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ABSTRACT 

An Abstract of the thesis of Timothy Lawrence Grubba for the Master of 

Science in Biology presented June 2, 1997. 

Title: Human Trampling in the Upper Rocky Intertidal: Trampling and 

recovery in barnacle mediated succession. 

Marine intertidal ecosystems are vulnerable to human interference, 

because trampling can be a significant problem. I studied the impacts of 

trampling on community patterns and succession in a rocky intertidal 

habitats. This study was divided into two phases: ( 1) a trampling phase and 

(2) a recovery phase. Both phases are focused on two barnacles, Balanus 

glandula and Chthamalus dalli, and on fucoid and red algae. The trampling 

phase tested the effects of trampling on these organisms. The effects of 

herbivores, primarily limpets (Collisella digitalis) vvere also tested to 

determine whether anthropogenic (trampling) and natural (herbivory and 

limpet bulldozing) disturbances had independent or additive effects. The 

recovery phase monitored the recovery of these species after trampling was 

stopped. 

A randomized block design was set up at two sites on the Oregon 

coast. Light and heavy trampling regimes and herbivore inclusion and 



exclusion treatments were applied, to permit comparisons with control plots. 

During the trampling phase, experimental plots were trampled monthly from 

November 1992 to July 1993. During the recovery phase, the experimental 

plots were not trampled and recovery was monitored from August 1993 to 

October 1994. 

Trampling severely reduced the abundance of B. glandula, but the 

smaller C. dalli increased. This increased abundance was due both to 

resistance of C. dalli to trampling and to reduced competition from B. 

glandula. Herbivores reduced abundance of newly-settled B. glandula , but 

had no effect on C. dalli. Cover of algae declined rapidly under trampling. 

This was due both to direct effects and to removal of B. glandula, the 

settlement substrate. Trampling had severe effects on overall community 

composition. Some species were eliminated, and succession was 

prevented. In this study, light and heavy trampling had equally detrimental 

effects. Trampling swamped potential herbivore effects. 

Recovery/succession after trampling was slow as B. glandula, a 

facilitative species was in low abundance. Chthamalus dalli abundance 

was high due to high recruitment and to release from competition. 

Chthamalus dalli individuals grew to unusually large sizes, which enabled 

them to function as a facilitative species. This occurrence enabled 

succession to proceed despite the absence of B. glandula. Because it has 

already established, C. dalli in this large form has a short term competitive 



dominance over 8. glandula. With increased recruitment of 8. glandula, 

over time, the pre-emptive competition will fail and 8. glandula regain 

dominance. 
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INTRODUCTION 

Human use of rocky intertidal areas alters the abundance of species, 

and also affects key processes and interactions in the communities (e.g., 

Castilla & Duran 1985, Olvia & Castilla 1986, Ortega 1987, Castilla & 

Bustamente 1989, Duran & Castilla 1989, Godoy & Moreno 1989, Keough & 

Quinn 1992, Osenberg & Schmitt 1994, Osenberg et al. 1994, Thrush et al. 

1994 ). The effects of species reduction or removal by harvesting on 

community dynamics have been the focus of much attention (e.g., Moreno et 

al. 1984, Castilla & Duran 1985, Hockey & Bosman 1986, Olvia & Castilla 

1986, Ortega 1987, Castilla & Bustamente 1989, Duran & Castilla 1989, 

Godoy & Moreno 1989, Undervvood &Kennelly 1990). Human trampling is 

also known to affect community structure in many marine communities, 

including rocky intertidal shores (Zedler 1976, 1978, Beauchamp & Gowing 

1982, Ghazanshahi et al. 1983, Castilla & Bustamente 1989, Povey & 

Keough 1991, Brosnan & Crumrine 1992a, 1994, Brosnan 1993, Elliott 

1996) and coral reef flats (Liddle 1975, 1991, Liddle & Kay 1987, Kay & 

Liddle 1989). The impact of trampling on intertidal communities is likely to 

increase as more people visit the shore for educational, scientific and 

recreational use. 
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The effects of trampling on terrestrial communities have been much 

studied. (e.g., Jeffreys 1917, Shantz 1917, Bates 1934, 1935, Sun and 

Liddle 1993). Trampling also alters plant communities in alpine meadows, 

forests and sand dunes (Burden and Randerson 1972, Liddle 1975, 

Hylgaard and Liddle 1981, Nickerson and Thibodeau 1983, Sun and Liddle 

1993). Certain species are susceptible to trampling, while others thrive in 

trampled areas (Sun and Liddle 1993). Trampling impacts on marine 

communities have, until recently, received less attention. In the 1970's, 

repeated surveys of marine areas showed that communities changed, as 

human population density and shore access increased (Widdowson 1971, 

Boalche etal. 1974, Thom and Widdowson 1978). Recently there have been 

more direct observational and comparative studies (Zedler 1976, 1978, 

Beauchamp and Gowing 1982, Ghazanshahi et al. 1983), and experimental 

studies on the effects of trampling on intertidal communities (e.g., Castilla 

and Bustamente 1989, Povey and Keough 1991, Brosnan and Crumrine 

1992a, 1994, Brosnan 1993). Studies show that trampling has predictable 

effects on community patterns. Fucoid algae are particularly susceptible to 

trampling and are often rare at heavily visited sites (Zedler 1976, 1978, 

Beauchamp and Gowing 1982, Ghazanshahi et al. 1983, Povey and Keough 

1991, Brosnan and Crumine 1992a, b, 1994, Brosnan 1993). Low-growing 

algal turf are more resistant to dislodgment (Povey and Keough 1991, 
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Brosnan and Crumrine 1992a, b, 1994, Brosnan 1993, Elliott et al. 

unpublished manuscript). These studies establish the sometimes dramatic 

effects of trampling on competitive dominants and on later successional 

species. In this study, I extend the investigation of the effects of trampling to 

other organisms and its effects on successional pathways. 

Most of the above experimental studies considered only a few 

groups, mainly algae (Povey and Keough 1991, Brosnan and Crumrine 

1992a, b, 1994 ), and gastropods (Povey and Keough 1991) in high and mid­

intertidal zones, and mussels in the mid intertidal zone (Brosnan and 

Crumrine 1992a, 1994). Few studies have focused on the direct effects of 

trampling on barnacles or on indirect effects on the community brought 

about by effects on the barnacles. Barnacles dominate or form mixed algal­

barnacle assemblages in the upper intertidal zone of many temperate rocky 

shores (Lewis 1964, Connell 1961, Stephenson and Stephenson 1972). 

Barnacles often play a key role in succession, by facilitating the 

establishment of other species (e.g., Hawkins 1981, Hawkins and Hartnell 

1983, Lubchenco 1978, 1983, Hartnell and Hawkins 1985, Navarette and 

Castilla 1990, Farrell 1991 ). Brosnan and Crumrine (1994) noted that 

barnacle abundance \Nere reduced by trampling. However, they did not 

distinguish between barnacle species, or consider the indirect impacts of 

this on the community. In addition, no study that I am aware of, has 
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examined at interactions between the effects of trampling and biotic 

disturbance, e.g. bulldozing effects of herbivores. If trampling and natural 

disturbances have additive effects, this may magnify the importance of 

human disturbance. In this study, I experimentally tested the effects of 

trampling intensity on species composition and abundance of barnacles, and 

algal species associated with barnacles. I also experimentally tested 

interactions between trampling and herbivores (Limpets, Collisella digitalis), 

and how they affect barnacles and algae. 

Barnacles are often an essential link in the successional process 

(e.g., Hawkins 1981, 1983, Hawkins and Hartnoll 1983, Hartnoll and 

Hawkins 1985, Farrell 1989, 1991 ). Their tests provide a settlement site for 

algae and mussels. Recruitment of algae and mussels is often higher onto 

barnacle tests than onto bare rock (e.g., Burrows and Lodge 1950, 

Lubchenco 1978, 1983, Hawkins 1981, 1983, Petersen 1984a, b, Hartnell 

and Hawkins 1985, Farrell 1989, 1991, Navarette and Castilla 1990). In 

studies on the Oregon coast, Farrell ( 1991) found that algal colonization and 

succession were dependent on barnacles. Brosnan (unpublished 

manuscript) confirmed that algae do not become established in the absence 

of barnacles. Similarly, Lubchenco (1983) found that barnacles were nearly 

essential for the establishment of algae on shores in New England. On rocky 

shores in England, the presence of barnacles plays a key role in determining 
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the rate and trajectory of succession (Hawkins and Hartnell 1983, Hartnell 

and Hawkins 1985). Previous studies have shown that human trampling 

leads to reductions in abundance and diversity of barnacles and algae (e.g., 

Povey and Keough 1991, Brosnan and Crumrine 1992a, 1994). However, 

trampling effects on algae may be either by direct removal or by indirect 

removal of settlement substrate (barnacles). Thus by removing barnacles, 

trampling may also prevent algal recovery. 

Abundance of barnacles and algae is also affected by herbivores. 

Limpets, for example remove barnacles by bulldozing them (Branch 1975, 

1981 ). Thus, trampling and herbivory may have additive effects on barnacle 

abundance. Herbivores also reduce algal abundance directly (e.g., Branch 

1975, 1981, Lubchenco 1978, 1983, 1985, Underwood 1980, Jernakoff 

1983, Cubit 1984, Sousa 1984) and thus may retard succession (Farrell 

1989, 1991 ). Again, the effects of trampling and herbivory may be additive; 

we may also expect both direct effects on algae, and indirect effects exerted 

through effects on barnacles. 
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The Barnacle-Algal Assemblage 

Experiments were carried out in the upper intertidal zone on shores of the 

Oregon, USA (Fig 1 ). Two species of barnacles co-exist in this zone, 

Balanus glandula and Chthamalus dalli (Kozloff 1973). Balanus glandula is 

the larger species and outcompetes C. dalli for space (Farrell 1989, 1991 ). 

Algal recruitment is largely dependent on facilitation by§. glandula (Farrell 

1991, Brosnan unpublished manuscript). Facilitation by C. dalli is relatively 

unimportant (Farrell 1991 ). Limpets, as they graze on algae significantly 

reduce the abundance of B. glandula by bulldozing them (Farrell 1989, 

1991, Brosnan in prep), but they have little effect on C. dalli (Farrell 1991 ). 

Thus, Coexistence of these barnacle species is, therefore partly facilitated 

by limpets (Farrell 1989). Figure 2, summarizes the main interactions that 

occur in the upper intertidal zone. 

The upper intertidal zone is dominated by barnacles, or by a mixed 

assemblage of barnacles and algae. Algae often establish on barnacles, and 

spread to primary substrate (Farrell 1991, Brosnan personal observation). 

The main algal species on this part of the shore are fucoids (Pelvetiopsis 

limitata, Fucus distichus), red algae (Mastocarous papillatus, lridaea 

cornucopiae, Endoctadia muricata, and Petrocelis, the tetrasporic crust 

phase of M. papillatus, ), and the green alga Ulva sp. is occasionally 

common. 



·auoz IBP!l.J9lU! Jaddn a4l JO uomsod a41 · ~ aJn6t;:j 

L 



Figure 2. Main species interactions in the upper intertidal zone 
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Effects of Trampling and Herbivores on marine communities: 

Predictions 

Trampling removes biomass and creates space (Brosnan and 

Crumrine 1994 ). If trampling removes key species in a community then 

community wide processes, including species colonization and abundance 

will be affected. Table 1 summarizes predictions in t~e trampling phase for 

changes in species abundance and composition under light and heavy 

trampling intensities, and in the presence or absence of herbivores. Table 2 

summarizes predictions for the recovery phase. The predictions in Table 2 

are based on no significant herbivore effects and no significant differences 

between trampling intensities. 
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Table1. Predicted outcomes of trampling. 

HERBIVORES PRESENT HERBIVORS EXCLUDED 
No TRAMPLING §. glandula will be the §. glandula will outcompete, 
(CONTROL) dominant barnacle: Percent and exclude .Q. dalli. Algae 

cover of .Q. dalli will be low . will be more abundant than in 
Late successional algae (e.g., herbivore inclusion areas. 
fucoids) will be common and Algae may overgrow and 
many species will be smother barnacles. 
associated with barnacles. 
Early successional species 
will be rare. Herbivore-
resistant species will be 
present. 

LIGHT There will be some reduction §. glandula and foliose algae 
TRAMPLING in biomass but no large will be more abundant than in 

changes in community light trampling and the 
composition.§. glandula will presence of grazers, and .Q. 
show some reduction from dalli will be less abundant. 
trampling and grazers, and Herbivore-resistant algae will 
this will lead to increased be uncommon. Algal canopy 
abundance of .Q. dalli. Algal will be less abundant than in 
turf and grazer-resistant control areas, but will still be 
species will be common. relatively common. Overall, I 
Algal canopy will be present, predict a reduction in the 
but reduced from non- abundance of certain species 
trampled control levels. under light trampling 

conditions, but I do not 
predict that these species will 
be reduced to near zero 
levels. 

HEAVY §. glandula cover will be A low abundance of§. 
TRAMPLING significantly reduced. glandula, and foliose algae. 

Because it is smaller, ,Q. dalli Because the detrimental 
is less likely to be affected by effects of trampling may be 
trampling, and will be the offset by the absence of 
most abundant barnacle herbivores. Small barnacles 
species. Cover of fucoid and algae may become 
algae will decrease established. Chthamalus dalli 
dramatically. Cover will will be common and will co-
remain low, because~- exist with~. glandula. Under 
glandula substrate will be these conditions species that 
unavailable. Algal turf and dominate in no-trampling 
crusts which are resistant to conditions will persist: 
trampling and herbivory will However, they will be 
be abundant. The substrate significantly less common 
will be dominated by .Q. dalli and subject to frequent 
and algal turfs and crusts. disturbances from trampling. 
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Table 2. Predicted recovery pathway. 

HERBIVORES PRESENT AND EXCLUSION 
No TRAMPLING §. glandula will be the dominant barnacle: Percent cover of .Q. 
(CONTROL) dalli will be low. Late successional algae (e.g., fucoids) will be 

common and many species will be associated with barnacles. 
Early successional species will be rare. 

LIGHT §. glandula abundance will be low while cover of .Q. dalli will 
TRAMPLING be significantly greater initially. Over time, §. glandula 
AND HEAVY abundance increases while .Q. dalli abundance decreases. 
TRAMPLING The low abundance of§. glandula will retard establishment of 

late successional species such foliose ataae. 
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STUDY AREA 

Experiments were set up on tvvo rarely visited sites on the central 

Oregon coast USA, Fogarty Creek (44.510 N: 124.030 W) and the south 

headland at Yaquina Head (44.41 ON: 124.Q40W). Plots were located in the 

high intertidal zone (1.5-2.0 m above mean loY10r low water). These sites 

were chosen so that trampling from others vvould not confound the study. 

The Yaquina Head site is located at the base of a relatively 

inaccessible cliff. The area is frequented only by a few local fishermen. Their 

impact is restricted to small patches, 'Nhich Y10re not included in the 

experimental site. The shore consists of a narrow basalt platform and is 

exposed to a low to medium wave intensity from the southY10st. The 

community at Yaquina Head is dominated by barnacles (Balanus glandula 

and Chthamalus dalli). Macroalgae are not common and tend to be patchily 

distributed. 

The Fogarty Creek site is a basaltic headland 'Nhich has extensive 

intertidal benches. Access to the shore is through private property. Apart 

from other researchers, visitors to the headland are rare. Experiments Y10re 

set up on a small isolated northern headland. The community in this part of 

Fogarty Creek is composed of a mixed barnacle-algal assemblage. 



13 

Barnacles (B. glandula and C. dalli) are less common at Fogarty Creek than 

at Yaquina Head. Algal species are more abundant at Fogarty Creek. The 

main species present include fucoids, mainly Pelvetiopsis limitata and 

Fucus. distichus, and the red algae ( lridaea cornucopiae, Endocladia 

muricata, and Mastocarpus papillatus). 

METHODS 

The study was divided into a trampling phase and a recovery phase. 

In both phases a randomized block design was used to test the effects of 

trampling, and herbivores on the marine community and on the successional 

pathway. The experimental design consisted of three trampling intensities, 

(light trampling, heavy trampling, and a non-trampled control treatment), and 

three herbivore treatments (herbivore exclusion, herbivore inclusion, and a 

copper-paint control treatment). In each block, one replicate of each of the 

nine possible combinations of trampling intensity and herbivore treatments 

was established (Fig 3). There VJere four blocks at each of the two sites 

making a total of 72 experimental plots. Plots measured 1 Ocm by 1 Ocm and 

were marked out at each corner with a marine epoxy (Z-spar). 

During the trampling phase the control plots were not trampled. 

Trampled plots VJere trampled monthly for nine months from November 
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1992 to July 1993. Light trampling consisted of 150 single footsteps per plot 

per month. Heavy trampling consisted of 300 single footsteps per plot per 

month. These intensities were based on previous studies at frequently 

visited sites on the Oregon coast. Brosnan and Crumrine (1992a) found that 

species on frequently used sites are trampled up to 228 times per hour. 

During the recovery phase the monthly application of trampling was stopped 

for 15 months, from August 1993 and October 1994. 

Herbivores were excluded from herbivore exclusion treatments by 

painting a barrier of copper-based antifouling paint around the experimental 

plots (Cubit 1984). The paint was applied in a 5 cm wide band around the 

plots. Herbivore paint controls were used to test for any effects of copper­

pai nt. Paint was applied in two 10 cm wide bands at opposite sides of the 

plots. This allowed herbivores access only through the two paint-free sides. 

Herbivores were removed from the herbivore-exclusion treatments by hand. 

Herbivore treatments were maintained through both the trampling and 

recovery phases. On each sampling date, herbivore-exclusion plots were 

searched for grazers and any present were removed. As paint barriers 

deteriorated they were repainted. 

The trampling phase extended from November 1992 to July 1993. 

During this period nine monthly observations were made. The recovery 
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phase extended from August 1993 and October 1994. During this period 

thirteen monthly observations were made, with no observations taken on two 

months (November 1993 and May 1994) due to adverse conditions. Data 

were collected during both phases on percent cover and identity of species 

occupying primary space and secondary (canopy) space. For algae and 

barnacles, primary percent cover is defined as direct attachment to the 

substrate. For algae, canopy cover is the percent of the rock surface that a 

species covers, although it may not be attached at that particular point. 

Percent cover was determined by using a transparent vinyl sheet (10 cm by 

10 cm) marked with 100 randomly spaced dots. The sheet was laid directly 

over the plots, and any species under a dot was recorded. 

Data Analysis 

Data from the trampling and recovery phases was analyzed 

separately. Raw data were tested for homogeneity of variance using 

Hartley's test (p< 0.05) (Sokal and Rohlf 1981 ). Variances were not 

homoscedastic, and data were arcsine transformed to give homogeneity 

(Hartley's test p< 0.05). Transformed data were then analyzed using a 

repeated measures analysis of variance (RMANOVA) on the program Systat 

(Systat Inc. 1990). RMANOVA were carried out on each species to test for 

significant changes in mean cover over time in the treatment combinations. 



17 

Special attention was given to trampling, herbivore and trampling 

herbivore effects. Also noted were block and site differences. As sites were 

so different in species composition 1 blocks were nested within sites during 

the RMANOVA. The Post Hoc test, Student-Newman-Keuls (SNK) was 

carried out on any treatments that showed significant results. The results of 

the RMANOVA are summarized in the results section. 
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RESULTS 

TRAMPLING PHASE: 

Barnacles 

Balanus glandula (Table 3, Figs. 4 and 5) 

Balanus glandula density and distribution were patchily distributed 

between sites and between blocks and plots within each site throughout the 

trampling phase (Table 3). Generally, B. glandula was more abundant at 

Yaquina Head with distribution between blocks heterogenic. Balanus 

glandula was less abundant at Fogarty Creek but more homogenously 

distributed among blocks. 

Trampling significantly reduced barnacle abundance at Fogarty Creek 

and Yaquina Head (Table 3; Figs 4 and 5 ). This effect occurred within one 

month of the first trampling (Figs 4 and 5). At Fogarty Creek, where B. 

glandula was less abundant, mean cover in trampled plots declined from 

37.6% in November to 9.2% in December 1992 (Fig 4), Balanus glandula 

mean cover in control plots during the same period declined from 46. 7% to 

25.0% (Fig 4). At Yaquina Head, B. glandula mean cover declined from 

66% to 7.8% in trampled plots between November and December 1992 (Fig 

5). At the same time, B. glandula mean cover in control plots declined from 

67 .3% in November to 58.6% in December 1992 (Fig 5). 
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Trampling continued to reduce 8. glandula mean cover throughout 

the experiment. Mean cover in trampled plots remained lower than the mean 

cover in control plots in all cases except March 1993 at Fogarty Creek (Fig 

4). There were no significant differences in mean cover between light 

trampling and heavy trampling on any date at either site (Table 3). Light 

trampling removed almost all B. glandula individuals, and additional 

trampling had no further effect. 

Balanus glandula recruited in March 1993, as shown by an increase 

in mean cover, in all plots at both sites (Figs 4 and 5). At Yaquina Head, the 

level of recruitment did not compensate for the effects of trampling and mean 

cover in trampled plots remained significantly lower than mean cover in 

control plots (Fig 5). In contrast, at Fogarty Creek (where barnacle 

abundance is lower) recruitment into trampled plots was sufficient to 

compensate for trampling effects (Fig 4). However, subsequent trampling 

reduced B. glandula mean cover so that by April 1993, B. glandula mean 

cover was again significantly lower in trampled plots. However, B. glandula 

mean cover did not decline to pre-recruitment mean cover at either site (Figs 

4 and 5). There were no further recruitment pulses during the trampling 

phase. 



Figure 4. Effect of trampling on Balanus glandula at Fogarty Creek 
in the presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Figure 5. Effect of trampling on Balanus glandula at Yaquina Head 
in the presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Table 3. Summary of RMANOVA on abundance of barnacles (Balanus 

glandula) in the trampling phase. Data were arcsine -transformed 

prior to analysis. 

SOURCE OF MS F p 

Between treatments 
Site 1 3.605 64.331 p <0.05 
Block{Site} 6 0.140 2.496 p <0.05 
Trampling{Site} 4 4.466 79.702 p <0.05 
Herbivore{ Site} 4 0.207 3.692 p <0.05 
Trampl ing*Herbivore 4 0.006 0.115 0.976 
Error 52 0.056 

Within treatments 
Date 8 1.816 142.473 p <0.05 
Date*Site 8 0.058 4.568 p <0.05 
Date*Block{Site} 48 0.027 2.096 p <0.05 
Date*Trampling{Site} 32 0.106 8.291 p <0.05 
Date*Herbivore{Site} 32 0.016 1.245 0.173 
Date*Trampl ing*Herbivore 32 0.019 1.458 0.054 
Error 416 0.013 
Greenhouse-Geisser Epsilon: 0.6158: Huyn-Feldt Episilon: 0.9366 

Herbivores had no effect on B. glandula cover at Fogarty Creek 

(Table 3). However, at Yaquina Head herbivores had a significant effect on 

barnacle abundance, beginning when B. glandula recruited in March 1993. 

The rate of barnacle loss from trampled plots with herbivores present was 

higher than from trampled plots without herbivores. For instance, in April 

1993, one month after recruitment, in trampled plots, mean cover was 14% 
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in herbivore inclusion plots and 27% in herbivore exclusion treatments (Fig. 

5). 

Herbivores continued to have a negative effect on B. glandula throughout 

the experimental period. Limpets as well as trampling reduced barnacle 

cover. Consequently, B. glandula cover was significantly lower in trampled 

plots with herbivores than in trampled plots without herbivores (Fig. 5). 
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Chthamalus dalli (Table 4, Figs 6 and 7) 

Chthamalus dalli abundance was low prior to trampling at both sites, 

1.3% at Fogarty Creek, and 0.03% at Yaquina Head (Figs 6 and 7). The 

distribution of C. dalli was also spatially heterogenic within each site (Table 

4). For example, at Yaquina Head, C. dalli mean cover was higher in 

herbivore inclusion plots than in herbivore exclusion plots (Fig. 7 ). 

Trampling had no negative effects on C. dalli abundance at either 

site. Instead, there were indirect positive effects with mean cover of C. dalli 

increasing as a result of the reduction~· glandula (Table 4). At Yaquina 

Head, C. dalli mean cover increased gradually in all plots. However, C. dalli 

was never abundant, and maximum mean cover was less than 15% (Fig. 7). 

At Fogarty Creek, C. dalli mean cover gradually increased and became more 

abundant than at Yaquina Head (Fig 6). At Fogarty Creek, C. dalli mean 

cover reached 35% in some trampled plots (Fig. 6). There were two 

discernable 

recruitment pulses in February 1993, and a larger settlement pulse in July 

1993 (Figs 6 and 7). 

Chthamalus dalli mean cover in control plots increased slightly 

through the trampling phase. However, mean cover remained low (Figs 6 

and 7). There were no herbivore effects at either site (Table 4). There was 

also no significant difference between light and heavy trampling. 



Figure 6. Effect of trampling on Chthamalus dalli at Fogarty Creek in 
the presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Figure 7. Effect of trampling on Chthamalus datli at Yaquina Head in 
the presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Table 4. Summary of RMANOVA on abundance of barnacles (Chthamalus 

dalli) in the trampling phase. Data were arcsine -transformed prior to 

analysis. 

SOURCE 

Between treatments 
Site 
Bfock{site} 
Trampling{ site} 
Herbivore{ site} 
Trampling*Herbivore 
Error 

Within treatments 

OF MS 

1 0.515 
6 0.144 
4 0.044 
4 0.027 
4 0.021 

52 0.036 

Date 8 0.936 
Date*Site 8 0.185 
Date*Block{ site} 48 0. 024 
Date*Trampling{site} 32 0.013 
Date*Herbivore{site} 32 0.01 O 
Date*Trampling*Herbivore 32 0.009 
Error 416 0.008 

F 

14.132 
3.951 
1.196 
0.742 
0.584 

117.415 
23.247 
3.057 
1.659 
1.312 
1.131 

p 

p <0.05 
p <0.05 
0.324 
0.568 
0.676 

P<0.05 
P<0.05 
P<0.05 
p <0.05 
0.123 
0.289 

Greenhouse-Geisser Epsilon: 0.6909: Huyn-Feldt Episilon: 1.0000 
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Fucoid algae 

Density and distribution of fucoid Algae were spatially heterogous 

between sites and between blocks and plots within each site throughout the 

trampling phase (Tables 5 and 6). Generally, fucoid algae were more 

abundant at Fogarty Creek compared to Yaquina Head. At Fogarty Creek, 

fucoid density and distribution were more spatially homogenic, 'Nhile at 

Yaquina Head fucoid density and distribution were heterogenic to the 

extreme 'Nhere blocks lacked fucoids. Fucoids are very susceptible to 

trampling. Results for canopy and primary cover are presented separately. 

Canopy Cover (Table 5; Figs 8 and 9) 

At Fogarty Creek in December 1992 (after one application of 

trampling), mean cover had declined from an average of 11.0% in November 

1992 to 0. 9% in December 1992 in herbivore inclusion treatments, and from 

12.8% in November 1992 to 0.7% in December 1992 in herbivore exclusion 

treatments (Fig 8). There was no difference in canopy loss between light and 

heavy trampling (Table 5). Trampling and the lack of facilitative species 

prevented foliose algae from significant recovery. 

At Fogarty Creek, canopy cover in control plots remained relatively 

high and showed seasonal fluctuations. Canopy mean cover ranged from 
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5.5% in November 1992 to 27% in March 1993 in herbivore inclusion plots 

(Fig 8). Canopy cover in control plots fluctuated more than canopy cover in 

trampled plots, which remained at <15% cover throughout the experimental 

period (Fig 8). At Fogarty Creek, canopy cover declined in herbivore 

inclusion plots between May and July 1993. These declines were the result 

of harbor seals, Phoca vitulina, using blocks 2 and 3 as haul-out areas. 

Herbivores did not significantly affect mean canopy cover of fucoids. In 

addition, there were no herbivore-trampling interactions: Trampling was the 

only significant factor (Table 5). This implies that trampling swamps any 

potential herbivore effects on recruitment or colonization of algae. 

At Yaquina Head, canopy mean cover was low, 8.5% in November 

1992 (Fig 9). Canopy cover in trampled plots declined to zero within two 

months of trampling. Canopy cover did not recover in herbivore inclusion 

plots during the trampling phase. Canopy cover in herbivore exclusion plots 

ranged from 0% to 3% (Fig 9). Canopy cover in the control plots increased 

throughout the spring, and declined in summer (Fig 9). 

Canopy cover was most abundant in herbivore inclusion plots due to 

the heterogenic distribution of fucoids (Table 5; Fig. 9). Initial cover ranged 

from 14% to 40% in control, herbivore-exclusion plots. By chance, 

experimental plots that were randomly assigned as herbivore inclusion 



Figure 8. Effect of trampling on Fucoid Algae (Canopy) at Fogarty 
Creek in the presence and absence of herbivores. Data 
points represent the mean, and vertical bars are± 1 SE. 
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Figure 9. Effect of trampling on Fucoid Algae (Canopy) at Yaquina 
Head in the presence and absence of herbivores. Data 
points represent the mean, and vertical bars are± 1 SE. 
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Table 5. Summary of RMANOVA on abundance of Fucoid Algae (canopy) in 

the trampling phase. Data were arcsine -transformed prior to 

analysis. 

SOURCE 

Between treatments 
Site 
Block{Site} 
Trampling{Site} 
Herbivore{ Site} 
Trampling*Herbivore 
Error 

Within treatments 

OF MS 

1 0.137 
6 0.013 
4 0.195 
4 0.003 
4 0.004 
52 0.006 

Date 8 0.004 
Date*Site 8 0.012 
Date*Block{Site} 48 0.006 
Date*Trampling{Site} 32 0.005 
Date*Herbivore{Site} 32 0. 004 
Date*Trampling*Herbivore 32 0.003 
Error 416 0.002 

F 

24.820 
2.282 
35.305 
0.559 
0.659 

1.631 
5.259 
2.489 
1.989 
1.789 
1.233 

p 

p <0.05 
p <0.05 
p <0.05 
0.693 
0.623 

0.114 
p <0.05 
p <0.05 
p <0.05 
p <0.05 
0.183 

Greenhouse-Geisser Epsilon: 0.6254: Huyn-Feldt Episilon: 0.9529 

treatments had a greater cover of fucoids. By contrast, in herbivore 

exclusion plots and paint control plots, initial fucoid mean cover was less 

than 10%. 

There was no difference between control plots in herbivore exclusion 

plots and paint control (herbivore inclusion) plots during the experiment. 

This effect was carried through the trampling phase. So the significance of 

herbivores (Table 5) is actually not due to herbivore effects. 
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Primary cover (Table 6; Figs 10 and 11) 

Two months after trampling was begun primary cover of fucoids 

declined significantly (Table 6; Figs 10 and 11 ). At Fogarty, Creek primary 

cover in trampled plots remained below 5% for the remainder of the 

trampling phase (Fig 10). By contrast, primary cover in control plots 

gradually increased during spring. At Fogarty Creek, there was no 

difference between the effects of light and heavy trampling. Both reduced 

fucoid primary cover to the same level. At the beginning of the experiment 

(prior to any trampling), algal cover was higher in the herbivore exclusion 

treatments (Fig 10). This was not due to any trampling effect. However, after 

trampling started, herbivores had no effect on trampled plots: Cover in 

herbivore inclusion and exclusion plots in trampled treatments was the 

same, and cover in herbivore inclusion and exclusion plots in control 

treatments was also the same (Table 6; Fig 10 ). 

Primary cover of fucoid algae at Yaquina Head was low. Trampling 

reduced mean cover to 0% within two months of trampling (Fig 11 ). There 

was some recruitment in April in herbivore inclusion plots but these plants 

disappeared a month later (Fig 11 ). In control plots, fucoid primary cover 

increased and was most abundant in the herbivore inclusion plots (for 

reasons explained above). 



Figure 10. Effect of trampling on Fucoid Algae (Primary) at Fogarty 
Creek in the presence and absence of herbivores. Data 
points represent the mean, and vertical bars are± 1 SE. 
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Figure 11. Effect of trampling on Fucoid Algae (Primary) at 
Yaquina Head in the presence and absence of 

herbivores. Vertical bars are ± 1 SE. 
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Table 6. Summary of RMANOVA on abundance of Fucoid Algae (primary) in 

the trampling phase. Data were arcsine -transformed prior to 

analysis. 

SOURCE 

Between treatments 
Site 
Block{Site} 
Trampling{Site} 
Herbivore{S ite} 
Tramp I ing*Herbivore 
Error 

Within treatments 

DF MS 

1 0.151 
6 0.011 
4 0.118 
4 0.001 
4 0.004 

52 0.006 

Date 8 0.003 
Date*Site 8 0.005 
Date*Block{Site} 48 0.003 
Date*Trampling{Site} 32 0.003 
Date*Herbivore{Site} 32 0.002 
Date*Trampling*Herbivore 32 0.001 
Error 416 0.001 

F 

24.861 
1.753 
19.442 
0.207 
0.600 

2.250 
4.140 
2.540 
2.102 
1.447 
0.546 

p 

p <0.05 
0.127 
p <0.05 
0.934 
0.665 

p <0.05 
p <0.05 
p <0.05 
p <0.05 
0.058 
0.980 

Greenhouse-Geisser Epsilon: 0.6254: Huyn-Feldt Episilon: 0.9529 
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Endocladia muricata (Table 7, Figure 12) 

Endocladia muricata abundance at Yaquina Head was very low and 

patchily distributed. For these reasons, data on this species at the Yaquina 

Head site are not included as they could not be analyzed or graphed. At 

Fogarty Creek, E. muricata was rarely attached directly to primary substrate. 

The majority of E. muricata individuals grew as epibionts on barnacles 

(predominantly B. glandula). Trampling significantly reduced ,E. muricata 

cover beginning in January 1993 (Table 7; Fig. 12). Canopy cover increased 

in control plots (up to 25% cover in herbivore inclusion plots), while cover in 

trampled plots remained low, >5% (Fig 12). The effect of trampling intensity 

on E. muricata was not significant. There were no herbivore effects (Table 

7). Endocladia muricata was present only in trace amounts in plots at 

Yaquina Head, and cover was too low for analysis. 



Figure 12. Effect of trampling on Endocladia muricata at Fogarty 
Creek in the presence and absence of herbivores. Data 
points represent the mean, and vertical bars are± 1 SE. 
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Table 7. Summary of RMANOVA on abundance of (Endocladia muricata) in 

the trampling phase. Data were arcsine -transformed prior to 

analysis. 

SOURCE 

Between treatments 
Block 
Trampling 
Herbivore 
Trampling*Herbivore 
Error 

Within treatments 

OF MS 

3 0.079 
2 1.361 
2 0.122 
4 0.075 
24 0.039 

Date 8 0.062 
Date*Block 24 0.017 
Date*Trampling 16 0.057 
Date*Herbivore 16 0.009 
Date*Trampling*Herbivore 32 0.008 
Error 192 0.009 

F 

2.025 
34.764 
3.116 
1.911 

6.782 
1.836 
6.180 
0.986 
0.894 

p 

0.137 
p <0.05 
0.063 
0.141 

p <0.05 
p <0.05 
p <0.05 
0.474 
0.634 

Greenhouse-Geisser Epsilon: 0.6211: Huyn-Feldt Episilon: 1.0000 
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RECOVERY PHASE 

Barnacles: 

Balanus glandula (Table 8; Figs 13 and 14) 

The distribution and abundance of ,f;i. glandula is spatially heterogenic 

within sites and between sites (Table 8). 8alanus glandula mean cover 

remained higher at Yaquina Head compared to Fogarty Creek. 8alanus 

glandula mean cover varied throughout the recovery phase at both sites 

(Figs 13 and 14). There were no significant recruitment pulses during the 

recovery phase, unlike the recruitment pulses observed during the trampling 

phase. Initially mean cover of 8. glandula in trampled plots during the 

recovery phase was below 15% at both sites Fogarty Creek: light trampling 

9.9%, heavy trampling 9.7%; Yaquina Head: light trampling 13.3%, heavy 

trampling 12.7% (Figs 13 and 14). At Fogarty Creek, 8. glandula mean% 

cover remained below 20% in light trampling treatments and below 16.5% in 

heavy trampling treatments (Fig 13). At Yaquina Head, 8. glandula mean % 

cover remained below 36.9% in light trampling treatments and below 29.7% 

in heavy trampling treatments (Fig 14). 

In the control plots (no trampling) ,f;i. glandula mean cover varied 

throughout the recovery phase but on average declined. At Fogarty Creek, 

the initial mean cover was 27.0%; by the conclusion of observations, mean 

cover was 21.3% (Fig 13). At Yaquina Head, the initial mean cover was 
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59.5%; by the conclusion of observations mean cover, was 52.8% (Fig 14). 

Generally, mean cover in the controls converged with mean cover in the 

trampling treatments. 

There continued to be no significant differences in mean cover of B. 

glandula between light and heavy trampling. There was, however, one case 

on July 1994 at Yaquina Head vvhere mean cover was greater in light 

trampling (42.1 %) compared to heavy trampling (27.0%). At both Fogarty 

Creek and Yaquina Head there were significant differences in B. glandula 

mean cover between each of the trampling treatments (light and heavy) and 

the controls (Table 8). 

There were no significant differences in mean cover of B. glandula 

between herbivores present and herbivore exclusion, and herbivores 

presenUexclusion and paint control at Fogarty Creek and Yaquina Head 

(Table 8). 



Figure 13. Recovery of Balanus glandula at Fogarty Creek in the 
presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Figure 14. Recovery of Balanus glandula at Yaquina Head in the 
presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Table 8. Summary of RMANOVA on abundance of barnacles (Balanus 

glandula) in the recovery phase. Data were arcsine -transformed 

prior to analysis. 

SOURCE OF MS F p 

Between treatments 
Site 1 8.646 73.029 p <0.05 
Block{Site} 6 0.390 3.297 p <0.05 
Trampling{Site} 4 4.886 41.271 p <0.05 
Herbivore{Site} 4 0.447 3.772 p <0.05 
Trampling*Herbivore 4 0.188 1.587 0.192 
Error 52 0.118 

Within treatments 
Date 12 0.080 5.508 p <0.05 
Date*Site 12 0.123 8.469 p <0.05 
Date*Block{Site} 72 0.066 4.549 p <0.05 
Date*Trampling{Site} 48 0.054 3.707 p <0.05 
Date*Herbivore{Site} 48 0.017 1.140 0.245 
Date*Trampling*Herbivore 48 0.009 0.611 0.983 
Error 624 0.015 
Greenhouse-Geisser Epsilon: 0.3342: Huyn-Feldt Episilon: 0.4979 
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Chthamalus dalli (Table 9; Figs. 15 and 16) 

Chthamalus dalli abundance was low and spatially heterogenic 

(between sites and within sites) prior to this study (trampling and recovery 

phase); (Table 9). Chthamalus dalli continued to increase in abundance 

throughout the recovery phase and remained spatially heterogenic (Table 

9). The increase in abundance was due to the near constant recruitment of 

C. dalli in the early stages of the recovery phase. At Fogarty Creek, mean 

cover was initially 10.0% in the light trampling treatments and 7.2% in heavy 

trampling treatments (Fig 15). There was a large recruitment on September 

1993 vvhich peaked by the October 1993 (Fig 15). By the conclusion of the 

recovery phase mean cover in light trampling was 49.6% and 42.8% in 

heavy trampling (Fig 15). After this point there was a slight decline in C. dalli 

cover. At Yaquina Head mean cover was initially 7.7% in light trampling 

treatments and 7 .2% in trampling treatments. Chthamalus dalli recruitment 

was slow reaching a peak around July 1994 and August 1994 (Fig 16). 

In general, mean cover of C. dalli in trampling controls was variable at 

both sites. At Fogarty Creek, C. dalli mean cover in the trampling treatments 

exceeded the mean cover in the trampling controls (Fig 15). At Fogarty 

Creek mean cover in the trampling controls increased from an initial mean 

cover of 9.3% to 13.9% by the end of the recovery phase (Fig 15). At 
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Yaquina Head, mean cover in the trampling control decreased from an initial 

cover of 6.6% to 1. 7% by the end of the recovery phase (Fig 16). 

Mean cover of C. dalli was significantly higher in light and heavy trampling 

treatments compared to the controls at all dates except the first date (August 

1993) at Fogarty Creek (Table 9). At Yaquina Head, mean cover of C. dalli 

was significantly greater in light and heavy trampling treatments compared to 

the controls at all dates except the first two dates (August 1993 and 

September 1993). At Fogarty Creek there were no significant differences in 

C. dalli mean cover between light and heavy trampling at both sites. There 

were no significant differences in mean cover of C. dalli between herbivores 

present and herbivore exclusion on any dates and at both sites. 



Figure 15. Recovery of Chthamalus dalli at Fogarty Creek in the 
presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Figure 16. Recovery of Chthamalus dalli at Yaquina Head in the 
presence and absence of herbivores. Data points 
represent the mean, and vertical bars are ± 1 SE. 
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Table 9. Summary of RMANOVA on abundance of barnacles (Chthamalus 

dalli) in the recovery phase. Data were arcsine -transformed prior 

to analysis. 

SOURCE 

Between treatments 
Site 
Block{ site} 
Trampling{site} 
Herbivore{ site} 
Trampl ing*Herbivore 
Error 

Within treatments 

OF MS 

1 24.164 
6 1.592 
4 4.767 
4 0.023 
4 0.289 
52 0.163 

Date 12 0.438 
Date*Site 12 0.219 
Date*Block{site} 72 0.036 
Date*Trampling{site} 48 0.068 
Date*Herbivore{site} 48 0.013 
Date*Trampling*Herbivore 48 0.012 
Error 624 0.012 

F 

147.983 
9.750 
29.195 
0.138 
1.772 

37.824 
18.866 
3.114 
5.895 
1.104 
1.057 

p 

p <0.05 
p <0.05 
p <0.05 
0.967 
0.149 

p <0.05 
p <0.05 
p <0.05 
p <0.05 
0.335 
0.392 

Greenhouse-Geisser Epsilon: 0.5335: Huyn-Feldt Episilon: 0.8387 



50 

Fucoid Algae 

Canopy (Table 10; Figs 17 and 18) 

During the trampling phase the fucoid canopy was completely 

removed. The recovery of the canopy was retarded in trampled plots at both 

sites (Figs 17 and 18) . By the conclusion of the recovery phase, mean 

canopy cover in trampled plots remained below 20%. There continued to be 

no difference between light and heavy trampling plots (Table 10). There was 

also no effect of herbivores at either site. 

At Fogarty Creek, mean canopy cover in the controls was 

significantly greater than in the trampling treatments from August 1993 to 

September 1994. Mean canopy cover in the controls declined initially in the 

recovery phase following the downward trend seen in the trampling phase. 

In herbivore present plots mean canopy cover increased rapidly early in the 

recovery phase and reached a peak of 31% on October 1993. Canopy then 

declined to January 1994 after which it increased gradually, reaching a 

second higher peak of 36.3% on July 1994. After July 1994 mean canopy 

declined, reaching 23% by October 1994. In herbivore exclusion plots, mean 

canopy cover declined. rapidly between the trampling phase (22%) and the 

recovery phase (8% ). Canopy cover then increased slightly through the 
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recovery phase and reached 15.8% by October 1994,which was lower than 

pre-trampling cover. 

At Yaquina Head, mean canopy cover in the controls was significantly 

greater than in the trampling treatments throughout the recovery phase 

(Table 10). Mean cover of the canopy increased steadily throughout the 

recovery phase reaching a peak by August 1994. In the herbivore present 

plots, the peak mean cover reached 100%, while in the herbivore exclusion 

plots the peak mean cover of 55%. The mean cover was significantly greater 

than the pre-experimental of November 1992. 



Figure 17. Recovery of Fucoid algae (Canopy) at Fogarty Creek in 
the presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Figure 18. Recovery of Fucoid algae (Canopy) at Yaquina Head in 
the presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Table 10. Summary of RMANOVA on abundance of Fucoids (canopy) in the 

recovery phase. Data were arcsine -transformed prior to analysis. 

SOURCE 

Between treatments 
Site 
Block{ site} 
Trampling{ site} 
Herbivore{ site} 
Trampl ing*Herbivore 
Error 

Within treatments 

OF MS 

1 6.880 
6 2.188 
4 11.458 
4 0.590 
4 1.486 
52 0.507 

Date 12 0.865 
Date*Site 12 0.366 
Date*Block{site} 72 0.097 
Date*Trampling{site} 48 0.148 
Date*Herbivore{site} 48 0.015 
Date*Trampling*Herbivore 48 0.017 
Error 624 0.022 

F 

13.564 
4.314 
22.588 
1.164 
2.930 

39.748 
16.810 
4.458 
6.804 
0.688 
0.797 

p 

p <0.05 
p <0.05 
p <0.05 
0.337 
0.290 

p <0.05 
p <0.05 
p <0.05 
p <0.05 
0.946 
0.835 

Greenhouse-Geisser Epsilon: 0.6254: Huyn-Feldt Episilon: 0.9529 
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Primary (Figs 19 and 20) 

The mean cover of fucoid primary cover was too low for statistical 

analysis. At Fogarty Creek, primary cover was zero until after April 1994 at 

'Nhich point it never exceeded mean of 4%. By the end of the recovery 

phase, mean cover was generally lower than the pretrampling levels of 

November 1992. Mean cover in control plots varied at Fogarty Creek, never 

exceeding 5%. Mean cover remained higher than in the trampling plots 

except on the September 1994 in herbivore present plots, and June 1994 

and July 1994 in herbivore exclusion plots. 

At Yaquina Head, mean primary cover remained under 2% in 

herbivore present plots, 'Nhile in herbivore exclusion plots mean primary 

cover remained under 4%. In the controls in herbivore present plots, 

primary cover varied but continued on an upward trend that was observed in 

the trampling phase 



Figure 19. Recovery of Fucoid algae (Primary) at Fogarty Creek in 
the presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Figure 20. Recovery of Fucoid algae (Primary) at Yaquina Head in 
the presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Endocladia muricata (Table 11; Fig 21) 

In general mean, cover of E. muricata increased throughout the 

recovery phase at Fogarty Creek (Fig 21 ). At Yaquina Head, E. muricata 

mean cover was very low throughout both the trampling phase and recovery 

phase and is not discussed in the this paper. The distribution of E. muricata 

was spatially heterogenic, within the site and blocks (Table 11 ). There was a 

peak in E. muricata cover at both sites between July 1994 and August 1994 

(Fig 21 ). After this date f. muricata mean cover began to decline. 

Mean cover of E. muricata in light and heavy trampling was 

significantly different than control on two dates. Mean cover of E. muricata in 

heavy trampling was significantly different than the control on a further four 

dates. Mean cover of E. muricata herbivore present treatments were 

significantly greater than herbivore exclusion on August 1993 (Table 11 ). 



Figure 21. Recovery of Endocladia muricata at Fogarty Creek in 
the presence and absence of herbivores. Data points 
represent the mean, and vertical bars are± 1 SE. 
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Table 11. Summary of RMANOVA on abundance of (Endocladia muricata) in 

the recovery phase. Data were arcsine -transformed prior to 

analysis. 

SOURCE 

Between treatments 
Block 
Trampling 
Herbivore 
Tramp I ing*Herbivore 
Error 

Within treatments 

OF MS 

3 1.187 
2 0.276 
2 0.675 
4 0.228 
24 0.138 

Date 12 0.424 
Date*Block 36 0.032 
Date*Trampling 24 0.025 
Date*Herbivore 24 0.023 
Date*Trampling*Herbivore 48 0.009 
Error 288 0.013 

F 

8.600 
1.999 
4.888 
1.649 

32.002 
2.430 
1.910 
1.746 
0.665 

p 

p <0.05 
0.157 
0.017 
0.195 

p <0.05 
p <0.05 
p <0.05 
p <0.05 
0.956 

Greenhouse-Geisser Epsilon: 0.3484: Huyn-Feldt Episilon: 0.6248 
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DISCUSSION 

The two phases of this study investigated a series of predictions on 

the effects of trampling, recovery from trampling and the presence or 

absence of herbivores on the upper shore barnacle-algal community (Tables 

12, and 13). Some of these predictions were supported, trampling dislodged 

the larger barnacle species, and the smaller, competitively inferior barnacle 

became more abundant in trampled plots. Fucoid algae were highly 

susceptible to trampling. Fucoid algae and E. muricata recovered slowly in 

the absence of B. glandula. Other predictions were not supported, 

herbivores had little effect on the ability of communities to persist or to 

recover under trampling conditions. There was no difference between the 

effects of light and heavy trampling on most species in the community. 

Overall, trampling changed the community from one dominated by B. 

glandula and fucoid algae to one where the smaller barnacle C. dalli, algal 

crust, and bare space was more common. Succession was prevented 

because of direct effects of trampling on organisms and also because of 

indirect effects of the presence of barnacles. Balanus glandula recovery 

was slow due to low recruitment and competitive exclusion by C. dalli. 

Recruitment of C. dalli was high and individuals grew to a large size. 
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Table 12. Predictions/Results during the Trampling Phase 

HERBIVORES PRESENT HERBIVORE EXCLUSION 
No TRAMPLING Predicted: fi. glandula Predicted: fi. glandula and 
(CONTROL) abundant; ,C. dalli present at foliose algae less common than 

low density; Late in no trampling/ herbivores 
successional algae abundant; present; ~- dam coexists with a. 
herbivore resistant species glandula; Algal turf and 
present. Observed: Petrocelis more common than in 
supported, however algae no trampling/herbivores present. 
were uncommon at Y aquina Observed: not supported; 
Head. similar results to no 

tramplina/herbivores present 
LIGHT Predicted: Reduction in Predicted: §. glandula and 
TRAMPLING biomass; no large changes in fucoid algae more common than 

community composition; a. light trampling/herbivore present; 
glandula less common;~. ~. dalti less common; algal 
dalli more common; algal turf canopy less abundant than in 
and grazer-resistant species controls. Observed: not 
more common; algal canopy supported; §. glandula and 
present but tower than fucoid algae reduced to near 
controls. zero levels; increased ~. datti 
Observed: not supported;§. cover. 
gtandula and fucoid algae 
reduced to near zero levels; 
increased C. dalti cover. 

HEAVY Predicted: §. glandula Predicted: §. glandula 
TRAMPLING significantly reduced; ~- dalli abundance low; fucoid algae 

more abundant; fucoid algae abundance low; ~- dalli more 
decrease; algal turf and common and coexist with§. 
petrocelis more. glandula; species dominant in no 
Observed: supported; trampling will persist. 
reduction in§. glandula; Observed:§. glandula persist 
increase in ~. dalli; foliose longer; trampling swamped 
algae removed; petrocelis herbivore effects - no difference 
and bare rock more between herbivore inclusion and 
abundant. exclusion plots. 
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Table 13. Predictions/Results during Recovery Phase. 

HERBIVORES PRESENT AND HERBIVORE EXCLUSION 
No TRAMPLING Predicted: .e. glandula abundant; ~. dalli present at low density; 
(CONTROL) Late successional algae abundant. 

Observed: supported, however algae were uncommon at 
Yaquina Head. C. dalli abundance increased due to high 
recruitment. 

LIGHT AND Predicted: .e. gtandula abundance low and ~. dalli abundance 
HEAVY significantly greater initially. By the conclusion .e. glandula 
TRAMPLING abundance increases while ~. dalli abundance decreases. The 

low abundance of .e. glandula would retard the re-establishment 
of latter successional algal species. 
Observed: .e. glandula abundance low and ~. dalli abundance 
significantly greater. High recruitment of~. dalli kept abundance 
high. Low recruitment of .e. glandula and the newly established 
dominance of~. dalli keep .e. glandula abundance tower than 
was expected. Recovery of latter successional algae retarded, 
however C. dalli observed to facilitate their settlement. 

Trampling Intensity 

It was predicted that light and heavy trampling would have different 

effects on the community. For instance, it was predicted that~. glandula and 

fucoid algae would be reduced but not removed in lightly trampled plots. 

These predictions were not supported, as there was no difference between 

light and heavy trampling in any of the experimental plots. Clearly the 

definition of light trampling was not "biologically light", as both light and 

heavy trampling had the same effect on the community. These intensities 

were chosen based on what was considered to be realistic light and heavy 
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trampling regimes. Brosnan and Crumrine (1992a, b) found that at rarely­

visited and relatively inaccessible sites on the Oregon coastl trampling 

ranged from 7 -10 steps per hour. Organisms at two marine gardens 

(=reserves) were trampled 228 times per hour at one site, and 103 times per 

hour at the second. Povey and Keough (1991) found that algal species were 

much reduced by light and heavy trampling, but that heavy trampling caused 

a greater reduction. In their study, trampling was carried out daily for four 

months. Light trampling was defined as trampling twice per day, and intense 

trampling was 25 times per day. We did not trample daily, as most trampling 

occurs during low tide periods, and thus many species are not trampled 

every day. Nonetheless, light trampling had severe effects on the 

community. This is alarming, as it implies that in this community, trampling is 

a threshold phenomenon, and that the threshold for effects may be low. This 

will have important consequences for conservation of intertidal communities. 

It implies that simply reducing the numbers of visitors on a shore to 

moderate levels will not be sufficient to maintain species composition and 

abundance. This will need to be taken into account YJhen decisions are 

made to increase access to intertidal zones, and to designate intertidal 

marine reserves. 
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Interactions between trampling and herbivore effects 

It was predicted that trampling and grazing would have additive 

effects on species abundance. This prediction was supported only for 8. 

glandula at Yaquina Head in the trampling phase. Herbivores decreased 

recruitment and increased the rate of loss of new barnacles in trampled 

plots. New recruits were susceptible to bulldozing before they were large 

enough to be dislodged by trampling. Barnacles that escaped bulldozing 

were subsequently dislodged by trampling. A corollary prediction was that 

under light trampling, and in the absence of grazers, B. glandula and algae 

would be able to establish itself. This prediction was not supported. The 

effects of trampling were intense enough to swamp any herbivore effect. In 

trampled plots, abundance of algae and B. glandula was the same in 

herbivore inclusion and herbivore exclusion treatments. There was no 

correlation between effects of trampling and abundance of herbivores, 

indicating that herbivore effects did not depend on the intensity of trampling. 

These results imply that communities do not recover while trampling is 

ongoing. Even when the detrimental effect of limpets was removed, 

barnacles and algae did not reestablish themselves successfully. 
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Effects of Trampling on Barnacles 

It was predicted that 8. glandula would be removed by tramplingl and 

that the smaller C. dalli would be resistant to dislodgment. These predictions 

were supported. The abundance of C. dalli increased in trampled plots. 

Trampling removed 8. glandula and created bare space which was 

subsequently colonized by C. dalli. At Fogarty Creek, cover of C. dalli 

increased from 0% to 40% in some plots over the nine month experimental 

period. During the same time 8. glandula declined. Thus, trampling prevents 

competitive exclusion of C. dalli by 8. glandula. Once C. dalli establish they 

may persist for some time. Farrell (1989) found that at Yaquina Head, it took 

three years for 8. glandula to reach 70% cover in plots that were initially 

dominated by C. dalli. Dominance by C. dalli can slow the rate of succession 

and recovery in this community (Farrell 1989, 1991, and see below). 

Size and profile of barnacles determine their susceptibility to 

trampling. 8. glandula is a large barnacle with a high profile, and is easily 

dislodged by trampling. Young and newly settled individuals are smaller and 

flat, and are not as vulnerable to trampling. However, as they grow their risk 

of dislodgment increases. For instance, barnacle cover gradually declined in 

trampled plots following the settlement pulse in March 1993. Hummocking 

also increases susceptibility to dislodgment. At Yaquina Head, 8. glandula 

was abundant and settlement was high. Clumps of hummocked barnacles 



were common at this site, and I found that they were easily removed by 

walking on them. 

Effect of Trampling on Algae 
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As predicted, fucoid algae were susceptible to trampling, and cover 

dropped to near zero in many plots. This confirms the results of previous 

studies (Zedler 1976, 1978, Beauchamp and Gowing 1982, Povey and 

Keough 1991, Brosnan and Crumrine 1992a 1994, Brosnan 1993). Fucoid 

species are often attached at a single point and dislodgment at the point of 

attachment results in a large canopy loss (Brosnan and Crumrine 1994). 

Many fucoids are attached to barnacles (Farrell 1991; Grubba and Brosnan 

personal observation); by removing barnacles, trampling indirectly removes 

algae. When this happens, primary cover is also lost, and plants cannot 

regenerate from holdfasts. 

E. muricata was removed by trampling. This was partly due to the 

settlement and growth patterns of E. muricata in the experimental plots. Most 

plants were growing as epibionts on the sides of barnacles. When barnacles 

were dislodged, the epibionts were lost too. The epibiont E. muricata often 

grows in upright clumps on mussels and barnacles (Brosnan and Crumrine 

1994, Grubba personal observation). In this form, E. muricata is easily 

removed by trampling (Brosnan and Crumrine 1994). However, when E. 
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muricata grows as a prostrate, spreading turf, it is not easily dislodged by 

foot traffic (Brosnan and Crumrine 1992a, 1994 ). Endocladia muricata 

abundance increased in the presence of herbivores in control plots. This is 

despite the fact that barnacles (settlement substrate) were removed by 

herbivores. This effect has been previously noted by Brosnan (unpublished 

manuscript), but its causes are unknown. 

Spatial Heterogeneity 

Crevices in rocks are important spatial escapes from trampling. I did 

not document whether species 'Nere found in crevices or on horizontal 

surfaces. However, it was noted that species that are removed by trampling 

sometimes persisted in crevices (Grubba and Brosnan personal 

observation). This was true for 8. glandula, fucoids, and E. muricata (on 

barnacles). In fact in trampled plots almost all of these individuals were 

found in depressions in the rock. If the crevices were small, they provided 

only temporary refuge. For instance, B. glandula grew out of small crevices 

and were subsequently dislodged by trampling. Ho'Never, barnacles and 

algae persisted in larger crevices (Grubba and Brosnan personal 

observation). The presence of spatial refuges may be important to 

persistence of these species in highly disturbed shores. Refuges prevent 

local extinction of species, and individuals in refuges are a potential source 
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of new recruits. Thus, recovery from trampling is likely to be faster on shores 

with high heterogeneity. By contrast, in areas where the rock surface is 

smooth (e.g., sandstone and metamorphosed sandstone) recovery may be 

slower. 

Effect of trampling on successional pathway 

By removing key species in the successional pathway, trampling can 

prevent succession. The barnacle B. glandula is essential to succession 

because it facilitates algae and mussels (Farrell 1989, 1991, D. M. Brosnan 

unpublished manuscript). Chthamalus dalli, if abundant and large in size can 

facilitate settlement of algae and mussels. However C. dalli even when 

large, are not as effective as B. glandula at facilitation. In other geographic 

areas barnacles are also key species in succession (e.g., Hawkins 1981, 

1983, Hawkins and Hartnoll 1983, Hartnell and Hawkins 1985). On 

temperate shores, disturbances often remove algae and invertebrates, and 

create patches of bare space (Harger 1970, Sousa 1979, 1984, Hartnell and 

Hawkins 1985, Paine and Levin 1981, Farrell 1989). On some shores, this 

space is colonized by barnacles that facilitate succession to algae or 

mussels (Paine and Levin 1981, Hawkins and Hartnell 1983, Farrell 1989, 

1991 ). Trampling also removes organisms and creates patches of bare 

space (Brosnan and Crumrine 1994). However, B. glandula is removed by 
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trampling, and does not recover while trampling continues. Many algal 

species depend on ,e. glandula for recruitment, and in the presence of 

trampling these species cannot recruit. This is true for species such as the 

turf form of~· muricata, which requires B. glandula in order to become 

established (Farrell 1991, Brosnan unpublished manuscript). Once it has 

spread to primary substrate, it is resistant to trampling and can thrive in 

trampled conditions (Brosnan and Crumrine 1992a, 1994). In addition, 

mussel recruitment is enhanced by barnacles (Navarette and Castilla 1990, 

Brosnan unpublished). Thus one effect of trampling on the community is to 

retard or prevent succession. This interpretation is supported by the 

observation that algae in trampled plots were only found on B. glandula in 

crevices. 

Once trampling has stopped succession may be slow. This is 

because C. dalli becomes more abundant when the larger competitively 

dominant B. glandula is dislodged. Chthamalus dalli does not usually 

enhance succession (Farrell 1989, 1991) because it is too small and smooth 

for algae to recruit successfully. However to recruit successfully under the 

right conditions C. dalli can grow to large sizes that enable algae to recruit 

successfully. Under these conditions succession /recovery of the community 

may not be as retarded. It may take three years for B. glandula to replace 

mature C. dalli (Farrell 1989, 1991 ). 
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CONCLUSIONS 

Trampling alters the community in the upper intertidal zone of rocky 

shores. Species composition changes from one that is dominated by the 

barnacle B. glandula or by a mixed B. glandula and algae assemblage, to a 

community where C. dalli is the most abundant barnacle, and algal crust is 

practically the only algal species present. Recovery of impacted 

communities is dependent on the presence of B. glandula, a keystone 

species in succession. Studies suggest that full recovery of an impacted 

community would take a minimum of three years. 

Park and reserve managers will have to modify their management 

plans incorporating the ideas that 'light' trampling, has as detrimental effect 

as "heavy" trampling 1 recovery is a lengthy process, and for recovery there 

has to be a removal of impacts such as trampling. This presents the 

challenge of balancing the conservation of these areas with the ever­

increasing visitation by humans, which is only going to increase in the future. 
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