “ext2q

In Figure 5.10, we show the complete set of correspondences to pivot from the

local schema to the domain structure. The end-user can easily combine regular

correspondences and conditional (dotted) correspondences in a single mapping. In

this case the id and name attributes are mapped directly (without correspondence

predicates) while the email, ext, home, and cell attributes are pivoted from the

local contact attribute.

Figure 5.11 shows an apply operation on the domain structure that uses the cor-

respondences, takes data from multiple tuples in the source database, and returns

a single tuple in the query answer based on the correspondences. For example, in

the figure we see that four tuples for “Alice” in the local emp table are combined

155

id name email ext home cell
1 Alice a@pdx.edu 5-3456 555-9823 555-2342
2 Bob b@pdx.edu 5-2414 555-0394

local_emp
id name contact contact_type
1 Alice a@pdx.edu email
1 Alice 5-3456 ext
1 Alice 555-9823 home
1 Alice 555-2342 cell
2 Bob b@pdx.edu email
2 Bob 5-2414 ext
2 Bob 555-0394 home

𝛼(𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒)

Figure 5.11: The pivot operation, using the local and domain structures from Fig-

ure 5.10 with example employee data.

to make one tuple in the output query; these tuples are joined based on the id

attribute.

5.4 COMPARISON TO OTHER SYSTEMS AND RELATED WORK

Table 5.1 shows a comparison of our our system (LR) to SchemaSQL [47],

FIRA/FISQL[86, 87], Clio [40], GUAVA [78], and the unpivot and pivot operations

supported in SQL (in systems such as Oracle [63] and SQL Server [56]).

While all these systems can do pivot and unpivot operations, we see that SQL

is quite limited and the syntax is complex. The other three systems allow more

generalized transformations and Clio (as well as our system) provides a simple

visual syntax. SQL, SchemaSQL, GUAVA, and our system produce a single non-

ambiguous result, whereas FIRA and Clio can potentially have ambiguous or non-

intended results; FIRA relies on the optimal tuple merge (which may not be unique)

and Clio generates many different mappings that may or may not be correct. Our

system avoids the ambiguity problem by the restrictions imposed by our mapping

system, limiting users to simple correspondences and maintaining ids. We have

156

Table 5.1: Comparison of Data-Metadata Transformation Systems

SQL
Schema-

SQL

FIRA/

FISQL
CLIO GUAVA LR

Can perform Pivot and

Unpivot
3 3 3 3 3 3

Can perform arbitrary

metadata-data

transformations

7 3 3 3 3 3

Can perform arbitrary

data-metadata

transformations

7 3 3 3 3 3

Has a simple visual

syntax
7 7 7 3 7 3

Has a non-ambiguous

result
3 3 7 7 3 3

Has preview capability 7 7 7 7 3 3

157

also explicitly built in the preview mechanism for our system; while this could be

implemented on top of the other systems (beyond GUAVA which already has it),

it is not by default.

One of our main goals is to bring these operations to non-technical users by

making it accessible through a mapping interface. We take much inspiration from

Clio in this regard as opposed to the rest of these systems which target database

administrators and developers who must have deep knowledge of SQL and these

systems or, in the case of GUAVA, the channel mechanism.

5.5 CHAPTER SUMMARY

In this chapter, we have shown how local radiance can be extended (specifically by

extending the definition of correspondences to include a predicate) to encompass

standard unpivot and pivot operations. We have shown how the unpivot operation

can be achieved through the combination of mappings and the type operator.

The faceted-browsing widget demonstrated a real world use case of the unpivot

operation with our mapping and query interface to create the dynamically facet-

able navigation tree. We defined conditional correspondences and presented how

they can be used to perform the pivot operation.

158

Chapter 6

IMPLEMENTATIONS

In this chapter we discuss the different implementations of local radiance systems.

We show how local radiance has been used across a number of platforms in a

number of scenarios. We show how the system has evolved and discuss lessons

learned along the way.

Table 6.1 lists the different implementations of local radiance with the reason for

creating each implementation, how each version was implemented, and limitations

and lessons learned from each version. We discuss each of these versions in detail

in this chapter.

Table 6.1: Implementations

Version Strengths How Limitations

Initial Drupal.

2500 lines of

code. In use

since 2011.

Able to represent

multiple local schemas

with local radiance in

generic widgets

Hard-coded canonical

structures and

mappings in widget

code. Queries plus

widget code used to

perform local radiance.

Not easily extendable

or maintainable.

Navigation widget had

to be in place for other

widgets to use

mappings and

canonical structures.

WordPress.

600 lines of

code.

Prototype

never used in

production.

Shows that local

radiance in generic

widgets is feasible in

multiple web CMSs

Direct port of initial

Drupal

implementation.

Same problems as the

initial Drupal

implementation.

159

Table 6.1 – Continued from previous page

Version Strengths How Limitations

Drupal Query

Interface. 1700

lines of code.

In use since

2012.

Demonstration of first

HERM-based

formalism. Allows for

error checking

formalism. Creates

reusable domain

structures. Local

radiance is defined in

queries, not mixed

with widget code.

Domain structures are

stored as files so they

can be reused across

widgets and

applications. Extended

relational query

interface with type and

apply operators.

Mappings need to be

written by developers

instead of end-users.

Query interface

requires knowledge of

building relational

algebra query trees.

Drupal

Mapping

Interface. 700

lines of code.

In use since

2014.

Provides an end-user

mapping interface to

bring local radiance to

domain users, used in

our user test.

Graphical interface

built to allow web

users to add mappings.

Provides preview of

widgets to error check

mappings. Mappings

are stored in database.

Still requires some

knowledge of the

Drupal site structure

beyond simply

knowing domain

schema.

Widget

Specifications.

500 lines of

code. Not in

public use, in

prototypes

since 2014.

Allows users to

customize widgets

while mapping.

Creates default

parameters for widget

code that can then be

overwritten by

end-users while

performing mappings.

Widget specifications

stored in database.

Requires

understanding of some

underlying Drupal

code.

PostgreSQL.

700 lines of

code.

Developed in

2018.

Implementation of

nested relational

model-based formalism

for error-checking and

refinement. Local

radiance queries

written in SQL.

Formal definitions of

local schema, domain

structures, canonical

structures, and

mappings are stored as

relations. Type, apply,

canonical apply, local

document, empty

document, and

apparent operators

implemented as

PL/pgSQL functions.

All operators can be

used with standard

SQL queries.

Limited to a single

database.

160

6.1 FIRST DRUPAL ITERATION

The local radiance system was first developed to solve the problem of how to

generically present information in the STEMRobotics1 digital repository that we

developed, comprised of middle and high school robotics curricula. STEMRobotics

is a publicly accessible digital library. We host 6000+ resources created by some

of our 4300+ registered teacher-users. We accept (and encourage) content of any

form or structure that the teachers wish to create. Responding to the diverse

needs of our user base has been a motivating factor of much of the work in this

thesis. Figure 6.1 shows the navigation tree for four different courses in the site.

For each course in the site, regardless of type, the widget shows the local course

type (e.g., “Course”, “Tutorial Course”, “Standard”, or “Chalenge-based”) and the

local types (e.g., “Guide”, “Unit”, “Challenge”, etc.) for each part of the course.

In Figure 6.1, the widget instance in the top left shows a course that contains units

with lessons whereas the widget instance in the top right shows a course with units

where the units contain instructional materials. The local type information can be

useful when navigating curricular materials since, as an example, understanding

whether an assessment is used as a challenge, as an assessment, or as instructional

material may help a teacher decide how to use it in their classes. For example, in

Figure 6.1 an assessment may be used as a summative assessment for a unit in the

course in the top left, an assessment resource in the class in the lower right, or as

a challenge in the course in the lower left.

Being built upon the Drupal content management system both facilitated de-

velopment and presented challenges. Drupal is built upon an underlying relational

database. Every content type in Drupal is a subclass of the base “Node” class,

which means that every content type has some standard attributes such as a url,

a title, a type, an author, and a creation date. Any extension to the base “Node”

1http://stemrobotics.cs.pdx.edu

161

Figure 6.1: The navigation widget in STEMRobotics generically shows different course

types with local type information.

type is then separated out into its own relation, which includes any attribute not

in the base class as well as any relationship between one content type and another.

For example, Figure 6.2 shows the “field data field overview” relation in the Dru-

pal database that stores data for the “overview” attribute for the “lesson” content

type (this type is shown in the “bundle” field). The “entity id” field stores the node

id for the lesson associated with the given overview attribute. Figure 6.3 shows

the “summative assessment” relationship between the “lesson” content type and

the “assessment” content type. Here there exists a relationship between the lesson

with id “198” and two assessments “205” and “206”. The base “Node” relation

is useful in creating generic widgets, since we can always find the base attributes

and content types without mappings. As shown Figure 6.1, the relationship type

162

Figure 6.2: The overview attribute for the “lesson” content type is stored in the

“field data field overview” relation in the Drupal backend database.

Figure 6.3: The summative assessment relationship between the “lesson” content type

and the “assessment” content type is stored in the “field data field summative” relation

in the Drupal backend database.

is also useful, e.g., to show how an assessment is used.

The first implementation added a relation in the underlying database for each

canonical structure and then hard-coded a large number of queries (as shown in Fig-

ure 6.4) to populate these relations. The top query adds the node id of all course

types (“curriculum”, “tutorial course”, ...) to the “course” canonical structure

(“course cs”). Then the “structural unit” (“su cs”) canonical structure is popu-

lated for each course type with the first level of hierarchy in each of the courses.

These relations were then used to build generic widgets, such as the navigation

widget above, the aggregation widget (the left side of Figure 6.5, used to show our

users metadata information about resources and their descendants), and a search-

in-context widget (the right side of Figure 6.5, which helps users understand the

context of resources retrieved through a search result).

This implementation was built primarily around the need for a generic navi-

gation widget. As such, all the queries to create canonical structures and their

163

Figure 6.4: A small subset of the mappings between Drupal content types and the

“structural unit” canonical structure (su cs).

Standards-based Collaboration

Curricular materials are mapped to state standards to facilitate

course creation and collaboration.

Curriculum Collaboration, Customization, and Reuse:

Creating Communities in Digital Repositories

Our goal: facilitate the use of online materials by making

access, use, and reuse simpler and more efficient while

also forming communities to support the extended

maintenance and growth of these materials.

1Portland State University, Portland, OR

{britell,lmd}@cs.pdx.edu

2Virginia Tech, Blacksburg, VA

fox@vt.edu

3Olympia School District, Olympia, WA

rsteele@osd.wednet.edu

Scott Britell1, Lois M.L. Delcambre1, Edward A. Fox2, Randy Steele3

Based on the Drupal content management system, teachers may

create any course structure they desire. Wizards then allow

teachers to easily add materials to existing courses as

differentiated instructional materials and assessments.

Teachers may clone and reorganize any existing course. This

enables the reuse of materials while letting a teacher quickly tailor

materials to a local environment. We further increase the potential

for reuse by providing customized downloads that can be used

offline or as separate digital repositories..

Existing Drupal modules are leveraged for teacher collaboration

and community formation—such as Comment, Rating, and

Tagging and integration with tools like Piazza.

Content Creation

Customization and Reuse Community

Visualization

Metadata and structuring visualizations provide enhanced

information about resource usage and distribution.

Part of the Ensemble project: PI: Boots Cassel (Villanova), Co-Pis: Peter Brusilovsky (Pitt),

Lois Delcambre (Portland State), Ed Fox (Va. Tech), Rick Furuta & Frank Shipman (Texas

A&M), Dan Garcia (UC Berkeley), Greg Hislop (Drexel), Haowei Hsieh (Iowa)

Exploiting Canonical Structures to Transmit Complex Objects from a Digital Library to a Portal

1Computer Science Department

Portland State University

Portland, OR

{britell,lmd}@cs.pdx.edu

2Dept. of Computing Sciences

Villanova University

 Villanova, PA

lillian.cassel@villanova.edu

3Dept. of Computer Science

Virginia Tech

 Blacksburg, VA

fox@vt.edu

4Dept. of Computer Science and

Engineering

Texas A&M University

College Station, TX

furuta@cse.tamu.edu

Scott Britell1, Lois M. L. Delcambre1, Lillian N. Cassel2, Edward A. Fox3 and Richard Furuta4

Transmitting complex resources

• OAI-PMH (shown here)

• OAI-ORE

• with custom namespace for canonical structures

<record>

<header>

<identifier>oai::198</identifier>

<datestamp>2012-05-19T18:23:09Z</datestamp>

</header>

<metadata>

<dc:title>What is a Robot?</dc:title>

<dct:hasPart>/node/190</dct:hasPart>

<dct:hasPart>/node/191</dct:hasPart>

<dct:hasPart>/node/204</dct:hasPart>

<dct:hasPart>/node/205</dct:hasPart>

<dct:hasPart>/node/206</dct:hasPart>

<cs:hasGuide>/node/190</cs:hasGuide>

<cs:hasInstructionalMaterial type="Primary">/node/191

</cs:hasInstructionalMaterial>

<cs:hasAssessment type="Formative Assessments">/node/204</cs:hasAssessment>

<cs:hasAssessment type="Summative Assessments">/node/205</cs:hasAssessment>

<cs:hasAssessment type="Summative Assessments">/node/206</cs:hasAssessment>

<dc:identifier>/node/198</dc:identifier>

<dc:type xsi:type="nsdl_dc:NSDLType">Lesson/Lesson Plan</dc:type>

<dc:description>

The goal of this lesson is to draw out student's preconceptions of

robots and explore the variety and ambiguity of "What is a Robot?"

</dc:description>

<dc:publisher>STEMRobotics.cs.pdx.edu</dc:publisher>

<dc:date>2011-05-28T10:41:01-07:00</dc:date>

<dc:language>eng</dc:language>

<dct:educationLevel xsi:type="nsdl_dc:NSDLEdLevel">Middle School, High

School</dct:educationLevel>

</nsdl_dc:nsdl_dc>

</metadata>

</record>

Canonical Structures

• global schema fragments

• mapped to local schemas

complex resource in source repository

Complex resources in DL portal
Goals
• describe the structure of complex resources explicitly in order to implement new browsing and other widgets in a digital

library and portal generically

• transfer individual resources and the structure of the complex objects from one source to another

• transfer the generic structure so that generic widgets can be used in the receiving site

using Dublin Core relation fields

using canonical structures

Semantic Widgets

• provide generic functionality

• preserve local names, types, and ordering

Parent

Part

Structural

Unit For

SUDS

Course

Unit

Unit-For

Lesson

Lesson-For

STEM

IM

STEM

Assess

Pri

Ext
Supp

Form
Summ

AT

Assess

Assess-For

AssessDS

IMT

IM

IM-For

IMDS

Portal

Repository

2

Repository

3

Repository

1
Course

Unit

Unit-For

Lesson

Lesson-For

STEM

IM

STEM

Assess

Pri

Ext
Supp

Form
Summ

Tutorial

Course

Tutorial

Unit

Tutorial-Unit-For

Tutorial

Tutorial-For

Standard

MS

IM

MS

Assess

Diff

Dir
LExt

Probe
Mid-Unit

Ch-Based

Course

Challenge

Challenge-For

Figure 6.5: Left, metadata information is aggregated and presented for a course and

unit in STEMRobotics. Right, when a search result is clicked (under the search results)

the “Structural Awareness” tab on the right is populated with all the courses in the

site that contain the selected resources (in this case, “STEMRobotics 101” and “NXT

Tutorial by Dale Yocum” both contain the “Move Blocks” resource).

164

mappings were all written to that goal. While the number of courses in the reposi-

tory was small, this setup worked relatively well, but as the number of types in the

repository grew and more students helped develop the system, it became harder

to modify and debug. Also, as local radiance features were mixed between code

and queries, adding new widgets necessitated duplicating much of the local radi-

ance system with small changes for each specific widget. The original navigation

menu created using this implementation has been running in the STEMRobotics

repository since 2011 and is still being used today.

6.2 BRINGING LOCAL RADIANCE TO WORDPRESS

Shortly after the first Drupal iteration we also implemented local radiance in Word-

Press2 to explore the feasibility of using local radiance beyond Drupal. At the time

of development Drupal and WordPress were the two most commonly using web

content management systems. Using the Drupal implementation as a reference, we

recreated a small subset of the STEMRobotics repository and the navigation wid-

get. WordPress was also built upon a relational database and allowed user-created

content types, but in a simpler form than Drupal. Where Drupal separated out all

custom attributes and relationships, in WordPress all base attributes are stored in

the “wp posts” relation and all custom-defined type information is unpivoted and

stored in the “wp postmeta” relation. Mappings to populate the canonical struc-

tures are then defined as queries as shown in Figure 6.6. All the mappings have the

same form, the only change is the “meta key” value for the custom information.

While the WordPress implementation showed that we could easily port local

radiance to other content management systems, it did not address any of the

problems from the original implementation and therefore suffered from the same

limitations.

2http://wordpress.com, accessed 11-10-2019

165

Figure 6.6: A query to build the parent-part canonical structure in WordPress.

6.3 THE QUERY INTERFACE

In order to address the limitations of the first Drupal implementation, the local ra-

diance system was redeveloped built upon the formalism that was presented at the

International Conference on Information Modeling and Knowledge Bases [13]. This

formalism was based on the higher-order entity-relationship model (HERM) [79].

We chose HERM as it allowed us to model many aspects of a web CMS that the tra-

ditional relational model could not, such as complex attributes (nested attributes,

sets, and lists) as well as handling higher-order and cluster-type relationships be-

tween one entity type and multiple other entity types. We defined our apply and

type operators using the HERM query algebra. Instead of directly representing

local type information in the results of an apply, the HERM-based system only

retrieved local information when the type operator was used.

The structure of this implementation is shown in Figure 6.7, where domain

structures are stored separate (in the “quickdraw ds” directory) from both the

166

Figure 6.7: Installation structure of the query interface implementation. The query

interface is built upon the operators shown in the “quickdraw qi” directory. Each op-

erator is defined as a subclass of the base “quickdraw qi operator PHP class. Domain

structures are stored in YAML files in the “quickdraw ds” directory which can be reused

in different applications and instantiations. Examples of the YAML files are shown in

Figure 6.8.

widget code and the application database such that they can be used in multiple

widgets and in multiple applications. The query interface is built using the opera-

tors in the “quickdraw qi” directory. Domain structures are stored as YAML [90]

files (a self-describing data serialization format) that allows defined domain struc-

tures to be easily shared between applications and implementations. Examples of

the “Parent-Part”, “course”, and “facet node” domain structures in YAML are

shown in Figure 6.8.

The query interface allowed developers to build query trees similar to those

used in the GUAVA [78] development system that included filter, project, and join

operators, as well as our apply and type (built into the apply) operators. Using

the query interface allowed us to divorce the queries used to populate widgets from

167

Figure 6.8: Domain structures (in YAML) are shown for the “Parent-Part” domain

relationship (left), the “course” domain entity (center), and the “facet node” domain

entity (right).

the rest of widget code. Figure 6.9 shows a query to find all the facets and facet

types associated with a course with node id “291”. The query first uses the apply

operator on the “course” domain structure (using id “5” from Figure 6.8). It then

uses the filter operator to only return course “291”. Then a second apply operator

is created for the “facet node” domain structure (using id “3” from Figure 6.8).

The second apply and the filter are then joined and the title, facet, and facet type

attributes are projected. Thus, a query tree is built with the root being the project

operator followed by the join operator with the two apply operator at the leaf

level. A SQL query is then created by running the “makeSQLText” method of the

root operator (here, $project->makeSQLText()), using a recursive visitor pattern

that builds the correct portion of the SQL query for each of the operators.

The query interface was used to create the clone and exploration widgets pre-

sented in Chapter 4 as well as the faceted navigation widget presented in Chap-

ter 5. This interface has also been used to creates widgets in the digital library

domain [10, 16, 17, 19, 20, 21]. The clone widget has been running in STEM-

Robotics since 2013. Widgets based on this implementation ran in the Ensemble3

3http://computingportal.org, accessed 11-10-2019

168

Figure 6.9: The query to find all facets and facet types for the course with node id

“291”. The query is built by combining query operators and using the apply operator

with the domain structure ids from Figure 6.8.

digital library from 2012 to 2015. The CorePlus4 digital library for secondary

technical education from the Boeing corporation was built upon this implementa-

tion in 2015 and is also currently running. This implementation has been publicly

available5 since 2013.

While this implementation facilitated the use of domain structures and the local

radiance query interface across multiple widgets and applications, mappings still

needed to be manually entered into the database using SQL directly or as queries

in the interface code. Also, while many developers understand and can use SQL

in their code, most do not have the same fluency in relational algebra, so creating

relational algebra-like query trees remains as a challenge to some. Also, the use

of HERM allowed us to represent the complex structures within the CMS but it

then had to be implemented on top of the Drupal backend, which is a relational

database. Complex structures (like lists, sets, and nested attributes) needed to be

transformed into a relational form.

4http://coreplus.cs.pdx.edu, accessed 11-10-2019
5https://www.drupal.org/sandbox/britell/2150221, accessed 11-10-2019

169

6.4 THE MAPPING INTERFACE

To achieve our goal of letting end-users create mappings, we developed the mapping

interface shown below in Figures 6.10, and 6.11. This mapping interface was used

in the user study presented in Chapter 2.

The mapping interface was built as an extension to the query-interface module.

It uses the domain structure specifications shown in Figures 6.7 and 6.8. The

interface allows users to choose which domain structure to use while they create

mappings in the interface (Figure 6.10). A mapping is then created using the

interface shown in Figure 6.11. This interface is built by querying the Drupal

system catalog to find all content types and their attributes. When a mapping

is created, it is stored in the Drupal database using the HERM-based mapping

definition [13] with a mapping id and a set of correspondences. The result set below

shows a subset of mappings created in the CorePlus repository. The mapping ids

are shown under mid and correspondence ids are shown under cid. The attribute

dsid refers to the ids shown in the domain structures in Figure 6.8. The reltype

and rel attributes store information about the Drupal local model. The label and

delta attributes are used for display and ordering of mappings in the interface.
Result Set 6.1

mysql> select * from main_quickdraw_base_mappings;
+---+---+----+--------------+---------+-------------------------------+--------+-------+
|mid|cid|dsid| type | reltype | rel | label | delta |
+---+---+----+--------------+---------+-------------------------------+--------+-------+
1	1	1	node:course	field	field_semester	c->s	-3
1	2	5	node:course	field	field_title	c->t	-3
3	3	1	node:unit	field	field_lessons	u->l	-3
2	4	1	node:semester	field	field_unit	s->u	-2
2	5	5	node:semester	field	field_title	s->t	-1
3	6	5	node:unit	field	field_title	u->t	0
4	7	1	node:lesson	field	field_slides	l->s	-3
4	8	5	node:lesson	field	field_title	l->t	-2

The mapping interface can also load widgets that have been enabled in the

site, to let users preview their mappings using the widget previewer shown in Fig-

ure 6.12. After selecting a mapping and pressing the “Preview Selected Mapping”

button, the user is presented with a choice of widgets within which to preview the

mapping. Figure 6.12 shows a mapping previewed in the navigation-tree widget.

170

Figure 6.10: The first screen in the mapping interface allows the users to choose which

domain structure that they would like to create a mapping for.

This widget requires that a node id is provided for the root of the tree. The widget

will pre-populate the node id with an id from the system that is found through the

selected mapping, but the user may also provide their own node id. The navigation

widget is then shown.

In Chapter 2 our user study showed that end-users can understand this interface

and use it to create mappings. But this interface still requires users to understand

some underlying Drupal concepts, such as the way content types are stored and

accessed.

The mapping interface was added to the publicly available Drupal module in

2014 and is in use in the CorePlus repository.

171

Figure 6.11: Once the user selects a domain structure they are presented with all of

the possible content types in the system (left screen). After choosing a content type

the user is present with all possible fields for the type (both attributes of the type and

relationships to other types; middle screen). If the chosen field is a relationship the

user is presented with a choice of related content type (since Drupal allows higher order

relationship types; right screen).

172

Figure 6.12: The widget previewer allows a user to preview their mappings in widgets

in the system. First a widget is chosen, then the user chooses which content to preview

(this field is pre-populated with a node id based on the selected mapping).

6.5 WIDGET SPECIFICATIONS

So far, all of our widgets have been created by a skilled developer. As part of

that, the developer can tailor the functionality of the widgets to suit the needs

of our non-technical users. We have also created a system where widgets can be

implemented more flexibly, so that end-users can easily provide what we call a

specification to control the details of how the widget works. Thus, widgets would

be more accessible to non-technical users by enabling them to customize a widget

as they perform schema mappings.

A widget specification allows a developer to parameterize parts of their widget

for customization by users. For example, in the navigation widget in STEM-

Robotics we may want to show the type of the resource in some cases, and the

type of the relationship between the parent and child in other cases. In Figure 6.13

173

Figure 6.13: An instance of the naviation menu showing how different instance of

educational materials may appear as “Primary” or “Differentiated”.

the string showing the title of the instructional materials in the lesson is prefaced

with “Primary” in one case and “Extended”, “Alternative”, or “Supplemental”

(all relationship types) for other resources, even though all of the resources are of

the same type. The different names come from the way in which the materials are

associated with the lesson. The lesson’s title is simply prefaced with its content

type. In other applications, in contrast, the type may not be shown at all.

Defining and Configuring a Widget

A widget creator must create a default specification instance (by creating mapping-

updatable parameters) that will be used as a starting point for the widget. Using

only the default specification instance, the widget should work for any mapping

and for any domain structure. In the case of the navigation tree above, parameters

have been defined for “Cluster” (used to determine if an entry should be added

between an entry and a subset of its children), “Color” (used to highlight the

174

title of an entry in a specific color), “Count” (a count of the children under this

entry), “Title” (the text shown for the entry shown in blue in Figure 6.13), and

“Type”(the text in the entry before the colon). The widget developer then also

specifies a default value for these parameters. The parameters can then be updated

while mapping, using the specification widget shown in Figure 6.14. This widget is

launched from the preview widget shown in Figure 6.12 and already knows which

mapping has been selected.

The default specifications are shown, in this case “NULL” for “Cluster”,

“Color”, and “Count” which means that no entry will be added to the tree, it

will not add any new color, and there will be no count. The “Title” and “Type”

parameters are supplied by executable code, for “Title” we retrieve the node title

from Drupal by accessing $Node->Title and we use the type operator on the node

to determine the type.

The user can update parameters with either constant strings or executable code

(by checking the “Executable?” box). For example, as shown in Figure 6.13, the

user wants to add a level to the hierarchy in order to cluster specific resources

together (e.g., differentiated instructional materials). The user also wants to show

the counts under specific entries. The user has chosen to cluster resources accessed

through this mapping in the “Diff IM: Alt” cluster. The user has also chosen

to add a count by setting “Count” to “True”. After adding this specification,

the navigation tree is updated in the preview with the new cluster (shown in

Figure 6.15). Originally, this type of widget modification would have required

modifying the widget code. As the query interface was introduced and we sought

to remove mapping-specific code from widgets, things like clusters could not be

easily recreated without this kind of specification.

Widget specifications have allowed us to bring more end-user customization

to widgets but the combination of executable and literal values in specifications

means they can be confusing to users without knowledge of underlying Drupal

175

Diff IM: Alt

True

Figure 6.14: The mapping specification widget is shown for the mapping previewed in

Figure 6.12.

concepts used in the executable parts of the specification.

6.6 POSTGRESQL

While the HERM-based formalism allowed us to precisely represent the complex

data model of a web CMS, our implementation was still limited to the relational

backend of the CMS, requiring the HERM to relational transformation to be writ-

ten in the CMS code and the database, adding overhead to the query system. We

strive to provide simple interfaces for both content authors for mapping and for

widget developers when creating widgets, but the HERM-based query interface has

the opposite effect, complicating widget development for developers accustomed to

the relational model and SQL. As a result we decided to transition to the nested

relational-based formalism presented in this thesis.

We decided to build our system using PostgreSQL because of its support for

176

Figure 6.15: The navigation tree shown in Figure 6.12 is modified by the cluster created

in the specification in Figure 6.14.

nested relational-like operations. The formal definitions of the local schema, do-

main structures, canonical structures, and mappings have all been stored as rela-

tions in the database. The full set of local radiance operators have been defined

as PL/pgSQL [65] functions. These functions can then be used directly in SQL

queries, as shown in the result sets in previous chapters. The functions directly

implement the formalism defined in Chapter 3. For example, the apply opera-

tor is shown in Figure 6.16. The function follows Equation 3.1, finding mappings

from the “dsa mappings” function and then building results from the “Mapped”

function.

This implementation provides an SQL interface using our operators, and

through the use of the apparent model and type operators a widget developer

need only know the relational model and not worry about the nested relational

model.

6.7 CHAPTER SUMMARY

In this chapter we discussed the various implementations of local radiance that

we have created. We have discussed the strengths and weakness of the various

177

Figure 6.16: The PostgreSQL implementation of the apply operator.

implementations. We have continued to build upon the strengths of each imple-

mentation while showing that even our earliest attempt at local radiance is still

running and relevant.

Local radiance has been shown to work in multiple web frameworks and is

continuing to be developed in a new framework. We have formalized our system

using both HERM and the nested relational models and implemented both. We

have made our work publicly available and have demonstrated the use of local

radiance in four production websites since 2011 with over 4000 registered users

and close to 430,000 page views in 2019.

178

Chapter 7

CONCLUSIONS AND FUTURE WORK

In this thesis we have presented our system for local radiance (LR). We described

the formal foundations of local databases, domain and canonical structures, and

mappings between them. We defined a base query language that can be used to

create generic widgets that can radiate local relation and attribute names. We

extended our query language with operators for local insert and update using

queries from the domain and canonical levels. We have shown how our system can

be used to perform more complex data-metadata transformations. We presented

the evolution of system and formal ideas over time.

Below, we revisit the contributions made in this thesis to answer the research

questions from Chapter 1 and discuss publications related to each.

How can we enable information integration that retains local bene-

ficial heterogeneity?

Chapters 2 and 3 presented the formal definitions of our system and base query

language showing how local database can be accessed from the domain and canon-

ical levels while retaining the local beneficial heterogeneity.

In Chapter 2 we made the following contributions:

• We formally defined local databases, domain structures, and canonical struc-

tures.

• We defined our mapping system that allows mappings between local

databases and domain structures; and, between domain structures and

canonical structures.

179

• We defined the scope of mappings with our system and compare how our

mappings compare to traditional tuple-generating dependencies, a common

mechanism for database information integration.

In Chapter 3 we made the following contributions:

• We defined the apparent and underlying models used within our systems for

query and storage.

• We defined the apply (α) operator that is introduced into queries at the

domain level, which creates corresponding queries against local databases

that return integrated data from all mapped local databases in the nested

relational form of the domain structure.

• We defined the canonical apply (θ) operator that is introduced into queries

at the canonical level, which creates corresponding queries against domain

structures that return integrated data from all mapped domain structures in

the nested relational form of the canonical structure (i.e., in the underlying

model).

• We defined the type (τ) operator that provides local type information to the

canonical or domain level.

In 2012, we presented generic widgets and end-user mapping at the Interna-

tional Conference on Conceptual Modeling (ER) 2012 [11]. In 2014, we presented

our work on domain structures, mappings and the apply and type operators at the

International Conference on Information Modeling and Knowledge Bases with the

paper published in their journal [13]. In 2017, we presented our work on canonical

structures in a chapter in Conceptual Modeling Perspectives [15].

How can we enable non-technical end-user schema mapping and in-

formation integration?

180

As noted above, Chapter 3 defined our mapping system and also made the

following contribution:

• We evaluated the use of our mapping system by non-technical and technical

users through a user study.

We showed that end-users do understand the mapping process and can create

mappings successfully. In 2018, the results of our user study were presented in the

Enterprise Modelling and Information Systems Architectures International Journal

of Conceptual Modeling [18].

How can we build generic widgets that capture beneficial heterogene-

ity?

In Chapter 3, we showed how widgets can be built using the apply, canonical

apply, and type operators. We also made the specific contributions:

• We defined the apparent and underlying models used within our systems for

query and storage.

• We defined the apparent model (κ) operator, which provides a relational

projection of the underlying model of a canonical or domain structure into

the apparent model.

By providing a relational model, we provide access to our system in a way that

is already understood and used by most widget developers. We presented the use

of LR widgets in a digital library setting in 2012 [16, 19] and 2013 [10, 17, 21]. We

showed how these widgets can used to facilitate educators at the ACM Conference

on Computer Science Education [20].

Can we leverage local radiance to create generic local data creation

and manipulation widgets?

Chapter 4 presented our extensions to our base query language making the

following contributions:

181

• We defined the local document operator (β) that, given a domain relation,

will return a document for every tuple in the result of an apply operator on

that domain relation. Each returned tuple contains the schema and data for

all attributes from the local relation that corresponds to the mapped tuple.

• We defined the empty document operator (ε) that, given a domain relation,

will return an empty document in the schema of each local relation that has

been mapped to the domain relation.

• We defined insert and update operators that use β and ε to insert and update

local data from the domain level.

• We showed how the operators can be used for cloning and exploration in a

digital repository.

We presented our work on the local document operators at ER 2014 [14].

Can we empower end-users to perform complex data transformation

tasks and widget customization?

In Chapter 5, we showed how our system can be extended to perform data-to-

metadata transformation and made the following contributions:

• We showed how correspondences between domain structures and local

schemas can support data-to-metadata transformations.

• We presented a case study that shows a complex, faceted browse widget in

a digital library that uses data-to-metadata transformation.

• We extended our simple correspondences to include a predicate in order to

support the classical database pivot operation.

• We compared our system against similar systems that perform data-to-

metadata transformations.

182

In 2016, we presented our work on pivot and unpivot at ER 2016 [12].

What is the best way to formalize and implement an LR system?

Chapter 6 presented the evolution of the LR system. We discussed the limitations

of our previous HERM-based system and Chapters 2 and 3 presented our current

nested relational-based system. Chapter 3 made the following contributions:

• We defined relational equivalences that can be used with our operators and

showed how they can be used to optimize performance in our system.

• We evaluated the performance of our system against hand written integra-

tion queries as well as custom-coded in a web development framework (Dru-

pal [33]).

By using the nested relational model, we were able to leverage existing relational

equivalences and optimizations and more easily integrate our framework into ex-

isting CMSs.

7.1 FUTURE WORK

We have shown that content authors can and will create simple mappings that can

enable a large variety of generic widgets. We see avenues of extending both the

mapping research and the widgets in this work. We conclude with a discussion of

possible areas of future research.

7.1.1 Join-Path Mappings

We have purposely limited our system to simple relation-to-relation mappings in

order to facilitate non-technical users. A logical next step for future research is to

expand our mappings to more complex forms.

A common application for more complex mappings is the existing tree-based

navigation widget that we already have. For example, say we would like to have

183

an instance of the widget that only shows leaf-level instructional materials from all

of the courses. If a mapping could encompass the path of joins in a local schema

(such as course to unit to lesson to instructional material) then the widget would

work as normal.

There are two possible avenues to explore this. First, if we only allow foreign-

key-based joins, then very little of our existing infrastructure need change, as we

could use the combination of mapping and correspondence ids as well as the foreign

key relationships in the local schema.

Second, a more generalized mapping could be created that contains not only the

mapping and correspondence ids in the “meta” nested relation of the underlying

domain or canonical attributes, but we could also move the local ids from the

domain or canonical id attribute into the “meta” nested relation. But with a more

complete set of data in the underlying model, a mapping could become increasingly

complex. This change to the mapping system would also require a redefinition of

the apply and canonical apply operators. Any increase in the expressive power of

the mappings could also have the negative consequence of making mapping more

difficult for end-users.

7.1.2 Enhancing and Extending Local Radiance Infrastructure

Our mapping study showed that non-technical users can perform the schema map-

ping tasks necessary to use our system. But the user interface used in our study

does require users to understand or infer some of the underlying structure of the

Drupal CMS. One of our goals is to make mappings in our system as easy as

drawing lines (like Clio [57]) or highlighting relevant parts of a web page.

We plan to build an easier-to-use mapping interface that can produce mappings

for any LR-enabled CMS. We envision an interface where content authors can

specify mappings while viewing their own data on their web-page.

We also propose to define an exchange format for our mappings. By exchanging

184

and sharing mappings, we can enable widgets that work across applications and we

can also start to collect mappings and use them together to perform more complex

integration or reasoning tasks (discussed below).

We envision a central portal that will host the mapping interface, domain struc-

tures, canonical structures, and widgets. The local web CMS would require a small

amount of infrastructure to be able to correctly send local database information to

the portal. The portal would then supply embeddable widgets (in the same fash-

ion as maps and videos are currently embeddable from their host sites into other

sites). The use of a portal allows the possibility to extend LR to plain websites

(like a superimposed information application [52]).

7.1.3 Reasoning Over Mappings and Semantic Web Integration

Once a portal is created and all mappings are hosted centrally, we can gain the

ability to glean extra information from the collected set of mappings. As users

generate mappings to our structures, we can then use these mappings to provide

semantic web integration capabilities similar to federated databases [76] or data

warehouses [41].

While we have focused on widgets that enable functionality for local content

authors, we can also build widgets for the semantic web that uses the mappings

created by content authors. Gangemi and Presutti [37] identify the “knowledge

boundary problem” as the problem of identifying meaningful units within the se-

mantic web. Our domain structures are precisely the kind of meaningful units

that they seek to make explicit. Widgets can be built that generate RDF [71]

and OWL [84] data using the concepts and semantics represented in the domain

structures.

While many solutions for semantic-web-based integration have been proposed

and developed and been successful, generating good mappings for large systems

manually is difficult [69]. We believe that our use of small domain fragments

185

that are mapped by the content authors will lead to high quality mappings. Over

time, the collected set of mappings for each domain structure can provide an array

of synonyms for entities and relationships. Our mappings, in the context of the

meaningful units of our domain structures, will hopefully contribute to the creation

of better semantic web ontologies.

186

REFERENCES

[1] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational ex-

pressions. SIAM J. Comput., 8(2):218–246, 1979.

[2] J. Q. Anderson and H. Rainie. The fate of the Semantic Web. Pew Internet

& American Life Project, 2010.

[3] P. Atzeni, F. Bugiotti, and L. Rossi. Uniform access to non-relational

database systems: the sos platform. In Proceedings of the 24th Interna-

tional Conference on Advanced Information Systems Engineering, CAiSE’12,

pages 160–174, Gdańsk, Poland. Springer-Verlag, 2012.

[4] P. Atzeni, G. Mecca, and P. Merialdo. Managing web-based data: database

models and transformations. IEEE Internet Computing, 6(4):33–37, July

2002.

[5] P. Atzeni, P. Merialdo, and G. Mecca. Data-intensive web sites: design and

maintenance. World Wide Web, 4(1-2):21–47, Oct. 2001.

[6] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, 284(5):34–43, 2001.

[7] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A vision for management

of complex models. SIGMOD Rec., 29(4):55–63, Dec. 2000.

[8] M. Blaha. Patterns of Data Modeling. CRC Press, Inc., Boca Raton, FL,

USA, 1st edition, 2010.

187

[9] A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a language

for updatable views. In Proceedings of the Twenty-fifth ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, PODS

’06, pages 338–347, Chicago, IL, USA. ACM, 2006.

[10] S. Britell and L. Delcambre. Checking out: customizing and downloading

complex and compound digital library resources. In Proceedings of the 13th

ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’13, pages 379–

380, Indianapolis, Indiana, USA. ACM, 2013.

[11] S. Britell and L. M. L. Delcambre. Mapping semantic widgets to web-

based, domain-specific collections. In Proceedings of the 31st International

Conference on Conceptual Modeling, ER’12, pages 204–213, Florence, Italy.

Springer-Verlag, 2012.

[12] S. Britell, L. M. L. Delcambre, and P. Atzeni. Facilitating data-metadata

transformation by domain specialists in a web-based information system us-

ing simple correspondences. In Proceedings of the 35rd International Confer-

ence on Conceptual Modeling, ER’16, pages 445–459, Gifu, Japan. Springer-

Verlag, 2016.

[13] S. Britell, L. M. L. Delcambre, and P. Atzeni. Flexible Information Integra-

tion with Local Dominance. Information Modelling and Knowledge Bases,

XXVI:21–40, 2014.

[14] S. Britell, L. M. L. Delcambre, and P. Atzeni. Generic data manipulation

in a mixed global/local conceptual model. In E. Yu, G. Dobbie, M. Jarke,

and S. Purao, editors, Proceedings of the 33rd International Conference on

Conceptual Modeling, ER’14, pages 246–259, Atlanta, GA, USA. Springer-

Verlag, 2014.

188

[15] S. Britell, L. M. L. Delcambre, and P. Atzeni. Web system development using

polymorphic widgets and generic schemas. In Conceptual Modeling Perspec-

tives. Springer-Verlag, Berlin, Heidelberg, 2017, pages 121–135.

[16] S. Britell, L. M. L. Delcambre, L. N. Cassel, E. A. Fox, and R. Furuta.

Enhancing digital libraries and portals with canonical structures for complex

objects. In Proceedings of the Second International Conference on Theory

and Practice of Digital Libraries, TPDL’12, pages 420–425, Paphos, Cyprus.

Springer-Verlag, 2012.

[17] S. Britell, L. M. L. Delcambre, L. N. Cassel, and R. Furuta. Checking out:

download and digital library exchange for complex objects. In T. Aalberg,

C. Papatheodorou, M. Dobreva, G. Tsakonas, and C. J. Farrugia, editors,

Research and Advanced Technology for Digital Libraries, pages 48–59, Berlin,

Heidelberg. Springer Berlin Heidelberg, 2013.

[18] S. Britell and L. M. Delcambre. Evaluating user behavior as they create map-

pings in a web development system using local radiance. Enterprise Modelling

and Information Systems Architectures (EMISAJ), 13:234–242, 2018.

[19] S. Britell, L. Delcambre, L. Cassel, E. Fox, and R. Furuta. Exploiting canon-

ical structures to transmit complex objects from a digital library to a portal.

In Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Li-

braries, JCDL ’12, pages 377–378, Washington, DC, USA. ACM, 2012.

[20] S. Britell, L. Delcambre, E. Fox, and R. Steele. Curriculum collaboration, cus-

tomization, and reuse: creating communities in digital repositories (abstract

only). In Proceeding of the 44th ACM Technical Symposium on Computer

Science Education, SIGCSE ’13, pages 731–731, Denver, Colorado, USA.

ACM, 2013.

[21] P. Brusilovsky, Y. Lin, C. Wongchokprasitti, S. Britell, L. M. L. Delcambre,

R. Furuta, K. Chiluka, L. N. Cassel, and E. Fox. Social navigation support

189

for groups in a community-based educational portal. In T. Aalberg, C. Pap-

atheodorou, M. Dobreva, G. Tsakonas, and C. J. Farrugia, editors, Research

and Advanced Technology for Digital Libraries, pages 429–433, Berlin, Hei-

delberg. Springer Berlin Heidelberg, 2013.

[22] A. Calil and R. dos Santos Mello. Simplesql: a relational layer for simpledb. In

Proceedings of the 16th East European Conference on Advances in Databases

and Information Systems, ADBIS’12, pages 99–110, Poznań, Poland.

Springer-Verlag, 2012.

[23] R. Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–27,

May 2011.

[24] S. Ceri, P. Fraternali, and A. Bongio. Web modeling language (webml): a

modeling language for designing web sites. Comput. Netw., 33(1-6):137–157,

June 2000.

[25] P. P.-S. Chen. The entity-relationship model—toward a unified view

of data. ACM Trans. Database Syst., 1(1):9–36, Mar. 1976.

[26] L. S. Colby. A recursive algebra and query optimization for nested relations.

SIGMOD Rec., 18(2):273–283, June 1989.

[27] C# — Microsoft Docs. url: https : / / docs . microsoft . com / en - us /

dotnet/csharp/csharp (visited on 09/02/2019).

[28] C. Cunningham, C. A. Galindo-Legaria, and G. Graefe. Pivot and unpivot:

optimization and execution strategies in an rdbms. In Proceedings of the

Thirtieth International Conference on Very Large Data Bases - Volume 30,

VLDB ’04, pages 998–1009, Toronto, Canada. VLDB Endowment, 2004.

[29] A. Das Sarma, X. Dong, and A. Halevy. Bootstrapping pay-as-you-go data

integration systems. In Proceedings of the 2008 ACM SIGMOD International

190

Conference on Management of Data, SIGMOD ’08, pages 861–874, Vancou-

ver, Canada. ACM, 2008.

[30] U. Dayal and P. A. Bernstein. On the correct translation of update operations

on relational views. ACM Trans. Database Syst., 7(3):381–416, Sept. 1982.

[31] L. M. L. Delcambre, D. Maier, R. Reddy, and L. Anderson. Structured Maps:

modeling explicit semantics over a universe of information. International

Journal on Digital Libraries, 1(1):20–35, Apr. 1997.

[32] S. Dessloch, M. A. Hernandez, R. Wisnesky, A. Radwan, and J. Zhou. Or-

chid: integrating schema mapping and etl. In Proceedings of the 2008 IEEE

24th International Conference on Data Engineering, ICDE ’08, pages 1307–

1316, Washington, DC, USA. IEEE Computer Society, 2008.

[33] Drupal. url: http://drupal.org (visited on 09/02/2019).

[34] A. Eisenberg and J. Melton. Sql/xml is making good progress. SIGMOD

Rec., 31(2):101–108, June 2002.

[35] J. Euzenat and P. Shvaiko. Ontology Matching. Springer Publishing Com-

pany, Incorporated, 2nd edition, 2013.

[36] R. Fagin. Horn clauses and database dependencies. J. ACM, 29(4):952–985,

Oct. 1982.

[37] A. Gangemi and V. Presutti. Towards a pattern science for the semantic

web. Semant. web, 1(1,2):61–68, Apr. 2010.

[38] Gleaning Resource Descriptions from Dialects of Languages (GRDDL). url:

http://www.w3.org/2004/01/rdxh/spec (visited on 09/02/2019).

[39] A. Gupta, V. Harinarayan, and D. Quass. Generalized projections: a powerful

approach to aggregation. In number 1995-32. Stanford InfoLab, 1995.

[40] M. A. Hernández, P. Papotti, and W.-C. Tan. Data exchange with data-

metadata translations. Proc. VLDB Endow., 1(1):260–273, Aug. 2008.

191

[41] W. H. Inmon. Building the Data Warehouse,3rd Edition. John Wiley & Sons,

Inc., New York, NY, USA, 3rd edition, 2002.

[42] Internet Live Stats - Total number of Websites. url: https : / / www .

internetlivestats . com / total - number - of - websites/ (visited on

09/02/2019).

[43] Java 8. url: https://java.com/en/download/faq/java8.xml (visited on

09/02/2019).

[44] C. Jones. End-user programming. Computer, 28(9):68–70, Sept. 1995.

[45] JavaScript Object Notation. url: https://www.json.org/ (visited on

09/02/2019).

[46] A. M. Keller, R. Jensen, and S. Agarwal. Persistence software: bridg-

ing object-oriented programming and relational databases. SIGMOD Rec.,

22(2):523–528, June 1993.

[47] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. Schemasql: an exten-

sion to sql for multidatabase interoperability. ACM Trans. Database Syst.,

26(4):476–519, Dec. 2001.

[48] M. Lenzerini. Data integration: a theoretical perspective. In Proceedings of

the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Princi-

ples of Database Systems, PODS ’02, pages 233–246, Madison, Wisconsin.

ACM, 2002.

[49] M. Levene and G. Loizou. A Guided Tour of Relational Databases and Be-

yond. Springer-Verlag, Berlin, Heidelberg, 1999.

[50] H. Lieberman, F. Paternò, M. Klann, and V. Wulf. End-user development:

an emerging paradigm. In End User Development. H. Lieberman, F. Paternò,

and V. Wulf, editors. Springer Netherlands, Dordrecht, 2006, pages 1–8.

192

[51] H. Ma, R. Noack, K.-D. Schewe, and B. Thalheim. Using Meta-Structures

in Database Design. Informatica, 34(3):387–403, 2010.

[52] D. Maier and L. M. L. Delcambre. Superimposed information for the in-

ternet. In ACM SIGMOD Workshop on The Web and Databases, WebDB

1999, Philadelphia, Pennsylvania, USA, June 3-4, 1999. Informal Proceed-

ings, pages 1–9, 1999.

[53] E. Mäkelä, K. Viljanen, O. Alm, J. Tuominen, O. Valkeapää, T. Kauppinen,

J. Kurki, R. Sinkkilä, T. Känsälä, R. Lindroos, et al. Enabling the seman-

tic web with ready-to-use web widgets. In Proceedings of the First Inter-

national Conference on Industrial Results of Semantic Technologies-Volume

293, pages 56–69. CEUR-WS. org, 2007.

[54] P. Merialdo, P. Atzeni, and G. Mecca. Design and development of data-

intensive web sites: the araneus approach. ACM Trans. Internet Technol.,

3(1):49–92, Feb. 2003.

[55] Microformats. url: http://microformats.org/wiki/Main_Page (visited

on 09/02/2019).

[56] Microsoft SQL Server. url: https://docs.microsoft.com/en-us/sql/

?view=sql-server-2017 (visited on 09/02/2019).

[57] R. J. Miller, M. A. Hernández, L. M. Haas, L. Yan, C. T. Howard Ho, R.

Fagin, and L. Popa. The clio project: managing heterogeneity. SIGMOD

Rec., 30(1):78–83, Mar. 2001.

[58] S. Murthy, D. Maier, and L. Delcambre. Mash-o-matic. In Proceedings of the

2006 ACM Symposium on Document Engineering, DocEng ’06, pages 205–

214, Amsterdam, The Netherlands. ACM, 2006.

193

[59] J. Nielsen. Usability inspection methods. In Conference Companion on Hu-

man Factors in Computing Systems, CHI ’94, pages 413–414, Boston, Mas-

sachusetts, USA. ACM, 1994.

[60] B. Nowack. Paggr: linked data widgets and dashboards. Web Semant.,

7(4):272–277, Dec. 2009.

[61] N. F. Noy. Semantic integration: a survey of ontology-based approaches.

SIGMOD Rec., 33(4):65–70, Dec. 2004.

[62] A. Olivé. Conceptual Modeling of Information Systems. Springer-Verlag,

Berlin, Heidelberg, 2007.

[63] Oracle Database. url: https://docs.oracle.com/en/database/oracle/

oracle-database/index.html (visited on 09/02/2019).

[64] ORACLE-BASE - SQL/XML (SQLX) : Generating XML using SQL. url:

https://oracle-base.com/articles/misc/sqlxml-sqlx-generating-

xml-content-using-sql (visited on 09/02/2019).

[65] PostgreSQL: Documentation: 11: Chapter 43. PL/pgSQL - SQL Procedural

Language. url: https://www.postgresql.org/docs/current/plpgsql.

html (visited on 09/02/2019).

[66] PostgreSQL: Documentation: 11: 9.14. XML Functions. url: https : / /

www.postgresql.org/docs/current/functions-xml.html (visited on

09/02/2019).

[67] V. Presutti and A. Gangemi. Content ontology design patterns as practical

building blocks for web ontologies. In Proceedings of the 27th International

Conference on Conceptual Modeling, ER ’08, pages 128–141, Barcelona,

Spain. Springer-Verlag, 2008.

194

[68] pureXML. url: https://www.ibm.com/support/knowledgecenter/en/

SSEPGG_11.1.0/com.ibm.db2.luw.xml.doc/doc/c0022308.html (visited

on 09/02/2019).

[69] E. Rahm. Towards large-scale schema and ontology matching. In Schema

Matching and Mapping. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011,

pages 3–27.

[70] RDFa. url: http : / / www . w3 . org / TR / rdfa - syntax/ (visited on

09/02/2019).

[71] Resource Description Framework. url: http://www.w3.org/RDF/ (visited

on 09/02/2019).

[72] J. Rode, Y. Bhardwaj, M. A. Pérez-Quiñones, M. B. Rosson, and J. Howarth.

As easy as “click”: end-user web engineering. In Proceedings of the 5th Inter-

national Conference on Web Engineering, ICWE’05, pages 478–488, Sydney,

Australia. Springer-Verlag, 2005.

[73] H. J. Schek and M. H. Scholl. The relational model with relation-valued

attributes. Inf. Syst., 11(2):137–147, Apr. 1986.

[74] Schema.org. url: http://schema.org (visited on 09/02/2019).

[75] N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web revisited. IEEE

Intelligent Systems, 21(3):96–101, May 2006.

[76] A. P. Sheth and J. A. Larson. Federated database systems for managing

distributed, heterogeneous, and autonomous databases. ACM Comput. Surv.,

22(3):183–236, Sept. 1990.

[77] SPARQL Query Language for RDF. url: http://www.w3.org/TR/rdf-

sparql-query/ (visited on 09/02/2019).

195

[78] J. F. Terwilliger, L. M. L. Delcambre, D. Maier, J. Steinhauer, and S. Britell.

Updatable and evolvable transforms for virtual databases. Proc. VLDB En-

dow., 3(1-2):309–319, Sept. 2010.

[79] B. Thalheim. Entity-Relationship Modeling: Foundations of Database Tech-

nology. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2000.

[80] B. Thalheim, K.-D. Schewe, and H. Ma. Conceptual application domain mod-

elling. In Proceedings of the Sixth Asia-Pacific Conference on Conceptual

Modeling - Volume 96, APCCM ’09, pages 49–58, Wellington, New Zealand.

Australian Computer Society, Inc., 2009.

[81] Topic Maps. url: http://www.topicmaps.org/ (visited on 09/02/2019).

[82] R. Vilaça, F. Cruz, J. Pereira, and R. Oliveira. An Effective Scalable SQL En-

gine for NoSQL Databases. In IFIP International Conference on Distributed

Applications and Interoperable Systems, pages 155–168. Springer, Springer,

Berlin, Heidelberg, 2013.

[83] W3Tech - Usage Statistics and Market Share of Content Management

Systems, October 2019. url: https : / / w3techs . com / technologies /

overview/content_management/all (visited on 09/02/2019).

[84] Web Ontology Language OWL. url: http://www.w3.org/2004/OWL/

(visited on 09/02/2019).

[85] J. Wong and J. I. Hong. Making mashups with marmite: towards end-user

programming for the web. In Proceedings of the SIGCHI Conference on Hu-

man Factors in Computing Systems, CHI ’07, pages 1435–1444, San Jose,

California, USA. ACM, 2007.

[86] C. M. Wyss and E. L. Robertson. A formal characterization of pivot/unpivot.

In Proceedings of the 14th ACM International Conference on Information

196

and Knowledge Management, CIKM ’05, pages 602–608, Bremen, Germany.

ACM, 2005.

[87] C. M. Wyss and E. L. Robertson. Relational languages for metadata inte-

gration. ACM Trans. Database Syst., 30(2):624–660, June 2005.

[88] Extensible Markup Language (XML). url: https://www.w3.org/XML/

(visited on 09/02/2019).

[89] XML Path Language (XPath). url: https://www.w3.org/TR/1999/REC-

xpath-19991116/ (visited on 09/02/2019).

[90] The Official YAML Web Site. url: https : / / yaml . org/ (visited on

09/02/2019).

197

Appendix A

CANONICAL VERSIONS OF LOCAL INSERT AND UPDATE OPERATORS

198

β
pc
r,
cs
a
id
q
“

ď

m
id
P
m

id
s
p
c
r,
c
s
a
id
q

b
u
il
d

lo
c
a
lp
m
id
q

(1
)

m
id
sp
cr
,c
sa
id
q
“
π

S
P
L
IT
p
id
,‘
.’
q
r2
s
pθ
pc
r,
cs
a
id
qq

(2
)

b
u
il
d

lo
c
a
lp
m
id
q
“

ν
m
id
,l
d
b
,l
r,
lr
k
e
y
,a
tt
r
s
:l
o
c
a
l
d
o
c

ˆ

ν
lr
k
e
y
a
tt
r
,l
r
k
e
y
v
a
lv
a
lu
e
:l
r
k
e
y

ˆ

ν
n
a
m
e
,v
a
lu
e
:a
tt
r
s

ˆ

ď

p
ld
b
id
,l
r,
lr
k
e
y
,a
tt
r
q
P

lo
c
a
l
fr
o
m

m
id
p
m
id
q

`

π
“
rl
d
b
id
s|
|.
||
rl
r
s|
|.
||
rm
id
s|
|.
||
rl
r
k
e
y
s2
Ñ
id
,

“
rm
id
s2
Ñ
m
id
,“
rl
d
b
id
s2
Ñ
ld
b
,“
rl
r
s2
Ñ
lr
,

“
rl
r
k
e
y
s2
Ñ
lr
k
e
y
a
tt
r,
rl
r
k
e
y
sÑ

lr
k
e
y
v
a
l

“
ra
tt
r
s2
Ñ
n
a
m
e
,

ra
tt
r
sÑ

v
a
lu
e

pt
a
b
le

sc
a
n
pl
d
bi
d
,l
rq
q˘
˙
˙
˙

(3
)

lo
c
a
l
fr
o
m

m
id
pm
id
q
“

π
ld
b
.i
d
Ñ
ld
b
id
,

ld
b
.l
r
s
.n
a
m
e
Ñ
lr
,

ld
b
.l
r
s
.k
e
y
Ñ
lr
k
e
y
,

ld
b
.l
r
s
.a
tt
r
s
.n
a
m
e
Ñ
a
tt
r

ˆ

pσ
d
s
ld
b
m
.d
r
lr
m
s
.i
d
“
m
id
pd
s
ld
b
m
qq

’
d
s
ld
b
m
.l
d
b
id
“
ld
b
.i
d
^

d
s
ld
b
m
.d
r
lr
m
s
.l
r
“
ld
b
.l
r
s
.n
a
m
e

ld
b˙

(4
)

W
h

er
e

th
e
ta

b
le

sc
a
n
pl
d
bi
d
,l
rq

fu
n

ct
io

n
p

er
fo

rm
s

a
ta

b
le

sc
a
n

o
p

er
a
ti

o
n

o
n

th
e

lo
ca

l
re

la
ti

o
n
lr

in
th

e
lo

ca
l

d
a
ta

b
a
se
ld
bi
d
;

an
d

,
th

e
S
P
L
IT

(s
,d

)
fu

n
ct

io
n

sp
li
ts

a
st

ri
n

g
(s

)
o
n

a
d

el
im

it
er

(d
)

a
n

d
re

tu
rn

s
a
n

a
rr

ay
o
f

th
e

re
su

lt
in

g
su

b
st

ri
n

g
s.

E
q
u

a
ti

o
n

A
.1

:
L

o
ca

l
D

o
cu

m
en

t
O

p
er

a
to

r
(β

)

199

εp
cr
,c
sa
id
q
“

ď

m
id
P
m

id
s
p
c
r,
c
s
a
id
q

b
u
il
d

e
m
p
ty

lo
c
a
lp
m
id
q

(1
)

m
id
sp
cr
,c
sa
id
q
“
π

S
P
L
IT
p
id
,‘
.’
q
r2
s
pθ
pc
r,
cs
a
id
qq

(2
)

b
u
il
d

e
m
p
ty

lo
c
a
lp
m
id
q
“

ν
ld
b
,l
r,
a
tt
r
s
:l
o
c
a
l
d
o
c

ˆ

ν
lr
k
e
y
a
tt
r
,l
r
k
e
y
v
a
lv
a
lu
e
:l
r
k
e
y

ˆ

ν
n
a
m
e
,v
a
lu
e
:a
tt
r
s

ˆ

ď

p
ld
b
id
,l
r
,l
r
k
e
y
,a
tt
r
q
P

lo
c
a
l
fr
o
m

m
id
p
m
id
q

`

N
U
L
L
,r
m
id
s,
rl
d
bi
d
s,
rl
rs
,r
lr
k
ey
s,
N
U
L
L
,r
a
tt
rs
,N

U
L
L

Ñ
p
id
,m
id
,l
d
b
,l
r
,l
r
k
e
y
a
tt
r,
lr
k
e
y
v
a
l,
n
a
m
e
,v
a
lu
e
q

˘

˙
˙
˙

(3
)

lo
c
a
l
fr
o
m

m
id
pm
id
q
“

π
ld
b
.i
d
Ñ
ld
b
id
,

ld
b
.l
r
s
.n
a
m
e
Ñ
lr
,

ld
b
.l
r
s
.k
e
y
Ñ
lr
k
e
y
,

ld
b
.l
r
s
.a
tt
r
s
.n
a
m
e
Ñ
a
tt
r

ˆ

pσ
d
s
ld
b
m
.d
r
lr
m
s
.i
d
“
m
id
pd
s
ld
b
m
qq

’
d
s
ld
b
m
.l
d
b
id
“
ld
b
.i
d
^

d
s
ld
b
m
.d
r
lr
m
s
.l
r
“
ld
b
.l
r
s
.n
a
m
e

ld
b˙

(4
)

W
h

er
e

th
e
ta

b
le

sc
a
n
pl
d
bi
d
,l
rq

fu
n

ct
io

n
p

er
fo

rm
s

a
ta

b
le

sc
a
n

o
p

er
a
ti

o
n

o
n

th
e

lo
ca

l
re

la
ti

o
n
lr

in
th

e
lo

ca
l

d
a
ta

b
a
se
ld
bi
d
;

an
d

,
th

e
S
P
L
IT

(s
,d

)
fu

n
ct

io
n

sp
li
ts

a
st

ri
n

g
(s

)
o
n

a
d

el
im

it
er

(d
)

a
n

d
re

tu
rn

s
a
n

a
rr

ay
o
f

th
e

re
su

lt
in

g
su

b
st

ri
n

g
s.

E
q
u

a
ti

o
n

A
.2

:
E

m
p

ty
D

o
cu

m
en

t
O

p
er

a
to

r
(ε

)

	Local Radiance
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1576860128.pdf.3wmng

