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ABSTRACT 

 
 As more students enroll in chemistry courses, institutions are faced with 

increasing costs and limited laboratory space to keep up with the demand. One solution 

some institutions have turned to is the incorporation of virtual experiments into the 

curriculum, as this can lower costs and increase the availability of laboratory space. Some 

institutions have offered sections that complete all of their experiments in a virtual 

environment, others have offered sections that alternate between a traditional hands-on 

experiment and a virtual experiment, and some institutions have replaced only select 

experiments throughout the curriculum with a virtual experiment. To begin to be able to 

assess the affective outcomes in laboratory settings that include virtual experiments, six 

existing affective scales were modified for use in the laboratory setting. Sufficient 

evidence of the reliability and validity of the data from the existing scales was found. The 

functioning scales were then used to assess the affective outcomes of a Beer’s Law 

experiment, a calorimetry experiment, and a titration experiment in both a hands-on and 

virtual learning environment. To assess the cognitive outcomes in these experiments, 

rubrics based on common learning objectives were used to determine if students in both 

learning environments were able to meet instructors’ learning objectives for the 

experiment. The affective and cognitive outcomes were compared for each experiment to 

determine whether there was a difference between learning environments and also across 

the three experiments. The findings of this work are presented throughout this 

dissertation. 
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CHAPTER I: Introduction 

  

The human race has long been fascinated with the transformations chemicals can 

undergo. Whether this is the creation of the alloy bronze during the Bronze Age around 

3500 BC, the study of alchemy in 300 AD, or the current research taking place in 

laboratories all around the world. While humans have come a long way in their 

understanding of chemistry since the days of alchemy and the Bronze Age, the way in 

which knowledge is passed down from an expert to a novice today is surprisingly similar, 

in many regards, to the past, but distinct in a few important areas. In the past, an expert 

alchemist would teach an apprentice the craft of alchemy and knowledge of chemical 

reactions with a combination of hands-on work and verbal explanations. Similarly, we 

teach students about chemical reactions by having them set up experiments under the 

supervision of an expert in a teaching laboratory. The first laboratories in chemistry were 

modeled off this apprenticeship model, where an aspiring chemist would learn from an 

expert chemist (Lindberg, 2015) . However, as education became more formal with 

universities starting to form, so did the way we taught chemistry. Chemistry quickly 

became a class that had a formal lecture component where experts could teach aspiring 

chemists about the theory of chemistry (Lucas, 1994). After this shift toward formal 

lecture, a young professor by the name Justus von Liebig, noted that the way in which 

chemistry was being taught was starting to drift from the roots of how it had been 

previously taught. Liebig asked his department to include a laboratory component to the 

lecture where students could not only learn the theory but also experience the reactions 

first hand. This gave birth to the teaching laboratory as we know it today (Sommer, 1931). 
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The laboratory was first used to teach the students basic facts about the beginning 

few elements on the periodic table, such as hydrogen, carbon, and nitrogen, and various 

reactions to either produce or use that element (Pickering, 1993). This approach was similar 

to an apprenticeship where the expert is teaching the novice how to carry out basic 

procedures used in the trade. After several years of each expert teaching their students their 

own way, the first laboratory manual was created in 1876 by Charles Eliot that unified how 

to teach these experiments and techniques across institutions (Pickering, 1993). Over the 

past 200 years, the laboratory has seen a shift from element first teaching to a focus on the 

conceptual underpinnings behind experiments, rather than trying to teach specific skills. 

As a result of this shift, there is no longer a unified laboratory manual with a number of 

different types of curricula having been implemented ranging from inquiry-based 

experiments (Novak, 1963) to experiments conducted in virtual reality (Georgiou et al., 

2007) to many others. Each of these curricula tries to teach chemistry experiments in an 

innovative way that is a departure from how Liebig first envisioned the experiments in a 

teaching laboratory.  

As different people have developed different curricula that depart from the original 

laboratory manual, they have tried to replicate what it means to be a chemist at the given 

time and incorporate it into the laboratory. For example, during Liebig’s time, a chemist 

was someone who carried out specific procedures to create and use the elements. In the 

1960s, the push was to reform the classroom to once again think like a chemist. However, 

chemists in the 1960s were tackling new problems and not generating the same chemicals 

from the 1800s. Instead, they were focused on inquiring about why principles of chemistry 
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worked the way they did. This gave rise to a large push toward inquiry-based learning 

(Novak, 1963; Rutherford, 1964; Schwab, 1958). After the 1960s, there have been many 

different curricula implemented that try to tackle the problem of having the laboratory 

closer mimic what a chemist does for a living. Curricula that have been tested in the 

laboratory include problem-based experiments (Nielsen et al., 2014), cooperative learning 

experiments (Cooper, 2005), and many more. While different laboratory curricula have 

been developed, there has not been any widespread adoption of new laboratory curricula, 

with some institutions using similar procedures to those from the first laboratory manual 

published in the 1800s. One such experimental procedure is the production of hydrogen 

gas by mixing an alkali earth metal with a strong acid. One reason that inquiry-based 

curricula and many other curricula that have been developed since the 1960s do not 

frequently have widespread adoption is that laboratory coordinators are not given enough 

tools to implement consistently (Hofstein, 2004; Hofstein & Lunetta, 1982). However, 

there has been more consistent implementation in recent years with more and more 

laboratory coordinators and faculty attending professional development workshops each 

year such as those at the Biennial Conference on Chemical Education (Stegall et al., 2016). 

An additional factor that has limited widespread adoption of a unified curriculum 

is that there no longer a single job description of a chemist. With more career paths opening 

for people who have an understanding of chemistry, it makes it harder to design a one-size-

fits-all laboratory experience for the students. In fact, the American Chemical Society 

(ACS) lists over 50 different career paths in chemistry on their website. (ACS) Some 

students may want an experience that is close to the traditional chemist path, whereas a 



4 

 

different student may be interested in a field that has recently emerged, such as working 

with polymer bioconjugates or immunoengineering. This leads to a problem that the field 

of education as a whole is facing and especially poses a challenge to the chemistry 

laboratory (Hagay & Baram‐Tsabari, 2015). Laboratory coordinators have many different 

curricula they can choose from when designing the laboratory and no one approach may 

be best for all their students. Previous research has shown that some students do best in a 

guided-inquiry curriculum (Pavelich & Abraham, 1979) while other research suggests 

students do best in a problem-based curriculum (Kelly & Finlayson, 2007). It can be 

challenging for the laboratory coordinator to make sense of the different studies on the 

different curricula and decide which type of curricula best aligns with the interests of the 

students and their career paths. 

 Not only have the career possibilities for a chemist drastically increased, so have 

the tools chemists use in their career. Technology has been expanding at a record pace and 

has been integrated into many careers to either replace or assist humans (Washbon, 2012). 

For instance, there are auto-titrating apparatuses that replace a majority of titrations once 

done by hand. Yet in most undergraduate laboratories, students are still being taught to 

titrate by hand, as universities do not have the funding for or access to this technology for 

their curriculum. Technology has not only changed the job descriptions of chemists but, 

but it has also drastically changed the educational experience for students. Students now 

have the option to take classes in a variety of formats that would not be possible before. 

For the past decade, enrollment in online classes has continued to increase and does not 

show any signs of stopping (Nguyen, 2015). To accommodate this change in the way of 
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learning, universities, like Arizona State University, have created completely online degree 

programs in many subjects including in chemistry. However, even these online programs 

struggle with how to include technology in the laboratory. Many of them, as well as the 

field as a whole, are hesitant to get rid of the chemistry laboratory because they firmly 

value the role of the laboratory even if it does have flaws (Reid & Shah, 2007). Thus, one 

way to support an online program, but still have students gain laboratory skills, is by 

offering a summer program where the students from all over can come and spend a brief 

period of time on campus learning laboratory skills. During this brief period, students can 

get familiar with the techniques and equipment but may not be able to gain much deeper 

knowledge as all equipment and techniques are covered in a short time. 

 With the changing landscape in careers students taking general chemistry are 

seeking as well as and the incorporation of technology in these professions, laboratory 

coordinators may be unsure of which experiments are best to include in their curriculum.  

One factor in these decisions is the administration at their respective institution. Recently, 

laboratory coordinators and university administrations are facing increasing pressure to 

find solutions to increase enrollment while operating under a fixed amount of laboratory 

space. To alleviate these pressures, universities have added weekend sections, distance 

learning sections, and virtual sections (Tüysüz, 2010). While these solutions may alleviate 

the pressure on the administration, these decisions typically have relatively few peer-

reviewed research studies to use as evidence for their decision. Thus, they are left with 

implementing what they view as ‘best for their situation’ without knowing what the best 

practices are. For example, to support distance learning, at-home experiment kits have been 



6 

 

sold by companies to universities and students for dozens of years. However, during that 

same time frame, there has been limited research conducted on the use of at-home kits 

(Kennepohl, 2007; Lyall & Patti, 2010; Reeves & Kimbrough, 2004). The same goes for 

virtual laboratories. As technology has advanced, companies have been able to develop 

virtual experiments that replicate some or all of the traditional laboratory experience, such 

as the LearnSmart Labs by McGraw-Hill Education (MHEducation, 2014). However, 

research on their effectiveness typically lags behind their implementation. It takes several 

years to conduct a thorough research study on the virtual laboratories, meanwhile, the 

technology may have already changed by the time the research is published.  

Statement of Problem 

 While at-home kits and virtual laboratories are both possible solutions to alleviate 

some of the current pressures laboratory coordinators face, there is one major difference 

between these solutions. That difference is that at-home kits are still limited to experiments 

that can safely and easily be done in someone’s home, regardless of the type of kit used. 

This limitation does not exist in the virtual environment. In the virtual environment, 

students can carry out near-unlimited possible experiments regardless of safety concerns 

or ability to get equipment. While this possibility is attractive, there has been limited 

adoption of virtual experiments to date.   

 Before there can be a clear plan of adoption, there first needs to be a clear 

understanding of the virtual experiments themselves as a baseline. There are many different 

companies producing virtual experiments that cover a range of topics, however, there is 

currently limited understanding on which topics are best to complete virtually, if any. 
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While a general chemistry laboratory curriculum has a wide variety of experiment types, 

some of the experiments focus more on tactile skill-building whereas other experiments 

focus more on conceptual understanding. It currently remains unseen if these different 

types of experiments give students the same benefits when the experiment is completed 

virtually. For instance, there are many different versions of titration experiments and the 

benefits the students get out of the laboratory from each different version is unknown. This 

leaves many remaining questions about the best adoption strategy for virtual experiments. 

To detect any possible benefits or drawbacks from the adoption of a virtual 

experiment, it is important to measure relevant aspects of the learning process to determine 

the efficacy of the virtual experiments. These aspects may exist across one or more of the 

domains of learning. Bloom and colleagues proposed that students have three distinct 

domains of learning: the cognitive (Bloom et al., 1956), the affective (Krathwohl et al., 

1964), and the psychomotor (Simpson, 1971). The cognitive domain focuses on the process 

of learning, the affective domain focuses on the ‘feeling’ aspects, and the psychomotor 

domain focuses on the ‘doing’ aspects. While all three are important for learning, the large 

majority of the research done on the laboratory, and the field of chemistry education 

overall, focuses heavily on the cognitive benefits and drawbacks (National Research 

Council, 2012). Universities are primarily concerned if students are learning the material 

well enough to move on to the next class and graduate, therefore it is natural for them to 

focus primarily on the process of learning. However, the affective and psychomotor 

domains are both equally important and can influence the cognitive domain. For example, 
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if someone is in a stressful learning environment then they may not learn as well (LePine 

et al., 2004). 

 For measuring cognitive domain outcomes, most laboratory studies use scores on 

laboratory assessment as a measure of how well the students learned during the experiment. 

For instance, measuring post-lab quiz scores (Hawkins & Phelps, 2013). However, these 

questions are typically self-authored without known psychometric properties. Alternative 

ways of measuring the laboratory cognitive domain can be used that have more evidence 

of validity and reliability. One way of doing this is by measuring students based on how 

well they meet faculty members’ learning goals, as the students’ ability to meet a learning 

goal is not inflated. While most studies on the laboratory measure the cognitive domain, in 

one form or another, very few measure the affective or psychomotor domain. 

There is a body of literature that suggests there are only minor or no differences in 

the cognitive domain but there is much less support in the literature for what affective 

differences may exist between the two environments. Several laboratory studies that have 

included the affective or psychomotor domain indicate that students who show the same 

performance outcomes (cognitive domain) may be experiencing drastically different 

emotions during the laboratory (Galloway & Bretz, 2015b; Woodfield et al., 2004). That 

is, just because a student is doing well in the course does not necessarily mean that they 

experience positive feelings about and during the class. Thus, it is important to evaluate to 

what degree a learning environment both helps promote the learning of a student and 

supports the best experience for that student.  
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Purpose of Study 

 This study aims to add to the growing literature on what the best use of virtual 

experiments are and for who they work best for. Many different curricula have been 

designed and implemented over the past century but fail to gain widespread adoption 

because of the lack of clarity on how to best implement them (Hofstein & Lunetta, 1982, 

2004). Virtual experiments are quickly falling into this same fate. More and more lab 

coordinators are starting to integrate virtual experiments to alleviate the increasing 

pressures that they are facing from the administration across STEM disciplines. For 

example, many universities include virtual experiments as part of their curricula, such as  

Motlow State Community College, Portland State University, Oregon State University, 

Arizona State University, and many more. However, the research on virtual experiments 

has been slow to catch up to the rate professors are incorporating these experiments into 

their classrooms. For instance, although many universities are using virtual experiments, 

there have been only a handful of recently published studies on their benefits or drawbacks 

at the general chemistry level (Chan & Chan, 2001; Hawkins & Phelps, 2013).  Thus, there 

need to be additional studies conducted on the efficacy of virtual experiments to determine 

what their best use is so that laboratory coordinators can make more informed decisions 

and those decisions can be more consistent across institutions. 

 With a lack of studies conducted on virtual experiments as it pertains to the 

affective, a large part of this study will focus on assessing the impacts of virtual 

experiments on affective domain outcomes. Previous studies have measured aspects of the 

affective domain in both the classroom and the traditional laboratory (Galloway & Bretz, 
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2015b; Kim, 2005). However, there has been much less evidence put forth about the 

affective domain in a virtual environment. For example, are students less stressed when not 

working with chemicals or does working with technology cause them to be more stressed? 

Differences like these are remaining questions about when and for whom to use virtual 

experiments. Another remaining question this study will aim to address is: What type of 

experiment may be more beneficial to offer in a virtual environment? If laboratory 

coordinators are going to pick and choose a handful of virtual experiments to offer, it is 

imperative that they know which experiments work best in the virtual environment and 

which should be left for the traditional hands-on environment.  

 It is also possible that there is no one-size-fits-all adoption possible for virtual 

experiments and instead the impacts are seen differentially based on the characteristics of 

students. For instance, it is possible that students who enjoy coming to the laboratory may 

be more hesitant to perform an experiment online whereas students who do not enjoy 

coming to the laboratory may prefer it. It could also be that students that need the laboratory 

skills in the future, such as chemistry majors, need to build the skills whereas students who 

will not use the laboratory skills in the future may not need to perform the experiment in 

the traditional hands-on way. Therefore, it is important to characterize if there are any sub-

populations that show differential benefits. With this knowledge it is possible to further 

assess why the differences may exist and how to design future curricula to be better for all 

sub-groups. 

 This study adds to the body of literature on virtual experiments, allowing laboratory 

coordinators to make more informed decisions that are based on evidence. This study will 
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address the gaps that currently exist in the literature by looking at how virtual experiments 

compare with traditional hands-on experiments across multiple terms, covering a range of 

content, and by including measurements in the affective domain when considering what 

makes a learning environment effective. 

Research Questions 

1. To what degree can previously developed scales be adapted for use in the 

laboratory environment? 

2. What evidence of validity and reliability supports data collected with the adapted 

scales? 

3. How do various aspects of the affective domain compare when students complete 

a general chemistry experiment virtually as opposed to a traditional hands-on 

experiment? 

4. To what degree can experiments in a virtual environment meet the same learning 

objectives as similar traditional hands-on experiments? 

5. To what degree do student characteristics explain differential outcomes in a 

general chemistry laboratory course? 

Significance of Study 

 There is a need to establish a baseline for the efficacy of virtual laboratories before 

they can be further examined and have wide-spread adoption. Currently, the virtual 

experiment studies are focused on single institutions covering a single experiment and 

usually only measure what differences are present in the cognitive domain.  To add to this 

literature and help establish a baseline, various aspects of the affective domain were 

measured to provide evidence on how aspects of students’ affective domain change when 

the environment changes.  

 In addition to measuring these aspects of the affective domain, this study compared 

multiple experiments that cover a wide range of content and learning goals. In the general 

chemistry laboratory, some experiments emphasize conceptual understanding more than 

skill-building and vice versa (Hofstein, 2004). Thus, it is important to understand if there 
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were any differences in a virtual versus hands-on comparison that were due to the type of 

experiment itself. This information can provide evidence for laboratory coordinators to 

arrange their schedule in such a way that experiments are offered in the environment that 

students perform the best in with regards to both experiment performance and the specific 

components of affective state. 

 This dissertation will provide a body of evidence to use when decisions need to be 

made about what types of experiments to include in curricula and what possible impact 

those have on students. By including multiple experiments, it is possible to present 

evidence on what type of experiments may provide better outcomes in one environment 

versus another. By measuring aspects of the affective domain, it is possible to present 

evidence on how this study compares to previous studies. Additionally, it is possible to 

determine if certain students have increased affective aspects in a specific environment. 

Limitations 

There are many things to consider whenever active research takes place in a 

classroom and this study is no different.  One of the biggest limitations was that the 

laboratories were already in place, with students paying for a quality experience. Thus, the 

virtual experiments needed to seamlessly fit into the curriculum without an extra burden 

on the laboratory coordinator or students. This limited the research design and type of 

studies that were carried out in several different ways. The most significant way is that the 

implementation of the virtual experiments needed a scaled implementation to establish a 

proof-of-concept before implementing across all laboratory sections at all participating 

institutions. Therefore, the sampling pool of institutions included only those willing to 
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scale the implementation across three years. However, future work will be able to build off 

this work and be implemented in many different types of institutions to work towards 

consistent implementation. 

Relying on technology was another significant limitation. In fact, if the technology 

breaks down, the students miss out on the laboratory altogether. It is important that there 

are backup plans in place for the students to still be able to complete a laboratory if the 

technology breaks during their experiment. This troubleshooting is no different than 

troubleshooting when a pH probe doesn’t work in a traditional laboratory. However, 

teaching assistants and other staff may be less comfortable doing this troubleshooting than 

normal laboratory equipment troubleshooting. If the problem cannot be solved quickly it 

may involve talking to the technical support at the company that owns the virtual 

experiments or canceling the experiment altogether. 

In addition to these specific limitations with the virtual experiment itself, there were 

also limitations with how the data was collected. These limitations are as follows: 

1. Convenience sampling was used, which limited the faculty members interviewed 

and students participating to the same geographic region in the United States.  

2. The faculty members and students that did participate, had to provide informed 

consent and thus may not be representative of general chemistry instructors or 

students overall.  

3. With only a few faculty members interviewed, it is possible that the stated 

learning goals are not representative of an average faculty member’s goals for 

their course.  

4. The virtual experiments were implemented only in general chemistry, therefore, 

results are not intended to be generalized to other courses or subject areas. 

Given these limitations, all conclusions drawn from the data may have limited 

generalizability to other populations.  
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Definitions of Terms 

Virtual experiment: For this research, a virtual experiment replicates an entire procedure 

that could be found in a traditional hands-on environment. They go above and beyond 

simulations by replicating all procedural steps. 

LearnSmart Lab: An online suite of laboratory experiments offered by McGraw-Hill 

Education 
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CHAPTER II: Review of literature 

  

The laboratory has long been a part of the curriculum across many disciplines, 

especially disciplines with a focus in science, technology, engineering, and/or mathematics 

(STEM). In chemistry, the practice of including chemical experiments as a way to teach 

novices about chemistry concepts can trace its roots back to at least 1820 with Justus von 

Liebig.  Liebig was influential in shifting the teaching of chemistry to be taught from a 

laboratory perspective instead of a theoretical perspective (Ashley et al., 2011; Farrokhi & 

Mahmoudi-Hamidabad, 2012; Kohn, 1951; Lindberg, 2015; Pickering, 1993; Sommer, 

1931). He convinced his colleagues and department to allocate a space where they could 

have a laboratory to teach students about chemistry through the act of doing an experiment 

with their hands rather than listening to a lecture. He adamantly pushed for this because of 

his firm belief in allowing students to learn by performing experiments with their own 

hands in a laboratory. This type of laboratory, a place to learn by performing experiments 

with the students’ own hands, is commonly referred to as the teaching laboratory.  

Laboratory experiments quickly expanded beyond Liebig’s university and into 

many other universities, with each professor creating their own unique demonstrations and 

experiments. After decades of professors creating their own demonstrations and 

experiments, in 1876 Charles Eliot authored what is considered to be the first laboratory 

manual (Pickering, 1993). This manual is a compilation of hundreds of laboratory 

experiments, organized by element, that helped unify the laboratory and provided a 

snapshot of the current state of the chemistry teaching laboratory at the time of the writing 

(Eliot & Storer, 1876). By organizing the manual by element, it provided the current 
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knowledge of the properties of the element and reactions that produced or used that 

element. 

Changes in the Laboratory Curricula and Environment 

In the 150 years that have passed since the manual was published, laboratory 

manuals have become an integral part of the chemistry laboratory with many different types 

of laboratory manuals published to date (Beran, 2010; Cooper, 2005; Pavelich & Abraham, 

1979). Although all of these manuals approach the laboratory in different ways, laboratory 

manuals at some universities still contain experiments near identical to experiments from 

the first laboratory manual authored in 1867. For example, the generation of hydrogen gas, 

experiment nineteen from Eliot’s laboratory manual, is an experiment carried out in a 

similar way in today’s teaching laboratory at some universities . In this experiment, zinc is 

reacted with an acid to produce hydrogen gas, which is then collected over water. In today’s 

laboratory, this experiment is often the reaction of magnesium with an acid to produce 

hydrogen gas, which is then collected over water. While procedurally similar to the original 

experiment, the focus of today’s teaching laboratory is conceptual knowledge related to the 

experiment whereas the original purpose was simply a way to prepare hydrogen gas. 

Although many universities are still using some of the fundamental concepts and 

procedures from the original laboratory manual, others have made more significant 

advances and departures from the original manual. 

Changes in the Curricula 

 One significant departure from the original manual came when educators started to 

push for curriculum rooted in inquiry-based learning during the 1960s (Novak, 1963; 
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Rutherford, 1964; Schwab, 1958). While inquiry-based learning has many working 

definitions, one common definition breaks inquiry-based learning into five key core 

components (NRC, 2000).  

These components are that: 

• Learners are engaged by scientifically oriented questions 

• Learners give priority to evidence, which allows them to develop and 

evaluate explanations that address scientifically oriented questions 

• Learners formulate explanations from evidence to address scientifically 

oriented questions 

• Learners evaluate their explanations in light of alternative explanations, 

particularly those reflecting scientific understanding 

• Learners communicate and justify their proposed explanations 

The rise of inquiry-based learning represented a drastic shift in curriculum from the 

primary focus of teaching facts to teaching how to think like a scientist and ask scientific 

questions (Schwab, 1958). While this new curriculum gained traction in the 1960s, the 

positive outcomes of early studies were not reproducible when tried in different 

environments and thus the curriculum typically was not implemented well (Williams & 

Hmelo, 1998) and did not immediately catch on (Tamir & Lunetta, 1981). However, the 

National Research Council renewed a push towards inquiry learning with their 2000 report 

(NRC, 2000). While not universally adopted, many institutions are using inquiry-based 

learning in their laboratory today (King et al., 2018; Rusek et al., 2018; Wheeler et al., 

2017) including the development of the Advanced Placement (AP) guided-inquiry 

laboratory manual for AP high-school classes (CollegeBoard, 2013). 

 Inquiry-based learning was the first major departure from the original way of 

teaching the chemistry laboratory but it has not been the only departure. Educators and 

researchers have tried implementing numerous new curricula since the 1960s. These 
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curricula include cooperative experiments (Cooper, 1994), problem-based learning (PBL) 

(Kelly & Finlayson, 2007), course-based undergraduate research experiences (CUREs) 

(Linn et al., 2015), discovery-based experiments (Ricci & Ditzler, 1991), science writing 

heuristic (Burke et al., 2006), and many more. While each of these curricula have reported 

positive gains in student outcomes, no single curriculum has had widespread adoption. 

Instead, only some institutions have adopted new curricula with many institutions still 

using experiments that have their roots in the first chemistry manual. However, what was 

clear is that lab coordinators were starting to seek alternative solutions to the traditional 

confirmatory laboratory. 

Seeking Alternative Solutions 

The laboratory curriculum was not the only place that lab coordinators sought 

alternative solutions to the traditional way of doing experiments. Lab coordinators have 

historically had few alternatives to offer students who were not able to complete the 

laboratory in the physical space, such as at-distance learners (Holmberg & Bakshi, 1982). 

Additionally, there have been recent challenges with the laboratory that have left lab 

coordinators seeking other alternatives for all their students, not just the at-distance 

students. The first of these challenges is that there are more students enrolling in STEM 

majors than ever before (2017). This has left universities and lab coordinators to seek out 

creative options to ensure they have enough sections to meet the demand while still 

working with a finite amount of laboratory space and staff. One way that lab coordinators 

have tried to combat this challenge is by reexamining what the purpose of the laboratory 

actually is. For instance, universities are asking if all majors need to take the laboratory or 
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are there some students that the laboratory is not beneficial for. There is little consensus on 

what the purpose of the laboratory is, although most chemistry faculty members agree that 

the laboratory is a necessary part of the curriculum (Hofstein & Lunetta, 1982, 2004). 

At-home Experiments 

 Not only is there variability in the curriculum two students attending separate 

institutions may get, but there is also variability in the type of environment they may 

experience. With a recent increase in students electing to enroll in non-traditional programs 

(Miller & Lu, 2003), such as online or distance learning programs, educators have faced a 

challenge to ensure the students completing the laboratory away from the physical campus 

have the same outcomes as those students completing the laboratory on the physical 

campus (Casanova et al., 2006). 

One way that educators have combated this issue is to design experiments that could 

be safely done at the student’s home and parallel the experiments done on campus. A 

popular way of designing these experiments is for an instructor to put together a list of 

what chemicals and equipment the student would need. From there, there are three typical 

solutions to how the students can get the chemicals and equipment. These three solutions 

are buying a commercially available kit, buying an instructor-made kit, or putting together 

a kitchen kit (Jeschofnig, 2004). A commercially available kit is one that a third-party 

company has built and contains all the materials that are needed for an experiment. An 

instructor-made kit has the added advantaged that the instructor had tailored made the kit 

to fit their experiments and they are not limited to only the experiments that the third-party 
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company supports. A kitchen kit is one that uses commonly found materials around the 

kitchen, which limits the number of supplies that need to be bought and sent to the student.  

 Regardless of the type of kit used, at-home experiments provide students an 

environment that tries to mimic the experience they would get on-campus in the comfort 

of their own home. Researchers have found that students using the at-home kits and 

students completing the experiments on-campus perform equally well in the course 

(Böhmová & Šulcová, 2007; Kennepohl, 2007). While they perform equally well, the kits 

are restricted on what materials they can contain since the materials need to be shipped and 

the experiment is conducted without proper laboratory safety equipment at the student’s 

home. Therefore, the curriculum used for these experiments is most often the traditional 

confirmatory experiments rather than any of the new types of curricula. 

Computer-based Experiments 

 To overcome the limitations imposed by students completing the experiments in 

their own home without proper safety equipment, educators have turned to alternatives. 

One attractive possibility is to use computer-based experiments to conduct experiments 

that have safety concerns present. This was a natural possibility since computers have long 

had a role in STEM laboratories. The earliest way that computers were adopted into the 

teaching laboratory was as data analysis and collection devices (Feisel & Rosa, 2005). For 

example, in 1972 Hewlett-Packard released the HP-35 that was capable of replacing the 

slide rule used in data analysis (Whitney et al., 1972). In today’s laboratory, computers are 

still primarily used in data collection and analysis, including the use of the popular Vernier 

software, Logger Pro (Hechter, 2013). Logger Pro is a software that interfaces with probes 



21 

 

and sensors to assist with data collection from these devices. After the data is collected 

from the sensor, Logger Pro can also help aid in the data analysis. Since computers are 

already an integral part in the experiment process at most institutions, the question 

remained if the entire experiment could be simulated on a computer for the students, 

practically eliminating any safety concerns and allowing for any experiment to take place 

and indeed as computing power has rapidly increased since the 1980s, it became possible 

not only to collect data from sensors but also to predict what the data should be before the 

experiment takes place (Groth et al., 1981). Therefore, if computers can predict what the 

data should be from an experiment and help analyze the data, a computer can replicate most 

parts of a traditional experiment. This possibility gave rise to a common alternative 

approach to the traditional laboratory beside the at-home kits, the virtual laboratory 

(Dalgarno et al., 2009).     

Virtual and Remote Experiments in STEM 

A virtual laboratory experiment is one where the students interact with an artificial 

computer-based environment to conduct the experiment themselves (Martínez-Jiménez et 

al., 2003). For instance, the students conduct an experiment by interacting with simulated 

objects of the equipment and chemicals on their web browser. This allows the students to 

conduct the procedural steps themselves but does not give real experimental data (Tatli & 

Ayas, 2013). There are many different types of virtual environments that have been 

implemented in STEM laboratories that all try to replicate aspects of the traditional 

environment to different degrees. A simulation is not concerned with replicating the 

procedure of an experiment but instead simulates conceptual material that students cannot 
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gain as easily from the experiment (Clark & Chamberlain, 2014). In chemistry, simulations 

frequently illustrate interactions on the particulate level that cannot be visually observed in 

a hands-on experiment. A virtual experiment, however, replicates the entire procedure and 

data collection mimicking the major components of the hands-on experiment. A virtual 

world replicates as many as possible aspects of the chemistry experiment, including the 

interaction with others, which is accomplished by using avatars (Winkelmann et al., 2017). 

While these types of virtual experiments are a popular alternative for students that 

cannot come in to complete the traditional laboratory, virtual experiments have been 

criticized for not generating real data with real experimental errors (Ma & Nickerson, 

2006). Therefore, institutions that prefer real experimental data also have the option of 

using a remote laboratory. A remote laboratory experiment is one where the student 

watches a video, typically a live stream, of the experiment conducted at a remote site that 

has the proper safety equipment allowing them to conduct the experiment. (Senese & 

Bender, 2000). For example, a student can log in to the website where they instruct a robot 

to carry out the experiment for them. This allows the student to get real data and see how 

the experiment should look (Kennepohl et al., 2004). However, the students can only watch 

the experiment and not experience it with their own hands.  Both of these environments 

allow the flexibility to build experiments for students based on any number of curricula 

since there are significantly fewer limitations on what types of experiments can be carried 

out in these environments. 
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Remote and virtual experiments in engineering 

Within STEM fields, engineering has widely adopted virtual experiments in their 

curriculum whereas the natural sciences have been much slower to adopt them as 

summarized by a reviewed of the literature conducted by Ma and Nickerson (2006). For 

their literature search they used the Association for Computing Machinery (ACM), the 

Institute of Electrical and Electronics Engineers (IEEE), and ScienceDirect databases, 

along with various criteria to narrow their search to include only articles relevant to remote 

and virtual experiments. Of the 60 articles that they reviewed, 39 come from engineering 

with only 13 coming from the natural sciences. Of the 13 studies conducted in natural 

sciences, only 4 were looking at simulated laboratories in chemistry. The difference 

between the number of studies conducted in engineering and natural sciences could 

possibly be contributed to the fact that since engineering is an applied science that their 

labs may be seen as a “place to practice the application of scientific concepts” (Ma & 

Nickerson, 2006) whereas science professors “may see laboratories as a way of confirming 

beliefs”. Since the publication of their review in 2006, virtual and remote laboratories have 

been studied more frequently in the natural sciences. 

Virtual experiments in science 

There has been a long-standing belief in many fields of the natural sciences that 

students get great benefits from experiencing phenomena with their own hands. This is the 

primary reason that these disciplines include a laboratory component to their classes that 

complements the lecture component. Therefore, the natural sciences were slower than 

engineering to begin to examine how virtual experiments could replace or enhance the 
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traditional experiments. However, over the course of the past decade, virtual experiments 

have become more sophisticated and have started to gain traction in the natural sciences 

including the disciplines of physics, biology, geology, and chemistry.  

In physics, traditionally students explore concepts by setting up apparatuses and 

then experimenting with them. However, recent studies in physics have investigated 

whether students would understand the same concepts these apparatuses teach without ever 

physically using the apparatus (Moser et al., 2017; Zacharia & De Jong, 2014; Zacharia & 

Michael, 2016). For example, in a study by Puntambekar et al. (2012) students were broken 

into two experimental groups where the first group learned how to use a pulley system with 

physical manipulates the first week and a virtual pulley system the second week and the 

second group did the opposite. Both groups of students were then given a conceptual test 

one week after the experiment and there were no statistically significant differences found 

between the groups. This result is similar to many previous studies across STEM 

disciplines that find no difference between virtual and physical experiments (Brinson, 

2015). In fact, a similar study in physics also found the same null result. In this study by 

Zacharia and Constaninou (2008) students were broken into two experimental groups and 

completed an experiment over the concept of heat and temperature using either physical or 

virtual manipulatives, respectively.  Regardless of the concept the students were tested on, 

both studies showed no statistically significant difference on their conceptual knowledge 

when using either virtual or physical manipulatives. Other studies exploring virtual 

experiments in physics also showed no statistically significant difference between the two 

types of experiments (Hawkins & Phelps, 2013; Ma & Nickerson, 2006). While most 
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studies find no statistically significant difference, there are examples where the students 

completing the virtual experiment outperform students completing the experiment in the 

traditional hands-on environment. For example, in a study by Finkelstein et al., students 

completed a direct current circuit experiment in either a simulated environment or the 

traditional hands-on environment (Finkelstein et al., 2005). It was found that the students 

who completed the experiment in the simulated environment outperformed their 

counterparts not only on a conceptual survey but also in their ability to build a real circuit 

in person. This means that even though the students in the simulated group learned the 

technique in a virtual environment, they still outperformed the students who learned the 

technique in a hands-on environment when both groups were tested in a hands-on 

environment. Since there is a body of literature that suggests that there is either no 

difference between the two environments on the measured variables or a slight advantage 

to completing experiments in a virtual environment, researchers have suggested virtual 

experiments can be used to conduct experiments in physics that are not accessible or safe 

in a normal teaching laboratory. For instance, nuclear experiments are capable of being 

conducted virtually but not in a traditional teaching laboratory. 

Biology is another natural science discipline that has been able to use virtual 

experiments to explore concepts that are not as feasible in the traditional laboratory. For 

example, visualizing fundamental processes such as the growth and death of cells 

(Slepchenko et al., 2003). Biology virtual experiments are also able to provide students 

practice with experimental techniques that they learn in the traditional laboratory. One 

example of virtual experiments built for biology is the iLaBS developed by Dr. Raineri and 
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published by McGraw-Hill. Raineri (2008). These virtual experiments allow students to 

replicate costly traditional experiments, such as sequencing experiments or cloning 

experiments, in a virtual environment to reduce the cost while allowing students multiple 

opportunities to run these procedures.  

While biologists have been keen on using virtual experiments to expose students to 

experiments or techniques that could not traditionally be as easily performed, such as those 

at the cellular level, there has also been research conducted on the effectiveness of using a 

virtual experiment to replace a traditional experiment. One common laboratory experiment 

in general biology is an experiment covering the technique called Polymerase Chain 

Reaction (PCR). To see how students would respond to learning this technique virtually, 

Henderson-Begg et al. (2009) developed an online experiment that replicated the 

technique. The students were split into two groups with one group completing the 

experiment in the traditional environment and the other in the virtual environment. After 

completing the experiment in either environment, the students were assessed on their gains 

in content knowledge. In addition, the students also completed an assessment to evaluate 

how well they learned the technique of PCR. To do this, both sets of students completed 

the technique in a traditional setting regardless of the environment they first practiced the 

technique in. Like many of the studies conducted across STEM disciplines, the students 

did not have a statistically significant difference in their learning gains (Ma & Nickerson, 

2006). However, similar to outcomes found from virtual physics experiments (Finkelstein 

et al., 2005), it was reported that the students who completed the experiment virtually 

needed less guidance from the demonstrator when performing the in-person practical. 
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Another study in biology also highlighted the potential benefits of virtual experiments 

beyond just content knowledge. Lazarowitz et al. (2002) found that students who otherwise 

would not have been successful in the laboratory were able to use the virtual environment 

to perform better than expected. The students who completed a microbiology experiment 

virtually and had low reasoning abilities were able to still successfully learn the concepts 

whereas the students who completed the experiment traditionally were not able to.   

Virtual experiments in chemistry 

In addition to the studies conducted in other natural science disciplines, there have 

also been studies conducted on virtual experiments in chemistry. Similar to other STEM 

disciplines, studies conducted in chemistry typically find no difference between virtual and 

traditional hands-on experiments when measuring content knowledge (Ma & Nickerson, 

2006). Therefore, several studies have gone beyond content knowledge and examined what 

additional benefits may exist (Woodfield et al., 2005; Woodfield et al., 2004). In these 

studies, Dr. Woodfield tested virtual experiments in both the organic and inorganic 

curricula at BYU. Unlike previous studies that have a control and comparison group, all 

students enrolled in the corresponding sections completed the virtual experiment. In the 

organic class, the students completed sophisticated organic synthesis simulations and 

qualitative analysis (Woodfield et al., 2005). In the inorganic class, the students completed 

a sophisticated inorganic qualitative analysis (Woodfield et al., 2004). They then were able 

to use historical data to see if there were any benefits to switching several experiments to 

be virtual. The exam scores in both the organic and inorganic classes both showed no 

change or slight improvement, which matches previous findings across STEM disciplines 
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(Ma & Nickerson, 2006). In this case, the researchers concluded that the slightly higher 

exam scores, in some cases, may be contributed to the students’ deeper understanding of 

content when they can establish trends for all the reactions possible and not just the one 

assigned to them for that lab. 

These studies go beyond comparing just grade data to examine what other benefits 

virtual experiments may provide. The first benefit was that many students reported 

preferring the virtual environment (Woodfield et al., 2005; Woodfield et al., 2004). When 

the virtual experiment was implemented in the organic laboratory, students had a better 

transfer of knowledge at the end of the experiment when they could explore all the different 

reactions that were available to them in the virtual experiment that could never be explored 

in a traditional lab due to time limitations.  That is, students were able to use what happened 

in the reaction they saw and answer questions about a fictional reaction. Thus, students 

were learning higher-order cognitive skills, specifically how to apply their acquired 

knowledge in new contexts, and in turn, performing better on the exams than previous 

terms where these virtual labs were not used. Instead of focusing on the “how” that a 

traditional lab usually focuses on, students were shifting toward the “why” and asking more 

conceptual questions. This led to an increase in exam performance, as most of the exam 

questions were conceptual “why” questions.   

Aspects of the affective domain were also measured in both the inorganic and 

organic implementation to determine what benefits may exist in the affective domain and 

for whom virtual experiments are benefiting. To do this, Hermann Brain Dominance 

Instrument (HBDI) scores were measured and there was a statistically significant 
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difference for people with high left-brain scores being more satisfied with the virtual 

laboratory than those with low left-brain scores. A high left-brain score indicates people 

who are “verbal and structured in their thinking, efficient, time-oriented, linear, and 

precise” (Herrmann, 1995). The design of the virtual environment allowed the experiment 

to be linear in nature with a clear path for completion and thus it tended towards a left-

brain preference (Woodfield et al., 2004). After implanting virtual experiments in both 

organic and inorganic laboratories, Woodfield and colleagues suggest that the virtual labs 

were best used as a supplement to the classroom and laboratory to increase the flexibility 

and exploration of an experiment.  

 In addition to the organic and inorganic levels, virtual experiments have also been 

studied at the general chemistry level (Hawkins & Phelps, 2013; Irby et al., 2017; 

Winkelmann et al., 2017). For example, Hawkins and Phelps examined how well students 

can learn laboratory skills from replacing traditional experiments with virtual experiments. 

To measure the differences that may exist between these two environments the researchers 

administered both a pre- and post-test. During the lab practical, all students assembled an 

electrochemistry cell regardless of the laboratory environment in which they initially 

completed the experiment. Interestingly, the authors found that regardless of the 

environment both groups performed equally well at constructing the cell. This finding 

aligned with previous studies showing that even when students learn a skill in a virtual 

environment they are able to do that skill in person given the right equipment (Banerjee et 

al., 2007; Cobb et al., 2009; Finkelstein et al., 2005). Additionally, students performed 

equivalently on the posttest after having either laboratory environment. Thus, for the 
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general chemistry students at their institution, the virtual experiment allowed the students 

to gain the same knowledge and skills that they would have otherwise learned in the 

traditional environment. 

There have also been studies done at the high school level in chemistry to compare 

virtual experiments to traditional hands-on experiments (Davenport et al., 2012; Hou & 

Lin, 2017; Pyatt & Sims, 2012; Tüysüz, 2010). The studies at the high school level offer 

insight into how students respond to virtual laboratories and the different ways of 

implementing them. For example, Pyatt and Sims (2012) used a crossover design that 

allowed them to monitor if any changes they observed were due to the experiment being 

virtual or hands-on or if they were related to the content that was covered in the 

experiments. The students in this study were split into two groups with the first group 

performing a virtual experiment the first week and a traditional hands-on experiment the 

second; the order was reversed for the second group. The students’ answered content 

questions about the experiment and their scores were compared across groups. It was found 

that the students performed equally well in both environments as is similar across STEM 

disciplines. Additionally, the authors go beyond the typical comparison and also examined 

what aspects of the affective domain may be different between the two environments. One 

of the affective findings mirrored earlier studies that found students prefer virtual 

experiments (Woodfield et al., 2005; Woodfield et al., 2004). Although this study was done 

at the high school level and has not been replicated at the college level, it is in line with the 

college studies that have found students perform better or the same in a virtual environment 

and tend to prefer the virtual environment.  
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Cognitive Domain Differences 

When implementing new educational changes, such as the inclusion of virtual 

experiments within a STEM discipline, researchers often focus on performance gains and 

other measures that capture the cognitive domain. The cognitive domain encompasses the 

aspects that relate to students’ mental skills or knowledge. Therefore, researchers can 

determine if an intervention had any cognitive impact on the students using some sort of 

cognitive assessment. To measure this in a laboratory setting, researchers have used scores 

on assessments given in the laboratory such as lab practical scores (Hawkins & Phelps, 

2013), lab report scores (Choi et al., 2013) and pre/post-lab quizzes (Winkelmann et al., 

2017). However, these measures frequently produce skewed distributions with a majority 

of students performing above 80%, since most laboratory curricula are designed in such a 

manner that most students pass the course. Some studies instead use other measures of the 

cognitive domain that are less sensitive to the skew, such as interviews with the students 

(Woodfield et al., 2005).  

One way to address this challenge is to use cognitive measures that are not based 

on graded assessments. For example, it is possible to measure how students perform on 

learning goals instead of the points associated with meeting the learning goal. However, it 

can be harder to quantify how well students are meeting learning goals, which is why it is 

easiest to measure graded assessments. Bruck, Towns, and Bretz (2010) researched what 

learning goals various faculty members had for the laboratory to determine what consistent 

learning goals existed. Following up on the initial project, they found seven different goals 

for that laboratory that were informed by 312 faculty members (Bruck & Towns, 2013). 
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These seven goals were: “research experience”, “group working and broader 

communication skills”, “error analysis, data collection and analysis”, “connection between 

lab and lecture”, “transferable skills (lab-specific)”, “transferable skills (not lab-specific)”, 

and “laboratory writing”. These goals establish common ground for professors and lab 

coordinators to evaluate if the students are meeting the expectations for the chemistry 

laboratory course. These studies have helped establish common learning goals professors 

have for the course as a whole but not every experiment may address these goals. For 

example, while some experiments in the course may give students research-like experience, 

some experiments may not meet that goal. Therefore, there is a difference in ‘course’ 

learning goals versus ‘experiment-specific’ goals. While the previous studies help establish 

a consensus on what professors desire their students to get out of the course as a whole, 

there has yet to be established learning goals for specific experiments, due to the wide 

variation in experiments conducted over the same topic in the general chemistry laboratory. 

This, in turn, means that students at different universities may be doing an experiment on 

the same topic but leave with very different cognitive outcomes. Thus, to be able to 

compare specific experiments across different universities it would be beneficial to 

measure learning goals for specific experiments rather than broad course learning goals. 

Affective Domain Differences 

 Potential differences between a virtual and a traditional hands-on laboratory may 

exist in the affective domain across many different variables, in addition to any differences 

on cognitive assessments.  Previous classroom intervention research in STEM disciplines 

have found many different variables, or constructs, that can be potentially different 
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between the treatment and control groups. While a variable in the cognitive domain is 

typically a measurable result such as a lab report score, variables in the affective domain 

are typically not directly measurable variables. Instead of directly measuring the variable, 

indirect measurements are taken that allow for the direct measurement to be inferred. When 

a variable is indirectly measured like this, it is referred to as a construct. 

 There have been many affective constructs that have been studied in classroom 

intervention research. For example, self-concept (Kim, 2005), interests (Jones et al., 2000), 

attitudes (Astin, 1977), self-esteem (Crocker et al., 1994), ego development (Adams & 

Fitch, 1983), feelings (Simpson, 1978), locus of control (Abouserie, 1994), personality 

(Felder et al., 2002), and anxiety (McCarthy & Widanski, 2009). Teaching assistants and 

laboratory professors typically have a good feeling for the state of many of these constructs 

for their students. For example, it is easy to notice which students are more interested in 

the laboratory material than others or which students seem highly anxious handling 

chemicals. While the professor may be aware of these constructs while teaching, the 

National Research Council found that in less than half of the research studies they 

examined the researchers measured any aspects of the affective domain. (National 

Research Council, 2012) Therefore, while there has been literature that suggests there are 

either minor or no differences in the cognitive domain when a virtual laboratory 

environment is compared to the traditional environment, there is much less support for 

what affective differences may exist between environments. 

One difference that may exist between individual students is their level of 

motivation. Motivation has been frequently researched because motivation and its sub-
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components have been found to be one of the biggest predictors of success in the chemistry 

classroom (Zusho et al., 2003) as well other classroom settings (Bandura, 1997; Dweck & 

Leggett, 1988; Pintrich, 1999; Pintrich & Garcia, 1991; Pintrich & Schrauben, 1992; 

Schunk, 1991). Another difference that may exist that is closely related to the students’ 

levels of motivation is their initial interest. To measure initial interest in chemistry, Ferrell, 

Phillips, and Barbera (2015) adapted an interest scale developed by Harackiewicz et al. to 

determine how initial interest in chemistry predicted final course performance in chemistry 

(Ferrell et al., 2016). It was found that chemistry majors reported higher self-efficacy and 

interest than non-science majors, which correlated to their academic performance. Thus, 

initial interest may help explain any differences found in the cognitive domain.  

 A widely used instruments in chemistry to measure aspects of the affective domain 

and how it correlates to the cognitive domain is the Attitude toward the Subject of 

Chemistry Inventory (ASCI) (Bauer, 2008). This instrument measures five aspects of the 

affective domain; intellectual accessibility, interest and utility, fear, emotional satisfaction, 

and anxiety. It was developed from a framework for semantic differential questions based 

on the works by Osgood (Osgood et al., 1975; Snider & Osgood, 1969). A semantic 

differential is a question where the respondent has to choose how to respond on a scale of 

polar opposite words. An example of a semantic differential is shown in Figure 2.1.  

After coming up with twenty adjective pairs that would work for a semantic 

differential, the instrument was administered and 379 usable data points were collected. 

Unsafe 1 2 3 4 5 6 7 Safe 

Figure 2.1: Example of semantic differential 
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With these data points, Bauer ran an exploratory factor analysis (EFA). An EFA gives a 

mathematical model that examines how the items are related to each other. It was first 

formalized by Spearman in 1904 but has traces of many other sources (Mulaik, 1987). By 

running an EFA, Bauer was able to see that of the twenty items initially authored, there 

were five factors (or constructs) that his items were addressing. After reviewing these items 

and knowing where they originated from, Bauer named the first factor “Interest and 

Utility’, the second factor “Anxiety”, the third factor “Intellectual Accessibility”, the fourth 

factor “Fear”, and lastly the fifth factor “Emotional Satisfaction”.  

 While five factors were resolved when the EFA results were analyzed, Bauer 

provided little theoretical evidence for these five factors. Thus, the instrument was further 

revised by Xu and Lewis to provide more evidence for the construct validity of the 

instrument. In other words, to ensure that the items were derived from theory and not just 

random item groupings (Xu & Lewis, 2011). Xu and Lewis revised the ASCI with a goal 

of making a psychometrically sound instrument that aligned with the general theory of the 

intended affective domain aspects. To accomplish this, each of the five original constructs 

was run as a single factor confirmatory factor analysis (CFA) to measure how well the 

items fit onto a single construct. A CFA is an analysis technique used to measure how well 

items identify the overall latent construct they are hypothesized to belong to. For example, 

how well Bauer’s anxiety items fit the construct of anxiety. After analyzing the CFA 

results, they were left with 8 items that resolved into two components. This left the revised 

four-item “Intellectual Accessibility” construct and the revised four-item “Emotional 

Satisfaction” construct as part of the theoretically-driven ASCI V2. 
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The ASCI has been used widely to look at different classroom interventions. For 

example, it has been used to identify at-risk students in general chemistry (Chan & Bauer, 

2014), evaluating a large-enrollment flipped classroom (Mooring et al., 2016), to examine 

students’ attitudes in a modified POGIL classroom (Vishnumolakala et al., 2017) and many 

other applications. Although it has been widely used, there are no instances of the ASCI 

being used to examine interventions in the laboratory. Despite a lack of use of the ASCI or 

ASCIv2 in the laboratory, there have been several other instruments used to measure 

aspects of the affective domain in the laboratory. One example at the college level is from 

Galloway and Bretz who researched “meaningful learning” in the laboratory, which is a 

term relating back to Novak’s theory of meaningful learning that states that the affective 

domain, the cognitive domain, and the psychomotor domain all need to interact in order 

for meaningful learning to occur (Novak, 2002). To capture this, Galloway and Bretz 

developed the Meaningful Learning in the Laboratory Instrument (MLLI) (Galloway & 

Bretz, 2015a). Overall, the results from the MLLI were that students did not have their 

expectations met after completing the laboratory.  

Another example of an affective instrument for the laboratory is the Virtual and 

Physical Experimental Questionnaire (VPEQ) (Pyatt & Sims, 2012). This example is from 

the K-12 literature where Pyatt and Simms researched how specific aspects of the affective 

domain, as measured by the VPEQ, and performance changed when students conducted a 

virtual experiment instead of a traditional hands-on experiment. The VPEQ was created by 

compiling existing items, as well as writing new items, and was used to measure aspects 

of the affective domain in both a virtual and a physical laboratory. The VPEQ uses the 
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‘Usefulness of computers’ and ‘Anxiety towards computers’ from the Attitudes towards 

Computer and Computer Courses instrument (Woodrow, 1994) and the ‘Open-endedness 

of lab’ scale from the Science Laboratory Environment Inventory (SLEI) (Fraser et al., 

1993). In addition to these published scales, Pyatt and Simms added an ‘Equipment 

usability’ scale and a ‘Usefulness of lab’ scale to capture expected differences between the 

virtual and hands-on experiments. While this instrument measures aspects of the affective 

domain when doing a virtual experiment compared to a hands-on experiment, this 

instrument has only been used in the initial study by Pyatt and Simms, which was 

conducted at the K-12 level. 

 Another affective instrument that has been used and developed for the laboratory 

measures anxiety. Unlike the ASCI that measured a general anxiety construct, Bowen 

developed the Chemistry Laboratory Anxiety Instrument (CLAI) to measure laboratory-

specific anxiety, such as students’ anxiety with working with chemicals, using equipment 

and procedures, collecting data, working with other students, and having adequate time to 

complete an experiment (Bowen, 1999). Students have shown differing levels of anxiety 

when in the laboratory and thus the students’ anxiety level may be informative of the 

differences they perceive between a virtual and a hands-on environment (Alkan & Koçak, 

2015; Ercan, 2014; Ural, 2016). 

While there are many expected differences in the students’ affective domain 

between a hands-on experiment and a virtual experiment, not everything can be measured 

in one study due to power limitations and test fatigue. Therefore, students should be asked 

the least amount of questions that allow the constructs to be measured accurately to limit 
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test fatigue. With a limitation on the number of questions that can be asked, it is important 

that the questions that are asked are relevant to the research questions being addressed and 

that the questions have support from existing literature to how well they work. 

Additionally, large sample sizes are needed to accurately measure how multiple constructs 

interact when doing a virtual experiment compared to a hands-on experiment.  

Measurement 

 In both the cognitive and affective domains, it is important that researchers are able 

to accurately and reliably measure what they are intending to measure. For example, if one 

wishes to measure a student’s anxiety levels using an assessment instrument, it is important 

that the researcher has evidence that the instrument accurately measures anxiety levels and 

that it works equally well across a range of different students. The researcher, therefore, 

needs to provide evidence for the accuracy and reliability of the instruments they use to 

measure aspects within both the cognitive and affective domains. Within psychological and 

educational research, the accuracy of the measure is termed ‘validity’. Validity is defined 

as a property that assesses how well the measure assesses what the measure intends to 

(Hammersley, 1987) and there are many different ways of providing evidence of validity 

such as consequential validity (Sambell et al., 1997), external validity (Calder et al., 1982), 

structural validity (Muenjohn & Armstrong, 2008), and more. Reliability is defined as the 

reproducibility of the measure, and like validity, there are many different ways of providing 

evidence to support the reliability of a measure such as test-retest reliability (Weir, 2005), 

interrater reliability (James et al., 1984), internal consistency (Henson, 2001), and more. 

Validity  
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 Researchers provide validity evidence for their measure to ensure that it is 

accurately measuring what it is intending to measure. The intended measure is also referred 

to as a construct and therefore this type of validity is referred to as construct validity. 

Construct validity has been theorized to be multi-faceted and includes six underlying 

aspects (Cronbach & Meehl, 1955; Messick, 1989). These six aspects are content validity, 

substantive validity, structural validity, external validity, consequential validity, and 

generalizability.  

Content validity examines the extent to which the measure is relevant and 

represents the domain of interest. For example, researchers have provided evidence that 

the questions on the Chemical Concepts Inventory (CCI) do not fully span the domain of 

interest and lack this aspect of validity (Schwartz & Barbera, 2014). Substantive validity 

is similar to content validity but instead examines how well individual items represent the 

domain of interest (Loevinger, 1957). Structural validity examines the relationship between 

the items and the dimensionality of the measure. A Confirmatory Factor Analysis (CFA) 

generates item loadings based on the data observed. A higher item loading indicates that 

the factor has a stronger influence on that specific item. If all items have an acceptable 

loading and the overall model has acceptable fit, there is evidence for the structural validity. 

Evidence for convergent and discriminant validity is provided by relating the measure of 

interest to other measures with either a positive or a negative expected correlation. 

(Campbell & Fiske, 1959) A measure that is expected to correlate positively with the 

measure of interest provides evidence for convergent validity whereas a measure that is 

expected to have no correlation with the measure of interest provides evidence for 
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divergent validity. For example, a researcher demonstrated that the American Chemical 

Society (ACS) first-semester exam is positively correlated with the students’ second-

semester performance, which provides evidence for convergent validity of the first 

semester exams (Lewis, 2014). In this study, the authors also provide evidence for 

consequential validity. Consequential validity provides evidence for the consequences of 

the measures score interpretation (Messick, 1989). For example, evidence of consequential 

validity is provided for the ACS exam by examining if the score from a given ACS exam 

can accurately indicate future chemistry performance (Lewis, 2014). Lastly, 

generalizability evidence is closely related to external validity. Generalizability supports 

that a measure maintains its accuracy within other settings. One example of providing 

evidence for generalizability is by conducting national cross-section surveys that capture a 

wide audience to ensure the measure of interest is working equally well across different 

participants (Galloway & Bretz, 2015b).  

Reliability  

 In addition to validity evidence, researchers should also provide reliability evidence 

for their instruments. Reliability is an indication of how consistent a measure is and is 

typically tested through one of three methods; coefficient alpha, test-retest, and interrater 

reliability (Komperda et al., 2018). Of these three types, researchers most frequently use 

coefficient alpha to report evidence for reliability. Coefficient alpha is a measure of how 

well the items that identify a construct are related to each other (Cronbach, 1951). In other 

words, it measures if all the anxiety items on an instrument are consistent and measuring 

anxiety or if one or more of the items are dissimilar to the rest. While the items may be 
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consistently measuring the same construct, it is possible that that is only true for the 

population that the items were originally tested on and the items may function differently 

with a different population. Test-retest reliability evidence is provided to help alleviate this 

concern. Test-retest reliability measures how consistent the instrument is when it is given 

multiple times (Guttman, 1945). When the items are consistent within the construct and 

the instrument as a whole is able to produce consistent findings there is strong evidence 

that the instrument is reliable. Sometimes, however, the variables of interest are measured 

through qualitative methods rather than quantitative. In this case, reliability evidence can 

be provided through interrater-reliability. Interrater-reliability is measured based on how 

well two independent coders reach the same conclusion (McHugh, 2012). For example, 

whether both coders think the interview transcript means the same thing (Miller et al., 

2003). Through these three different ways, researchers are able to provide evidence for 

how consistent the variables of interest are measured. Evidence for reliability can then be 

paired with evidence for validity to demonstrate that not only are the variables of interest 

measuring what the researcher was hoping to measure but also that the variables are 

measured consistently.  

Conclusion 

 Virtual experiments have been widely used across STEM disciplines and are 

starting to gain traction in chemistry. As they gain traction, it is imperative that any 

differences between a virtual and traditional hands-on environment be accurately 

measured. These differences may exist in either the affective or cognitive domain and as 

such, there is a need to measure relevant aspects of both domains rather than solely focusing 
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on one domain. To measure the affective domain, there need to be instruments that have 

provided evidence for the reliability and validity of their use in the laboratory. Only with 

instruments that are properly functioning can it be determined what potential positives, and 

negatives, exist when virtual experiments are implemented in the general chemistry 

curriculum. Future work should provide validity and reliability evidence for the intended 

measures to strengthen the comparison of the two environments and provide insight into 

what potential differences may exist for students completing laboratory experiments in 

either environment.  
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CHAPTER III: Methodology 

 

As more students enroll in online and other non-traditional chemistry degree 

programs (Seaman et al., 2018), it is imperative that the efficacy of their laboratory options 

are well understood. One of the biggest challenges that these types of programs face when 

offering a chemistry degree is how to offer the laboratory component of chemistry classes 

in an online environment (Brewer et al., 2013; Dalgarno et al., 2009; Georgiou et al., 2007). 

While various types of virtual environments and experiments have been implemented in 

the chemistry laboratory sequence, there is no clear consensus on all the benefits and 

drawbacks of virtual experiments (Hawkins & Phelps, 2013; Winkelmann et al., 2014; 

Woodfield et al., 2005; Woodfield et al., 2004). A majority of the studies are single-

institution studies that have students complete one virtual experiment and only compare 

performance, as indicated by a grade on that experiment, between students completing the 

experiment in a hands-on environment with those completing the experiment in a virtual 

environment. This focus leaves many questions unanswered about the efficacy of virtual 

experiments and what other benefits and drawbacks exist outside of performance measures.  

The first of these questions is whether students meet the instructor’s learning goals 

differently when completing an experiment in a virtual or traditional hands-on 

environment. With most studies focusing on performance as measured by grades, they do 

not capture the potential difference in learning goals. The second of these questions is 

whether students differ on affective aspects when completing an experiment in a virtual or 

hands-on environment. Very few studies consider the affective impact of virtual 

environments on students (Tüysüz, 2010) with the majority only focusing on the cognitive 
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differences (Hawkins & Phelps, 2013). Another question is if all students experience the 

same gains in the affective and cognitive domain or if certain types of students, e.g. 

chemistry majors, experience differential gains as compared to their peers. These questions 

are further broken down into five specific questions that guided this research. 

Research Questions 

1. To what degree can previously developed scales be adapted for use in the 

laboratory environment? 

2. What evidence of validity and reliability supports data collected with the adapted 

scales? 

3. How do various aspects of the affective domain compare when students complete 

a general chemistry experiment virtually as opposed to a traditional hands-on 

experiment? 

4. To what degree can experiments in a virtual environment meet the same learning 

objectives as similar traditional hands-on experiments? 

5. To what degree do student characteristics explain differential outcomes in a 

general chemistry laboratory course? 

Human Subject Research 

All parts of this dissertation that involved human subjects received institutional 

review board (IRB) approval.  

Phases of Data Collection and Analysis 

The data was collected and analyzed over several phases with the results of each 

phase informing the next phase as outlined in Figure 3.1 below. The first phase of the 

project was to decide which concepts the virtual experiments should cover. Once the 

experiments were chosen, the second phase consisted of interviewing faculty members at 

nearby institutions about what learning goals they have for the chosen experiments. These 

learning goals were then used to measure student’s learning in the later phases of the data 

collection. There were two phases of piloting the selected experiments before the full 

implementation phase took place. The first phase of piloting took place one-on-one with 
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students coming in and completing the virtual experiment with the researcher to get a better 

understanding of how the designed procedures were working. Additionally, the students 

were asked to complete affective items after completing the experiment to pilot test how 

the items were working. The experiments were then beta-tested by having individual 

sections of 24 students complete one of the selected virtual experiments and completing 

the affective items. These students were observed while they completed the laboratory to 

further refine the procedures. These observations, as well as initial data analysis from the 

data collected during beta-testing, informed the full implementation. For the full 

implementation, the selected virtual experiments were implemented in half of all possible 

sections being offered in any given term. The other sections served as a reference group to 

compare the virtual experiment results to. The results from the full implementation can 

then inform what possible benefits and drawbacks exist for virtual experiments across a 

range of selected experiments. 

Phase One: Experiment Selection 

Figure 3.1: Outline of the five phases of data collection 
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 Learning goals can span across the three domains of learning. The affective domain 

is broadly defined as the domain that emphasizes a feeling tone, an emotion, or a degree of 

acceptance or rejection (Krathwohl et al., 1964). The cognitive domain is broadly defined 

as the domain that emphasizes mental skills and content knowledge (Bloom et al., 1956). 

The psychomotor domain is broadly defined as the domain that emphasizes manual or 

physical skills (Simpson, 1971). Professors may have experiment-specific goals that span 

all three domains or goals that only cover one domain, depending on what the specific 

experiment emphasizes or what their preference is. For example, some experiments have 

laboratory techniques that students are focusing on whereas other experiments have 

minimal techniques and the primary focus is conceptual understanding. To adequately 

cover different possible types of experiments, a range of experiments were chosen.   

The experiments were selected based on two criteria. The first criterion was that 

the experiment needed to be a commonly completed experiment in a typical general 

chemistry laboratory sequence. This criterion allowed professors from multiple institutions 

to be interviewed since, even though they may have slightly different procedures, they all 

share a basic understanding of how that type of experiment works. Data was obtained from 

Dr. Deb Exton (2016) at the University of Oregon to determine what the most common 

experiments performed were. As part of the development of the ACS laboratory exam, Dr. 

Exton and Dr. Reeves (2014)  analyzed 37 laboratory manuals from a variety of institutions 

and found that the top seven experiments conducted in the general chemistry series were: 
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1. Volumetric Analysis (titrations) 

2. Stoichiometry 

3. Kinetics  

4. Spectrophotometry (Beer’s Law) 

5. Properties of Acids and Bases 

6. Calorimetry 

7. Gas Laws 

The second criterion was that the type of experiment needed to be done during 

back-to-back weeks. This criterion allowed for the possibility of a crossover design for the 

implementation of virtual experiments in the curriculum. A crossover design is a 2 by 2 

design that allows differences at the individual level and temporal order to be assessed 

(Grant, 1948). In this design, half the students completed an experiment virtually one week 

and then a hands-on experiment the second week and the second half of the students did 

the opposite. This design is summarized in Table 3.1.  

Table 3.1: Crossover design 

 VIRTUAL ENVIRONMENT HANDS-ON ENVIRONMENT 

FIRST EXPERIMENT 
First half of students 

(Group A) 

Second half of students 

(Group B) 

SECOND EXPERIMENT 
Second half of students 

(Group B) 

First half of students 

(Group A) 

To identify potential experiments meeting the previously defined criteria, 

laboratory syllabi from a Pacific Northwest higher research university (R2, University 1), 

a Pacific Northwest highest research activity (R1, University 2), and nearby community 

colleges were analyzed (2015). These institutions were chosen using convenience 

sampling, which is that they were chosen because of the relationships already established 

during the interview phase of this research (Farrokhi & Mahmoudi-Hamidabad, 2012). At 

University 1, the syllabus for the first term of the general chemistry laboratory sequence 

revealed that there were two experiments conducted over the interaction of light and matter 
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(Beer’s Law). In the second term, there were two experiments conducted over calorimetry 

and two experiments conducted over gas laws. In the third term, there were two 

experiments conducted over titrations. The same instructor has been teaching the course 

for the last decade and thus the experiments do not change much from year to year. At 

University 2, Beer’s Law and titrations were the only two topics that had two experiments 

completed back-to-back weeks. One of the local community colleges (Community College 

1) completed back-to-back experiments over gas laws and calorimetry and the other 

community college (Community College 2) completed back-to-back experiments over 

calorimetry and Beer’s Law, as summarized in Table 3.2. With the primary focus being on 

the primary institution (University 1), all four experiments were selected to interview 

faculty members over. 

Table 3.2: Outline of experiments completed at the selected institutions 

 BEER’S LAW CALORIMETRY GAS LAWS TITRATIONS 

UNIVERSITY 1 x x x x 

UNIVERSITY 2 x   x 

COMMUNITY 

COLLEGE 1 
 x x  

COMMUNITY 

COLLEGE 2 
x x   

Phase Two: Establishing Learning Goals 

One question that remains as a gap in the literature on the efficacy of virtual 

experiments is if students completing a hands-on experiment differ from students 

completing a virtual experiment on their ability to meet learning goals set out by the faculty 

in charge of the laboratory course. A learning goal, also sometimes referred to as a mastery 

goal, is broadly defined as the ability to demonstrate one’s competence (Dweck, 1986). 

More generally, a learning goal is an outcome that the professor wants the students to 

master after completing an experiment or completing the course. While there has been 



49 

 

previous work done on course-based learning goals for the laboratory (Bretz et al., 2013; 

Bruck et al., 2010), little work has been on done on experiment-specific learning goals. An 

example of a course-based learning goal for the general chemistry laboratory is that 

‘students will be able to learn laboratory techniques’ whereas an example of an experiment-

based learning goal is that ‘students will be able to successfully perform an acid-base 

titration using an end-point indicator’. In this example, the experiment-specific goals allow 

the professor to narrow the exact techniques they want the students to master rather than 

the broad goal of general laboratory techniques. Without experiment-specific goals, a 

student completing an experiment in a virtual environment and a different student 

completing the experiment in a hands-on environment may both meet the overall course 

learning goals equally but may not meet the goals for that specific experiment equally.  

Thus, there is a need to focus on exactly what professors want students to master at the 

experiment level before it is possible to compare students across institutions or types of 

laboratory environment. Faculty members in charge of the laboratory were interviewed to 

capture what specific learning goals they have. 

Participants  

 The participant pool for the learning goal interviews was created using purposive 

expert sampling. Purposive expert sampling is when the participants are selected for being 

knowledgeable in their field and is one of the most common sampling techniques when 

qualitative research starts without a lot of background literature support (Etikan et al., 

2016). Any faculty member that has previously taught the laboratory could be considered 

an expert on what they want their students to gain from specific experiments. However, 
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due to time and accessibility, faculty members at the home institution, a Pacific Northwest 

higher researcher university (R2), and at nearby community colleges were included in the 

participant pool for expert interviews (Carnegie Commission, 2015). These institutions all 

teach with different curricula that cover the same content of experiments. Therefore, the 

experiment-specific learning goals will be compared to measure how generalizable across 

curricula they are.  

Data Collection 

Once the experiments were selected, expert interviews were conducted with the 

faculty members in charge of the general chemistry laboratory sequence at their institution 

to understand their specific learning goals. Expert interviews are a qualitative technique 

that is commonly used in chemistry education research (Bretz et al., 2013; Bruck et al., 

2010; Mutambuki & Fynewever, 2012) that involves interviewing an individual in the field 

to gain insight into the topic in which they are the expert (Bogner & Menz, 2009). Since 

there was specific information that the interviews were targeting, a semi-structured 

approach was used. A semi-structured interview approach is when the interviewer has 

specific questions they are interested in knowing about and use natural follow-ups to gain 

more information based on the participant's response (Wengraf, 2001) and has been 

frequently utilized to address similar questions within similar research. (Abell & Bretz, 

2018; Canpolat et al., 2006; Nakhleh, 1994). The faculty members participating in this 

research were interviewed about the selected experiments that occur throughout the year 

of the general chemistry sequence. 
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Interview Protocol 

 The semi-structured interviews took place by asking the professors guiding 

questions with natural follow-up questions based on their responses. Examples of guided 

questions that professors were asked are noted below, for a full interview protocol see 

Appendix B. 

1. Describe what students do in this procedure [referring to each specific 

experiment]. 

2. What learning goals, or things you want your students to get out of this lab, do 

you have? 

3. If a student was sick and missed this experiment, what would they miss? 

Since professors have differing levels of comfort with the term learning goals, the third 

guiding question was used as an alternative way of elucidating their learning goals. This 

question allowed professors not as familiar with learning goals to think about the important 

parts of the individual aspect that students show evidence of mastering after completing 

the experiment. Based on their answers to the three guiding questions, natural follow-up 

questions were asked to clarify and elaborate on their answers, such as asking the professor 

to elaborate on why they had those specific learning goals for the experiment. 

Data analysis  

The audio-recorded faculty interviews were transcribed verbatim to assist in the 

data analysis process. The transcripts were then open coded to determine the experiment-

specific goals each professor had expressed for each experiment they were interviewed 

over. Open coding is when the researcher analyzes the transcripts without letting any 

preconceived idea influence the coding and instead looks for thematic elements to appear 

naturally (Strauss, 1987). This open coding process was done by the primary researcher to 

generate a list of experiment-specific learning goals that each professor had. The lists of 
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each professor’s experiment-specific goals were further analyzed to determine what 

commonality between professors existed. This generated a second list of the shared 

experiment-specific learning goals between all professors. Generating these lists allowed 

for student laboratory reports to be analyzed on whether the student meets their professor’s 

experiment-specific learning goals. 

Phase Three: Piloting Instruments and Experiments 

 After establishing experiment-specific learning goals, the virtual experiments could 

then start to be piloted to measure what differences may exist in both the cognitive and 

affective domain. Before the affective domain could be measured in pilot studies, the 

constructs of interest first had to be determined and appropriate scales selected. 

Selecting the Virtual Experiment Platform 

 There are many different platforms for virtual experiments at the general chemistry 

level such as the Second Life® virtual world (LindenLab, 2003), Late Nite Labs 

(Macmillan Learning), LearnSmart Labs (McGraw-Hill Education), PhET (University of 

Colorado), the Chemistry Collective (Carnegie Mellon University), and many more. The 

platform that was ultimately used was narrowed down from the possible platforms based 

on how much of the environment was replicated in the virtual environment. Some 

platforms, such as the PhET simulations, do not replicate all aspects of the laboratory but 

instead focus more on conceptual understanding. Other platforms, such as Second Life, 

focus on an immersive experience that replicates as many aspects of the physical 

environment as possible. Then there were also platforms that fell in between those two 

extremes. For example, LearnSmart Labs incorporate many aspects of the environment but 
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leave out other aspects to simplify the interface for the students. Ultimately, this middle 

platform was selected as the experiments needed to mirror the physical environment but 

also be simple and clear. McGraw-Hill Education generously provided access to the 

LearnSmart Labs for this research. 

Designing the Virtual Procedures 

 LearnSmart labs have many built-in features available for users to use including an 

electronic notebook and a premade procedure for the laboratory. However, these 

procedures were not sufficient to use for this research as they were not as closely aligned 

with the traditional hands-on laboratory as possible. The traditional hands-on laboratory 

procedure for each of the selected experiments was used as the starting place for the virtual 

experiment. From there, the procedures were modified to adapt the experiment to the 

virtual environment and what chemicals were present. For example, the traditional hands-

on procedure called for students mixing phosphoric acid and sodium hydroxide in a 

calorimetry experiment whereas the LearnSmart Lab only had hydrochloric acid available 

for the calorimetry experiment. The formatting and as many steps as possible were 

consistent between the procedures in the two environments to minimize any potential 

differences that could cause one environment to have a different experience than the other. 

 The initial procedures that were developed for the virtual experiments were tested 

and further refined to maximize how aligned the two procedures were, as well as for clarity, 

in Phases 3 and 4 of this dissertation before the final versions were implemented in Phase 

5. 
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Measuring the Affective Domain 

The affective domain is more broadly defined than the cognitive domain and covers 

many different aspects including constructs such as anxiety, motivation, interest, etc. A 

construct is a postulated attribute of a person that cannot be directly measured (Cronbach 

& Meehl, 1955). Therefore, indirect measures are used as a proxy of the underlying 

construct. For example, rather than hooking up a probe to someone’s brain to measure 

anxiety it is instead measured by asking the participant items that are predicted, or shown 

in previous work, to relate to their level of anxiety. However, researchers have to be 

selective with how many constructs they try to measure at the same time because people, 

especially students, can experience testing fatigue. Testing fatigue is when the person is 

given a set of questions that is too long and results in answers that are not as valid (Kendall, 

1964). For example, rather than thinking about each question thoughtfully, students may 

just repeat the same answer for many questions in a row. Therefore, researchers must limit 

the number of affective constructs they measure in any individual study to ones they are 

most interested in studying. 

Selecting affective constructs and items 

 The constructs for this study were selected to address three areas that may 

contribute to benefits and drawbacks between the two environments. The area that was 

addressed was if pre-existing attributes exist that could cause students to perform 

differently in the two laboratory environments. As each student enters the laboratory with 

a different background and having different attributes, it is possible that there are constructs 

that help to explain their performance in the laboratory. One of these constructs that can 
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explain the students’ performance is interest in chemistry and the laboratory overall. If a 

student is highly interested in chemistry, and in coming to the laboratory, then they are 

more likely to perform better than someone who has little to no interest in these things. 

Interest has been shown to be a significant predictor of performance in many disciplines 

(Harackiewicz et al., 2008; Rotgans & Schmidt, 2011) and specifically chemistry (Ferrell 

et al., 2016). Therefore, interest was chosen as a construct that could help explain why 

students perform differently in the laboratory. 

 Specifically, initial interest was chosen because this is the interest that students 

enter the classroom with. One way that initial interest has been measured in classrooms is 

through a set of items that Harackiewicz et al. (2008) developed. These items were later 

adapted for use in chemistry (Ferrell & Barbera, 2015) and shown to have similar 

psychometric properties when applied in a new context. Therefore, the initial interest set 

of items, as adapted by Ferrell and Barbera, were administered to the students at the 

beginning of their participation in the study to capture their initial interest. For a list of the 

items used, see Appendix A. 

 The next area that was addressed examined potential benefits and drawbacks that 

exist because of the experiment that took place. To examine this, it was important to 

understand what the goals of the laboratory were in the first place. One stated goal 

(Hofstein, 2017) of the laboratory is to increase students’ attitude toward science. An 

existing instrument, the Attitudes toward the Subject of Chemistry Inventory (ASCI) 

(Bauer, 2008; Brandriet et al., 2011; Chan & Bauer, 2014), has scales that are well aligned 

with this goal. It has the scales of “Emotional Satisfaction”, which measures how satisfied 
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the students are emotionally, and “Intellectual Accessibility”, which measures how 

challenged the students felt. The ASCI was revised in 2011 to have better psychometric 

properties and be more aligned with a theoretical framework (Xu & Lewis, 2011).  

 In addition to determining if students find virtual experiments less challenging and 

are less satisfied performing them, previous literature has documented that anxiety is more 

prevalent in chemistry laboratories than other environments (Bowen, 1999). Therefore, it 

is possible that the anxiety levels between students completing the experiment in a virtual 

environment and a traditional hands-on environment are drastically different since they 

have different sources of anxiety present.  An instrument, the chemistry laboratory anxiety 

instrument (CLAI), was developed previously to measure the various component of 

students’ anxiety levels in the laboratory (Bowen, 1999). Additionally, the original ASCI 

also had a general anxiety scale. Therefore, the items from both the CLAI and ASCI were 

analyzed for similarities and new semantic differential items were developed based on the 

existing scales to measure students’ general anxiety in both the virtual and traditional 

hands-on experiment. See Appendix A for a copy of these scales. 

 The third area that was focused on was examining the differences that exist because 

of the environment the laboratory was performed in and not necessarily the experiment 

itself. There are specific aspects of the affective domain that are context-specific. 

Therefore, it was of interest to ask questions that captured specific affective aspects in each 

environment to be able to directly compare aspects of students’ affective domain between 

the virtual and hands-on environment. For example, if not requiring students to wear proper 

personal protective equipment (PPE) in the virtual environment changed their perception 
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of the experiment. A previous cross-over design study used existing items as well as 

developed their own set of paired questions that captured some of the expected affective 

differences between the two environments. Specifically, the questions covered ‘Equipment 

Usability’, the ‘Usefulness of Lab’, the ‘Usefulness of Computers’, ‘Anxiety towards 

Computers’ and the ‘Open-Endedness of Lab’ as these are possible differences between 

the environments that the researchers hypothesized. These five scales make up the Virtual 

and Physical Experimentation Questionnaire (VPEQ) (Pyatt & Sims, 2012). This 

questionnaire was developed and initially administered in a similar cross-over design 

experiment to capture the specific differences between the two environments making it a 

very good fit for this study (Pyatt & Sims, 2012). However, the original instrument had 

thirty-six items, to limit testing fatigue, only items that directly or indirectly compared the 

two environments were used. If an item indirectly compared the two environments, a new 

item was paired with the question to make the comparison explicit. After narrowing down 

the original thirty-six items, there were eighteen items covering nine direct comparisons 

between a virtual environment and a traditional hands-on environment. The new items from 

the 5 scales will be referred to as the VPEQ items.  See Appendix A for a copy of the items 

used. 

 These chosen scales and items allowed for targeted aspects of the affective domain 

to be captured without the students being overwhelmed and fatigued by the number of 

questions they were asked. Overall, students were asked questions about their ‘initial 

interest’, ‘anxiety’, ‘emotional satisfaction’, ‘intellectual accessibility’, and the VPEQ 

items covering specific affective differences between the environments.   
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Initial wording changes 

 Minor wording modifications were made prior to initial piloting to some scales to 

better fit the application of the project. The first major change was to the emotional 

satisfaction and intellectual accessibility scales. The original versions of these scales used 

chemistry overall or the classroom environment as a frame of reference. Since this research 

took place in the laboratory, the frame of reference was changed to better fit the laboratory 

environment. Therefore, the frame of reference used for the equipment usability and 

intellectual accessibility scales was changed from “Chemistry is…” to “This experiment 

was…”. 

Participants 

 Students were recruited through purposive sampling to participate in piloting of the 

virtual laboratories and the scales and items chosen for the project. The students were 

recruited out of the general chemistry laboratory course at University 1, Community 

College 1 and Community College 2. These universities were chosen because of the 

possibility of implementing a large-scale study in the future at these institutions.  

Think-aloud Interviews 

Participants were asked if they were willing to participate in an interview. This 

interview followed a think-aloud protocol, where the students are asked to explain their 

thought process to the interviewer throughout a process. For each interview, the student 

met the interviewer and first completed a virtual experiment. During the virtual experiment, 

students were asked to think aloud about their initial impression and decision making when 

working with the experiment. Then following the experiment, the students were given all 
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of the chosen items and then after completing the items were asked to explain why they 

selected the responses that they did. This interview process allowed for the opportunity to 

see how the students were interpreting all the items and test the virtual environments on a 

small scale. Further item modifications were made after seeing how students were 

responding to the items. 

Further wording changes 

 After conducting the think-aloud interviews, it became evident that further wording 

modifications were needed. The VPEQ items were initially administered on a frequency-

type response scale ranging from ‘almost never’ to ‘very often’. However, in the 

interviews, it was clear that the students were struggling to place their responses on a 

frequency scale of how many times during the virtual experiment the statement happened. 

Therefore, the responses were piloted a second time using a Likert-type response scale 

from ‘strongly disagree’ to ‘strongly agree’. In this form, students provided more consistent 

answers and had an easier time responding to the Likert-type scale. Additionally, all 

students struggled to answer a pair of items from the ‘usefulness of lab’ scale. The item 

read “The _____ experiment provided me opportunities to pursue my own experimental 

interests”. However, students did not understand what it meant by experimental interests 

and were giving inconsistent responses on their interpretation of this question. Therefore, 

it was not included moving forward when the scales were distributed in the pilot study data 

collection. 
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Phase 4:  Beta-testing instruments and experiments 

Participants: 

Participants for this phase were chosen based on purposive sampling. Before 

implementing virtual experiments across all sections offered at University 1, the selected 

virtual experiments were beta-tested in select sections. Each of these sections completed 

only one of the selected virtual experiments. Students enroll randomly into various sections 

based on their preferred day and time and therefore did not know that their section would 

be doing a virtual experiment. However, the section was chosen based on the TA that was 

teaching the class as the more senior TAs had the experience of teaching similar labs in 

previous terms.  

Affective data collection 

The scales and virtual experiments were piloted after being refined through think-

aloud interviews. This pilot study data collection consisted of one graduate teaching 

assistant (TA), per selected experiment, at University 1 implementing the crossover design 

(Table 3.1 from above) in their two sections. The laboratory course was offered twice a 

year meaning that for the pilot data collection each selected experiment was implemented 

twice as a crossover design. Students were administered the initial interest, emotional 

satisfaction, intellectual accessibility, and anxiety scales using paper and pencil 

immediately after completing the first experiment in the crossover design. The next week, 

students completed the second experiment in the crossover design using the environment 

that they did not use the previous week. Then, after completing the second experiment, 

students were administered the emotional satisfaction, intellectual accessibility, and 
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anxiety scales using paper and pencil again and were also given the VPEQ items. The initial 

interest scale was only administered at the beginning of the data collection to capture the 

incoming level of interest students had but was not administered a second time because 

their initial interest is not expected to change over the course of a week. The VPEQ items 

were administered only after finishing both experiments since these scales have paired 

questions that directly compare the two environments. The emotional accessibility, 

intellectual accessibility, and anxiety scales measure general affective aspects and therefore 

were administered after the experiment completed each week. This allowed these scales to 

be used to compare overall changes in affective aspects within a person across the two 

environments. The scale administration within the crossover design is summarized in Table 

3.3.  

Table 3.3: Scale administration throughout crossover design 

 VIRTUAL 

ENVIRONMENT 

HANDS-ON 

ENVIRONMENT 
SCALES ADMINISTERED 

FIRST 

EXPERIMENT 

First half of students Second half of students Initial Interest, Anxiety,  

Emotional Satisfaction,  

Intellectual Accessibility 

SECOND 

EXPERIMENT 

Second half of students First half of students Anxiety, Emotional Satisfaction, 

Intellection Accessibility,  

VPEQ Items 

 

Cognitive data collection 

 Students completed two types of laboratory reports based on which selected 

experiment was completed. For half of the experiments at University 1, the students 

completed brief worksheets with their laboratory partner that were due before leaving for 

the day, whereas for the other half of experiments the students completed formal laboratory 

reports on their own that were due one week after the experiment ends. The students turned 
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in their report to a learning management system regardless of which type of report, a 

worksheet or a formal report, they completed. The reports pertaining to the selected 

experiments for the students who consented to be a part of the study were then downloaded 

and stored for further analysis. These reports were then analyzed using a rubric generated 

from the list of experiment-specific learning goals to determine how well students met the 

desired goals. 

Affective data analysis 

 After collecting responses to the eight scales that the students answered at the 

various time points outlined in Table 3.3, the data were analyzed to determine if they were 

functioning appropriately. One way of determining if the scales were measuring the 

intended constructs is by performing a confirmatory factor analysis (CFA) and examining 

how well they fit hypothesized models. A CFA has the ability to determine how well 

indicator items are informing a latent construct (Kim & Mueller, 1978). A CFA is chosen 

over an EFA when the scales are previously developed because there is an established 

model that the items are hypothesized to fit. Indicator items are the questions that we ask 

students to indirectly measure the construct. For example, if we are interested in the 

students’ anxiety, we ask them indirect questions to measure their anxiety levels. These 

questions can then be put into a confirmatory factor analysis model to determine how well 

they identify the latent construct of anxiety. An example of a confirmation factor model is 

shown in Figure 3.2.  
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In this example, the three constructs measured by the ASCI and ASCIv2 are shown 

in the ovals. An oval in a CFA model represents a latent construct as it cannot be directly 

measured. Instead, the construct is measured with indicator items as shown by the squares 

under the latent construct. The arrow between the construct and item represents how well 

that item identifies the construct. Since the three scales have been shown in previous 

research to be correlated with each other, there is the need to also add correlation arrows 

between the constructs, shown as the double-headed arrows. Together this represents the 

hypothesized model for how anxiety, emotional satisfaction, and intellectual accessibility 

are related. 

To test this model and run a CFA, It is generally suggested that there is a need for 

at least 200 responses (Marsh et al., 1988). Above 200 responses there starts to be enough 

variation in the responses that enough information about the fit of the model can be 

calculated. Therefore, after administering the scales in 16 sections of 24 students per 

section there were enough students in the sample to run one-factor CFA models for each 

of the scales that had at least four items on the scale. A one-factor CFA model is similar in 

structure to the model shown in Figure 3.2 except only a single construct is represented. 

Figure 3.2: CFA model of ASCI scales 
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For example, the one-factor CFA model for anxiety consists only of the items for anxiety 

and how well they measure the latent construct of anxiety. These CFA models were used 

to determine how well the indicator items are informing the latent constructs they represent 

and to determine if any changes to the scales are needed. The CFA output contains 

information in the fit statistics, various statistics that indicate how well the data fit the 

hypothesized model, on how well the indicator items are informing about the same latent 

construct. There are many different fit statistics that can be calculated from the output of a 

CFA model but the most commonly reported are the comparative fit index (CFI), the 

standardized root mean square residual (SRMR), and the root mean square error of 

approximation (RMSEA). However, the RMSEA is known to be less informative for 

models that have low degrees of freedom such as the one-factor CFA models for each scale 

(Kenny et al., 2015). These scales have low degrees of freedom due to having only either 

four or five indicator items per scale. Thus, the CFI and the SRMR were used to determine 

how well the indicator items were informing the same latent construct.  

 Previous simulation work has been done to determine what general numeric values 

for the CFI and SRMR are deemed to provide acceptable fit (Hu & Bentler, 1999). 

Although they only ran specific models in their simulation study, the values provided by 

Hu & Bentler have been tested in a wide range of other models and held up equally well 

(Miyake et al., 2000). Therefore, if the CFI is above 0.95 and the SRMR is below 0.08 the 

data fit the proposed model, indicating that the items are adequately fitting together to 

inform the same latent construct. Further investigation about the model was warranted if 

the fit indices did not indicate adequate fit. Modification indices are one way of examining 
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why there is not adequate model fit. A modification index indicates how well the model fit 

would be improved if another path in the model was added (Steiger, 1990). For example, 

it may suggest that two of the indicator items have correlated errors and it is necessary to 

add that path to the model to achieve adequate fit. However, the researcher must also use 

a theory-driven approach to see if the modification makes sense in the model rather than 

just modify the model until achieving adequate fit (Schreiber et al., 2006). If there is a 

theoretical reason to add the path then the researcher can modify the original model and 

determine if the new model has adequate fit.  

 This process of running CFA models and examining the fit indices was performed 

on all the individual scales that had at least four items before administering the scales in a 

large data collection. The CFAs were run and analyzed using the Laavan package (version 

0.5-23.1097) in R Studio. Running CFAs and examining fit statistics ensured that the scales 

that were administered in the academic year of the full-scale data collection had evidence 

for construct validity. Construct validity means that the scales are measuring the construct 

that they are meaning to measure and is supported with two pieces of evidence. The first is 

that the students responded in the think-aloud interviews in a way that was consistent with 

the construct. The second is that the items are all indicating the same construct to an 

adequate degree and are not multi-faceted.   

 A power analysis is needed after determining the functionality of the scales to see 

if anything meaningful can be said with the sample size obtained through the pilot data 

collection. Each experiment was implemented twice in the academic year with each 

implementation containing two sections of up to 24 students per section. Therefore, if all 
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sections were full and all students consented, the most data collected is 48 students per 

environment to compare. A power analysis was run, using G*Power (version 3.0.10.) for 

a two-tailed t-test with an alpha level of 0.05 and a power level of 0.8. This analysis 

determined that only large effects were able to be detected with 48 students per group. The 

results of the power analysis are summarized in Table 3.4. 

Table 3.4: Power analysis results 

 
Sample Size per 

Group Required 

Small effect 394 

Medium effect 64 

Large effect 26 

 

Cognitive data analysis 

 To assess if their learning goals were met, all faculty members that were 

interviewed used some form of a laboratory report that students completed after finishing 

an experiment.  These laboratory reports ranged from worksheets to formal laboratory 

reports. The worksheet format used at University 1 consisted of the students completing a 

short introduction about the conceptual aspects of the experiment and then answering brief 

directed questions about their results and conclusions. These were typically used when the 

students were introduced to a concept for the first time. On concepts that students have 

experience with, or are more complicated to understand, formal reports were frequently 

used at the primary institution. A formal report is designed to mimic journal-style articles 

and have students begin thinking about formal scientific writing (Hofstein, 2004). The 

student reports were analyzed for how well the students met the learning goals for the 
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specific experiment regardless of the format of the report since the report is the only 

assessment of the learning goals used at all institutions involved. 

Generating the rubrics 

  The rubrics used to analyze the reports were generated by using the common 

learning goals that all professors expressed as the primary focus. An individual instructor’s 

goals were only added if all professors within the same institution agreed that it was an 

important learning goal. This captured learning goals that were institution-specific but left 

off learning goals that were unique to individual professors. Generating the rubric in this 

manner ensured that multiple professors shared the learning goals assessed in the reports 

and thus increases the likelihood that the findings could be generalized to other professors 

and institutions. Therefore, the rubrics for each experiment were generated by listing the 

common learning goals on separate lines of the rubric. See Table 3.5 for an example of 

what a sample rubric looked like.  

Table 3.5: A generic rubric 

 DID NOT MEET MEETS 

LEARNING GOAL 1   

LEARNING GOAL 2   

LEARNING GOAL 3   

 

 This generic rubric was then filled in with the learning goals that professors had for 

a given experiment. For example, the common learning goals professors had for a Beer’s 

Law experiment were listed in place of ‘Learning Goal 1, 2, 3, etc’. This turned the rubric 

from the generic rubric in Table 3.5 to an experiment-specific rubric seen in Table 3.6. 
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Table 3.6: Experiment-specific rubric (Beer’s Law) 

 DID NOT MEET MEETS 

UNDERSTAND THE 

RELATIONSHIP BETWEEN 

ABSORBANCE AND 

CONCENTRATION 

  

PREPARE SOLUTIONS   

DETERMINE AN 

UNKNOWN 

CONCENTRATION USING 

THE RELATIONSHIP 

BETWEEN ABSORBANCE 

AND CONCENTRATION 

  

  

Student laboratory reports were then assessed with the experiment-specific rubrics. 

For example, if a student wrote in their report that there was a linear, or directly 

proportional, relationship between absorbance and concentration they were marked as 

meeting this learning goal. If a student did not mention anything about Beer’s Law or the 

relationships it explains, they were marked as not meeting the learning goal. This process 

was carried out for all the learning goals of a specific experiment using the experiment-

specific rubrics in Appendix B. 

Data analysis 

 Initial data analysis took place after the rubrics were established for each of the 

selected experiments. An additional researcher, a post-baccalaureate student, was added to 

the project to assist in the analysis of the student reports. An additional researcher was 

necessary to establish inter-rater reliability. Inter-rater reliability is defined as the ability 

for two (or more) independent coders to classify the same object into the same set (Gwet, 

2014). In other words, it allows for two independent researchers to assess the level of 

agreement on which category to mark for the students meeting the learning goal. Having 
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another researcher also allowed for discussions to take place regarding the clarity of the 

rubric and learning goals. 

 The two researchers initially coded a random sample of ten reports per experiment 

with five of the reports from the students completing the experiment in the hands-on 

environment and five of the reports from the students completing the experiment in the 

virtual environment. The two researchers then met to determine the level of initial 

agreement for the ten reports. If this initial agreement was below 100% for any individual 

learning goal, the researchers discussed the disagreements. After clarifying the 

disagreements, the researchers analyzed another seven randomly selected reports and met 

again. This process continued until the two researchers agreed 100% of the time.  A 

commonly used minimum agreement for the field of chemical education is 70% (Buck et 

al., 2008; Fay et al., 2007) making the threshold of 100% more than acceptable. Another 

method of calculating the inter-rater reliability is Cohen’s Kappa. (Cohen, 1960) However, 

when agreement is reached 100% of the time, Cohen’s Kappa is equal to percent agreement 

with a value of 1. 

 The researchers then coded the remaining reports for each experiment 

independently after they met the 100% threshold. The researchers met throughout the 

process to discuss any reports that they were not completely sure about. This process 

generated a numeric score that represented the level to which the student met the desired 

goals. For example, if a student fully met the learning objective their report was assigned 

a score of 1 whereas if they partially met the goal it would. This score was then used in 

further analysis as a representation of the student’s cognitive domain. This was chosen 
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since the cognitive domain is the domain of content knowledge and the student reports are 

the primary way students demonstrate their content knowledge at all institutions involved. 

Phase 5: Full Data Collection and Analysis 

 After completing a full year of pilot data collection and analyzing the data, several 

major changes were made based on two findings. The first finding that came out of the 

pilot data analysis was that the back-to-back experiments were not as parallel as planned. 

Although they were covering the same topic (i.e., acid-base titration) the students had very 

little recognition that they were similar experiments and forgot any skill and conceptual 

knowledge they learned the week before. Therefore, for the full data collection, the 

research design was simplified to only looking at one experiment per term rather than 

continuing with the crossover design. The second finding was that the students were better 

able to demonstrate their content knowledge when they write a formal report than 

completing a worksheet. Thus, the three selected experiments were converted to formal 

reports if they did not already include one. In addition to these findings, there was a need 

to add to the depth of the information gained from the affective items by adding focus 

groups and interviews. This was based on the results of phase 4 data analysis. This data 

analysis showed mixed findings between the two environments and the addition of focus 

groups and interviews allow for targeted questions about the students’ experience to be 

asked. 

Participants 

 For phase 5, all sections being offered of general chemistry at University 1 were 

included in the participant pool and therefore all students enrolled in the general chemistry 
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laboratory course were also included. The sections were selected based on the room they 

took place in to complete either a selected virtual experiment or the traditional hands-on 

counterpart. The students in the participant pool were invited to volunteer to be interviewed 

or participate in a focus group to elaborate on their answers to the items they completed in 

the survey. 

Focus Groups and Interviews 

 After completing the data analysis for phase 4, it was clear that there was more 

information to be gained than the survey items could provide. Therefore, in phase 5 

students were invited to participate in both focus groups and one-on-one interviews. Focus 

groups were chosen to capture students’ conversations with each other. Focus groups are 

often able to provide unique perspective since students will react to what other students say 

in addition to the planned research questions. Students also had the option to volunteer to 

be interviewed instead of coming to a focus group. While interviews lose the interaction 

between students, they allow an individual’s experience to be well documented. These 

experiences can give depth to what individual students see as the benefits and drawbacks 

to the environment in which they completed the selected experiments. All students who 

were enrolled in the laboratory course were offered to come in for both a focus group and/or 

an interview.  

 Both the focus groups and interviews were largely unstructured with the goal of 

having students elaborate on their experience during the selected experiment. The students 

already had completed the survey items so there was targeted questions for them to follow-
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up on their survey item responses. These focus groups and interviews were then used in 

phase 5 data analysis to possibly explain some differences between the two environments. 

Affective data collection 

 The affective data collection had to be modified from the pilot data collection 

because a second experiment was not being conducted. Instead of the students answering 

the items about both environments, the students were given all items electronically after 

completing the selected experiment in either the virtual or traditional hands-on 

environment. Additionally, the VPEQ items were rewritten as generic items rather than 

about the specific environment since the students no longer experienced both 

environments. For the new VPEQ items see Appendix A. 

Cognitive data collection 

 The cognitive data collection was similar to the pilot data collection. The one 

difference was that the worksheets were eliminated and instead the students were asked to 

write formal reports for the selected experiments that use to have worksheets. The 

laboratory reports were turned in online via a learning management system and then were 

downloaded and stored with pseudonyms for future data analysis.  

Affective data analysis 

 The full-scale data collection reached large enough sample sizes that it was possible 

to run CFA models that separated the data by experiment rather than lumping all the data 

together to reach a large enough sample. Therefore, the hypothesized models for the scales 

consisting of four or more items were analyzed using a CFA for each individual 
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experiment. For the models that showed adequate fit, further analysis was completed to 

determine what differences in the affective domain exist between the two environments. 

 For any experiments where initial interest was significantly different between 

learning environments, a multivariate analysis of covariance (MANCOVA) was ran after 

achieving model fit. A MANCOVA is used to test if there are differences in group means 

on multiple dependent variables while also accounting for covariates (Mertler & Reinhart, 

2016). This allowed the two environments to be compared in all the affective constructs 

measured to and see if there are any meaningful differences while accounting for the initial 

interest in chemistry that the students had. For the experiments where initial interest was 

not significant, a MANOVA was used instead. The MAN(C)OVA tests were completed 

using SPSS version 24.0 after checking that all the assumptions for running a MANOVA 

are valid.  

Cognitive data analysis 

 The rubrics generated from the pilot data analysis were used to code the laboratory 

reports for the full data collection. This was done by two coders analyzing all of the 

laboratory reports. The two independent coders coded seven reports independently and 

then met to establish percent agreement. This process continued until 100% agreement was 

reached. After it was reached, the independent coders coded all of the laboratory reports 

and met regularly to clarify any questions. After a rubric score and grade from the 

laboratory report was generated, the cognitive variables were added to the MANOVA with 

the affective variables to see if there are any differences between the two environments on 

both the cognitive and affective variables. 
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Analyzing student profiles 

 After classroom observations and interviews in phases 2-4, it was clear that there 

are groups of students that are experiencing the two environments in drastically different 

ways. For example, there was one student that is a single parent and needed to find 

childcare to come to the chemistry lab. This student rejoiced at the idea they could possibly 

complete experiments at home one day instead of coming in. There was also a student who 

wanted to work in the pharmaceutical industry that loved coming to chemistry lab every 

day and resisted the idea of virtual experiments. In addition to the large extremes, many 

students saw the laboratory as just another class to go through the motions and were not 

fazed in either environment. With such a varied response to virtual experiments, it was 

important to capture what student profiles were present in the laboratory and which 

environment they may be best served in. 

 In phase 5, student profiles were created by running latent profile analysis. Latent 

profile analysis is a model-based cluster analysis. The most important choice when doing 

a latent profile analysis is selecting which clustering variables to use. Since the rubric 

scores have little variation in scores, the affective variables that were significantly different 

between environments were used as clustering variables to create affective profiles. 

Analysis was completed in R version 3.3.0 using the package ‘mclust’. These clusters can 

then be used as a grouping variable in a MANOVA. 

 In addition to testing for differences using a MANOVA between environments, a 

MANOVA can also detect differences between the clusters within an environment. 
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Therefore, MANOVAs were ran within each environment to determine how the clusters 

differ on both the cognitive and affective variables. This provides more information on 

what profile of student made up each cluster and how the type of environment they 

completed the experiment in influences their affective state.  
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CHAPTER IV: Assessing Affective Differences Between A Virtual General Chemistry 

Experiment and a Similar Hands-On Experiment 

 

Reprinted with permission from Hensen, C. & Barbera, J (2019). Assessing Affective 

Differences Between A Virtual General Chemistry Experiment and a Similar Hands-On 

Experiment. Journal of Chemical Education, 96 (10), 2097-2108. Copyright 2019 

American Chemical Society. 

ABSTRACT 

 To date, few general chemistry laboratory studies have included affective 

measures despite calls for more research on aspects of this domain. This shortage of 

studies may be partially due to the scarcity of affective measures that have been designed 

for, or tested in, the college laboratory setting. To provide measures for use in this 

environment, several existing affective scales were adapted for this new context. Before 

data from the scales were utilized to study the environment, evidence was provided for 

the validity and reliability of the data generated from them. Once sufficient evidence was 

provided, it was possible to determine affective differences between students completing 

a Beer’s Law experiment in the traditional hands-on laboratory (control group) and a 

similar experiment in a virtual environment (treatment group). To assess expected 

differences between environments, scales for anxiety, emotional satisfaction, intellectual 

accessibility, usefulness of lab, equipment usability, and open-endedness of lab were 

selected. To account for potential between-student differences, scales for feeling-related 

initial interest and value-related initial interest were selected. Overall, students who 

completed the virtual experiment scored significantly lower on the emotional satisfaction, 

intellectual accessibility, usefulness of lab, and equipment usability scales. However, it 

was noted that student responses in the virtual environment varied significantly by which 
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teaching assistant (TA) instructed the section. To test for a possible instructor effect, data 

from the virtual sections were grouped by TA as ‘Virtual Group A’ and ‘Virtual Group 

B’. Group A contained the TAs who had sections with lower averages on the emotional 

satisfaction scale as compared to group B. After controlling for instructor, differences 

between student responses in the ‘Hands-On’ sections and ‘Virtual Group A’ sections 

were no longer significant while significant differences remained between the responses 

in the ‘Hands-On’ and ‘Virtual Group B’ sections. This outcome indicated that the TA 

instructing the course may have been more influential on students’ affective outcomes 

than the environment in which the experiment was performed. 

GRAPHICAL ABSTRACT 
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INTRODUCTION 

Over the past decade, there has been a steady increase in the number of students 

electing to take college classes from a distance, which typically involves taking online 

courses (Seaman et al., 2018). While this may provide an acceptable learning experience 

for courses in many fields, online courses pose a specific challenge to the laboratory 

component of the chemistry curriculum. Currently, the American Chemical Society 

(ACS) requires 400 hours of laboratory instruction for a student to earn an ACS certified 

bachelor’s degree (ACS, 2015). This requirement highlights the common belief that 

laboratory courses are essential to an undergraduate chemistry degree. Thus, universities 

have sought out varying ways to include a chemistry laboratory experience for students 

who elect to complete courses in a non-traditional environment. One of the most common 

approaches to address this challenge is to offer a laboratory course that uses at-home kits 

(Boschmann, 2003; Hoole & Sithambaresan, 2003; Kennepohl, 2007). These kits allow 

students to be exposed to laboratory basics, such as glassware and reagents, in a space of 

their choosing. More recently, institutions have taken advantage of advances in 

technology to offer alternatives that rely on the use of computers. 

 The technologic approach can be categorized in two distinct ways. The first 

category includes experiments that incorporate the use of a remote laboratory 

environment. Remote laboratories involve a student using a computer interface to control 

an instrument that is housed at a different institution (Herranz et al., 2018; Ma & 

Nickerson, 2006). For example, a student controls a robotic system to put a sample into 
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an instrument to take a physical measurement and data from the instrument is then 

reported back to the student. This method allows students to collect real-time data from 

physical instruments without being physically present for the data collection. The second 

category includes experiments that simulate the entire process, including data collection. 

This approach, called a virtual laboratory environment, drastically reduces operating 

costs as there are no physical laboratory spaces, reagents, or instruments to maintain. 

There have been a number of different approaches to the virtual laboratory ranging from 

simple simulations (Clark & Chamberlain, 2014; Perkins et al., 2006) to fully-immersive 

environments (Winkelmann et al., 2017; Winkelmann et al., 2014) and multiple 

environments in-between (Hawkins & Phelps, 2013; Reece & Butler, 2017; Woodfield et 

al., 2005; Woodfield et al., 2004). 

Regardless of which environment is chosen as an alternative to the physical 

laboratory, it is imperative that potential differences between environments be evaluated 

to ensure that students have similar outcomes to the students in the traditional hands-on 

laboratory across the three domains of learning (cognitive, psychomotor, and affective). 

Outcomes in the cognitive domain include aspects of the knowledge acquired in an 

experiment (Bloom et al., 1956), outcomes in the psychomotor domain include the skills 

acquired from the experience (Simpson, 1971), and outcomes in the affective domain 

include aspects of students’ attitudes and emotions regarding an experiment or the 

learning environment (Krathwohl et al., 1964). The cognitive domain is frequently 

measured by administering content-based items such as prelab or postlab quizzes in a 

laboratory environment or test questions in a lecture environment. The psychomotor 
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domain is frequently measured in the laboratory setting with the use of laboratory 

practical exams that measure specific skills students are expected that have learned. The 

affective domain includes a wide range of constructs including motivation, emotion, 

interest, values, attitudes, and many more. Within each construct, there may be further 

subconstructs such as self-efficacy within the broader construct of motivation. These 

constructs can then be targeted for specific interventions and measured to determine 

whether an intervention has positive or negative impacts. In the college setting, it has 

previously been reported that motivation, self-esteem, self-perceptions, feelings of 

confidence, self-concept of ability, and teacher praise are some of the most important 

affective constructs to target (Hunt, 1987). More specifically, for the laboratory the 

construct of general attitude has been proposed as an important affective construct, as one 

of the goals of the science laboratory is to increase students’ attitude toward science 

(Hofstein, 2017). Aspects of these three domains need to be measured to determine what, 

if any, differences exist between learning environments. 

Differences Between Traditional and Alternative Environments 

Several studies have been conducted to examine the advantages and 

disadvantages of incorporating virtual experiments in various curricula ranging from high 

school chemistry laboratories (Pyatt & Sims, 2012; Winkelmann et al., 2014) to upper-

division college laboratories (Woodfield et al., 2005; Woodfield et al., 2004). These 

studies generally fall into two categories. The first category includes comparative studies 

that examine differences between a virtual and a traditional hands-on experiment using 

treatment and control groups. The second category includes studies that describe the 
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virtual environment used and the potential advantages and disadvantages they have 

without the use of a comparative group.  

At the general chemistry level, Hawkins and Phelps conducted a comparative 

study with 84 students completing a virtual electrochemistry experiment and 85 students 

completing the equivalent traditional hands-on experiment (Hawkins & Phelps, 2013). 

The students completed a pretest and a posttest content knowledge quiz to determine if 

there were any cognitive domain differences between the groups. No statistical difference 

between the two groups was detected. As there were remaining questions if virtual 

experiments could provide the same psychomotor outcomes as a traditional hands-on 

laboratory environment, the researchers measured both groups’ ability to complete a 

hands-on practical regardless of which environment they completed the experiment in 

and again no statistical difference was detected. While the researchers concluded that no 

differences were detected between environments in the cognitive and psychomotor 

domains, they did not measure any aspects of the affective domain. 

A comparative study that focused on potential differences in the affective domain 

was conducted by Pyatt and Sims (2012) at the high school level. In their study, students 

were assessed using a newly created affective instrument, the Virtual and Physical 

Experimentation Questionnaire (VPEQ), that measured students’ attitude towards various 

aspects of the two environments. This instrument measured aspects of usefulness of 

computers, anxiety towards computers, equipment usability, open-endedness of lab, and 

usefulness of lab. Within-person differences were controlled for by using a 2x2 Latin 

square (crossover) study design in which the 184 students completed both a virtual 
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experiment and a traditional hands-on experiment (Grant, 1948). Results indicated a 

higher average for the virtual experiment for the constructs of equipment usability and 

open-endedness of lab but no detectable difference between environments for the 

construct of usefulness of lab. The significance of these differences was not tested. In 

addition to these affective constructs, cognitive domain differences were measured by 

scoring laboratory reports. The first experiment was scored using a binary scale whereas 

the second was scored on a four-point scale. No significant difference was detected 

between groups in the first experiment but a significant difference was detected in the 

second experiment, with the scores of the students who completed the traditional hands-

on experiment being significantly lower than the scores of the students who completed 

the virtual experiment. The scoring system for the cognitive assessments changed 

between experiments to allow for more resolution and thus could explain why 

significance was found for the second experiment but not the first. Future work should be 

done to elaborate on the affective and cognitive differences seen in this comparative 

study and how they compare to the collegiate level. 

Grove and colleagues measured differences across all three domains of learning 

for a college hybrid curriculum that incorporated LearnSmart Labs by McGraw-Hill 

Education (Enneking et al., 2019). Rather than measure differences for a specific 

experiment, the differences measured were for the entire hybrid curriculum as a whole. In 

total, 195 students completed the hybrid curriculum across the 2015 calendar year. In this 

curriculum, students alternated between a virtual experiment and a traditional hands-on 

experiment. There were no statistically significant differences found when measuring 
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cognitive outcomes using the ACS General Chemistry Laboratory Assessment or 

psychomotor outcomes using a hands-on laboratory practical. However, the hybrid 

students had a significantly lower mean scale score on the affective portion of the 

Meaningful Learning in the Laboratory Instrument (MLLI), which has 8 items that 

measure a general affective state. Upon further examination of the items, it was revealed 

that students in the hybrid curriculum had lower affective aspects with the exception of 

worrying about completing the lab on time when compared to the hands-on students, 

however, it was not possible to determine what differences were specific to the virtual 

environment as the hybrid curriculum included both types of experiments and data was 

collected only at the beginning and end of the curriculum. 

Irby and colleagues focused more narrowly within a hybrid curriculum to better 

understand if students who completed an electrical conductivity experiment in a virtual 

environment engaged with the chemistry triplet (Johnstone, 1982), which models the 

different levels of understanding in chemistry: submicroscopic, macroscopic, and 

symbolic, to a different degree than students who completed a similar hands-on 

experiment (Irby et al., 2017). Their study utilized a pretest-posttest alternative treatment 

with a  control group study design (Mack et al., 2019) where there was a control section 

that did not use the hybrid curriculum and two treatment sections that did. The two 

treatment sections were staggered so that in any given week, one section was completing 

a hands-on experiment while the other section was completing a virtual experiment on a 

different topic. This allowed for the institution to offer three laboratory sections while 

only having two laboratory rooms available. However, this meant that the control section 
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and the two treatment sections had a different order of experiments over the course of the 

term. For example, the “leading” hybrid section completed the conductivity experiment 

in week seven whereas the “trailing” hybrid section and the hands-on students completed 

the experiment in week six. After comparing the sections, no statistically significant 

differences were found on the cognitive outcomes, as measured by pre- and post-

assessments, nor students’ use of the chemistry triplet. However, the authors note that this 

could be a function of the small sample size as the students who completed the 

experiment in the virtual environment appeared to connect between the triplet levels more 

often despite the difference not being statistically significant. 

Winkelmann and colleagues (2017) used the virtual platform Second Life (SL) to 

measure differences across the three domains of learning for two specific experiments 

rather than a hybrid curriculum. In this study, 55 students completed both a gas law 

experiment and a titration experiment in the SL platform while 67 students completed 

both experiments in a traditional hands-on (control) environment. Both the control and 

the SL group showed cognitive gains on the post-quiz as compared to the pre-quiz, 

however, the SL group had significantly higher gains in both experiments. Within the 

psychomotor domain, students in both groups performed equally well on a follow-up 

hands-on laboratory practical. To measure differences within the affective domain, 

students were asked general questions authored by the researchers about their experience 

in the respective learning environment. These general questions were elaborated on in 

written responses and focus groups. Students reported that the SL experiments took less 

time to complete, they felt that they learned more in the traditional hands-on experiment, 
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and had higher perceived grades in the SL experiment as compared with previous hands-

on experiments. Future research can expand on these findings by using affective 

instruments with measured psychometric properties rather than general self-authored 

questions. 

The second type of commonly conducted study pertaining to alternative labs does 

not contain a traditional hands-on laboratory control group. Instead, in descriptive 

studies, the advantages and disadvantages of a specific virtual platform are investigated. 

Winkelmann and colleagues (2014) conducted a study on SL at the high-school level 

before conducting the comparative study at the college level. In this study, seven high 

school students completed a SL experiment as part of a summer class. The students were 

evaluated on aspects of their attitude using a modified version of the Inquiry Laboratory 

Attitudes Survey (Chatterjee et al., 2009). However, the scale was developed for inquiry-

labs and had not been psychometrically evaluated for the new context. The students were 

also evaluated on their cognitive outcomes by assessing their laboratory report. The 

students were able to successfully complete the experiment, as indicated by their 

laboratory report score, and reported that they felt the SL experiment was shorter than 

their other experiments in the term. In addition to this study, descriptions of how SL can 

be used more broadly in chemistry as a discipline has been the subject of multiple articles 

(Lang & Bradley, 2009; Murray-Rust, 2008). 

Woodfield and colleagues created a suite of virtual experiments including one as 

part of an inorganic laboratory curriculum (Woodfield et al., 2004) and one as part of an 

organic laboratory curriculum (Woodfield et al., 2005). These studies are descriptive in 
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nature and thus they did not have a control group. In their inorganic study, they found 

that students were able to use the virtual environment to complete experiments that would 

be challenging to complete in a traditional hands-on laboratory setting. For example, the 

students were given 26 cations and 11 reagents that they could combine, which would 

have required significant prep time for the traditional hands-on laboratory. Many of the 

students reported qualitatively that the virtual experiment helped them learn the content. 

Similarly, in their organic study, they found that the students who had a positive 

experience with the virtual experiment were more likely to have a higher course grade. 

Unlike the Hawkins and Phelps study, Woodfield and colleagues focused more on 

affective differences. They found that students in both the inorganic and organic study 

preferred the virtual experiment for the adaptability of the environment to perform 

experiments that are not as feasible to do in traditional hands-on laboratories. However, 

they used general Likert-type items to ask affective questions that were not rooted in any 

specific construct and also they did not measure any psychomotor outcomes. 

Overall, the comparative and descriptive studies on virtual experiments in the 

chemistry curricula point to either no difference (Hawkins & Phelps, 2013; Winkelmann 

et al., 2014) or a slight potential benefit (Pyatt & Sims, 2012; Winkelmann et al., 2017; 

Woodfield et al., 2005; Woodfield et al., 2004) in the cognitive domain when students 

complete the experiment virtually. This is in line with studies measuring the cognitive 

domain when the alternative environment is an at-home kit (Casanova et al., 2006; 

Kennepohl, 2007) or a remote environment (Corter et al., 2011; Kennepohl et al., 2004; 

Scanlon et al., 2004; Sonnenwald et al., 2003). In addition to the cognitive domain, there 
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was no difference in the students’ ability to perform the laboratory skill covered in the 

experiment for the studies that included a psychomotor measure (Hawkins & Phelps, 

2013; Winkelmann et al., 2017). However, of the comparative and descriptive studies, 

only one study used an affective measure that has been psychometrically tested (Pyatt & 

Sims, 2012). The remaining studies either did not measure the affective domain, or used 

items that had unknown psychometric properties to measure the affective domain. This is 

a common challenge across all laboratory studies and not solely on studies involving 

alternative environments, as there have been few affective measures developed or 

adapted for chemistry laboratories. 

Affective Domain Measures for the Laboratory 

In response to a historically heavy focus on cognitive outcomes in research 

studies, the National Research Council has called for studies in discipline-based 

education research (DBER) to include the evaluation of outcomes within the affective 

domain (National Research Council, 2012).  Despite this call, a majority of chemistry 

laboratories studies either provide limited scope to the affective domain or do not include 

it at all. A primary reason for this has been the lack of affective measures designed for 

and tested specifically in the laboratory. A recent instrument, the MLLI (Galloway & 

Bretz, 2015a), was designed to address this issue and it has allowed researchers to study 

how aspects of the affective domain in the laboratory change over time (Galloway & 

Bretz, 2015c) and based on an intervention (Flaherty et al., 2017; Schmidt-McCormack et 

al., 2017). Additionally, it has been used to categorize student profiles (Galloway & 
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Bretz, 2015d). Another example of an affective instrument developed specifically for the 

laboratory is the chemistry laboratory anxiety instrument (CLAI) (Bowen, 1999).  

While not developed specifically for the laboratory, instruments to measure 

various aspects of the affective domain of chemistry students include the Metacognitive 

Activities Inventory (MCAI) (Cooper & Sandi-Urena, 2009), the Chemistry Expectations 

Survey (CHEMX) (Grove & Bretz, 2007), the Chemistry Self-Concept Inventory (CSCI) 

(Bauer, 2005), the Attitude toward the Subject of Chemistry (ASCI) (Bauer, 2008) and 

the revised version (ASCIv2) (Xu & Lewis, 2011), the Colorado Learning Attitudes 

about Science Survey (CLASS-Chem) (Adams et al., 2008), and the Academic 

Motivation Scale (AMS-Chem) (Liu et al., 2017). These instruments serve as potential 

measures for the affective domain in the laboratory setting. However, for any of these 

instruments to be used in studies of the laboratory environment their functioning in this 

new context would need to undergo psychometric testing to ensure that there was 

sufficient evidence of data validity and reliability. 

Psychometric Testing 

Whenever an instrument is distributed within a different setting than originally 

developed for, evidence for the validity and reliability of data from the instrument in the 

new context needs to be provided (Arjoon et al., 2013; Barbera & VandenPlas, 2011; 

Furr, 2017). For example, it is possible that questions asked in a classroom setting do not 

function in the same way in a laboratory setting. Thus, the internal structure of the 

instrument could be different and pose a threat to the validity. Another issue that could 

arise from adapting an existing instrument to a new context is that students no longer 
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interpret the questions as they were initially intended. For example, an item asking if the 

student “feels comfortable” may be interpreted in multiple ways. One way students may 

interpret the item is if they feel comfortable with big-picture concepts but alternatively, it 

may be interpreted is if they feel physically comfortable in the laboratory setting itself. 

Differences like this pose a threat to the response process aspect of validity (Schwartz & 

Barbera, 2014). Additionally, to accurately compare treatment and control groups with 

the same instrument, invariance testing needs to take place to show that both groups have 

the same relationship to the variables being measured (Milfont & Fischer, 2010). If 

evidence is provided that items are functioning in both contexts, it is possible to use the 

items to measure meaningful differences between groups. 

Research Questions 

Previous work on the differences between traditional hands-on and alternative 

laboratory environments has found very little or no difference on measures in the 

cognitive domain, however, there have been fewer studies on the differences in the 

affective domain. This study aims to address this gap by investigating differences 

between a virtual environment and a traditional hands-on environment within the 

affective domain of learning. Before differences can be tested, evidence for the validity 

and reliability of the data generated from the scales used needs to be provided. As such, 

this research is guided by the following three questions: 

1. To what degree can previously developed scales be adapted for use in the laboratory 

environment? 

2. What evidence of validity and reliability supports data collected with the adapted 

scales? 
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3. How do various aspects of the affective domain compare when students complete a 

general chemistry experiment virtually as opposed to a traditional hands-on 

experiment? 

Methodology 

Overview 

A post-test-only alternative treatment control group research design was chosen to 

investigate the effect of virtual experiments on affective outcomes (Mack et al.). To 

address Research Question 1, several affective scales were selected and modified for use 

in the laboratory setting. Cognitive interviews were used to evaluate the validity of the 

modified scales. The scales were distributed within the interview format to determine 

how students responded and to assess any issues with the response process for the 

selected items. To address Research Question 2, psychometric analysis was performed to 

address the internal structure of the individual scales, the scales relation to each other, 

and the internal consistency of the scales. To address Research Question 3, comparative 

statistics were used to determine what, if any, affective differences existed between 

environments. As this project has multiple facets, the research questions will be used to 

organize the methodology and results sections. 

Human Subject Research 

All parts of this research were approved by the institutional review board at the 

author’s home institution, Portland State University. Participants in the laboratory courses 

had the option to provide informed consent and only those participants who consented are 

represented in the data. 
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Research Question 1: Selection of Scales 

Anderson summarized that there are seven central student affective 

characteristics: values, academic self-esteem, anxiety, interests, locus of control, 

attitudes, and preferences (Anderson & Bourke, 1981). Anxiety, attitudes, and interests 

were chosen for inclusion in this study. The selection was limited to three to avoid survey 

fatigue, thereby reducing the chance of students reporting less thoughtful answers. The 

Attitude toward the Subject of Chemistry Inventory (ASCI) scales for the cognitive 

aspect of attitude (intellectual accessibility) and the affective aspect of attitude (emotional 

satisfaction) were selected based on one of the general goals of the chemistry laboratory; 

to increase students’ attitude toward science (Hofstein, 2017). The original ASCI scales 

were chosen over the modified version of the scales (ASCIv2) because the scales were 

being adapted for a new context. Thus, all original items were tested as it was unclear if 

the modifications made would be the same modifications needed for a different context. 

Additionally, there may be differences in students’ anxiety as those completing an 

experiment within technology-based alternative environments, such as a virtual 

environment, do not need to consider the safety hazards of chemicals nor do they have to 

wear proper personal protective equipment (PPE). Therefore, an anxiety scale based on 

the Chemistry Laboratory Anxiety Instrument (CLAI) and the ASCI anxiety scale was 

created. There may also be specific environment differences, such as ease of equipment 

use, and thus items from the Virtual and Physical Experimentation Questionnaire (VPEQ) 

were selected. Beyond these differences, there may be differences in students’ incoming 

interest toward chemistry. To control for any incoming differences, an interest scale 
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previously adapted for chemistry (Ferrell & Barbera, 2015) was selected. The modified 

version of each scale used in this study is provided in Appendix A. 

Research Question 1: Modifying and Adapting Selected Scales 

Emotional Satisfaction and Intellectual Accessibility 

The ASCI and the modified version (ASCIv2) have been widely used to measure 

students’ attitude changes across the implementation of an intervention (Chan & Bauer, 

2015; Mooring et al., 2016; Vishnumolakala et al., 2017). Although the ASCI was 

originally administered in the laboratory (Bauer, 2008), the items were operationalized to 

chemistry as a whole. Therefore, the frame of reference of these scales was altered by 

changing from the original frame of reference of “Chemistry is…” to “This experiment 

was…”. The emotional satisfaction and intellectual accessibility scales are comprised of 

semantic differential questions. A semantic differential question contains a spectrum 

between two polar opposite words such as safe and unsafe (Heise, 1970). The 

administration of the scales was done electronically and as a result, it was possible to 

change the original seven-point semantic differential scale to a sliding scale from 0 to 

100. This change allowed the students to select anywhere along the spectrum. No 

additional changes were made to the scales. 

Anxiety 

Students’ anxiety levels may differ between laboratory environments and have 

been shown to be related to student attitude (Bauer, 2008). While the original ASCI did 

have semantic differential items on anxiety, there was little reasoning given for why some 

of the word pairs were chosen. For example, it was unclear how the ‘disgusting-
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attractive’ item pair informed aspects of anxiety. Therefore, after careful review of the 

original ASCI anxiety items, only the ‘relaxed-tense’ pair was selected for use. In 

addition to this item, the stems from the twenty items on the Chemistry Laboratory 

Anxiety Instrument (CLAI) were used to create additional anxiety semantic differential 

item pairings. For example, multiple CLAI items measured students’ nervousness while 

performing a range of tasks and therefore ‘nervous’ was chosen as one of the words for 

the semantic differential. The opposite word for each word pair was decided by the 

researchers and were later tested for evidence of validity. For the case of nervous, calm 

was chosen as the opposite word. In total, there were four word pairs selected based on 

the CLAI stems that, with the original ASCI item, gave a total of five word pairs: 

nervous-calm, safe-unsafe, anxious-unconcerned, apprehensive-at ease, and relaxed-

tense.  

Usefulness of Lab, Equipment Usability, and Open-endedness of Lab 

The VPEQ was designed to measure specific differences between the virtual 

environment and the traditional hands-on environment when used in a crossover research 

design (Pyatt & Sims, 2012). The 39 original items were analyzed to determine which 

could be modified to fit the current research design in which students complete an 

experiment in either the treatment or the control environment. For example, item 11 

stated “the regular lab experiments worked better than the computer experiments” and 

item 29 stated “computer simulations work better than regular experiments”. These items 

were combined to ask students if the experiment worked well. After analyzing the 

original items, ten items were selected that could be generalized or modified for use in 
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the current research design. These ten items were given on a five-point (strongly agree-

strongly disagree) Likert-type scale. 

Interest Scale 

 In addition to expected differences across environments, there may be additional 

differences between students that could relate to their laboratory experience and 

outcomes. Previous research found a link between students’ incoming interest levels and 

course performance (Ferrell et al., 2016). Therefore, the two components of initial interest, 

feeling-related interest and value-related interest, were measured to account for potential 

differences in incoming ability (Harackiewicz et al., 2008). As these scales were adapted to 

measure students’ incoming general interest in chemistry, no modifications were 

required. However, they had not been applied to or evaluated within the laboratory 

environment prior to this study. 

Research Question 1: Scale Testing 

Response Process Validity 

Students were recruited for a response process interview from the general 

chemistry laboratory sections during the Winter 2017 term. Classroom announcements 

were made at the beginning of a laboratory period and students were provided a link to 

sign up for interview slots. Participants were compensated ($20 gift card) for 

participating in the interview. During the interview, participants completed the items 

from the anxiety, emotional satisfaction, intellectual accessibility, usefulness of lab, 

equipment usability, open-endedness of lab, initial interest-feeling, and initial interest-

value scales one item at a time. For each item, they were asked to provide their reasoning 
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for selecting a particular response to determine if there was evidence for response process 

validity. This type of validity is an evaluation of the respondents understanding of an 

item to ensure its alignment with the authors intended meaning (American Educational 

Research Association et al., 1999; Schwartz & Barbera, 2014). If the rationale students 

provided was not aligned with the researcher’s intended meaning, the item was flagged 

for modification or removal. If students gave a rationale that was aligned with the 

intended meaning, there was validity evidence that the item was being interpreted as 

intended and could be used in future implementations of the scale in the given context. 

Research Questions 2 and 3: Implementation of Experiments 

Population 

All sections of the general chemistry laboratory at Portland State University were 

assigned to complete the selected experiment in either the virtual environment (treatment 

group) or the traditional hands-on environment (control group). This is an approximately 

random selection as students enroll in the section that best fits their schedule. Students 

were not made aware ahead of time which sections would complete the experiment in a 

virtual environment. A total of 28 sections of the general chemistry laboratory taught by 

14 graduate teaching assistants (TAs) were offered in the Fall 2018 term with a total 

enrollment of 634 students. Sixteen of these sections completed the virtual experiment 

and twelve sections completed the traditional hands-on experiment. For logistical 

reasons, the sections were unable to be balanced at fourteen sections for each 

environment. While all students completed the experiment in their section’s assigned 
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environment, only responses from students who consented to participate in the study 

were analyzed. 

Experiment Selection and Design 

The concept of Beer’s Law is commonly covered in an experiment during the first 

term of a general chemistry laboratory sequence and as such was selected for this 

research study. In this institution’s hands-on experiment, students use a known 

concentration of Allura Red to make a calibration curve and calculate the concentration 

of Allura Red in red Gatorade. The matching virtual experiment was chosen as the 

‘Spectrophotometry: Calibration Curves’ experiment within LearnSmart Labs by 

McGraw-Hill Education. In this virtual experiment, students are randomly given either a 

red, yellow, or blue dye. They are given five prefilled test tubes with known 

concentration of the selected dye to create the calibration curve and a test tube with 

unknown concentration. Additionally, since the virtual students did not have to create 

their own solutions from a stock solution, they were also tasked with first completing the 

‘Dilute Solutions’ experiment in the LearnSmart environment. This experiment had them 

dilute a stock solution to two different concentrations, which allowed them to still gain 

practice with the concept of diluting a stock solution.  

Data Collection 

Students completed either the traditional hands-on or virtual experiment in the 

laboratory room with their TA and laboratory partner. Once students completed the 

experiment, the TA prompted them to use the laboratory computers to answer the scale 

items administered through the Qualtrics program. Included among the scale items was a 
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‘check item’. A check item is a question that asks students to select a specific response 

option to ensure that students are carefully reading and responding to the items. For this 

study, the check item read “Please select strongly agree for this question”. Therefore, it is 

assumed any student who did not select strongly agree for the question was not carefully 

reading the items and thus their data was not used for analysis. 

Research Question 2: Analysis 

After collecting the affective item responses, the structure of the scales was 

examined to provide evidence of the internal structural validity of each scale. To do this, 

confirmatory factor analysis (CFA) was used to evaluate a priori models of each scale. 

The analyses were conducted using version 0.6-3 of the R package lavaan (Rosseel, 

2012). To account for any non-normality in the data, the maximum likelihood with 

Satorra-Bentler corrections (MLM) estimator was used for all CFA models. Additionally, 

previous research provided links between the feeling and value aspects of interest (Ferrell 

& Barbera, 2015) and between the constructs of anxiety, emotional satisfaction, and 

intellectual accessibility (Kurbanoglu & Akim, 2010). Therefore, a two factor and a 

three-factor model, respectively, were tested to confirm those relations. All scales were 

reviewed for potential modifications if individual factor loadings were below a cutoff 

value of 0.4 or if the fit indices were out of range (i.e., CFI below 0.95, SRMR above 

0.08, and/or RMSEA above 0.06) as recommend by Hu and Bentler (1999). Additionally, 

the internal consistency of each scale was tested and modifications were made if any 

scales had an omega value below the generally accepted cutoff value of 0.70. 

McDonald’s omega is similar to the commonly reported alpha but is more appropriate for 
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congeneric models, which is a model where factor loadings and error terms are not 

constrained to be equal (Komperda et al., 2018). Therefore, single-factor congeneric CFA 

models were tested for each scale. 

Research Question 3: Analysis 

Once all scale data was deemed to have acceptable model fit, invariance testing 

took place to examine if both the treatment and control groups responded to the items in a 

similar fashion. To test for measurement invariance, each model was tested with the data 

split by group rather than combined into a single data set. If the global model fit is still 

within the acceptable range when the model is tested by group (with equal loadings and 

intercepts) or if the CFI changes by less than or equal to 0.01, then measurement 

invariance is determined and the two groups can be compared on the affective items 

(Cheung & Rensvold, 2002). A relatively small change in the CFI indicates that 

specifying the model to have equal loadings and intercepts did not change the model in a 

meaningful way. This indicates that the two groups were responding in a similar fashion. 

If the model fit changed drastically then further investigation of the response differences 

would be warranted. Once invariance was determined, a multivariate analysis of variance 

(MANOVA) was conducted using version 24 of SPSS to evaluate group means on 

multiple affective scales to determine if there are any statistical differences in the 

measured affective domain aspects between the virtual and traditional hands-on 

environment.  
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RESULTS 

Research Question 1: Response Process Validity 

Ten students participated in an interview. Each student completed the items from 

scales one item at a time and then gave their reasoning for their response selection. For 

example, on the intellectual accessibility scale, a student selected that the experiment was 

closer to the ‘confusing’ side of the word pair ‘confusing-clear’ because “I think the 

procedure was a little unclear”. This response aligned with the intended interpretation of 

the word pair and thus provided evidence for response process validity. For all but one 

item, students gave reasoning for their selected answer that correctly aligned with the 

intended meaning of the item. This increased the confidence that the newly created 

anxiety scale was functioning as intended. All ten students struggled to correctly interpret 

the item, “There is opportunity for me to pursue my own experimental interests” from the 

VPEQ usefulness of lab scale. All students interviewed were confused about what the 

term “experimental interests” meant. Therefore, this item was discarded and all other 

items were retained. 

Research Questions 2 and 3: Population 

There were 634 students enrolled in the first term general chemistry laboratory in 

the Fall 2018 term. Of those students, 448 students consented to have their data analyzed. 

There were 52 students who incorrectly responded to the check item “Please select 

strongly agree for this question” and thus were removed from the data set leaving 396 
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students in the final cleaned data set of which 178 of the students completed the 

traditional hands-on experiment and 218 completed the virtual experiment.  

Research Question 2: Reliability and Validity Evidence of Data Provided By Scales 

Individual Model Testing and Modifications 

 Before the difference in means between laboratory environments were analyzed, 

the scales were tested individually as single-factor, congeneric, CFA models to ensure 

they functioned as intended. This took place for each scale with four or more indicator 

items before analyzing the relations between individual scales. The equipment usability 

and open-endedness of lab scales each consisted of two items and the initial interest-

value scale consisted of three items. Thus, it was not possible to test the model fit for 

these scales as they would not be over-identified models (Duncan, 1975). 

Single-factor model results for the anxiety scale indicated that each fit statistic 

was outside the chosen cutoff criteria (Table 4.1). Additionally, the CFI for the 

intellectual accessibility scale was outside of the chosen cutoff. All other scales had CFI 

and SRMR values that were within the acceptable cutoff range and most scales had 

RMSEA values outside of the cutoff range, as shown in Table 4.1. However, when the 

degrees of freedom in a model are low (e.g. less than 50), the RMSEA is biased and 

should be interpreted with caution (Kenny et al., 2015). The degrees of freedom are low 

for these models and as such the RMSEA was not used as a primary indicator of fit. The 

lack of model fit for the anxiety and intellectual accessibility scales required further 

investigation before analysis. 
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Along with model fit, the internal consistency of each scale with four or more 

items was tested. Cronbach’s alpha is commonly used to measure this reliability, 

however, as the single-factor models were tested as congeneric, McDonald’s omega was 

more appropriate (Komperda et al., 2018). All scales had an acceptable internal 

consistency as shown by the omega value in Table 4.1.  

As the anxiety scale did not have acceptable fit, the loadings were examined and 

it was noted that the word pair ‘safe-unsafe’ loading was 0.165, which was significantly 

lower than the other items and below the chosen cutoff value of 0.4. Therefore, this item 

was removed and upon retesting the single-factor model, the anxiety scale had acceptable 

fit indices, as noted as ‘modified anxiety’ in Table 4.1, and had satisfactory internal 

consistency. The loadings of the intellectual accessibility scale did not have any values 

below the chosen cutoff value, therefore, the modification indices of this scale were 

investigated to determine if there were feasible relations between variables that would 

improve model fit. A high modification index between the error terms of the ‘hard-easy’ 

and ‘challenging-unchallenging’ word pairs was detected. Cohen’s w was calculated to 

determine the effect of correlating these terms, it was determined that the modification 

would result in a large effect of 0.46 (Cohen, 1992). Given the large effect and the word 

pair similarities, it is possible that they did not have independence of errors and thus the 

error terms for these items were correlated. This modified model showed acceptable 

model fit with good internal consistency, noted as ‘modified intellectual accessibility’ in 

Table 4.1.  
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Table 4.1: Fit indices and internal consistency values for single-factor models. Indices in 

italics are outside of the recommended range. Omega values are only shown for 

congeneric models deemed to have acceptable fit. 
 CFI SRMR RMSEA df Omega 

Emotional Satisfaction 0.95 0.04 0.26 2 0.88 

Intellectual Accessibility 0.91 0.05 0.22 5 --- 

Modified Intellectual Accessibility 0.99 0.02 0.10 4 0.85 

Anxiety 0.85 0.09 0.21 5 --- 

Modified Anxiety 0.99 0.02 0.05 2 0.81 

Usefulness of Lab 1.00 0.01 0.05 2 0.85 

Initial Interest-Feeling 0.98 0.02 0.14 2 0.88 

 

Two-factor and Three-factor Model Testing 

The ASCI scales were published with correlations between anxiety, intellectual 

accessibility, and emotional satisfaction. Therefore, a three-factor model was tested to 

determine if the newly created anxiety scale correlated to the existing scales in a similar 

fashion. The four-item anxiety scale, the emotional satisfaction, and the intellectual 

accessibility with the correlated item error term were tested as a three-factor CFA model, 

as seen in Figure 4.1. The three-factor model produced acceptable fit indices (CFI: 0.95, 

RMSEA: 0.08, SRMR: 0.04) allowing correlation comparisons to be made to the 

previously reported values. 

The three-factor model had a strong positive correlation between the intellectual 

accessibility and emotional satisfaction factors (0.91). Both intellectual accessibility and 

emotional satisfaction correlated negatively with anxiety (-0.65 and -0.66 respectively), 

as expected (Bauer, 2008). Bauer reported the correlation between anxiety and emotional 

satisfaction as -0.72, between anxiety and intellectual accessibility as -0.58, and between 

emotional satisfaction and intellectual accessibility as 0.62. While the correlation to 

anxiety is similar, Bauer used different word pairs for the anxiety scale and did not have a 

correlated error term for intellectual accessibility. Similarly, Xu and Lewis did not have 
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the correlated error term, had one less item for intellectual accessibility and did not 

include an anxiety scale in their ASCIv2. Even with the differences, they reported a 

similar correlation of 0.80 between their version of emotional satisfaction and intellectual 

accessibility (Xu et al., 2013). These correlations were similar to the previously reported 

correlations with the exception of the correlation between emotional satisfaction and 

intellectual accessibility, which was higher than previously reported. This could indicate 

that the affective and cognitive aspects of attitude may not be as distinct in the laboratory 

environment using these scales or that the addition of the original fifth item and the 

correlated error term strengthened the relation between the scales.  

Figure 4.1: Three-factor model showing correlations between ASCI scales including 

Anxiety (Anx), Emotional Satisfaction (ES), and Intellectual Accessibility (IA). 

Correlation coefficients from original ASCI (a) and ASCIv2 (b) shown for comparison. 
 

The interest scale had been previously reported in the literature as a two-factor 

model (Ferrell & Barbera, 2015). Thus, the ‘feeling’ and ‘value’ components were tested 

as a two-factor model and produced an acceptable fit (CFI: 0.98, RMSEA: 0.07, SRMR: 

0.03). The correlation between the ‘feeling’ and ‘value’ factors was 0.77, which was 

similar to the reported value of 0.69 as noted in Figure 4.2. 
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Figure 4.2: Two-factor model and correlations between initial interest scales. Correlation 

coefficient from original Ferrell and Barbera data shown for comparison. 
 

After testing the models, it was determined that the three-factor model of the 

anxiety, emotional satisfaction, intellectual accessibility scales and the two-factor model 

of the initial interest-feeling and initial interest-value scales had acceptable fit in this 

context and produced similar correlations to their prior setting and format. These results 

added to the confidence that the scales were functioning as intended, including the initial 

interest-value scale that could not be evaluated as a single-factor model. However, before 

the individual scales can be used to compare the two environments, measurement 

invariance had to be shown to ensure that both groups were responding to the scales in a 

similar manner.  

Invariance Testing 

 Each single-factor model was retested by group to measure the change in the 

global fit indices with equal intercepts and loadings. Under these conditions, the CFI for 

all models only changed slightly except for the one-factor intellectual accessibility model, 

as shown in Table 4.2. This result indicates that both the virtual and the hands-on 

students were interpreting the scale items similarly and a comparison between group 

means could be made for the individual scales. The intellectual accessibility scale had 

acceptable fit indices, despite the relatively large change in CFI, when tested as a grouped 
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model (CFI: 0.95, SRMR: 0.07, RMSEA: 0.13) and as such, it was also deemed 

acceptable for inclusion in the group mean analysis. 

Table 4.2: Difference in fit indices for models by group. 

 

 

 

 

Research Question 3: Group Comparisons 

With evidence of scale invariance established, group comparisons were made. 

The raw average scale scores for the affective scales are presented in Table 4.3. The 

anxiety, emotional satisfaction, and intellectual accessibility were collected on a 0 to 100 

sliding scale. The remaining scales were on a 5 point Likert-type scale. 

Table 4.3: Raw averages for the affective scales 

 Anx ES IA II-F II-V U EU OE 

Hands-On 32.71 72.28 66.10 3.76 4.32 3.78 4.21 3.54 

Virtual 35.68 60.33 57.80 3.69 4.23 3.47 3.75 3.54 

Anx: anxiety, ES: emotional satisfaction, IA: intellectual accessibility, II-F: initial interest-feeling,  

II-V: initial interest-value, U: usefulness of lab, EU: equipment usability, OE: open-endedness of lab  

 

A MANOVA was performed to compare groups using the average scores of the 

individual scales after checking the assumptions for a MANOVA. The first four 

assumptions are a function of the study design. All scales chosen were either Likert-type 

or continuous scales and as such were treated as interval data. It is appropriate to treat 

composite scores from Likert-type scales as interval data whereas individual item scores 

should be treated as ordinal data as the differences between responses options are unequal 

(Boone & Boone, 2012). Students completed the experiment in only one environment and 

thus there were independent groups. As students can randomly enroll in whichever 

 CFI SRMR RMSEA df 

Emotional Satisfaction -0.01 0.01 -0.09 10 

Intellectual Accessibility -0.04 0.05 0.03 16 

Anxiety -0.01 -0.03 -0.03 10 

Usefulness of Lab -0.01 0.04 0.01 10 

Initial Interest-Feeling 0.01 0.01 -0.07 10 
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section fit their schedule best, there were also independent observations within each 

group. Additionally, a chi-square test found no statistically significant difference for 

gender, race, or age between students in the two environments. There were 396 students 

in the data set, which is a sufficient sample size to conduct the MANOVA.  

The last five assumptions are not a function of the study design and need to be 

checked statistically. Multivariate outliers were tested for using Mahalanobis distance 

(De Maesschalck et al., 2000). This is a measure of the distance between two points in 

multivariate space and is used to find rare combinations of variables. For example, 

students who responded they were simultaneously anxious and comfortable. There were 

six multivariate outliers found that were above the chi-square value of 26.13 and all six 

completed the virtual experiment. These six data points were removed before further 

analysis took place. Multivariate normality was not directly assessed, however, the 

normality of each scale was evaluated using the skewness and kurtosis values. The 

skewness for initial interest-value and equipment usability were both below the generally 

accepted cutoff for normal data of negative one (Potthast, 1993). All other values were 

within the range of negative one to positive one. A MANOVA is robust to skewness 

(Olson, 1974) and therefore it is still possible to analyze the data with the skewness in the 

two scales. To test if there was a linear relationship between groups for each scale, 

scatterplots by group for each scale were analyzed and there was a linear trend in the 

scatterplot for all scales. Homoscedasticity is measured to ensure students in both 

environments had similar variances on the affective scales. Homoscedasticity was 

assessed through Levene’s test and it was found that the scales intellectual accessibility, 
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emotional satisfaction, usefulness of lab, equipment usability, and open-endedness of lab 

all had a significant result indicating that the variances were different between groups of 

students. Similarly to skewness, a MANOVA is robust to homoscedasticity violations 

and can still be conducted. Lastly, the variance inflation factor (VIF) was tested and all 

scales had a value greater than one and less than ten, which means that there was no 

multicollinearity. Multicollinearity is measured to ensure that no two variables are so 

highly correlated that they are essentially measuring the same construct. 

The results of the MANOVA indicated that there were significantly lower 

averages on emotional satisfaction, intellectual accessibility, usefulness of lab, and 

equipment usability for the virtual students. The emotional satisfaction and equipment 

usability scale score differences had a medium effect size, as measured by partial eta 

squared(Richardson, 2011), while the differences in intellectual accessibility and 

usefulness of lab scale scores had small effect sizes. The significant differences are 

represented in bold in Table 4.4 and the full MANOVA results can be found in the 

Appendix A. No statistical difference between groups was detected for initial interest-

feeling, initial interest-value, anxiety, or open-endedness of lab and as such, these scales 

were not included in further analyses.  
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Table 4.4: Significance and effect size of the group mean differences 

 p-value Effect Size 

Anxiety 0.237 0.004 (small) 

Emotional Satisfaction <0.001 0.049 (medium) 

Intellectual Accessibility 0.001 0.027 (small) 

Initial Interest-Feeling 0.466 0.001 (small) 

Initial Interest- Value 0.238 0.004 (small) 

Usefulness of Lab 0.001 0.028 (small) 

Equipment Usability <0.001 0.056 (medium) 

Open-endedness of Lab 0.971 0.000 (small) 

 

While the initial MANOVA revealed significant differences between 

environments, there were 14 graduate TAs in charge of teaching the laboratory and the 

differences detected could be the result of an instructor-effect and not necessarily 

reflective of the environment itself. To investigate for this possibility, the students’ scale 

scores were plotted by which TA taught their section, an example is seen in Figure 4.3. 

While it would be possible to conduct a MANOVA with posthoc tests to determine if the 

averages by TA were statistically different from each other, the sample size by TA in this 

study do not provide sufficient power to warrant such a test. Given this limitation, the 

data was examined visually. Upon inspection, it was noted that students who completed 

the virtual experiment with TAs numbered 11-14 (Figure 4.3) had a lower average for 

emotional satisfaction than those who completed the virtual experiment with the other 

TAs (7-10). Therefore, it was possible that the differences in TAs were influencing the 

significant differences found in the initial MANOVA. To test this, the data from the 

sections taught by TAs 1-6 were grouped together (Hands-On), by TAs 7-10 were 

grouped together (Virtual Group A), and by TAs 11-14 were grouped together (Virtual 
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Group B). The MANOVA was rerun with three groups instead of two to determine if an 

instructor-effect was leading to the differences between environments. 

Figure 4.3: Average emotional satisfaction for each TAs sections. 

 

Instructor Effect 

As each group had a sufficient sample size for use of Bonferroni corrections as 

the posthoc test, it was possible to compare the three groups to determine if the visual 

grouping was meaningful. Virtual Group A and Virtual Group B were compared and 

significant differences in the emotional satisfaction, usefulness of lab, and equipment 

usability scales were found (Table 4.5). These differences support the groupings of TAs, 

although it should be noted that there was no significant difference between the groups 

for the intellectual accessibility scale. These two groups were then compared separately 

with the Hands-On group to determine if splitting the virtual TAs changed the initial 

findings that virtual students had lower averages on the emotional satisfaction, 

intellectual accessibility, usefulness of lab, and equipment usability scales. When Virtual 

Group A was compared with the Hands-On group, no significant difference was found 
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for any of the affective constructs (Table 4.5). However, there was a significant 

difference for all four scales when Virtual Group B was compared with the Hands-On 

group. These results suggest an instructor effect is present since the findings were not 

consistent when each virtual group was separately compared with the Hands-On group. 

 

Table 4.5: p-values for posthoc comparisons between groups. 

 Emotional 

Satisfaction 

Intellectual 

Accessibility 

Usefulness 

of Lab 

Equipment 

Usability 

Virtual Group A-Virtual Group B 0.005 0.336 0.006 0.002 

Hands-On-Virtual Group A 0.160 0.214 0.883 0.119 

Hands-On Virtual Group B <0.001 0.001 <0.001 <0.001 

 

DISCUSSION 

 With an increase in the use of alternative laboratory environments, it is important 

to measure differences that exist between the alternative and traditional hands-on 

environments. However, there has been a lack of affective instruments that have been 

designed or modified for the laboratory environment to measure these differences. 

Therefore, an anxiety scale adapted from the CLAI and ASCI, the emotional satisfaction 

and intellectual accessibility scales from the ASCI, the initial interest-feeling and initial 

interest-value scales, and the usefulness of lab scale from the VPEQ were modified for 

the laboratory environment and the psychometric properties were tested. All scales had 

acceptable fit indices after modification and measurement invariance was established, as 

noted in Tables 4.1 and 4.2. The three-factor model of anxiety, emotional satisfaction, 

and intellectual accessibility and the two-factor model of initial interest-feeling and initial 

interest-value had acceptable fit and produced correlations that were similar to previously 

reported values. The scales for open-endedness of lab and equipment usability were not 



111 

 

tested with factor models as they had too few items but were included when running the 

MANOVA. With all scales functioning as intended and measurement invariance 

established, the group means were compared to determine what affective differences may 

exist between environments. 

 The students who completed the virtual Beer’s Law experiment had a higher 

average anxiety score and lower averages on all other affective aspects. These findings 

were in agreement with previous research (Enneking et al., 2019) that found students 

experience less favorable affective outcomes when completing a virtual chemistry 

experiment in the LearnSmart environment as compared with the traditional hands-on 

environment. However, when instructor effect was accounted for in the present study, the 

results were split. No significant differences were detected between the scale scores of 

students in the traditional hands-on environment and students who completed the 

experiment in the virtual environment with a TA in group A (Hands-On-Virtual Group A 

in Table 4.5). However, all four scales showed a significant difference when the same 

comparison was made between students in the traditional hands-on environment and 

students who had a TA in Virtual Group B (Hands-On-Virtual Group B in Table 4.5). 

This instructor effect indicates that which TA the students had may be a more decisive 

factor in their scores on the affect constructs measured than which environment they 

completed the experiment in.  

One possible explanation for the difference seen in students’ affective scores 

could be due to the TAs prior teaching experience. One TA in the Hands-On group, one 

TA in Virtual Group A, and three TAs in virtual group B were all teaching laboratories 
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for the first time at this institution. It was possible that the added burden of teaching in a 

new environment, while still becoming generally comfortable with teaching, could have 

negatively impacted their section. If the virtual experiment took place after these TAs had 

gained additional teaching experience, it is possible that the difference between TAs 

would have been smaller. 

CONCLUSIONS 

 Although previous research on virtual chemistry laboratories has indicated no 

statistical differences in cognitive and psychomotor outcomes, little research had been 

presented on affective differences. Therefore, this research adapted and modified existing 

affective scales for the chemistry laboratory and administered them to students 

conducting a virtual Beer’s law experiment and a traditional hands-on version of the 

experiment. The scales were tested for the laboratory environment context to ensure they 

were functioning as intended in the new context. Evidence for the response process 

validity was provided by student interviews. All scales produced acceptable fit indices 

when tested with a single-factor, congeneric, CFA model, which supports structural 

validity. Internal consistency reliability of the scales was supported with acceptable 

McDonald’s omega values. This evidence provides support that it is possible to modify 

existing affective measures that have been designed for, and tested in, the classroom 

setting and apply them to the laboratory setting. With functioning affective scales for the 

laboratory, future studies can increase the body of literature on affective laboratory 

outcomes.  
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 The functional scales were used to determine what differences in affective 

constructs may exist between a virtual experiment and a hands-on experiment. After 

controlling for instructor-effect, statistical differences were split based on which TA the 

students had. It is possible that the TA’s comfort level with teaching the experiment in 

the environment they were assigned to impacted the students’ affective aspects in the 

laboratory. With previous studies finding no difference in the cognitive and psychomotor 

domain and this study finding split differences in the affective domain when controlling 

for instructor effect, laboratory coordinators have evidence that seeking an alternative 

environment may not significantly harm their student outcomes for this particular 

experiment. However, the possibility of an instructor-effect should be taken into 

consideration when considering how students react to an alternative environment. 

Recently, there has been a call for future studies to better understand the impact 

laboratories have on student learning (Bretz, 2019). Future work should be conducted to 

examine the effect that a TA has on the student’s experience. With a lack of uniform TA 

training or experience, it is possible that students completing identical experiments with a 

different TA may have drastically different experiences and outcomes. The best practices 

for training TAs are not well understood (Reeves et al., 2016) and future research should 

investigate how the instructor-effect can be mitigated through rigorous TA training 

programs. In this study, these differences were found to impact affective outcomes more 

than the environment the students completed the experiment in. 
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CONSIDERATIONS FOR FUTURE RESEARCH 

 Knowing that there is an instructor effect present in this study, and possibly other 

studies, on the chemistry laboratory, future research should aim to control for instructor 

effects as much as possible. Suggestions include increasing the length of training time 

around the virtual experiment and/or qualitatively observing each classroom to make note 

of possible differences between TAs. Although it is difficult to ensure different 

instructors are equal across sections, taking steps early in the research process to control 

for the possible differences will allow for clarity on if any findings are due to the 

intervention or the instructor. 

LIMITATIONS  

While split differences between environments were found in this specific context, 

the results should not be generalized to other contexts without further testing. The 

traditional hands-on experiment the students completed was a confirmatory lab in nature 

and the results may be different from an inquiry-based, project-based, or other types of 

hands-on curricula. The virtual experiment was completed using a modified procedure in 

the LearnSmart Labs and the results may be different if a different virtual environment is 

used. The research took place at Portland State University, a non-traditional urban 

university in the Pacific Northwest, and the results may be different at different 

institutions. Future work should focus on testing affective differences between 

environments in a wide range of contexts to determine how generalizable these findings 

are. 
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Additionally, although the students enrolled randomly in sections and did not 

know which environment or TA they would have at the time of registration, it is still 

possible that a larger portion of students with negative attitudes towards chemistry 

enrolled in the four virtual sections with less favorable affective aspects. ‘Initial interest’ 

was measured to attempt to capture this difference but may not have adequately captured 

all incoming differences. As such, it would not be appropriate to use the modified and 

newly created affective scales to make conclusions about individual TA effectiveness. 

There are many factors that could influence the differences seen and it is possible that 

those factors could be outside of the TAs control. Lastly, the analysis was conducted by 

combining sections to have enough power to detect differences between environments, 

which leaves the possibility that the findings are not representative of an individual’s 

experience as there may be differences between environments for individual students that 

were not captured when the data was aggregated. 
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CHAPTER V: Assessing Differences Between Three Virtual General Chemistry 

Experiments and Similar Hands-On Experiments 

 

Reprinted with permission from Hensen, C., Glinowiecka-Cox, G. & Barbera, J (2019). 

Assessing Differences Between Three Virtual General Chemistry Experiments and 

Similar Hands-On Experiments. Journal of Chemical Education (In Review). Copyright 

2019 American Chemical Society. 

 

ABSTRACT 

 To date the efficacy of virtual experiments is not well understood. To better 

understand what differences may exist between a hands-on learning environment and a 

virtual learning environment, three experiments were chosen for investigation. For each 

experiment, approximately half of the students completed a hands-on version of the 

experiment and the other half completed a virtual version. After completing the given 

experiment, students were compared on: their ability to meet the learning objectives for 

that experiment, their responses to six affective scales, and their grade on a laboratory 

report. Differences were found on four learning objectives. Two of these learning 

objectives were on the Beer’s Law experiment and the other two were on the titration 

experiment whereas the calorimetry experiment had no differences between groups on 

learning objectives. However, all four differences are likely due to differences in 

procedures between environments and not due to the environment itself. Additionally, 

differences were found on two of the affective scales (usefulness of lab and equipment 

usability) across all three experiments indicating that the students who completed a 

virtual experiment found the experiment to be less useful and the virtual environment 

harder to use. Students that completed the virtual version of the titration experiment also 
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reported that the experiment took less time as indicated by the difference on the open-

endedness of lab scale. These differences are not representative of a students’ individual 

experience, however. To capture individual experiences, latent profile analysis was 

conducted to determine what affective profiles existed within the population. There were 

three common profiles identified across the three experiments: low affective outcomes, 

medium affective outcomes, and high affective outcomes. These indicate that while the 

majority of the students have medium or high affective outcomes and do well on 

laboratory reports, there is anywhere from four to seventeen percent of the students 

completing a given experiment, that have low affective outcomes but still do equally well 

on the laboratory report as the other students. Future work should be conducted to assess 

why students report low affective outcomes and if a different type of laboratory learning 

environment or curriculum type would better serve them. 
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GRAPHICAL ABSTRACT 
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Learning 

INTRODUCTION 

 The general chemistry laboratory has historically been a place where students or 

apprentices learn valuable trade skills for their future career. While scientific thinking 

and fundamental laboratory skills are still essential for many careers, there has been a 

drastic increase in the career options students have. This, along with the fact that typically 

a wide variety of majors enroll in the chemistry sequence, creates a new challenge for 
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designing a laboratory experience that adequately prepares all students for their future 

career. 

Some institutions have accommodated the differing career goals by creating 

laboratory sections that cater to different populations of students. For example, students 

at the University of California San Diego that are pursuing a career in chemistry may opt 

to enroll in a laboratory course designed specifically for chemistry majors whereas 

students pursuing nursing at California State University, Sacramento may opt to enroll in 

a laboratory course with a pre-health focus. However, the ability to create multiple 

sections catering to different populations of students varies by institution and there is a 

lack of agreement as to whether non-science majors, or specifically non-chemistry 

majors, need to take a laboratory that teaches them chemistry-specific skills 

(Chittleborough et al., 2007; Tro, 2004; Wartell, 1973). In fact, some have gone as far as 

suggesting that non-majors do not need the laboratory and question why institutions are 

spending money to teach them laboratory skills (Hawkes, 2004). One challenge in 

offering multiple types of laboratory experiences is that the number of laboratory sections 

is often limited by space and staff availability. Some have met this challenge by creating 

a hybrid curriculum where students complete half of their experiments in a virtual 

environment and the other half in a traditional hands-on environment (Enneking et al., 

2019). While this frees up physical laboratory space, questions remain on the efficacy of 

virtual experiments. 

Previous research on virtual experiments across STEM disciplines have generally 

found that students perform equally well on cognitive assessments regardless of the type 
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of learning environment they completed the experiment in (De Jong et al., 2013; Hawkins 

& Phelps, 2013; Ma & Nickerson, 2006; Pyatt & Sims, 2012; Tatli & Ayas, 2010; Tatli & 

Ayas, 2013). This trend holds true within chemistry where some studies found no 

difference in cognitive outcomes (Enneking et al., 2019; Hawkins & Phelps, 2013) and 

others found that students completing the virtual experiment outperformed those that 

completed the hands-on experiment (Pyatt & Sims, 2012; Tatli & Ayas, 2010; 

Winkelmann et al., 2017). Therefore, there exists an established body of evidence that 

laboratory coordinators can use to make well informed decisions about using virtual 

experiments. However, cognitive assessments do not measure if students learn the same 

skills for their career or if they had a positive experience in the laboratory. There has 

been significantly less research conducted on the psychomotor and affective domains of 

learning, leaving laboratory coordinators unsure if virtual experiments can truly provide 

an equal experience for students. Two studies that include a laboratory practical as part of 

their comparison between virtual and hands-on environments have found that students 

that learned a skill in the virtual environment are able to successfully perform the skill in 

person as well (Hawkins & Phelps, 2013; Winkelmann et al., 2017). Despite this, it is 

possible that students can learn the same content and perform the skill without having a 

favorable laboratory experience. In fact, one study focused on hybrid laboratories did 

include affective domain items and found that students who completed the virtual 

experiment had lower affective outcomes than the control group (Enneking et al., 2019). 

This prior work highlights the need to further assess the affective domain when 

students are completing a virtual experiment. While this study used an instrument (the 
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MLLI (Galloway & Bretz, 2015a)) that measures the affective domain with eight general 

items, the affective domain is a broad domain that contains many constructs. As virtual 

experiments grow in popularity, it is imperative that information about how outcomes on 

specific constructs compare. This then allows laboratory coordinators to make more 

informed decisions. One affective construct that has been previously studied in the 

laboratory and can impact students’ experience is anxiety. The Chemistry Laboratory 

Anxiety Instrument (CLAI) (Bowen, 1999) was developed to specifically measure this 

construct in the chemistry laboratory environment. It is possible that students who 

complete the experiment virtually have differing levels of anxiety, as they do not need to 

worry about personal protective equipment (PPE) or chemical safety. In addition to 

anxiety, there may be other differences based on the specific environment. The Virtual 

and Physical Environment Questionnaire (VPEQ) (Pyatt & Sims, 2012) was designed to 

address specific differences between environments and addresses constructs of equipment 

usability, usefulness of lab, and open-endedness of lab. These three constructs measure 

students’ feelings towards specific components of the laboratory. In addition to 

environment-specific differences, there may also be broader affective differences. One of 

the important goals of any science laboratory and especially chemistry is to improve 

students’ attitude toward chemistry (Hofstein, 2017). It is possible that the ability to 

improve students’ attitude differs based on the learning environment. 

In addition to the lack of specific affective constructs studied with regard to 

virtual laboratories, there is also a need to further study the cognitive outcomes. Despite 

the number of studies finding no differences between environments, these studies have 
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relied heavily on the use of multiple-choice test or quiz items to determine performance. 

Relying on these types of assessments inadequately captures whether students have the 

scientific thinking needed for many careers. In fact, there has been a recent push to 

incorporate curricula that focus on scientific writing instead of short post-lab items 

(Burke et al., 2006; Greenbowe et al., 2007; Stephenson & Sadler-McKnight, 2016). 

Thus, it is important that rather than compare students on multiple-choice assessments 

they are compared on their ability to meet the desired cognitive learning objectives of the 

experiment. However, to date, there is a lack of agreed upon experiment-specific learning 

objectives that can be used to assess the environments (Hofstein & Lunetta, 2004). With 

specific learning objectives for each experiment, it would then possible to compare 

environments and determine if they meet them equally on an experiment by experiment 

basis.  

  If evidence is provided that students are meeting the same cognitive objectives 

and affective outcomes in a new experiment environment (i.e., virtual) as compared with 

the traditional environment, then laboratory coordinators can select the environment that 

best matches both the faculty members’ goals at that institution and the intended student 

population for the curriculum. With a wide arsenal of experiments, both virtual and 

hands-on, that have established and measurable outcomes it would be possible to design 

multiple laboratory courses that align with the ranges of student expectations and career 

motivations without the limitation of physical laboratory space. 
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RESEARCH QUESTIONS 

There is a need to better understand if students completing an experiment in an 

alternative environment, such as the virtual environment, are able to meet the same 

learning objectives and acquire similar affective outcomes as students in the traditional 

hands-on environment. The following research questions guided this study: 

1. To what degree can experiments in a virtual environment meet the same learning 

objectives as similar traditional hands-on experiments? 

2. How do students’ affective outcomes compare when completing an experiment in 

different learning environments? 

3. What effect do individual student differences have on any observed differences in 

either the affective or learning objective outcomes? 

METHODOLOGY 

Human Subject Research 

This research was approved by the institutional review board at Portland State 

University. Participants were asked to provide informed consent and only data from those 

who consented were analyzed. 

Selection of Experiments 

 There is wide variety in the experimental topics covered across different 

institutions with each institution selecting the topics that they value most. However, there 

are a number of common topics that are taught at most institutions. Previous work 

conducted by Reeves and Exton as part of the development of the ACS General 

Chemistry Laboratory Exam helped gain a better understanding of which experiments are 

commonly done (Reeves & Exton, 2014). They first compiled a list of laboratory 

manuals used at a range of institutions, which generated thirty-six unique sources, and 
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reviewed each for the experimental topics included. After reviewing the manuals, the six 

most commonly covered topics were: 

• Volumetric analysis (titrations) 

• Stoichiometry 

• Kinetics (determination of rate law) 

• Spectrophotometry/Beer’s Law 

• Properties of Acids and Bases 

• Calorimetry 

These six experiments range in the level of laboratory skills required to complete the 

procedure and take place across the entire year of the general chemistry curriculum. To 

cover a range of skills and chemistry content, one experiment from each term of the 

general chemistry curriculum was selected for this study. Beer’s Law was chosen as the 

experiment to investigate in the first term, calorimetry was chosen for the second term, 

and volumetric analysis (titrations) was chosen for the third term of a general chemistry 

laboratory course based on a quarter system.  

Establishing Learning Objectives 

Five faculty members from three institutions in the Pacific Northwest were 

interviewed in a semi-structured format to capture the specific objectives each had for the 

chosen experiments. Three faculty were from two different community colleges and two 

were from a doctoral granting university with high research activity (Carnegie 

Commission, 2015). One of the community colleges used inquiry-based experiments 

while the other community college and the university used expository experiments. 

Including different institutions and types of curricula in the targeted population allowed 

for different perspectives on the learning objectives to be captured. The interviews took 

place the week prior to the experiment being done at the respective institution. 
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Participants were asked to explain the procedure for each experiment and what they 

hoped students would gain by completing the experiment. As participants had different 

levels of understanding of what “experimental objectives” meant, the question “If 

students missed today’s experiment, what would they miss out on?” was also asked. This 

question allowed participants to better articulate what important objectives they had for 

their students. For the full interview protocol, see Appendix B.  

For a given experiment, each faculty member’s learning objectives were listed 

and then compared with the others’ objectives. With variety in the types of experiments 

done at institutions over the same topic, it was expected that not all learning objectives 

would be shared across participants. Therefore, to capture the most salient objectives of 

each experiment (i.e., those that faculty agreed upon) only the common learning 

objectives across all participants were used to assess differences in laboratory 

environments. Once the common objectives were established for each experiment, they 

were used to generate rubrics to score student’s laboratory reports based on how well 

they met those objectives.  

Student Population 

 Students enrolled in the general chemistry laboratory sequence during the 2018-

2019 academic year at Portland State University were the targeted population. This 

convenience population was chosen as it provided several important features including: 

1) the ability to provide significant input to the structure of the laboratory sections, 2) 

multiple sections that could be easily split by environment type, and 3) the ability to 

directly work with the university office of information technology to set-up and monitor 
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the functioning of the virtual experiments on the laboratory computers. The sections of 

the laboratory courses were split approximately in half for each of the three experiments, 

with some of the sections completing the traditional hands-on experiment and the other 

sections completing the experiment in a virtual environment. All enrolled students in a 

given section conducted the same experiment and generated the same cognitive and 

affective data as part of their normal laboratory requirements for that day. As students 

enrolled in whichever section best fit their schedule and did not know ahead of time 

which sections would conduct the experiment in a virtual environment, there was 

approximately random grouping. Further information about self-report demographics by 

grouping can be found in Table B.SI1 in Appendix B. No institutional data was provided 

by the university. The virtual environment used for all three experiments was the 

LearnSmart Labs by McGraw-Hill Education. Students completed the virtual 

environment procedure in their normal laboratory room working with a laboratory partner 

and with their teaching assistant (TA) present. 

Rubrics and Scoring of Laboratory Reports 

 Students completed a formal laboratory report after each of the experiments 

included in this study. Identifying information was removed from the reports and each 

was assigned a random identification number prior to analysis. Coders were not aware of 

which environment a student completed the experiment in when scoring their report. As 

the codes were pre-determined based on the faculty members’ learning objectives, this 

was a deductive analysis. A primary and secondary coder individually scored seven 

student reports at a time for each experiment and then met to discuss their scoring and 
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calculated a percent agreement. This process repeated until the coders reached 100% 

agreement. Consensus scoring is one method used to establish inter-rater reliability and 

with a high consensus score indicates the rubrics were interpreted and utilized in a similar 

way for the student reports (Stemler, 2004). Initially, the rubric was scored using 

categories of ‘Does not meet’ and ‘Meets’ to mark if a student met the learning objective, 

however, after preliminary testing of the rubric a third category of ‘Partially Meets’ was 

added for cases where students demonstrated only limited evidence of meeting a learning 

objective. After reaching consensus on a set of reports, the coders individually scored the 

remaining reports and met regularly to clarify any questions that arose. The rubric scores 

were then used to compare if students in both environments met the learning objectives to 

the same degree.  

 For each experiment, chi-square tests were conducted for individual learning 

objectives to determine if there were significant differences between rubric scores by 

learning environment. A 2x3 chi-square test was used to compare scores across two 

groups (i.e., hands-on and virtual) on a variable with three category options (i.e., meets, 

partially meets, and does not meet) (Coolican, 2017). A non-significant chi-square test 

indicated that no statistical differences between learning environments were detected for 

a given learning objective. Chi-square tests were conducted using version 26 of SPSS. 

Measuring Differences in the Affective Domain 

Immediately upon the completion of an experiment, six affective scales were 

administered to students through a Qualtrics survey. The scales measured the constructs 

of anxiety, intellectual accessibility, emotional satisfaction, equipment usability, 
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usefulness of lab, and open-endedness of lab. Evidence for the reliability and validity of 

the data generated by these scales, in these learning environments and with this specific 

population, has been previously reported (Hensen & Barbera, 2019). The reported 

validity data included response process validity interviews, conducted to ensure students 

are interpreting the items in a similar manor as is intended, as well as measurement 

invariance, establishing that each scale functioned similarly for students in both learning 

environments. A multivariate analysis of variance (MANOVA) was conducted on the 

affective scale data from each experiment to detect differences between the learning 

environments. A MANOVA is an appropriate test to compare two groups of students for 

multiple outcomes (O'Brien & Kaiser, 1985). Significant findings in the MANOVA 

would indicate differences in the affective outcomes between learning environments for 

the given experiment. MANOVA results from the Beer’s Law experiment have been 

previously reported after checking all assumptions for running a MANOVA (Hensen & 

Barbera, 2019). The assumptions were tested again for the calorimetry and titration data 

sets as they contain a number of different students than the Beer’s Law data set. The 

MANOVAs were conducted using version 26 of SPSS. 

Latent Profile Analysis 

Students have many different expectations about the laboratory experience, which 

have been previously shown to relate to students’ affective outcomes (Galloway & Bretz, 

2015d). To explore what underlying groups, or profiles, of students were present in this 

study, a cluster analysis was performed on the data generated for each experiment. The 

model-based cluster analysis for latent variables is called latent profile analysis or latent 
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class analysis depending on the type of data used (Vermunt & Magidson, 2002). A 

model-based approach has the advantage of generating fit indices that are then used to 

directly compare different models and groupings of the data. Typical fit indices that are 

reported in latent profile analysis include the Bayesian information criterion (BIC), the 

Akaike information criterion (AIC), and the log-likelihood.  

One of the most important decisions when conducting a cluster analysis is which 

variables to include. If too many variables are included the resulting profiles have no 

meaningful interpretation whereas if not enough variables are included then there is not 

enough variance in the data to detect meaningful profiles. Scores from the emotional 

satisfaction, intellectual accessibility, usefulness of lab, equipment usability, and open-

endedness of lab scales were used as the clustering variables to generate student profiles 

based on the overall affective outcomes. Anxiety was not included as there were few 

differences on this scale between environments in all three experiments and as such did 

not add information toward meaningful profiles. As part of the interviews conducted in a 

previous study, students in both environments frequently reported that working with 

chemicals was much less a source of anxiety as compared with the social anxiety of 

working with other people (Hensen & Barbera, 2019). Thus, it was unsurprising that 

there were few differences seen between environments on anxiety despite different 

equipment used. For this study, the latent profile analysis was conducted using the 

expectation-maximization algorithm and maximum likelihood estimates. The latent 

profile analyses were conducted using version 5.4.3 of the mclust package in version 

3.5.3 of R (Scrucca et al., 2016).  
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RESULTS AND DISCUSSION 

Generating experiment-specific rubrics based on learning objectives 

 The list of experiment-specific learning objectives, generated through faculty 

interviews, was analyzed to determine which objectives were shared by the majority of 

the faculty members interviewed. As seen in Table 5.1, there were three common 

learning objectives for the Beer’s Law experiment, four for the calorimetry experiment, 

and four for the titration experiment. For more information about individual faculty 

member’s objectives, see Table B.SI2 in Appendix B. 

Table 5.1: Common learning objectives across faculty interviewed 

  Abbreviation 

Beer’s Law 

Understand the relation between 

absorbance and concentration 
BL1 

Prepare solutions BL2 

Determine an unknown concentration 

using the relation between absorbance and 

concentration 

BL3 

Calorimetry 

Predict the sign of the change in enthalpy 

for a given reaction 
C1 

Determine the enthalpy change for a given 

reaction 
C2 

Understand how to calculate a change in 

enthalpy from a temperature change 
C3 

Understand the difference between 

endothermic and exothermic and how it 

relates to the sign of the enthalpy change 

C4 

Titration 

Visually identify a change in pH during a 

titration using a mixture of indicators 
T1 

Identify key points on a titration curve T2 

Determine the pKa of an unknown analyte 

using a titration curve 
T3 

Determine the molar mass (or mass) of an 

unknown analyte using a titration curve 
T4 
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These learning objectives were then used to assess the students’ ability to demonstrate 

evidence of meeting them in their laboratory report. To do this, a rubric was generated for 

each experiment. As an example, the Beer’s Law rubric is shown in Table 5.2. 

Table 5.2: Rubric used to score student laboratory reports for the Beer’s Law experiment 

in each learning environment 

 Does Not 

Meet 

Partially 

Meets 
Meets 

Understand the relation between 

absorbance and concentration 

   

Prepare solutions 
   

Determine an unknown concentration 

using the relation between absorbance and 

concentration 

   

 

Student Population 

For the Beer’s Law experiment, 174 students completed the hands-on experiment 

and 216 students completed the virtual experiment. The following term for the 

calorimetry experiment, 129 students completed the hands-on experiment and 152 

students completed the virtual experiment. Finally, in the last term for the titration 

experiment, 72 students completed the hands-on experiment and 117 students completed 

the virtual experiment. For more information on the student population and demographics 

see Table B.SI1 in Appendix B. 

Assessing Differences in Learning Objectives 

The laboratory reports of study participants were carefully read and the coders 

looked for any evidence of the students meeting the stated learning objectives noted on 

each rubric. For the first Beer’s Law objective (BL1), an example of a student report that 

received a score of ‘Meets’ is “A substances concentration and it’s absorbance are 

directly proportional. A high-concentration solution absorbs more light and a low-
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concentration solution absorbs less light”. This student demonstrated that they fully 

understood the relation. For comparison, a student report that received a score of 

‘Partially Meets’ is “Beer’s law, which states A=ebc, lets one use the relationship 

between absorbance to create a calibration curve”. This student seems to have some 

understanding of how to use the relation but does not provide further evidence that they 

understand it and do not simply just understand the experimental steps. The score ‘Does 

Not Meet’ was given for any report that provided no evidence of understanding the 

relation. The three scoring categories were used in a similar fashion for all other learning 

objectives. Table 5.3 contains the results of scoring the reports and the significance of the 

chi-square results when comparing an objective between environments. The N/A 

category was used when students did not include a relevant section in the report as there 

was no way of judging a missing section. 
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Table 5.3: Percentage of students meeting learning objectives and chi-square results for 

all learning objectives by environment type. *Significant at p=0.05, **Significant at 

p=0.001 

 
Hands-On Virtual 

 

N 

Does 

Not 

Meet 

(%) 

Partiall

y 

Meets  

(%) 

Meet

s 

(%) 

N/A  

(%) 
N 

Does 

Not 

Meet 

(%) 

Parti

ally 

Meet

s 

(%) 

Meets 

(%) 

N/A 

(%) 

BL1 

137 

19.7 6.6 69.3 4.4 

176 

21.0 6.8 72.2 0.0 

BL2* 0.0 0.0 5.1 94.9 0.0 0.0 0.0 100.0 

BL3* 26.3 0.0 73.7 0.0 17.0 0.0 83.0 0.0 

C1 

110 

76.4 0.0 23.6 0.0 

140 

84.3 0.7 15.0 0.0 

C2 0.9 0.0 99.1 0.0 2.1 0.0 97.9 0.0 

C3 12.7 2.7 84.5 0.0 15.0 10.0 75.0 0.0 

C4 13.6 10.9 75.5 0.0 12.1 6.4 81.4 0.0 

T1** 

64 

0.0 0.0 37.5 62.5 

90 

0.0 0.0 0.0 100.0 

T2 9.4 25.0 65.6 0.0 12.2 25.6 62.2 0.0 

T3 34.4 6.3 59.4 0.0 28.9 3.3 67.8 0.0 

T4** 7.8 1.6 90.6 0.0 58.9 3.3 37.8 0.0 

Most of the learning objectives showed no statistical difference between 

environments. However, as noted in Table 5.3 with asterisks, there were significant 

differences on four learning objectives. Two of these, BL2 and T1, were skill-based 

objectives that explicitly addressed a procedural step. Thus, it is not surprising that only a 

few students in the traditional hands-on environment included evidence of meeting these 

objectives and none of the students in the virtual environment included evidence of 

meeting them, as students typically do not include details about specific procedural steps 

in their report. Interestingly, the majority of hands-on students that did meet BL2 did not 

meet BL1. It is likely that these students were only able to summarize the procedural 

steps they conducted rather than understand and document why they conducted them. 

Thus, the score of ‘Meets’ on these skill-based objectives may not be an indication of if 

students learned the skill but rather their ability to write a complete laboratory report.  
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Students also differed on their ability to meet learning goal T4. This difference 

could be due to a function of the design of the LearnSmart Labs. In the traditional hands-

on titration experiment students started with an unknown solid and were asked to identify 

the unknown by calculating the molar mass. However, in the virtual environment students 

started with an unknown solution and were asked to identify the unknown by calculating 

the pKa and then asked to calculate how much mass was initially dissolved to make the 

solution. While students in both environments were asked to use the equation: 

𝑀𝑜𝑙𝑎𝑟 𝑀𝑎𝑠𝑠 =
𝑔𝑟𝑎𝑚𝑠

𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦∗𝑣𝑜𝑙𝑢𝑚𝑒
 , the virtual students frequently did not provide evidence 

of calculating the initial mass dissolved. Instead, the students stopped once they were 

able to get the identity of the acid with the pKa, as only that finding had to be reported to 

the TA before they could leave for the day.  

The fourth objective that students differed on was their ability to use Beer’s Law 

to calculate the unknown concentration (BL3), with a higher proportion of students that 

completed the experiment in the virtual environment meeting this objective. It was 

observed by the first author and the TAs that students in the virtual environment had 

more time to do the calculations, as the experiment itself did not take as long as the 

hands-on counterpart did. Therefore, extra time students in the virtual environment had to 

work on the calculations with their lab partner and/or TA could explain this higher 

percentage. It is possible that if each student had an equivalent amount of time to work on 

the calculations with assistance from a partner and/or TA that this difference would be 

minimized. Additionally, this finding was not significant using the stricter p-value of 0.01 

to correct for multiple comparisons.  
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Assessing Differences in Affective Outcomes 

 In addition to the learning objectives, affective outcomes were also compared 

across environments. After checking the assumptions for running a MANOVA, there 

were normality and homoscedasticity violations. However, MANOVAs are robust to 

violations in these assumptions (Olson, 1974). For the skewness and kurtosis values see 

Table B.SI3 in Appendix B. MANOVAs were conducted to compare the scale scores for 

the anxiety, emotional satisfaction, intellectual accessibility, usefulness of lab, equipment 

usability, and open-endedness of lab scales. Table 5.4 consists of the results of these 

MANOVAs and the respective effect sizes as measured by partial eta squared. A bolded 

p-value indicates a significant result. A partial eta of 0.01 represents a small effect, a 

value of 0.06 represents a medium effect, and a value of 0.14 represents a large effect 

(Cohen, 1992). See Table B.SI4 in Appendix B for the averages of all six scales by 

experiment and environment type. 

As seen in Table 5.4, for the Beer’s law experiment, many of the affective scale 

outcomes were significantly different between environments and both the emotion 

satisfaction and equipment usability scales were approaching a medium effect size. The 

differences highlighted in orange indicate that the hands-on students had the significantly 

higher average whereas the difference highlighted in purple indicates the virtual students 

had the significantly higher average. However, this Beer’s Law data was previously 

analyzed (Hensen & Barbera, 2019) and an instructor-effect was detected. 
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Table 5.4: MANOVA results of affective differences across laboratory environments 

 Beer’s Law Calorimetry Titration 

 
p-value 

Effect 

Size 
p-value 

Effect 

Size 
p-value 

Effect 

Size 

Anxiety 0.237 0.004 0.512 0.002 0.477 0.003 

Emotional Satisfaction <0.001 0.049  0.478 0.001 0.110 0.003 

Intellectual 

Accessibility 
0.001 0.027 0.681 0.002 0.489 0.014 

Usefulness of Lab 0.001 0.028 0.013 0.022 0.017 0.030 

Equipment Usability <0.001 0.056 <0.001 0.043 <0.001 0.067 

Open-endedness of 

Lab 
0.971 0.000 0.194 0.006 0.034 0.024 

 

In a previously reported analysis of the Beer’s Law data, Hensen and Barbera 

(Hensen & Barbera, 2019) noted that four TAs that taught the virtual experiment had 

sections with much lower averages on the emotion satisfaction scale than the other four 

TAs that taught the virtual experiment. As part of their analysis, a MANOVA was run 

with three groupings (Hands-on, Virtual A - higher emotional satisfaction, and Virtual B 

- lower emotional satisfaction) instead of just by learning environment. With these TA 

groupings, none of the affective scale results were significantly different between 

students in the hands-on sections and the Virtual A group. However, the emotional 

satisfaction, intellectual accessibility, usefulness of lab, and equipment usability scales 

were significantly different between students in the hands-on sections and those in the 

Virtual B group. No evidence of an instructor effect was found for the calorimetry or 

titration experiment. As both the calorimetry and titration experiments take place in later 

terms and the Virtual B group consisted of mostly first-year TAs with limited teaching 

experience, the instructor effect could have been minimized as the TAs gained 

experience. However, no generalizations about the effect of teaching experience can be 
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made from this study as TAs rotate in and out of teaching general chemistry laboratories 

throughout the academic year and each quarter consisted of a different combination of 

TAs. 

For both the calorimetry and titration experiments, data from the affective scales 

of usefulness of lab and equipment usability showed differences between environments 

with the traditional hands-on students reporting higher averages for both scales (noted in 

orange in Table 5.4). For all experiments, the effect size of the usefulness of lab was 

small but the effect size of equipment usability was medium indicating that the students 

had minor differences on how useful they thought the experiment was but larger 

differences on their perceived ability to use the equipment. However, when accounting 

for multiple comparisons, the usefulness of lab differences are not significant at a 

corrected p-value of 0.01 and thus there is not enough power in this sample to make 

definitive conclusions about that scale. It is possible that if students utilized the virtual 

environment more often that they may begin to feel more comfortable using it as it does 

take time to get oriented with the program.  

Additionally, the open-endedness of lab scale was significantly different with a 

small effect size for the titration experiment and the virtual students having a higher 

average (noted in purple in Table 5.4). However, similar to the usefulness of lab 

differences, when accounting for the multiple comparisons made, this finding was not 

significant at the stricter p-value of 0.01. 
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Latent Profile Analysis 

The affective comparisons noted above do not evaluate differences between 

specific students but rather differences between environments. Therefore, latent profile 

analyses were conducted to investigate what groupings of students existed based on their 

affective characteristics. These analyses indicated that the Beer’s Law and calorimetry 

data had four profiles (groupings of students) and the titration data had three, as shown in 

Table 5.5. Each analysis was run ten times, with a random order of the data, to ensure 

that the solutions were stable (Scrucca & Raftery, 2015). The profiles were named based 

on the defining characteristics of the affective scale scores. More detailed information on 

the process of selecting the best fitting profiles using mclust is contained in Table B.SI5 

in Appendix B. 

Table 5.5: Number of students in each profile 

  N 

Beer’s Law 

Low 83 

Medium 209 

High 78 

Mixed 20 

Calorimetr

y 

Low 22 

Medium 67 

High 111 

Very High 81 

Titration 

Low 33 

Medium 100 

High 56 

 

For each experiment, there were three similar groupings: low, medium, and high 

affective outcomes. For more information on the scale averages by grouping see Table 

B.SI6 in Appendix B. These groupings are similar to previous cluster analysis results 
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found by Galloway and Bretz (Galloway & Bretz, 2015d). There were also groupings that 

were unique to an experiment. For the Beer’s Law experiment, there was a grouping of 

students that had low averages on the emotional satisfaction and intellectual accessibility 

scales but high averages on the usefulness of lab, equipment usability, and open-

endedness of lab scales. This indicated mixed outcomes where the students thought the 

experiment worked well and was useful but still found it to not be accessible or 

emotionally satisfying. Also, as noted earlier, the calorimetry experiment had a ‘very 

high’ profile. It was unsurprising that many students reported high affective outcomes for 

the calorimetry experiment because both the hands-on and virtual versions of this 

experiment involved relatively few experimental steps and were shorter than other 

experiments conducted that term. 

While there was a range of affective outcomes across each experiment, 

interestingly, as seen in Figure 1, the average report score across profiles was consistent 

indicating that it may not be possible to identify which students had poor affective 

outcomes solely based on their academic performance in the laboratory. In other words, a 

student that did very well on the laboratory report may still have had low affective 

outcomes and vice versa. To investigate this further, the profiles were examined by 

individual learning objective rather than an overall grade for better resolution.  
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Figure 5.1: Average report score by profile and experiment 

 

The percent of students in each rubric category for each learning objective are 

shown in Figure 2. Learning objectives BL2 and T1 were not included in their respective 

analyses as no students in the virtual environment, and few students in the traditional 

hands-on environment met them. Despite providing a more detailed view of the cognitive 

outcomes, the lack of differences in learning objectives was similar to the lack of 

differences seen in the report scores, adding more evidence that it was not possible to 

identify which students were in each grouping based on their laboratory reports. For 

example, on objective C3 (understand how to calculate a change in enthalpy from a 

temperature change) there were approximately equal percentages of students that either 

met or partially met the objective despite differences in affective outcomes. Similarly, 

there were no major differences between the students’ ability to meet the learning 

objectives for the majority of the objectives (BL1, C2, C3, C4, T2, and T3).  

While the majority of the learning objectives had no differences based on learning 

profile, three differences were observed. As can been seen in Figure 2 for objective BL3 

(determining an unknown concentration), the ‘low’ affective group had the highest 

percentage of students meeting the objective. However, this difference may be an artifact 
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of the low grouping itself having a higher percentage of virtual students, seen in Figure 

B.SI1. As noted earlier and seen in Table 5.3, the virtual experiment was observed to be 

shorter, which led to the virtual students meeting this goal more often. The fact that the 

virtual students may have had more time to work through the calculations with their lab 

partner and/or TA, combined with the fact that more virtual students are in the low 

profile, provide a possible reason for the higher percentage of students in the low-profile 

meeting BL3. Similarly, the virtual students did not meet learning objective T4 

(determining molar mass) as often as the hands-on students. As seen in Table 5.3, the 

majority of virtual students failed to meet this learning objective whereas the majority of 

hands-on students did meet this objective due to procedural differences. Thus, the higher 

percentage of virtual students in the low affective group (as seen in Figure B.SI1) 

explains a possible reason why the low affect group did not meet this learning objective 

as often as the other groups. The third difference was seen with learning objective C1 

(predict the sign of the change in enthalpy for a given reaction). This difference is likely a 

function of the small sample size for the low affective profile. There were only 22 

students in the low affective profile for this experiment, which means that each student 

represents 4.5% of the data plotted in Figure 2. Given the lack of differences on the 

majority of objectives and laboratory report scores, the difference seen in learning goal 

C1 is most likely contributed to sample size limitations. It is possible that the difference 

may not be observed in studies with a larger sample size.  

Overall, the majority of learning objectives, in addition the laboratory report 

scores, showed no difference between affective groups. This highlighted that solely 
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relying on differences in cognitive outcomes to determine if an intervention is successful 

fails to differentiate between students with low and high affective outcomes. While there 

is a body of literature that has found students in the virtual experiment are able to meet 

the cognitive outcomes similarly (Enneking et al., 2019; Hawkins & Phelps, 2013) or 

outperform the hands-on students (Pyatt & Sims, 2012; Tatli & Ayas, 2010; Winkelmann 

et al., 2017), future research should ensure that affective outcomes are measured and 

focus on how to identify the students in the low affective profiles in order to target 

laboratory interventions and ensure all students are having a positive laboratory 

experience.  

Figure 5.2: Percent of students in each rubric category by learning objective 
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CONCLUSION 

 After comparing student outcomes across three experiments conducted in both a 

virtual and a hands-on environment, differences were detected on four of the eleven 

common learning objectives. Two of the differences were on skill-based objectives and 

the other two were on objectives related to the outcome of specific calculations within an 

experiment. While statistically different outcomes were detected, the results are likely 

due to alignment issues with experimental procedures and report requirements. For the 

Beer’s Law experiment, differences were seen on learning objectives BL2 and BL3. The 

differences seen on objective BL2 could be contributed to the report requirements as this 

was a skill-based objective and the report requirements did not include having students 

explicitly write about the procedural steps they completed. Additionally, in the Beer’s 

Law experiment students in the virtual environment were observed to take less time to 

complete the experiment which freed up more time to work through the analysis of data 

with their lab partner and/or TA and thus they met learning objective BL3 more often. 

Similar to the Beer’s Law experiment, students in the titration experiment also did not 

provide evidence of meeting a skill-based objective, T1, and an objective that had 

procedural differences between the two learning environments, T4. Overall, the students 

in the virtual environment consistently struggled to provide evidence of meeting skill-

based learning objectives and outcomes designed around specific procedural steps due to 

differences in the procedures between environments and the report requirements. This 

result is similar to previous findings that specific differences between procedures in the 

learning environments account for the differences observed (Hawkins & Phelps, 2013). 
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Therefore, careful design of the experiments and assessments should take place to ensure 

that students have the opportunity to equally meet the desired experimental learning 

objectives. If students cannot meet the learning objective in a given learning 

environment, then that environment should not be used for that experiment. Overall, if 

students had equal time to work on processing the data and identical procedures in both 

environments, the differences found in these learning objectives would be greatly 

minimized. 

 In addition to investigating differences in the learning objectives between 

environments, six different affective outcomes (anxiety, intellectual accessibility, 

emotional satisfaction, equipment usability, usefulness of lab, and open-endedness of lab) 

were monitored. For most, no detectable differences were found. However, across all 

three experiments, students in the virtual environment reported lower averages on the 

equipment usability and usefulness of lab scales. This finding provides unique insight 

into what differences may exist between learning environments. Historically, the 

affective domain is understudied, and thus, past studies have focused on cognitive 

outcomes. While very minor cognitive differences were found, the affective differences 

highlight larger discrepancies between the learning environments. While an instructor 

effect was found for the Beer’s Law experiment, no evidence of an instructor effect was 

found for either the calorimetry or titration experiments. This effect was either minimized 

as TAs gained experience or that the instructor effect was specific to individual TAs who 

did not teach laboratory sections in subsequent terms. 
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 As the result of a latent profile analysis, there were also differences on affective 

outcomes based on individual students regardless of which environment they completed 

the experiment in. For each experiment, the majority of students had medium and high 

affective outcomes. However, there were still a fair number of students that had low 

affective outcomes. This may be a function of the wide variety of students that enroll in 

the chemistry laboratory with many different backgrounds and career paths. The one-

size-fits-all approach may work for a large majority of the students but it is possible that 

select students may benefit from different types of laboratories.  

Recently, there has been a call to conduct more research on the laboratory 

environment and what the role of the laboratory is (Bretz, 2019). A unique challenge of 

the laboratory is that it often consists of multiple sections taught by multiple instructors 

and the student population is made of diverse majors. Thus, to study the laboratory 

effectively requires researchers to carefully consider how to control for a wide range of 

confounding variables that exist in the natural setting of a laboratory course rather than 

conduct controlled studies that rely on volunteers that do not necessarily represent the 

average student population. Once more research that carefully controls for the 

confounding variables present in the laboratory setting is conducted, there may be a better 

sense of which students benefit from the current model of the laboratory and which do 

not. 

LIMITATIONS 

 To minimize changes to the curriculum at Portland State University, learning 

objectives were assessed using the assessments already in place. This meant that the 
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tactile learning objectives were evaluated using the laboratory report instead of a 

laboratory practical. It is possible that the differences seen in the skill-based learning 

objectives would be different if a laboratory practical was utilized. Additionally, 

McGraw-Hill generously allowed us to use the LearnSmart Labs as the virtual platform. 

However, this meant that there was no control over the elements of the procedural design 

in the virtual environment. It is possible that a different virtual environment made to 

specifically target desired learning outcomes could produce different findings. The ability 

(or lack of it) to control procedural design could also impact learning objectives that are 

specific to an institution. For example, one institution uses nanomaterials for their Beer’s 

Law experiment and has learning objectives directly related to using nanomaterials. Thus, 

if the institution uses a virtual environment that is not customizable it may not be possible 

for students to meet institution-specific learning objectives. 

 Beyond experimental limitations, this research took place at Portland State 

University, an urban Pacific Northwest university, and as such the findings should not be 

generalized to other settings without future work being conducted. Future studies would 

benefit from the inclusion of other settings, such as community college populations or 

those where students have more exposure to the virtual learning environment. While two 

of the five faculty interviewed were professors at the institution the data was collected at, 

the learning objectives reported by the five faculty members are not comprehensive, 

therefore, it is possible that faculty members at other institutions place different value on 

the objectives presented. Additionally, previous work found an instructor effect existed 

for the affective outcomes in the Beer’s Law experiment. While this effect may be 
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minimized as TAs gain experience, it is also possible that it was specific to individual 

TAs. Therefore, instructor effect should be examined or controlled for in future research 

to ensure that outcomes are not a result of who is teaching the section. 

 With the current sample it was not possible to further investigate the 

characteristics of the profiles based on demographics. With a more adequate sample size, 

it would possible to evaluate for measurement invariance by demographic group to 

ensure that members across groups of interest are interpreting the items in a similar 

fashion. Once measurement invariance is established, the profiles could be further 

compared on the demographic variable of interest. 

IMPLICATIONS FOR FUTURE RESEARCH 

 This study expanded on previous research to investigate the learning objectives 

and affective outcomes for a range of experiments. Based on the findings, there is a need 

to conduct future studies using laboratory practical exams to investigate the tactical 

learning objectives. Previous research (Hawkins & Phelps, 2013; Winkelmann et al., 

2017) has found no differences on the students’ ability to complete skill-based learning 

objectives but more work in this area is warranted. As a possible instructor effect was 

found with one experiment but not the other experiments, future research should choose 

research designs that allow for a true treatment-control study to be conducted where the 

same instructor is teaching in both environments. Additionally, there is a need for 

qualitative studies to further investigate the affective grouping of students. These studies 

could help identify the nature of the defining characteristics within the groupings. With 

this information, curriculum reform could then take place to target these groupings to 
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ensure that more students have a laboratory experience that produces positive affective, 

cognitive, and psychomotor outcomes. 
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CHAPTER VI: Conclusions, Implications, and Future Research 

 

Conclusions 

 This dissertation research addressed three distinct gaps in the literature. The first 

major gap is that differences in affective outcomes between virtual and hands-on learning 

environments have previously gone largely unstudied. To address this, existing affective 

scales were modified and adapted for use in the laboratory. These newly created scales 

were then used to compare the two learning environments on affective outcomes. The 

second gap in the literature is that the majority of existing studies comparing the two 

learning environments only focus on a single experiment leaving outstanding questions 

about if the findings from single-experiment studies were specific to the experiment topic 

studied or if the specific procedure mattered when making the comparison. This was 

addressed by including three distinct experiments across the General Chemistry 

curriculum to detect what, if any, differences existed between experiments on cognitive 

and affective outcomes. The final gap in the literature that was address was measuring 

cognitive domain differences through learning objectives. While there is existing 

literature that found little to no differences in the cognitive domain (Hawkins & Phelps, 

2013; Pyatt & Sims, 2012; Winkelmann et al., 2017; Winkelmann et al., 2014; Woodfield 

et al., 2005; Woodfield et al., 2004), the existing studies rely on self-authored tests and 

quizzes rather than learning objectives. Learning objectives can give a more detailed 

picture into if students are meeting the overall goals of the course rather than answering a 

simple multiple-choice item correctly. As such, student cognitive outcomes were 

measured through learning objectives to determine similarities and differences between 
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the two learning environments. This dissertation research addresses these three important 

gaps in the current literature through five integrated questions. 

 

Research Question 1: To what degree can previously developed scales be adapted for 

use in the laboratory environment? 

 The lack of affective studies on virtual general chemistry experiments was 

addressed by measuring six specific constructs that could potentially be different between 

the environments. Three of these constructs, anxiety, intellectual accessibility, and 

emotional satisfaction, had been previously measured using items from the Attitude 

towards the Subject of Chemistry Inventory (ASCI) (Bauer, 2008). Additionally, another 

instrument focusing on anxiety previously existed in the literature, the Chemistry 

Laboratory Anxiety Instrument (CLAI), and items from this instrument were also used to 

inform the anxiety scale used in this research (Bowen, 1999). Minor wording changes 

were made to the previously established items to change the frame of reference on the 

existing scales to the laboratory environment. The remaining three constructs, usefulness 

of lab, equipment usability, and open-endedness of lab, were measured with select items 

from the Virtual and Physical Experimentation Questionnaire (VPEQ) (Pyatt & Sims, 

2012). Items addressing the six affective constructs chosen for this research were selected 

by modifying items from the existing ASCI, CLAI, and VPEQ instruments. These items 

then underwent further psychometric testing to ensure functionality in the laboratory 

setting.  
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Research Question 2: What evidence of validity and reliability supports data collected 

with the adapted scales? 

 After selecting and modifying existing affective items for use in the laboratory 

context, further psychometric analysis was done. Whenever scales are adapted for a new 

context, there needs to be sufficient evidence of validity and reliability presented to 

support the use of the items. To start, response process validity interviews were 

conducted with the modified items of the existing scales to determine if the way in which 

students were interpreting the items was consistent with the original intended meaning. 

Based on these interviews, one item was removed. The final set of items (found in 

Appendix A) was administered to students after they completed either a virtual 

experiment or the equivalent hands-on experiment. Students’ responses to these items 

were analyzed using confirmatory factor analysis (CFA) to determine if there was 

evidence of structural validity. Structural validity is an indication that the items are 

informing the intended constructs and elicits their relation with other constructs. Fit 

indices are used as an indication of how well the data generated by the items fit the 

proposed model. After making minor modifications, the CFI and SRMR fit indices for 

individual one-factor CFA models as well as two- and three-factor CFA models were 

within the acceptable range and thus indicated sufficient evidence for structural validity. 

All correlations, with the exception of the correlation between emotional satisfaction and 

intellectual accessibility, between factors in the two- and three-factor models closely 

matched previous findings indicating that the modifications and the adaption to a new 

context had a limited effect on the validity of the items. The correlation between the 
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emotional satisfaction and intellectual accessibility scales was 0.91, which suggested that 

there was little separation between subconstructs. However, these were kept separate 

rather than collapsing into a single attitude scale due to the previous theoretical 

justification put forth by Xu and Lewis (2011). Finally, McDonald’s Omega was 

measured to indicate how well the items within a construct were similar to one another, 

all omega values were sufficiently high indicating evidence towards the single-

administration reliability of the scales. 

 

Research Question 3: How do various aspects of the affective domain compare when 

students complete a general chemistry experiment virtually as opposed to a traditional 

hands-on experiment? 

 Once evidence was provided that the items from the six scales were functioning in 

the laboratory environment, the items were administered after three common chemistry 

laboratory experiments. The experiments chosen were a Beer’s Law experiment, a 

calorimetry experiment, and a titration experiment, thereby spanning content across the 

three terms of General Chemistry. When comparing students that completed a virtual 

Beer’s Law experiment with students that completed a hands-on Beer’s Law experiment, 

the students that completed the virtual Beer’s Law experiment had lower averages on the 

emotional satisfaction, intellectual accessibility, usefulness of lab, and equipment 

usability scales. However, an instructor effect was detected and therefore it was possible 

that who the student had as their instructor influenced their responses to the affective 

scales. At Portland State University, all instructors were graduate teaching assistants 
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(TAs) and it was determined that the majority of first-year TAs that taught the virtual 

experiment had students with lower affective averages. While it cannot be definitively 

concluded that their lack of teaching experience contributed to the lower averages, it is 

one possibility. Previous research has found that one of the most important indicators of 

an effective TA is that they are knowledgeable not only in the content but also in how to 

teach (Herrington & Nakhleh, 2003). Establishing an effective training program can help 

give first year TAs the tools they need to be an effective teacher (Marbach-Ad et al., 

2012).  The fact that an instructor effect was not detected in the second and third terms 

could indicate that as TAs gain experience this effect is minimized, or it could instead be 

an artifact of specific TAs that did not teach in the second or third terms. The teaching 

assignments change term by term and thus not all teaching assistants taught all three 

terms.  

In the calorimetry experiment, the students that completed the virtual experiment 

had lower averages on the usefulness of lab and equipment usability scales, similar to the 

Beer’s Law experiment, however, they had higher averages on the open-endedness of lab 

scale. This indicated that while they found the experiment to be less useful and the 

equipment harder to use, on average, they enjoyed that the procedure took less time to 

complete than it would have taken to complete a typical hands-on experiment. Like the 

other two experiments, students that completed a virtual titration experiment in the third 

term also reported lower averages on the usefulness of lab and equipment usability scales. 

With all three experiments having a similar outcome, it is likely that the students at this 
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institution found the virtual experiments, in general, to be less useful and harder to use 

than their hands-on counterpart and that it was not specific to an experiment type.  

Overall, across the three experiments no difference between learning 

environments was detected for the anxiety, intellectual accessibility, and emotional 

satisfaction scales after accounting for an instructor effect while there was a difference 

between learning environments detected for the usefulness of lab and equipment usability 

scales. 

 

Research Question 4: To what degree can experiments in a virtual environment meet the 

same learning objectives as similar traditional hands-on experiments? 

 In addition to the affective scale data collected, cognitive outcomes were also 

measured. Student laboratory reports were collected for each experiment and were scored 

using a rubric to determine whether the student did not meet, partially met, or met 

common learning objectives. These objectives were for a given experiment regardless of 

which environment they completed the experiment in and were based on learning 

objectives stated during interviews with five faculty members from three different 

institutions. After scoring the reports for the three different experiments, differences on 

four learning goals were found. The differences on the second learning objective for the 

Beer’s Law experiment (BL2), which was “prepare solutions”, and the first objective for 

the titration objective (T1), which was “visually identify a change in pH during a titration 

using a mixture of indicators”, were seen because these objectives were skill-based and 

students struggled to provide evidence of meeting these learning objectives in a written 
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report. It is possible that these differences would not be present if the objectives were 

measured through a laboratory practical instead of the report. The difference on the fourth 

learning objective on the titration experiment (T4), which was determining the molar 

mass, was due to differences in the procedures between the two environments and thus it 

is possible that if the procedures matched identically that this difference would be 

minimized. The difference on the third learning objective for the Beer’s Law experiment 

(BL3), which was determining an unknown concentration using Beer’s Law, was a 

function of the virtual experiment taking less time and thus the students had more time to 

work on processing the data. Had both environments had the same amount of time for 

processing the data, it is possible this difference would also be minimized.  These four 

detected differences were all minor in nature and could be minimized in future studies by 

making careful considerations in the experimental and course designs. There were no 

major differences detected between the two environments regarding students meeting 

learning objectives, indicating that generally, students were able to meet, or not meet, the 

learning objectives to the same degree in both environments.  

 

Research Question 5: To what degree do student characteristics explain differential 

outcomes in a general chemistry laboratory course? 

 To better understand what groups of students were present in the laboratory, latent 

profile analysis was conducted using five affective scales as the clustering variables. This 

type of analysis allows individual differences to be further investigated as it was possible 

that there were groups of students that had an experience that was different from the 
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average experience. The profile analysis revealed three groupings of students that were 

consistent across all three experiments. There were student groups with high, medium, or 

low affective outcomes regardless of which learning environment they completed the 

experiment in. This indicated while the majority of students are in the medium and high 

affective profile, there was anywhere from four to seventeen percent of the students that 

left a given experiment having low affective outcomes regardless of which learning 

environment they completed the experiment in. Further analysis revealed that the average 

laboratory report score across the three groupings was consistent and thus indicated it 

was not possible to identify the students in the low affective profile by cognitive 

measures alone. Not only were the scores consistent, the students’ ability to meet the 

learning objectives was largely consistent regardless of which profile the student 

belonged to. This highlights the need to not solely rely on cognitive measures to 

determine if an intervention is successful or not but instead affective measures should be 

included in intervention studies to ensure all students are having a positive experience in 

the laboratory. 

 Future Research 

 As institutions face challenges meeting the demands of increasing enrollment and 

decreasing budgets in General Chemistry laboratories, some have implemented virtual 

experiments as a way of increasing capacity and/or decreasing budget costs. However, it 

remained unclear in the literature if students could have similar outcomes from the virtual 

environment as opposed to coming into the traditional environment to complete the 

experiment. Specifically, if outcomes in both the affective and cognitive domains were 
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similar. To measure these affective outcomes, it was necessary to have affective items 

that have been adapted for the laboratory. Few laboratory-specific affective instruments 

existed prior to this research and thus items covering six constructs were adapted for the 

laboratory and then psychometrically evaluated. These items can be used in future studies 

for a wide range of contexts to measure students’ affective outcomes in the laboratory 

when comparing an intervention, such as using argument-driven inquiry experiments 

(Walker et al., 2011),  to the traditional laboratory experiments.  

 Future research would benefit from further examining the relationship between 

the emotional satisfaction and intellectual accessibility scales. Previous research has 

made a case for separating out the scales as part of a larger model but the correlations 

found in this research suggest that in future work it could be beneficial to collapse the 

items from the two scales into one scale titled ‘Attitude’. Alternatively, if the behavioral 

and cognitive components of attitude are important for future research, additional items 

could be added to theoretically justify the separation of the scales. 

 In addition to affective outcomes, one major finding from this research is that 

only minor differences were detected in the cognitive outcomes across learning 

environments, and with careful consideration in the implementation, those differences 

could be further minimized. Institutions can use this finding to better inform their 

decisions and researchers can use this to build future studies. In the affective domain, 

students reported that the virtual experiments were less useful and harder to use than the 

hands-on experiments. To minimize these differences in future implementations, 

institutions should consider how to make the virtual experiments feel more connected to 
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the students’ real-life and increase the training opportunities on the software. For 

example, a virtual experiment could include analyzing water downstream from a factory 

for contaminants. Future studies should consider measuring the skill-based objectives 

explicitly with laboratory practical exams rather than reports, to directly measure how 

students in the two learning environments compare. Researchers should also take extra 

precaution to make the procedures in the two learning environments as similar as 

possible. Previous work on virtual experiments (Hawkins & Phelps, 2013),  found that 

minor differences between procedures can influence students’ perception of the learning 

environments as well as their ability to reach the desired outcome. 

 A minor finding that researchers should also consider in future studies is the 

possibility of an instructor effect. One challenge with studying the laboratory is that at 

many institutions the sections are taught by multiple graduate students (TAs) with 

varying levels of interest and experience (Abraham et al., 1997). While TA training and 

weekly meetings are often conducted to ensure all sections have a similar experience, it is 

possible that differences between instructors have an effect on student outcomes. For 

example, student A may have the same course number at the same time in the room next 

to student B but they may leave their section with very different affective and cognitive 

outcomes based on their TA. While important to study, one issue a large number of 

studies run into is that there is not a sufficient sample size to have enough power to detect 

statistically significant differences by class section or TA. Thus, future studies should 

include a research design that ensures there is a large enough sample size to capture 

differences between TAs and how those differences are influencing student outcomes in 
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the course. If large enough sample sizes are not possible, well thought out qualitative 

studies can be conducted to gain a deeper understanding of what differences exist 

between TAs and how this might affect the students’ outcomes. In future work it would 

still be possible to minimize the instructor effect by having the same instructor teach one 

section with virtual experiments and one with the hands-on experiments. In that design, it 

would be likely that any differences seen between sections could be contributed to 

differences in the learning environment and not differences between TAs. 

Recommendations for Implementation 

If institutions choose to implement virtual experiments in the General Chemistry 

laboratory, there are several recommendations for best practice based on this study. First, 

it is recommended that the virtual experiment implemented is based on real-world 

examples. This can be done two different ways. First, in cases where no context is 

provided within the platform hosting the virtual environment, the instructor of the 

laboratory could provide relevant context for the experiment and procedure and how it 

relates to a health concern, industrial application, or other real-world context of interest 

relevant to their students. Alternatively, the virtual experiment could have these real-

world applications naturally built into the context of the experiment. Such as analyzing 

water for contaminates. Situating the experiment within a broader context allows students 

to connect with the material rather than feel that the virtual environment is not a useful 

experiment. This becomes increasingly important when virtual experiments are utilized at 

institutions that use problem-based experiments or other curricula for the hands-on 

experiments that situate experiments in real-life scenarios. One major advantage virtual 
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experiments have is their ability to complete experiments in situations that cannot be 

easily replicated in the laboratory. This should be taken advantage of and experiments 

should be selected that allow for traditionally difficult situations to be analyzed such as 

repeating experiments that use expensive reagents or that are time intensive.   

The second recommendation is that students be given ample opportunities to learn 

the virtual software. The virtual software may not be intuitive for all students and thus 

there is a need to have the students complete practice experiments where they can get 

comfortable with the software without the added pressure of also finishing the 

experiment.  

The final recommendation is that institutions wishing to implement virtual 

experiments should only do so with TAs that are informed about the virtual experiments 

and  have had adequate pedagogical training. How a TA responds to a question about a 

virtual experiment can significantly influence how the students feel about the experiment. 

For example, if a student asks a question about the data they got from the experiment and 

the TA responds with “don’t worry about that, it is not a real experiment”, this could give 

the student the impression that the TA does not think it is worth their time. However, if 

the TA responds with “That is a great question! The data looks that way because….”, the 

impression could instead be that the TA is excited about the virtual experiment and views 

it as valuable. It is important to note that while implementation may vary and may not 

directly involve at TA, that any personnel that interact with students about the virtual 

experiment should be informed about the virtual environment and understand the 

potential benefits. It is the author’s belief that with experiments situated in real-world 
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examples, ample time to learn the software, and extensive TA training, the differences 

seen in the affective domain would decrease and the two learning environments would be 

approximately equivalent at the General Chemistry laboratory for the affective and 

cognitive domain outcomes tested in this study. 

Overall, this research has begun to address the efficacy of virtual experiments. 

Institutions can use this research to make better-informed decisions about if and how they 

want to implement virtual experiments. Researchers now have access to affective items 

on six constructs that have been adapted for the laboratory environment (virtual or not) 

and have been psychometrically evaluated. See Appendix A for a copy of the six scales 

used for this study. These items can be applied to a wide range of studies to better 

understand the affective domain in the laboratory environment. Specifically, for virtual 

experiments, researchers can build upon this work and further explore differences 

between learning environments in the affective and cognitive domains as well as add 

information to the literature about potential differences in the psychomotor domain. 
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APPENDIX A: Supporting Information for Chapter IV 

 
Survey items as administered: 

 

anxiety: 

 

During this experiment I felt: 

 

 

         Nervous             Calm 

 

 

 

         Relaxed           Tense 

 

 

 

               Safe          Unsafe 

 

 

  

         Anxious           Unconcerned 

 

 

 

Apprehensive          At ease 
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intellectual accessibility: 

 

This experiment was: 

 

 

         Complicated                 Simple 

 

 

 

   Confusing                 Clear 

 

 

 

                    Hard                 Easy 

 

 

 

         Challenging                 Unchallenging 

 

 

 

Incomprehensible                 Comprehensible 

 

 

emotional satisfaction 

 

This experiment was: 

 

 

          Unpleasant                Pleasant 

 

 

 

    Uncomfortable                Comfortable 

 

 

 

               Chaotic                           Organized 

 

 

 

         Frustrating                           Satisfying 
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initial interest-feeling 

 

For the following question please indicate the level to which you agree with the 

statement. 

 

I am fascinated by chemistry 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

I chose to take general chemistry because I'm really interested in the topic 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

I am really excited about taking this class 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

I am really looking forward to learning more about chemistry 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 
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initial interest-value 

 

I think the field of chemistry is an important discipline 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

I think that what we will study in General Chemistry will be important for me to know 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

I think what we will study in General Chemistry will be worthwhile for me to know 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

 

usefulness of lab 

 

This experiment allowed me to study complex problems 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

I liked performing this experiment 
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a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

This experiment was interesting to me 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

 

I learned from the experiment 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

 

equipment usability 

 

This experiment was easy to set-up and operate 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

This experiment worked well 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

 

open-endedness of lab 

 

It was easy to explore in this experiment 
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a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 

This experiment was too long 

a) Strongly agree 

b) Somewhat agree  

c) Neither agree nor disagree 

d) Somewhat disagree 

e) Strongly disagree 
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Table A.SI1: Initial MANOVA results. 

 

 

 

 

 

 

 

 

 

 
 

Table A.SI2: Average Scale Scores by Teaching Assistant. 
 

AN: anxiety, ES: emotional satisfaction, IA: intellectual accessibility, II-F: initial interest-feeling,  

II-V: initial interest-value, U: usefulness of lab, EU: equipment usability, OE: open-endedness of lab  

 
Note: Data from TAs 1-6 were grouped as ‘Hands-On’, data from TAs 7-10 were grouped together as 

‘Virtual Group A’, and data from TAs 11-14 were grouped together as ‘Virtual Group B’ 

  

 Type III Sum 

of Squares 
F Sig. 

Partial Eta 

Squared 

initial interest-feeling 0.460 0.532 0.466 0.001 

initial interest-value 0.794 1.397 0.238 0.004 

anxiety 847.545 1.401 0.237 0.004 

intellectual accessibility 6636.629 10.666 0.001 0.027 

emotional satisfaction 13751.823 19.931 0.000 0.049 

usefulness of lab 9.158 11.239 0.001 0.028 

equipment usability 20.577 22.870 0.000 0.056 

open-endedness of lab 0.001 0.001 0.971 0.000 

TA AN ES IA II-F II-V UoL EU OeoL 

1 37.32 72.08 61.49 3.81 4.24 3.75 4.15 3.60 

2 35.98 64.52 58.00 3.91 4.38 3.92 4.19 3.52 

3 32.56 70.04 62.69 3.65 4.21 3.71 4.07 3.32 

4 27.05 75.62 68.71 3.62 4.38 3.71 4.19 3.46 

5 32.14 77.99 73.04 3.97 4.40 3.89 4.31 3.54 

6 32.20 73.12 72.98 3.67 4.29 3.72 4.38 3.81 

7 26.89 70.33 66.54 3.97 4.30 4.34 4.48 4.11 

8 30.81 65.11 63.83 3.62 4.21 3.06 3.68 3.52 

9 32.63 65.26 57.05 3.79 4.21 3.59 4.04 3.72 

10 39.30 64.41 56.78 3.66 4.19 3.76 3.76 3.24 

11 40.30 56.79 55.92 3.79 4.27 3.41 3.65 3.23 

12 37.55 56.14 57.95 3.58 4.26 3.47 3.80 3.62 

13 41.28 49.71 52.96 3.79 4.41 3.09 3.26 3.30 

14 36.73 56.15 53.51 3.45 4.02 3.16 3.39 3.48 
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APPENDIX B: Supporting Information for Chapter V 
  

Interview Protocol: 

1) I first wanted to just remind you of who I am and what my dissertation project is 

on. I am Cory Hensen and I am currently working on my Ph.D. under Jack 

Barbera. My dissertation project is looking at the efficacy of virtual laboratories. 

We are currently starting year 1 of the preliminary data collection before we move 

on to starting with students, we want to first understand where faculty are coming 

from through these interviews. Before I can begin looking at virtual laboratories, I 

first want to understand the learning objectives for the specific experiments I am 

interested in. Currently you are teaching (coordinating) Chem [course number] 

which covers the [experiment name] experiment in which I am interested.  

a. If you are okay with being interviewed, I would like to go over the 

informed consent [informed consent details]. 

b. Thank you for signing that form. I am now going to turn on the audio 

recorder if you are okay with that.  

2) I first want to start with asking how long you have been a faculty member at this 

institution? 

3) How many of those years have you been involved in the general chemistry 

laboratory? 

a. In what capacity are you involved in the general chemistry laboratory? 

4) Now I wanted to get into asking about a specific laboratory experiment. This term 

the students are doing an experiment over [topic]. Here is a copy of the procedure 

in case you need it. I wanted to ask you what learning objectives, or things you 

want your students to get out of this lab, you have? 

a. How many of these are assessed? 

b. If students missed today’s experiment, what would they miss out on? 
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Table B.SI1: Demographics 
  Beer’s Law Calorimetry Titration 

Total Enrollment (N) 630 484 355 

Consented (N) 
Hands-on 174 129 72 

Virtual 216 152 117 

*Female (%) 
Hands-on 61.5 55.0 56.0 

Virtual 55.0 57.2 65.8 

*White (%) 
Hands-on 57.5 49.6 44.0 

Virtual 49.1 57.2 49.6 

*Biology Major (%) 
Hands-on 36.2 40.3 41.3 

Virtual 25.9 35.5 42.7 

*These categories were the majority for all experiments and sections for both the 

consented and overall course populations 

 

Table B.SI2: List of overarching learning goals and experiment-specific learning 

objectives by faculty member 

Faculty 
Overarching 

Goals 
Beer’s Law Objectives Calorimetry Objectives 

 

After completing 

this course, students 

will be able to do: 

After doing this experiment, students will be able to: 

A 

o Graphical 

analysis 

 

o Understand and use the 

relationship between absorbance 

and concentration 

o Prepare solutions from both a 

stock solution and a solid 

o Calculate the molarity of a given 

solution 

o Experimentally 

determine and feel 

enthalpy changes 

o Use Hess’s Law to 

predict the enthalpy 

change for a given 

reaction 

o Understand the 

relationship between 

energy and enthalpy 

at a constant pressure 

o Understand the 

relationship between 

energy and 

temperature 
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B 

o Error analysis 

o Measurement 

 

o Visualize concentration strength 

in a serial dilution 

o Derive graphically the 

relationship between absorbance 

and concentration 

o Use the relationship between 

absorbance and concentration to 

solve for an unknown 

concentration 

o Experimentally 

determine the thermal 

energy (q) for a given 

reaction 

o Use thermal energy to 

calculate the enthalpy 

change of a given 

reaction 

o Describe the 

relationship between 

a measured 

temperature change 

and an enthalpy 

change 

C 

o Comparison 

with literature 

values  

o Unit analysis 

 

o Graphically determine the 

relationship between absorbance 

and concentration 

o Determine an unknown 

concentration using the 

relationship between absorbance 

and concentration 

o Successfully prepare a calibration 

curve 

o Prepare standard solutions from a 

stock solution 

o Experimentally 

determine the 

enthalpy of 

neutralization of 

phosphoric acid  

o Compare the 

experimental value 

with the literature 

value and determine 

percent error 

o Apply and understand 

the first law of 

thermodynamics 

D 

o Graphing  

o Collaboration 

 

o Determine graphically the 

relationship between absorbance 

and concentration 

o Use the relationship to solve for 

an unknown concentration 

o Understand how light interacts 

with matter to produce the 

maximum wavelength 

o Understand real-world 

applications of spectroscopy 

o Experimentally 

determine the 

enthalpy of 

dissolution 

o Predict the sign of the 

change in enthalpy 

from a temperature 

change 

o Calculate heat energy 

by using a 

temperature change 

o Relate enthalpy 

changes to bond 

formation 
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Faculty 
Overarching 

Goals 
Beer’s Law Objectives 

Calorimetry 

Objectives 

E 
o Graphing  

 

o Prepare calibration standard 

solutions 

o Understand the relationship 

between absorbance and percent 

transmittance 

o Understand the interaction of light 

and matter at the nano level 

o Use a calibration curve to 

determine an unknown 

concentration 

o Experimentally 

determine the change 

in enthalpy given a 

temperature change 

o Understand the 

relationship between 

mass and heat energy 

o Understand the 

difference between 

exothermic and 

endothermic reactions 

o Predict the sign of the 

change in enthalpy 

from a temperature 

change 

 

The faculty members were not asked explicitly about any broad learning goals, however, 

some learning goals were still mentioned in the course of the interview. These were noted 

separately and were not included in any analysis as this study was focused on 

experiment-specific learning objectives. 
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Faculty Titration Objectives 

 
After doing this experiment, students will 

be able to: 

A 

o Successfully preform a titration 

o Identify key points on a titration curve 

o Use a pH titration curve to determine 

the concentration of a solution 

containing an acid 

o Identify the Brønsted-Lowry acids and 

bases present in solution and which of 

these substance(s) control the pH 

B 

o Visually identify a change in pH 

during a titration 

o Use a titration curve to identify the 

molar mass and pKa of an unknown 

analyte 

C 

o Identify key points on a titration curve 

o Determine the pKa and molar mass of 

an unknown anlatye using a titration 

curve 

o Visualize pH changes using a mixture 

of indicators 

D 

o Determine the pKa and identify of an 

unknown acid using a titration curve 

o Predict the pH at the equivalence 

point 

o Identify key points on a titration curve 

o Predict which acid-base species are 

present at various points throughout a 

titration 
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E 

o Identify key points on a titration 

curve 

o Identify the unknown analyte using 

the calculated pKa value 

o Understand the reaction of a weak 

acid with a strong base 

o Understand real-world applications of 

titrations 
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Table B.SI3: Skew and Kurtosis values 
  Hands-On Virtual 

Beer’s Law 

 Skewness Kurtosis Skewness Kurtosis 

Anxiety 0.466 -0.648 0.329 -0.602 

Emotional Satisfaction -1.099 1.074 -0.503 -0.688 

Intellectual Accessibility -0.759 0.158 -0.251 -0.786 

Usefulness of Lab -0.625 0.160 -0.536 -0.598 

Equipment Usability -1.277 2.077 -0.764 -0.235 

Open-endedness of Lab -0.488 0.163 -0.395 -0.127 

Calorimetry 

Anxiety 0.724 -0.657 0.903 -0.174 

Emotional Satisfaction -1.580 1.823 -1.399 1.217 

Intellectual Accessibility -1.487 1.501 -1.571 1.796 

Usefulness of Lab -0.875 1.009 -0.622 -0.126 

Equipment Usability -1.009 0.329 -1.487 2.905 

Open-endedness of Lab -0.296 -0.744 -0.400 -0.553 

Titration 

Anxiety 0.798 -0.177 0.311 -0.765 

Emotional Satisfaction -0.976 0.640 -0.548 -0.551 

Intellectual Accessibility -0.802 0.436 -0.624 -0.411 

Usefulness of Lab -0.335 -0.208 -0.459 -0.615 

Equipment Usability -1.404 2.539 -1.010 0.232 

Open-endedness of Lab 0.153 0.019 -0.464 -0.169 

 

 

Table B.SI4: Affective averages by environment and experiment 
  Anx ES IA U EU OE 

Beer’s Law 
Hands-On 32.71 72.28 66.10 3.78 4.21 3.54 

Virtual 35.68 60.33 57.80 3.47 3.75 3.54 

Calorimetry 
Hands-On 23.56 78.12 77.32 3.88 4.66 4.07 

Virtual 21.72 75.83 78.56 3.62 4.41 3.95 

Titration 
Hands-On 32.08 69.10 69.58 3.73 4.29 3.23 

Virtual 33.12 63.50 68.25 3.37 3.76 3.50 

Scales on a 0-100 semantic differential scale: Anx: anxiety, ES: emotional satisfaction, IA: intellectual 

accessibility 

Scales on a 0-5 point Likert-type scale: U: usefulness of lab, EU: equipment usability, OE: open-endedness 

of lab 
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Latent Profile Analysis: 

Once the clustering variables were selected as: emotional satisfaction, intellectual 

accessibility, usefulness of lab, open-endedness of lab, and equipment usability, the R 

package mclust was used to conduct a latent profile analysis. The anxiety scale was not 

selected as a clustering variable. A latent profile analysis has an advantage over 

traditional distance-based cluster analysis as it allows competing models to be compared 

with a fit index to determine the best clustering for the data. There are fourteen different 

types of models compared and each of these types had nine sub-models that were used to 

determine the number of profiles. There were four different categories that the models 

could be different on: the distribution of the data within each grouping, the volume of the 

grouping, the shape of the grouping, and the orientation of the grouping. The first letter of 

the model represents whether the volume was forced to be equal between the groupings 

(E) or if there was variation allowed in the volume (V). The second letter of the model 

indicates whether the shape of the model was forced to be equal between the groupings 

(E) or if there was variation allowed in the shape (V). The third letter of the model 

specifies whether the orientation of the model was on the coordinate axes (I), forced to be 

equal between groups (E), or allowed to vary (V). There are two models that do not 

follow this lettering. EII is for spherical groups with equal volume and equal shape and 

VII is for spherical groupings with variable volume and equal shape. 

 

For the Beer’s Law data, the r function mclustBIC was used to compare all the models on 

the BIC fit index: 

 

Table B.SI5: BIC indices for all possible models  
EII VII EEI VEI EVI VVI EEE 

1 -16501.4 -16501.4 -10475.4 -10475.4 -10475.4 -10475.4 -9655.02 

2 -15153 -15076.6 -9880.17 -9755.95 -9877.55 -9755.02 -9620.04 

3 -14574.2 -14422.3 -9798.39 -9594.37 -9737.39 NA -9484.54 

4 -14237.5 -14144.4 -9605.86 -9501.16 -9643.88 NA -9490.44 

5 -13978.2 -13905.1 -9603.75 -9497.37 -9645.41 NA -9505.78 

6 -13909.1 -13792.4 -9613.43 -9461.04 -9639.73 NA -9551.32 

7 -13765.9 -13675.8 -9568.55 -9493.52 -9686.25 NA -9577.47 

8 -13674.6 -13450 -9576.26 -9501.44 NA NA -9587.03 

9 -13616.4 -13322.9 -9612.14 -9492.6 NA NA -9622.77 

 EVE VEE VVE EEV VEV EVV VVV 

1 -9655.02 -9655.02 -9655.02 -9655.02 -9655.02 -9655.02 -9655.02 

2 -9547.8 -9458.01 -9468.32 -9571.09 -9484.68 -9572.07 -9489.55 

3 -9573.11 -9461.59 -9430.9 -9582.6 -9485.44 -9611.83 -9520.89 

4 -9540.49 -9408.39 -9445.8 -9586.7 -9484.16 -9625.05 -9560.75 

5 -9562.34 -9408.89 -9433.96 -9641.8 -9551.22 -9689.47 -9551.73 

6 -9587.87 -9435.61 -9467.29 -9661.99 -9576.45 -9775.14 -9626.42 

7 -9649.66 -9453.16 -9511.17 -9720.75 -9631.47 -9855.15 -9721.86 

8 -9663.83 -9484.48 -9547.29 -9807.52 -9711.39 -9853.02 -9788.98 

9 -9672.88 -9492.94 -9567.88 -9840.68 -9729.3 -9987.25 NA 
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The best fitting model is the one that produces the highest BIC since BIC is calculated to 

be maximized in mclust. Therefore, the best fitting model was VEE with 4 profiles, as 

shown in bold in Table SI5. The grouping with five profiles had a similar fit but 

ultimately four was chosen as it was higher and is the simpler case. The more profiles 

that are selected, the harder it is to make meaningful comparisons between the profiles. 

This means that the groups were ellipsoidal with varying volume but equal shape and 

orientation. This process repeated in a similar fashion for the other two experiments. For 

the calorimetry experiment, the solution of five profiles had the highest BIC but after 

looking at the profiles, two profiles had very similar characteristics and were collapsed 

into one profile resulting in four profiles. For the titration experiment, the solution of 

three profiles had the highest BIC and was selected as the best fitting. 

 

Table B.SI6: Affective averages by profile and experiment 
  Anx ES IA U EU OE 

Beer’s Law 

Low 53.73 38.26 37.76 2.59 2.45 2.67 

Medium 31.45 71.98 66.93 3.70 4.16 3.54 

High 16.57 92.85 82.99 4.35 4.84 4.35 

Mixed 53.64 7.35 19.59 3.95 4.60 3.98 

Calorimetry 

Low 59.28 5.95 13.18 3.82 4.41 4.09 

Medium 31.54 57.48 66.10 3.15 4.03 3.36 

High 18.03 88.08 86.61 3.67 4.54 3.82 

Very High 8.57 99.38 98.38 4.57 5.00 5.00 

Very High 12.14 96.19 92.35 4.22 4.92 4.71 

Titration 

Low 54.98 26.21 46.75 2.69 2.23 2.73 

Medium 34.42 64.80 66.93 3.45 4.12 3.18 

High 17.90 90.36 84.98 4.10 4.70 4.18 

Scales on a 0-100 semantic differential scale: Anx: anxiety, ES: emotional satisfaction, IA: intellectual 

accessibility 

Scales on a 0-5 point Likert-type scale: U: usefulness of lab, EU: equipment usability, OE: open-endedness 

of lab 

Figure SI1: Percent of students that completed the experiment in the virtual environment 

by profile 
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