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Abstract 

Bone mineral density (BMD) in the pectoral flipper of the common bottlenose 

dolphin, Tursiops truncatus, was examined to address the need to define a comprehensive 

target site for clinical osteodensitometric assessment and to establish ranges of observed 

bone density values for this species. Radii were analyzed using dual energy X-ray 

absorptiometry (DXA), the accepted standard in human medical studies. Multiple loci 

within the radius were identified and assessed for their correlation to BMD of the entire 

bone. Radii BMD were also examined for differences based on sex, age, total body length, 

handedness, geographical affinity, and nutritional status at time of death. No statistically 

significant differences were observed in BMD measurements for male and female dolphins 

or right and left flippers. Additionally, no statistically significant differences were observed 

based on geographical region or nutritional status at time of death. These results support 

the inclusion of all specimens used in this study as a descriptive reference dataset for bone 

density values in bottlenose dolphins and detail a primary skeletal site for clinical 

assessment of bone density for the species. The values utilized in this study represent the 

largest dataset published on BMD in any wildlife or marine mammal species to date. 

In the skeletal specimens analyzed, BMD increased with age and body length; 

however, the variance of bone density values that was observed at any given age was of 

such magnitude that it precludes the use of this single parameter as a reliable estimator of 

age. The clinical measurement of an individual’s bone density at any given time is a direct 

reflection of that individual’s skeletal health. Reducing osteodensitometry to a static age 

estimation tool would inherently disregard the biological and physiological function of 
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calcified tissues. Variation of bone density values at any given age may be an indicator of 

altered skeletal health due to numerous factors including overall health, nutritive status, 

contaminant exposure, body condition, or metabolic and endocrine related disorders. 

 Despite its accuracy, precision, and widespread use, DXA has limitations and 

clinical shortcomings. The technology is not appropriate for all healthcare and screening 

applications due to the inherent use of radiation, large size of units, relatively high 

associated costs, and limited access and availability. Quantitative ultrasound (QUS) 

methods for bone assessment have demonstrated potential to determine bone quality and 

to provide information about BMD. QUS is beneficial in that it is portable, nondestructive, 

noninvasive, less expensive than X-ray technology, and does not expose patients or 

technicians to radiation. To circumvent limitations in traditional radiographic bone density 

assessment, a custom QUS device and protocols were developed for assessment of live 

bottlenose dolphins. In laboratory measurements on disarticulated pectoral flippers 

collected post-mortem, a strong correlation was established between BMD as measured 

with QUS and DXA. Initial trials to develop clinical protocols and establish ultrasonic 

assessment of bone as non-aversive were conducted on dolphins managed under human 

care. Findings support the application of quantitative ultrasonic assessment of bone density 

to assess skeletal health in free-ranging dolphins during capture-release health assessments 

and in populations of dolphins under human care. 

 Bottlenose dolphins are utilized as indicators of ecosystem health in capture-release 

health assessments. BMD measurements have not previously been incorporated into these 

projects despite evidence that exposure to a suite of anthropogenic contaminants, episodic 
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prey depletion events, and resultant malnutrition lead to decreased bone density in 

laboratory animals and wildlife species. To establish bone density as a useful health and 

life history parameter for the bottlenose dolphin, normative reference ranges must be 

established from healthy individuals in order to facilitate evaluation of health and disease 

status of individuals from impacted populations and habitats. Repeatability assays were 

conducted on dolphins under human care to define the precision error for this novel QUS 

application. Ultrasonic bone density assessments of live, free-ranging dolphins were 

conducted during capture-release health assessments from 2014-2019. Individuals were 

selected from this long-term population study for the development of a normative bone 

density dataset of dolphins with nutritive body condition within normal limits and the lack 

of obvious disease or health issues. This study represents the first use of QUS to assess 

bone density in a marine mammal species, and the BMD values as assessed with QUS 

represent the first normative BMD dataset for live, free-ranging marine mammals. 

Application of this technology during capture-release health assessments adds a valuable 

resource to biologists and wildlife veterinarians investigating dolphin and overall 

ecosystem health. 

Future studies and applications are suggested to investigate associations between 

anthropogenic contaminant exposure and BMD in free-ranging dolphins and renal 

dysfunction or metabolic disorder and BMD in managed care dolphins. Continued long-

term monitoring of bone density in live, free-ranging bottlenose dolphins using the 

established reference population will allow for more in-depth investigation of life history 

questions, particularly with regard to large-scale prey mortality events associated with 
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toxic algal blooms and resultant malnutrition. Technological advancements to assess BMD 

in additional skeletal sites is encouraged to facilitate additional research questions that may 

not be as readily addressed using the pectoral flipper as an examination site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
v 

Acknowledgements 

I would like to thank my doctoral dissertation committee for the support they have 

provided throughout this project and the critical review of the various components that 

have led to this dissertation. Additional research collaborators were instrumental in 

assisting me through the development of this project to ensure that from the beginning it 

had the scope and capacity to be fully integrated into the marine mammal research field. 

This project would not have been possible without the additional support and collaborative 

efforts made by the following researchers: Dr. Cynthia Smith and Dr. Lori Schwacke 

(National Marine Mammal Foundation), Dr. Leslie Hart (College of Charleston), Dr. 

Spencer Fire (Florida Institute of Technology), Gretchen Lovewell and Rebeccah 

Hazelkorn (Mote Laboratory and Aquarium), Dr. Gangming Luo (CyberLogic, Inc.), and 

Dr. Mitch Finnegan and Margot Monti (Oregon Zoo). 

I am forever grateful to Wayne McFee who is ultimately responsible for this project 

even existing. He provided me the opportunity to pursue my dreams of studying marine 

mammals by allowing me to join his staff in 2006 and then mentoring me through my early 

career. I am fortunate to have had Wayne in my life as a mentor and role model not only 

as a scientist but also as a husband and father. 

 I would also like to convey how truly grateful I am to Dr. Jonathan Kaufman, a 

biomedical engineer from Brooklyn, New York, who had not even seen a bottlenose 

dolphin in person until he was practically forced into the water during the 2012 Sarasota 

Dolphin Research Program Health Assessments in my (successful) attempt at convincing 



 

 

 
vi 

him to join me on this crazy adventure. As unlikely as our pairing is, he has been an 

amazing and gracious mentor, research partner, and friend. 

 In retrospect, as a young child growing up in landlocked West Tennessee claiming 

that I was going to “grow up and study dolphins” I had no idea what that meant. I was 

extremely lucky to have had teachers in my life at a very early age who challenged me to 

be the best student I could in order to pursue that dream. In a large part, for me, this 

dissertation represents that dream forming into a reality. One of the greatest hopes I have 

for my daughter is for her to have teachers come into her life that are as formative and 

cherished as Mrs. Patricia Prescott and Mrs. Sandra Todd are for me. I have grown up 

feeling extremely fortunate for the roles they both played in molding who I am today. 

Dr. Randy Wells welcomed me into the Sarasota Dolphin Research Program and 

provided a place for me to transition a research idea from a theoretical laboratory concept 

to an applied technique on live dolphins. I am humbled to have been able to pursue my 

research under his guidance and am grateful for his support and assistance. Beyond the 

platform he has now provided to a generation of researchers, his program has given many 

of us a family of Sarasota Siblings that, for me, is personally far more meaningful than the 

research questions we are answering. 

It is not possible for me to have found a more amazingly supportive and caring 

major advisor than Dr. Deb Duffield. Coming to Portland State University to study under 

her was one of the greatest decisions I ever made. I very tentatively returned to graduate 

school as a still new father of a 3-year-old daughter. Raegan, Macy, and I will be forever 

grateful for Dr. Duffield’s support of my life balance, ensuring that I was able to be the 



 

 

 
vii 

father I wanted to be while also training to be the scientist I came to Portland to develop 

into. I am honored to have been a Duffield Lab student and to have shared my time there 

with Kessina Lee and Kyle Tidwell, who assisted greatly in my personal and professional 

development. My time as a member of the Duffield Lab and the years we spent together 

has forever shaped and impacted all aspects of my life for the better. 

In addition, I am grateful for the countless hours provided by marine mammal 

stranding response staff and volunteers at NOAA’s Center for Coastal Environmental 

Health and Biomolecular Research in Charleston, South Carolina, and Mote Marine 

Laboratory and Aquarium in Sarasota, Florida. Natural history collections are invaluable 

resources for studies as the opportunistically collected and archived specimens provide a 

platform for the application of new technologies and the development of advanced methods 

that were often unimagined when the specimens were collected. I hope this dissertation 

serves as an example of the fields of study and areas of inquiry that can be generated and 

explored based on biological collections, highlighting the importance of biological 

research collections in conservation, health, and global environmental monitoring.  

I am especially grateful to the staff and volunteers of the Sarasota Dolphin Research 

Program and the dolphins of Sarasota Bay for making the capture-release health 

assessments and the research those efforts support safe and possible. I also appreciate the 

staff and dolphins at Brookfield Zoo and Dolphin Quest Oahu for their participation in this 

project and for exemplifying a commitment to research that increases knowledge and better 

understanding of marine mammals using animals managed under human care. 



 

 

 
viii 

In addition to the support provided by the multitude of research collaborators on 

this project, this research was made possible through financial support from the National 

Science Foundation Small Business Innovation Research Program (NSF SBIR), Disney 

Conservation Fund, American Military University Faculty Research Grant, Greenville 

Zoo, Forbes-Lea Endowment Fund for Graduate Research, Portland State University 

Travel Grant Program, and U.S. Environmental Protection Agency Science to Achieve 

Results (EPA STAR) Graduate Research Fellowship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
ix 

Table of Contents 

Abstract …………………………………………………………………………...……….i 

Acknowledgements …………………………………………………….………………....v 

List of Figures ……………………………………………………………………….........x 

List of Abbreviations …………………………………………………………….………xi 

Chapter 1 

Introduction ……………………………………………………………………………….1 

Chapter 2 

Bone Density Cannot Accurately Predict Age in the Common Bottlenose Dolphin, 

Tursiops truncatus ........…………………………………………………………………17 

Chapter 3 

Bone Mineral Density of the Common Bottlenose Dolphin Radius: A Primary Skeletal 

Site for Clinical Bone Densitometry and Descriptive Dataset Using Archival Specimens 

……………………………………..…………………...………………….……………..24 

Chapter 4 

Quantitative Ultrasonic Assessment of Bone Density in the Pectoral Flipper of the 

Common Bottlenose Dolphin, Tursiops truncatus ……………………………………...43 

 

Chapter 5 

Precision Error and Normative Reference Values for Ultrasonic Bone Density 

Measurements in Live Common Bottlenose Dolphins, Tursiops truncatus …………….59 

 

Chapter 6 

Conclusions and Future Studies …………………………………………………………77 

 

Literature Cited …………..………………...…………………………...…………….....85 

 

Appendix A. Bone mineral density (BMD) values as defined with dual-energy X-ray 

absorptiometry (DXA) for bottlenose dolphins, Tursiops truncatus, in this study provided 

as an open-source descriptive dataset for bottlenose dolphin BMD values ....................101 

 

Appendix B. Quantitative ultrasound (QUS) values from bone mineral density (BMD) 

repeatability assay conducted on dolphins managed under human care …………....….106 

 

Appendix C. Bone density measurements of live, free-ranging bottlenose dolphins during 

capture-release health assessments from 2014-2019 .........................................….….…107 

 



 

 

 
x 

List of Figures 

2-1 Norland Sabre pDEXA densitometer of a dolphin pectoral flipper ….….……..…22 

2-2 Bone density distribution from bottlenose dolphin radii relative to age ...……..…23 

3-1 Bottlenose dolphin flipper, digital radiograph, and labelled flipper bones ….....…38 

3-2 Bottlenose dolphin radius and pDEXA scan with labelled ROIs ………….….….39 

3-3 BMD values at selected ROIs and whole radius BMD ………….……………..…40 

3-4 BMD vs. age for 279 bottlenose dolphins …………………………………..……41 

3-5 BMD vs. total body length for 279 bottlenose dolphins …………………….……42 

4-1 Primary ROI on dolphin pectoral flipper, radiograph, and pDEXA scan  ……..…54 

4-2 CyberLogic-designed portable quantitative ultrasound system …….……………55 

4-3 Soundwave propagated through bottlenose dolphin radius and soft tissue …….…56 

4-4 Dolphin BMD correlation between DXA and quantitative ultrasound  ……..……57 

4-5 Ultrasonic bone densitometer testing on a live bottlenose dolphin ……………….58 

5-1 Bone sonometer quantitative ultrasound scan on a dolphin flipper ………………72 

5-2 Locating primary region of interest (ROI) on the dolphin pectoral flipper .………73 

5-3 In-water bone density assessment of managed care bottlenose dolphins ……...…74 

5-4 Ultrasonic BMD scan of live, free-ranging bottlenose dolphin ………………..…75 

5-5 Scatterplots of BMD for free-ranging bottlenose dolphins  ………………………76 

 

 

 

 



 

 

 
xi 

LIST OF ABBREVIATIONS 

BMC – bone mineral content 

BMD – bone mineral density 

BUA – broadband ultrasonic attenuation 

CHES – Charleston Harbor Estuarine System (Charleston, SC, USA) 

DDT – dichlorodiphenyltrichloroethane 

DWH – Deepwater Horizon (oil spill) 

DXA – dual-energy radiograph (X-ray) absorptiometry 

EPA – United States Environmental Protection Agency 

GC – geometric center (ROI at geometric center of radius) 

NTD – net time delay 

PAH – polycyclic aromatic hydrocarbons 

PBDE – polybrominated diphenyl ethers 

PCB – polychlorinated biphenyl ethers 

pDEXA – peripheral dual-energy radiograph (X-ray) absorptiometry 

PHCs – persistent organohalogen contaminants  

POPs – persistent organic pollutants 

QA – quality assurance 

QC – quality control 

QCT – quantitative computed tomography 

QUS – quantitative ultrasound 

ROI – region of interest 

SOS – speed of sound 

SSB – Sarasota Bay (Sarasota, FL, USA) 

TL – total length 

WHO – World Health Organization 



 

 
1 

CHAPTER 1 

INTRODUCTION 

 Effectively assessing the population health of large, marine vertebrates has gained 

increasing urgency over the last decade as human impacts on the environment, including 

global climate change, and other factors facilitate a more rapid transmission of new 

pathogens and diseases and the spread of pollutants (Harvell et al. 1999, Salazar and 

Denkinger 2010). Health assessments of marine apex predators, such as common 

bottlenose dolphins (Tursiops truncatus), are critical in areas where populations show signs 

of epidemic disease, high mortality, low reproductive success, and/or where ecosystems 

are being altered or impacted by human activities (Townsend et al. 2018). Numerous 

techniques have been developed for evaluating different aspects of animal health in the 

field, and among these, osteological examination is gaining an increased focus in studies 

of wildlife disease and pathology.  

In veterinary medicine, health has been defined as “a state of physical and 

psychological well-being and of productivity, including reproduction” and health indices 

as “observable parameters that can be used as an indication of the individual animal’s or 

group of animals’ health” (Blood and Studdert 1999). Development of species-specific 

health indicators for wild, free-ranging wildlife is critical to comprehensively assessing 

individual and population health and to fully understand the effects of anthropogenic and 

environmental impacts. In human medicine, assessment of skeletal health has developed 

as an accepted component to defining an individual’s health, particularly with increasing 

age. Quantitative assessment of bone mineral density (BMD) is currently considered the 

best predictor of skeletal health. Bone densitometry, or the measurement of BMD, is a vital 
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tool for the diagnosis of medical conditions such as osteoporosis, predicting fracture risk, 

and monitoring bone mineral density in treated and untreated patients (Miller 2017). BMD 

is the amount of bone mineral, calcium hypoxyapatite, per volume of bone tissue or per 

unit area. 

Bone densitometry is an emerging diagnostic tool in zoo and wildlife medicine as 

osteological assessment and skeletal investigation can reveal critical information about an 

individual (Duckler and Van Valkenburgh 1998). Evidence of chronic physical illness and 

acute injury can manifest itself in skeletal material in animals much in the same manner as 

for humans (O’Connor 2000). Skeletal examination of animals, despite its importance in 

diagnostic and forensic studies, is often overlooked or neglected during routine veterinary 

postmortem work (Cooper and Cooper 2008). By increasing the universal understanding 

of animal skeletal health, coupled with the appropriate use of more readily accessible 

medical technologies, entire lines of research and diagnostics previously limited to human 

medical studies can be made available to those in the wildlife and conservation medicine 

field. 

In the preface to her text on bone densitometry in clinical practice, Sydney Bonnick 

(2010) highlights that bone densitometry is an extraordinary clinical tool that provides a 

safe, non-invasive view of skeletal health allowing a physician, clinician, or researcher to 

obtain vital information that cannot currently be obtained in any other way. Notably, she 

also urges caution, noting that with the increase in the number of densitometry devices and 

individuals involved in densitometry, there has been occasional misuse of the technology 

and lapses in quality, devaluing the field of densitometry. Despite the increased access to 

bone densitometry through the proliferation of densitometers throughout the medical field, 
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it is imperative that skeletal radiography and imaging densitometry be used as it was 

developed, with keen attention paid to quality control and caution paid to avoid inaccurate 

or improper application of densitometry results (Bonnick 2010). 

While use of bone densitometry for the diagnosis, treatment, and monitoring of 

patients in human medicine is robust, the application of those technologies to fields such 

as wildlife research and conservation medicine is emerging. Comprehensive reviews of 

animal models of osteoporosis (Turner et al. 2001), animal models for fracture treatment 

(Egermann et al. 2005), and nonprimate, large animal models for osteoporotic research 

(Reinwald and Burr 2008) have been published; however, a comprehensive review of 

osteodensitometry studies in the zoologic context of application to managed care animals 

and free-ranging wildlife has not yet been conducted. 

 

WHAT IS BONE AND WHY STUDY IT? 

Bone is a dynamic, metabolically active tissue with diverse functions that surpass 

its essential role in structural support and mechanical function of the musculoskeletal 

system. Bone assists in growth, pH balance, blood production, endocrine regulation, 

reproduction, and mineral and energy storage (Currey 1984). Bone is a composite material 

formed of collagen and hydroxyapatite. These are deposited and reabsorbed throughout an 

organism’s life in a process referred to as bone turnover (Buckwalter et al. 1996). At the 

gross level, mammalian bone is comprised of solid, dense bone (compact or cortical bone) 

and a more spongy, porous underlying material (cancellous or trabecular bone), surrounded 

by periosteum, a thin, vascularized membrane responsible for supplying nourishment to 

living skeletal tissue (Marks and Odgren 2002). Detailed reviews of the physical, 
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geometric, and mechanical properties of bone as a tissue, and bones as organs, have been 

published by Burr (1980, 2002) and Currey (1984, 2002). 

The cellular process of bone dynamics is driven by osteoblasts, cells that form bone, 

and osteoclasts, cells that resorb bone. This system of bone turnover occurs through 

separate processes of modeling and remodeling (Buckwalter et al. 1996). Bone develops, 

grows, and achieves its specific and ultimate geometry through the process of modeling 

(Olsen, et al. 2002). Bone formation and bone resorption are spatially and temporally 

independent in the modeling process; however, remodeling is a temporally and spatially 

constrained process where bone is sequentially removed and replaced by new bone (Frost 

1992). Normal bone remodeling requires a tightly regulated system of bone resorption and 

bone formation to ensure that bone mass and bone quality are not altered. This highly 

regulated process declines with age, in patients with diseases of bone remodeling, and in 

osteoporotic patients (de Vernejoul 1989). Disorders of bone remodeling, in addition to 

menopause-associated and age-related osteoporosis, include glucocorticoid-induced and 

immobilization-induced osteoporosis, renal osteodystrophy, Paget’s disease, osteopetrosis 

and rickets (Feng and McDonald 2011). There are numerous additional secondary causes 

of osteoporosis, resulting in bone disorders; for example, secondary complications of 

various medical conditions, consequences of changes in physical activity, or adverse results 

of therapeutic interventions for specific disorders (Marcus et al. 2008). 

BMD is positively correlated with age and body mass in humans and other animals 

(Blake et al. 2000) up to the point at which the bone resorption increases relative to bone 

formation (Lin and Lane 2004). The real impacts of this late age loss of bone, or any acute 

impact that results in altered skeletal homeostasis, are partly influenced by the same factors 
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that lead to the development of peak bone mass, the highest BMD value that an individual 

attains during its lifetime (Ott 1990). Given the vast importance of the functions bone 

serves, any alteration or disturbance in BMD or other bone quality, despite the underlying 

cause, could have significant consequences on the individual’s overall health, physiology, 

or behavior. Conversely, these skeletal alterations and disturbances provide researchers and 

clinicians mechanisms to detect and monitor potential impacts to an individual’s or 

population’s health. Therefore, information derived from skeletons may be used to 

elucidate a better understanding of population biology and individual health (Metcalfe 

2007). 

Bone densitometry and radiography provide snapshots of an animal’s net bone 

balance at a moment in time during an individual’s life or when assessed either perimortem 

or postmortem. Factors influencing peak bone mass and bone mineral density (BMD) 

include age, sex, menopausal status, nutrition, health status, hormonal factors, weight or 

body mass, and skeletal loading through locomotion and exercise (Matkovic et al. 1990, 

Torgerson et al. 1995). At skeletal maturity, bone turnover is balanced so there is no 

resultant net change in bone mass; however, with increasing age, altered health status, or 

incidence of disease, an individual’s relative efficiency to resorb and replace bone may be 

altered and result in net disturbances in bone mass, density, and architecture (Allen 2003). 

Diseases with health impacts that include disorders in bone mass may have disturbances in 

both bone formation and resorption, ultimately altering the balance maintained by bone 

remodeling. Alterations to osteoclastic activity, that are not accompanied by an analogous 

osteoblastic response, could result in a suite of negative health consequences including, but 

not limited to, a marked and measurable decrease in BMD. The loss of estrogen production 
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in menopausal women results in increased bone resorption, driven by an increase in 

osteoclastic activity, and consequently decreases in bone mass (Civitelli et al. 1988). The 

most commonly accepted examples of this type of bone loss are osteoporosis and 

osteopenia in post-menopausal females. 

According to the World Health Organization (WHO), osteoporosis is “a systemic 

skeletal disease characterized by low bone mass and microarchitectural deterioration of 

bone tissue with consequent increase in bone fragility and susceptibility to fracture” (Kanis 

et al. 2008). Osteopenia is a characterization of bones that have become thinner and less 

dense than normal but have yet to progress to the more severe bone loss definitive of 

osteoporosis. The WHO operational definitions of normal bone density, osteopenia, and 

osteoporosis are based on BMD measurements taken by dual energy X-ray absorptiometry 

(DXA), where measured BMD values are compared with reference BMD values. BMD 

can be expressed as a T-score and a Z-score, which represent the number of standard 

deviations away from a reference average value (Pisani et al. 2013). T-scores describe the 

difference between the BMD of the individual and the mean BMD of a standard, young 

adult population at peak bone mass. Z-scores describe the difference between the BMD of 

the individual and the mean BMD of age- and gender-matched controls. The WHO 

classifies BMD based on the T-score as normal (≥ -1.0), osteopenia (< -1.0 but > -2.5), and 

osteoporosis (≤ -2.5). 

Conservation medicine is an interdisciplinary, emerging field that focuses on the 

relationship between human and animal health, as well as environmental conditions 

(Jacobsen et al. 1995). In the marine context, conservation medicine addresses the 

application of biomedical technology and principles to issues of ecology and environmental 
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health (Dierauf et al. 2001). The use of nonhuman organisms as early warning systems for 

human health risk dates back to the late 19th century where canaries were used to signal 

lethal carbon monoxide levels (Burrell and Seibert 1916). Modern studies on the effects of 

endocrine-disrupting compounds have utilized species across an array of taxa to 

demonstrate reproductive abnormalities in wildlife as well as humans (Colborn 1993). The 

increased role of diseases in limiting the survival of species can be traced to global 

anthropogenic changes and impacts that have both direct and indirect influences on the 

health of wildlife species (Deem et al. 2001).  

From a veterinary perspective, the prevention, early diagnosis, treatment, and 

monitoring of skeletal disease in animals under human care is paramount. Metabolic 

disorders and associated skeletal health impacts have been observed in animals across 

many taxa, including marine (e.g., Venn-Watson et al. 2011), terrestrial (e.g., Stevenson 

and Wilson 1963, Galateanu et al. 2013), and avian (e.g., Adkesson and Langan 2007) 

species. Better understanding of the underlying causes, prevalence, and treatment options 

for these disorders is critical to ensuring the health of these animals. While it is unlikely 

that sentinel species data can be used as the sole determining factor for evaluating issues 

regarding human health, data gained from such studies can be valuable as a risk assessment 

tool, method of early detection, or for monitoring populations over time (van der Schalie, 

et al. 1999). 

 

BONE DENSITOMETRY TECHNIQUES 

Osteodensitometry, or the standardized method of measuring BMD, has been 

advancing since early radiographers developed in vivo radiographic densitometry of 
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mineralized tissues to ascertain information on the mineral mass of bones and teeth in both 

humans and animals (Garn 1962). Quantitative methods to non-invasively determine bone 

density and accurately diagnose bone diseases were being developed by the turn of the 20th 

century, when the first reported uses in dental radiology were published (Dennis 1897, 

Price 1901). These early approaches to densitometric assessment utilized plain skeletal 

radiography in such a manner that demineralization was only apparent after 40% or more 

BMD had been lost (Johnston et al. 1981).  

More advanced, automated, analyses of roentgenograms, or X-ray photographs, has 

led to more accurate measurements of bone mineral content (Reich et al. 1958, Schraer et 

al. 1959). Plain radiography methods become more quantitative when based on optical 

densities of the imaged skeleton when compared to simultaneously X-rayed standards of 

known density, such as an aluminum step wedge (Mack et al. 1959). Image-processing 

algorithms to quantitatively determine bone area and mineral density in digitized 

radiographs can accurately determine the cortical outline of the bone and have provided 

reliable data and statistics for studies of small animals (Haidekker et al 2004). 

Densitometry technologies have evolved as the understanding of normal skeletal formation 

and skeletal disease processes have increased, and the earlier techniques have mostly fallen 

into disuse (Bonnick 2010) as digital radiography has almost completely replaced the use 

of film-screen radiography in the evaluation of BMD (Kinds et al. 2011). 

Radiography is a critically important diagnostic tool that is unsurpassed in its ability 

to provide images of internal anatomy and is a well-established and universally accepted 

approach to assess bone integrity and health (Thrall 2018). In addition to its use to diagnose 

fractures, detect anatomical anomalies, and locate foreign bodies such as fishing hooks or 
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bullets, digital field radiography has been suggested as an advancement that could allow 

for bone density assessment in applications where portability is clinically essential 

(Lewbart et al. 2018). Recent advancements in digital radiography (e.g., Vet Rocket X1, 

Santa Clara, California 95050, USA) have led to the development of portable, fully battery 

powered, wireless digital radiography systems designed specifically for veterinary 

applications. Other even smaller handheld, battery-operated units have been designed to 

perform dental radiography (Seilern-Moy, et al. 2017). However, while future use of such 

devices to elucidate bone density values in a field setting is possible, bone densitometry is 

currently limited to laboratory or clinical applications. 

Prior to the advent of more modern, highly accurate and precise quantitative 

densitometry techniques, bone density was commonly assessed by radiographic 

photodensitometry, radiographic absorptiometry, and both single- and dual-photon 

absorptiometry (Pisani et al. 2013). However, over the past 30 years, non-invasive 

densitometric methods have been developed that rely on the attenuation of ionizing 

radiation to quantify BMD at multiple skeletal sites. The most commonly used of these 

newer technologies is dual energy X-ray absorptiometry (DXA).  

Bone mineral density and bone mineral content studies on humans using DXA 

technologies are widespread (Grier et al. 1996). The basic principle involved in DXA for 

the measurement of bone density is that two photoelectric peaks are emitted from an X-ray 

tube at a target bone tissue and a measurement of density is generated based on attenuation 

of the X-ray waves after passage through the region of interest. BMD measured by DXA 

does not represent volumetric density (i.e., grams per cubic centimeter), but rather areal 

density (i.e., grams per square centimeter) (Ott 1997). 
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Greater resolution due to a more stable radiation source and a greater difference 

between energy levels has led to DXA technology becoming the accepted industry standard 

in the field of bone densitometry (Sartoris and Resnick 1990). DXA is rapid, non-invasive, 

allows for precise BMD measurements throughout a skeleton, and permits clinicians to 

perform replicate and subsequent scans at a specific region of interest. Lewiecki and 

Binkley (2017) summarize the support for DXA as the “gold standard” for measuring BMD 

based on a strong correlation between DXA-quantified BMD and bone strength as defined 

in biomechanical studies (Lotz et al. 1991), epidemiological studies documenting a strong 

correlation between low BMD and increased fracture risk (Nielson et al. 2011), and overall 

superior accuracy and precision (Mazess et al. 1992) compared to prior clinical approaches 

such as single-photon and dual-photon absorptiometry. 

Despite its accuracy and precision, DXA has limitations and clinical shortcomings. 

The technology is not appropriate for all healthcare and screening applications due to the 

inherent use of radiation, the large size of DXA units, the relatively high costs associated 

with DXA screening, and the still limited access and availability. 

To address the limitations of DXA, quantitative ultrasound (QUS) methods for 

bone assessment have been developed and demonstrated that they can determine bone 

quality and provide information about bone density (Kaufman and Einhorn 1993; Njeh et 

al. 1997). QUS is nondestructive, noninvasive, less expensive than X-ray technology, and 

does not expose patients or technicians to radiation (Glüer 1997). But, despite the potential 

of QUS as a tool for comprehensive, non-invasive assessments of bone strength and 

composition, its applicability to medical studies and the research field must be validated 

independently (Glüer et al. 1994). 
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BONE DENSITOMETRY APPLICATIONS 

In laboratory animals and wildlife 

Bone density studies involving animals have historically been primarily limited to 

laboratory research animals in the context of pharmacological studies to address human 

metabolic disorders and diseases such as osteoporosis from a preclinical or clinical 

evaluation perspective. In humans, osteoporosis is the most common metabolic bone 

disorder, affecting over 200 million individuals globally (Lin and Lane 2004). As the 

prevalence of the disorder continues to increase and underdiagnosis and undertreatment 

continue, the need for rigorous testing and clinical development continues. DXA has 

become the most common method for measuring BMD of small animals in metabolic bone 

disease research (Kim et al. 2018). Animal models that have been used to investigate 

pathogenesis of skeletal diseases include non-human primates (Black and Lane 2002, 

Smith et al. 2011), dogs (Martin et al. 1981, Nagai and Shindo 1997), cats (Jowsey and 

Raisz 1968, Cheon et al. 2012), rabbits (Castañeda et al. 2006; Wen et al. 2015), goats 

(Fulton et al. 1994, Leung et al. 2001), sheep (Thorndike and Turner 1998, Lill et al. 2000), 

pigs (Inui et al. 2004), and rodents (Sophocleous and Idris 2014), all of which have 

advantages and disadvantages (Turner 2001). 

While many published studies focus on the testing of pharmacological agents on 

bone density, with regard to the model organisms themselves, there are few studies that 

characterize normal variation in BMD within a species or attempt to establish normative 

reference datasets by which to assess individual skeletal health. This is somewhat 

understandable as these studies are directed specifically at testing the efficacy of a 

treatment regimen or therapeutic intervention with the intent to translate those findings to 
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human medicine rather than to more fully understand bone density in the model organism. 

However, there is a need for species-specific reference standards to allow researchers to 

evaluate the status of animals both in the context of the translational human medicine 

studies and for a general understanding of the model organisms directly being studied, 

particularly in the fields of wildlife research and conservation medicine. 

As the veterinary science field has progressed and the understanding of how to 

manage the various species under human care has expanded, lifespans of these animals 

have been prolonged. Both survival rate and life expectancy for dolphins in U.S. zoological 

facilities have increased significantly over the last 25 yrs, with dolphins today living at 

least as long as those in wild populations (Jaakkola and Willis 2019). The prevalence of 

age-associated disorders, historically observed only in humans, have coincidentally 

increased. As with many veterinary procedures, the size alone of some animals under 

human care often requires adjustments to clinical diagnostic tools. In equine medicine, for 

example, DXA is problematic in that it is not portable and is not applicable to a conscious, 

standing horse or other large animal. Studies have demonstrated the potential for using 

ultrasound to assess bone quality in horses (McCarthy et al. 1990) and such approaches 

may be applicable across other taxa where application of DXA is problematic. 

Overcoming obstacles such as these is paramount in advancing the field of bone 

densitometry into large animal veterinary and wildlife applications. More advanced 

research is necessary before this approach can be used reliably in clinical applications; 

however, the technology has much promise in applications where other radiographic 

methods are not applicable or are not feasible. 
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 Published studies on bone densitometry of free-ranging wildlife are rather limited, 

although relevant studies have been increasing in the last decade as the requisite technology 

has become more accessible and interest in the topic has broadened. DXA has been applied 

to measure bone density for several species to examine bone condition in longitudinal 

studies (Zotti et al. 2009). As the volume of information gained from these studies 

continues to grow, it is evident that there is much to be learned by applying the concepts 

from human medicine studies on skeletal health to wildlife species. Despite the inherent 

challenges, the need for effective wildlife health investigations including both surveillance 

and research is widely recognized (Ryser-Degiorgis 2013). 

 

In bottlenose dolphins 

 Common bottlenose dolphins are long-lived marine mammals that can live in the 

wild to more than 63 yrs (Wells 2014) and as such are susceptible to health effects of aging 

as well as long-term anthropogenic impacts and contaminant exposure. Therefore, 

bottlenose dolphin health studies must account for demographic differences such as age, 

sex, and geographical affinity, as well as disease status and level of pollutant exposure. 

Where examined, bone density has been shown to be impacted by all these factors. For 

example, studies on baboons (Papio hamadryas), another long-lived mammal, 

demonstrated effects of age, sex, and heredity on bone mass and bone density (Kammerer 

et al. 1995). A study was subsequently conducted at a biomedical research and primate 

research facility to characterize normal variation in P. hamadryas BMD and to assess the 

effect of age and sex on this variation (Havill et al. 2003). Decreases in BMD of archived 

polar bear skulls was associated with elevated exposure to contaminants such as 
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polychlorinated biphenyl ethers (PCBs) and polybrominated diphenyl ethers (PBDEs) 

(Sonne et al. 2004). Endocrine disrupting compounds, such as organochlorines, have been 

reported in bottlenose dolphins from the western North Atlantic Ocean, Indian Ocean, US 

Atlantic coast, and the Gulf of Mexico (O’Shea 1999). For comprehensive osteological 

health studies to be conducted on dolphins, similar research on BMD is needed to establish 

a normative reference dataset across age and sex in order to interpret bone density in 

context of the myriad impacts affecting this long-lived species. 

Recent studies have attempted to establish BMD as a tool to estimate age in 

dolphins (Guglielmini et al. 2002; Butti et al. 2007; Lucić et al. 2010). While these studies 

demonstrated increases in BMD of dolphin humeri with increasing age and total length, 

the authors highlighted potential limiting factors, such as small sample sizes and specimens 

not representing the full lifespan of the species. A more robust study design with a large 

sample size of specimens spanning the full lifespan of bottlenose dolphins is necessary to 

determine if BMD can be used to reliably and accurately estimate age. The dolphin 

humerus and pectoral fin are favorable targets for BMD studies due to their relatively small 

size, spongious bone composition, and dorsopalmarly flattened orientation (Lucić et al. 

2010). Developing research studies and clinical diagnostics focused on this skeletal target 

site could expand the field of bone densitometry and osteology in marine mammals in a 

practical and utility-centric manner. 

Osteological specimens can serve as a research model to investigate effects of 

potential contaminant exposure or ecological conditions at a broader scale than is possible 

by relying solely on soft tissues that are susceptible to rapid post-mortem decomposition. 

Adaptations of analytical techniques have facilitated advancements in many aspects of 
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marine mammal research. Developing bone densitometry as a field of study in wildlife 

research and conservation medicine, particularly in the context of marine mammal science, 

would allow for many ecological and environmental lines of research to be pursued. 

Specifically, utilizing bone density from free-ranging animals or archived skeletal 

specimens as an indicator of ecosystem health with respect to long-term and acute exposure 

to anthropogenic contaminants or ecological conditions, would provide a more robust 

analysis of the effects of environment conditions on apex predators, such as bottlenose 

dolphins. 

SYNOPSIS OF Ph.D. RESEARCH OBJECTIVES 

Animal models have been widely used to correlate in vivo changes in bone mineral 

density (BMD) with changes in disease state of bone (Egermann et al. 2005, Reinwald and 

Burr 2008). While BMD is known to increase with age in humans, the rate of ossification 

and the degree to which bone density increases, ultimately plateau, and especially in light 

of decreases with prolonged age are still relatively unexplored in animal models, including 

sentinel marine mammal species such as the bottlenose dolphin (Turner 2001). Correlation 

of BMD with ontogenetic age of an individual animal has been suggested across multiple 

taxa (Brain 1967; Binford and Bertram 1977), but the significance of that association has 

not been comprehensively analyzed.  

Altered BMD patterns may be found at different ages of animals belonging to the 

same species in cases where the density of one skeletal element changes at a different rate 

than another (Ioannidou 2003) or within the natural variation of BMD values observed at 

any given age within a species. In human medicine and bone densitometry, T-scores are 

used to assess skeletal health based on how BMD of the individual compares to the 
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expected BMD of a standard, young adult at peak bone mass. In order to investigate 

environmental or ecological impacts on an individual dolphin’s skeletal health or to utilize 

skeletal health, and specifically BMD, as a life history or health marker, comprehensive 

research to establish normative bone density values across age, sex, disease status, and 

nutrition level must be conducted for this species. 

To initiate this body of research as applied to the common bottlenose dolphin, a 

critical and highly studied marine sentinel, the subsequent chapters of this dissertation will 

specifically address the following primary research aims: 

1 -  Comprehensively assess the potential of bone mineral density to accurately and 

reliably estimate age in the common bottlenose dolphin, Tursiops truncatus. 

2 - Establish a primary skeletal site for clinical assessment of bone mineral density in 

the common bottlenose dolphin, Tursiops truncatus. 

3 -  Provide a preliminary descriptive dataset of bone mineral density in the common 

bottlenose dolphin, Tursiops truncatus, using museum archival specimens 

4 - Develop technology and protocols to ultrasonically assess bone density in the 

pectoral flipper of the common bottlenose dolphin, Tursiops truncatus. 

5 - Perform clinical assessments of bone density in live common bottlenose dolphins, 

Tursiops truncatus, using quantitative ultrasound. 

6 - Correlate body condition and nutritive status with bone mineral density in free-

ranging common bottlenose dolphins, Tursiops truncatus. 

7 - Establish a foundational base of knowledge on bone density in the common 

bottlenose dolphin, Tursiops truncatus, to facilitate future studies and applications. 
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CHAPTER 2 

Bone Density Cannot Accurately Predict Age in the Common Bottlenose Dolphin, 

Tursiops truncatus 

 

The following chapter has been previously published as Powell JWB, Duffield DA, 

Kaufman JJ, McFee WE. 2019. Marine Mammal Science 35(4):1597-1602. 

 

In marine mammal life history and health studies, knowledge of age is extremely 

important from both pathological and epidemiological perspectives, transcending 

population dynamic studies and allowing for a more complete assessment of an individual 

animal’s overall biological health (Hohn 2002, Stolen and Barlow 2003). Ages of small 

odontocete cetaceans, such as common bottlenose dolphins, Tursiops truncatus, can be 

determined from either photo-identification records, from which an individual animal is 

tracked from birth by local research teams (e.g., Wells 2009), or estimated based on 

skeletochronology, examination of dentinal layers in teeth, from which each set of growth 

layers represents one year of life (Hohn et al. 1989). Teeth can be collected for age 

estimation either at time of death or through extraction under local anesthesia during 

capture-release health assessments. 

The impetus for the use of bone density to estimate age is to provide a more rapid, 

less expensive, noninvasive technique for determining this critically important life history 

parameter. Further, if bone density could serve as a proxy for age estimation, and if a 

technique to assess bone density of live dolphins in the field could be developed, an 

alternative to tooth extraction would be established. Bottlenose dolphins are long-lived 



 

 
18 

marine mammals that can live to more than 63 yr (Wells 2014). Pectoral flippers are 

favorable targets for bone densitometry due to minimal overlying soft tissue, spongious 

bone composition, and dorsopalmarly flattened orientation. 

Previous studies correlated bone density of the dolphin forelimb as measured with  

dual-energy X-ray absorptiometry (DEXA) with age as estimated with dentinal 

skeletochronology, and authors of those studies have proposed the utility of this 

measurement as a reliable predictor for age. The practical applications of this approach 

would have excellent value in various marine mammal research settings but would require 

that bone density values at any given age have very limited variance and that the technique 

should be broadly applicable across all ages. Using DEXA, Guglielmini et al. (2002) 

examined bone density of flippers archived from 15 age-estimated striped dolphins 

(Stenella coeruleoalba) that stranded along the Italian coastline. The authors performed a 

multiple regression analysis on body length, age, and bone density, and the results 

demonstrated that bone density has a positive correlation with total body length and age, 

as would be expected under normal bone physiology. The authors noted that their findings 

are preliminary because of the small sample size and the limited age distribution (up to 14 

yr) and state that validation of the study requires larger sample sizes. A similar study was 

conducted by Butti et al. (2007) on 17 age-estimated bottlenose dolphins, either managed 

under human care or stranded along the Italian coastline. These authors developed a linear 

model to predict the age of dolphins by using body length and bone density as predictors. 

The results were similar to those of Guglielmini et al. (2007) in that bone density was found 

to correlate positively with total body length and age. The limitations of this study were 

similar in that the sample size was small and the specimens did not represent the lifespan 
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of the species. The 17 bottlenose dolphin specimens used in Butti et al. (2007) only span 

from birth to 12 years of age, approximately the first 20% of the lifespan for the species. 

We suggest that limiting factors of these initial studies, as highlighted by the authors 

themselves, potentially provide misleading correlations on the utility of bone density to 

reliably and accurately estimate age. 

Bone density is a thoroughly studied life history parameter used in human medical 

studies. While it is well documented that bone density increases with age, it does so with 

an accepted variation for any given age in a gender- and ethnic-specific manner 

necessitating specific normative data for accurate interpretation of bone mineral density 

measurements (Bianchi et al. 2010). Conversely, there is a range of ages for which a given 

bone density value can be expected to be observed. For humans, bone density is a 

quantitative health parameter that clinicians use to determine overall skeletal health and 

fracture risk; it is not used to predict or estimate age. The use of bone density technologies 

in forensic anthropology, where investigators have attempted to determine the age at death 

of human remains, has been mostly unsuccessful (Cunha et al. 2009). These forensic 

studies have suggested that bone density may be used to characterize remains as belonging 

to a certain age class; however, the authors recognize that other techniques, such as simple 

morphometrics, have a much stronger statistical correlation with age (Merritt 2017). 

Variability in the morphological features used to assess age in the human skeleton (e.g., 

pubic symphysis, sacro-iliac joint, sternal rib ends) progressively increases from birth to 

advanced age (Franklin 2010). 

  To investigate possible limitations of small sample size and limited age 

distributions in the previous dolphin bone density studies, a much larger sample (n=206) 
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of archived bottlenose dolphin specimens spanning a full range of body lengths (94-295 

cm) and ages (0-50 yr) was examined. The objective of this study was to comprehensively 

assess whether bone density is truly a reliable estimator of age for this species. The 

common bottlenose dolphin skeletal specimens included in this study were obtained from 

two marine mammal biological collections: the National Oceanic and Atmospheric 

Administration’s Center for Coastal Environmental Health and Biomolecular Research in 

Charleston, South Carolina (n=165), and the Ruth DeLynn Cetacean Osteological 

Collection at Mote Marine Laboratory in Sarasota, Florida (n=41). Specimens made 

available for this study were collected and archived during 1990-2012. 

All bone density measurements were conducted on a Norland Sabre pDEXA 

(peripheral dual-energy X-ray absorptiometry) densitometer (Fig. 1) with Norland Sabre 

Research software (Version 3.9.2; Norland Medical Systems, Fort Atkinson, WI). The 

Norland pDEXA unit was developed for clinical use on the human forearm, but the 

radiographic template and software readily facilitate applications for research specimens. 

Bone density measurements were made following established protocols that calculate bone 

density by measuring absorption of two X-ray wavelengths as they pass through the bone 

generating a two-dimensional areal measurement of density in g/cm2. To provide 

continuity with previously published studies, this study focused on the bones of the pectoral 

flipper, specifically the radius. Of the three bones of the pectoral flipper, the radius is most 

ideal for osteodensitometry due to its comparatively large surface area, more regular 

geometry and morphometrically identifiable location within the intact flipper. 

Total body length was recorded at time of death for each individual, and the age of 

each individual was either estimated by dentinal skeletochronology or, if available, known 
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from photo-identification studies. Whole radius bone density was examined for a 

relationship between age and bone density by ordinary least squares regression (OLS) with 

bone density and total body length as predictors for the response variable, age. As expected, 

bone density increased with age; however, the variance of bone density values that was 

observed at any given age (Fig. 2) was of such magnitude (especially in the middle-age 

range) that it definitively precludes the use of this parameter as a reliable estimator of age. 

Not only was bone density alone a poor predictor of age (R2= 0.50, P<0.001), but the 

addition of total body length did not vastly improve the prediction (R2=0.58, P<0.001). The 

attempt to establish a usable correlation between bone density, total body length, and age 

in an effort to use bone density as a predictive tool for estimating age was unsuccessful. In 

fact, these metrics were no more accurately reliable than estimates based on total length 

alone (R2=0.48, P<0.001), which has long been accepted as a poor predictor of age due to 

the range of total lengths of animals in any given age class (Hohn 1980, Zweifel and Perrin 

1980). 

In dolphins, as well as in humans, the normal range of bone density values observed 

at any given age varies, thereby limiting the utility of this single predictor to estimate age 

across the lifespan of the species. The clinical measurement of an individual’s bone density 

at any given time is a direct reflection of that individual’s specific bone physiology and 

pathophysiology (Bonnick 2010). Reducing osteodensitometry to a static age estimation 

tool would inherently disregard the biological and physiological function of calcified 

tissues. Variation of bone density values at any given age may be an indicator of altered 

skeletal health due to numerous factors including overall health, nutritive status, 

contaminant exposure, body condition, or metabolic and endocrine related disorders. 
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Further studies to investigate potential causes of the observed age-specific variation in bone 

density, as well as differences between sexes and variation within age class rather than 

across all age classes, are warranted but are unlikely to provide any support for use of this 

parameter as a proxy for age. 

 

 

Figure 2-1. Bottlenose dolphin pectoral flipper skeletal specimen on a Norland Sabre 

pDEXA densitometer (Norland Medical Systems, Fort Atkinson, WI). 
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Figure 2-2. Distribution of bone density values from bottlenose dolphin radii relative to 

age. Bone density increased with age, as expected (R2= 0.50, P<0.001); however, the 

variance of bone density values observed at any given age definitively precludes the utility 

of this parameter as a reliable estimator of age. 

 

 

 

 

 

 



 

 
24 

CHAPTER 3 

Bone Mineral Density of the Common Bottlenose Dolphin Radius: A Primary Skeletal 

Site for Clinical Bone Densitometry and Descriptive Dataset Using Archival Specimens 

 

ABSTRACT 

We examined bone mineral density (BMD) in the pectoral flipper of the common 

bottlenose dolphin, Tursiops truncatus. These data addressed the need to define a 

comprehensive target site for clinical osteodensitometric assessment and to provide a 

preliminary descriptive bone density dataset for this species. 388 radii from 279 bottlenose 

dolphins were analyzed using dual energy X-ray absorptiometry (DXA), the accepted 

standard in human medical studies. Multiple regions of interest (ROIs) were identified and 

assessed for their correlation to BMD of the entire bone. Radii were examined for 

differences based on sex, age, total body length, handedness, geographical affinity, and 

nutritional status at time of death. BMD increased with age and body length (R2=0.58, 

p<0.05). No statistically significant differences were observed in BMD measurements for 

male and female dolphins (t=-1.60; p>0.05) or right and left flippers (t=-1.76, p>0.05). 

Additionally, no statistically significant differences were observed based on geographical 

region (t=-0.190, p>0.05) or nutritional status (F=0.83, p>0.05). These results support the 

inclusion of all specimens used in this study as a preliminary descriptive dataset for bone 

density values in bottlenose dolphins and detail a primary skeletal site for clinical 

assessment of bone density for the species. As this study relies on archived museum 

specimens collected from dolphins at time of death, further studies regarding bone density 

may be better addressed using live dolphins with known health status. 
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INTRODUCTION 

Assessing marine mammal health is a fundamental aspect of understanding and 

monitoring marine ecosystems, particularly with regard to anthropogenic impacts. Health 

assessments of common bottlenose dolphins, Tursiops truncatus, are critical in areas where 

populations show signs of epidemic disease, high mortality, and/or where ecosystems are 

being altered or impacted by human activities (Wells et al. 2004). Because bone mineral 

density (BMD) may be affected by malnutrition and limited access to food (Talbot et al. 

1998; Swift et al. 2012), as well as exposure to environmental contaminants (Staessen et 

al. 1999; Sonne et al. 2004), the capability to determine BMD and understand how those 

values fit within ranges observed in the species could be an important tool for dolphin 

health assessments. 

The research presented herein seeks to develop assessment capabilities through the 

comprehensive evaluation of bottlenose dolphin BMD and to provide a preliminary 

descriptive BMD dataset for this species. There exists little knowledge about bone health, 

and specifically about BMD, of the bottlenose dolphin, and no reference datasets are 

available as there are for humans. Reference datasets used in human clinical settings 

establish a context by which an individual is compared against a normative distribution of 

values observed within appropriate demographic classifications in order to diagnose a 

patient within a range of osteoporotic categories (Bhudhikanok et al. 1996). 

This study focuses on the bones of the pectoral flipper, specifically the radius, as it 

is the best target for diagnostic assessment on intact, live animals and is the skeletal site 

used in previous dolphin studies (Guglielmini et al. 2002; Butti et al. 2007). By establishing 



 

 
26 

a descriptive dataset using this bone, translation of findings from analyses of disarticulated 

specimens collected from stranded, beachcast animals to applications on live animals can 

be readily facilitated. Pectoral flippers are favorable targets for BMD studies as there is 

minimal overlying soft tissue, spongious bone composition, and dorsopalmarly flattened 

orientation (Lucic et al. 2010). Of the three bones of the pectoral flipper, the radius is best 

for osteodensitometry due to its comparatively large surface area, more regular geometry 

and morphometrically identifiable location within the intact flipper (Figure 3-1). 

Morphometrically identifiable regions of interest (ROIs) are defined as target 

skeletal sites used for clinical assessment of a patient. For example, a common clinical 

BMD measurement for the human forearm is the distal third radius (i.e., 1/3 radius or 33% 

radius), and this is defined as an ROI centered at a distance equal to one-third of the forearm 

length measured from the distal end of the radius (Shepherd et al. 2002). Measurements at 

ROIs allow clinicians to facilitate diagnostics by establishing readily identifiable locations 

by which to compare individuals within a population or demographic subgroup. Targeted 

ROIs should, most importantly, have BMD values indicative of the entire assessed bone. 

An extensive set of archived bottlenose dolphin radii was used to establish BMD 

patterns at multiple loci within the radius to support the selection of a single, target ROI 

for clinical osteological assessment. Intra-individual differences in BMD from paired left 

and right radii; differences in BMD in male and female individuals; and differences 

associated with residency patterns and varying nutritional status at time of death were 

assessed at the selected skeletal site. 
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METHODS 

Specimens 

Bone specimens were obtained from extensive collections maintained by the 

National Ocean Service’s Center for Coastal Environmental Health and Biomolecular 

Research (CCEHBR) in Charleston, South Carolina, and Mote Marine Laboratory (Mote) 

in Sarasota, Florida. Specimens were collected from dead, stranded bottlenose dolphins 

under Letters of Authorization from the National Marine Fisheries Service. Associated data 

including sex, total body length, residency patterns, and nutritional status at time of death 

were available for subsets of the specimens. Routine necropsy procedures followed by both 

organizations (CCHEBR and Mote) included the collection and archival of at least one 

pectoral flipper from each stranded animal. Ages of individual dolphins were known either 

from photo-identification records from local research teams, which track an individual 

animal from birth (e.g., Wells 2009), or were estimated based on examination of dentinal 

layers in teeth, each set of growth layers representing one year of life (Hohn et al. 1989). 

Radii (n=388) from 279 individual bottlenose dolphins were analyzed. BMD of the 

whole radius and at multiple loci within the radius was measured to establish BMD 

distribution patterns within the bone and to facilitate selection of an ROI indicative of the 

overall bone BMD. A subset of radii (n=274) with an approximately even male-female 

distribution were used to investigate differences in sex. Paired left-right radii (n=218) were 

available to assess bilateral variation in dolphin radius BMD (i.e., handedness). The 279 

dolphins included in the dataset represented animals that stranded in two distinct 

geographical regions, the Atlantic coastline and inland waters of South Carolina (n=214) 

and the Gulf of Mexico coastline and inland waters near Sarasota, Florida (n=66). Of these 
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individuals, residency patterns were known for 39 individuals (n=24 in Charleston, SC; 

n=15 in Sarasota Bay, FL). Nutritional status at time of death (i.e., robust, undernourished, 

or emaciated) was available for 116 dolphins. Nutritional status for stranded dolphins is a 

qualitative assessment of body condition based on morphological observations such as 

depression caudal to blowhole, concavity ventrolateral to dorsal fin, and visibilty of ribs 

(Joblon et al. 2008). Ages and total body lengths were available for 205 dolphins and used 

for developing descriptive BMD curves. 

 

DXA (dual-energy X-ray absorptiometry) 

All BMD measurements were conducted on a Norland Sabre pDEXA (peripheral 

dual-energy x-ray absorptiometry) densitometer and analyzed with Norland Sabre 

Research software (Version 3.9.2; Norland Medical Systems, Fort Atkinson, WI). The 

Norland pDEXA unit was developed for use on the human forearm with a radiographic 

template to accommodate osteological research applications. Bone density measurements 

were made following established protocols that calculate BMD by measuring absorption 

of two X-ray wavelengths as they pass through the bone generating a two-dimensional 

areal measurement of density in g/cm2. The software interface allows the analysis of up to 

five ROIs of adjustable size and shape at user-specified loci. Whole bone BMD was 

measured for each radius using user-defined, adjustable polygons surrounding the entire 

radius. BMD values were also measured in each radius at four 1 cm2 ROIs that were readily 

and repeatably identifiable based on morphometric landmarks and included: the geometric 

center of the radius, distal-third radius along the central midline of the bone, maximum 

BMD value across the width at the distal-third of the radius, and at the center of the 
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maximum distal width of the radius (Figure 3-2). 

 

Statistical analysis 

The relationship between BMD of each ROI and BMD of the whole radius was 

analyzed using ordinary least squares (OLS) linear regression analyses to establish the 

statistical significance of each ROI as a predictor for BMD of the whole radius. This both 

supported the selection of a single ROI for all subsequent tests and demonstrated the 

repeatability, accuracy, and precision with which ROIs were positioned during analyses. 

Radii from dolphins of known sex were compared to assess differences in male and female 

BMD using a Welch’s two sample t-test. Paired left-right radii were tested for bilateral 

differences using a paired t-test. 

Bone mineral density measurements cannot be interpreted in isolation. Since the 

same BMD measurement on a 1-year old and 30-year old dolphin would indicate 

problematic BMD in the older dolphin, but be deemed normal for the younger dolphin, 

BMD needs to be interpreted in context with age and total body length. To provide an age- 

and length-corrected BMD, Principal Component Analysis (PCA) was used to reduce the 

dimensions of the three biological variables (age, total body length, and BMD) to a 

synthetic variable (PCI). Age and total length corrected BMD values were established 

using PCA to investigate differences in BMD based on geographical residency patterns 

and nutritional status at time of death. 

To evaluate the effects of confounding variables associated with ecology, ecotype, 

and environment, age and total length corrected BMD for individuals with established 

residency in two distinct geographic regions was established using Principal Component 
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Analysis and a Welch’s t-test was performed to determine if differences were observed. 

An analysis of variance (ANOVA) was performed to examine differences in the PCI scores 

for each of three categories of health status at time of death (i.e., robust, undernourished, 

or emaciated). A post-hoc Tukey Honestly Significant Difference (HSD) test was used to 

examine for any difference in means observed in pairwise comparisons amongst the three 

nutritional status categories to determine if decreased nutritional health at time of death is 

associated with decreased BMD. 

As body size and maturation are major determinants of BMD (Zemel et al. 2010), 

the univariate relationship of BMD values and total body length, independent of age, for 

all dolphins in this study was examined. 

 

RESULTS 

OLS regression models for pair-wise correlations between whole radius BMD and 

BMD at each ROI showed strong, positive linear relationships (R2 values from 0.94 to 0.97, 

p<0.001; Figure 3-3). The strong correlations observed support the selection of any of the 

ROIs as a valid skeletal target site. All subsequent analyses utilized the BMD value 

measured at an ROI located in the geometric center of the radius as the BMD for each 

respective animal. Bone density values and life history metrics for all 279 dolphins in this 

study are available as an open-source reference dataset for T. truncatus (Appendix A). 

Dolphins used to study the relationship between age and BMD ranged in age from 

0 to 50 years. BMD values of animals included in this study ranged from 0.3436 to 1.406 

g/cm2, with a mean of 0.8269 g/cm2 and a standard deviation of ±0.23 g/cm2. The best-fit 

line to represent the relationship between dolphin age and radius BMD is curvilinear with 
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BMD following a rapid, nearly linear increase up to approximately 20 years of age before 

plateauing over the remainder of the dolphins’ lifespan (Figure 3-4). Similar to findings in 

other species, there is a wide distribution of observed BMD values at any given age, 

particularly as age increases. 

Differences in BMD of radii from male and female dolphins across all ages were 

not statistically significant (p>0.05). Mean radial BMD of the male subset was 0.8367 (s.d. 

0.2676 g/cm2), vs. the female subset mean of 0.7925 (s.d. 0.1770 g/cm2). 

The range of BMD values for paired left and right radii was similar (0.337 to 1.357 

g/cm2, and 0.319 to 1.406 g/cm2, respectively). Mean values were also very similar in left 

and right radii (0.816 g/cm2 and 0.807 g/cm2, respectively). Bone mineral density did not 

differ significantly between the left and right radii (p>0.05). 

Age and total length corrected BMD values (i.e., PCI) measured in radii from 

dolphins with established residency patterns were compared. Median values are very 

similar between the two groups, with considerable overlap in the range. The two 

geographic group means were not statistically different from one another (t=-0.190, 

P>0.05).  

Median PCI values relative to qualitative nutritional status at time of death data 

were not statistically different among the three groups, but there was considerable overlap. 

An ANOVA performed on these PCI scores indicated no significant differences among the 

three nutritional status conditions (F=0.83, P>0.05). A post-hoc Tukey HSD test confirmed 

that the difference in means between the three conditions was not significantly different 

from zero (Robust vs Emaciated, p=0.41; Emaciated vs Undernourished p=0.64; Robust vs 

Undernourished p= 0.88). 
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Bone mineral density values were plotted against total body length to establish 

normative trends in bone density in relation to skeletal maturation, independent of age 

(Figure 3-5). The statistical relationship between total body length and BMD can best be 

described by a polynomial regression (R2=0.79) where BMD increases with age until peak 

bone mass is reached. 

 

DISCUSSION 

Using a robust set of archived skeletal specimens, we aimed to establish preliminary 

descriptive bone density values and a primary skeletal site for clinical bone densitometry 

in bottlenose dolphins. Since very little research has been conducted on BMD in dolphins, 

this study effectively serves as the foundation for osteodensitometry in the species. Human 

clinical bone density assessment relies on a vast baseline of reference data. Reference data 

are used to assess bone health and disease status including osteoporosis and establish age-

based normative distributions of BMD for males and females of various populations 

(Bhudhikanok et al. 1996). These applications target specific loci in skeletal sites and cover 

an array of body regions to address various clinical constraints and medical contexts. At 

each skeletal site, specific morphometrically identified regions of interest (ROI) are 

targeted. Considerable effort has been devoted to characterizing the most suitable bone and 

ROI for skeletal analysis in a manner that will facilitate application to live bottlenose 

dolphins rather than being limited to the assessment of archived skeletal specimens and 

bones collected during post-mortem examination. 

 Establishing a descriptive BMD dataset based on a readily identifiable ROI using 

morphometrics fosters a smooth transition into next generation diagnostics. This approach, 
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and the selection of any of the targeted ROIs, is justified by the strong statistical 

significance of the relationship between the BMD of each ROI and the BMD of the whole 

radius. The decision to select the geometric center of the radius as the definitive BMD 

target was multi-faceted: (1) the geometric center ROI is more easily located within a fully 

intact flipper, facilitating ease of field-based assessments while maximizing accuracy and 

precision of ROI placement; (2) proposed next generation ultrasonic bone density 

assessment (see Chapter 4) is a through-transmission technology that requires access to 

both sides of the bone; and (3) bone densitometry accuracy is enhanced in a region of 

higher BMD compared to a region of lower BMD. 

 Much interest has been generated in utilizing BMD to estimate age in bottlenose 

dolphins (Guglielmini et al. 2002; Butti et al. 2007). The practical application of this 

technique would have great value in various marine mammal research settings, but it would 

rely heavily on BMD values at any given age having a very limited variance. Using a much 

larger dataset than the aforementioned studies, an attempt to confirm a usable correlation 

between BMD and age as a predictive tool for estimating age in bottlenose dolphins, 

especially for adults, was unsuccessful (Powell et al. 2019). The authors noted that 

variation in BMD values observed at any given age may represent natural variation in the 

species but also could be an indicator of altered skeletal health due to factors including 

overall health, nutritive status, contaminant exposure, body condition, or metabolic and 

endocrine related disorders. 

 To establish a descriptive BMD dataset, potentially confounding life history 

variables needed to be examined to justify the inclusion of all specimens. Based on 

information available about dolphins in the study, subsets of the total specimens were used 
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to address specific questions. In the coalesced specimens from 279 dolphins, no statistically 

significant differences were observed between male and female dolphins, left and right 

flipper bones, dolphins from different geographical regions, or dolphins with different 

nutritional body condition at time of death. 

 In human development, well-characterized differences in males and females 

increase in magnitude with increasing age (Lim et al. 2004). The loss of estrogen 

production in menopausal women results in increased bone resorption, driven by an 

increase in osteoclastic activity, and consequently decreased bone mass in comparison to 

males of the same age (Civitelli et al. 1988). Bottlenose dolphins are long-lived marine 

mammals that can live to more than 63 yrs (Wells 2014), an age where osteological changes 

are regularly observed in humans (Sözen et al. 2017). The individuals included in this study 

that are older than 40 years old exhibit lower than expected BMD if no late age bone loss 

was occurring. Specifically, 4 of the 5 oldest dolphins are females and may be exhibiting 

age-related bone loss, low bone density, or osteoporosis. Low sample numbers in this age 

class reduce the statistical power necessary to address this topic in a robust manner, but 

there is an obvious trend in decreasing BMD with increased age following the age at which 

skeletal maturity has been reached. Continued and expanded acquisition of specimens, 

particularly from older dolphins, may help to address this deficiency and foster 

investigation of age-related metabolic bone disorders in marine mammals. As there is no 

statistically significant difference in BMD observed in male and female dolphins, 

separating the specimens by sex or establishing sex-specific descriptive curves is not 

necessary. The lack of differences observed may in part be due to the multitude of variants 
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inherent in post-mortem collected specimens as health issues associated with the 

individuals’ deaths may result in values that deviate from the values of healthy individuals. 

The intra-individual bilateral symmetry observed in BMD provides support for the 

use of either pectoral flipper to assess BMD for an individual dolphin and lends support to 

the use of all radii available, regardless of whether they are left or right pectoral flippers. 

Similarly, no difference in bone density was observed between left and right thoracic limbs 

in a study of Guiana dolphins, Sotalia guianensis (Azevedo et al. 2015). Bilateral 

symmetry is beneficial in a practical sense because, due to spatial constraints, routine 

necropsies and tissue archival protocols at many institutions include retention of partial 

skeletons, and under field conditions it is not always possible to access the same flipper for 

every animal. Therefore, in future clinical applications, BMD assessments of live dolphins 

can justifiably be conducted on either the left or right flipper. 

 As long-lived apex predators, bottlenose dolphins serve as indicators of ecosystem 

health (Wells et al. 2004). The specimens utilized in this reference dataset come from two 

disparate geographical regions and would thereby be impacted by different ecological and 

environmental factors. Comparisons between animals known to be year-round residents of 

two locations revealed no statistically significant differences in BMD, providing support 

for the total inclusion of specimens from both regions into the descriptive BMD dataset. 

Dolphins that were deemed emaciated at time of death were not significantly 

different from dolphins deemed robust or undernourished at time of death. Since post-

mortem nutritional status assessment is a qualitative metric that describes the animal’s 

body condition at time of death and does not reflect the longevity of the underlying 

malnourishment, the data here may not be an accurate reflection of actual differences that 
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are expected to be seen between live animals of robust and emaciated body condition. 

Additionally, there is the potential for introduced error as these qualitative determinations 

were made by multiple stranding response personnel and may have not been characterized 

in a standardized method. With the specimens available for the current study, it is not 

possible to know if the emaciated or undernourished conditions observed at time of death 

were acute, where changes in body condition were rapid enough that osteological changes 

had not occurred, or chronic, where osteological changes would be expected due to 

prolonged malnutrition. Given that no statistically significant differences were observed 

across the three post-mortem nutritional status categories, all specimens regardless of body 

condition were included in the normative reference dataset. Differences may be delineated 

in the future from photo-identification records where long-term undernourishment has been 

recorded for specific individuals in field studies (e.g., Hart et al. 2013) or where body 

condition can be scored quantitatively. Clinical assessments of live dolphins exhibiting 

varying body conditions in future studies, particularly studies of live dolphins, may 

elucidate an association between BMD and nutritive health status. 

 To the authors’ knowledge, the 389 radii utilized in this study represent the largest 

dataset published on bone density in any wildlife or marine mammal species to date. An 

approximately even distribution of male and female dolphins from birth to 50 years of age 

is included, representing a range of life history classifications. Additionally, the dataset 

includes individuals from two distinct geographical regions of the southeastern United 

States.  

Diagnosis of metabolic bone disorders such as osteoporosis and low bone density 

(i.e., osteopenia) in humans is based on a statistical comparison to the average BMD values 
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for a healthy, young adult at peak bone mass. The descriptive bone density reference dataset 

established in this study will facilitate a similar diagnostic approach for bottlenose 

dolphins. Future studies to establish BMD values for a normal, healthy population, perhaps 

from live, free-ranging dolphins rather than from dead-stranded animals, would enhance 

the utility of such a reference dataset. With a reference standard by which to compare and 

diagnose skeletal health in individuals, bone densitometry can be incorporated into health 

assessment studies of free-ranging bottlenose dolphins and on museum-archived 

specimens collected by marine mammal stranding response programs. 
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Figure 3-1. (Left to right) typical bottlenose dolphin flipper specimen; standard digital 

radiograph of a bottlenose dolphin flipper; and museum pectoral flipper bone specimen 

showing humerus (H), radius (R), and ulna (U). 
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Figure 3-2. Bottlenose dolphin radius (left) and pDEXA software screen capture of a 

typical radius BMD scan (right). pDEXA software allows for multiple user-defined ROIs 

on the same scan. The 5 ROIs defined for each radius pDEXA scan include: whole radius 

(defined by the outer margin of the entire bone), geometric center of the radius (GC), distal-

third radius (D1/3), max BMD across the width at the distal-third of the radius (DMAX), 

and an ROI set in the center of the maximum distal width of the radius (DML). 
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Figure 3-3. BMD values at four selected ROIs (described in Figure 3-2) and the whole 

radius BMD (RadBMD). The R2 values range from 0.94 to 0.97 (p<0.001), thereby 

supporting the selection of any ROI as a robust representation of whole radius BMD. All 

subsequent analyses in this study were conducted using an ROI at the geometric center of 

the radius, depicted in graph A. 
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Figure 3-4. Distribution of BMD values from 279 bottlenose dolphins. The Loess curved 

fit line shows the non-linear relationship between BMD and age as BMD increases with 

age up to approximately 25 years of age before slowly declining with increasing age. 

Dolphins 40 yrs old and older are highlighted (■) for emphasis. 
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Figure 3-5. BMD vs. total body length for 279 bottlenose dolphins. The polynomial 

equation represents the best fit of the series of data points and demonstrates how BMD 

increases with total body length as the skeleton develops during growth and maturation. 
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CHAPTER 4 

Quantitative Ultrasonic Assessment of Bone Density in the Pectoral Flipper of the 

Common Bottlenose Dolphin, Tursiops truncatus 

 

ABSTRACT 

In order to circumvent limitations in traditional radiographic bone density assessment, a 

custom quantitative ultrasound device and protocols were developed for assessment of live 

common bottlenose dolphins, Tursiops truncatus. In laboratory measurements on 

disarticulated pectoral flippers collected post-mortem, a strong correlation was established 

between bone mineral density (BMD) as measured with quantitative ultrasound and X-ray 

(r=0.93). Initial trials to develop clinical protocols and establish ultrasonic assessment of 

bone as non-aversive were conducted on dolphins managed under human care. Findings 

support the application of quantitative ultrasonic assessment of bone density to assess 

skeletal health in free-ranging dolphins during capture-release health assessments and in 

populations of dolphins under human care. 

 

INTRODUCTION 

Monitoring the health of marine mammals, including common bottlenose dolphins 

(Tursiops truncatus), is a crucial component in characterizing and understanding overall 

ecosystem health. In the following text for brevity, use of the word “dolphin” should be 

understood to mean “common bottlenose dolphin”. Dolphin health assessment is a useful 

tool in areas where populations show signs of epidemic disease, high mortality, and/or 

where ecosystems are being altered or impacted by human activities (Rowles et al. 2018). 
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Presently, such health monitoring involves an extensive set of measurements and analyses, 

including morphometric data, physical examination, hematology and blood chemistry, 

serology, diagnostic ultrasound, anthropogenic contaminant analyses, and hearing tests 

(Townsend et al. 2018). Digital thoracic and dental radiographs have recently been added 

which allow for examination of skeletal health, and age estimation approaches using these 

techniques are being developed (e.g., Barratclough et al. 2019).  

Given the vast importance of the functions bone serves, any alteration or 

disturbance in bone mineral density (BMD) or other bone quality, despite the underlying 

cause, could have significant consequences on the individual’s overall health, physiology, 

or behavior. Conversely, these skeletal alterations and disturbances provide researchers and 

clinicians mechanisms to detect and monitor potential impacts to an individual’s or 

population’s health. Therefore, information derived from skeletons may be used to 

elucidate a better understanding of population biology and individual health (Metcalfe 

2007). However, there is no current technology to assess bone density for this or any related 

species in capture-release health assessment research projects. 

The most common method for assessing bone relies on estimation of its associated 

BMD, but present X-ray based methods for estimating BMD are not adaptable to the 

conditions under which dolphin field health assessments are conducted. In addition to 

technological limitations, the lack of a normative reference dataset for dolphins has 

previously precluded placing BMD values into a clinical context for such applications as 

ecosystem monitoring or diagnosis of an individual’s osteological health. 

Densitometric methods have been developed that rely on the attenuation of ionizing 

radiation to quantify BMD at multiple skeletal sites; the most commonly used of these 
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technologies is dual energy X-ray absorptiometry (DXA) (Bonnick 2010). Despite its 

accuracy, precision, and widespread use, DXA has limitations and clinical shortcomings. 

The technology is not appropriate for all healthcare and screening applications due to the 

inherent use of radiation, large size of DXA units, relatively high associated costs, and 

limited access and availability. Quantitative ultrasound (QUS) methods for bone 

assessment have demonstrated potential to determine bone quality and to provide 

information about bone density (Kaufman and Einhorn 1993). With the advent of QUS-

based medical devices, ultrasonic densitometry has increased in prevalence in human 

clinical applications (Kaufman et al. 2007; Kaufman et al. 2010; Kaufman and Luo 2017). 

Diagnostic sensitivity for fracture risk and osteoporosis is similar in BMD measured with 

DXA and QUS (Njeh et al. 1997). More importantly, from a clinical perspective, QUS is 

beneficial in that it is portable, nondestructive, noninvasive, less expensive than X-ray 

technology, and does not expose patients or technicians to radiation (Glüer 1997). Unlike 

radiographic approaches to densitometry, QUS readings are nearly instantaneous once 

properly positioned. 

The radius was selected as the primary skeletal target due to its relatively consistent 

shape and thickness as well as its anatomical placement within the pectoral flipper. 

Additionally, the radius is an established site for skeletal assessment in human medicine 

and is the skeletal site used in previous studies on dolphin bone density (Butti et al. 2007; 

Powell et al. 2019). We investigated the use of QUS adapted for assessing bone density in 

the dolphin radius. 

Utilizing archived pectoral flippers collected post-mortem from beach-cast, 

stranded dolphins, correlations were made between BMD measurements made with DXA 
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and a custom QUS device to statistically test the relationship between the two 

measurements and to establish a predictive equation for use in clinical assessments. 

Additionally, the QUS device was tested on live dolphins managed under human care in 

order to demonstrate the non-aversive nature of this novel application. Development of this 

technology will enable assessment of dolphin bone density by researchers and wildlife 

veterinarians thereby broadening the understanding of dolphin and, consequently, marine 

ecosystem health. 

 

MATERIALS AND METHODS 

Specimens 

Dolphin pectoral flippers (n=29) utilized for this project were collected from post-

mortem stranding response efforts from 1993–2012 at the National Oceanographic and 

Atmospheric Administration’s Coastal Marine Mammal Assessments Program 

(Charleston, SC, USA). Frozen flippers were thawed to room temperature for DXA and 

QUS measurements. A typical disarticulated dolphin pectoral flipper and standard digital 

radiograph with labeled region of interest (ROI) are provided for reference in Figure 4-1. 

 

In-vivo measurements of live bottlenose dolphins 

Methods used on disarticulated flippers were also applied to live dolphins in order 

to demonstrate the non-aversive nature of this novel application. Initial trials to develop 

clinical protocols were conducted with two dolphins cared for by the U.S. Navy Marine 

Mammal Program (Point Loma Naval Base, San Diego, CA, USA). Methods established 

on disarticulated flippers to readily locate the primary ROI within the pectoral flipper using 
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morphometric landmarks were applied to live dolphins, and protocols for performing 

ultrasonic scans as expeditiously as possible were established. The controlled setting and 

well-trained animals provided an opportunity to streamline the diagnostic methods so they 

could be approved and integrated into research projects on free-ranging dolphins. 

 

Peripheral dual-energy X-ray absorptiometry (DXA) 

All DXA measurements were conducted on a Norland Sabre pDEXA (peripheral 

dual-energy x-ray absorptiometry) densitometer and analyzed with Norland Sabre 

Research software (Version 3.9.2) (Norland Medical Systems, Fort Atkinson, WI). The 

Norland pDEXA unit was developed for use on the human forearm with a radiographic 

template to accommodate osteological research applications. Bone density measurement 

calculations were based on absorption of two X-ray energy levels as they pass through the 

bone, generating a two-dimensional areal measurement of density in g/cm2. BMD was 

measured at an operator-defined ROI at the geometric center of the radius following 

established guidelines (Powell et al. in preparation). BMD at the selected ROI has a strong 

statistical correlation with BMD of the whole radius bone and is a site that is readily 

identifiable using external morphometric landmarks on an intact flipper. Specifically, the 

ROI is a 1 cm2 site centered at 50% of the radial length along the proximal-distal axis and 

50% of the medial-lateral width at that point (Fig. 1). 

 

Quantitative ultrasound and net time delay (NTD) 

Unlike attenuation-based radiographic approaches, QUS utilizes ultrasound to non-

invasively assess bone. The primary approach is one comparing two acoustic parameters 
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of through-transmission: one where an ultrasound signal that has propagated through a 

medium of interest (e.g., one containing bone) and a second where a signal has propagated 

through a reference medium of known acoustic properties (e.g., water). Two acoustic 

parameters which have been typically utilized with QUS are broadband ultrasound 

attenuation (BUA) and speed of sound (SOS). Neither of these parameters has been found 

to be highly correlated with BMD, however (Kaufman and Einhorn 1993). In contrast to 

BUA and SOS, a more recently described acoustic parameter, net time delay (NTD), has 

been found to have a high degree of correlation with BMD (Kaufman et al. 2008). Briefly, 

NTD is defined as the difference between the time, τs, required for an ultrasound pulse to 

travel through soft tissue only and the time, τb, for an ultrasound pulse to travel through 

bone and overlying soft tissue of overall equivalent distance, i.e., NTD = τs - τb.  It can be 

shown analytically that BMD is directly proportional to NTD, that is BMD = k · NTD, and 

the constant k depends on the material velocities of ultrasound in net bone and soft tissue, 

respectively, as well as a conversion factor between bone thickness and its densitometric 

(X-ray) equivalent (Attix 1986; Kaufman et al. 2007). NTD has been shown to provide a 

good estimate of BMD in both human cortical and trabecular bone (Kaufman et al. 2007; 

Kaufman et al. 2008; Le Floch et al. 2008; Stein et al. 2013). In practice, an affine 

regression (i.e., BMD = a · NTD + b, where a and b are parameters determined by the 

method of least squares) is used to obtain minimum error in the prediction of BMD and 

explain the behavior of a statistic variable y as an affine function of another statistic 

variable x (Stein et al. 2013). 
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QUS device and signal processing 

Quantitative ultrasound measurements were made using a custom designed QUS 

prototype (Figure 4-2). The ultrasound system places a pair of transducers in a coaxial, 

fixed position to ensure the sound waves generated are passed directly from the 

transmitting transducer to the receiving transducer in a direct path. Transducers are 

mounted vertically on a slide fixture that allows the device to be adjusted, positioned snugly 

against flippers of varying size and thickness, and locked to ensure transducer separation 

remains fixed during measurement. 

Two broadband 1.0 MHz circular single element ultrasonic transducers (V303 

Olympus NDT, Waltham, MA) are held in the adjustable-width, locking fixture. The 

source transducer is excited with an approximately -300 volt 1 microsecond duration pulse 

(Panametrics SR5077PR Pulser Receiver). The ultrasonic waveform, after propagating 

from the source through the pectoral flipper, is received by a coaxially located receiving 

transducer. The receiver transducer is connected to an electronic preamplifier and the signal 

is digitized by a LeCroy (Model 9310A) oscilloscope for sampling at 100 MHz. Five-

hundred twelve acquisitions of received acoustic waveforms are averaged to obtain the 

mean received ultrasonic signal which is then downloaded via GPIB (General Purpose 

Interface Bus) to a personal computer for storage and off-line analysis. A well-defined 

pulse shape for the soundwave signal is generated after sound has propagated through the 

pectoral flipper and radius (Figure 4-3).  
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In-vitro measurements of archived pectoral flippers 

ROIs were located using external landmarks and standard flipper measurements 

and confirmed by overlaying a full-scale digital radiograph over the flipper. A circular 

mark the size of the ultrasound transducer was placed on the ROI to visually guide 

placement of the transducers (see Figure 4-1).  

Ultrasound measurements were conducted at room temperature with ultrasonic 

coupling gel in contact between transducers and surface of the pectoral flipper. Custom 

developed, proprietary software was used to analyze the ultrasound signal through the 

flippers (NTDScope, CyberLogic, Inc., New York, NY). Once the measurement through 

the flipper was obtained, the transducers were removed from the flipper with the transducer 

separation maintained by a locking mechanism on the slide fixture. A pure water reference 

measurement was then obtained with the transducers in the same locked position as they 

were on the pectoral flipper. The travel time through the water bath, τW, was then evaluated 

from this data set and the distance, d, between the two transducers estimated using d = 

VW * τW, where VW is the velocity of ultrasound in the water bath, which was determined 

using tabulated values of ultrasound velocity as a function of temperature (Afaneh et al. 

2011). Finally, τS was computed using τS = d / Vs, where Vs was obtained as the value 

which maximized the correlation of NTD with BMD, as measured with DXA; for this 

study, Vs was found to be equal to 1450 m/s. 

 

Statistical analysis 

The relationship between radiographic (DXA) assessed BMD and quantitative 

ultrasound measurements (i.e., NTD) of each pectoral flipper was analyzed using ordinary 
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least squares (OLS) linear regressions to establish the statistical significance of the 

correlation between the two measurements.  

 

RESULTS 

The quantitative ultrasound parameter NTD and BMD as measured by DXA 

demonstrated a statistically significant correlation as determined by OLS linear regression 

(r = 0.93, p<0.001) and can be defined by the equation: 

y=0.2185x-0.0499 

The linear univariate regression between NTD and BMD produced a standard error of the 

estimate of 0.06 g/cm2. The significant linear relationship (Fig. 4) indicates that ultrasound 

measurements (i.e., NTD) can serve as a reliable proxy for BMD. Further, the linear 

equation from the regression analysis above can be used to calculate BMD in a dolphin 

flipper, where x is equal to NTD. 

 Trials conducted on live bottlenose dolphins (n=2) successfully demonstrated that 

ultrasonic assessment of bone using the custom QUS prototype was non-aversive (Fig. 5). 

Both dolphins voluntarily presented their pectoral flippers and remained stationed with 

animal trainers during the procedure. No adverse behavioral reactions or physiologic 

reactions were detected and breathing remained constant and normal throughout the 

process. 

 

CONCLUSIONS 

Despite the wide-ranging set of health data collected during capture-release health 

assessments of wild populations, routine veterinary monitoring in managed care settings, 
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and post-mortem examinations of beach-cast, stranded animals, there is only limited 

information available on osteological parameters for dolphins and, prior to this study, no 

available technology to readily assess BMD during wildlife health examinations. Efforts 

have been made to rectify the need for a dolphin-specific normative reference dataset for 

BMD values (Powell et al. in preparation). The current study introduces a custom QUS 

system and protocols which allow for the ultrasonic assessment of dolphin bone with an 

extremely strong correlation with BMD as measured with DXA. This new technology 

estimates BMD with a similar linear correlation as reported in a clinical study of the distal 

one-third radius in humans (Stein et al. 2013). Further, the same correlation observed in 

this study led the United States Food and Drug Administration to clear an ultrasound device 

as a direct estimate of BMD as would be measured by DXA (U.S. Food and Drug 

Administration 2017). 

Technology has been developed to estimate human BMD using an affordable, 

portable handheld device that relies on ultrasound rather than ionizing radiation (Kaufman 

et al. 2007); however, additional research was necessary to develop reliable correlations 

between actual BMD and the parameters measured in ultrasonography. Given this, 

additional clinical studies in humans have demonstrated a high degree of correlation 

between DXA and ultrasound-determined BMD (Siffert and Kaufman 2007).  

The diagnostic performance of QUS at multiple skeletal sites in humans is 

comparable with DXA (Hartl et al. 2002). Recent advancements in QUS technology have 

included ultrasonic assessment of the phalanges in comparison to quantitative computed 

tomography (QCT) (Louis et al. 2000), a portable real-time ultrasonic bone densitometer 

to estimate BMD at the calcaneus (Kaufman et al. 2007), a QUS device for measurements 
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at the proximal femur (Barkmann et al. 2010), a desktop ultrasonic bone densitometer to 

assess BMD at the distal radius (Stein et al. 2013), and a dual-mode ultrasonic technique 

for assessing cortical bone in the tibia (Kaufman and Luo 2017). 

When prospectively validated, QUS has proven to be a reliable, low-cost, readily 

accessible alternative to DXA measurements of bone density (Hans and Baim 2017) 

especially in resource-constrained settings (Ramteke et al. 2017). Properly designed and 

tested devices have the potential to become simple, safe, and effective screening tools for 

bone loss and fracture risk (Kaufman et al. 2010). The National Osteoporosis Society has 

recently acknowledged that the use of less expensive and more convenient methods, other 

than DXA, for evaluating BMD and assessment of osteoporosis are appealing (Dhalnaut et 

al. 2016). Given the World Health Organization’s clinical definition of osteoporosis is 

based specifically on DXA values (Sözen et al. 2017), this is a significant shift in the 

biomedical industry and is notably indicative of the vast improvements in alternative 

technologies, such as QUS, in the ability to properly diagnose skeletal disease and fracture 

risk. 

Both DXA and QUS are underutilized tools in zoological and wildlife studies, and 

as bone densitometry continues to emerge as a field of study these technologies will 

increase in importance. While the potential use of DXA in field settings is limited, QUS 

could have boundless utility as a screening tool to investigate bone health in wildlife, 

especially in applications to live animals. The comparatively affordable costs, radiation-

free approach, and portability of devices make this technology an ideal choice for wildlife 

studies. 
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Figure 4-1. Disarticulated dolphin pectoral flipper with geometric center ROI marked 

(left); standard digital radiograph of a dolphin pectoral flipper with radius labeled (R) 

(center); and pDEXA scan of radius with 1cm2 ROI marked at 50% of the radial length 

along the proximal-distal axis and 50% of the medial-lateral width at that point (right). 
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Figure 4-2. CyberLogic-designed portable quantitative ultrasound system. The cables (top 

image) connect the paired transducers that transmit and receive ultrasound signals through 

the flipper. The pectoral flipper is positioned by opening and adjusting the slide fixture 

(bottom image), which is then locked in place with a fixing bolt (not seen in above photos). 
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Figure 4-3. Typical soundwave propagated through the soft tissue and radius of a 

bottlenose dolphin pectoral flipper. Main distinctions (besides reduced amplitude) of the 

flipper/bone signals compared with the water signals are (i) reduced signal amplitude; (ii) 

bone signal arrives approximately 3.5 μs earlier; and (iii) bone signal has a lower center 

frequency (approximately 700 kHz). The center frequency for the water reference signal is 

approximately 1 MHz. 
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Figure 4-4. Linear regression model depicting the correlation (r = 0.93) between bone 

mineral density (BMD) as measured with DXA and quantitative ultrasound (NTD) at the 

geometric center ROI of intact (i.e., fresh-frozen) bottlenose dolphin pectoral flippers. 
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Figure 4-5. Tolerance testing of ultrasonic bone densitometer on a live, managed care 

bottlenose dolphin. Photo courtesy of U.S. Navy Marine Mammal Program. 
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CHAPTER 5 

Precision Error and Normative Reference Values for Ultrasonic Bone Density 

Measurements in Live Common Bottlenose Dolphins, Tursiops truncatus 

 

ABSTRACT 

Common bottlenose dolphins, Tursiops truncatus, are utilized as indicators of ecosystem 

health in capture-release health assessments. Bone density measurements have not 

previously been incorporated into these projects despite evidence that exposure to a suite 

of anthropogenic contaminants, episodic prey depletion events, and resultant malnutrition 

lead to decreased bone density in laboratory animals and wildlife species. To establish bone 

density as a useful health and life history parameter for the bottlenose dolphin, normative 

reference ranges must be established from healthy individuals in order to facilitate 

evaluation of health and disease status of individuals from impacted populations and 

habitats. Traditional methods for bone density measurement, such as dual-energy X-ray 

absorptiometry (DXA), use X-ray scanners that have limited utility in open-water field 

settings due to inherent constraints of portability, regulation, and radiographic nature of the 

technology. In this study, we developed methods for quantitative ultrasound (QUS) as a 

preferable alternative, since it is portable, has a high degree of precision, and does not 

expose patients or technicians to radiation, thus making it an ideal diagnostic tool for field 

applications. Repeatability assays were conducted on dolphins managed under human care 

to define the precision error for this novel QUS application. Ultrasonic bone density 

assessments of live, free-ranging dolphins were conducted during capture-release health 

assessments from 2014-2019. Individuals were selected from this long-term population 
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study for the development of a normative bone density dataset of dolphins with nutritive 

body condition within normal limits and the lack of obvious disease or health issues. This 

study represents the first use of QUS to assess bone density in a marine mammal species. 

Application of this technology during capture-release health assessments adds a valuable 

resource to biologists and wildlife veterinarians investigating dolphin and overall 

ecosystem health. 

 

INTRODUCTION 

Sentinel species are used to comprehensively evaluate the ecological effects of 

physical and chemical stressors and to monitor restoration of wildlife, habitats, and human 

resources impacted by threats such as oil spills and hazardous waste (Barnthouse & Stahl, 

2017). Health assessments of free-ranging wildlife are useful tools in areas where 

populations show signs of epidemic disease, high mortality, and/or where ecosystems are 

being altered or impacted by human activities (Rowles et al., 2018). To determine the 

appropriate type and amount of restoration required to recover a population following a 

natural resource disaster (e.g., Deepwater Horizon oil spill, EPA Superfund sites), the full 

extent of injuries must be quantified in a manner that considers long-term impacts and 

chronic health effects that compromise individuals after acute effects subside (Schwacke 

et al., 2017). 

Monitoring the health of free-ranging common bottlenose dolphins (Tursiops 

truncatus) is a crucial component in investigating marine and estuarine ecosystem health. 

To understand impacts and monitor recovery, findings from health assessments of live 

dolphins are coupled with information gained from photographic monitoring, remote tissue 
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sampling, and the examination of dead stranded dolphins and subsequent analysis of their 

tissues. Such health monitoring has involved a variety of measurements, including 

morphometric data, veterinary physical examination, hematology, immune function, 

diagnostic ultrasound, contaminant analyses, and hearing tests (Townsend et al., 2018). 

Thoracic and dental radiology techniques have recently been added for preliminary 

examination of skeletal health (C. R. Smith, pers. comm., 8 May 2019), and we have 

developed a quantitative ultrasound (QUS) device (hereafter “bone sonometer”) and 

protocols to assess bone density in the dolphin pectoral flipper (see Chpt. 4). In human 

medicine, assessment of skeletal health has been a common component of defining an 

individual’s overall health, particularly with increasing age, and quantitative assessment of 

bone mineral density (BMD) is currently considered the best predictor of skeletal health. 

Skeletal alterations and disturbances provide mechanisms to detect and monitor potential 

impacts to an individual’s or population’s health. Given the important physiological role 

played by bone tissue, any external factor altering BMD could have significant harmful 

consequences to an individual’s overall health or behavior. BMD is positively correlated 

with age and body mass in humans and other mammals (Blake et al., 2000) At skeletal 

maturity, bone turnover is balanced so there is no resultant net change in bone mass; 

however, with increasing age, altered health status, or incidence of disease, an individual’s 

relative efficiency to resorb and replace bone may be altered and result in net loss of bone 

mass and altered bone architecture (Allen, 2003). 

Studies of osteological health are traditionally conducted using radiography and 

gross and microscopic postmortem examination of bones (Metcalfe, 2007). Recent 

advancements in medical technology that decrease the cost and size of diagnostic devices 
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have resulted in skeletal examination becoming more common in studies of wildlife 

disease. Traditional methods for BMD measurement, such as dual-energy X-ray 

absorptiometry (DXA), use X-ray scanners that have limited utility in open-water field 

settings due to inherent constraints of portability, regulation, and the radiographic nature 

of the technology. To address the limitations of DXA, quantitative ultrasound (QUS) 

methods for bone assessment have been developed and demonstrated that they can 

determine bone quality and provide information about bone density (Kaufman and Einhorn 

1993; Njeh et al., 1997). QUS is nondestructive, noninvasive, less expensive than X-ray 

technology, and does not expose patients or technicians to radiation (Glüer, 1997). 

Additionally, its portability and high degree of precision make it an ideal diagnostic tool 

for field applications. 

Reference intervals are used by veterinarians and physicians to clinically evaluate 

the health of individuals by comparing observed values of a given parameter against values 

considered to be representative of a normal, healthy population (Hart et al., 2015). Values 

below the threshold of the reference interval are considered unusual and typically coincide 

with a disease state or other harmful impact (Kanis et al., 2008).  As with all biological and 

physiological parameters assessed in epidemiological studies, clinicians need a range of 

values that describe disease-free individuals or individuals from comparable unexposed 

populations (Rowles et al., 2018). Such data do not currently exist for BMD in healthy, 

free-living bottlenose dolphins. Distribution of observed BMD values in bottlenose 

dolphins using measurements on specimens from dead-stranded individuals have been 

determined (see Chpt. 3). While dead-stranded animals are a useful resource for 

investigating marine mammal disease, they have limited utility in evaluating the health of 
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living populations or changes in an individual animal’s health (Aguilar & Borrell, 1994). 

The range in BMD values are presumably confounded by health and disease status 

associated with the death of the individuals and thus possibly does not represent values 

from normal, healthy individuals.  

Hart et al. (2013) developed 95th percentile reference ranges for body condition of 

bottlenose dolphins using measurements of total mass, total length, and maximum girth as 

measured on dolphins during capture-release health assessments conducted in Sarasota 

Bay, Florida. Baseline reference interval ranges would provide a basis for comparison of 

health status among individuals and stocks of animals with a reference population 

(Schwacke et al., 2009). Because body condition reflects nutritional status (Hart et al., 

2013) and body composition metrics are positively correlated with BMD (Pluijm et al., 

2001), these reference intervals can be used to identify individuals that are within normal 

limits in nutritive condition during health assessments as a selection criterion for inclusion 

in a BMD normative distribution reference dataset. 

 The current study applies QUS to assess BMD in live bottlenose dolphins to 

establish a normative reference curve based on animals with body condition within normal 

limits. Additionally, data presented herein demonstrate the precision of the bone sonometer 

and the repeatability of ultrasonic densitometry measurements on live bottlenose dolphins. 

The developed normative reference standards will provide a method by which to compare 

and diagnose skeletal health in individuals from different populations or with compromised 

health, allowing bone densitometry to be incorporated into the armamentarium of tools 

used by researchers in health assessment studies on free-ranging, bottlenose dolphins. 
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METHODS 

Quantitative Ultrasound Device and Technique 

Technical specifications and application of QUS to assess bone density in 

bottlenose dolphin flippers have previously been described (see Chpt. 4). Briefly, the 

dolphin bone sonometer uses through-transmission QUS performed with a pair of 

transducers fixed in a coaxial position on an adjustable slide fixture (Figure 5-1). Time 

required for an ultrasound pulse to travel through bone and overlying soft tissue (i.e. the 

radius in the pectoral flipper) vs. time for an ultrasound pulse to travel through a known 

temperature water bath with transducers at an equivalent distance as set on the flipper are 

measured to calculate “net time delay” (NTD), an acoustic parameter that is directly 

proportional to BMD. 

 Monitoring the stability and consistent performance of the ultrasound device by 

regular quality control measurements is a precondition for assessment of good 

measurement quality. Daily quality assurance (QA) scans of a plastic non-

anthropomorphic phantom (i.e., non-bone) were performed. As there are currently no 

universally accepted QUS phantoms, such as those used in radiographic osteodensitometry, 

manufactured specific non-anthropomorphic phantoms are an accepted alternative for 

quality assurance and QUS system calibration. 

 In human clinical medicine, target skeletal sites for measurement of bone density 

in the radius is facilitated by palpating the visible distal and proximal ends of the bone and 

measuring the length of the bone in the forearm (Shepherd et al., 2002). However, bones 

of the dolphin pectoral flipper are encased in dense connective tissue that, once skeletally 

mature, prevent practitioners from manually locating the margins of the bone in a similar 
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approach as in human osteodensitometry. To overcome this limitation, techniques to 

manually locate the primary region of interest (ROI) (i.e., skeletal target site) for QUS 

measurement in the dolphin pectoral fin were developed utilizing cetacean morphometric 

landmarks and a set of standard radiographs (Chpt. 4). 

An ROI at the geometric center of the dolphin radius has been characterized and 

found to have a strong correlation to the bone density of the entire bone, supporting its use 

as a definitive skeletal target site for clinical assessment of BMD in the bottlenose dolphin 

radius (see Chpt. 3). The ROI can be readily located in the flipper using two standard flipper 

morphometrics from Perrin (1975): cranial flipper length (the distance from the cranial 

insertion of the flipper to the distal tip) and maximum flipper width. This ROI is set at 25% 

of the cranial flipper length, measured distally from the insertion along the leading edge of 

the flipper, and medially a distance equal to 20% of the maximum flipper width (Figure 5-

2). Pectoral flippers were dried with a towel and the ROI was marked with an indelible ink 

marker (as seen in Figure 5-2) as a guide for locating during QUS scan. 

 

Study Animals 

Managed Care Dolphins — To diagnose BMD as deviating from normative reference 

range, or to determine if true biological change has occurred in an individual over time, the 

precision error of the densitometry technique used must be known. Repeatability, or 

precision, refers to the closeness of agreement between test results when the tests are 

performed by the same technologist, using the same equipment, within a short period of 

time (Bonnick, 2010). Precision is an approach used to statistically quantify the error of a 

technique. The smaller the precision error value, the more repeatable the technique. 
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Densitometry is not perfectly reproducible; the results of a given patient are not expected 

to be identical even when the actual BMD value in the patient of interest has not changed 

(Bonnick, 2010). Real biologic change in BMD has occurred when the precision error of 

the technique being used has been exceeded. Precision error is quantified through a 

repeatability assay and is expressed as the root-mean-square standard deviation (RMS-SD) 

with the same units as the measurement or the root-mean-square % coefficient of variation 

(RMS-%CV), with the average BMD for the group reported. Precision values obtained in 

a short-term study of young, normal individuals represents the best possible precision 

(Bonnick, 2001). 

To define precision error of the bone sonometer, a preliminary set of repeatability 

assays was conducted on bottlenose dolphins managed under human care at two facilities: 

Brookfield Zoo (Chicago, Illinois, USA) and Dolphin Quest (Oahu, Hawaii, USA). A total 

of 10 individual dolphins (n= 4, Brookfield Zoo; n=6, Dolphin Quest) were included in the 

repeatability assays. At each facility, repeated measurements were conducted on each 

animal throughout a single day by the same technologist. Each scan was performed with 

the dolphin in-water, stationed at an animal trainer with the pectoral flipper voluntarily 

presented by the dolphin being measured (Figure 5-3). 

 

Free-Ranging dolphins — QUS bone density measurements used for this study were from 

bottlenose dolphins sampled during capture-release health assessment projects conducted 

in Sarasota Bay, Florida, between May 2014 and June 2019. Health parameters, 

morphometrics, and ages were taken on all dolphins sampled. Dolphins ultimately included 

in this study were those with confirmed age who were deemed to have nutritional body 



 

 
67 

condition within normal limits per established criteria (Hart et al., 2013). Determination of 

body condition used the following measurements: total length, a straight-line measurement 

to the nearest mm from the tip of the upper rostrum to the cranial margin of the fluke notch; 

maximum girth, measured as the circumference of the body immediately cranial to the 

dorsal fin; and total mass, recorded using a load cell onboard a research vessel. 

All pectoral flipper scans were performed with dolphins out of water, onboard a 

research vessel (Figure 5-4). Regression models were developed for BMD values of all 

animals that met the selection criteria. Since female bottlenose dolphins grow at a faster 

initial rate than males and reach asymptotic growth at an earlier age, resulting in sexual 

dimorphism in total length, maximum girth, and total mass at physical maturity (Read et 

al. 1993, Tolley et al. 1995), analyses were conducted separately for each sex. 

 

RESULTS 

Calculating individual precision values for every dolphin in a health assessment 

project that might be measured or followed with bone densitometry is not practical. Thus, 

it was necessary to establish representative precision values for each skeletal site used for 

monitoring BMD. Ten dolphins managed under human care and trained to voluntarily 

present pectoral flippers were scanned four times within a single day (Appendix B). The 

average ultrasonic BMD NTD value of dolphins in the repeatability assay was 2.566 μs 

and the RMS-CV for QUS as applied to measure BMD in the pectoral flipper of live 

bottlenose dolphins was 0.06 μs. 
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 Free-ranging bottlenose dolphins (n=45) from annual capture-release health 

assessments conducted from 2014 to 2019 in Sarasota, FL, were selected for this study. 

Each individual was of known age, sex, and nutritive body condition, and had no apparent 

underlying health conditions. The resultant data represent the best dataset available to serve 

as a proxy for normal, healthy bottlenose dolphins. The subset was comprised of 24 females 

(spanning 2 to 34 years of age) and 21 males (spanning 3 to 28 years of age). Sex-specific 

scatterplots of BMD values were created to represent the normative increase in bone 

density with age (Figure 5-5). Each dolphin was measured once and is represented by a 

single point on the curve. Measured ultrasonic BMD values for each live dolphin in this 

study and associated life history data are provided in Appendix C. 

Both sexes exhibited an initial phase of progressive increase in BMD up to 

attainment of asymptotic, or peak, bone density. Peak BMD was observed in male dolphins 

at approximately 20 years of age, while peak BMD in female dolphins was approximately 

23 years of age. Notable differences in sex-specific BMD at relative ages were observed, 

with female dolphins having lower BMD at all ages after approximately 5 years of age and 

ultimately reaching a lower peak BMD than male dolphins. 

  

DISCUSSION 

The current study demonstrates that ultrasonic bone densitometry can be performed 

on live bottlenose dolphins in a repeatable and precise manner that can be applied in the 

field to free-ranging dolphins. Since dolphins from the Sarasota community are typical of 

the size range observed in the species elsewhere in coastal waters of the northwestern 

Atlantic and the northern Gulf of Mexico (Sergeant et al., 1973; Mead & Potter, 1990), and 
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because there is little variation in mean growth rates among dolphins from Sarasota, 

northeastern Florida, and the central Atlantic coast of the United States (Read et al., 1993), 

the data collected from individuals with body condition within normal limits from the 

reference population serve as a normative distribution of expected values for the species 

over the range of ages included in this initial dataset. The differences in rate of BMD 

increase with age observed in male and female dolphins may be due to the demands of 

reproduction on females. In Sarasota Bay, dolphins can reach sexual maturity as early as 5 

years of age and typically first give birth by 9 years of age (Wells and Scott 2018). Cyclical, 

and mostly continuous, reproduction (pregnant or lactating) throughout a female dolphin’s 

life could account for both the lower rate of bone density increase and lower peak BMD 

values. In humans, high calcium demand during pregnancy and lactation increases bone 

resorption and susceptibility of subsequent osteoporosis (Salari and Abdollahi 2014). 

Hormonal changes may result in a reversal of bone resorption, but the final net effect of 

pregnancy and lactation on bone in humans is not clearly understood (Rillo et al. 1994). 

With the comparably higher number of offspring and shorter inter-pregnancy interval 

during a female dolphin’s life, the relative differences in male and female dolphin BMD 

could be explained by the demands of pregnancy and lactation. 

 The bone sonometer demonstrated a high degree of precision during multiple, 

repeated measurements on a study group of bottlenose dolphins managed under human 

care. In 2019, the International Society for Clinical Densitometry stated that the minimum 

acceptable precision for a technologist, expressed as %CV, was 2.5% at the femoral neck, 

1.9% at the lumbar spine and 1.8% at the total hip (ICSD, 2019). The RMS-CV of 0.06 
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determined in the repeatability assays of QUS measurements of bottlenose dolphins meets 

or exceeds the values accepted for DXA-based human clinical applications. 

In addition to concerns of long-term skeletal health in aging individuals, 

osteological studies are conducted to assess a multitude of impacts, including contaminant 

exposure, malnutrition and starvation, and metabolic disorders. Exposure to anthropogenic 

contaminants, for example, is known to reduce BMD, alter bone mineral composition, and 

result in various osteopathies in both terrestrial and marine mammals (Staessen et al., 1999; 

Sonne et al., 2004; Danion et al., 2011). If decreases in bone density in dolphins can be 

associated with anthropogenic contaminant exposure, dolphin BMD could be used not only 

as an indicator of exposure but also an assessment tool for monitoring the recovery of a 

population or habitat following acute and chronic exposure events. 

 Bone densitometry is an emerging diagnostic tool in zoo and wildlife medicine, 

since osteological assessment can reveal critical information about an individual (Duckler 

& Van Valkenburgh, 1998). Bone density assessment of free-ranging wildlife could be an 

extremely valuable addition to research applied in contexts where prey availability studies 

are of interest. Not only does malnutrition- and starvation-induced changes affect BMD, 

but episodic toxic algal blooms have been implicated in large-scale fish die-offs that 

significantly reduce prey availability and impact the nutritional status of bottlenose 

dolphins (Gannon et al., 2009; Berens McCabe et al., 2010; Powell & Wells, 2011). 

Brevetoxin accumulation has been detected in live, free-ranging dolphins and their prey 

fish (Fire et al. 2008a; Fire et al. 2008b). Bone density assessments of individuals exposed 

to periods of severely reduced prey availability and dolphin calves that were in utero during 



 

 
71 

these prey reduction events may reveal an associative impact on skeletal health similar to 

effects of starvation and malnutrition observed in other species. 

 Development of species-specific health indicators for wild, free-ranging wildlife is 

critical to comprehensively assessing individual and population health. The normative 

range of BMD values presented herein will serve as a reference standard for bottlenose 

dolphins and will facilitate examination of individuals and populations to establish 

associations between BMD and anthropogenic contaminant exposure, malnutrition, or 

metabolic disease. Longitudinal data can be added to compliment the current cross-

sectional approach, particularly with animals still in a growth phase of their life history, 

and better model natural increases in BMD. As episodic prey depletion events continue to 

increase in prevalence, prenatal and neonatal exposure to maternal malnutrition will 

increase. It is of great interest to utilize long-term research sites where individuals are 

known and tracked over the course of their life to elucidate the BMD impacts of these 

exposure events on dolphins as a marker for health and recovery. 
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Figure 5-1. Dolphin bone sonometer using through-transmission quantitative ultrasound 

(QUS) with a pair of coaxial transducers on an adjustable slide fixture positioned on a 

bottlenose dolphin flipper. Photo taken under National Marine Fisheries Service Scientific 

Research Permit No. 20455. 
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Figure 5-2. Standard cetacean morphometrics are used to locate and mark primary region 

of interest (ROI) on the dolphin pectoral flipper to measure bone mineral density (BMD) 

of the radius. Photo provided by Chicago Zoological Society’s Brookfield Zoo. 
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Figure 5-3.  In-water bone density assessment of bottlenose dolphins managed under 

human care. Each scan was performed with the dolphin in-water, stationed at an animal 

trainer with pectoral flipper voluntarily presented. Photo provided by Chicago Zoological 

Society’s Brookfield Zoo. 
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Figure 5-4. Bone density measurements through the pectoral flipper of live, free-ranging 

bottlenose dolphins were performed with dolphins out of water, onboard a research vessel 

during capture-release health assessment projects. Additional health assessment 

procedures are conducted concurrently. Photo taken under National Marine Fisheries 

Service Scientific Research Permit No. 20455. 
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Figure 5-5. Scatterplots of bone density (BMD) for female (above) and male (below) 

bottlenose dolphins from Sarasota, Florida. As this is a cross-sectional study, each 

individual was measured once and is represented by a single point on this curve. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE STUDIES 

Marine mammals show two very dichotomous trends in bone architecture and 

histology, significantly reduced bone density and significantly increased bone density. 

Deep-diving marine mammals have bones that are less dense than homologous skeletal 

elements in terrestrial mammals. This pattern of reduced bone mineral density (BMD) has 

been documented in small to medium-sized odontocetes (i.e., toothed whales and dolphins) 

and some pinnipeds (e.g., seals and sea lions) and is characterized by replacement of 

cortical bone with cancellous, or trabecular, bone. The alteration in BMD is a hormone-

controlled process resulting in an imbalance between bone resorption and deposition. 

Interestingly, mean variance for terrestrial mammal bone density is low in comparison to 

aquatic mammal bone density, potentially due to terrestrial mammals having a relatively 

narrow optimal range of BMD as a compromise between strength and weight (Wall 1983). 

Applications of bone densitometry to wildlife studies have been conducted 

primarily in the context of evolutionary adaptations, specifically with regard to adaptations 

to aquatic and marine habitats both from a comparative perspective for similar species and 

in the evolutionary framework of transitioning from terrestrial to marine habitats. As a 

result of their fully aquatic lifestyle, sirenians (e.g., manatees and dugongs) and cetaceans 

(e.g., whales and dolphins) are free of the mechanical constraints that influence limb bone 

architecture in terrestrial and semi-aquatic mammals (Stein 1989). Some aquatic mammals 

(e.g., manatees) exhibit significantly higher limb-bone density than terrestrial mammals, 

theoretically as an adaptation for buoyancy, while other species, such as cetaceans and 

some pinnipeds have secondarily reduced BMD (Wall 1983). Histological analysis 
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demonstrates that high BMD is an aquatic specialization the provides a ballast-like static 

buoyancy control system for animals living in shallow water, while decreased BMD is 

associated with dynamic buoyancy control for animals living in deep water habitats (Gray 

et al. 2007). 

Development of species-specific health indicators for wild, free-ranging wildlife is 

critical to be able to comprehensively assess individual and population health and to fully 

understand the effects of anthropogenic and environmental impacts. In human medicine, 

assessment of skeletal health has become an accepted component to defining an 

individual’s health, particularly with increasing age, and quantitative assessment of BMD 

is currently considered the best predictor of skeletal health. For dolphins, in order to 

investigate environmental or ecological impacts on an individual dolphin’s skeletal health 

or to utilize skeletal health, and specifically BMD, as a life history or health marker, 

comprehensive research to establish normative bone density values across age, sex, disease 

status, and nutrition level must be conducted for this species. This has been the focus of 

my dissertation research. 

 

DISSERTATION FINDINGS 

In order to conduct comprehensive osteological health studies on bottlenose dolphins, 

foundational research on BMD was needed to comprehensively understand bone density 

in the species prior to application or investigation of the myriad impacts that bone density 

can used to interpret. Since minimal prior research has been conducted on BMD in 

dolphins, this dissertation effectively serves as the foundation for osteodensitometry in the 
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species. To establish a framework for bottlenose dolphin osteodensitometry the following 

objectives were met: 

1. The dolphin radius was comprehensively characterized through the correlation of 

BMD values at multiple regions of interest (ROIs) to BMD of the entire bone in 

order to establish a primary skeletal site for clinical assessment. The relationship 

between BMD of each ROI and BMD of the whole radius was analyzed using 

ordinary least squares (OLS) linear regression analyses to establish the statistical 

significance of each ROI as a predictor for whole radius BMD. This both supported 

the selection of a single ROI for all subsequent tests and demonstrated the 

repeatability, accuracy, and precision with which ROIs were positioned during 

analyses. The regression models for pair-wise correlations between whole radius 

BMD and BMD at each ROI showed strong, positive linear relationships (R2 values 

from 0.94 to 0.97, p<0.001). BMD at the selected ROI, the geometric center of the 

radius, had the most significant correlation to BMD of the whole radius (R2 =0.97) 

and was easily located within a fully intact flipper, facilitating ease of field-based 

assessments while maximizing accuracy and precision of ROI placement. (Chpt. 3) 

2. Radii (n=388) archived in museum collections from 279 dead-stranded bottlenose 

dolphins were analyzed using dual energy X-ray absorptiometry (DXA), an 

accepted technique in human medical studies. The data generated from this work 

represent the largest dataset on BMD in any wildlife or marine mammal species to 

date. The BMD values observed represented the range of values for bottlenose 
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dolphins at time of death and the findings represent a robust, comprehensive cross-

sectional study of dolphin bone density. (Chpt. 3) 

3. Intra-individual bilateral symmetry observed in BMD of 218 paired left-right radii 

provided support for the use of either pectoral flipper to assess BMD for an 

individual dolphin and lent support to the use of any radii available for future 

studies and applications, regardless of whether they were left or right pectoral 

flippers. Bilateral symmetry is beneficial in a practical sense because, due to spatial 

constraints, routine necropsies and archival protocols at many institutions include 

retention of partial skeletons, and under field conditions it is not always possible to 

access the same flipper for every animal. Therefore, in future clinical applications, 

BMD assessments of live dolphins can justifiably be conducted on either the left or 

right flipper. (Chpt. 3) 

4. Based on the radii from 279 dead-stranded bottlenose dolphins, no statistically 

significant differences were observed between male and female dolphins, dolphins 

from different geographical regions, or dolphins with different nutritional body 

condition at time of death. The lack of differences observed in these subsets support 

the inclusion of all available skeletal specimens as an acceptable range of observed 

BMD values for bottlenose dolphins at time of death and provides a metric by 

which to compare and diagnose skeletal health in individuals. (Chpt. 3) 

5. To investigate possible limitations of small sample size and limited age 

distributions in previous dolphin bone density studies that attempted to use BMD 

to estimate age, this much larger sample (n=206) of archived bottlenose dolphin 

specimens spanning a full range of body lengths (94-295 cm) and ages (0-50 yr) 
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was examined for age effects. Bone density increased with age up the age of 

approximate skeletal maturity and then declined gradually from approximately 25 

years of age onward. The variance of bone density values observed at any given 

age was of such magnitude that it definitively precludes the use of this parameter 

as a reliable estimator of age for any age above 15 years of age. (Chpt. 2) 

6. To circumvent limitations of traditional radiographic bone density assessment, a 

custom quantitative ultrasound device (i.e. bone sonometer) and protocols were 

developed for the assessment of BMD in live bottlenose dolphins. Present X-ray 

based methods for estimating BMD are not adaptable to the conditions under which 

live dolphin field health assessments are conducted. But, quantitative ultrasound 

(QUS) methods for bone assessment have demonstrated the potential to determine 

bone quality and provide information about bone density in human clinical 

applications. QUS is especially beneficial in that it is portable, nondestructive, 

noninvasive, less expensive than X-ray technology, and does not expose patients or 

technicians to radiation. Unlike radiographic approaches to densitometry, QUS 

readings are nearly instantaneous once the bone sonometer is properly positioned. 

In laboratory measurements on disarticulated pectoral flippers collected post-

mortem, a strong correlation was established between bone mineral density (BMD) 

as measured with quantitative ultrasound and X-ray (r=0.93). (Chpt 4) 

7. Trials to develop clinical protocols for ultrasonic assessment of bone in live 

dolphins and to establish the technology as non-aversive were conducted under 

veterinary supervision on dolphins managed under human care at the U.S. Navy 

Marine Mammal Program, San Diego, California. Dolphins voluntarily presented 
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their pectoral flippers and remained stationed with animal trainers during the 

procedure. No adverse behavioral reactions or physiologic reactions were detected 

and breathing remained constant and normal throughout the process. (Chpt 4) 

8. To define precision error for this novel QUS application, repeatability assays were 

conducted on dolphins managed under human care at Chicago Zoological Society’s 

Brookfield Zoo (Chicago, Illinois, USA) and Dolphin Quest Oahu (Honolulu, 

Hawaii, USA). Precision error was determined by repeatedly measuring BMD 

multiple times throughout a single day, where no real biological change would have 

occurred. The findings demonstrated a high degree of precision and minimal error 

in the technique and technology as applied to live dolphins. (Chpt 5) 

9. Ultrasonic BMD assessments of free-ranging dolphins were conducted during 

capture-release health assessments from 2014-2019. Individuals were selected from 

an established reference population in Sarasota, Florida, for the development of a 

normative dataset based on nutritive body condition within normal limits and lack 

of other underlying disease or health issues. This normative dataset included 45 

dolphins, 24 females and 21 males, ages 2 to 34 yr. Both sexes exhibited an initial 

phase of progressive increase in BMD up to attainment of asymptotic, or peak, bone 

density around 25 years of age. (Chpt 5) 

 

The BMD values utilized in this study represent the largest dataset published on 

bone density in any wildlife or marine mammal species to date, and the BMD values as 

assessed with QUS represent the first normative BMD dataset for live, free-ranging marine 
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mammals. This study also represents the first use of quantitative ultrasound to assess bone 

density in a marine mammal species. Development of this technology and protocols for its 

application during capture-release health assessments will enable assessment of dolphin 

bone tissue to become part of the armamentarium of biologists and wildlife veterinarians 

and will broaden the understanding of dolphin and overall ecosystem health. 

 

FUTURE STUDIES 

To build on the foundation laid out in this dissertation and to expand the field of 

osteodensitometry as applied to marine mammals in general, and bottlenose dolphins 

specifically, the following future studies and applications are suggested: 

1. Comprehensively investigate an association between anthropogenic contaminant 

exposure and bone density in the common bottlenose dolphin, Tursiops truncatus. 

2. Long-term monitoring of bone density in live, free-ranging bottlenose dolphins 

using the established reference population to investigate life history questions. 

3. Track bone density in bottlenose dolphins exposed to large-scale prey mortality 

events associated with toxic algal blooms or who were in utero during these events. 

4. Assess bone density in bottlenose dolphins managed under human care that have a 

clinical history of renal dysfunction and/or metabolic disorder. 

5. Develop a fracture risk assessment model for the bottlenose dolphin by assessing 

bone density in individuals that present at the time of death or during capture-release 

health assessments with evidence of skeletal fractures. 
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Determination of BMD values observed in bottlenose dolphins has provided 

fundamental baseline information of species-specific values of a critical health parameter 

that allows for a more comprehensive evaluation of individual and population health. 

Technological advancements made during this research study facilitated the assessment of 

BMD in live, free-ranging dolphins in a manner that was not previously possible. Future 

studies to more completely understand the effects of anthropogenic and environmental 

impacts on dolphin health can be conducted with this baseline as a comparison and with 

the assessment tools developed. BMD assessment of dolphins can now be incorporated into 

the myriad research projects that utilize this marine sentinel species to model impacts of 

human activities and monitor marine and estuarine ecosystem health. 
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Appendix A. Bone mineral density (BMD) values as defined with dual-energy X-ray 

absorptiometry (DXA) for bottlenose dolphins, Tursiops truncatus, in this study provided 

as an open-source descriptive dataset for bottlenose dolphin BMD values. 

Field #  

Sex 

(M/F) 

TL 

(cm) 

Age 

(yr) 

L/R 

Radius 

Radius BMD  

(g/cm2) 

GC ROI BMD  

(g/cm2) 

SC0516 M 115 0 R 0.3508 0.4270 

SC0948 M 108 0 R 0.3658 0.4845 

SC1030 M 105 0 R 0.2843 0.3683 

SC1031 M 91 0 R 0.3298 0.4643 

SC1038 F 96 0 R 0.2366 0.3424 

SC1039 F 100 0 R 0.3511 0.4624 

SC1043 M 108.5 0 R 0.3299 0.4132 

SC1135 F 101 0 R 0.3306 0.4695 

SC1142 M 101 0 R 0.2794 0.3406 

SC1145 F 94 0 R 0.2347 0.3101 

SC1146 M 87 0 R 0.2869 0.4239 

SC1168 M 100 0 R 0.3612 0.4640 

SC1171 M 100 0 R 0.2858 0.3728 

SC1176 M 110 0 R 0.4016 0.5390 

SC1216 M 90 0 R 0.2254 0.3158 

SC0841 M 127 0.16 R 0.3799 0.4861 

SC1059 M 127 0.37 R 0.3192 0.4187 

MML0115 F 147 0.5 R 0.3205 0.4367 

MML1211 F 169.3 0.5 R 0.4834 0.6920 

SC0426 M 158 0.5 R 0.3914 0.5784 

SC0725 M 166 0.65 R 0.3738 0.4948 

SC1052 M 135 0.68 R 0.2639 0.3702 

SC0043 M 145 0.75 R 0.3189 0.4220 

SC0903 F 158 0.77 L 0.5577 0.7511 

SC9636 M 149 0.8 R 0.4250 0.5525 

SC0326 M 156 0.85 L 0.3398 0.4478 

SC9842 M 168 0.9 R 0.4423 0.5805 

SC0739 M 160 0.94 R 0.4069 0.5602 

SC0451 F 168 1 R 0.3798 0.5295 

SC0629 M 173 1 R 0.4606 0.6238 

SC9817 M 153 1 R 0.3840 0.4829 

SC0722 M 149 1.25 R 0.3471 0.4897 

SC1029 F 146 1.25 L 0.3834 0.5122 

SC0148 M 137 1.5 R 0.4039 0.5400 

SC0332 M 176 1.5 R 0.5219 0.6025 
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Field #  

Sex 

(M/F) 

TL 

(cm) 

Age 

(yr) 

L/R 

Radius 

Radius BMD  

(g/cm2) 

GC ROI BMD  

(g/cm2) 

SC0332 M 176 1.5 L 0.5174 0.6111 

SC1060 M 154 1.5 R 0.3058 0.3938 

SC1255 F 162 1.5 R 0.3706 0.4779 

SC9702 M 195 1.5 R 0.5439 0.7178 

SC0806 F 139 2 R 0.3974 0.5937 

SC9620 M 188 2 L 0.5392 0.7027 

SC0028 F 172 2.5 R 0.4269 0.5680 

SC0028 F 172 2.5 L 0.4408 0.5869 

SC0325 M 183 2.5 L 0.3760 0.5044 

SC0743 M 191 2.5 R 0.4879 0.6422 

SC1233 M 173 2.5 R 0.5085 0.6839 

SC1235 M 168 2.5 R 0.5215 0.7507 

SC9334 M 194 2.5 R 0.5338 0.7416 

SC9334 M 194 2.5 L 0.5242 0.7613 

SC9708 M 176 2.5 R 0.4390 0.6193 

SC0906 F 169 2.75 R 0.3736 0.4354 

MML0503 M 186 3 R 0.5254 0.7039 

SC0049 M 195 3 R 0.4737 0.5826 

SC0228 M 184 3 R 0.4521 0.6401 

SC0503 M 194 3 L 0.4751 0.6433 

SC0701 F 193 3 R 0.6027 0.8361 

SC0910 M 183 3 R 0.4216 0.5290 

SC1046 M 190 3 R 0.5060 0.7151 

SC1110 F 197 3 L 0.5170 0.7540 

SC1128 F 159 3 R 0.3196 0.4042 

SC1203 F 175 3 L 0.5436 0.7185 

SC9936 M 200 3 R 0.4125 0.5188 

SC9518 M 198 3.25 R 0.4298 0.5950 

SC9518 M 198 3.25 L 0.4299 0.5662 

MML0325 M 201 3.5 R 0.5180 0.7242 

SC0452 M 194 3.5 R 0.6294 0.8835 

SC0728 F 198 3.75 R 0.4789 0.6827 

SC0002 F 138 4 R 0.2608 0.3436 

SC0002 F 138 4 L 0.2548 0.3372 

SC0005 M 190 4 R 0.3836 0.4796 

SC0322 M 175 4 R 0.3231 0.4238 

SC0749 F 209 4 R 0.5044 0.7377 

SC0812 M 180 4 R 0.3915 0.5183 

MML0016 M 224 4.5 R 0.6655 0.8616 
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Field #  

Sex 

(M/F) 

TL 

(cm) 

Age 

(yr) 

L/R 

Radius 

Radius BMD  

(g/cm2) 

GC ROI BMD  

(g/cm2) 

SC0036 M 207 4.5 R 0.5681 0.7335 

MML0527 F 236 5 R 0.5419 0.7393 

SC0545 M 210 5 R 0.5788 0.7720 

SC0637 M 194 5 R 0.5331 0.7040 

SC0808 F 200 5 R 0.5909 0.8149 

SC1001 M 195 5 R 0.4843 0.6687 

SC1003 M 194 5 R 0.4949 0.6449 

SC1050 M 200 5 R 0.5524 0.7615 

SC1106 M 202 5 R 0.5153 0.6755 

SC9758 M 215 5 R 0.6500 0.9101 

SC0834 F 207 5.5 R 0.5273 0.6588 

SC0755 M 184 6 R 0.4132 0.5185 

SC9804 M 195 6 R 0.5036 0.6741 

MML0222 F 273 7 R 0.6059 0.8156 

SC1156 M 221 7 R 0.5569 0.7329 

SC0752 M 212 8 L 0.6194 0.8379 

SC0816 M 227 8.5 R 0.6502 0.8149 

SC0203 M 206 9 R 0.6169 0.8996 

SC0842 F 209 9 R 0.5085 0.6311 

SC9739 M 224 9.5 R 0.5324 0.7053 

SC0608 M 204 10 R 0.6369 0.9004 

SC0757 F 225 10 R 0.6465 0.8352 

SC0952 M 221 10 R 0.7731 1.0020 

SC1122 M 216 10 R 0.4538 0.5614 

SC1236 M 223 10 R 0.6396 0.8751 

SC9610 M 205 10 L 0.5650 0.7358 

SC0603 M 232 11 L 0.7343 1.0590 

SC0904 F 221 11 R 0.5112 0.6790 

MML9414 M 199 12 R 0.5961 0.7976 

SC0166 M 232 12 L 0.6427 0.9506 

SC0630 M 236 12 R 0.7800 1.0060 

SC0938 F 233 12 R 0.6606 0.8715 

SC1228 F 222 12 R 0.5656 0.7641 

SC9846 M 221.4 12 L 0.6309 0.8062 

SC0821 M 256 12.5 R 0.7196 0.9736 

SC0932 F 227 13 L 0.6741 0.9439 

SC0946 M 216 13 R 0.6014 0.7283 

MML0413 F 250 14 R 0.6458 0.9119 

SC0638 M 217 14 R 0.5712 0.7879 
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Field #  

Sex 

(M/F) 

TL 

(cm) 

Age 

(yr) 

L/R 

Radius 

Radius BMD  

(g/cm2) 

GC ROI BMD  

(g/cm2) 

SC1019 F 244 14 R 0.7758 1.0230 

SC0712 M 226 15 L 0.6553 0.8175 

SC0845 M 221 15 R 0.6787 0.8507 

SC0155 F 253 17 R 0.8440 1.0660 

SC0501 M 254 17 R 0.6821 0.8646 

SC9437 M 252 17 L 0.8722 1.1190 

SC9919 M 257 17 R 0.7880 1.1350 

SC0617 M 267 18 R 0.8793 1.1700 

SC9509 M 264 18 R 0.8610 1.1370 

SC9730 M 225 18 R 0.8421 1.1340 

SC0424 M 257 19 R 0.7196 0.9917 

SC9421 M 255 19 R 0.7793 1.0380 

MML9628 M 271 20 R 0.8532 1.1930 

SC0505 M 252 20 R 0.7217 0.8849 

MML0614 M 262 21 R 0.8046 1.0540 

MML9014 M 295 21 R 0.9114 1.3350 

SC0222 M 261 21 L 0.6577 0.8306 

SC0747 F 234 21 R 0.5933 0.7794 

SC1175 F 249 21 R 0.6954 0.9406 

SC9835 M 248 21 R 0.8663 1.1500 

SC9508 M 277 21.5 R 0.9183 1.2450 

SC9508 M 277 21.5 L 0.8844 1.1390 

MML0216 M 268 22 R 0.8527 1.2820 

SC0642 M 254 22 L 0.7953 0.9439 

SC0840 M 276 22 L 0.8617 1.1120 

SC1207 F 250 22 R 0.5868 0.7686 

MML0619 M 255 23 R 0.7029 0.9380 

SC0745 M 261 23 L 0.8745 1.1150 

SC0817 M 261 23 R 0.7508 0.8073 

SC1253 F 247 23 R 0.7175 0.9232 

SC0140 M 260 24 R 0.9509 1.2120 

SC0140 M 260 24 L 0.9378 1.1060 

SC0217 M 258 24 R 0.8087 0.9948 

SC0623 M 247 24 R 0.8736 1.1240 

SC1164 M 254 24 L 0.8523 0.9589 

SC9442 M 264 24 R 0.9142 1.2380 

MML0332 M 253 25 R 0.9119 1.2770 

SC0731 F 249 25 R 0.7026 0.8498 

SC0058 M 279 26 R 0.9372 1.2270 
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Field #  

Sex 

(M/F) 

TL 

(cm) 

Age 

(yr) 

L/R 

Radius 

Radius BMD  

(g/cm2) 

GC ROI BMD  

(g/cm2) 

SC0058 M 279 26 L 0.9326 1.1420 

SC0704 F 246 26 R 0.7057 0.9287 

SC0902 F 252 26 R 0.6882 0.9175 

SC1006 M 240 26 R 0.6399 0.7755 

SC9628 M 262 26 R 0.8707 1.0810 

SC0826 M 249 27 L 0.7885 0.9702 

SC1205 M 245 27 R 0.6588 0.8962 

SC0727 F 233 28 R 0.6548 0.9512 

SC0813 F 264 28 L 0.7323 0.9228 

SC0703 F 247.5 29 L 0.6752 0.8644 

SC0708 F 237 29 R 0.6242 0.7774 

SC0740 M 250 29 R 0.8543 1.0970 

SC1170 F 233 29 R 0.6827 0.8568 

SC0534 M 261 30 R 0.8826 1.1670 

SC1037 M 263 30 R 0.8212 1.0390 

SC9524 M 258 30 R 0.9949 1.2430 

MML0223 M 130 31.5 R 0.3326 0.4505 

MML1205 M 259.5 32 R 0.7420 0.9682 

SC0448 M 275.5 32 R 0.9880 1.2770 

SC0538 M 272 32 L 1.0100 1.3850 

SC0825 M 274 32 R 0.8139 1.0120 

SC0947 M 265 33 R 0.8210 1.0440 

SC9413 M 272 33 R 0.9998 1.4060 

MML0229 F 265 34 R 0.8005 0.9906 

SC1028 F 243 34 R 0.7738 0.9943 

SC1206 F 259 34 R 0.6650 0.8527 

SC1240 F 244 34 R 0.6886 0.8119 

MML0236 M 278 35 R 0.7067 0.9536 

SC0455 M 260 35 L 0.7681 0.9504 

SC1256 U 246 35 R 0.6744 0.9832 

SC9737 M 263 35 L 0.9720 1.2100 

SC0922 F 246 37 L 0.7059 0.9694 

MML0111 M 277 38 R 0.8602 1.1160 

SC1232 F 229 40 R 0.6968 0.9544 

SC0517 M 253 41 R 0.8593 1.1530 

MML0606 M 263 44 R 0.8280 1.1660 

MML0504 F 235 45 R 0.7781 0.9212 

MML0910 F 246 50 R 0.6826 0.8701 
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Appendix B. Quantitative ultrasound (QUS) values from bone mineral density (BMD) 

repeatability assay conducted on dolphins managed under human care. 

 

Dolphin Scan #1 Scan #2 Scan #3 Scan #4 Mean CV2 

Hoku 2.893 2.706 3.293 3.235 3.032 0.006 

Hua 2.602 2.982 2.956 2.741 2.820 0.003 

Kolohe 3.730 3.595 3.348 3.184 3.464 0.004 

Liho 2.896 3.061 3.079 3.016 3.013 0.001 

Lono 3.148 3.159 3.374 3.296 3.244 0.001 

Merlin 1.236 1.402 1.382 1.372 1.348 0.002 

Nianoa 2.834 2.881 2.675 2.668 2.737 0.001 

Noelani 2.211 2.210 1.840 1.808 1.911 0.011 

Spree 2.251 2.566 2.239 2.369 2.356 0.003 

Tapeko 1.699 1.837 1.588 1.809 1.733 0.003 
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Appendix C. Bone density measurements of live, free-ranging bottlenose dolphins 

during capture-release health assessments from 2014-2019. 

Dolphin Age (yrs) Sex TL (cm) QUS NTD (μs) 

F245 2 F 204 2.383 

F255 2 F 192 2.2616 

F263 2 F 189 2.8581 

F267 2 F 178 2.5151 

F269 2 F 185 1.8527 

F289 2 F 196 2.512 

F259 3 F 216 2.8994 

F283 4 F 201 2.5758 

F275 6 F 224 2.8946 

F277 6 F 236 2.636 

F241 7 F 242 2.3477 

F209 11 F 236 3.0245 

F213 11 F 235 2.9829 

F199 13 F 236 1.6569 

F133 15 F 242 3.2322 

F223 15 F 251 2.7526 

F123 17 F 241 2.8826 

F151 17 F 232 3.2258 

F155 23 F 246 3.3826 

F271 23 F 243 3.352 

FB33 31 F 258 2.6647 

FB7 33 F 248 3.0435 

F286 3 M 194 2.573 

F294 3 M 202 2.4018 

F292 4 M 216 2.4273 

F296 4 M 228 3.599 

F306 4 M 208 2.6885 

F288 6 M 224 3.2213 

F264 11 M 239 2.8117 

F266 12 M 244 3.8263 

F246 14 M 253 2.7648 

F173 15 M 257 3.7555 

F196 16 M 269 3.6458 

F238 17 M 263 3.2885 

F146 19 M 277 4.3464 

F188 20 M 257 3.5775 

F178 21 M 272 3.0922 

F276 22 M 274 4.0717 

F242 24 M 281 3.5299 

F164 25 M 262 3.2037 
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