
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Fall 12-13-2019

An Application of Deep Learning Models to An Application of Deep Learning Models to

Automate Food Waste Classification Automate Food Waste Classification

Alejandro Zachary Espinoza
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Artificial Intelligence and Robotics Commons, and the Electrical and Computer Engineering

Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Espinoza, Alejandro Zachary, "An Application of Deep Learning Models to Automate Food Waste
Classification" (2019). Dissertations and Theses. Paper 5365.
https://doi.org/10.15760/etd.7238

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5365&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5365
https://doi.org/10.15760/etd.7238
mailto:pdxscholar@pdx.edu

An Application of Deep Learning Models to Automate

Food Waste Classification

by

Alejandro Zachary Espinoza

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in

Electrical and Computer Engineering

Thesis Committee:
James McNames, Chair

John Lipor
Eric Wan

Portland State University
2019

Abstract

Food wastage is a problem that affects all demographics and regions

of the world. Each year, approximately one-third of food produced for

human consumption is thrown away. In an effort to track and reduce food

waste in the commercial sector, some companies utilize third party de-

vices which collect data to analyze individual contributions to the global

problem. These devices track the type of food wasted (such as vegetables,

fruit, boneless chicken, pasta) along with the weight. Some devices also

allow the user to leave the food in a kitchen container while it is weighed,

so the container weight must also be accounted for. Through the use of

these devices, a company may better understand the amount and type

of food being wasted, along with the cost and an estimated CO2 impact.

Unfortunately, data collection is often a manual process which requires a

human to identify what is being thrown away at the time of the event.

Manual data entry is prone to user error, which in turn leads to less ac-

curate trending of waste and overall environmental impact.

In this thesis, convolutional neural networks (CNNs) are trained and

evaluated on a novel food waste dataset to assist in automating food

waste classification. To fully realize automation, both food waste and

container classifiers are required. A major contribution of this work is

to highlight the value of cleaning the test data, while also emphasizing

the importance of leaving it untouched until the very end to avoid intro-

ducing bias into our estimate of the out of sample error. Another major

i

contribution is to test the feasibility of learning on commercial food waste

datasets. Following the recent successes of others in machine learning,

best known practices are outlined and applied in dataset creation, net-

work design, and performance evaluation. Some examples of performance

metrics used include classification accuracy, micro-averaged precision and

recall, F -Score, Grad-CAM visualizations, and the confusion matrix. The

resulting models are high performing, but do have some limitations, such

as the inability to effectively classify instances with mixed foods and fully

distinguish container depth. Specifically, the food waste model achieved

top 1 accuracy of 90.7% and top 5 accuracy of 98.8%, excluding mixed

instances. The container model, which attempts to distinguish between

different depths, achieves top 1 accuracy of 70.2% and top 5 accuracy of

94.6%, while the model which ignores depth achieves 84.6% and 98.6%

accuracy, respectively.

In future work, more sophisticated networks can be trained to perform

other computer vision tasks, such as semantic and instance segmentation.

Through segmentation, images with mixed foods can be better classified.

There may also be opportunities to reduce model size and inference time

with deep compression. Other recommendations for improving the food

waste and container classification models are also provided.

ii

Acknowledgements

I would like to extend my deepest gratitude to the entire software engi-

neering team I’ve had the pleasure of joining. This work would not have been

possible without their contributions. In particular, I would like to thank my

supervisor, Brian Boshes, for all of his coaching and insight on this project. I

would also like to thank Bill Sarra for his advice, ideas, and feedback through-

out all stages of this work.

I am grateful for the advice of my entire thesis committee. My advisor and

committee chair, Dr. James McNames, has been very encouraging and support-

ive through this entire process. He has taught me a lot about what it takes to

write a thesis which can convey technical work yet also communicate a good

story, and also provided extensive feedback across all stages. The two remain-

ing members, Dr. John Lipor and Dr. Eric Wan, have also been very supportive

throughout this process. I would like to thank Dr. John Lipor for his coaching

in the past, willingness to listen, and advice on this project. It was his direction

that led me to study machine learning. I would also like to thank Dr. Eric Wan

for all of his invaluable feedback, which has helped shaped this thesis into its

present state.

Finally, I would like to thank all of my friends and family. Their support

has been invaluable in completing my work. They were also instrumental in

my practice for the defense of this thesis. My dog, Thor, was also very helpful

in sitting by my side while I wrote this thesis and practiced for its defense.

iii

CONTENTS

Contents

1 Introduction 1
1.1 The Global Food Waste Problem . 1

1.1.1 What Others Are Doing About It 3
1.1.2 How Image Classification Can Help 5
1.1.3 Barriers to Success . 8

1.2 Contributions . 10

2 Related Work 12
2.1 Other Feature Extraction Methods 12
2.2 CNN-Based Classifiers . 17
2.3 Tying It Together . 21

3 Model Design 23
3.1 Learning from Examples . 23
3.2 The Bias-Variance Decomposition . 26
3.3 Convolution . 30
3.4 Neural Networks . 34

3.4.1 Descending the Loss Landscape 38
3.4.2 Batch Normalization . 42

3.5 Convolutional Neural Networks . 42
3.5.1 Pooling . 45
3.5.2 Hyperparameters . 47
3.5.3 Depth-wise Separable Convolution, Mobile Inverted Bottlenecks,

and EfficientNet . 47
3.5.4 Image Classification . 54
3.5.5 Object Detection . 55
3.5.6 Semantic Segmentation . 55
3.5.7 Instance Segmentation . 55
3.5.8 Gradient-Weighted Class Activation Mapping 56

3.6 Transfer Learning . 57
3.7 Performance Metrics and Best Practice 58

4 Food Waste Datasets 63
4.1 Data Cleaning . 63
4.2 Model Architecture . 65

4.2.1 Preprocessing . 69
4.2.2 Hyperparameters, Optimizer, and Loss Function 71

iv

CONTENTS

5 Experimental Design 74
5.1 Design Constraints . 74

5.1.1 Ground Truth Accuracy . 74
5.1.2 Class Imbalance . 75

5.2 Experiments . 79

6 Results and Discussion 83
6.1 Waste Item Dataset . 83

6.1.1 Hyperparameter Grid Search 83
6.1.2 Train and Test Results . 84

6.2 Container/No Container Dataset . 91
6.3 Container Dataset . 94

6.3.1 Hyperparameter Grid Search 94
6.3.2 Train and Test Results . 95

6.4 Grouped Container Dataset . 101
6.5 Location X Dataset . 106

7 Summary and Conclusion 109
7.1 Limitations . 110
7.2 Future Work . 110

References 112

Appendix A The Advantages of Transfer Learning 117

Appendix B Performance of Various Architectures 119

Appendix C Instance Segmentation: POC 122

v

LIST OF FIGURES

List of Figures

1 Example Image Classification Process. Given an input image of dimen-
sions H × W × D. Let H represent the height (in pixels), W represent
the width (in pixels) and D represent the number of channels (eg: red,
green, blue). 6

2 Bag of Words Classification, used with permission from [1] 13
3 Bias and Variance Tradeoff Example 29
4 5× 5 Gaussian Kernel, σ = 1.5 . 33
5 Noisy Image (Left) and Detected Edges from Sobel Filter (Right) . . 33
6 Gaussian Filtered Image (Left) and Detected Edges from Sobel Filter

(Right) . 34
7 Example Feed-Forward Neural Network 36
8 Selected Activation Functions . 38
9 Typical CNN Architecture [2] . 44
10 Left: Original 2 × 2 layer. Middle: Downsampled with 2 × 2 Max

Pooling. Right: Downsampled with 2× 2 Average Pooling. 46
11 3D Convolution With (k × k × 3) Kernel. 49
12 Depth-wise Separable Convolution with Three (k×k) Kernels and One

(1× 1× 3) Kernel. 50
13 Mobile Inverted Bottleneck Blocks. HxWxF Refers to Input Tensor

Size in Terms of Height, Width, and Channels. 51
14 Randomly Selected Waste Item Samples 66
15 Randomly Selected Container Samples 67
16 Waste Item and Container Classification Process 68
17 Example Transforms . 73
18 Waste Item Dataset Class Sample Sizes 76
19 Left: % Eliminated from Test Set, with Reason. Right: Number of

Examples in Each Category. 77
20 Left: % Eliminated from Test Set, with Reason. Right: Number of

Examples in Each Category. 78
21 Waste Item Classifier Random Sample Predictions 85
22 Waste Item Model Performance. Loss, Accuracy versus Epoch 86
23 Waste Item Classifier Precision-Recall Curve 87
24 Waste Item Confusion Matrix . 88
25 Selected Grad-CAM Visualizations for Food Waste Model 90
26 Container/No Container Model Performance. Loss, Accuracy versus

Epoch . 92
27 Binary Container/No Container Model PR Curve and Confusion Matrix 93
28 Container Classifier Random Sample Predictions 96

vi

LIST OF FIGURES

29 Container Model Performance. Loss, Accuracy versus Epoch. 97
30 Container Classifier Precision-Recall Curve 98
31 Container Confusion Matrix . 99
32 Selected Grad-CAM Visualizations for Container Model 100
33 Grouped Container Model Performance. Loss, Accuracy versus Epoch. 102
34 Grouped Container Precision-Recall Curve 103
35 Grouped Container Confusion Matrix 104
36 Selected Grad-CAM Visualizations for Grouped Container Model . . 105
37 Location X Waste Item Model Performance. Loss, Accuracy versus

Epoch. 107
38 Location X Classifier Precision-Recall Curve 108
39 Location X Confusion Matrix . 108

vii

LIST OF TABLES

List of Tables

1 EfficientNetB0 Architecture . 52
2 Datasets and Partition Sizes . 65
3 Dataset Test Results . 83
4 Waste Item Grid Search Cross Validation Results 84
5 Container Cross Validation Results 94

viii

LIST OF ALGORITHMS

List of Algorithms

1 Compute Sensitivities for each layer l 41
2 Backpropagation . 42

ix

1 INTRODUCTION

1 Introduction

1.1 The Global Food Waste Problem

When was the last time you purchased food, only to throw it away? It might not be

something you often consider, but the food waste problem is one of global proportions.

Not only is it expensive to buy food to only have to throw it away later, but it is

also damaging to the environment. The average household is not just to blame —it

is also common to throw away food in the commercial sector, such as restaurants

and cafeterias. Each year, approximately one-third of food produced in the world

for human consumption is either lost or thrown away [3]. This amounts to roughly

2.9 trillion pounds of food waste annually, with losses worth approximately $990

billion USD. $680 billion is estimated to come from industrialized nations and $310

billion from developing nations. With respect to the environment, food waste has a

significant, unsustainable impact on land, climate change, water, and biodiversity [4].

Let us take a closer look at this.

1. Land

The impact of wasted food on land is two fold, and begins with intensive farm-

ing, which drains the soil of its fertility. When soil quality degrades, farmers

must introduce synthetic additives, which both cause pollution and eventually

lead to loss of arable land. In 2007, almost 1.7 billion hectares of land was used

to produce wasted food.

2. Climate Change

Fossil fuels are heavily used in production of food, from planting to harvesting

1

1 INTRODUCTION 1.1 The Global Food Waste Problem

and shipping. Due to this, each wasted food item has a cascading impact on con-

sumed resources and the resulting pollution. When food is thrown away, CO2

is emitted from decomposition. While an indirect comparison, if food decom-

position were a country, Global CO2 emission from it alone would rank third,

just behind the United States and China. The carbon footprint is estimated to

be 3.3 gigatons of CO2.

3. Water

Agriculture is responsible for 70% of global freshwater consumed annually.

When food is produced but not consumed, this also means that water used

to produce it is wasted. The types of food which require the most water to

produce are cereals, fruits, and meat. The water footprint is estimated to be

250 cubic kilometers of water.

4. Biodiversity

The main effects of food waste on biodiversity can be observed in both the

land and marine habitats. Land is often deforested in order to clear room

to grow crops. When this occurs, the local population of flora and fauna is

harmed in the process. 9.7 million hectares are deforested annually in order

to grow food, which represents 75% of total deforestation. In marine habitats,

excessive fishing disrupts the local food chain, which means less resources for

the surrounding fish, mammals, birds, and amphibians. Approximately 70% of

fish caught through trawling are wasted.

Clearly, wasting food is expensive and has serious environmental consequences. So,

who is responsible for food waste? According to ReFED [5], consumer-facing busi-

2

1 INTRODUCTION 1.1 The Global Food Waste Problem

nesses are responsible for 40% of wasted food, out of the 63 billion tons wasted in the

US every year. Consumer-facing business include: supermarkets/grocery stores/dis-

tribution centers, restaurants, institutional food services, limited service restaurants,

and government entities. Consumers are responsible for 43%, farms for 16%, and

manufacturers for 2%.

1.1.1 What Others Are Doing About It

In an effort to reduce food waste from consumer-facing businesses, some companies

have developed products to help businesses understand how much they are contribut-

ing to the problem on an individual level. In this thesis, these products are referred

to as food waste tracking systems. These systems aim to aid the end user in trend-

ing top food waste categories (such as vegetables, fruits, beef, etc...), the value of

the food waste, the reason why it is thrown out (this will also be referred to as a

loss reason), and other related metrics over time. From the business’ perspective,

the practice of tracking food waste provides an opportunity to establish a baseline to

better understand what kind of food is thrown out, how much of it is thrown out, and

the loss reasons over time. Some loss reasons could be that the food is overcooked,

sent back to the kitchen, expired, contaminated, and so on. This information is pre-

sented in the form of reports. By periodically reviewing these reports, management

can experiment with different actions to drive down both overall food costs and the

estimated environmental footprint with respect to the established baseline. Taking

action to reduce food waste can also be good for employee morale, as staff in the

kitchen are ultimately responsible for accurate recording of events. Only when events

are properly documented will management have an accurate idea of true waste costs

3

1 INTRODUCTION 1.1 The Global Food Waste Problem

and loss reasons. Another potential upside is on the public relations front. Tracking

food waste allows the business to show customers that they are striving to be envi-

ronmentally conscious and aware of their individual contribution to the global food

waste problem. This is especially important, now that many consumers are making

more eco-conscious decisions when deciding where to shop or patronize [6]. As previ-

ously mentioned, the effects of food waste are cascading, and reduction of unnecessary

consumption leads to numerous environmental benefits.

There are a few different companies which offer these devices on the market. Lean-

path, a large supplier of food waste tracking systems, has deployments in over 32

countries around the world. In the past five years, with the help of these trackers,

consumer-facing businesses in these countries have prevented over 40 million pounds

of food waste from going to landfill [7]. One such device is called the Leanpath 360.

This product consists of a desktop scale, equipped with an overhead mounted camera

and an android tablet for capturing and displaying relevant information associated

with the waste events. Each time food is thrown out, an operator must record the

type of food being thrown away, the loss reason, and the container it is in. An image

is then acquired of the waste event and the food is weighed. Based on this data, peri-

odic reports are generated to provide the business an idea of how much food is being

wasted, how much it costs, and the resulting CO2 footprint. These reports include

simple visualizations such as pie charts, displaying the top food waste categories, bar

charts with top loss reasons, and more.

In addition to Leanpath, other companies such as Grace Organic and Winnow offer

4

1 INTRODUCTION 1.1 The Global Food Waste Problem

similar food waste tracking systems. Grace Organic offers a varying range of products,

from a tabletop tracking system to a large composting system. The most comparable

offering is called the Food Waste Tracker, which is similar to the Leanpath 360, but

is not equipped with a camera to take images of the food. Winnow’s offering is called

the Winnow System. The Winnow System tracks food in a large waste bin resting

on a floor scale. This product differs from the Leanpath 360 in that it does not track

individual kitchen containers. As food is added to the bin, a new image is acquired,

and the system infers what is new versus what has already been away. More details on

what is known about this process is given in Section 2.2, but for now can be referred

to as a form of image classification. The device incrementally weighs newly added

food, so the waste can be thrown out successively. This system also offers trending

of what food has been thrown away, the loss reason, and resulting CO2 impact. The

end-user can view this information in the form of a report, and interpret it in a way

which allows reduction of food waste over time.

1.1.2 How Image Classification Can Help

Image classification typically follows a process as shown in Figure 1. First, an image

is selected from a dataset or process as the system input. Some pre-processing may

be performed, such as scaling, cropping, normalization, or augmentation. The pre-

processed image is then fed into a feature extractor, which teases out discriminating

features. Some methods of feature extraction include: Fisher vector, bag of visual

words, principal components analysis, autoencoders [8], random forests [9], and con-

volutional neural networks [10]. These extracted features are then fed into a trained

classifier —typically a supervised learning algorithm— such as (but not limited to)

5

1 INTRODUCTION 1.1 The Global Food Waste Problem

a support vector machine (SVM), artificial neural network (ANN), logistic regres-

sion, discriminant analysis, or decision tree. The classifier determines which class

the image belongs to. In the case of food classification, the class may be an integer

which maps to one of the food waste categories. Note that some more simple images,

which contain less unrelated information or background noise (such as those from the

MNIST [11] database), may skip the feature extraction step and still perform well.

Pre-Processing
Feature

Extraction

Classification
(SVM, ANN,

Decision Tree,
etc...)

External
EntityInput Image

(H x W x D)

Figure 1: Example Image Classification Process. Given an input image of dimensions
H ×W × D. Let H represent the height (in pixels), W represent the width (in pixels)
and D represent the number of channels (eg: red, green, blue).

When computers are able to understand the world through visual percepts, it is

referred to as computer vision. Specifically, when computer vision is applied in in-

dustrial, machine, or device applications, it is referred to as machine vision. One

example would be a device performing image classification on food as it is thrown

away. Convolutional neural networks (CNNs) have been revolutionary for computer

vision applications. They yield state-of-the-art results on challenging datasets, which

often consist of many diverse and nuanced classes. One reason for this is because they

combine the benefits of kernel convolution, which is able to perform varying types of

feature detection, over many deep layers [8]. There can be varying numbers of kernels

(filters) at each layer of the network. As the network is trained on a specific image

dataset, the filter weights are learned. The kernels learned in this process are often

6

1 INTRODUCTION 1.1 The Global Food Waste Problem

much smaller than the image, which means that they learn sparse representations of

features, such as edges, corners, lines, and even textures. The same kernel is applied

across the entire input feature map, which is in contrast to a fully connected neural

network, which has a single weight parameter for each input data point. This feature

of CNNs is referred to as parameter sharing. Due to parameter sharing, convolutional

layers require fewer parameters than fully connected neural networks, and thus con-

sume less memory. The extracted features can then be fed into a classifier at the

end. The classifier will typically be a feed-forward neural network, but could also

be another type of algorithm as mentioned previously. Often, the classifier is simply

the final layer of the CNN, so they are one network. For food image classification,

there are many publicly available datasets online, such as: Food-101 [9], Food-256

[12], Food-11, and Food-5k [13]. There are none for the specific case of food waste

classification. Previous work has applied other algorithms to some of these datasets

for classification [9] [14], but have ultimately been outperformed by architectures uti-

lizing CNNs. It is for these reasons that a good first choice for a custom food waste

image classifier would be a type of CNN.

As mentioned in Section 1.1.1, tracking and taking accountability for food waste is

already a great first step towards minimizing our problem. However, some current

technology (such as the Leanpath 360) requires the end user to manually enter the

type of food being thrown away and the type of container it is in. On average,

searching through a user interface to find the proper item category can take about

3 to 5 seconds, longer for users with a more diverse selection of dishes. As kitchens

tend to be fast-paced and demanding environments, every second counts, and this

7

1 INTRODUCTION 1.1 The Global Food Waste Problem

manual classification task detracts from other duties. In a situation where multiple

waste events need to be recorded at once, these small time slices can also accumulate

and become burdensome. Furthermore, manual data entry in itself is prone to user

error, which can lead to inaccurate accounting of actual waste costs. This is where

image classification can help. Consider a scenario in which the product to be thrown

out is placed on the device, a picture is taken, and shortly after the device recognizes

what type of waste item it is along with the type of container it is in. The weight is

measured and the additional container weight subtracted. Now, all that is left is for

the user to enter the remaining data such as the reason for why it is being thrown

out. Using state-of-the-art neural network architecture, not only can this be made

possible, but it can also surpass human-level accuracy, leading to improved cost and

environmental footprint tracking.

1.1.3 Barriers to Success

Lack of available data. Two of the main challenges in machine learning are finding

enough suitable data to train a classifier, and being able to discover a pattern in the

data which can be approximated by a model. In regards to food waste classification,

the datasets mentioned in Section 1.1.2 can be good for evaluating or benchmark-

ing candidate model architecture, but may not directly transfer well for the specific

task. One reason for this may be that food waste is often composed of more general

categories and different representations of food. For example, some waste categories

may be less granular, such as fruits or vegetables. Some of the images of fruits or

vegetables may be scraps, like the tops of carrots or the stems of grapes. The feature

detector must be trained to activate when presented with these patterns. In addition,

8

1 INTRODUCTION 1.1 The Global Food Waste Problem

the listed datasets are all subject to copyright limitations, which prohibit commercial

and business use, outside of academic research. As the work referenced in this thesis

is being incorporated in a device developed by a for-profit supplier of food waste

tracking devices, datasets with such restrictions cannot be used.

One solution to the above issue is to use data without these restrictions. In this work,

a dataset collected the same company will be used, which consists of thousands of

images of food waste events from various customer sites, dating from 2015 to 2018.

The goal of this company is to utilize the classifier described in this thesis for integra-

tion into its food waste tracking system. Previous attempts have been made to use

the data to train a computer vision model, but have not been successful due to poor

accuracy in metadata and lack of domain expertise. The poor accuracy in metadata

can be traced back to human error at the time of recording a waste event, and a

lack of clear direction for which category certain items should be assigned to. These

inconsistencies, also called class noise, can lead to data which is extremely difficult

to accurately train and score a high performing classifier on. By integrating a robust

image classifier into the food waste tracking system, the customer may benefit from

more accurate waste and cost accounting, in addition to reduced user interface time as

mentioned in Section 1.1.2. The company providing the food waste tracking system

also benefits by the addition of such features to its product, as well as staying on the

cutting edge of technology, since companies such as Winnow already have a type of

image classifier deployed.

Class noise. The provided dataset is also unbalanced and contains pictures which

9

1 INTRODUCTION 1.2 Contributions

have sometimes been taken by mistake, occluded by hands or food container lids,

or are very blurry. Unbalance in a dataset refers to having different proportions of

class sizes, rather than uniform class sizes. For example, in the food waste dataset,

there are many more examples of vegetables than fruit. The frequency of these

issues, including class noise, vary depending on the customer site selected. A detailed

estimate will be provided later on in this document. Imperfect examples are both

common and somewhat expected in real-world datasets. Typically, neural networks

are fairly robust to this type noise in data, and in fact, noise is often introduced

into networks as a way to mitigate over-fitting [15]. However, class noise does reduce

overall test accuracy. Techniques to address such issues will be discussed in the

experimental design.

1.2 Contributions

A primary contribution of this thesis is to show that, with proper application of best

known practices, a well-trained deep learning model can show promise in classifying

food waste items. Specifically, to satisfy the performance requirements of the com-

pany which is benefiting from the work described in this thesis. By introducing more

automation into the process of tracking waste events, our hope is that accuracy will

be increased at each customer site, leading to both better cost accounting and a re-

duction in food wasted. Another goal is to join the current successes in food image

classification, demonstrating that these models can be applied to more niche markets,

provided the proper training data.

A secondary contribution is to provide a reference for others who wish to perform

10

1 INTRODUCTION 1.2 Contributions

similar tasks, by providing a comprehensive guide outlining model architecture, along

with the tools and techniques required to develop such a classifier from training to

production. The individual techniques are all open source and available to the public.

A goal of this thesis is to simply knit these techniques together in a cohesive way,

which is easy to follow and apply with some programming knowledge and a custom

dataset.

11

2 RELATED WORK

2 Related Work

Much of the current work described in this chapter is related in terms of food image

classification, rather than the task of food waste classification. This is because food

image classification from the point of view of reducing food waste is a relatively unex-

plored application, with one exception which will be discussed. Often, the motivation

behind researching food image classification is to integrate into a system which aids

the end user in reducing caloric intake, promote a healthy diet, mitigate obesity, and

assist in other health-related ways. Many of the same principles and methods which

have been researched in food image classification, in general, are still very relevant

when applied to the subset focused on in this thesis.

2.1 Other Feature Extraction Methods

As previously stated, CNNs have provided state-of-the-art classification accuracy on

today’s large image datasets. Prior to the availability of these datasets, and before

network architecture was as sophisticated, image classification was often performed

using techniques such as Fisher vector (FV) [16] or bag-of-visual words (BoW) repre-

sentations [17]. Both of these are considered image patch encoding techniques, which

aim to capture local image information using descriptors as inputs. These descriptors

can be extracted from each image patch using a feature detection algorithm like scale

invariant feature transform (SIFT)[18] or histogram of oriented gradients (HoG)[19].

In the case of BoW representations, an offline “codebook” is learned by perform-

ing k-means clustering with representative descriptors from each class. A supervised

learning algorithm is then trained on a set of training images, by extracting descrip-

tors from each example and compiling histograms of the corresponding codebook

12

2 RELATED WORK 2.1 Other Feature Extraction Methods

Figure 2: Bag of Words Classification, used with permission from [1]

entries. These histograms are the inputs to the learning algorithm. Once trained,

the same process is repeated on a test set, and performance can be evaluated. For

reference, an example BoW classification system is depicted in Figure 2.

The Fisher vector encoding differs from BoW in that it builds a codebook by training

a Gaussian mixture model (GMM) on image descriptors. The parameters of the GMM

are learned using an expectation maximization (EM) algorithm to optimize maximum

likelihood criterion. While a complete introduction to the underlying theory and

implementation of the FV encoding can be found in the work by Sanchez, et al [16],

a brief overview is provided here. Essentially, a sample of T D-dimensional image

descriptors X = {xt, t = 1 . . . T} is extracted from an image. The Fisher vector is

13

2 RELATED WORK 2.1 Other Feature Extraction Methods

then defined as:

GX
λ =

T∑
t=1

Lλ∇λ log uλ(xt) (1)

under which, the operation

xt −→ φFK(xt) = Lλ∇λ log uλ(xt) (2)

represents an embedding for each descriptor in a higher-dimensional space, in which

linear classification can be more easily performed. Equation 1 represents the sum of

normalized gradient statistics Lλ∇λ log uλ(xt), for each element t. uλ represents the

learned GMM model with K components λ = {wk, µk, σk, k = 1, . . . , K}, trained on

a sample of descriptors. It is defined as:

uλ(x) =
K∑
k=1

wkuk(x) (3)

where uk represents the Gaussian k, Σk the corresponding covariance matrix, and

mean vector µk:

µk(x) =
1

(2π)(D/2) |Σk|1/2
exp

{
−1

2
(x− µk)

′
Σ−1k (x− µk)

}
(4)

with weight parameters, wk:

wk =
exp(αk)∑K
j=1 exp(αj)

(5)

∇λ can be calculated in terms of each of the 3 gradient components which correspond

to the GMM parameter λ. These are shown in Equations 6, 7, and 8. Equation 9 is

14

2 RELATED WORK 2.1 Other Feature Extraction Methods

the soft assignment of descriptor xt to Gaussian k.

∇αk
log µλ(xt) = γt(k)− wk (6)

∇µk log µλ(xt) = γt(k)

(
xt − µk
σ2
k

)
(7)

∇σk log µλ(xt) = γt(k)

(
(xt − µk)2

σ3
k

− 1

σk

)
(8)

γt(k) =
wkuk(xt)∑K
j=1wjujx(t)

(9)

Lλ represents the square root of the inverse of the Fisher information matrix (FIM).

Instead of directly computing this, the diagonal FIM is approximated by a coordinate-

wise normalization of the gradient vectors. The gradient vectors are then:

GX
αk

=
1
√
wk

T∑
t=1

(γt(k)− wk) (10)

GX
µk

=
1
√
wk

T∑
t=1

γt(k)

(
xt − µk
σk

)
(11)

GX
σk

=
1
√
wk

T∑
t=1

γt(k)
1√
2

[
(xt − µk)2

σk
− 1

]
(12)

The corresponding Fisher vector is finally obtained by concatenating each gradient

vector and normalized to remove dependence on sample size:

GX
λ =

1

T

(
GX
α1
, . . . ,GX

αk
,GX′

µ1
, . . . ,GX′

µk
,GX′

σ1
, . . . ,GX′

σk

)′
∈ R(2D+1)K (13)

Which is then power normalized and l2 normalized :

15

2 RELATED WORK 2.1 Other Feature Extraction Methods

[GX
λ]i ←−

sign
(
[GX
λ]i
)√

[GX
λ]i

for i = 1, . . . , K(2D + 1) (14)

GX
λ =

GX
λ√

GX′
λ GX

λ

(15)

The l2 normalization is meant to account for the fact that different images contain

different amounts of background information and works to discard this information.

One justification for the power normalization is to account for the fact that the FV

becomes sparser as the number of GMM components increase, which has a negative

effect on the dot product. Introducing the power normalization helps to make the

FV less sparse. The resulting Fisher vector can then be fed into a supervised learn-

ing algorithm, like an SVM, for classification. Further details on the algorithm and

implementation can be found in the aforementioned work by Sanchez, et al.

Advancements in food image classification have mostly been motivated by the desire

to improve human health through more automated food logging and calorie count-

ing. One such model, FoodCam-256 [14], is a food image classification app designed

to run on mobile android architecture. It was developed with the goal of allowing

a user to take a picture of a dish they are about to consume and understand how

many calories it contains. FoodCam-256 utilizes Fisher vector encoded features to

classify food images. The classifier is trained on the UEC-Food256 dataset, which

contains 256 different classes and was also built by the authors for this work. Inputs

to the system are modified HoG descriptors, extracted from each training image. The

encoded FVs are then fed into one-versus-all linear classifiers, which are trained on

the AROW algorithm. This approach yielded 50.1% top-1 accuracy and 74.4% top-5

16

2 RELATED WORK 2.2 CNN-Based Classifiers

accuracy.

In later work by Bossard, et al. [9], a new method for mining discriminative com-

ponents was introduced, along with a new benchmark multiclass food dataset. The

new method, called random forests discriminant components (RFDC), utilizes the

random forests algorithm to identify distinguishing regions (referred to as component

mining) in a given image. These mined components can then be fed into a supervised

learning algorithm for classification. The component mining technique is presented

as an alternative to other descriptor-based methods, such as Fisher vector or BoW.

Bossard, et al. benchmark this method against some of the previously mentioned

algorithms on the Food-101 dataset, along with a CNN based on the Alexnet archi-

tecture. The Food-101 dataset, released in this work, was a novel contribution as it

was the first food image dataset considered large enough to train deep learning mod-

els. It is still widely used today to benchmark new algorithms. Food-101 contains

101 different classes of food images, with 750 training and 250 test images for each

class. When building this dataset, the authors purposefully left the training images as

collected, but manually some cleansing on the test images. While it was shown that

RFDC mining provide a good alternative to descriptor based methods, it was still

outperformed by the CNN approach by almost 6% in terms of classification accuracy.

2.2 CNN-Based Classifiers

With the release of the Food-101 dataset, others have begun to apply CNNs to the

food recognition problem. Similar to Bossard, et al., Yanai and Kawano [20] ap-

plied two AlexNet-based models to both Food-101 and the UEC food datasets. They

17

2 RELATED WORK 2.2 CNN-Based Classifiers

utilized transfer learning —both were pretrained on Imagenet, but fine tuned on

each respective food dataset. These models outperformed previous results using both

Fisher vector encoding and CNNs. This work was followed by Fairnella, et al. [21],

who not only introduced another dataset, UNICT-FD1200, but another approach to

classification called the bag of textons. The bag of textons approach is more focused

towards performing classification on smaller datasets, an area where applying CNNs

has traditionally not performed as well. Accordingly, the newly introduced UNICT-

FD1200 is presented as a smaller dataset, consisting of 8 classes with a total of 4,754

images. Fairnella, et al.’s results showed that the bag of textons approach outper-

formed a fine-tuned GoogLeNet (CNN)-based model on this dataset by nearly 30%.

Since then, however, it has been shown that techniques such as data augmentation

can significantly boost generalization of a CNN in image classification [22]. It is un-

clear if this was attempted in Fairnella, et al.’s work. The algorithm was also not

benchmarked against a larger dataset such as Food-101.

Building upon the successes of [23], [12], and [9], Singla, et al. [13] released two new

datasets for food image classification: Food-11 and Food-5k. Both were built by com-

bining images from Food-101, UEC-Food100, and UEC-Food256, but have different

purposes. Food-11 is intended for use in multinomial classification over 11 different

classes, whereas Food-5k was designed for only identifying the binary case of food/not

food. Two classifiers, each utilizing the GoogLeNet architecture, were trained on the

respective datasets. The authors were able to exceed 99% classification accuracy on

food/not food, and 83.5% on the multiclass problem.

18

2 RELATED WORK 2.2 CNN-Based Classifiers

As CNN architecture has continued to improve, so has performance over the available

datasets. One network design, called WISeR, [24], proposed utilizing slice convolu-

tions in order to take advantage of the vertical layers in certain food dishes. A

slice convolution is similar to a square convolution, but instead shares the width of

the input image. It is noted that typical squared convolutions may capture features

unique to vertical structure over many deep layers, but a slice convolutional layer

may allow these to be detected in a single layer. WISeR incorporates these slice

convolutions in parallel with a wide variant of ResNet and concatenates the detected

features from both branches at the end. The concatenated features are then fed into

fully connected layers for classification. This architecture was benchmarked against

the UEC-Food100, UECFood256, and Food-101 datasets, and outperformed the prior

state-of-the-art.

One commonly held belief has been that better accuracy can be achieved by sim-

ply scaling a convolutional neural network, but in general this practice has not been

well understood. This is investigated in very recent work by Tan and Le [25]. Im-

proved performance was achieved on existing network architectures by optimizing

depth (number of layers), width (number of channels), and input image resolution.

This is achieved by uniformly scaling each of these dimensions by a compound coef-

ficient. In addition to optimizing existing architectures, state-of-the-art performance

has been achieved on many benchmark datasets by utilizing neural architecture search

to create a new family of neural networks called EfficientNet. The EfficientNet fam-

ily of models utilizes several stages called mobile inverted bottlenecks as the building

blocks. The depth, width, and input resolution vary depending on the variant of Ef-

19

2 RELATED WORK 2.2 CNN-Based Classifiers

ficientNet selected, which begin with the base model (EfficientNet-B0), and end with

the largest model (EfficientNet-B7). When pretrained on ImageNet and fine-tuned

on Food-101, EfficientNet-B7 yields state-of-the-art top-1 accuracy of 93%, which is

equal to the performance of Google’s Gpipe model, with 8.7 times fewer model pa-

rameters. This is an important development—as the memory requirements for model

inference become higher as model parameters increase, which means that better per-

formance can be achieved with more modest hardware.

Another recent approach by McAllister, et al. utilizes CNNs pretrained on ImageNet

as deep feature extractors [26]. These networks are only used to extract features from

benchmark food image datasets, instead of the more common approach which either

fine-tunes the network on a new dataset or trains from scratch. The extracted fea-

tures from each input image are compiled into a separate “deep feature dataset” with

the same ground truth labels. These newly extracted features are then used to train

supervised learning algorithms. The pretrained networks used are GoogLeNet and

ResNet-152, and the benchmark datasets used are Food-5K, UNICT-FD889-Caltech,

Food-11, RawFooT-DB, and Food-101. Food-5K and the UNICT-FD889-Caltech

datasets are used for only food/not food classification, and the others used to per-

form multinomial classification. Performance is compared between the popular naive

Bayes, SVM (RBF and polynomial kernels), ANN, and random forest algorithms.

The authors found that classification with features extracted from ResNet-152 archi-

tecture consistently outperformed those extracted from a GoogLeNet model, in terms

of classification accuracy. The classification accuracy was the highest when utilizing

an ANN compared to the other listed algorithms. It is also noted that CNN features

20

2 RELATED WORK 2.3 Tying It Together

consistently yield better classification accuracy than prior, traditional feature extrac-

tion methods.

It is also relevant to mention that the Winnow system (see: Section 1.1.1) currently

employs a form of machine vision, but only the most basic details are available to

the public. It is known that the local model is a type of neural network, running on

an NVIDIA Jetson TX2 embedded system [27]. Newly acquired images are classified

by this model and asynchronously uploaded to Amazon Web Services to train a new

version. The training utilizes NVIDIA V100 GPUs. This implementation claims to

identify the top-5 matches for a waste event upon placing food in the bin, but the

accuracy and precision are not advertised. The source suggests model may also require

between 200-1000 examples before it is able to recognize a new class. The guidelines

for what is considered recognition are not given in terms of accuracy, precision, or

any other metric.

2.3 Tying It Together

When treating the food waste image recognition problem as an image classification

problem, the best practice for training a model on a new dataset would be to follow

the recent successes of others. One such example of the introduction of a new and

novel dataset is found in the Food-101 dataset [9]. A normal practice when creating

datasets for learning algorithms is to split the collected observations into separate

training and testing sets. In Food-101, the training data is actually left somewhat

noisy, but the test data is cleaned. As previously mentioned, noisy training data

can be beneficial to the learning process as it provides some regularization. The test

21

2 RELATED WORK 2.3 Tying It Together

data, however, should be free of mislabeled examples in order to accurately gauge the

performance of the model. In this work, the same practices for creating a dataset are

followed.

It is clear that the research behind Food-101 and CNN optimization helped lay the

groundwork for a potential solution to automated food waste classification. While

the Food-101 dataset itself would be a good stepping stone for food waste classi-

fication, for previously mentioned reasons it cannot be used to train a food waste

classifier or augment the dataset in this thesis. However, the performance of current

state-of-the-art models on this dataset can provide a reasonable indication of what

performance may look like on the datasets with similar features and difficulty, such as

our custom dataset. By this metric, the argument could be made that the Efficient-

Net family of models provide a good starting point for this application. In particular,

The EfficientNet-B0 architecture provides reasonable performance with a very small

footprint, which is good for mobile platforms. The performance of other models will

also be explored. This will be investigated further in the following sections.

22

3 MODEL DESIGN

3 Model Design

In this chapter, some central concepts will be presented to aid the reader in better

understanding the design choices and model architectures presented in this thesis.

Much of this content has been adapted from Learning From Data [28], An Introduc-

tion to Statistical Learning [29], Deep Learning [8], and other cited sources. After

reviewing these concepts, the model architecture and datasets will be introduced.

3.1 Learning from Examples

Before applying a learning algorithm to a problem, it is important to understand the

conditions under which they are most successful. Machine learning is best applied on

a problem for which [28]:

• Data has been collected,

• a pattern exists in the data,

• and the pattern cannot be explicitly defined by a deterministic relationship.

When these requirements are satisfied, a learning algorithm has a better chance of

success. Our goal in this case is to approximate some unknown mapping f : X −→ Y ,

where f represents the true (or target) function, X represents the collected obser-

vations, and Y represents the target(s). Observations can come in many different

formats, ranging from real-valued time series, digitized images, to bio-metric data

and more. Similarly, examples of targets include: sequences, binary classes (cat/not

cat), categorical (what kind of cat is this?), and real values (like stock prices). When

the algorithm predicts some kind of label from a finite set of categories, the task is

23

3 MODEL DESIGN 3.1 Learning from Examples

called classification. When the algorithm predicts some real valued target, the task

is called regression.

In general, there are four types of learning algorithms: supervised learning, unsu-

pervised learning, semi-supervised learning, and reinforcement learning. In a super-

vised learning problem, a set of labeled examples is used to train an algorithm. The

dataset is partitioned into training and test sets, the usual rule of thumb is to set aside

30 − 10% of which for testing. The goal is to minimize an objective function, which

in this case is referred to as a loss function or error function, which is a method used

to measure error in prediction. A commonly used loss function is the Mean Squared

Error, or L2 Loss, can be defined for inputs X ∈ RN×D, labels y ∈ RN , and model

weights w ∈ RD as:

L(w) =
1

N

N∑
i=1

(
f̂(xi)− yi

)2
(16)

The loss function evaluated on the training data yields the in-sample error, Ein. Typ-

ically, we want to minimize this. In order to obtain an estimate of how a model will

perform on unseen data, the loss function will need to be evaluated on the test set

to obtain Eout. It is important to get a good estimate of Eout, as this is the best

indication of how the model will generalize, a term which refers to its accuracy on

unseen data drawn from the same distribution. The in-sample error is inherently

unreliable, as the model may learn patterns in the data which lead to memorizing the

labels, but are unrelated to the true pattern. A larger test partition leads to a better

estimate for for Eout, but less data to learn on. Similarly, a larger training partition

will lead to better learning, but a less accurate estimation of Eout. It is important to

24

3 MODEL DESIGN 3.1 Learning from Examples

strike a balance between the two. Note that any changes to the model after assessing

Eout will introduce bias into the estimate.

An unsupervised learning algorithm does not utilize labels to approximate f . Instead,

it seeks to exploit patterns solely in the input data. Clustering algorithms and dimen-

sionality reduction techniques are some of the more popular unsupervised learning

methods. A clustering algorithm has a similar goal to a supervised learning problem,

and simply assigns an input to a group learned by analyzing input features. Dimen-

sionality reduction includes techniques such as principal components analysis (PCA).

The goal of dimensionality reduction is to represent data from a higher dimension in

a lower dimension, with minimal loss of information content.

Semi-supervised learning utilizes both labeled and unlabeled data in learning tasks

[30]. One example of this could be applying a model already trained using supervised

learning methods to predict labels for unseen data. The previously unseen data and

predicted labels, along with the past training data, can then be fed back into the model

as a new training set. The idea is that a model trained using semi-supervised methods

may be able to attain high accuracy with only a small amount of human-labeled data.

A goal of some learning algorithms is to optimize the behavior of an artificially in-

telligent agent in a given task environment. An agent can refer to any entity which

perceives its environment through sensors and is able to take action upon it through

some type of actuator. Reinforcement learning algorithms aim to help the agent

discover the best set of actions, given a state, by rewarding actions deemed as posi-

25

3 MODEL DESIGN 3.2 The Bias-Variance Decomposition

tive and reprimanding actions deemed as negative. Through simulated episodes with

many iterations, the goal is to eventually learn a policy which defines how the agent

may map a sequence of states to actions which lead to the best rewards.

3.2 The Bias-Variance Decomposition

The scope of this thesis is mainly concerned with supervised learning, in which we

wish to minimize an error measure like Equation 16. The out of sample error, Eout,

is one of the ways we can quantify a model’s performance. Eout can be examined in

terms of bias and variance. This helps us see the relationship between model flexibility

and performance in generalization [28]. Recall that the variance of a random variable

X is defined as:

Var[X] = E[(X − E[X])2]

= E[X2]− E[X]2
(17)

and the bias of a model f̂(x) is defined as:

Bias[f̂(x)] = E[f̂(x)]− f(x) (18)

A model has high bias if it does not fit the data well. On the other extreme, a model

can have high variance when it fits the training data too much and does not generalize

well.

Now, let y = sin(x) be a target function we are trying to approximate, with y, x ∈ R

26

3 MODEL DESIGN 3.2 The Bias-Variance Decomposition

[28]. We can sample from y as many times as desired, but only have a small amount

of data points d at any given time. Let a single model fit to a set of randomly sampled

data points, x ∈ Rd, be represented as gD(x). The D simply denotes that a model is

fit to a specific dataset. Assuming we have access to all possible datasets, the average

hypothesis will be denoted as:

ḡ(x) =
1

K

K∑
i=1

(gDi(x))

= ED[gD(x)]

(19)

for K datasets, Di, of d samples. ḡ(x) can also be viewed as the best possible

hypothesis which can be arrived at. With this defined, the variance of a prediction

can be represented by:

Var[x] = ED[(gD(x)− ḡ(x))2]

= ED[gD(x)2]− ḡ(x)2
(20)

Which is simply the expected value of how far a prediction varies from the average

hypothesis. Eout can be defined based on ED
out:

ED
out(x) = (gD(x)− f(x))2 (21)

Eout(x) = ED[ED
out(x)] (22)

27

3 MODEL DESIGN 3.2 The Bias-Variance Decomposition

In this context, we can decompose Eout as follows:

Eout(x) = ED[(gD(x)− f(x))2]

= ED[gD(x)2 − 2gD(x)f(x) + f(x)2]

= ED[gD(x)2]− 2ḡ(x)f(x) + f(x)2

= ED[gD(x)2]− ḡ(x)2 + ḡ(x)2 − 2ḡ(x)f(x) + f(x)2

= ED[gD(x)2]− ḡ(x)2 + (ḡ(x)− f(x))2

= Var[x] + Bias[x]

(23)

Which means that the expected out of sample error can be broken down into the

bias and variance of the hypothesis with respect to the data points x. The Var[x]

can tell us how far away a specific hypothesis is from the best possible hypothesis

g(x) is capable of producing, ḡ(x). The Bias[x] tells us how far off ḡ(x) is from the

true function. This decomposition is important because it facilitates troubleshooting

model performance. If using this information to change any aspects of the model, it

is important that a separate validation set is used (and not a test set). The moment

that test data is used to assess performance and make model changes, the estimate

becomes biased. The decomposition is informative in the following ways. If a model

has high bias, it may not be complex enough to fit the data. If the model has high

variance, it may be too complex. The basic idea is that the more complex a model

is, the lower the bias, but the higher the variance. More complex models have more

degrees of freedom and are increasingly likely to learn patterns in the data unrelated

to the true function, in which case Ein may be low but Eout will be high. This is called

overfitting. Similarly, the simpler a model is, the higher the bias, but the lower the

28

3 MODEL DESIGN 3.2 The Bias-Variance Decomposition

variance. High bias models are less likely to overfit, but also less likely to generalize

well. A simple example helps explain this.

Let’s try approximating y = sin(x) with two different models, sampling d = 5 data

points at any given time. Our first model will be chosen from H0(x) = b, the set

of all possible hypothesis for b ∈ R and x ∈ Rd. Our second model will be chosen

from the set of hypotheses H1(x) = ax + b, with a, b ∈ R and x ∈ Rd. The optimal

solution for H0 would simply be the average of d points. H1 can be solved as a least

squares problem. In both cases, the best hypothesis can be computed by sampling

over many iterations. The graphs in Figure 3 show the solutions to this problem.

The best hypotheses, H∗0 and H∗1 , are drawn in red, with the lighter shading around

each line representing the variance of each hypothesis set. Eout for each solution is

also shown.

1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Eout = Bias + Var
Bias = 0.50
Var = 0.10

H0(x) = b

y = sin(x)
Eout

H *
0

H0 ± 2
H0

1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Eout = Bias + Var
Bias = 0.20
Var = 0.21

H1(x) = ax + b

y = sin(x)
Eout

H *
1

H1 ± 2
H1

Figure 3: Bias and Variance Tradeoff Example

It is clear that the simpler hypothesis, H∗0 , has a lower variance, but much higher

bias. H∗1 has a much lower bias but higher variance. For this problem, H∗1 is the clear

winner with Eout = 0.41.

29

3 MODEL DESIGN 3.3 Convolution

When evaluating model performance, it is important to consider Eout relative to

Ein. An obvious sign of overfitting is when Ein � Eout. As previously stated, this

points to a model memorizing patterns which allow it to predict the target without

actually learning the target function. There are various techniques which can be

employed to fight overfitting, the implementation of which is called regularization.

Regularization reduces the overall variance, but increases the bias of the model. A

common regularization method is to introduce an additional penalty for complexity

into the loss function, such as the L1 or L2 norm of the weight matrix. Adding L1

regularization to the MSE Loss from Equation 16:

J(w) =
1

N

N∑
i=1

(
f̂(xi)− yi

)2
+
λ

N

D∑
i=1

‖wi‖ (24)

for each weight wi in f̂(x). Similarly, adding L2 regularization to Equation 16:

J(w) =
1

N

N∑
i=1

(
f̂(xi)− yi

)2
+

λ

2N

D∑
i=1

‖wi‖22 (25)

Specific techniques with respect to neural networks will be discussed in more detail

in the following subsections.

3.3 Convolution

One of the most frequently used operations in computer vision and image processing

is the convolution operator. A convolution is simply the weighted sum between two

functions f and g [31]. For the discrete case, a one-dimensional convolution can be

defined as:

30

3 MODEL DESIGN 3.3 Convolution

h(x) = (f ∗ g)(x) =
+∞∑

u=−∞

f(u)g(x− u) (26)

and a two-dimensional convolution:

h(x, y) = (f ∗ g)(x, y) =
+∞∑

u=−∞

+∞∑
v=−∞

f(u, v)g(x− u, y − v) (27)

When linear filtering is performed on an image, it is accomplished by convolving

the filter with the image. For example, in certain image processing applications, it

may be useful to reduce the information content of an image by only extracting the

edges. This is also called edge detection, and can be accomplished through a variety of

means, but for this example we will use the Sobel filter [32]. The Sobel filter consists

of separate vertical and horizontal kernels, Kx and Ky:

Kx =


−1 −2 −1

0 0 0

1 2 1

 Ky =


−1 0 1

−2 0 2

−1 0 1

 (28)

Notice that Kx = K
′
y. Each kernel is used to approximate the gradient in the respec-

tive x or y direction. The magnitude of the gradient determines an edge. Edges are

detected with the Sobel filter by first convolving the image, I, with each kernel and

then evaluating the Euclidean norm:

G =

√
(Kx ∗ I)2 + (Ky ∗ I)2 (29)

Although, a common approximation is to simply sum the absolute values of each

31

3 MODEL DESIGN 3.3 Convolution

gradient approximation:

G = |Kx ∗ I|+ |Ky ∗ I| (30)

Typically, this is done in gray-scale, but can be extended to RGB by performing the

same process on each channel independently.

Consider an image, I, corrupted with random noise. We wish to detect the edges in

this image. A usual first step is to apply a basic smoothing operation, such as the

Gaussian blur, to help with de-noising and better distinguish the edges. The Gaussian

blur is a low-pass filter which averages image pixels by its neighbors, with the closest

pixels weighted the highest, gradually decreasing with distance. The filter kernel is

defined by the standard 2-dimensional Gaussian:

Nσ(x, y) =
1

2πσ2
e−(x

2+y2)/2σ2

(31)

Choosing σ = 1.5 yields a 5× 5 kernel as shown in Figure 4.

32

3 MODEL DESIGN 3.3 Convolution

0.004 0.012 0.018 0.012 0.004

0.012 0.035 0.05 0.035 0.012

0.018 0.05 0.071 0.05 0.018

0.012 0.035 0.05 0.035 0.012

0.004 0.012 0.018 0.012 0.004

Figure 4: 5× 5 Gaussian Kernel, σ = 1.5

Applying the sobel filter to this image without smoothing results in the noisy outline

shown in Figure 5. Certain boundaries are difficult to distinguish, such as the outline

of the hand. The noise is very visible throughout the background and other objects

in the image.

Figure 5: Noisy Image (Left) and Detected Edges from Sobel Filter (Right)

Now, by convolving the image in Figure 5 with the Gaussian kernel Nσ=1.5, we obtain

the image in 6.it is worth noting that the combination of the Gaussian blur with the

Sobel filter (high pass filter) is essentially bandpass filtering. The noise is mostly

33

3 MODEL DESIGN 3.4 Neural Networks

smoothed out, and the edge boundaries are bolder and more pronounced. The hand,

in particular, is much more easily distinguished. Applying convolution to an image

inherently decreases the output size. Notice that, in both of these examples, the

output image is the same size as the input image. This is because zero padding is

introduced as a pre-processing step, which essentially enlarges the border of the orig-

inal image with zeros to preserve the same output dimension.

Figure 6: Gaussian Filtered Image (Left) and Detected Edges from Sobel Filter
(Right)

3.4 Neural Networks

In neuroscience, the human brain is recognized as the seat of consciousness and center

for processing information. The brain is what allows us to think and feel while navi-

gating complex situations. We understand it as a collection of nerve cells which are

called neurons [31]. Signals are transmitted from one neuron to another through long

fibres called axons, and received via smaller fibers surrounding the cell body called

dendrites. At each junction, a synapse relays the signal from an axon to a dendrite.

When a neuron “fires”, it transmits information to another neuron. Given certain

stimuli, this can cause a chain reaction between different sets of neurons, some of

34

3 MODEL DESIGN 3.4 Neural Networks

which “fire together” given a certain input.

A subset of machine learning algorithms, neural networks, attempts to loosely mimic

this model of the brain. A neural network is a type of biologically inspired supervised

learning algorithm composed of many different chained functions [8]. It can be best

described by a computational graph, consisting of vertices (called neurons) which

are interconnected with edges. Each edge has a corresponding weight, which is a

parameter learned through an iterative training process. The simplest type of neural

network is called a feed-forward neural network, which consists of an input layer, any

amount of hidden layers, and an output layer. Each layer is composed of some amount

of neurons and a bias, except the output layer which does not have a bias. A layer

can be thought of as a function, g(x), where x represents the input signal. A visual

example of a neural net with one hidden layer is shown in Figure 7.

35

3 MODEL DESIGN 3.4 Neural Networks

1

x1

x2

x3

1

h1

x4

h2

y

Hidden Layer
l = 1

Input Layer
l = 0

Output Layer
l = 2

Figure 7: Example Feed-Forward Neural Network

Activation functions determine a neuron’s response to an input. Activation functions

can be linear (such as the identity function θ(x) = x), but in practice tend to be more

complex so that non-linearities can be introduced into a system. By utilizing non-

linear activation functions, a network can learn more flexible approximations to the

true function f(x). Some popular activation functions include: Unit step, Sigmoid,

Hyperbolic Tangent (tanh), Rectified Linear Units (ReLU), ReLU6, and Swish. See

Figure 8 for examples of each along with some mathematical definitions. The model

builder may find it advantageous to choose less computationally expensive activation

functions, such as ReLU or ReLU6, when processing large sets of data. In this thesis,

activation functions will be denoted by θ(·).

36

3 MODEL DESIGN 3.4 Neural Networks

A prediction is made when input data is propagated forward through a neural network.

Consider a sequence x = {x0, x1, x2, x3} ∈ R4 as an input to the graph as depicted in

Figure 7. For the case of regression, each data point could be a stock price ranging

from day n = 0 to day n−3. The output of the network, y, would represent the price

at day n + 1. The activation function can be θ = tanh() for this example. In order

to compute y, the forward propagation would be:

y = g(x) = w(2)T (θ(w(1)Tx)) (32)

with weights and bias at each layer l represented as w(l).

A hyperparameter is any kind of parameter explicitly set by the model builder. For

example, the number of neurons in a layer is a hyperparameter. Others include: the

learning rate (how much the model is updated based on training from a single exam-

ple), weight decay (regularization penalty), and mini batch size (how many examples

the model is processing in one forward computation). Hyperparameters often need

to be tuned, and changing one may affect another. It is not uncommon to evaluate

model performance by varying different hyperparameters using grid search or random

search. A parameter is a value which is learned through model training. Network

weights are an example of a parameter.

37

3 MODEL DESIGN 3.4 Neural Networks

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0
Step(x) = u(x)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0
Sigmoid(x) = 1

1 + e x

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

1.0

0.5

0.0

0.5

1.0
tanh(x) = e2x 1

e2x + 1

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

2

1

0

1

2
Swish(x) = x

1 + e x

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

10

5

0

5

10
ReLU(x) = max(0, x)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

10

5

0

5

10
ReLU6(x) = min(max(0, x),6)

Figure 8: Selected Activation Functions

3.4.1 Descending the Loss Landscape

At the core of training a neural network is minimization of the loss function. The

most common way to do this is through the algorithm known as gradient descent.

Gradient descent aims to find the minima of the loss function by taking steps in the

decreasing direction of the function’s gradient ∇J , evaluated at some data point [28].

38

3 MODEL DESIGN 3.4 Neural Networks

The size of the step taken is determined by the learning rate, η. The algorithm is

nicely summarized by Equation 33. At initialization (t = 0), the weights for all layers

W = {w(1), . . . ,w(L)} are set randomly. At each iteration, the weights are updated

based on η and ∇J .

Wt+1 = Wt − η∇J(Wt) (33)

A typical implementation of this is stochastic gradient descent, which performs weight

updates based on a single data point x at a time. When multiple examples are used

at once (a mini-batch), it is then called mini-batch gradient descent. Finally, when

the weight update is only performed after all of the training examples are evaluated,

it is called batch gradient descent.

The learning rate is one of the most important hyperparameters to choose when train-

ing a network. If we think about learning rate in terms of how big of a step is taken

when traversing a landscape characterized by the loss function, taking too big of a

step can result in missing a minimum. Conversely, if the learning rate is too low,

then it could take an unreasonable amount of iterations to reach a minimum, if at all.

A common practice is to utilize cross validation to choose the most suitable learning

rate for a specific dataset. It is also common to reduce the learning rate over time.

This is called annealing, or learning rate scheduling.

To avoid some of the difficulties which are presented by choosing the best learning

rate and schedule, some use optimizers with adaptive learning rates. There are many

39

3 MODEL DESIGN 3.4 Neural Networks

variants of these, but some popular ones include Adam and Adagrad. These methods

can provide competitive results when compared to SGD, but results vary based on

the dataset.

In order to compute the error gradients, a commonly used method in neural networks

is Backpropagation [28]. It works by first randomly initializing the network weights

and computing a forward propagation through the network. Then, starting with the

output layer L, the gradient in error with respect to the input signal is evaluated at

each layer. This is called the sensitivity. The sensitivity at any layer l is defined as:

δ(l) =
∂e(l)

∂s(l)
(34)

With the error, e, defined as:

e = (x(L) − y)2 = (θ(s)(L) − y)2 (35)

For this case, the squared error function is used, and s is the output signal at a

particular layer. Using the chain rule, the sensitivity at the output layer can be

calculated:

δ(L) =
∂e(L)

∂s(L)

=
∂

∂s(L)
(x(L) − y)2

= 2(x(L) − y)
∂x(L)

∂s(L)

= 2(x(L) − y)θ′(s(L))

(36)

40

3 MODEL DESIGN 3.4 Neural Networks

After which, the remaining sensitivities can be calculated back to layer l = 1. Note

that, as layer l = 0 is the input layer, which does not have weights, it is not necessary

to compute the sensitivity. For a layer l, the sensitivity δ(l) can be calculated:

δ(l) ←− θ′(s(l))⊗
[
w(l+1)δ(l+1)

]d(l)
1

(37)

Where ⊗ represents the element-wise Hadamard product. Algorithm 1 provides a

complete description for computing sensitivities for a single data point and cor-

responding label. Algorithm 2 defines backpropagation, with the weights updated

through gradient descent.

Algorithm 1 Compute Sensitivities for each layer l

Input: a data point, (x, y)
Run forward propagation on x to compute and save:

s(l) for l = 1, . . . , L;
x(l) for l = 1, . . . , L.

Initialize: δ(L) = 2(x(L) − y)θ′(s(L))

θ′(s(L)) =

{
1− (x(L))2 θ(s) = tanh(s);

1 θ(s) = s.

for L = l − 1 to 1 do

Let θ′(s(l)) =
[
1− x(l) ⊗ x(l)

]d(l)
1

Compute the sensitivity δ(l) from δ(l+1):

δ(l) ←− θ′(s(l))⊗
[
w(l+1)δ(l+1)

]d(l)
1

end

41

3 MODEL DESIGN 3.5 Convolutional Neural Networks

Algorithm 2 Backpropagation

Initialize all weights wi,j at random
for t = 0, 1, 2 . . . do

Pick n ∈ {1, 2, . . . , N}
Forward: Compute all x

(l)
i

Backward: Compute all δ
(l)
j

for l = 1 . . . L do
for i = 0 . . . N do

Update the weight at layer l, neuron i: w
(l)
i,j ←−w

(l)
i,j − ηx

(l−1)
i δ

(l)
j

end

end
Iterate to the next step until it is time to stop

end

3.4.2 Batch Normalization

In many modern architectures, batch normalization is used in between layers. Batch

normalization essentially applies a transform to data by subtracting from the mini-

batch the mini-batch mean, µB, and dividing by the mini-batch variance, σ2
B. This

helps improve the training speed of the network by reducing the internal covariate

shift, which is the change in the distribution of network activations due to the change

of network parameters when training [33]. Since training examples are processed by

the network in conjunction with other members of the mini-batch, batch normaliza-

tion also helps with regularization by reducing deterministic patterns in examples

which may be learned by the network.

3.5 Convolutional Neural Networks

In this section, a brief overview of Convolutional neural networks (CNNs) is provided,

as these networks are used heavily in this thesis for classifying images of food waste.

42

3 MODEL DESIGN 3.5 Convolutional Neural Networks

CNNs are a type of feed-forward neural network which utilize convolution to extract

various types of descriptive features from a given input. The history of CNNs reaches

back to the development of the perceptron by Frank Rosenblatt in 1958 [34]. The per-

ceptron was a machine designed for image recognition which made use of photocells

and electric motors to learn weights. It did have some success, but was ultimately

only able to perform linear separation of patterns. One famous example is the inabil-

ity to learn the XOR function [35]. Later on, non-linear activation functions would

be introduced to help overcome this limitation. Experiments conducted by Hubel

and Wiesel in the early 1960s [36] in part helped lead to the idea of applying filters

to images to extract local features, such as lines and edges. These experiments in-

volved connecting electrodes to a cat’s visual cortex and observing how the neurons

are locally sensitive and orientation sensitive. Decades later, one of the earliest and

major successes in CNNs was the development of LeNet-5 [11], which was a convolu-

tional neural network applied to recognize handwritten digits at over 99% accuracy.

In recent years, success of CNNs has exploded, as we are able to train deeper, more

complex networks on arrays of GPUs.

Through convolution, CNNs can reduce a sequence or an information rich image into

characteristic patterns which are more amenable to classification. This is one rea-

son that they are much more accurate than vanilla feed-forward networks at many

computer vision tasks, although they are also used for regression and other purposes.

Each convolutional layer is composed of an arbitrary number of filters, with weights

learned through optimizing on a specific dataset. For each filter, a corresponding

activation map is produced. Similar to a basic feed-forward network, these maps be-

43

3 MODEL DESIGN 3.5 Convolutional Neural Networks

come the input to the next layer, and are typically followed by an activation function.

The activated maps are then subsampled using pooling operations. These terms will

be described in more detail in the following subsections. If classification is the goal,

the final features are then pooled and flattened into a single vector which is fed into

a fully connected layer. In Figure 9, a typical CNN architecture is depicted. The

features learned are shown by the square “feature maps” in each layer. The convolu-

tional kernels are depicted as the square filters scanning each feature map. The final

features used for classification are shown in the “fully connected” layer, which learns

a mapping between these features and the output class.

Figure 9: Typical CNN Architecture [2]

Most modern CNNs are composed of several layers, and are considered to be “deep”

networks, part of a field called deep learning. A deep network can be any network con-

sisting of multiple layers, and not restricted to just those which utilize convolutional

layers. Some networks, such as LeNet-5 [11], which only consists of seven layers, are

considered to be “shallow”. Others, such as ResNet-152 [37] which consists of 152

layers, are considered very deep. Deeper networks are mostly inspired by how CNNs

learn to detect features. Take face detection as an example [38]. In the beginning

layers of the network, kernels are learned which detect basic components, such as

44

3 MODEL DESIGN 3.5 Convolutional Neural Networks

lines and corners of a face. As we go deeper into the network, more complex shapes

are learned, such as eyes and noses. Some of the deepest layers are capable of learn-

ing the shape of the face, distinguishing between expressions. It has been found that

these learned abstractions are more amenable to classification than previous methods.

Not only are convolutional layers good at detecting patterns in data, but they also

consume less space in memory than a feed-forward network through parameter shar-

ing. Parameter sharing means that the filter weights are shared to detect features

across an entire input, rather than utilizing a single parameter per feature such as in

a typical feed-forward network.

In practice, the “convolution” in a CNN is actually cross-correlation. This essentially

checks the similarity between the features encoded in the kernel and the feature map

which it is correlated with. High similarity will result in detected features. Recall

that 2-D correlation between a square N × N kernel, K, and input feature map, I

can be defined as:

(K ? I)(x, y) =
N∑

j=−N

N∑
i=−N

K(i, j)I(x+ i, y + j) (38)

which is almost identical to convolution, except the input feature map is not flipped.

3.5.1 Pooling

After performing convolution and applying the activation function to each feature

map, a pooling operation is applied. Pooling essentially performs sub-sampling on a

feature map to obtain a more compact, summarized representation [8]. This allows a

45

3 MODEL DESIGN 3.5 Convolutional Neural Networks

reduction of overall parameters in a network, which means less space in required in

memory. A pooling layer implements a specific pooling function over activation map

patches of size n× n. Typically, n = 2. Some examples of pooling functions include:

Average pooling, Max pooling, and Global pooling.

Average pooling simply averages the values in each patch. Similarly, max pooling

extracts the maximum value in each patch. Finally, global pooling can apply either

the average or max functions to the entire image, rather than individual patches.

This results in one value to summarize an entire activation map. An example of each

pooling function applied to a 4× 4 grid of values can be seen in Figure 10. Note that

the global max pooling would result in a scalar value of 5.0, as that is the maximum

value on the layer. Applying global average pooling would result in a scalar value of

3.0.

1.0 2.0 5.0 1.0

4.0 5.0 4.0 5.0

5.0 4.0 1.0 2.0

1.0 4.0 2.0 2.0

5.0 5.0

5.0 2.0

3.0 3.75

3.5 1.75

Figure 10: Left: Original 2× 2 layer. Middle: Downsampled with 2× 2 Max Pooling.
Right: Downsampled with 2× 2 Average Pooling.

46

3 MODEL DESIGN 3.5 Convolutional Neural Networks

3.5.2 Hyperparameters

Key hyperparameters specific to a CNN include the number of feature maps, kernel

size, stride, number of layers, and zero padding. The hyperparameters described in

Section 3.4 also still apply. It is important to note that a change in any of these

hyperparameters can affect the overall training and performance of the network. For

example, selecting more feature maps at a given layer means that the network can

learn to distinguish a larger variety of features. This also increases the overall pa-

rameter count and volume of the network.

The kernel size determines the size of the window which is convolved with the input

feature map. The height typically matches the width. Larger kernel sizes result in

smaller output feature maps, and vice versa. Stride refers to the step size of the kernel

when convolved with the image. With a default setting of 1, the kernel will slide 1

pixel at a time. Larger values will result in skipping pixels. Zero padding refers to the

practice of adding zeros around the border of an image or map. This can be useful

for increasing the output size of a convolution, or preserving the size throughout the

network [39].

3.5.3 Depth-wise Separable Convolution, Mobile Inverted Bottlenecks,

and EfficientNet

Now that the core concepts behind CNNs have been introduced, the model chosen

for this thesis, EfficientNet [25], will be discussed. In Section 2.2, EfficientNet is

introduced as a family of CNNs which is able to achieve or match state-of-the-art

performance on many benchmark datasets. The motivation behind developing this

47

3 MODEL DESIGN 3.5 Convolutional Neural Networks

family of models was to find a better way to scale up neural network architectures. It

has been a common practice to scale the depth (number of layers), width (size of the

convolutional kernel), or input image size (resolution) of the network independently in

order to increase accuracy. The EfficientNet paper aims to carefully balance network

depth, width, and resolution to produce an efficient and highly accurate network. In

this sub-section, EfficientNet will be discussed at length to give the reader a better

understanding of its inner workings.

Bottleneck layers were first introduced by He, et al [37] in their ResNet paper. In a

bottleneck layer, the input tensor’s depth is reduced by a 1×1 point-wise convolution.

A spatial 3 × 3 convolution is then applied on the reduced feature set, which is less

expensive to compute. Then, the original dimension is recovered with another 1× 1

convolution. In short, the bottleneck layer compresses the input, performs the spatial

convolution, and then expands it again.

The main building block of many “efficient” architectures, such as EfficientNet, is

the mobile inverted bottleneck. These are sometimes abbreviated as MBConv, and

represent a block of layers. Two variants are the building blocks of EfficientNet

—MBConv1 and MBConv6. These are shown in detail in Figure 13, and seem to

have originated in the MnasNet architecture [40].

In order to understand mobile inverted bottlenecks, we need to explain depth-wise

separable convolution. Suppose we want to apply the Sobel filter (see: Section 3.3)

to a multi-channel input, like an RGB image. A depth-wise separable convolution

48

3 MODEL DESIGN 3.5 Convolutional Neural Networks

will yield the same result as a standard convolution, but with a reduced computa-

tional cost achieved by splitting the convolution into two separate stages [41]. The

first stage convolves a filter across each image input channel. Then, a single 1 × 1

point-wise convolution is applied depth-wise, to combine the output of each channel.

This type of convolution is used heavily in networks like EfficientNet and has proven

to reduce model size, while maintaining high accuracy. A visualization is shown for

a (k × k × 3) 3D-convolution in Figure 11 and the equivalent separable convolution

in Figure 12.

Figure 11: 3D Convolution With (k × k × 3) Kernel.

49

3 MODEL DESIGN 3.5 Convolutional Neural Networks

Figure 12: Depth-wise Separable Convolution with Three (k × k) Kernels and One
(1× 1× 3) Kernel.

Now we can return to explaining mobile inverted bottlenecks. Mobile inverted bottle-

necks are very similar to a bottleneck layer, but instead first use a 1× 1 convolution

to expand the input. A spatial convolution is then applied with a k × k kernel, and

the image is then compressed to the original number of feature maps with another

1 × 1 convolution. These two stages are the depth-wise separable convolution. In

50

3 MODEL DESIGN 3.5 Convolutional Neural Networks

between each convolution, batch normalization and ReLU activation is applied. In

Figure 13, both the MBConv6 and MBConv1 are described in this manner. Notice

that MBConv1 does not include the initial 1 × 1 expanding convolution, and also

has an added Squeeze-Excite block. The addition of a Squeeze-Excite block allows

the network to weight the features learned from each channel differently, rather than

uniformly.

Depthwise
Convolution (k x k)

Batch
Normalization

ReLU Activation

Squeeze-Excite
Block

Convolution, 1x1

Batch
Normalization

+

Convolution, 1x1

Batch
Normalization

ReLU Activation

Depthwise
Convolution (k x k)

Batch
Normalization

ReLU Activation

Convolution, 1x1

Batch
Normalization

+

Global Average
Pooling

Fully Connected
Layer

ReLU Activation

Fully Connected
Layer

Sigmoid Activation

x

MBConv1 MBConv6 Squeeze-Excite
Block

HxWxF

HxWxF

HxWxF

HxWxF

HxWxF

HxWx0.5F

HxWx0.5F

HxWxF

HxWx6F

HxWx6F

HxWx6F

HxWx6F

HxWx6F

HxWx6F

HxWxF

HxWxF

Figure 13: Mobile Inverted Bottleneck Blocks. HxWxF Refers to Input Tensor Size
in Terms of Height, Width, and Channels.

The EfficientNet architecture was found by performing a neural architecture search as

done in [40], with added constraints on FLOPS (floating point operations per second)

51

3 MODEL DESIGN 3.5 Convolutional Neural Networks

Stage
(i)

Operator

(F̂)

Resolution

(Ĥi × Ŵi)

#Channels

(Ĉi)

#Layers

(L̂i)
1 Conv3x3 224× 224 32 1
2 MBConv1, k3x3 112× 112 16 1
3 MBConv6, k3x3 112× 112 24 2
4 MBConv6, k5x5 56× 56 40 2
5 MBConv6, k3x3 28× 28 80 3
6 MBConv6, k5x5 14× 14 112 3
7 MBConv6, k5x5 14× 14 192 4
8 MBConv6, k3x3 7× 7 320 1
9 Conv1x1 & Pooling & FC 7× 7 1280 1

Table 1: EfficientNetB0 Architecture

and network parameter count. The FLOPS target for this work is 400M. Through this

search, the EfficientNet-B0 baseline architecture was obtained as shown in Table 1. In

this table, each stage (group of layers) is denoted as the index i. Each F̂ , Ĥi, Ŵi, Ĉi,

and L̂i are the estimated parameters arrived at through the neural architecture search.

Next, the dimensions of each network layer are optimized. They begin by defining

the network as:

N = �
i=1...s

FLi (X<Hi,Wi,Ci>) (39)

Where H, W , and C represent the input image size to the network N , corresponding

to height, with, and number of channels. The � operator is used to denote the

network as being a list of composed layers (L1, L2, . . ., Ls) which the input X is

propagated throug each layer. With this notation, it is possible for each layer to have

a unique configuration. In order to reduce the search space, a constraint is placed

so that all layers must be scaled uniformly. The search is then formulated as an

52

3 MODEL DESIGN 3.5 Convolutional Neural Networks

optimization problem:

arg max
d, w, r

Accuracy
(N (d, w , r)

)
s.t. N = �

i=1...s
F̂d·L̂i

(
X<r·Ĥi,r·Ŵi,w·Ĉi>

)
Memory(N) ≤ target memory

FLOPS(N) ≤ target flops

(40)

where w, d, r are coefficients that scale the network’s width, depth, and resolution.

A compoound scaling method is proposed, which utilizes a coefficient φ to uniformly

scale each dimension:

depth: d = αφ

width: w = βφ

resolution: r = γφ

s. t. α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(41)

The constraint α ·β2 · γ2 ≈ 2 is added to ensure that for any new φ, the total FLOPS

will approximately increase by 2φ. In order to find suitable coefficients, the following

two step procedure is applied:

1. They fix φ =1, assuming twice more resources available, and do a small grid

search of α, β, γ based on Equations 40 and 41. They found the best values for

EfficientNet-B0 are α = 1.2, β = 1.1, and γ = 1.15, under the constraint of

α · β2 · γ2 ≈ 2.

53

3 MODEL DESIGN 3.5 Convolutional Neural Networks

2. α, β, γ are then fixed as constants, and the baseline network is scaled up ac-

cording to different φ as defined in Equation 41. Through this, EfficientNet-B1

through B7 are obtained.

While performance results in [25] yield state-of-the-art accuracy using the largest

model, EfficientNet-B7, the experiments defined in Section 5.2 utilize the baseline

model, EfficientNet-B0. The baseline model is used due it its small footprint and

modest input size, (224× 224), which requires less computing resources to train. Our

dataset is also less complex than Food-101 [9]. In Appendix B, results are shown

using a larger model.

3.5.4 Image Classification

As touched on in Section 1.1.2, image classification refers to a process which yields

a list of predicted categories for a given input image. While in that section, feature

extraction and classification were described as separate processes, CNNs typically

combine the two steps into one network. The convolutional layers are responsible for

detecting features by propagating the input forward through each layer, which are

then fed into a fully connected layer at the head of the network. Image classification

is useful for identifying if a single object is present in a given example, and is the

main focus of this thesis. Specifically, in each case a CNN is used to both extract

relevant features in an image and perform classification with a fully connected layer

at the head of the network.

54

3 MODEL DESIGN 3.5 Convolutional Neural Networks

3.5.5 Object Detection

While image classification is great for identifying whether a single object of interest is

present, sometimes we want to identify and localize several objects in one image. This

can be accomplished by object detection [42]. Object detection refers to localizing an

object in a given image by drawing a bounding box around it, and then assigning

it to a class. In order to train a model capable of object detection, it is necessary

to have a set of annotated bounding boxes defining the regions of interest and their

respective classes. The set of annotations is referred to as the ground truth. There are

many different architectures which are open-sourced and available to perform object

detection on custom datasets. Many of these utilize image classification models as

backbone feature extractors.

3.5.6 Semantic Segmentation

Beyond drawing bounding boxes, Semantic Segmentation attempts to not only clas-

sify and localize an object in an image, but also identify boundaries containing all

related pixels. Similar to object detection, models which perform Semantic Segmen-

tation often utilize other CNN architectures as a backbone to predict masks for an

input image [42]. A mask is simply a set of values which can be overlaid the original

image, corresponding to a class assignment for each pixel location.

3.5.7 Instance Segmentation

Through object detection, we are able to predict bounding boxes, and through se-

mantic segmentation, we are able to classify which pixels belong to a given object.

What if we want to do both? This is where instance segmentation comes in handy

55

3 MODEL DESIGN 3.5 Convolutional Neural Networks

[42]. Many of the same architectures which perform semantic segmentation can be

extended to predict both a bounding box and classify the pixels for a given object.

The goal of a model performing instance segmentation is to identify which instance

the segmented pixels belong to. This type of segmentation could be especially useful

for object counting. While it is not the main focus of this thesis, some sample instance

segmentation results on the food waste dataset are shown in Appendix C.

3.5.8 Gradient-Weighted Class Activation Mapping

When evaluating the predictions of a CNN, it can sometimes be difficult to interpret

how the model arrives at a particular confidence score for a given input image. In an

attempt to demystify this process, make CNNs more transparent, and build trust in

these architectures, Grad-CAM was developed [43]. Given a class activation, Grad-

CAM examines the gradient information flowing into the last layer of the CNN and

traces it back to the original feature maps. This is accomplished through calculating

neuron importance weights, αk:

αck =
1

Z

∑
i

∑
j

∂yc

∂Akij
(42)

which is simply the global average pooling of the gradients obtained via backpropa-

gation for class c, output yc (before softmax), and with respect to feature maps Ak of

a convolutional layer. The quantity Z represents the number of pixels in the feature

map. The activation maps are then weighted by each neuron importance, followed

by a ReLU to only retain maps which have a positive influence on the class:

56

3 MODEL DESIGN 3.6 Transfer Learning

LcGrad-CAM = ReLU

(∑
k

αckA
k

)
(43)

A consequence of this is that the resulting heat-maps are the same size as the feature

maps in the last layer of the network. In order to localize this information in the

same spatial coordinates as the input image, LcGrad-CAM is upsampled using bi-linear

interpolation and fused with Guided Backpropagation via pointwise multiplication.

One of the advantages of Grad-CAM is that it can be used with any CNN architecture.

As shown in subsequent sections, this is a valuable tool for troubleshooting a CNN’s

learned feature extraction capabilities. In this thesis, Grad-CAM visualizations are

used to help better understand where in an image a model is extracting relevant

features when making a classification.

3.6 Transfer Learning

Building and training a model from scratch can be very computationally expensive,

especially when a large dataset is used. What if the process could be enhanced by

leveraging knowledge gained from learning a different task? This is the idea behind

transfer learning. Transfer learning refers to the practice of utilizing a model which

has already been trained on a dataset on an entirely new problem. The model, in

this case, is called a pretrained model, and the retraining process is referred to as

fine-tuning the model. Fine-tuning can be a bit of an art, and there are many dif-

ferent techniques employed by practitioners. Typically, the final classification layer

on the pretrained model is removed and replaced with a fresh layer sized for the new

task. The model is then trained and evaluated on the new dataset. In this process,

57

3 MODEL DESIGN 3.7 Performance Metrics and Best Practice

layers of the CNN can be selectively frozen, such that their weights are not updated

during backpropagation. Sometimes, the entire network is frozen, except for the fi-

nal classification layer, to allow for initialization. Then, from the penultimate layer

back, layers are selectively unfrozen. The best approach varies depending on the data.

Sometimes, instead of fine-tuning, the CNN is used as a feature extractor. In this

case, all of the pre-trained model’s weights are frozen except for the classification

layer, which learns patterns in the extracted features. It is also possible to feed these

feature maps into another algorithm for classification, such as Random Forests or

SVM.

For image classification, the most common dataset used in transfer learning is Ima-

geNet [44]. In this thesis, transfer learning is used to accelerate model training speed

and boost overall classification accuracy. Specifically, the model is loaded with and

fine-tuned with ImageNet pretrained weights.

3.7 Performance Metrics and Best Practice

Before applying a learning algorithm to a dataset, it is critical to first understand the

data. This entails manually reviewing examples, building a working knowledge of the

class distributions, checking for outliers and anomolies, and getting a good grasp for

any patterns which might be present. Classes with too few images may need more

data to learn from, or may need to be eliminated if more data cannot be gathered.

Classes with too many examples may need to be pruned to rectify imbalance. Raw

data can often suffer from class noise as well, the process of correcting this may mod-

58

3 MODEL DESIGN 3.7 Performance Metrics and Best Practice

ify the class distributions.

Once the data is well understood, it can be partitioned into training, validation, and

test sets. The training and validation sets are important, as these facilitate tuning

various hyperparameters for the model and cross validation. Bias can be introduced

indirectly when building a model if performance on the test set influences chosen

hyperparameters. Cross validation allows for the model hyperparameters to be tuned

on validation data, but ultimately reserves some data for testing for which perfor-

mance has yet to be seen. For this reason, performance on the validation set can be

observed, after which the training and validation sets merge, the model is trained on

both, and then scored against the test set. This allows for an unbiased estimate of

the out of sample error.

Typically, the primary performance metric for classification on major benchmark

datasets is accuracy. For the binary case, accuracy can be defined as [30]:

Accuracy(%) =
TP + TN

TP + TN + FP + FN
∗ 100 (44)

For which, TP represents the number of true positives, TN the number of true neg-

atives, FP the number of false positives, and FN the number of false negatives. Ac-

curacy can be simply described as a summary of how often the model predicts the

correct labeled class, out of all labeled examples. This can be a useful metric when er-

rors in prediction are equally important. Some other useful metrics such as precision

can be evaluated:

59

3 MODEL DESIGN 3.7 Performance Metrics and Best Practice

Precision(%) =
TP

TP + FP
∗ 100 (45)

and recall :

Recall(%) =
TP

TP + FN
∗ 100 (46)

Precision is the ratio of how many times a class is correctly predicted over all pre-

dictions for that class. Recall is the ratio of how many times the class was predicted

over all instances of that class. For a security system utilizing iris recognition, pre-

cision may be more important than accuracy because of concern for authenticating

the wrong person (false positive). However, for an e-mail spam filter, recall may be

more important due to false classification of an item which is not actually spam. It

is important in practice to find a balance between both of these metrics.

In scenarios with class imbalance, the precision-recall curve is useful for evaluating the

skill of a classifier. The precision-recall curve is very similar the more common receiver

operating characteristic (ROC) curve, but there are some important differences. The

precision-recall curve plots precision (also known as the positive predictive value)

against recall (also called the true positive rate) for a chosen class, with precision on

the y axis and recall on the x axis. The ROC plots false positive rate against recall,

which is useful in a setting with balanced class sizes. For the precision-recall curve,

a naive classifier with no skill would be represented as a horizontal line at y = 0.5,

with skill evaluated by examining the trade-off between precision and recall. This is

done by varying a threshold on the classifier’s positive prediction score for the given

class from 0 to 1.0. By raising this threshold, we require that the classifier has more

60

3 MODEL DESIGN 3.7 Performance Metrics and Best Practice

confidence in a positive prediction. This results in less false positives, but can result

in more false negatives, which means that precision increases while recall decreases.

The converse is also true —as the threshold decreases, there are less false negatives,

but more false positives. As precision considers false positives, it will decrease, but

recall ignores these and will increase. The precision-recall curve can be extended to

provide a single curve in a multi-class scenario through macro or micro averaging.

For precision, a micro average can be defined as [45]:

PREmicro =
TP1 + TP2 + . . .+ TPk

TP1 + . . .+ TPk + FP1 + . . .+ FPk

(47)

for k classes. Notice that the micro average takes into account the amount of true and

false positives from each individual class. Macro averaging precision can be calculated

as follows:

PREmacro =
PRE1 + . . .+ PREk

k
(48)

which is simply an average precision score over each class.

When precision and recall are both important, the F-Score can be used to combine

the two into a single performance measure. There are variations of the F-Score which

can weight either precision or recall differently, but here it is assumed that they are

equally important. The F-Score can be calculated with the following equation:

F1 =
2 ∗ Precision ∗Recall

Precision + Recall
(49)

Another useful method for evaluating model performance is the confusion matrix.

61

3 MODEL DESIGN 3.7 Performance Metrics and Best Practice

The confusion matrix is a tabular representation of true/false positives and true/-

false negatives. Values obtained from the confusion matrix can be used to calculate

precision and recall as previously defined. It is extremely useful for identifying and

troubleshooting a model’s tendency to classify examples.

62

4 FOOD WASTE DATASETS

4 Food Waste Datasets

The primary dataset used in this thesis consists of 55, 023 images of food waste col-

lected from four customer sites. These sites were deemed (anecdotally) as having

“high quality metadata”, relative to other potential sites. In total, there are 52 dis-

tinct waste item names and 55 distinct container classes in the metadata. The Waste

Item Name corresponds to common food groups, such as Vegetables, Beef - Ground,

Melons, and so on. Similarly, the container Name corresponds to commonly used

kitchen containers, such as different sizes of hotel pans and lexan containers. Other

information is available, such as the name of the container the food is in, unique waste

event identifiers, unique image paths, and more. For the purposes in this thesis, the

main focus will be on the container name and waste item name. Several subsets were

created to train different models, these are listed in Table 2.

Another dataset was created based on different customer sites, to test transfer learning

capabilities. This is simply referred to as the location X dataset. Two different models

are trained on this dataset to observe learning from a network which was pretrained

on ImageNet, and learning on a network which was also trained on the waste item

dataset. The aim is to highlight the usefulness of fine tuning on an intermediate

dataset which is more closely related to the intended classification task.

4.1 Data Cleaning

Real world data is often noisy. In a classification scenario, this can mean that many

of the assigned labels do not agree with the true class. In this subsection, the data

cleaning process is described to help rectify some of these differences. Data cleaning

63

4 FOOD WASTE DATASETS 4.1 Data Cleaning

is important, especially in the test set, because we can inaccurately judge a classifier’s

performance with noisy test data. As previously mentioned, some training data noise

is tolerable, but extreme noise can have a negative effect on model learning.

It was necessary to perform some cleaning on the dataset before training the model.

The original subset contained metadata for 67, 238 images of food waste events. How-

ever, some of these images were corrupt and could not be opened. These were filtered

out by loading the metadata into a data frame and using a multi-threaded try-catch

image open routine. Any image which could not be opened was removed from the

data set, reducing the usable size to 61, 051 examples.

The subset was then partitioned into training and test sets using an 80/20 split,

respectively. Images in the test set were removed if they were misclassified (the meta-

data does not match the actual class), heavily mixed with another class (example:

vegetables and fruit mixed in a bin), were too blurry or occluded to reasonably iden-

tify the image content, or contained a blank image of the device’s scale (taken by

mistake or after product was weighted). Entire classes were removed if they did not

contain enough actual test images after cleaning. The training set was left noisy, but

classes removed from the test set were also removed from the training set, along with

classes with less than 30 examples. This process reduced the size of the dataset to

55, 023 examples. Randomly selected samples from the test and train sets are shown

in Figure 14. Notice how in the training set, some images are blank or do not corre-

spond to the labeled class.

64

4 FOOD WASTE DATASETS 4.2 Model Architecture

Dataset
Number of

Classes
Training Set

Size
Test Set Size

Food Waste 52 49829 5194
Container 53 42343 4007

Grouped Container 24 40434 3869
Container / No Container 2 18020 2027

Location X 36 2878 733

Table 2: Datasets and Partition Sizes

For containers, the same subset was cleaned a second time to remove class noise.

Misclassified containers were removed from the data set, along with those with less

than 50 examples. Two separate subsets were created —the first separates containers

in terms of depth and the second ignores depth. The second is referred to as a

grouped container dataset. In addition, the “No Pan” category was separated to

create another container/no container dataset.

4.2 Model Architecture

For both the food and container classification models, the PyTorch implementation

of EfficientNet-B0 architecture was used [25]. PyTorch is a popular framework used

for building and training neural networks, which is written in Python. It allows for

the use of GPUs when training neural networks, which greatly reduces overall train-

ing time compared to CPUs. The EfficientNet architecture was chosen because it

offers high performance when benchmarked against the Food-101 dataset [9] (88%

top 1) with a modest parameter count (5.29M). The model was fine-tuned using the

pre-trained ImageNet weights [46] in order to take advantage of the overall accuracy

boosts and training time reductions gained through transfer learning (this is explored

in Appendix A). By default, EfficientNet-B0 accepts a (3, 224, 224) input tensor rep-

65

4 FOOD WASTE DATASETS 4.2 Model Architecture

Sauce Potatoes Pizza w Toppings Hot Cereal Vegetables Rice

Vegetables Vegetables Melons Rice Vegetables Vegetables

Vegetables Eggs Fruit Chicken - Boneless Vegetables Turkey

Melons Vegetables Potatoes Fruit Fries Eggs

Sauce Vegetables Beef - Whole Turkey Pork Fruit

(a) Random Samples from Waste Item Training Set
Turkey Vegetables Fruit Vegetables Vegetables Dessert

Eggs Dessert Bread Hot Cereal Vegetables Bread

Vegetables Grab n Go Sandwich Rice Vegetables Vegetables Eggs

Pancake Soup with Meat Chicken-Bone-in Melons Vegetables Vegetables

Rice Deli Sandwich Fruit Vegetables Bread Bread

(b) Random Samples from Waste Item Test Set

Figure 14: Randomly Selected Waste Item Samples

66

4 FOOD WASTE DATASETS 4.2 Model Architecture

Mini Roasting
Pan Metal

Cambro 22 Qt Cambro 22 Qt Full Hotel Pan
(1-inch) Metal

Third Hotel Pan
(4-inch) Metal

Half Hotel Pan
(2.5-inch)
Metal

Full Hotel Pan
(4-inch) Metal

Third Hotel Pan
(4-inch) Metal

Full Hotel Pan
(2.5-inch)
Metal

Third Hotel Pan
(4-inch) Metal

Cambro 12 Qt Bus Tub Full Hotel Pan
(2.5-inch)
Metal

Full Hotel Pan
(1-inch) Metal

Half Hotel Pan
(2.5-inch)
Metal

Third Hotel Pan
(6-inch) Metal

Cambro 12 Qt Third Hotel Pan
(4-inch) Metal

Full Hotel Pan
(2.5-inch)
Metal

Full Hotel Pan
(2.5-inch)
Metal

Cambro 12 Qt Cambro 12 Qt Full Hotel Pan
(2.5-inch)
Metal

Full Hotel Pan
(2.5-inch)
Metal

Full Hotel Pan
(2.5-inch)
Metal

(a) Random Samples from Container Training Set
Soup Container-
Med

Cambro 4 Qt Cambro 4 Qt Cambro 4 Qt Quarter Hotel
Pan (6-inch)
Metal

Cambro 22 Qt Cambro 18 Qt Sixth Pan
(6-inch)
Plastic

Cambro 22 Qt Bus Tub

Lexan Lrg Third Hotel Pan
(4-inch) Metal

Cambro 12 Qt Sixth Pan
(6-inch) Metal

Cambro 12 Qt

Full Hotel Pan
(2.5-inch)
Plastic

Cambro 18 Qt Round Bowl -
Large

Cambro 22 Qt Full Hotel Pan
(2.5-inch)
Metal

Soup Container-
Lrg

Cambro 6 Qt Full Hotel Pan
(4-inch)
Plastic

Quarter Hotel
Pan (6-inch)
Metal

Half Hotel Pan
(6-inch) Metal

(b) Random Samples from Container Test Set

Figure 15: Randomly Selected Container Samples
67

4 FOOD WASTE DATASETS 4.2 Model Architecture

Figure 16: Waste Item and Container Classification Process

resenting a RGB image. In this case, the first dimension of the tensor corresponds to

the image channel (red, green, blue), the second dimension corresponds to the height

of each channel, and the third dimension corresponds to the depth of each channel. In

this thesis, CNNs are used to both detect features and produce probabilities for each

class. Therefore, the output of the network is an array of normalized probabilities,

representing the prediction score for each class. Network architecture is described in

Table 1, where each stage in the network is described in terms of operations, input

resolution, the number of channels, and the number of layers in each stage. The

MBConv layers are mobile inverted bottlenecks as described in Section 3.5.3.

68

4 FOOD WASTE DATASETS 4.2 Model Architecture

4.2.1 Preprocessing

In order to prepare the images for training and testing, the metadata for each set was

handled by a custom Dataset class, written to simply open an image from disk given

the index in the data frame. The indices were selected by PyTorch’s RandomSampler,

which samples randomly without replacement for a given batch size in each epoch.

Next, data augmentation through a series of torchvision transforms was performed

on the training images. Data augmentation uses training data to create synthetic

data, a powerful tool to help mitigate over-fitting while still allowing the network

to learn to meaningful features. The choice in suitable transformations is very data

dependent, so there are no concrete rules applied to any given dataset. A few tips can

be provided here, however. For example, if the object of interest may be presented at

any given angle, it is a good idea to apply a transformation which randomly rotates

the image or provides a perspective shift. If the object may be presented at differ-

ent orientations, it is sometimes a good idea to perform a vertical or horizontal flip.

Another case is variation of brightness, hue, and saturation —there are transforms

which can augment images to simulate these as well.

For the training data in this thesis, the first transform used is the RandomResized-

Crop, an image sampling method which was shown to be successful in leading Google’s

Inception network architecture to convergence in training on ImageNet [47]. Random-

ResizedCrop randomly crops a section of the image ranging from 0.08 to 1.0 times the

original size, with a random aspect ratio ranging from 3/4 to 4/3. The crop is then

resized, in this case to (224, 224), which is the input size of the network. Next, to

69

4 FOOD WASTE DATASETS 4.2 Model Architecture

help introduce invariance to orientation of the subject, the image is randomly flipped

horizontally with probability p = 0.5 using RandomHorizontalFlip. This is followed

by a RandomPerspective, using default settings, which distorts the image’s perspec-

tive with probability p = 0.5. While there are many other transforms available which

can be used to create larger sets of synthetic data (such as RandomVerticalFlip to

flip vertically or RandomJitter to adjust brightness, hue, and contrast), the images

in the dataset are varied with respect to rotation and placement already. Applying

random crops and flips build on this variation. Only the aforementioned transforms

were chosen for the experiments in this thesis, but it is possible in future cases that it

may be beneficial to vary features such as color space values to account for differences

in brightness, saturation, and so on, which sometimes result from camera malfunc-

tion. Finally, the image is converted from a PIL image to a tensor, and normalized

with the mean and standard deviation from ImageNet. Using ImageNet statistics is

standard practice for fine-tuning on models pretrained with ImageNet, as much of

the learning has already been performed on the dataset, which consists of roughly 14

million examples. The datasets used in this thesis are much smaller in comparison.

An example of the transformed training data is shown in Figure 17.

Sometimes, augmentation is performed on test data to boost accuracy in prediction.

One form of this is called Test Time Augmentation (TTA). A common augmentation

is the n-crop testing, which splits an example into n image patches and averages the

prediction over each patch. TTA is not performed in these experiments, to keep the

test performance as close as possible to actual performance on the real image. For

testing in this thesis, each image is simply downsampled to (224, 224) and normalized

70

4 FOOD WASTE DATASETS 4.2 Model Architecture

with the ImageNet mean and standard deviation.

4.2.2 Hyperparameters, Optimizer, and Loss Function

Following the advice of Goodfellow, et al. [8],

The learning rate is perhaps the most important hyperparameter. If you have
time to tune only one hyperparameter, tune the learning rate. (p. 417)

Grid search was performed to select the learning rate, learning rate schedule, and

mini-batch size for the waste item and container classification models. The learning

rate schedule is included in the search because it directly affects the learning rate

and allows us to quickly descend to minima in the loss landscape, while reducing the

step size over time to help prevent overstepping a minima. The batch size was also

included in the search, as it has been suggested in [48] that this should also be opti-

mized due to the slight interactions between this hyperparameter and learning rate.

For weight decay (the L2-regularization hyperparameter), a small value of λ = 0.0001

was used to aid in regularization. Values for this hyperparameter vary depending on

the network examined. The EfficientNet paper [25] follows the procedure used by

Kornblith, et al. [49] for fine-tuning, which establishes a search space of 7 points, log-

arithmically spaced from 10−6 to 10−3 and including zero. The best found parameters

are not provided. Due to this ambiguity, and to reduce the computational resources

required to run grid search, weight decay was simply chosen within the suggested

search space of [49] and kept constant.

The Cross Entropy loss function is commonly used to judge the performance of clas-

sification models. Its popularity is due to its equivalence to Maximum Likelihood

Estimation, which can be shown to be the best estimator asymptotically and is a

71

4 FOOD WASTE DATASETS 4.2 Model Architecture

consistent estimator under certain conditions [8]. It is considered the default loss

function for classification. For these reasons, it is also used as a parameter estimator

in this work, as we characterize the performance surface of the network with respect

to a set of parameters with this loss function. For optimization, Stochastic Gradient

Descent was used with Nesterov Momentum = 0.9. Each model was fine-tuned for

30 epochs.

72

4 FOOD WASTE DATASETS 4.2 Model Architecture

Figure 17: Example Transforms

73

5 EXPERIMENTAL DESIGN

5 Experimental Design

5.1 Design Constraints

5.1.1 Ground Truth Accuracy

One of the biggest challenges in training a model on each dataset has been making

decisions regarding class noise. For the food waste item dataset, categories such as

mixed plate, mixed protein, and mixed starch are heavily utilized by the end user,

but appear to have strayed from their intended uses. For example, mixed plate may

have been intended to be used for cafeteria-style plates with mixed food items, but

many photos contain examples from every category along with mixed plates and con-

tainers with mixed food items. The same problems are present in the other mixed

categories. By inspection, the sheer amount of noise in these categories outweigh

the usable examples, so these classes were removed from training and testing. It is

possible that with heavy cleaning, the mixed classes may be reinstated, but this task

is left for future work.

The container data has similar problems with class noise across all categories, but

were chronic with respect to the No Pan, Cambro, and Lexan classes. The No Pan

category had many examples with both containers and without containers, in addition

to ambiguous cases such as styrofoam, dishes, and salad containers. Roughly 50% of

the test sample could be considered as having a pan. Due to the sheer amount of

class noise, this category was removed and individually sorted into its own dataset

such that only official kitchen containers and plates would be considered a container.

It is possible that this interpretation does not fit that of every customer site. For the

74

5 EXPERIMENTAL DESIGN 5.1 Design Constraints

Cambro and Lexan categories, it is unclear at times which container truly belongs to

which class. Cambro is a brand name of container, and Lexan is a type of plastic.

It is possible that a Cambro may be made of Lexan, but the converse may not be

true. Containers designated as a type of Cambro made up a more significant portion

of the overall population compared to Lexan. For this reason, a decision was made

to remove Lexan from the dataset. It is possible that not all end users would agree

with this choice, so results may vary across sites.

5.1.2 Class Imbalance

Another challenge presented by this dataset is related to imbalance between class

sizes. This is particularly noticeable in the waste item dataset, in which the largest

class (vegetables) outnumbers the second largest class (fruit) by more than a factor of

5. The smallest class included (sour cream) is outnumbered by a factor of 300. This

is not the worst imbalance, as the original metadata contained some classes which

had less than 10 examples. As the data was originally pulled over all of 2018 from

four sites, this points to very low usage on these categories. By not including very

low represented classes, this means that the end user will have to manually classify

these events as they occur. It is possible that this could be remedied by pulling data

across all customer sites, but this is left for future work.

75

5 EXPERIMENTAL DESIGN 5.1 Design Constraints

17000

17500

18000

18500

19000

Ve
ge

ta
bl

es

Fr
ui

t

Br
ea

d

Ho
t C

er
ea

l

Po
ta

to
es

Eg
gs

M
el

on
s

Ri
ce

Pa
st

a

Ch
ick

en
 -

Bo
ne

le
ss

Pi
zz

a
w

To
pp

in
gs

Sa
uc

e

Be
ef

 -
Gr

ou
nd

So
up

 w
ith

 M
ea

t

Fi
sh

Pa
nc

ak
e

Gr
av

y

Fr
ie

s

Tu
rk

ey

So
up

-V
eg

et
ar

ia
n-

Pa
st

a

Be
ef

 -
W

ho
le

Po
rk

0

1000

2000

3000

(a) Waste Item Dataset Classes, Size > 500

Ca
ss

er
ol

e
Ch

ick
en

-B
on

e-
in

Pr
ep

ar
ed

 S
al

ad
Gr

ab
 n

 G
o

Sa
la

d
Be

an
s

Co
ffe

e
Pi

zz
a

w
Ch

ee
se

Ba
co

n
Sn

ac
k

- O
th

er
Gr

ab
 n

 G
o

Sa
nd

wi
ch

De
ss

er
t

De
li

M
ea

t
To

fu
Ch

ee
se

Ba
ke

ry
-P

as
try Ch
ili

De
li

Sa
nd

wi
ch

La
sa

gn
a

M
ilk

Co
ok

ie
Ca

ke
Pu

dd
in

g
Ba

tte
r

Pr
ot

ei
n

Sa
la

d
Yo

gu
rt

M
uf

fin
W

af
fle

Br
ea

kf
as

t S
an

dw
ich

Dr
es

sin
g

So
ur

 C
re

am
0

100

200

300

400

500

(b) Waste Item Dataset Classes, Size < 500

Figure 18: Waste Item Dataset Class Sample Sizes

76

5 EXPERIMENTAL DESIGN 5.1 Design Constraints

3500

3750

4000

500

7500

250

Number of Examples

0 10 20 30 40 50
Zoom

ed

O
riginal Sam

ple
C

leaned Sam
ple

Vegetables
Fruit

Bread
Hot Cereal

Eggs
Potatoes

Rice
Mixed Plate-Other

Melons
Pasta

Chicken - Boneless
Pizza w Toppings

Sauce
Beef - Ground

Fish
Pancake

Soup with Meat
Gravy

Beef - Whole
Fries

Soup-Vegetarian-Pasta
Mixed Protein

Turkey
Pork

Chicken-Bone-in
Casserole

Sandwich-other
Prepared Salad

Coffee
Grab n Go Salad

Mixed Starch
Beans

Pizza w Cheese
Snack - Other

Bacon
Tofu

Bakery-Pastry
Dessert

Grab n Go Sandwich
Deli Meat

Cheese
Chili

Muffin
Milk

Cookie
Deli Sandwitch

Cake
Lasagna

Condiment
Grilled Cheese

Yogurt
Broth

Batter
Sour Cream

Waffle
Tots

Breakfast Sandwich
Sushi

Dressing
Pudding

Grab n Go Wrap
Pie

Protein Salad
Cold Cereal

Jello
Chicken Sandwich

Butter
Cheeseburger

Juice
Hamburger
Ice Cream

Shellfish-Shrimp
Composed Salad

Texture-Puree Meat
Compound Salad

Supplement Regular
Texture-Puree Fruit

Supplement Premium
Onion Rings

Puree-Meal Replacement

0.0

0.2

0.4

0.6

0.8

1.0

W
aste Item

 C
ategory

Eliminated from Test Set (%)

O
ther (%

)
M

isclassified (%
)

M
ixed (%

)
O

m
it

Figure 19: Left: % Eliminated from Test Set, with Reason. Right: Number of
Examples in Each Category.

77

5 EXPERIMENTAL DESIGN 5.1 Design Constraints

Airpot
Bus Tub

Cambro 12 Qt
Cambro 18 Qt
Cambro 2 Qt

Cambro 22 Qt
Cambro 4 Qt
Cambro 6 Qt
Cambro 8 Qt

Coffee Carafe
Full Hotel Pan (1-inch) Metal

Full Hotel Pan (2.5-inch) Metal
Full Hotel Pan (2.5-inch) Plastic
Full Hotel Pan (4-inch) Coloured

Full Hotel Pan (4-inch) Metal
Full Hotel Pan (4-inch) Plastic
Full Hotel Pan (6-inch) Metal

Full Hotel Pan (6-inch) Plastic
Half Hotel Pan (1-inch) Metal

Half Hotel Pan (2.5-inch) Metal
Half Hotel Pan (2.5-inch) Plastic

Half Hotel Pan (4-inch) Metal
Half Hotel Pan (4-inch) Plastic
Half Hotel Pan (6-inch) Metal

Half Hotel Pan (6-inch) Plastic
Half Sheet
Lexan Lrg

Lexan Med
Lexan Small

Mini Roasting Pan Metal
No Pan

Patient Plate
Patient Tray

Plate
Quarter Hotel (2.5-inch) Metal

Quarter Hotel Pan (2-inch) Plastic
Quarter Hotel Pan (4-inch) Metal

Quarter Hotel Pan (4-inch) Plastic
Quarter Hotel Pan (6-inch) Metal

Quarter Hotel Pan (6-inch) Plastic
Round Bowl - Large

Round Bowl - Medium
Round Bowl - Small
Sheet/Roasting Pan

Shotgun Pan (2.5-inch) Metal
Shotgun Pan (2.5-inch) Plastic

Shotgun Pan (4-inch) Metal
Shotgun Pan (4-inch) Plastic
Shotgun Pan (6-inch) Metal

Shotgun Pan (6-inch) Plastic
Sixth Pan (2.5-inch) Metal

Sixth Pan (2.5-inch) Plastic
Sixth Pan (4-inch) Metal

Sixth Pan (4-inch) Plastic
Sixth Pan (6-inch) Metal

Sixth Pan (6-inch) Plastic
Soup Container-Lrg

Soup Container-Med
Soup Container-Small

Third Hotel Pan (2.5-inch) Metal
Third Hotel Pan (2.5-inch) Plastic

Third Hotel Pan (4-inch) Metal
Third Hotel Pan (4-inch) Plastic
Third Hotel Pan (6-inch) Metal

Third Hotel Pan (6-inch) Plastic

Container Nam
e

0.0

0.2

0.4

0.6

0.8

1.0

Misclassification Rate (%)

Figure 20: Left: % Eliminated from Test Set, with Reason. Right: Number of
Examples in Each Category.

78

5 EXPERIMENTAL DESIGN 5.2 Experiments

5.2 Experiments

For the waste item and container datasets, the original test partitions created in the

train/test splits were split into dev/test partitions. Grid search was performed on the

train/dev sets in order to obtain the best learning rate, batch size, and learing rate

decay to reasonably achieve the performance goal. The search varied learning rate

over the interval η = [0.1, 0.01, 0.001], learning rate decay by a factor of 10 in steps

of s = [7, 10, 15], and batch size Bm for m = [16, 32, 64]. To begin, the train/dev

sets were concatenated and shuffled, and then split into 5 folds. For each combi-

nation of hyperparameters, a model was trained for 30 epochs. The 30 epoch limit

was selected to encourage choosing hyperparameters which lead to high accuracy in

a short period of time. In a typical k-fold cross validation, the search would have

been repeated across each combination of folds. Due to the computational resources

required to perform cross validation, the search was not repeated across folds. The

same hyperparameters found through searching the waste item dataset were also used

in training the Location X model. Similarly, the hyperparameters found searching

over the container dataset were also used in training the container/no container and

grouped container models. This was another choice which was made to conserve

computational resources. The images are similar in content, so this choice proved

reasonable to achieve performance criteria, but it is possible that further optimiza-

tion can lead to better results.

Once the most suitable hyperparameters were discovered through grid search, the

train/dev partitions were concatenated and mixed together to form a single training

partition. The final models were obtained by training on their respective partitions

79

5 EXPERIMENTAL DESIGN 5.2 Experiments

over 30 epochs and evaluating on the test set. The test scores in Table 3 are the best

results obtained, but not necessarily at epoch 30.

To evaluate the waste item model’s capability as a feature extractor, the convolu-

tional layers fine-tuned for waste item classifier were used on the smaller Location

X dataset. When evaluating as a feature extractor, this simply means that the con-

volutional layers of the network are frozen such that they cannot learn new features

and the weights cannot change. Classification is still performed by the network, but

the previous classification layer is replaced with a new one with randomly initial-

ized weights. By freezing these layers, the model is only allowed to detect features

learned through fine-tuning on the waste item dataset. This is also benchmarked

against a model which was only pretrained on ImageNet, to highlight the importance

of fine tuning a model on data which is more closely related to the problem of interest.

To measure performance of each classifier, the top-1 accuracy, top-5 accuracy, micro-

averaged precision-recall Curve, and F1-Score were measured. The top-5 accuracy

is considered the main measure of performance due to the UI design of the product

for which this is intended for implementation. However, due to class imbalance, only

considering accuracy of a classifier can marginalize the perception of performance

on small classes. For this reason, precision-recall curves and F1-Scores are also con-

sidered. Precision is important because it provides a metric for understanding how

many items of a specific class were correctly classified out of all predictions for that

class. Recall is important because it provides a measure of how often the classifier

attempts to predict a class of all labeled examples of that class in the dataset. The

80

5 EXPERIMENTAL DESIGN 5.2 Experiments

precision-recall curve allows for visualizing how the two metrics interact over differ-

ent thresholds, and can be summarized with the average precision which is simply

the area under the curve. The F1-Score allows us to calculate the harmonic mean

of precision and recall, thus providing a summarizing statistic. More detail on these

metrics is provided in Section 3.7. To examine anomalies and edge cases, normalized

confusion matrices are also considered. The confusion matrix is especially helpful for

insight into misclassifications and understanding where the model has a tendency to

classify. For better understanding model attention for a specific example, the Class

Activation Maps [43] are also examined. The code for generating these maps can

be found in [50] and easily adapted to a custom PyTorch model. Finally, to show

the power of fine-tuning a pretrained feature extractor on the custom dataset, these

metrics will be compared to a classifer which only utilizes ImageNet weights.

All experiments were conducted on Google Cloud Platform, using JupyterLab Note-

books with Python 3.7 kernels. Google Cloud Platform (along with other cloud

services) provides access to additional resources in remote server farms, which allow

running experiments with larger batch sizes at higher speeds. This enables access

to high end computing resources, for a small fee, without having to commit to pur-

chasing expensive deep learning “rigs” with dedicated GPUs. An advantage to using

Jupyter notebooks is that they make model prototyping and collaboration easy. Once

the model architecture and training scripts are finalized, they can also be easily con-

verted into a single python script for automation and retraining on future data. For

building and training neural networks, the PyTorch 1.1 framework was used, although

there are EfficientNet implementations in other frameworks, such as Tensorflow/K-

81

5 EXPERIMENTAL DESIGN 5.2 Experiments

eras. Choice of framework is very much user preference. A standard compute instance

was built with 8 vCPUs and 52 GB RAM, which was often more than sufficient to

train each model. A NVIDIA P100 GPU was used to train each model due to its

compromise between speed, memory (16 GB) size, and price.

82

6 RESULTS AND DISCUSSION

6 Results and Discussion

Final results from evaluating each model on the respective test partitions are shown

in Table 3. The following sections will describe the strengths and deficiencies for each

model, along with the top-1 accuracy, top-5 accuracy, average precision, and F1-score.

For justification of these metrics, please see Section 5.2.

Dataset
Top-1 Test
Acc. (%)

Top-5 Test
Acc. (%)

AP F1-Score

Item 90.3 98.8 0.96 0.90
Container/No Container 96.7 N/A 0.97 0.98/0.94

Container 70.2 94.6 0.77 0.70
Grouped Container 84.6 98.6 0.91 0.84

Location X 81.6 96.3 0.88 0.80

Table 3: Dataset Test Results

6.1 Waste Item Dataset

6.1.1 Hyperparameter Grid Search

The results from performing grid search on the waste item dataset are shown in Table

4. Performance was judged in terms of highest top-5 accuracy on the validation

partition. While there is a tie for the top-5 accuracy score (95.425%), referring to the

top-1 accuracy as a tie-breaker shows a clear winner. As a result, a mini-batch size

of Bm = 64, learning rate of 0.01, and step decay of a factor of 10 every 15 epochs

was selected for final model training.

83

6 RESULTS AND DISCUSSION 6.1 Waste Item Dataset

Bm η s
Top-1 Validation

Accuracy (%)
Top-5 Validation

Accuracy (%)
16 0.001 7 80.376 94.203
16 0.001 10 81.187 94.674
16 0.001 15 81.488 94.844
16 0.01 7 75.541 95.054
16 0.01 10 75.961 93.622
16 0.01 15 75.921 93.442
16 0.1 7 70.835 90.378
16 0.1 10 72.026 90.378
16 0.1 15 70.455 90.378
32 0.001 7 79.626 93.712
32 0.001 10 80.687 94.273
32 0.001 15 81.318 94.724
32 0.01 7 82.859 95.344
32 0.01 10 82.689 95.425
32 0.01 15 82.699 95.374
32 0.1 7 77.753 93.602
32 0.1 10 79.575 94.203
32 0.1 15 78.314 94.023
64 0.001 7 77.423 92.781
64 0.001 10 78.474 93.402
64 0.001 15 80.437 94.163
64 0.01 7 82.379 95.124
64 0.01 10 82.679 95.404
64 0.01 15 82.859 95.425
64 0.1 7 81.878 95.054
64 0.1 10 82.329 95.244
64 0.1 15 81.698 94.984

Table 4: Waste Item Grid Search Cross Validation Results

6.1.2 Train and Test Results

After training the model on the combined training and validation partitions with

hyperparameters from 6.1.1, the model was evaluated on the test partition. A random

subset of example predictions can be found in Figure 21 The accuracy and loss for

84

6 RESULTS AND DISCUSSION 6.1 Waste Item Dataset

each epoch for the waste item dataset is shown in Figure 22. Notice that the training

was run for 30 epochs, and the best top-5 accuracy was obtained at epoch 21. For

consistency, each experiment was stopped at epoch 30. It is possible that slightly

higher accuracy could be achieved by running longer, but due to the learning rate

annealing schedule, the returns from doing so would be diminishing.

Vegetables : 98.54 Fruit : 97.72 Vegetables : 99.53 Melons : 98.98

Soup-Vegetarian-Pasta : 81.62 Hot Cereal : 99.06 Deli Sandwich

[('Grab n Go Sandwich',
76.71), ('Deli Sandwich',
22.97), ('Snack - Other',
0.15), ('Bread', 0.11), ('Deli
Meat', 0.02)]

Vegetables : 99.74

Melons : 97.28 Bread : 89.50 Fries

[('Potatoes', 68.77),
('Fries', 30.26),
('Vegetables', 0.44),
('Bread', 0.12), ('Rice',
0.06)]

Hot Cereal : 97.14

Figure 21: Waste Item Classifier Random Sample Predictions

85

6 RESULTS AND DISCUSSION 6.1 Waste Item Dataset

0 5 10 15 20 25 30
Epoch

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Training Loss
Test Loss
t * , Epoch 21

0 5 10 15 20 25 30
Epoch

65

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

Train Top-1 Acc
Train Top-5 Acc
Test Top-1 Acc
Test Top-5 Acc
t * , Epoch 21
 Top-1: 90.3%
 Top-5: 98.8%

Figure 22: Waste Item Model Performance. Loss, Accuracy versus Epoch

The precision-recall curve in Figure 23 shows the micro-averaged precision vs recall

for the corresponding waste item classes, evaluated on the test set, as defined in

Section 3.7. Recall that a naive classifier would be represented by a horizontal line

86

6 RESULTS AND DISCUSSION 6.1 Waste Item Dataset

at y = 0.5. A perfect classifier would have an average precision of 1.0. The waste

item classifier shows high precision and recall up until roughly x = 0.95. The average

precision is 0.96.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Average precision score, micro-averaged over all classes: AP=0.96

Figure 23: Waste Item Classifier Precision-Recall Curve

The classifier scored well in terms of AP and accuracy, but for multi-class scenarios,

the confusion matrix is very helpful for visualizing individual class performance. For

the waste item dataset, the normalized confusion matrix is shown in Figure 24. This

is similar in spirit to the typical confusion matrix, but normalizes each class by its

size to range from 0 to 1 instead of the population counts for ease of visualization. A

perfect classifier would have only values of 1.0 on the diagonal, and 0 elsewhere.

87

6 RESULTS AND DISCUSSION 6.1 Waste Item Dataset

Ba
co

n

Ba
ke

ry
-P

as
try

Ba
tte

r

Be
an

s

Be
ef

 -
Gr

ou
nd

Be
ef

 -
W

ho
le

Br
ea

d

Br
ea

kf
as

t S
an

dw
ich

Ca
ke

Ca
ss

er
ol

e

Ch
ee

se

Ch
ick

en
 -

Bo
ne

le
ss

Ch
ick

en
-B

on
e-

in

Ch
ili

Co
ffe

e

Co
ok

ie

De
li

M
ea

t

De
li

Sa
nd

wi
ch

De
ss

er
t

Dr
es

sin
g

Eg
gs

Fi
sh

Fr
ie

s

Fr
ui

t

Gr
ab

 n
 G

o
Sa

la
d

Gr
ab

 n
 G

o
Sa

nd
wi

ch

Gr
av

y

Ho
t C

er
ea

l

La
sa

gn
a

M
el

on
s

M
ilk

M
uf

fin

Pa
nc

ak
e

Pa
st

a

Pi
zz

a
w

Ch
ee

se

Pi
zz

a
w

To
pp

in
gs

Po
rk

Po
ta

to
es

Pr
ep

ar
ed

 S
al

ad

Pr
ot

ei
n

Sa
la

d

Pu
dd

in
g

Ri
ce

Sa
uc

e

Sn
ac

k
- O

th
er

So
up

 w
ith

 M
ea

t

So
up

-V
eg

et
ar

ia
n-

Pa
st

a

So
ur

 C
re

am To
fu

Tu
rk

ey

Ve
ge

ta
bl

es

W
af

fle

Yo
gu

rt
Predicted label

Bacon

Bakery-Pastry

Batter

Beans

Beef - Ground

Beef - Whole

Bread

Breakfast Sandwich

Cake

Casserole

Cheese

Chicken - Boneless

Chicken-Bone-in

Chili

Coffee

Cookie

Deli Meat

Deli Sandwich

Dessert

Dressing

Eggs

Fish

Fries

Fruit

Grab n Go Salad

Grab n Go Sandwich

Gravy

Hot Cereal

Lasagna

Melons

Milk

Muffin

Pancake

Pasta

Pizza w Cheese

Pizza w Toppings

Pork

Potatoes

Prepared Salad

Protein Salad

Pudding

Rice

Sauce

Snack - Other

Soup with Meat

Soup-Vegetarian-Pasta

Sour Cream

Tofu

Turkey

Vegetables

Waffle

Yogurt

Tr
ue

 la
be

l
0.67 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.07 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0

0.0 0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.0

0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.8 0.0 0.0 0.05 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0

0.0 0.0 0.0 0.0 0.860.030.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.010.01 0.0 0.0

0.0 0.0 0.0 0.0 0.110.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.04 0.0 0.0

0.0 0.01 0.0 0.0 0.0 0.0 0.93 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.43 0.0 0.43 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.130.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.010.02 0.0 0.0 0.0 0.0 0.850.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.020.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.020.05 0.0 0.0

0.0 0.0 0.0 0.0 0.030.03 0.0 0.0 0.0 0.0 0.0 0.080.84 0.0 0.03 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.64 0.0 0.14 0.0 0.0 0.14 0.0 0.0 0.0 0.07 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.7 0.0 0.1 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.43 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.29 0.0

0.0 0.08 0.0 0.0 0.0 0.0 0.08 0.0 0.08 0.0 0.0 0.08 0.0 0.0 0.0 0.08 0.0 0.0 0.15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.0 0.080.08 0.0 0.0 0.080.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0

0.0 0.97 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.86 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.020.030.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0

0.0 0.6 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0

0.0 0.93 0.0 0.0 0.0 0.0 0.0 0.02 0.03 0.0 0.0

0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.060.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.81 0.06 0.0 0.0

0.0 0.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.99 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.83 0.0

0.0 0.08 0.0 0.0 0.0 0.0 0.0 0.9 0.03 0.0 0.0

0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.38 0.0 0.0 0.0 0.0 0.0 0.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.96 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.88 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0

0.0 0.860.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.1 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.04 0.0 0.0 0.0 0.050.02 0.0 0.0 0.02 0.0 0.0 0.09 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.020.140.04 0.0 0.0

0.0 0.02 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.92 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0

0.0 0.350.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.42 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.060.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.86 0.0 0.0 0.010.01 0.0 0.0 0.03 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.85 0.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.020.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.140.72 0.0 0.0 0.0 0.02 0.0 0.0

0.0 0.25 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.080.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.54 0.0 0.15 0.0 0.0

0.02 0.0 0.0 0.0 0.070.03 0.0 0.0 0.0 0.0 0.0 0.03 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.810.02 0.0 0.0

0.0 0.01 0.0 0.97 0.0 0.0

0.0 0.33 0.0 0.67 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
0.0

0.2

0.4

0.6

0.8

1.0

Figure 24: Waste Item Confusion Matrix

Some interesting information is encoded in the confusion matrix. For example, the

predictions for the cake category are distributed equally among cake, dessert, muffin,

pancake, and pizza with toppings classes. This could mean that there are examples

with similar features present in each of the training categories, and may warrant

further exploration. For the purposes of this application, however, cake should be

among the top 5 predictions, so this may still be satisfactory for the product. Sim-

88

6 RESULTS AND DISCUSSION 6.1 Waste Item Dataset

ilarly, predictions for the casserole class are split between casserole, pasta, rice, and

vegetables. It is likely that there is some ambiguity between theses classes, depend-

ing on the mixture of ingredients and operator classification at the time of the waste

event. Some other categories show very strong performance, such as: eggs, rice, hot

cereal, protein salad, pudding, rice, and vegetables. The classifier is able to assign

over 97% of available examples to the true classes in these examples. Note that some

of these are classes for which more training data is available for.

Finally, we can examine the Grad-CAM visualizations for a few of the classes. Figure

25 shows the class activation maps for examples of pork, vegetables, eggs, and bacon.

Notice that in this example, all of top-1 predictions align with the true class. For

pork, the features which contribute significantly to this prediction seem to be localized

in the upper right cluster of meat in the image, while the other slices of pork do not

factor into the decision as much. The image of vegetables shows clear localization

of the tomatoes, as with the eggs. The prediction for bacon, however, clearly hinges

on the corners of the container it is in. This could be due to the fact that for the

collection of customer sites used to build this dataset, bacon is commonly in this

type of pan. In order to help the classifier learn to truly recognize the texture and

shape of bacon, it may be necessary to introduce additional examples from other

environments.

89

6 RESULTS AND DISCUSSION 6.1 Waste Item Dataset

dƌƵĞ��ůĂƐƐ͗��ĂĐŽŶ

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

�ĂĐŽŶ�ϵϵ͘ϯй
WŽƌŬ�Ϭ͘ϳй
sĞŐĞƚĂďůĞƐ�Ϭй
WĂƐƚĂ�Ϭй
>ĂƐĂŐŶĂ�Ϭй

dƌƵĞ��ůĂƐƐ͗�sĞŐĞƚĂďůĞƐ

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

sĞŐĞƚĂďůĞƐ�ϵϵ͘ϵй
�ŐŐƐ�Ϭ͘Ϭϭй
&ƌƵŝƚ�Ϭ͘Ϭй
�ĞĂŶƐ�Ϭ͘Ϭй
�ƌĞĂĚ�Ϭ͘Ϭй

dƌƵĞ��ůĂƐƐ͗�WŽƌŬ

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

WŽƌŬ�ϲϱ͘ϴй
�ĞĞĨ-tŚŽůĞ�ϮϬ͘ϳй
�ŚŝĐŬĞŶ-�ŽŶĞůĞƐƐ�ϲ͘ϯй
dƵƌŬĞǇ�ϲ͘ϯй
�ĞĞĨ-'ƌŽƵŶĚ�Ϭ͘Ϭϭй

dƌƵĞ��ůĂƐƐ͗��ŐŐƐ

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

�ŐŐƐ�ϵϲ͘Ϯй
�ŚŝĐŬĞŶ-�ŽŶĞůĞƐƐ�ϯ͘ϯй
^ŶĂĐŬ-KƚŚĞƌ�Ϯ͘ϳй
sĞŐĞƚĂďůĞƐ�Ϭ͘ϭй
dŽĨƵ�Ϭй

Figure 25: Selected Grad-CAM Visualizations for Food Waste Model

90

6 RESULTS AND DISCUSSION 6.2 Container/No Container Dataset

6.2 Container/No Container Dataset

For the container/No container model, Loss and Accuracy vs Epoch performance is

shown in Figure 26. Note that as this is a binary classifier, only top-1 accuracy is

considered. At epoch 21, the classifier was able to achieve maximum classification ac-

curacy of 96.6%. The corresponding precision-recall curve and normalized confusion

matrix can be found in Figure 27. The PR curve shows high skill for this classifier

for all values or recall, with an average precision of 0.97.

One of the challenges in building this dataset is determining what constitutes a con-

tainer. Some clear members of this class include the Cambro, Bus Tub, and Hotel

Pan types. However, should a plastic bag, napkin, or a styrofoam container be con-

sidered a pan? Since these are typically of negligible weight, they were considered to

fall under the “no container” class. In addition, when there are no container edges

present in an example (such as a close up image of food in a bus tub), this is also

considered to not have container.

Given the above assumptions, this classifier is significantly better than manual user

entry. Based on examining the test partition prior to building this dataset, user error

was approximately 50%. Of course, this will vary depending on the site evaluated. It

is possible that classification accuracy could be improved further with the collection

of more data.

91

6 RESULTS AND DISCUSSION 6.2 Container/No Container Dataset

0 5 10 15 20 25 30
Epoch

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Lo
ss

Training Loss
Test Loss
t * , Epoch 21

0 5 10 15 20 25 30
Epoch

92

93

94

95

96

97

98

Ac
cu

ra
cy

 (%
)

Train Acc
Test Acc
t * , Epoch 21
 Acc: 96.6%

Figure 26: Container/No Container Model Performance. Loss, Accuracy versus
Epoch

92

6 RESULTS AND DISCUSSION 6.2 Container/No Container Dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Binary Precision-Recall curve: AP=0.97

No Container Container
Predicted label

No Container

Container

Tr
ue

 la
be

l

0.94 0.06

0.02 0.98
0.2

0.4

0.6

0.8

Figure 27: Binary Container/No Container Model PR Curve and Confusion Matrix

93

6 RESULTS AND DISCUSSION 6.3 Container Dataset

6.3 Container Dataset

6.3.1 Hyperparameter Grid Search

The results from performing grid search on the container dataset are shown in Table 5.

The search space was narrowed to exclude a smaller mini-batch size of 16, unlike the

waste item experiment which included this value. Performance was judged in terms

of highest top-5 accuracy on the validation partition. Through this experiment, a

mini-batch size of Bm = 64, learning rate of 0.1, and step decay of a factor of 10 every

10 epochs was selected for final model training.

Bm η s
Top-1 Validation

Accuracy (%)
Top-5 Validation

Accuracy (%)
32 0.001 7 53.374 79.134
32 0.001 10 53.949 80.237
32 0.001 15 56.015 80.941
32 0.01 7 57.329 82.044
32 0.01 10 57.435 82.138
32 0.01 15 58.209 82.232
32 0.1 7 53.116 79.216
32 0.1 10 54.360 80.190
32 0.1 15 55.616 80.554
64 0.001 7 50.158 76.622
64 0.001 10 52.165 78.183
64 0.001 15 53.656 79.392
64 0.01 7 57.212 81.810
64 0.01 10 57.282 82.244
64 0.01 15 58.139 82.244
64 0.1 7 57.622 82.361
64 0.1 10 58.197 82.385
64 0.1 15 57.446 82.349

Table 5: Container Cross Validation Results

94

6 RESULTS AND DISCUSSION 6.3 Container Dataset

6.3.2 Train and Test Results

The train and test curves for the container classifier can be viewed in Figure 29.

A random sample of predictions can be found in Figure 28. The maximum Top-5

classification accuracy obtained for this model was only 95.2%, which is lower than

the goal of 99%. Top-1 classification accuracy was also low at 70.2%. For perspective,

there is clearly learning occuring here for most categories, as a “no skill” classifier

would only have a Top-1 accuracy of 2%. The PR curve along with average precision

of this model is shown in Figure 30. The average precision is 0.77, which is still higher

than 0.50, but much lower than the previous two models listed. While generally better

than a naive classifier, the performance still does not meet the standards of this thesis.

95

6 RESULTS AND DISCUSSION 6.3 Container Dataset

Lexan Med

[('Cambro 12 Qt', 94.89), ('Cambro 18
Qt', 1.14), ('Cambro 22 Qt', 0.98),
('Third Hotel Pan (4-inch) Metal',
0.56), ('Cambro 8 Qt', 0.37)]

Cambro 12 Qt : 81.21 Third Hotel Pan (4-inch) Metal : 61.21 Soup Container-Lrg : 75.20

Cambro 4 Qt : 56.25 Third Hotel Pan (4-inch) Metal : 78.82 Sixth Pan (4-inch) Metal

[('Sixth Pan (6-inch) Metal', 37.8),
('Sixth Pan (4-inch) Metal', 15.56),
('Third Hotel Pan (4-inch) Metal',
10.63), ('Third Hotel Pan (6-inch)
Metal', 7.34), ('Quarter Hotel Pan
(4-inch) Metal', 3.6)]

Third Hotel Pan (6-inch) Metal : 69.65

Third Hotel Pan (6-inch) Metal

[('Cambro 12 Qt', 16.49), ('Cambro 6
Qt', 6.66), ('Cambro 4 Qt', 5.28),
('Half Hotel Pan (4-inch) Plastic',
4.98), ('Half Hotel Pan (2.5-inch)
Plastic', 4.55)]

Cambro 12 Qt

[('Cambro 2 Qt', 56.67), ('Cambro 12
Qt', 41.92), ('Cambro 8 Qt', 0.36),
('Cambro 22 Qt', 0.16), ('Cambro 6 Qt',
0.1)]

Third Hotel Pan (4-inch) Metal : 91.70 Cambro 22 Qt : 45.07

Cambro 8 Qt : 68.75 Shotgun Pan (4-inch) Metal : 68.78 Third Hotel Pan (4-inch) Metal : 93.16 Third Hotel Pan (4-inch) Metal : 93.16

Figure 28: Container Classifier Random Sample Predictions

96

6 RESULTS AND DISCUSSION 6.3 Container Dataset

0 5 10 15 20 25 30
Epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Training Loss
Test Loss
t * , Epoch 17

0 5 10 15 20 25 30
Epoch

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Train Top-1 Acc
Train Top-5 Acc
Test Top-1 Acc
Test Top-5 Acc
t * , Epoch 17
 Top-1: 70.2%
 Top-5: 95.2%

Figure 29: Container Model Performance. Loss, Accuracy versus Epoch.

97

6 RESULTS AND DISCUSSION 6.3 Container Dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Average precision score, micro-averaged over all classes: AP=0.77

Figure 30: Container Classifier Precision-Recall Curve

To better understand the classifier’s deficiencies, it is helpful to once again look at the

confusion matrix. Several classes fall under the same family of containers (Full Hotel

Pan, Half Hotel Pan, Quarter Hotel Pan), but are ultimately unable to distinguish

between depths. There is also confusion between families of pans, such as the Quarter

Hotel Pan (6-inch) Plastic and the Sixth Pan (6-inch) Plastic and the Cambro and

Lexan classes. Some of these issues are due to persistent class noise, which can be

remedied by further data cleaning or customizing to a particular customer’s needs.

This may also help with depth perception, but since all of the images are taken from

the bird’s eye view, distinguishing between these types of containers may still be

difficult. As this model has reached 94% Top-5 accuracy, utlizing it would still be

better than the alternative of manual classification which has been shown to be prone

to user error.

98

6 RESULTS AND DISCUSSION 6.3 Container Dataset

Bu
s T

ub

Ca
m

br
o

12
 Q

t

Ca
m

br
o

18
 Q

t

Ca
m

br
o

2
Qt

Ca
m

br
o

22
 Q

t

Ca
m

br
o

4
Qt

Ca
m

br
o

6
Qt

Ca
m

br
o

8
Qt

Fu
ll

Ho
te

l P
an

 (1
-in

ch
) M

et
al

Fu
ll

Ho
te

l P
an

 (2
.5

-in
ch

) M
et

al

Fu
ll

Ho
te

l P
an

 (2
.5

-in
ch

) P
la

st
ic

Fu
ll

Ho
te

l P
an

 (4
-in

ch
) M

et
al

Fu
ll

Ho
te

l P
an

 (4
-in

ch
) P

la
st

ic

Fu
ll

Ho
te

l P
an

 (6
-in

ch
) M

et
al

Fu
ll

Ho
te

l P
an

 (6
-in

ch
) P

la
st

ic

Ha
lf

Ho
te

l P
an

 (1
-in

ch
) M

et
al

Ha
lf

Ho
te

l P
an

 (2
.5

-in
ch

) M
et

al

Ha
lf

Ho
te

l P
an

 (2
.5

-in
ch

) P
la

st
ic

Ha
lf

Ho
te

l P
an

 (4
-in

ch
) M

et
al

Ha
lf

Ho
te

l P
an

 (4
-in

ch
) P

la
st

ic

Ha
lf

Ho
te

l P
an

 (6
-in

ch
) M

et
al

Ha
lf

Ho
te

l P
an

 (6
-in

ch
) P

la
st

ic

Le
xa

n
Lr

g

Le
xa

n
M

ed

Le
xa

n
Sm

al
l

M
in

i R
oa

st
in

g
Pa

n
M

et
al

Pl
at

e

Qu
ar

te
r H

ot
el

 (2
.5

-in
ch

) M
et

al

Qu
ar

te
r H

ot
el

 P
an

 (2
-in

ch
) P

la
st

ic

Qu
ar

te
r H

ot
el

 P
an

 (4
-in

ch
) M

et
al

Qu
ar

te
r H

ot
el

 P
an

 (4
-in

ch
) P

la
st

ic

Qu
ar

te
r H

ot
el

 P
an

 (6
-in

ch
) M

et
al

Qu
ar

te
r H

ot
el

 P
an

 (6
-in

ch
) P

la
st

ic

Ro
un

d
Bo

wl
 -

La
rg

e

Ro
un

d
Bo

wl
 -

M
ed

iu
m

Sh
ot

gu
n

Pa
n

(2
.5

-in
ch

) M
et

al

Sh
ot

gu
n

Pa
n

(4
-in

ch
) M

et
al

Sh
ot

gu
n

Pa
n

(6
-in

ch
) M

et
al

Si
xt

h
Pa

n
(2

.5
-in

ch
) M

et
al

Si
xt

h
Pa

n
(2

.5
-in

ch
) P

la
st

ic

Si
xt

h
Pa

n
(4

-in
ch

) M
et

al

Si
xt

h
Pa

n
(4

-in
ch

) P
la

st
ic

Si
xt

h
Pa

n
(6

-in
ch

) M
et

al

Si
xt

h
Pa

n
(6

-in
ch

) P
la

st
ic

So
up

 C
on

ta
in

er
-L

rg

So
up

 C
on

ta
in

er
-M

ed

So
up

 C
on

ta
in

er
-S

m
al

l

Th
ird

 H
ot

el
 P

an
 (2

.5
-in

ch
) M

et
al

Th
ird

 H
ot

el
 P

an
 (2

.5
-in

ch
) P

la
st

ic

Th
ird

 H
ot

el
 P

an
 (4

-in
ch

) M
et

al

Th
ird

 H
ot

el
 P

an
 (4

-in
ch

) P
la

st
ic

Th
ird

 H
ot

el
 P

an
 (6

-in
ch

) M
et

al

Th
ird

 H
ot

el
 P

an
 (6

-in
ch

) P
la

st
ic

Predicted label

Bus Tub

Cambro 12 Qt

Cambro 18 Qt

Cambro 2 Qt

Cambro 22 Qt

Cambro 4 Qt

Cambro 6 Qt

Cambro 8 Qt

Full Hotel Pan (1-inch) Metal

Full Hotel Pan (2.5-inch) Metal

Full Hotel Pan (2.5-inch) Plastic

Full Hotel Pan (4-inch) Metal

Full Hotel Pan (4-inch) Plastic

Full Hotel Pan (6-inch) Metal

Full Hotel Pan (6-inch) Plastic

Half Hotel Pan (1-inch) Metal

Half Hotel Pan (2.5-inch) Metal

Half Hotel Pan (2.5-inch) Plastic

Half Hotel Pan (4-inch) Metal

Half Hotel Pan (4-inch) Plastic

Half Hotel Pan (6-inch) Metal

Half Hotel Pan (6-inch) Plastic

Lexan Lrg

Lexan Med

Lexan Small

Mini Roasting Pan Metal

Plate

Quarter Hotel (2.5-inch) Metal

Quarter Hotel Pan (2-inch) Plastic

Quarter Hotel Pan (4-inch) Metal

Quarter Hotel Pan (4-inch) Plastic

Quarter Hotel Pan (6-inch) Metal

Quarter Hotel Pan (6-inch) Plastic

Round Bowl - Large

Round Bowl - Medium

Shotgun Pan (2.5-inch) Metal

Shotgun Pan (4-inch) Metal

Shotgun Pan (6-inch) Metal

Sixth Pan (2.5-inch) Metal

Sixth Pan (2.5-inch) Plastic

Sixth Pan (4-inch) Metal

Sixth Pan (4-inch) Plastic

Sixth Pan (6-inch) Metal

Sixth Pan (6-inch) Plastic

Soup Container-Lrg

Soup Container-Med

Soup Container-Small

Third Hotel Pan (2.5-inch) Metal

Third Hotel Pan (2.5-inch) Plastic

Third Hotel Pan (4-inch) Metal

Third Hotel Pan (4-inch) Plastic

Third Hotel Pan (6-inch) Metal

Third Hotel Pan (6-inch) Plastic

Tr
ue

 la
be

l
0.82 0.0 0.01 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.01 0.02 0.05 0.0

0.0 0.9 0.0 0.01 0.01 0.0 0.02 0.04 0.0

0.03 0.36 0.34 0.0 0.12 0.0 0.01 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.05 0.0 0.65 0.05 0.13 0.03 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.01 0.09 0.04 0.0 0.77 0.01 0.02 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.03 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.02 0.0 0.66 0.23 0.08 0.0

0.0 0.04 0.0 0.0 0.01 0.12 0.67 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.11 0.0 0.0 0.01 0.06 0.16 0.63 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.02 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.69 0.0 0.23 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.91 0.0 0.04 0.0 0.0 0.0 0.0 0.01 0.0 0.02 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.08 0.08 0.67 0.0

0.0 0.01 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.55 0.0 0.32 0.03 0.01 0.02 0.0 0.01 0.0 0.05 0.0

0.03 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.03 0.0 0.73 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.03

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.27 0.0 0.31 0.0 0.27 0.04 0.0 0.0 0.0 0.08 0.0 0.04 0.0

0.21 0.04 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.15 0.02 0.32 0.0 0.0 0.0 0.0 0.04 0.0 0.09 0.0 0.02 0.02 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.0 0.25 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.31 0.0 0.55 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0

0.0 0.22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.11 0.0 0.11 0.0 0.0 0.11 0.0 0.22 0.0 0.11 0.0 0.11 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.06 0.0 0.01 0.0 0.0 0.0 0.0 0.13 0.0 0.6 0.0 0.13 0.03 0.0 0.01 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.17 0.5 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.43 0.0 0.43 0.02 0.0 0.02 0.0

0.32 0.05 0.0 0.0 0.0 0.02 0.02 0.0 0.0 0.0 0.0 0.02 0.02 0.02 0.02 0.0 0.0 0.0 0.0 0.02 0.0 0.45 0.0

0.04 0.07 0.03 0.0 0.5 0.0 0.0 0.01 0.0 0.0 0.0 0.03 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.03 0.24 0.03 0.0 0.02 0.05 0.03 0.19 0.0 0.0 0.0 0.0 0.02 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.08 0.27 0.0

0.0 0.21 0.0 0.02 0.0 0.08 0.08 0.05 0.0 0.02 0.0 0.0 0.02 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.48 0.02 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.0 0.08 0.0 0.0 0.0 0.0 0.0 0.0 0.83 0.0

0.0 1.0 0.0

0.0 0.15 0.0 0.15 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.3 0.0 0.05 0.0

0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.02 0.0 0.48 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.4 0.0 0.05 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.2 0.0 0.0 0.2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.61 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.17 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.07 0.07 0.0 0.4 0.33 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.42 0.42 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.05 0.0 0.47 0.42 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.15 0.83 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.71 0.0 0.29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.07 0.0 0.73 0.0 0.13 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.03 0.0 0.38 0.0 0.56 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0

0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.86 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.03 0.0 0.96 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.04 0.04 0.0 0.09 0.04 0.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.96 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.89 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.18 0.0 0.59 0.0 0.14 0.0

0.0 0.06 0.0 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.69 0.0 0.19 0.0 0.0

0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.91 0.0 0.06 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.12 0.06 0.06 0.0 0.06 0.0 0.0 0.0 0.0 0.29 0.12 0.18 0.0 0.12

0.0 0.01 0.02 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.24 0.0 0.69 0.0

0.0 0.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.38 0.0 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Figure 31: Container Confusion Matrix

Some selected Grad-CAM visualizations are shown in Figure 32. For each example,

the true class appears within the top-5 predictions, but not necessarily the top-1. It

is clear that the model is utilizing features derived from the edges of the containers,

but it seems to have some difficulty with container depth.

99

6 RESULTS AND DISCUSSION 6.3 Container Dataset

dƌƵĞ��ůĂƐƐ͗�^ŝǆƚŚ�WĂŶ�;ϰ-ŝŶĐŚͿ�DĞƚĂů

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

^ŝǆƚŚ�WĂŶ�;Ϯ͘ϱ-ŝŶĐŚͿ�DĞƚĂů�ϴϲ͘ϴй
^ŚŽƚŐƵŶ�WĂŶ�;ϰ-ŝŶĐŚͿ�WůĂƐƟĐ�ϴ͘ϳй
^ŝǆƚŚ�WĂŶ�;ϰ-ŝŶĐŚͿ�DĞƚĂů�ϭ͘ϯй
YƵĂƌƚĞƌ�,ŽƚĞů�WĂŶ�;Ϯ͘ϱ-ŝŶĐŚͿ�DĞƚĂů�ϭ͘ϭй
YƵĂƌƚĞƌ�,ŽƚĞů�WĂŶ�;ϰ-ŝŶĐŚͿ�DĞƚĂů�ϭ͘ϭй

dƌƵĞ��ůĂƐƐ͗�&Ƶůů�,ŽƚĞů�WĂŶ�;Ϯ͘ϱ-ŝŶĐŚͿ
DĞƚĂů

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

,ĂůĨ�,ŽƚĞů�WĂŶ�;ϰ-ŝŶĐŚͿ�DĞƚĂů�ϯϴ͘ϯй
&Ƶůů�,ŽƚĞů�WĂŶ�;Ϯ͘ϱ-ŝŶĐŚͿ�DĞƚĂů�Ϯϯ͘Ϭй�
&Ƶůů�,ŽƚĞů�WĂŶ�;ϰ-ŝŶĐŚͿ�DĞƚĂů�ϮϬ͘ϴй�
&Ƶůů�,ŽƚĞů�WĂŶ�;ϭ-ŝŶĐŚͿ�DĞƚĂů�ϱ͘ϭй
,ĂůĨ�,ŽƚĞů�WĂŶ�;Ϯ͘ϱ-ŝŶĐŚͿ�DĞƚĂů�ϰ͘Ϯй�

dƌƵĞ��ůĂƐƐ͗�^ŝǆƚŚ�WĂŶ�;ϰ-ŝŶĐŚͿ�WůĂƐƟĐ

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

^ŝǆƚŚ�WĂŶ�;Ϯ͘ϱ-ŝŶĐŚͿ�WůĂƐƟĐ�ϴϮ͘ϱй
^ŚŽƚŐƵŶ�WĂŶ�;ϲ-ŝŶĐŚͿ�DĞƚĂů�ϳ͘ϳй
^ŝǆƚŚ�WĂŶ�;ϰ-ŝŶĐŚͿ�WůĂƐƟĐ�Ϯ͘ϵй
YƵĂƌƚĞƌ�,ŽƚĞů�WĂŶ�;Ϯ-ŝŶĐŚͿ�WůĂƐƟĐ�ϭ͘ϲй�
YƵĂƌƚĞƌ�,ŽƚĞů�WĂŶ�;ϰ-ŝŶĐŚͿ�WůĂƐƟĐ�ϭ͘ϯй

dƌƵĞ��ůĂƐƐ͗�WůĂƚĞ

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

WůĂƚĞ�ϱϬ͘ϰй
dŚŝƌĚ�,ŽƚĞů�WĂŶ�;ϰ-ŝŶĐŚͿ�DĞƚĂů�ϭϮ͘Ϯй
�ĂŵďƌŽ�Ϯ�Yƚ�ϲ͘ϰй
&Ƶůů�,ŽƚĞů�WĂŶ�;Ϯ͘ϱ-ŝŶĐŚͿ�DĞƚĂů�ϯ͘Ϯй
&Ƶůů�,ŽƚĞů�WĂŶ�;ϲ-ŝŶĐŚͿ�WůĂƐƟĐ�Ϯ͘ϱй

Figure 32: Selected Grad-CAM Visualizations for Container Model

100

6 RESULTS AND DISCUSSION 6.4 Grouped Container Dataset

6.4 Grouped Container Dataset

Grouping the container classes together by parent class (Half Hotel Pan, Full Hotel

Pan, etc...) and material (Metal or Plastic), while ignoring depth yields the grouped

container dataset. The best top-5 accuracy was observed in epoch 22 at 98.6%, which

is very close to the goal of 99%. Top-1 accuracy at this epoch was 84.6%. The train-

ing and test curves can be found in Figure 33.

101

6 RESULTS AND DISCUSSION 6.4 Grouped Container Dataset

0 5 10 15 20 25
Epoch

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

Training Loss
Test Loss
t * , Epoch 22

0 5 10 15 20 25
Epoch

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Train Top-1 Acc
Train Top-5 Acc
Test Top-1 Acc
Test Top-5 Acc
t * , Epoch 22
 Top-1: 84.6%
 Top-5: 98.6%

Figure 33: Grouped Container Model Performance. Loss, Accuracy versus Epoch.

The micro-averaged precision-recall curve is shown in Figure 34. The AP is 0.91,

which is very close to a maximum of 1.0. The Fisher score for this classifier is 0.84,

which is a significant improvement from the model which considered container depth.

102

6 RESULTS AND DISCUSSION 6.4 Grouped Container Dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Average precision score, micro-averaged over all classes: AP=0.91

Figure 34: Grouped Container Precision-Recall Curve

Examining the confusion matrix in Figure 35, it is clear that the deficiencies are

worse for certain categories, such as Quarter Hotel Pan Plastic and Cambro 18 Qt.

Taking a closer look at the examples reveals that many images of the Quarter Hotel

Pan Plastic are very similar to the Third Hotel Pan Plastic, which may explain why

72% of the test set examples are classified to that category. There is also a tendency

to classify these examples as Half Hotel Pan Plastic and Sixth Pan Plastic. For the

Cambro group of containers, the classifier has a tendency to guess the correct family

but has some difficulty assigning the exact size. Examining the individual examples

reveals that the ground truth is quite noisy, and further cleaning may be necessary to

improve performance. The model does learn to distinguish metal from plastic, which

is critical to ensuring the correct weight is subtracted for a container. This model is

a good choice if container depth is not process critical.

103

6 RESULTS AND DISCUSSION 6.4 Grouped Container Dataset

Bu
s T

ub

Ca
m

br
o

12
 Q

t

Ca
m

br
o

18
 Q

t

Ca
m

br
o

2
Qt

Ca
m

br
o

22
 Q

t

Ca
m

br
o

4
Qt

Ca
m

br
o

6
Qt

Ca
m

br
o

8
Qt

Fu
ll

Ho
te

l P
an

 M
et

al

Fu
ll

Ho
te

l P
an

 P
la

st
ic

Ha
lf

Ho
te

l P
an

 M
et

al

Ha
lf

Ho
te

l P
an

 P
la

st
ic

M
in

i R
oa

st
in

g
Pa

n
M

et
al

Pl
at

e

Qu
ar

te
r H

ot
el

 P
an

 M
et

al

Qu
ar

te
r H

ot
el

 P
an

 P
la

st
ic

Ro
un

d
Bo

wl

Sh
ot

gu
n

Pa
n

M
et

al

Si
xt

h
Pa

n
M

et
al

Si
xt

h
Pa

n
Pl

as
tic

So
up

 C
on

ta
in

er

Th
ird

 H
ot

el
 P

an
 M

et
al

Th
ird

 H
ot

el
 P

an
 P

la
st

ic
Predicted label

Bus Tub

Cambro 12 Qt

Cambro 18 Qt

Cambro 2 Qt

Cambro 22 Qt

Cambro 4 Qt

Cambro 6 Qt

Cambro 8 Qt

Full Hotel Pan Metal

Full Hotel Pan Plastic

Half Hotel Pan Metal

Half Hotel Pan Plastic

Mini Roasting Pan Metal

Plate

Quarter Hotel Pan Metal

Quarter Hotel Pan Plastic

Round Bowl

Shotgun Pan Metal

Sixth Pan Metal

Sixth Pan Plastic

Soup Container

Third Hotel Pan Metal

Third Hotel Pan Plastic

Tr
ue

 la
be

l
0.82 0.0 0.01 0.0 0.02 0.0 0.0 0.0 0.04 0.07 0.01 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.9 0.0 0.01 0.01 0.01 0.01 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.05 0.33 0.32 0.0 0.14 0.01 0.05 0.04 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0

0.0 0.06 0.02 0.67 0.02 0.11 0.02 0.02 0.0 0.0 0.02 0.03 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0

0.01 0.1 0.07 0.0 0.79 0.01 0.01 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0

0.0 0.0 0.0 0.03 0.0 0.71 0.18 0.07 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0

0.0 0.03 0.0 0.01 0.01 0.12 0.68 0.14 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0

0.0 0.1 0.0 0.0 0.01 0.06 0.17 0.66 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.94 0.01 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0

0.13 0.01 0.0 0.0 0.02 0.0 0.0 0.0 0.1 0.64 0.0 0.09 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0

0.16 0.05 0.0 0.0 0.0 0.02 0.0 0.0 0.02 0.11 0.0 0.62 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.19 0.0 0.12 0.0 0.62 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.04 0.0 0.0 0.0 0.48 0.0 0.0 0.01 0.04 0.0 0.0 0.41 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.12 0.0 0.0 0.0 0.09 0.0 0.0 0.0 0.03 0.0 0.03 0.72

0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.85 0.0 0.0 0.0 0.08 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.97 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.92 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.95 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.97 0.0

0.0 0.0 0.0 0.0 0.0 0.02 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.02 0.0 0.05 0.8
0.0

0.2

0.4

0.6

0.8

Figure 35: Grouped Container Confusion Matrix

Finally, some sample Grad-CAM visualizations are shown in Figure 36. These are the

same samples which were also evaluated on the previous container dataset. Notice

that each example’s top-1 prediction aligns with the true class, and each visualization

shows that the classifier is utilizing features extracted from the edges of the containers.

104

6 RESULTS AND DISCUSSION 6.4 Grouped Container Dataset

dƌƵĞ��ůĂƐƐ͗�^ŝǆƚŚ�WĂŶ�DĞƚĂů

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

^ŝǆƚŚ�WĂŶ�DĞƚĂů�ϴϳ͘ϰй
YƵĂƌƚĞƌ�,ŽƚĞů�WĂŶ�DĞƚĂů�ϴ͘ϴй
dŚŝƌĚ�,ŽƚĞů�WĂŶ�DĞƚĂů�ϭ͘ϳй
^ŝǆƚŚ�WĂŶ�WůĂƐƟĐ�DĞƚĂů�Ϭ͘ϵй
&Ƶůů�,ŽƚĞů�WĂŶ�DĞƚĂů�Ϭ͘ϰй

dƌƵĞ��ůĂƐƐ͗�&Ƶůů�,ŽƚĞů�WĂŶ�DĞƚĂů

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

&Ƶůů�,ŽƚĞů�WĂŶ�DĞƚĂů�ϱϲ͘ϭй�
,ĂůĨ�,ŽƚĞů�WĂŶ�DĞƚĂů�ϯϰ͘Ϯй
DŝŶŝ�ZŽĂƐƟŶŐ�WĂŶ�DĞƚĂů�ϰ͘ϱй
YƵĂƌƚĞƌ�,ŽƚĞů�WĂŶ�DĞƚĂů�ϯ͘ϯй
,ĂůĨ�,ŽƚĞů�WĂŶ�WůĂƐƟĐ�Ϭ͘ϱй

dƌƵĞ��ůĂƐƐ͗�^ŝǆƚŚ�WĂŶ�WůĂƐƟĐ

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

^ŝǆƚŚ�WĂŶ�WůĂƐƟĐ�ϵϯ͘ϱй
^ŝǆƚŚ�WĂŶ�DĞƚĂů�ϱ͘ϭй
YƵĂƌƚĞƌ�,ŽƚĞů�WĂŶ�DĞƚĂů�Ϭ͘ϯй
dŚŝƌĚ�,ŽƚĞů�WĂŶ�WůĂƐƟĐ�Ϭ͘Ϯй
,ĂůĨ�,ŽƚĞů�WĂŶ�DĞƚĂů�Ϭ͘Ϯй

dƌƵĞ��ůĂƐƐ͗�WůĂƚĞ

dŽƉ�ϱ�WƌĞĚŝĐƟŽŶƐ͗

WůĂƚĞ�ϴϭ͘ϰй
dŚŝƌĚ�,ŽƚĞů�WĂŶ�DĞƚĂů�ϴ͘ϲй
&Ƶůů�,ŽƚĞů�WĂŶ�DĞƚĂů�Ϯ͘ϵй
^ŝǆƚŚ�WĂŶ�DĞƚĂů�Ϯ͘ϴй
&Ƶůů�,ŽƚĞů�WĂŶ�WůĂƐƟĐ�ϭ͘ϴй

Figure 36: Selected Grad-CAM Visualizations for Grouped Container Model

105

6 RESULTS AND DISCUSSION 6.5 Location X Dataset

6.5 Location X Dataset

For the waste item classification model trained on Location X data, the train and test

performance for loss and accuracy can be found in Figure 37. As mentioned in section

3.4, two models were evaluated: one which was only pretrained on ImageNet, and

the fine-tuned waste item model from section 6.1. The model which was fine-tuned

on the other location’s waste item data achieved a Top-1 accuracy of 81.6% and a

Top-5 accuracy of 96.3%, while the ImageNet model achieved a Top-1 accuracy of

71.6% and a Top-5 accuracy of 91.7%. This suggests that there is a clear advantage

utilizing data from other customer sites when learning to extract features in a CNN.

Note that as all weights were frozen except the classification layer, the model was

only able to extract features learned from training on the waste item dataset.

The confusion matrix in 39 shows poor classification performance for new classes,

such as gravy, lasagna, noodles, and shellfish-shrimp. It is possible that the model

may learn these classes by unfreezing some of the convolutional layers and training

on a larger subset of data. Given that this dataset was much smaller than those from

prior experiments, these results show promise for transfer learning.

106

6 RESULTS AND DISCUSSION 6.5 Location X Dataset

0 5 10 15 20 25 30
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Training Loss
 (ImageNet Weights)
Test Loss
 (ImageNet Weights)
Training Loss
 (Waste Item Weights)
Test Loss
 (Waste Item Weights)
t * , Epoch 28

0 5 10 15 20 25 30
Epoch

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

Train Top 1 Acc
 (ImageNet Weights)
Test Top 1 Acc
 (ImageNet Weights)
Train Top 5 Acc
 (ImageNet Weights)
Test Top 5 Acc
 (ImageNet Weights)
Train Top 1 Acc
 (Waste Item Weights)
Test Top 1 Acc
 (Waste Item Weights)
Train Top 5 Acc
 (Waste Item Weights)
Test Top 5 Acc
 (Waste Item Weights)
t * , Epoch 28
 top-1: 81.6%
 top-5: 96.3%

Figure 37: Location X Waste Item Model Performance. Loss, Accuracy versus Epoch.

107

6 RESULTS AND DISCUSSION 6.5 Location X Dataset

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Average precision score, micro-averaged over all classes: AP=0.88

Figure 38: Location X Classifier Precision-Recall Curve

Be
an

s

Be
ef

 -
Gr

ou
nd

Be
ef

 -
W

ho
le

Br
ea

d

Ca
ss

er
ol

e

Ch
ee

se

Ch
ick

en
 -

Bo
ne

le
ss

Ch
ick

en
-B

on
e-

in

Ch
ili

Co
m

po
se

d
Sa

la
d

De
li

M
ea

t

De
ss

er
t

Eg
gs

Fi
sh

Fr
ie

s

Fr
ui

t

Gr
av

y

Ho
t C

er
ea

l

Ju
ice

La
sa

gn
a

M
el

on
s

No
od

le
s

Pa
nc

ak
e

Pa
st

a

Pi
zz

a
w

Ch
ee

se

Pi
zz

a
w

To
pp

in
gs

Po
rk

Po
ta

to
es

Ri
ce

Sa
uc

e

Sh
el

lfi
sh

-S
hr

im
p

So
up

 w
ith

 M
ea

t

So
up

-V
eg

et
ar

ia
n-

Pa
st

a

To
fu

Tu
rk

ey

Ve
ge

ta
bl

es

Predicted label

Beans

Beef - Ground

Beef - Whole

Bread

Casserole

Cheese

Chicken - Boneless

Chicken-Bone-in

Chili

Composed Salad

Deli Meat

Dessert

Eggs

Fish

Fries

Fruit

Gravy

Hot Cereal

Juice

Lasagna

Melons

Noodles

Pancake

Pasta

Pizza w Cheese

Pizza w Toppings

Pork

Potatoes

Rice

Sauce

Shellfish-Shrimp

Soup with Meat

Soup-Vegetarian-Pasta

Tofu

Turkey

Vegetables

Tr
ue

 la
be

l

0.81 0.0 0.06 0.06 0.0 0.0 0.06

0.06 0.83 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.56 0.11 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.11 0.0

0.0 0.0 0.0 0.91 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05

0.0 0.0 0.0 0.0 0.84 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.78 0.0 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.06 0.06 0.0 0.0 0.0 0.0 0.0 0.0

0.05 0.0 0.0 0.0 0.05 0.0 0.52 0.14 0.0 0.0 0.0 0.0 0.0 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05

0.0 0.03 0.0 0.0 0.0 0.0 0.11 0.83 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.75 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.33 0.0 0.67

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.94 0.06

0.0 0.0 0.0 0.17 0.0 0.0 0.0 0.17 0.0 0.0 0.0 0.5 0.0 0.17 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.03 0.0 0.0 0.0 0.0 0.06 0.06 0.0 0.0 0.0 0.0 0.03 0.58 0.0 0.03 0.0 0.0 0.0 0.0 0.03 0.0 0.03 0.03 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.03

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.02 0.0 0.08 0.0 0.0 0.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02

0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.0 0.96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.33 0.33 0.0 0.33

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.5 0.0 0.25 0.0 0.0 0.0 0.0 0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.05 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.02

0.0 0.33 0.67 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.12 0.0 0.0 0.0 0.0 0.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.71 0.04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.02 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.85 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.02

0.02 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.15 0.08 0.0 0.69 0.0 0.08 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.33 0.0 0.33 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.33 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0

0.0 0.56 0.0 0.0 0.44 0.0 0.0 0.0

0.0 0.0 0.09 0.09 0.0 0.27 0.0 0.0 0.0 0.0 0.0 0.55 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.14 0.14 0.14 0.0 0.0 0.0 0.0 0.0 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.14 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.96
0.0

0.2

0.4

0.6

0.8

1.0

Figure 39: Location X Confusion Matrix

108

7 SUMMARY AND CONCLUSION

7 Summary and Conclusion

In this thesis, a novel dataset was utilized to train five distinct classifiers for the pur-

poses of automating food waste tracking and reduction. The procedure used for data

preparation and decision making was documented, along with the detailed design de-

cisions and their rationale. A concept is proposed for several of these models to work

together to form a robust food waste and container recognition system. The intention

is that by introducing automation into food waste tracking, businesses utilizing this

product will be able to more accurately track wasted food and cost while kitchen staff

focuses on other important tasks. Increased accuracy in tracking food waste may also

help the environment, as corrective action can be taken when efforts are focused on

reducing waste in the correct food categories.

An important contribution from this work is to highlight best practices and design

decisions from reputable sources and apply them in training a classifier on a novel

dataset. One of these best practices is critical in judging model performance on un-

seen data —leaving the test partition untouched until the very end, to obtain a less

biased estimate of the out of sample error. Another best practice conveyed is the im-

portance of cleaning the test data. This is critical in order to accurately judge model

performance, as shown by the large gap between the training and test performance.

Another important contribution was to convey the benefits of using transfer learning

on this dataset. By utilizing transfer learning, top 5 accuracy was shown to converge

within 30 epochs. Specifically, the food waste model achieved 98.8% top 5 accuracy,

and the grouped container model achieved 98.6% top 5 accuracy. Without applying

109

7 SUMMARY AND CONCLUSION 7.1 Limitations

transfer learning, it can take several hundred epochs for error to converge at a sat-

isfactory level, as shown in Appendix A. The experiments on the location X dataset

showed the benefits of fine-tuning using a dataset which is closer to the actual task,

in addition to initial training using ImageNet weights.

7.1 Limitations

The limitations of this work should be acknowledged. While many best practices

for design decisions were outlined from various sources, these were not benchmarked

against the Food-101 dataset to obtain similar results as those in [25]. This is a

deficiency in verifying that they were good design decisions.

7.2 Future Work

There are many opportunities to improve these models through future work. Learning

may be improved on some of the classes with poorer performance by gathering more

examples and balancing the training data. For the food waste model, classes which

display learning of correlated but undesirable features through Grad-CAM may need

to be bolstered with more diverse examples. This can be accomplished by gathering

and cleaning more data from other customer sites to create a more general model.

One of the biggest challenges when cleaning the container data is verifying the accu-

racy of the depth and size. Since the pictures are taken from a “bird’s eye” view, it is

difficult for a human to distinguish the depth. It may be unreasonable to expect an

algorithm to do so as well. Introducing another image of the container at a different

angle could help with this issue. There is also great potential to go beyond image

classification and into the realm of Semantic Segmentation. Semantic Segmentation

110

7 SUMMARY AND CONCLUSION 7.2 Future Work

would be helpful in scenarios where a mixture of food is present, or learning the

components of a specific dish. To support this work, many of the generalized classes

would need to have increased granularity, such as Vegetables or Fruit, to identify what

kinds of vegetables or fruit are present. An opportunity for semi-supervised learning

also exists, in which trained models classify more examples and are retrained over

time.

Another opportunity for future work exists in exploring the usefulness of fine-tuning

a classifier on another benchmark dataset such as Food-101. It is possible that the

Food-101 dataset could be used to learn to detect features which are better for classi-

fication in the waste item dataset. This would be similar to the experiment performed

on the location X classifier.

As these models are planned for implementation on a mobile architecture, network

parameter count and latency are of concern. Some work suggests that further reduc-

tion of parameters and network speedup may be possible through deep compression

[51] and network/weight pruning [52] [53]. Future work should explore some of these

methods of network parameter reduction and speeding up inference time.

While no model is perfect, a hope is that deploying these models into production will

lead to a long-term increase in accuracy of collected data. When data is clean, models

can be more accurately trained and scored, and customers have a better idea of what

food is actually wasted. Efforts to reduce waste will hopefully back-propagate and

result in a reduction in environmental effects over time.

111

REFERENCES

References

[1] H. Eraqi, “Bag of visual words for image classification (caltech101 -
surf features - matlab code),” Mar 2017. [Online]. Available: http:
//heraqi.blogspot.com/2017/03/BoW.html

[2] Aphex34, “Creative commons share-alike 4.0 license,” Creative Commons.
[Online]. Available: https://creativecommons.org/licenses/by-sa/4.0/deed.en

[3] S. FOOD, “Global initiative on food loss and waste reduction,” Key facts on
food loss and waste you should know, pp. 01–02, 2015.

[4] F. F. W. Footprints, “Impact on natural resources. summary report.(2013).”

[5] R. F. W. through Economics, “Data (refed), 2016. a roadmap to reduce us food
waste by 20 percent.”

[6] “Unpacking the sustainability landscape,” Sep 2018. [On-
line]. Available: https://www.nielsen.com/us/en/insights/report/2018/
unpacking-the-sustainability-landscape/

[7] S. Finn, “40 million pounds of food waste prevented in 5
years,” Jul 2019. [Online]. Available: https://blog.leanpath.com/
40-million-pounds-of-food-waste-prevented-in-5-years

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[9] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101 – mining discriminative
components with random forests,” in European Conference on Computer Vision,
2014.

[10] D. Garcia-Gasulla, F. Parés, A. Vilalta, J. Moreno, E. Ayguadé, J. Labarta,
U. Cortés, and T. Suzumura, “On the behavior of convolutional nets for feature
extraction,” Journal of Artificial Intelligence Research, vol. 61, pp. 563–592,
2018.

[11] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of handwritten
digits, 1998,” URL http://yann. lecun. com/exdb/mnist, vol. 10, p. 34, 1998.

[12] Y. Kawano and K. Yanai, “Automatic expansion of a food image dataset leverag-
ing existing categories with domain adaptation,” in Proc. of ECCV Workshop on
Transferring and Adapting Source Knowledge in Computer Vision (TASK-CV),
2014.

112

http://heraqi.blogspot.com/2017/03/BoW.html
http://heraqi.blogspot.com/2017/03/BoW.html
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.nielsen.com/us/en/insights/report/2018/unpacking-the-sustainability-landscape/
https://www.nielsen.com/us/en/insights/report/2018/unpacking-the-sustainability-landscape/
https://blog.leanpath.com/40-million-pounds-of-food-waste-prevented-in-5-years
https://blog.leanpath.com/40-million-pounds-of-food-waste-prevented-in-5-years
http://www.deeplearningbook.org

REFERENCES

[13] A. Singla, L. Yuan, and T. Ebrahimi, “Food/non-food image classification and
food categorization using pre-trained googlenet model,” in Proceedings of the 2nd
International Workshop on Multimedia Assisted Dietary Management. ACM,
2016, pp. 3–11.

[14] Y. Kawano and K. Yanai, “Foodcam-256: a large-scale real-time mobile food
recognitionsystem employing high-dimensional features and compression of clas-
sifier weights,” in Proceedings of the 22nd ACM international conference on Mul-
timedia. ACM, 2014, pp. 761–762.

[15] C. M. Bishop et al., Neural networks for pattern recognition. Oxford university
press, 1995.

[16] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classification with
the fisher vector: Theory and practice,” International journal of computer vision,
vol. 105, no. 3, pp. 222–245, 2013.

[17] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual categoriza-
tion with bags of keypoints,” in Workshop on statistical learning in computer
vision, ECCV, vol. 1, no. 1-22. Prague, 2004, pp. 1–2.

[18] D. G. Lowe et al., “Object recognition from local scale-invariant features.” in
iccv, vol. 99, no. 2, 1999, pp. 1150–1157.

[19] W. T. Freeman and M. Roth, “Orientation histograms for hand gesture recog-
nition,” in International workshop on automatic face and gesture recognition,
vol. 12, 1995, pp. 296–301.

[20] K. Yanai and Y. Kawano, “Food image recognition using deep convolutional net-
work with pre-training and fine-tuning,” in 2015 IEEE International Conference
on Multimedia & Expo Workshops (ICMEW). IEEE, 2015, pp. 1–6.

[21] G. M. Farinella, D. Allegra, M. Moltisanti, F. Stanco, and S. Battiato, “Retrieval
and classification of food images,” Computers in biology and medicine, vol. 77,
pp. 23–39, 2016.

[22] L. Perez and J. Wang, “The effectiveness of data augmentation in image classi-
fication using deep learning,” arXiv preprint arXiv:1712.04621, 2017.

[23] Y. Matsuda, H. Hoashi, and K. Yanai, “Recognition of multiple-food images by
detecting candidate regions,” in 2012 IEEE International Conference on Multi-
media and Expo. IEEE, 2012, pp. 25–30.

113

REFERENCES

[24] N. Martinel, G. L. Foresti, and C. Micheloni, “Wide-slice residual networks for
food recognition,” in 2018 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE, 2018, pp. 567–576.

[25] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” arXiv preprint arXiv:1905.11946, 2019.

[26] P. McAllister, H. Zheng, R. Bond, and A. Moorhead, “Combining deep residual
neural network features with supervised machine learning algorithms to classify
diverse food image datasets,” Computers in biology and medicine, vol. 95, pp.
217–233, 2018.

[27] C. Saran, “How computer vision powered by nvidia
helped winnow tackle food waste,” Jun 2019. [On-
line]. Available: https://www.computerweekly.com/news/252465110/
How-computer-vision-powered-by-Nvidia-helped-Winnow-tackle-food-waste

[28] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data.
AMLBook New York, NY, USA:, 2012, vol. 4.

[29] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical
learning. Springer, 2013, vol. 112.

[30] A. Burkov, The Hundred-Page Machine Learning Book. Andriy Burkov, 2019.

[31] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited,, 2016.

[32] S. S. Al-Amri, N. Kalyankar, and S. Khamitkar, “Image segmentation by us-
ing edge detection,” International journal on computer science and engineering,
vol. 2, no. 3, pp. 804–807, 2010.

[33] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[34] F. Rosenblatt, “Principles of neurodynamics. perceptrons and the theory of brain
mechanisms,” Cornell Aeronautical Lab Inc Buffalo NY, Tech. Rep., 1961.

[35] M. Minsky and S. A. Papert, Perceptrons: An introduction to computational
geometry. MIT press, 2017.

[36] D. H. Hubel and T. Wiesel, “Shape and arrangement of columns in cat’s striate
cortex,” The Journal of physiology, vol. 165, no. 3, pp. 559–568, 1963.

114

https://www.computerweekly.com/news/252465110/How-computer-vision-powered-by-Nvidia-helped-Winnow-tackle-food-waste
https://www.computerweekly.com/news/252465110/How-computer-vision-powered-by-Nvidia-helped-Winnow-tackle-food-waste

REFERENCES

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” 2015.

[38] M. Wang and W. Deng, “Deep face recognition: A survey,” arXiv preprint
arXiv:1804.06655, 2018.

[39] A. Karpathy, “Cs231n convolutional neural networks for visual recognition,
2016,” URL http://cs231n.github.io/convolutional-networks/, 2017.

[40] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le,
“Mnasnet: Platform-aware neural architecture search for mobile,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.
2820–2828.

[41] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.
[Online]. Available: http://arxiv.org/abs/1704.04861

[42] J. Brownlee, “A gentle introduction to object recognition with deep learn-
ing,” URL: https://machinelearningmastery.com/object-recognition-with-deep-
learning/, 2019.

[43] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-cam: Visual explanations from deep networks via gradient-based localiza-
tion,” 2016.

[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[45] S. Raschka, “What is the best validation metric for multi-class classifica-
tion?” Sep 2019. [Online]. Available: https://sebastianraschka.com/faq/docs/
multiclass-metric.html

[46] Lukemelas, “lukemelas/efficientnet-pytorch,” Oct 2019. [Online]. Available:
https://github.com/lukemelas/EfficientNet-PyTorch

[47] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” 2014.

[48] G. B. Orr and K.-R. Müller, Neural networks: tricks of the trade. Springer,
2003.

115

http://arxiv.org/abs/1704.04861
https://sebastianraschka.com/faq/docs/multiclass-metric.html
https://sebastianraschka.com/faq/docs/multiclass-metric.html
https://github.com/lukemelas/EfficientNet-PyTorch

REFERENCES

[49] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models transfer
better?” 2018.

[50] U. Ozbulak, “Pytorch cnn visualizations,” https://github.com/utkuozbulak/
pytorch-cnn-visualizations, 2019.

[51] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[52] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and connec-
tions for efficient neural network,” in Advances in neural information processing
systems, 2015, pp. 1135–1143.

[53] T. Zhang, S. Ye, Y. Zhang, Y. Wang, and M. Fardad, “Systematic weight prun-
ing of dnns using alternating direction method of multipliers,” arXiv preprint
arXiv:1802.05747, 2018.

[54] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” 2017.

[55] A. Dutta and A. Zisserman, “The VIA annotation software for images,
audio and video,” in Proceedings of the 27th ACM International Conference
on Multimedia, ser. MM ’19. New York, NY, USA: ACM, 2019. [Online].
Available: https://doi.org/10.1145/3343031.3350535

[56] A. Dutta, A. Gupta, and A. Zissermann, “VGG image annotator (VIA),”
http://www.robots.ox.ac.uk/ vgg/software/via/, 2016, version: X.Y.Z.

[57] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco: Common objects in
context,” 2014.

[58] F. Massa and R. Girshick, “maskrcnn-benchmark: Fast, modular reference im-
plementation of Instance Segmentation and Object Detection algorithms in Py-
Torch,” https://github.com/facebookresearch/maskrcnn-benchmark, 2018.

116

https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://github.com/utkuozbulak/pytorch-cnn-visualizations
https://doi.org/10.1145/3343031.3350535
https://github.com/facebookresearch/maskrcnn-benchmark

A The Advantages of Transfer Learning

The food waste classifier in Section 6.1 achieved a Top-1 accuracy of 90.1%, and a

Top-5 accuracy of 98.8% within only 30 epochs. One of the reasons why it was able to

learn so quickly is because the network had already learned to extract some features

through pretraining on the ImageNet dataset. In order to explore how much time

could be saved through utilizing pretrained models, a separate model was randomly

initialized and trained from scratch on the food waste dataset. Instead of utilizing

cross validation to find the best hyperparameters, the Adagrad optimizer was used

with default PyTorch settings. Training was performed for 200 epochs, the results

from which are shown in Figure 40.

At epoch 185, the classifier achieved a maximum Top-1 accuracy of 85%, and a

maximum Top-5 accuracy of 97.2%. While reasonably good, this is not competitive

with the pretrained model, which yields better performance within only 30 epochs.

On the Google Cloud Compute Engine, total training time for the pretrained model

using a high memory instance with 8vCPUs, 52GB RAM, and NVIDIA P100 GPU

is roughly 110 minutes and 20 seconds. Training a model for 200 epochs without

pretraining will take over 12 hours.

117

0 25 50 75 100 125 150 175 200
Epoch

0.5

1.0

1.5

2.0

2.5

Lo
ss

Training Loss
Test Loss
t * , Epoch 185

0 25 50 75 100 125 150 175 200
Epoch

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Train Top-1 Acc
Train Top-5 Acc
Test Top-1 Acc
Test Top-5 Acc
t * , Epoch 185
 Top-1: 85.0%
 Top-5: 97.2%

Figure 40: Waste Item Model Performance, Trained from Random Initialization.
Loss, Accuracy versus Epoch

118

B Performance of Various Architectures

As another exercise, the performance of different CNN architectures was compared

against our chosen model, EfficientNetB0. The models evaluated are:

• EfficientNetB1

• GoogleNet

• InceptionV3

• MobileNetV2

For consistency, each model was trained using the same hyperparameters obtained

via cross-validation on with the EfficientNetB0 model. As a result, the test may be

biased in favor of our chosen model. A record of the highest accuracies obtained by

each model is given in Table 6. The results versus epoch from this experiment are

shown in the following Figure 41.

Model
Best Top-1

Acc. (%), Epoch
Best Top-5

Acc. (%), Epoch
Parameter

Count
EfficientNetB0 90.7, Epoch 16 98.8, Epoch 21 5.29M
EfficientNetB1 90.7, Epoch 17 98.8, Epoch 25 7.79M

GoogleNet 89.6, Epoch 20 98.5, Epoch 22 6.8M
InceptionV3 90.4, Epoch 20 98.9, Epoch 17 23M
MobilenetV2 89.7, Epoch 26 98.5, Epoch 16 4.52M

Table 6: Comparison of Performance and Size for Various Models.

While the highest Top-5 accuracy was achieved by InceptionV3, all of the results are

very close. The results from training the larger EfficientNetB1 model show that the

additional parameters do not aid in learning any additional features on our dataset.

119

From these results, EfficientNetB0 is a good choice due to its modest parameter count

and high performance.

120

0 5 10 15 20 25 30
Epoch

94

95

96

97

98

99
Ac

cu
ra

cy
 (%

)

EfficientNetB0 Test Top 5 Acc
EfficientNetB1 Test Top 5 Acc
GoogleNet Test Top 5 Acc
InceptionV3 Test Top 5 Acc
MobileNetV2 Test Top 5 Acc

0 5 10 15 20 25 30
Epoch

76

78

80

82

84

86

88

90

Ac
cu

ra
cy

 (%
)

EfficientNetB0 Test Top 1 Acc
EfficientNetB1 Test Top 1 Acc
GoogleNet Test Top 1 Acc
InceptionV3 Test Top 1 Acc
MobileNetV2 Test Top 1 Acc

Figure 41: Performance of Various Models Trained on Waste Item Dataset.

121

C Instance Segmentation: POC

Finally, this thesis is concluded with a demo which outlines the potential for instance

segmentation on this data. One of the more popular frameworks for instance segmen-

tation is Facebook AI Research’s Mask-RCNN [54]. Mask-RCNN essentially utilizes

features extracted through a pretrained network, called a backbone, to propose regions

for bounding box coordinates while also classifying each pixel. The regions are pro-

posed in a branch of the network called the region proposal network, and the masks

are predicted in parallel head using a fully connected layer. The resulting masks can

be filtered by the model’s confidence in prediction.

In order to train Mask-RCNN, it must be given data with properly annotated masks.

This annotation can be a very slow process. As such, a small dataset of 300 training

examples and 30 test examples was created using VIA Image Annotator [55] [56].

There are roughly 11 classes of food in total. The annotations for this data were

exported in the popular COCO format [57]. For this demo, the open-sourced code

for Mask-RCNN found here [58] was used, with fbnet as the model’s backbone (pre-

trained on the food waste item dataset).

Some example predictions can be found in Figures 42, 43. 44. While the confidence

scores are fairly low and the boundaries are rough, is classifier generally able to

distinguish between the types of food in the images. This shows some potential for

future success in an instance segmentation model.

122

Figure 42: Example with Bread and Eggs.

123

Figure 43: Example with Pork and Bread [Rolls].

124

Figure 44: Example with Rice and Vegetables.

125

	An Application of Deep Learning Models to Automate Food Waste Classification
	Let us know how access to this document benefits you.
	Recommended Citation

	Introduction
	The Global Food Waste Problem
	What Others Are Doing About It
	How Image Classification Can Help
	Barriers to Success

	Contributions

	Related Work
	Other Feature Extraction Methods
	CNN-Based Classifiers
	Tying It Together

	Model Design
	Learning from Examples
	The Bias-Variance Decomposition
	Convolution
	Neural Networks
	Descending the Loss Landscape
	Batch Normalization

	Convolutional Neural Networks
	Pooling
	Hyperparameters
	Depth-wise Separable Convolution, Mobile Inverted Bottlenecks, and EfficientNet
	Image Classification
	Object Detection
	Semantic Segmentation
	Instance Segmentation
	Gradient-Weighted Class Activation Mapping

	Transfer Learning
	Performance Metrics and Best Practice

	Food Waste Datasets
	Data Cleaning
	Model Architecture
	Preprocessing
	Hyperparameters, Optimizer, and Loss Function

	Experimental Design
	Design Constraints
	Ground Truth Accuracy
	Class Imbalance

	Experiments

	Results and Discussion
	Waste Item Dataset
	Hyperparameter Grid Search
	Train and Test Results

	Container/No Container Dataset
	Container Dataset
	Hyperparameter Grid Search
	Train and Test Results

	Grouped Container Dataset
	Location X Dataset

	Summary and Conclusion
	Limitations
	Future Work

	References
	Appendix The Advantages of Transfer Learning
	Appendix Performance of Various Architectures
	Appendix Instance Segmentation: POC

