
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

12-10-1996

An ASIC Power Analysis System for Digital CMOS An ASIC Power Analysis System for Digital CMOS

Design Design

Du Van Nguyen
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Nguyen, Du Van, "An ASIC Power Analysis System for Digital CMOS Design" (1996). Dissertations and
Theses. Paper 5376.
https://doi.org/10.15760/etd.7249

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5376&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5376&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5376
https://doi.org/10.15760/etd.7249
mailto:pdxscholar@pdx.edu

THESIS APPROVAL

The abstract and thesis of Du Van Nguyen for the Master of Science degree in

Electrical and Computer Engineering were presented December 10, 1996, and

accepted by the thesis committee and the department.

COMMITTEE APPROVALS:
W. Robert Daasch~ Chair

Gerald Recktenwald
Representative of the Office of Graduate Studies

DEPARTMENT APPROVAL:
Rolf Schaumann, Chair ·
Department of Electrical Engineering

**

ACCEPTED FOR PORTLAND STATE UNIVERSITY BY THE LIBRARY

by on /z:'. ~ ~<Z.7

ABSTRACT

An abstract of the thesis of Du Van Nguyen for the Master of Science in Electrical

and Computer Engineering presented December 10, 1996.

Title: An ASIC Power Analysis System for Digital CMOS Design

Consumers demand for products with ever-increasing functionality, performance, and

longer battery life is making low power a critical factor in most system designs. Lower­

power designs are less expensive to produce, more reliable, and cost less to operate - fac­

tors which create a real competitive advantage. As a result, ASIC designers are demanding

better ways to analyze the power of their designs.

In this thesis, an ASIC Power Analysis System (APAS) is developed. APAS is an

interactive simulation-based power analysis tool. Using a non-intrusive design technique,

APAS can dynamically "snap on" to an existing simulation environment. APAS currently

supports three ASIC simulators: QuickSim II, QuickHDL, and Verilog-XL, all with a

common library.

Diagnostics is one of the key features in designing APAS. APAS's hierarchical capa­

bilities can be used to find out which blocks in the design are consuming the most power.

The designer can then focus on reducing power in these blocks. Analyzing the dynamic

behavior of the circuit is also key to power reduction. APAS can dynamically trace the

power consumption of any block in the design, giving the user a graphical representation

of the periods of high and low activity.

The key to accuracy in APAS is the power models. APAS's power models represent

dynamic switching, dynamic short-circuit and static currents. To Achieve optimum accu­

racy, APAS's models account for input slew, load and internal state. APAS's power mod­

els are written in the Power Modeling Format (PMF). PMF's combination of equations

and interpolated tables provide the means to capture the most detailed cell characterization

data under varying slew, load and state conditions. PMF is designed to support not only

gates but also 1/0 cells, RAMs, and higher-level macros.

AN ASIC POWER ANALYSIS SYSTEM

FOR DIGITAL CMOS DESIGN

by

DU VAN NGUYEN

A thesis submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
1n

ELECTRICAL AND COMPUTER ENGINEERING

Portland State University
1997

ii

ACKNOWLEDGEMENTS

I would like to thank Dr Robert Daasch, my advisor and friend. His brilliant guidance,

invaluable suggestions, and continued encouragement has made this thesis possible.

I especially wish to thank my wife, HoangYen and my children, HoangAnh, Hoang­

Lan and HoangPhuong who continue to support me with their love, belief and emotional

encouragement. Your belief and encouragement is a constant source of inspiration to me.

I also want to acknowledge my colleagues and friends at Mentor Graphics Corporation

for their endless contribution and enthusiastic support. I appreciate your help in sharing

the workload especially during the critical time of the product release so that I could com­

plete the last part of this thesis.

iii

TABLE OF CONTENTS

A CKN 0 WLEDG EMENT • • • • ii

TABLE OF CONTENTS•....•...•...•••.••.. iii

LIST OF TABLES .. v

LIST OF FIGURES•...•••••.... vi

CHAPTER

I INTRODUCTION ... 1

THE NEED FOR POWER ANALYSIS 1

THE VARIETY OF SOLUTIONS 2

ASIC LEVEL POWER ANALYSIS 3

THESIS OVERVIEW .. 7

THESIS ORGANIZATION 9

II POWER MODELING ... 11

INTRODUCTION ... 11

MODELING SOURCES OF POWER DISSIPATION 14

POWER MODEL FORMAT 25

SUMMARY ... 27

III POWER CHARACTERIZATION•... 28

INTRODUCTION .. 28

PRINCIPLE . 30

TECHNIQUE .. 33

APPLICATION ... 36

iv

VERIFICATION .. 44

IV ASIC POWER ANALYSIS SYSTEM•... 49

INTRODUCTION .. 49

OVERVIEW ... 50

APAS GENERAL DESCRIPTION 54

RUNTIME EVALUATION 63

KEY FEATURES ... 67

V EXPERIMENTS AND RESULTS 83

INTRODUCTION ... 83

SETUP AND ENVIRONMENT 84

EXPERIMENTS .. 85

VI CONCLUSION AND FUTURE WORK 95

FUTURE WORK .. 97

REFERENCES . • . 98

APPENDIX A: POWER MODEL FORMAT•..... 101

APPENDIX B: POWER ANALYSIS DATA FORMAT•..•...••...•••. 136

APPENDIX C: POWER MODEL COMPILER•...•••.•....•........ 139

APPENDIX D: CATALOG FILE SYNTAX•........ 141

LIST OF TABLES

1. Bus Contention .. 87

2. Glitch Power .. 88

3. Power Estimation Accuracy ... 91

4. APAS vs. SPICE Performance ... 92

5. alu32 Performance .. 93

LIST OF FIGURES

1. Reduced Voltage Level Feeding a CMOS Gate 16

2. Pseudo-NMOS AND_OR_INVERT Gate 17

3. CMOS Inverter ... 18

4. CMOS OR .. 19

5. Capacitive load switching power of a CMOS gate 20

6. Glitch in XOR gate ... 22

7. Bus Contention .. 23

8. Power characterization process .. 29

9. Energy components in charging load capacitance 31

10. Energy components in discharging load capacitance 32

11. Two Amp meters used to measure cell energies 34

12. Partial SPICE deck for DFF timing characterization 37

13. Timing relationship as specified from the DFF SPICE deck 38

14. Fragment of DFF Power Model ... 40

15. Power distribution for a particular input vector of a DFF 43

16. Energy Values for DFF characterized at O.lpF load and edge rates of lns 45

17. Tristate buffer transition diagram .. 46

18. APAS overview ... 51

19. Power instances with their power models 55

20. Bus Contention ... 63

21. Histogram of power per cycle .. 70

22. Power Model Format ... 98

CHAPTER I

INTRODUCTION

Consumers continue to demand products of smaller size yet larger feature sets while

market competition requires lower prices [1]. For example, today's hand-held cellular

phones are less than one quarter the price, one quarter the size, and one quarter the weight,

while batteries last four times longer as compared to early models. Systems that used to

requires multiple chips on a circuit board are now designed on single integrated circuits.

With product life cycle shrinking and product prices falling, the reality of time-to-profit

requires development of more sophisticated design methodology and with clock rates and

chip component densities on the rise, power analysis is quickly emerging as one of the

"hottest" issues for today's designers [2].

THE NEED FOR POWER ANALYSIS

The demand for smaller size coupled with increased functionality has resulted in

densely packed electronics products, increased thermal concerns, and headaches over how

to sustain and improve battery life. Overheating and battery life are major concerns for

portable consumer products [3]. A design that generates too much heat or shortens battery

life can delay or sometimes obstruct the successful introduction of new product [4]. The

best and most cost effective solution is for designs to consume less power which requires a

methodology for practical power analysis. Accurately determining power consumption

2

prior to production is a critical component for this methodology that is key to the success

of today's as well as tomorrow's systems on silicon.

To further complicate matters, the added constraints of stricter power budgets is set

against the background of increasing pressure to design more complex, yet less expensive

devices in less time. As a result, designers requires that solutions fit easily into existing

design flows. A power analysis solution must have the performance and capacity to

address the complex designs. Finally, the solution must deliver high accuracy so that the

results can be used to make critical design decisions: from architecture and circuit changes

to reduce power, to package selection and cooling specifications to improve system reli-

ability and lower cost.

THE VARIETY OF SOLUTIONS

Designers require a full spectrum of analysis choices at each level: estimation, optimi-

zation and simulation. Although research has produced some promising methods to help

designers create reduced power systems and chips, a full power analysis solution presents

a significant development challenge. While most agree that design changes at the earlier

stages of the design process (architecture or RTL) offer the highest potential gain [1], a

proven general methodology is not yet available. Available solutions are very limited in

their scope. On the other end of the spectrum, there is transistor-level simulation primarily

for back-end verification [2]. This requires a transistor-level description, which enables

the highest level of accuracy, but is simply not an option for most designers. Gate-level

power analysis is faster by orders of magnitude than transistor-level while still providing

3

the accuracy necessary to produce lower power designs. The fact that gate-level simula-

tors do not require transistor-level models makes them a prime candidate for an ASIC

power simulation solution [l]. Gate-level power analysis tools can be applied at several

stages in the design flow: after synthesis, after floor planning, and after layout parasitic

have been extracted. Better estimates of the routing parasitic will lead to more accurate

power analysis results.

Actually 'gate-level' is somewhat of a misnomer. This type of tool must solve the

power analysis problem facing the ASIC designer. As such it must not only work at the

gate level, but must also be able to handle the other kinds of blocks that occur in ASIC

designs. Most notably, it is rare to find designs which do not include memories (RAMs or

RO Ms). Furthermore, with the growth of Intellectual Property (IP) to manage complexity,

even more complex blocks such as cores (uProcessors, uControllers, DSP, etc.) will

become commonplace [5].

ASIC LEVEL POWER ANALYSIS

The primary goal of any power analysis tool is to provide information about the power

consumption of the design. The designers use these results to determine if the device has

exceeded the power budget and, if possible, to explore ways to reduce the power. To this

end, a power analysis tool must first of all provide accurate power estimates. Secondly, the

tool should provide the performance, ease of use, and power diagnostics the designer

needs to efficiently reduce power consumption.

Before detailing the different power analysis tools and how they compare, it is impor-

4

tant to review what causes power consumption in a design. Power consumption can be

divided into two types: dynamic and static. Dynamic power is the power consumption due

to a signal change of state. This includes both the power consumed in charging the capac­

itance of the signal as well as the dynamic short-circuit current of the driver or receiver of

the signal. Dynamic short-circuit is caused by the momentary path from supply to ground

when the input of a complementary gate changes state and the pull-up and pull-down are

both partially on. This current is highly dependent on the slew of the input signal and typ­

ically accounts for 10% to 30% of the total power consumption [6].

Static power is most commonly due to technology process issues. These include leak­

age of reversed-biased diodes and off transistors. While most designers tend to consider

leakage power negligible today, it will become more significant as supply voltage and con­

sequently threshold voltage continues to drop. There can also be state-dependent static

power. Two examples are NMOS logic gates and current sources in sense amps. If a

designer is not careful, or aware of how widely these kinds of circuits are used in a design,

the static power can be a significant portion of the total power.

In an ASIC, the designer specifies the interconnection of a set of cells from a library.

This makes it is convenient to group power in another way: nets versus cell internal. The

power dissipated when a net changes state depends upon the capacitance (C) of the net and

the supply voltage (V). The formula is l/2*C*V**2 for a single transition. The power of

the cell internal depends upon the internal structure of the cell, its state, and the slew of the

inputs. The cells can be modeled for power analogously to the way they are modeled for

functionality or timing. The model can represent both dynamic and static power consump­

tion for the cell under a variety of input or state conditions. Power analysis tools differ

5

fundamentally both in how they determine the activity of the circuit and in how they use

power models.

Probabilistic Estimation

One approach to power analysis today is to do a static power estimation of the activity

of the design. The designer specifies signal switching frequencies at the circuit inputs and

the tool uses a probabilistic technique to determine the switching frequencies of all of the

internal nodes as well as to the outputs. Once the frequencies have been determined, the

power is calculated based on the net switching power and possibly a simple power model

for the cell. Probabilistic tools [7] provide fast, pattern-independent results at the expense

of accuracy. It is not possible to predict how well, or poorly, the estimated frequencies will

match the real circuit behavior. Furthermore, the cell power models can not be state-

dependent since there is no correlation between the states of any two signals. Finally, a

probabilistic tool is not able to analyze the effect of common power-down techniques such

as gated clocks or latch insertion.

Post-processed Simulation Results

To address the unpredictable inaccuracy of the probabilistic approach, power analysis

tools have been developed that connect to logic simulators to access the actual switching

activity of the design. These simulation-based power analysis tools differ in the kind of

information they receive from a host logic simulator. Most use the simulator to create a

file of node toggle activity which is post-processed by the power analysis tool [8]. For

6

example, a static estimation tool, instead of probabilistically computing signal switching

frequencies, can use the actual frequencies of each net as determined by the simulation

run. This solves some of the accuracy problems of the static estimation tool, but still does

not provide the correlation of signal states needed to accurately determine cell internal

power.

Instead of getting just the node frequencies from the simulator, it is possible to obtain a

complete transaction log of all of the signal state changes and when they occur. This tech-

nique is used in some tools because it provide enough information to correctly determine

the states of the cells. It provides the additional advantage of giving the designer an indi-

cation of when the design is consuming power. There is also a significant disadvantage to

this approach. The generated log files can easily exceed a Gigabytes in size, creating

problems with storage and management, not to mention the time required by the tools

writing and reading such enormous files.

Dynamic Power Simulation

A better approach is to tightly connect the power analysis tool to the host simulators so

that as the simulation progresses, the power is computed dynamically. This technique is

even more accurate than the post-process tools, since effects such as multiple bus drivers,

which may not appear as signal changes can be detected and analyzed. Furthermore, it

does not require writing and manipulating large log files. Where the dynamic power simu-

lation approach has tremendous advantages over the other methods is in the area of diag-

nostics. A power analysis tool that works dynamically with the simulator can be used

7

interactively. This means that the designer can see how the power consumption of the

design blocks varies with time as the simulation progresses. Even more significantly, the

designer can stop the simulator at any time, and determine which blocks are consuming

power at that moment. This is extremely valuable in exploring power-down techniques for

reducing power.

Ease of use is another advantage of the dynamic power simulation. Since the power

analysis tool "snaps-on" to a host simulator, the designer is able to perform power analysis

at the same time as functional or timing simulation. Thus power analysis becomes part of

the existing design flow - not an afterthought. No additional steps or separate tools are

required. The designer is able to leverage existing simulator experience to quickly learn

the power analysis tool.

THESIS OVERVIEW

In this thesis, an ASIC Power Analysis System (APAS) is created to provide ASIC

designers a power analysis solution with accurate results, high performance, and diagnos­

tics capability.

APAS is an interactive simulation-based power analysis tool. With a non-intrusive

design technique, APAS is designed to work seamlessly with the existing ASIC simula­

tors: Quicksim II, QuickHDL and IEEE-1364 compliant Verilog simulators.

Consistent results are critical for accurate power analysis. APAS guarantees the same

behavior by relying on the ASIC simulator for functionality and timing. Accurate results

required not only the proper simulation context but also a versatile modeling language.

8

APAS's power modelling language, the Power Model Format (PMF), is designed to

handle gates, 1/0 cells and macros. PMF models are simulator-independent. PMF can be

used to model the main contributors of power: dynamic (switching) current, dynamic

(internal) short-circuit current, and static current. To gain the optimum accuracy, PMF

models support input slew, output load and state-dependent power. State dependencies are

key contributors at the gate level but their importance only increases with the development

of IP like RAMs (including multi-ports), multipliers, other macros, and cores.

Performance is another important criteria in designing APAS. APAS's performance is

compatible to the performance of the gate-level host simulator. The hierarchical nature of

APAS allows the user to select specific blocks to work on, or the whole design. In addition

the user has the ability to tum power analysis on and off interactively. The minor overhead

for power analysis is controlled by the user, and allows the user to do power analysis at

the same time as functional and timing analysis. This greatly helps the design throughput

by making the most of the simulation time.

APAS leverages the power of consistency by using the designer's flow and simulation

environment for power analysis. Technology and design challenge are changing rapidly so

it is important to use consistency to improve productivity. APAS allows the user to lever­

age the simulation environment to gain consistent behavior and performance.

Diagnostics is key to reducing power. Designers of low power devices not only need

to know how much power the ASIC consumes, but what can be done to reduce the power

consumption. Using APAS, the designer can selectively delve deeper into problems,

working with a combination of graphical and textual modes to find out where and when

the design is consuming power.

9

THESIS ORGANIZATION

In this chapter, INTRODUCTION, we have discussed the power dissipation issue and

hence the need for a power analysis solution. Diverging from some previous approaches,

our approach is based on interactive simulation to provide ASIC designers a power analy­

sis solution with high accuracy, high performance and diagnostic capability.

In chapter II, POWER MODELING, sources of power dissipation are examined and

modeled from cell instance perspective. A Power Model Format (PMF) to describe power

view of an ASIC cell is described. This format is capable of describing essential factors

that attributes to the accurate simulation of power dissipation.

Chapter III, POWER CHARACTERIZATION, discusses power characterization tech­

nique to create accurate power model for standard cell. Accurate power model is a major

factor in estimation of power dissipation. Power characterization can be done using exist­

ing cell timing characterization environment.

Chapter IV, ASIC POWER ANALYSIS SYSTEM, describes the design and features

of the power analysis system, a dynamic simulation-based power analysis tool for cell­

based ASIC designs.

Chapter V, EXPERIMENTS AND RESULTS, reports results of experiments to mea­

sure the power estimation accuracy, performance and capacity of the ASIC Power Analy­

sis System.

Chapter VI, CONCLUSION, gives a summary of the ASIC Power Analysis System

developed in this thesis and future work.

Appendix A, POWER MODEL FORMAT.

Appendix B, POWER ANALYSIS DATA FORMAT.

Appendix C, POWER MODEL COMPILER

Appendix D CATALOG FILE SYNTAX.

10

CHAPTER II

POWER MODELING

INTRODUCTION

ASIC designs differ from traditional integrated circuit design in that standard gate­

level primitives (cells), such as nand, nor, buffer, and flip-flop are the lowest level con­

structs used, as opposed to transistors of varying sizes. Designing at this higher level of

abstraction permits greater productivity and allows for increased design automation[5]

Power dissipation at the transistor level is relatively well understood [2][24], however

despite significant advances in ASIC design tools and methodologies, effort in modeling

and analyzing power dissipation for ASICs from an ASIC design methodology is still in

its infancy[I].

In this chapter, we will describe a dynamic method to model and analyze power dissi­

pation for digital CMOS ASIC design. Since this method is based on the dynamic infor­

mation available at the functional instance during simulation, combined with pre­

characterized data, it provides a very accurate estimation of the power behavior of the

instance in the design. We will also propose a simple, flexible format to describe a power

model. This simulator-independent power model format plays a crucial role in the design

of our non-intrusive power analysis system that will be described in chapter IV.

12

Previous Work

There are reports of power estimation techniques which use the well perceived for­

mula: P = a*f*C*Vdd**2 to perform a quick power estimation [21][22] assuming that

static power and short-circuit power is very small, therefore ignored. In the above formula

which represents the capacitive load switching power, a is the activity factor or number of

node transitions per clock cycle, f is clock frequency, C is switching capacitance, and V dd

is the operating supply voltage. To compute capacitive load switching power, It is impor­

tant to accurately determine the activity factor and the node switching capacitance [23].

Switching capacitance can vary, depending on whether pre or post-layout information is

used. The activity factor is not only a function of the inputs to the circuit, but also of the

delay model used [1 O] . Zero, unit and gate-specific delay models can each contribute

varying magnitudes of switching activity due to glitches, hazards and spikes [9]. Deter­

mining the accurate activity factor is the main challenge for these power estimation tech­

niques. In general, these power estimation techniques fall into two categories:

probabilistic and simulation based [18].

Probabilistic techniques have been proposed to efficiently propagate activity factors

within a circuit [l 1][23][28]. These approaches have been demonstrated on combina­

tional circuits, though Devadas[11] also discusses an approach to estimate activity in

sequential circuits. Probabilistic estimation work well in the power-directed logic minimi­

zation and technology mapping[29][30], since combinational logic synthesis can use these

fast estimation algorithms inside the synthesis loop. Moreover, while doing minimization

and technology mapping, relative accuracy is often sufficient. But using probabilistic

13

techniques for large block level power estimation, requires the handling of different circuit

styles, dynamic/precharged logic, tristate drivers, latches, flip-flops etc. Developing mod-

els for some of these scenarios is not entirely feasible [22]. In addition, the effects of

known inaccuracies (in the probabilistic approaches) such as reconvergent fanout at inter-

nal nodes, temporal and spatial correlation of primary inputs, and glitching activity (which

arise due to signal skew) need resolution.

Simulationed-based techniques such as Entice-Aspen[8] are based on a logic simulator

to monitor power activities during simulation and combine with pre-characterized power

models[19] to compute total power dissipation in a cell-based ASIC design. Entice-Aspen

- an in-house power analysis system - is a post-simulation process, also suffers inaccu-

racy due to dynamic problems such as glitch power and bus contention. Moreover, this

post-simulation technique is not able to provide diagnostic capability to determine where

and when power is wasted and observe the dynamic power profile.

Our approach to ASIC power analysis

Our approach is based on dynamic simulation. Power dissipation is modeled and esti-

mated during simulation in contrast to post simulation. In this approach, a shadow power

instance is created for each instance in the design to monitor power activities based on its

power model. A power model contains characterized power/energy data, and power state-

men ts.

14

MODELING SOURCES OF POWER DISSIPATION

When considering an ASIC's power dissipation, the total power can be viewed from

several different perspectives: static vs dynamic, cell vs load, core vs I/O. For the purposes

of calculating an ASIC's total power, all three perspectives will be valuable; however the

first two, static vs dynamic and cell vs load, will form the backbone of this analysis meth­

odology.

Static Power

As described above, total power dissipation may be split into static and dynamic

power, otherwise known as DC and AC power. Static power represents the power dissi­

pated when the gate is in a steady state, and dynamic power represents the power dissi­

pated when the gate is switching.

Although static power is only a small component of the total power, it is becoming

important for portable (battery-operated) designs where static power dissipation during

idle phases becomes a significant part of the overall power dissipation [1].

The sources of static power consumption in a digital CMOS device are leakage cur­

rents, and static currents.

Leakage currents consist of reverse-bias diode leakage at the transistor drains, and

sub-threshold leakage through the channel of an "off' device. Diode leakage occurs when

a transistor is turned off and another active transistor charges up/down the drain with

respect to the former's bulk potential. Sub-threshold leakage current from source to drain

is caused by reduced threshold voltages that prevent the gate from completely turning off.

15

Leakge power is processing technology dependent and typically in the microamp

range [15]. While this is typically a small fraction of the total power consumption, it

could be significant for a system application which spends much of its time in standby

operation, since this power is always being dissipated even when no switching is occur-

ring. Regardless of the physical reasons, leakage power dissipated in a cell can be mod-

eled as a cell-specific value, and computed as:

P - V ·I leakage - dd leakage (1)

In CMOS technology, when circuits are in steady state operation (i.e. non transient

operation), static currents exist in two situations: reduced voltage levels feeding into

complementary static gates and pseudo NMOS circuit styles. Usually static currents are

dependent on the state of the device.

As a result of reduced input voltage level (V dd - Vt), as shown in Figure 1. one

device (NMOS) of the complementary static gate is ON while the other device (PMOS) is

also weakly ON; there exists a static current from the supply to ground. This might con-

sume significant power if the circuit is idle most of the time.

16

vdd

vdd

J_
Vdd - Vt

":"

Figure 1. Reduced Voltage Level Feeding a CMOS Gate

In the pseudo-NMOS logic implementation style, as an example shown in Figure 2,

the PMOS device is always ON. When the output is driven low by a resistive path from

output node to ground through the NMOS network, there is a conducting path from supply

to ground.

rl
~
B~

":"'

vdd

ON
l_

------- 0 = A18 1 + A2B2

~I ON

8yl ON

' ":"'

Figure 2. Pseudo-NMOS AND_OR_INVERT Gate

17

For an ASIC cell, static power resulted from static current can be modeled as equation

(2), where c is the percentage of time the cell instance stays in a particular steady state.

P -c·V ·I static - dd static (2)

Dynamic Power

The components of dynamic power consumption in CMOS ASIC are cell power and

capacitive load switching power. The (internal) cell power is the power dissipated within

the boundary of the cell. Cell power consists of short-circuit (or crossbar) power and inter-

nal capacitive switching power.

18

When a CMOS gate is switched by an input signal switching with a nonzero rise or fall

time, both the n- and p-transistors will conduct simultaneously for a short time. During

this time when input signal voltage is between Vtn and Vdd-Vtp, there will be a "short-

circuit current", flowing directly between Vdd and ground and not participating in charg-

ing or discharging load capacitance.

Consider the CMOS inverter in Figure 3. With the input low, then-channel is OFF

and the p-channel is ON. No current flows as there is no path from Vdd to ground. As the

inverter is switching due to the input switching, the n-channel is ON as the input voltage

crosses Vtn while the p-channel remains ON until the input voltage rises to V dd-Vtp.

Thus there is a significant amount of time during which both devices are ON resulting in a

resistive path from V dd to ground.

Vdd

lsc

I

':'

ICL

Figure 3. CMOS Inverter

Short-circuit power is dependent on input rise/fall times and output load capaci-

tance[6]. Short-circuit power are significant when rise/fall time at the input of a gate is

much longer than the output rise/fall time (which is dependent on output load capaci-

19

tance). This is because the short-circuit path will be active for a longer period of time.

Internal cell capacitive power results from the charging and discharging of internal

capacitances of the cell. Consider the CMOS OR gate in Figure 4. This two-level logic

cell has an internal node between the NOR structure and the output inverter structure. As

an input is switching, the internal capacitance will be charged or discharged depending on

the state of the other input pin.

Vdd

a~ Vdd

b~ I
In ode

l_

a-1 b-1
":"

Tel

":"

Figure 4. CMOS OR

In more complex cells, when an input is switching, the cell output may not change

state but there is still a "hidden" power dissipated by those portions internal of the cell

which change state. The predominant example of this hidden power is the buffered flip-

20

flop. This hidden power is due to the switching of the clock buffering in each individual

flip-flop, and has been found to account up to 50% of an ASIC's total dynamic power[19].

In this thesis, internal cell power can be conveniently modeled as a function of input

slope, output load and cell internal state. This function can be represented as a set of

piecewise linear equations or multi-dimensional tables. The piecewise linear equations

and multi-dimensional tables capture data created by power characterization of the cell

over a typical range of operating conditions.

The capacitive load switching power which is the dominant component (more than

90% for "properly" designed circuits[15]) of dynamic power arises when energy is drawn

from the power supply to charge load capacitance or when the load capacitance is dis-

charged to the ground. This component is the primary target of any power estimation

technique.

L

1 "- 1Jcv2
- c v2 '\ --1...!
2 ---'PMOS

I
T

----NMOS

1

~
I
r

1 -cv2
2

_l

Figure 5. Capacitive load switching power of a CMOS gate

Consider any input transition which causes a 0 -> V dd transition at the output of the

21

generic CMOS gate. The instantaneous power and energy can be computed as follows:

P - dE = i . V - dt supply dd (3)

Where isupply is the instantaneous current being drawn from the supply voltage V dd

and is equal to,

i _ dV
supply - C · _.!!!!:!. dt

(4)

Therefore, the energy drawn from the power supply for a 0->Vdd transition at the out-

put node is given by:

T T V

Esupply = f pdt = VddJ isupplydt = VddJ CdVout = CVd} (5)
0 0 0

The energy stored in the output load capacitor is given by:

T T v
: 1 2

Ecap = f Pcapdt = f vout1capdt = J CVoutdVout = 2CVdd (6)
0 0 0

Therefore, half of the energy drawn from the power supply is stored in the output

capacitor and half of the energy is dissipated in the PMOS network. For the V dd->0 tran-

sition at the output, no charge is drawn from the power supply and the energy stored in the

capacitor is dissipated in the pull-down NMOS network.

In addition to all the power components described so far, from a ASIC gate point of

view there are two more power concerns that must be addressed in order to improve accu-

22

racy: glitch power and bus-contention problem.

Glitch power

Glitches are identified as unwanted appearances of signal transitions. These logical

hazards usually occur in connection with reconverting paths in logic, that is spurious sig­

nals are caused by different arrival times of input signals to a gate.

_r

l_

1f

Figure 6. Glitch in XOR gate

If several parallel paths with different delays are merged into one gate, glitches may

occur, e.g. as shown in Figure 6, two opposite-state input signals have different arrival

times to an XOR gate. Their "briefly change to same state then back to different state"

makes the output change twice, in spite of the fact that the final result do not change. This

glitch give rise to unnecessary power consumption.

Some investigations of typical effect of glitches have been performed. Empirical

results showed that glitch power is from 8% to 25% of dynamic power [9]. For more com­

plex cell, glitch power is observed to reach 67% of dynamic power (for a 16X16 bit multi­

plier, logical depth about 30) [15].

During glitching, output transition is usually an incomplete transition, that is the out-

23

put node voltage change (dV) is less than V dd. Hence, glitch power can be expressed as:

Pg/itch
1 = 2: · C · Vdd · dV (7)

Where dV is the Reduced Voltage Swing

Voltage swing is dependent on the ratio of glitch width (tg) and gate delay (td), hence

can be approximated as:

tg
dV = td · Vdd (8)

In theory, dV is dependent on input slope, output load (figured in td) and input pattern

(figured in tg), however in engineering tradeoff between efficiency and accuracy of glitch

power computation at gate level, the ratio {tg/td) can be further approximated to a reason-

able constant value (e.g 50% as an average). This value can be an empirical result and may

be specified as a constant value in the gate power model.

Bus contention

When multiple tristate output drivers driving the same external load (bus), error in

power simulation may occur due to two reasons: bus contention short circuit and dupli-

cated account of capacitive load switching power. Consider the following scenarios with

two tristate drivers:

o~

l~
-=-

Short Circuit
when states differ

\ Bus
I

I

l~
-=-

l~
-=-

_rNo Current
..L when net is same state

when driver is enabled
Bus

1

I

Figure 7. Bus Contention

24

One output transitions from Z to H, and the other output changes from L to Z. The sig-

nal delays may be slightly different so that the first output transition may complete some

short amount of time before the second output changes to Z. During this brief period of

time, a short circuit path exists from V dd through PMOS plane of the first gate, through

external bus, and through NMOS plane of the second gate to Gnd. In a typical design, this

delay variation is small and the power dissipation is negligible. In fact, for some logic sim-

ulator, this grace period (e.g lns) is reasonably ignored. The first output drives the bus

logic, and charges the load capacitance to V dd.

If the bus logic is already H, that is the second output changes from H to Z, there is

neither short circuit nor charging power.

If initially the bus is in logic state Z, that is both outputs are in Z state, then one of the

output changes from Z to a valid state (H/or L). If the bus capacitance is free of charge/ or

full of charge then there may be a charging/ or discharging power. In some logic simulator,

the bus state can be represented as HZ or LZ, and based on this information we can deter-

mine whether there is a charging/discharging power. However in other logic simulator

such as VHDL we must explicitly keep track of the previous bus state before its floating.

25

Now assume that one output is at H state, and the other output changes from Z to L.

Bus contention occurs, and there is a short circuit path from Vdd through PMOS plane of

the first gate, through external bus, and through NMOS plane of the second gate to Gnd. If

the first driver is stronger than the second, the bus does not change state, there is no dis-

charging power. However if the first driver is weaker than the second, the bus will changes

state to Land there is discharging power. The short circuit is dependent on particular driv-

ers and can be significant as long as the drivers stay unchanged. This case is a bad design

for power and requires a special mechanism to recognize and calculate power effect.

In general, the bus contention occurs during a time period (tb) less than the gate delay

(td) of the drivers. One approach to approximately model this bus short-circuit behavior is

to assume that both drivers are the same strength, and one is charging the bus with a power

effect of 1/2*C*Vdd**2, and the other is simultaneously discharging the bus with the

same power effect 1/2*C*Vdd**2. The bus short-circuit power effect can be modeled as:

Pb us = th · 2(! · C · V.)
td 2 dd

(9)

Above we have analyzed power effects in details for different types of circuits and

suggested how to appropriately model these sources of power dissipation. In the next sec-

tion, we will present a format that can be used to describes the power effects of ASIC

cells.

POWER MODEL FORMAT

The fundamentals of our simulation based approach to ASIC cell-level power analysis

J

26

are to accumulate energy usage during a simulation by tracking the power activity of the

cells in the circuit. The challenge is to approach the accuracy levels of transistor level

power estimation while maintaining cell-level simulation performance and capacity. Sue-

cess is dependent almost entirely on the quality of "power models" to accurately access

power/energy dissipation given a state change in the circuit.

In this section, we present an overview of the ASCII model format that has the con-

structs necessary to describe all power effects in a ASIC cell. The complete description of

the power model format will be described in appendix A. It is expected that model gener-

ation will be automated, using data generated by characterization tools operating on mod-

els at a lower level of abstraction, such as SPICE.

The power model format can be considered to be the model interface to power analysis

tools. It is independent of any specific database or hardware modeling language.

Overview of the Power Model Format

Model Data And Expressions

Signal Declarations

Default Data

Defined Constants

Table Data

Equations

Internal Signal Definitions

)
• • 1

27

Model Evaluation

Transition (dynamic) Energy Statements

Static Power Statements

In general, a power model consists of two sections: Model Data and Expressions sec-

tion, and Model Evaluation section. The Model Data and Expressions section contains

signal declarations, default data, defined constants, table data, defined equations, and

internal signal definitions. The Model Evaluation section contains two types of power/

energy statements: dynamic and static. Dynamic transition energy statements describe

energy dissipated due to a power transition (signal change that results in power dissipa-

tion). Static power statements describe the static power component which includes leak-

age and static power. Both statement types can have additional condition to specify their

state-dependency.

SUMMARY

We have analyzed in details all sources of power dissipation in an ASIC design which

can be grouped into two main categories: static power and dynamic power. From there, we

described methods to model the power behaviors from a gate-level standpoint. At gate-

level, there exists two additional cases that must be considered in order to improve power

estimation accuracy: glitch power and bus contention. Finally, we presented a format used

to describe a power model using data pre-characterized with circuit simulator (SPICE)

using transistor-level description of the ASIC cell. In the next chapter we will discuss

technique to characterize power for an ASIC cell.

CHAPTER III

POWER CHARACTERIZATION

INTRODUCTION

The accuracy of cell-based power simulator depends upon the accuracy of cell power

models. The accuracy of cell power model is further dependent upon the accuracy of the

power characterization process that generates them.

Power characterization process is one that captures power behavior of a cell by simu­

lating its lower-level description over a typical range of operating conditions. That lower­

level simulation is usually circuit simulation using SPICE. During the circuit simulation,

selected stimuli are applied to the circuit and measurement points are specified so that the

resultant data will represent all or most of actual behaviors of the cell in real designs.

In order to obtain the requisite accuracy, the power characterization for cell must

account for all power components (dynamic cell power, static power) within the cell

boundary as well as their dependency on cell state and operating conditions (input slew

and output load).

In this chapter, we first develop a principle to separate cell power from total power by

examining power dissipation under individual cases. From this developed principle, a

power characterization technique is presented to measure cell power using a pair of Amp

meters. Then applying the described characterization technique, we characterize a sample

29

ASIC library based on 0.8 micron technology using an existing standard cell characteriza-

tion environment. The characterized data obtained from the power characterization are

processed to automatically generate accurate cell power models. In order to assure the

quality of the generated cell power models, a verification method is presented. Using this

presented verification method we have verified that the generated power models simulated

with our cell-based power simulator produce consistent result within 5 percent of SPICE.

Figure 8 shows an overview of the power characterization process

SPICE deck

Figure 8. Power characterization process

30

PRINCIPLE

As discussed in previous chapter, the total power dissipated in a CMOS circuit

includes dynamic and static powers. Dynamic power includes cell power and load switch­

ing power. As load switching power can be computed separately with the well-known for­

mula (1/2*CL*Vdd**2), we need only to isolate and characterize cell power and static

power.

In order to isolate dynamic cell power and static cell power we consider the case when

the circuit is active and the case when the circuit is in idle state. Then for the case when

the circuit is active, we further consider subclasses when output is switching and not

switching.

Input Switching

When an input is switching, the circuit is active and the output may or may not be

switching accordingly. However, there are energies dissipated in the circuit in both cases.

The energy dissipated when output is switching is significantly different from the energy

dissipated when output is not switching.

Output switching

Let's consider energy components during charging and discharging the load capaci­

tance of a representative CMOS circuit.

31

Charging load capacitance (L->H transition)

.!_CV~ i! Echarge

2
PMOS1

L
NMOS

Ecellchaie i V • qdsc

Figure 9. Energy components in charging load capacitance

When the output is switching from L to H, output capacitance is charged to V dd as

shown in Figure 9. The total energy consumption (Echarge) drawn from the power sup-

ply Vdd is divided into load charging energy (1/2*CL*Vdd**2), plus the same amount of

energy dissipated in the PMOS plane, and internal cell energy (Ecell_charge). The inter-

nal cell energy includes short circuit energy and internal capacitive switching energy:

Echarge = ~C~d + ~C~d + Ecellcharge (lO)

Discharging load capacitance (H->L transition)

I
s GI ;

___.PMOS

E 1 ;L
~NMos1("I"1 2 - -CV

2

1 i V• qdsc

Figure 1 O. Energy components in discharging load
capacitance

32

When output is switching from H to L, output capacitance is discharged as shown in

Figure 10. The total discharging energy (Edischarge) includes load discharging energy

and internal cell energy (Ecell_discharge). The load discharging energy which is the

same as the energy previously stored in the load capacitance (1/2*CL*Vdd**2) is dissi-

pated in the NMOS plane. The internal cell energy includes short circuit energy and

internal capacitive switching energy:

Ed. = !c0,dd + E 1 d. (ll) ischarge 2 ce l ischarge

Output not switching

Although output is not switching (as in a DFF when clock is switching but output is

33

stable), there is still internal cell energy due to dynamic short-circuit and internal cell

capacitances switching:

E II = E h . . + E . h. (12) ce s ortcircult swltc mg

Input not switching

When input is not switching, the circuit is in idle state; static power dissipated in the

circuit is due to leakage current and state dependent static current:

Pcellstatic = Pleakage + Pstatic (13)

TECHNIQUE

To measure cell energy in a CMOS cell we use a pair of Amp meters as shown in fig-

ure 11. The first Amp meter Mdd is inserted between V dd and PMOS plane. The second

Amp meter Mss is inserted between NMOS plane and V ss. Mdd meter is used to measure

total energy consumption drawn from V dd when PMOS plane is open. Mss meter is used

to measure total energy dissipated when NMOS plane is open.

Inputs

CELL

UNDER

TEST

Mdd

TCL
Mss

Figure 11. Two Amp meters used to measure cell energies

When input is switching and the PMOS plane is open to charge the load CL, total

34

energy consumption (Echarge) is measured by Mdd. Therefore, cell energy can be derived

from equation (10) as:

Ecellcharge = Echarge - C~d (14)

Similarly, when the load is discharged, total energy dissipated (Edischarge) is mea-

sured by Mss, and the cell energy is simply computed from equation (11) as:

35

Ecelldischarge = Edischarge - ~C~d (15)

For both cases cell energy is dependent on both input slew and output load. Hence

measurements should be done with varying input slew and output load.

When output is not switching, cell energy is measured by Mdd or Mss when PMOS or

NMOS is conducting. In this case, cell energy is not dependent on output load but is

dependent on input slew. Therefore, measurements should be done with varying input

slew. Note that the cell energy can also be dependent on the internal state of the cell.

When the cell is in idle state, Mdd is used to measure leakage power. For circuit that

can have static power, the circuit should first be initialized to the state when static power

occurs, and then Mdd will be used to measure the average static power.

Range of Typical Operating Conditions

When cell energy is dependent on load capacitance and/or input slew, we should

measure it over a range of typical operating conditions. The range of typical operating

conditions is technology dependent, and should be selected carefully so that it sufficiently

covers the real operating conditions of the cell in design, but is not so wide that it requires

long characterization time.

As an example, typical operating range can be selected as:

Load capacitance CL: [O, 4inv]

where inv is an inverter input capacitance used as a standard unit fanout load

Input slope: [0.5tp, 4tp]

36

where tp is typical delay of an standard inverter.

SPICE Time Step

In SPICE simulation, cell energy is measured by integrating average power over time.

The accuracy is critically dependent on the precision, especially time step set during simu­

lation. Smaller time step produces better result, however the simulation will also take

longer to complete. Therefore, the time step should be set to a reasonable value. To obtain

this time step value we continuously simulate average power of a chain of 5 inverters with

the same periodic input pulse over many runs. In each simulation run, time step is gradu­

ally reduced until measured average power is within 1 % from the previous run. This cali­

bration process is done only once per ASIC library.

APPLICATION

Applying the above described power characterization technique, we characterize an

ASIC cell library based on a 0.8 micron technology with voltage fixed at 5 Volts, and

using the nominal values for the process parameters.

As a starting point, we use an existing standard cell characterization tool. This tool is

primarily used for timing characterization. As data dependencies, specifically input slews

and output load capacitances, for existing timing characterization processes are quite sim­

ilar to those for power, little to moderate incremental effort is required to generate SPICE

data to compute energy measurements. The resultant data for each cell is put into Power

37

Model Format (described in previous chapter), and compiled into a power library so that

unit verification tests using the Power Analysis Tool (described in the next chapter) can be

performed.

'~;

* * * * * * * * process comer: slow
.lib hspice_models.lib SLOW
.option brief nomod autostop
.option absv=SOe-6

.SUBCKT dff
+CKN
+D
+QN
+VCC
+VSS

<cell description removed>

.ENDS

XO pO_O pl_O p2_0 P4 PS dff

Cout_O p2_0 0 LC

VpO_O pO_O 0 PULSE(S.0,0,40NS,TRF,TRF,190NS,460NS)

.TEMP2S

VP4P4 0 S.O
VPS PS 00

38

Vpl_O pl_O 0 PWL ON 0 460N 0 460.SN S.O 920N S.O 920.SN 0 1380N 0 1380.SN S.O
1840N S.O

.MEAS pO_p2_TPHL[2] TRIG V(pO_O) V AL=2.SO TD=SOON FALL=l
+ T ARG V(p2_0) V AL=2.SO FALL= 1

.MEAS pO_p2_TPLH[3] TRIG V(pO_O) V AL=2.SO TD=960N FALL=l
+ TARG V(p2_0) VAL=2.SO RISE=l

.TRAN IN 1840N SWEEP DATA=DF

.DATA DF TRF LC

<data values removed>
.ENDDATA
.END

Figure 12. Partial SPICE deck for OFF timing characterization

39

"'Y''\Y"'YV''\Y""Y"\YY/'017'\\Y
I I I I I I

I I I I I I
I I I I I I
I I I I I I
I I I I I I

l i r--1 i r--
I I

pO_O I I
L - - .J L - - .J

I I I I I
I I I I I
I I I I I
I I I I I
I I I r-
I I I I I

pl_O
I I I I
I I I I I

I

-r-1
...J __ l-.J

I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I

I I --r - -1- -

p2_0
I I I I I I I
I I I I I I I

I I I I I I I I
I I I

- -'- - L I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I

Time (ns)
I I I I I I I I

u sou moo 1500

Figure 13. Timing relationship as specified from the OFF
SPICE deck

Let's look in details at the power characterization process for the DFF. The DFF

SPICE deck that is used for timing characterization as shown in Figure 12 is modified for

power characterization. Stimulus for timing delay measurements were already generated

for paths between CKN (pO_O) to QN (p2_0) when D was HIGH and LOW at Time

Marker (2) and (6) respectively. Therefore, a measurement like the following would be an

example to measure the energy due to those transitions:

.MEAS p2 AVG POWER from=<Time2> to=<Time2+50NS>

.MEAS e2 PARAM= 'p2*50e-9'

.MEAS p6 AVG POWER from=<Time6> to=<Time6+50NS>

.MEAS e6 PARAM='p6*50e-9'

40

But if we want to capture a more accurate power model, there are several other cases

to consider too. It had been observed that some significant amount of energy was dissi-

pated when clock is active but with no output change, for example at Time Marker (4) and

(8). We must do some modifications to the stimulus set for this D Flip-Flop in order to

make these 2 measurements:

.MEAS p4 AVG POWER from=<Time4> to=<Time4+50NS>

.MEAS e4 PARAM='p4*50e-9'

.MEAS pB AVG POWER from=<TimeB> to=<Time8+50NS>

.MEAS eB PARAM='p8*50e-9'

And for completeness to this D Flip-Flop illustration, we also measured the energy

values at Time Markers (3) and (7) when ckn was inactive and D was HIGH and LOW.

Therefore, unlike timing characterization where one measured the delays between an

input pin change to an output pin change, power characterization for a cell should also

consider those cases where the output did not change, if accuracy was of utmost impor-

tance.

For simple combinatorial cells like 2 or 3 inputs NANDs, NORs, ANDs, and ORs, it

was still relatively easy to capture energy values for input vectors that had no output

change. In this experiment, these input conditions were already in the original timing stim-

ulus, and it was just a matter of putting a measurement statement at the correct time

41

period. Considering that these energy values were observed to be 1 to 2 orders of magni-

tude less than those whose output changes state, we, however, might be willing to lose

some accuracy if the effort in adding additional power test vectors was not justifiable

when characterizing for a full and complete set of standard cell library.

Continuing to use the DFF as an example, Figure 13 illustrates a fragment of the

Power Model that we wanted to achieved.

EQN node_pwr: 0.5*GETCAP()*1.0e-12 * 5 * 5;

BOOL cmp(sig1, sig2) : diffBITS(sig1, sig2) == O;

II signal declarations

SIGNAL INPUT : ckn, d;
SIGNAL OUTPUT : qn;

SIGNAL GROUP : cur _st : d, qn ;

... <omitted>

dynamic {

qn(*): node_pwr();

ckn(\) & cmp(cur_st,'11 '): tab_E1 [GETFALL()][GETCAP(QN)] ;

ckn(/) & d : tab_E3[GETRISE()] ;

ckn(\) & cmp(cur_st, '10'): tab_E2[GETFALL()];

ckn(\) & cmp(cur_st,'00'): tab_E4[GETFALL()][GETCAP(QN)] ;

ckn(/) & -d : tab_E6[GETRISE()] ;

ckn(\) & cmp(cur_st, '01 ') : tab_E5[GETFALL()] ;

}

Figure 14. Fragment of OFF Power Model

To characterize the internal cell energy value for the second statement (tab_El), this

input vector corresponded to Time Marker 2.:

.MEAS p2 AVG POWER from=<Time2> to=<Time2+50NS>

.MEAS e2 PARAM= 'p2*50e-9'

42

Actually, measurement variable e2 as illustrated should be corrected. Since there was

already an energy equation to model output node switching, node_pwr(), e2 should not

account for the "half CV squared" component. And finally, e2 should be factored with

l .Oe9 since the units for energy expressions for dynamic power were in nanoJoules .

. MEAS p2 AVG POWER from=<Time2> to=<Time2+50NS>

.MEAS cknFA_ 11 PARAM= '((p2*50e-9)-(0.5*LC*25))*1 .Oe9'

Note that the measurement variable e2 had also been carefully changed to cknFA_l 1

so that such a label gave meaning with respect to the input vector transition and state.

Thus, a filter program could be written to easily reconstruct these Power Models from

SPICE output transcripts.

The third and fourth statements corresponded to Time Markers 3 and 4 respectively.

In these cases, since the output did not change state, the "half CV squared" component

was not subtracted from the energy measurement.

.MEAS p3 AVG POWER from=<Time3> to=<Time3+50NS>

.MEAS cknRl_ 10 PARAM='(p3*50e-9)*1.0e9'

.MEAS p4 AVG POWER from=<Time4> to=<Time4+50NS>

.MEAS cknFA_ 10 PARAM= '(p4*50e-9)*1 .Oe9'

Based on the same reasoning, the fifth, sixth and seventh statements could be
measured using the following:

.MEAS p6 AVG POWER from=<Time6> to=<Time6+50NS>

.MEAS cknFA_OO PARAM='((p6*50e-9)-(0.5*LC*25))*1.0e9'

.MEAS p7 AVG POWER from=<Time7> to=<Time7+50NS>

.MEAS cknR/_01 PARAM='(p7*50e-9)*1.0e9'

.MEAS pB AVG POWER from=<TimeB> to=<Time8+50NS>

.MEAS cknFA_ 11 PARAM='(p8*50e-9)*1.0e9'

43

Originally, each table of energy values was modelled using either a simple surface or

linear equation of the form:

KO + K1 * Capacitance + K2 * EdgeRate

or

KO + K1 * EdgeRate

where KO, Kl and K2 were constants.

The reason this was done because the early prototype of the power analysis tool did

not support tabular data. This turned out to be an issue as we could see from Figure 15, an

example where the power distribution for the test vector (cknFA_l 1 of DFF) across a

range of load capacitances and input edge rates were not linear in any predictable manner.

Therefore, in this experiment, the energy values were put in a 2-dimension and 1-dimen-

sion tables for linear or spline interpolation lookup.

This was just a DFF example. The timing characterization spice decks for the remain-

ing cells were also enhanced in a similar manner.

Spice simulations were then performed on these power characterizing spice decks and

the spice results were processed by a set of shell and Perl scripts. What these scripts did

were to automatically generate a set of ASCII files (power model for each cell) written in

the Power Model Format.

In these power models, those test yectors that resulted in an output change had energy

values characterized as a function of the load capacitance and input slews. The test vectors

44

that did not cause an output change were dependent on only the input slews.

Average Power {W)

0.00026.
0.00025
0.00024

0.00023
0.00022

EdgeRate {nS)

...- 0.3
..- 0.25

...- 0.2
0.15

...- 0.1 Caploads {pF)
0.05

Figure 15. Power distribution for a particular input vector of a OFF

VERIFICATION

Unit Test

After all the cells have been characterized and their power models created, a test bench

is created for each cell and tested using the Power Analysis Tool. A set of stimulus is cho-

45

sen for each cell so that all or most of the characterized input conditions are exercised. The

stimulus also has the characteristic where no 2 signals (for cells with 2 or more inputs) are

transitioning at the same time or close to avoid glitch situations. The average power is

computed and compared with SPICE result which also has unit test circuits generated in a

similar manner. Each unit test circuit consisted of just a single instance of the cell, and

tested under different load capacitances and input slews.

Results

In general, the error margins were within 5 percent if the characterization and model-

ing were done correctly. For cases where the error margins were significantly large like 10

percent or more, they were investigated and debugged.

The DFF was one example where the error margin was initially large. On closer look,

there were several human errors.

First, the test vectors for the case of data D rising and falling (unshaded in Figure 16)

when the clock CKN was either HIGH or LOW were not characterized. Actually, these

vectors were overlooked in this experiment because the timing characterization process

did not generate these conditions as no timing delay measurements were needed.

Figure 16 illustrates the energy values for the DFF captured at a load capacitance of

0.1 pF and input (CKN, D) edge rates of lns. Notice that the energy values for the D tran-

sitions (unshaded), depending on the state of CKN, were either negligible or in the same

order of magnitude as those with an active CKN transition and had an output change

(darkest shade). So, ignoring these D transitions would introduce some degree of model

46

maccuracy.

\ 0 1 2.6394E-12

\ 1 0 3.4007E-12

I 1 1 5.8722E-12

I 0 0 6.0619E~12

I 0 1 3.4562E-12

I 1 0 3.0670E-12

0 I 1 5.3972E-15

0 I 0 4.6353E-15

0 \ 1 7.5960E-15

0 \ 0 l.5790E-15

1 I 1 3.3157E-12

1 I 0 3.2513E-12

1 \ 1 3.2435E-12

1 \ 0 3.2285E-12

Figure 16. Energy Values for OFF characterized at 0.1 pF load and edge rates
of 1ns

Second, recall in Figure 14 that an assumption was made when modeling an inactive

CKN:

ckn{/) & d : tab_E3[GETRISE{)] ;

47

ckn(/) & -d: tab_E6[GETRISE(}];

The above 2 model statements don't care about the state of QN but from Figure 16

(medium shade) we could see that different power consumption resulted depending on the

present state of output QN.

Another model that needed careful consideration during modeling was the tristate

buffer with pins en, in and out.

I ·J\ I .1

"' -

LS EN

IN

---------1.__
I \ I

r
__ l. __ \

\ \ \

' \ I
' - -- / L ____ _ OUT

Xz Os Oz ls lz ls lz Os Oz

Figure 17. Tristate buffer transition diagram

The model statement concerned was:

en(/) & in : < ... energy expression ... >

On closer look, two situations fulfilled this statement as shown in Figure 17. The

model was missing another state dependent variable to differentiate whether it was a case

48

of output OUT transitioning from Oz to ls, or lz to ls. The energy values between these

two cases differed as much as 40 percent over the range of load capacitances and edge

rates.

In summary, the experiment had provided some hints on how to create more accurate

power models for a set of standard cells. Although the complexity of this cell library

ranged from simple to slightly moderate, observations from the power characterization

and modeling experiments, were sufficient to generalize a handful of important points

worthy of consideration:

• input vectors that produced an output change had energy values quite significantly

different from those that did not produce an output change. Timing characterization

need not consider the latter, but to have accurate power models, they could not be

ignored.

• state dependency of other input pins and internal states was crucial in creating

accurate power models. As illustrated in the cases of the DFF and tristate buffer,

making certain assumptions to simplify the power model could lead to unwanted

inaccuracy error.

Therefore, in order for the power analysis tool to be effective, equal responsibility

should also ,be undertaken to create accurate power models. And finally, it was hoped that

this chapter would give an understanding on how to trade-off model accuracy with the

amount of effort needed in the characterization process.

CHAPTER IV

ASIC POWER ANALYSIS SYSTEM

INTRODUCTION

This chapter describes the design of a ASIC Power Analysis System (APAS), a

dynamic simulation-based power analysis tool for ASIC designs. The dynamic nature of

the tool provides not only superior accuracy, but also diagnostics that the designers can

use to determine when and where power is being consumed, or wasted.

The non-intrusive technique facilitates the tool to dynamically snap-on to majority of

existing ASIC simulators. In fact, APAS has been integrated with three leading ASIC sim­

ulators: Quicksim II - schematic-based simulator, Quickhdl - dual language (VHDL-VER­

ILOG) simulator, and Verilog-XL simulator. With the same simulator user interface, the

integration is so transparent that the designers can comfortably stay in their familiar simu­

lation environment while performing power analysis of their designs.

Targeting power analysis for ASIC designs at the gate level, APAS features interac­

tive power analysis that will get consistent accuracy near that obtained by transistor level

tools, and performance compatible to gate-level simulator speed without power analysis.

The consistent accuracy over a wide range of design scenarios is warranted by the quality

of power models, the quality of annotated design data, as well as special techniques used

to handle glitches and bus contention conditions.

50

During simulation, simulator will be run in full timing mode to maintain the temporal

and partial correlations of input signals to an instance, since the power dissipation behav-

ior of an instance is strongly dependent on these correlations. It's this dynamic nature that

makes dynamic simulation-based power estimation method superior in accuracy com-

pared to the static probability-based power estimation method.

APAS estimates power dissipation based on the activity of a simulated circuit over

some period of time. For the results of APAS to be meaningful, the input patterns must be

representative of the expected usage of the circuit. If input patterns are well chosen and

weighted for their expected rate of occurrence, the accuracy of APAS should exceed that

of static, probabilistic analysis.

In the first version of APAS, the focus is on gate level modeling and analysis. Higher

level (of abstraction) models of the type found in ASIC cell libraries, such as memories,

macro cells, will also be supported. However, RTL models do not fit the modeling para-

digm presented by this project. Further work will be needed to understand the require-

ments for RTL models.

OVERVIEW

In addition to the two primary goals: consistent accuracy and compatible (to gate-level

simulator) performance, APAS is designed towards the following goals:

• Non-intrusive design: existing ASIC designs used for functional and timing

verification do not require any modification for power analysis.

51

• Dynamic nature: APAS can be dynamically snapped-on to existing simulation

environment regardless of design languages or databases.

• Diagnostics/advisory capability: APAS will provide an interactive power diagnostics,

advisory, and analysis environment.

Figure 18 shows an APAS overview. Primarily, the host simulator provides functional

and timing simulation of behavioral and structural designs. At the same time, APAS

(shaded area) which works interactively with the host simulator by accessing the host's

user interface (UI), as well as simulation events through the simulator interface, supple-

ments the host simulator functionality by:

• Providing access to power analysis functionality through specialized power

commands.

• Providing a power-specific user interface.

• Accessing a library of power models.

• Creating a list of power model instances and managing power-specific instance data.

•Optionally using post-layout, power-specific data values obtained through a Power

Analysis Data (PAD) annotation file.

APAS uses a library of power models--one for each unique cell in a given design-to

monitor switching activity and to determine the amount of energy required during each

switching event. These power models can assess energy dissipation on both input and out-

put changes, as well as monitor static power elements at the cell level.

Characterization
Power
Model

Power
Analysis
Data

...,__..,, SPICE Model

Test Vectors

s..:
Oil

~ .
,,t:J.
~
s..:

I u ~ ~ ~ ~

(l'J
(l'J

~

s..:
~

b!) = ~ <
=

s.
~

= ~
= c
< ~

s
~
Q

IR,- Power Instance rt
~111111

1.23 0
1.45 4
2.76 7
6.74 0

Figure 18. APAS overview

Host-specific

Simulator IFC

Host Simulator

Cell-level design

52

53

Power models are binary files compiled using the Power Model Compiler (PMC)

from ASCII files written in specialized power syntax-the Power Model Format (PMF).

Power Library contain compiled power models, and an ASCII catalog file to locate power

model binary files and associate them with cells used in the design.

Initially, APAS can perform simulations on a design using default values for power

data-specifically, load capacitance and slew rate. The default values can originate from

defaults in the power model itself or from standard values provided to APAS. The results

data obtained from using defaults could be sufficient to provide a general idea of whether

or not the design falls within acceptable power limits.

For more accurate results later in the design cycle, power analysis models require data

that are dependent on the context of the instances in the design and their interactions. Spe­

cifically, load capacitance on output pins and signal slew at the inputs are necessary for

accurately determining the energy required by the cells when the states of the nodes in a

design change.

In order to communicate load capacitance and input slews to power model instances,

APAS uses an ASCII Power Analysis Data (PAD) file-similar to Standard Delay Format

(SDF) used for timing data. The data values in this file provide post-layout values for load

capacitance and slew, essentially overriding the default values used in earlier simulations.

Data determined in these later simulations help the user to fine-tune the design in order to

account for and correct inappropriate levels of power dissipation and waste.

PAD files can be generated by timing calculators-which are usually maintained by

ASIC vendors-or synthesis tools. These PAD files make use of data that are extracted

l
t'
t

54

when generating delays for timing models.

APAS works interactively with the host digital simulator by accessing the host's user

interface (UI), as well as simulation events through the simulator interface.

APAS GENERAL DESCRIPTION

Host Specific Simulator Interface (HSI)

The Host Specific Simulator Interface module is responsible for all the interactions

between the host simulator and The Power Analysis Kernel. The HSI is mostly imple-

mented using the host simulator's Application Procedural Interface (API). Most existing

ASIC simulator supports a proprietary API, or an industry standard API such as Verilog

PLI.

Power Analysis Kernel

The Power Analysis Kernel consists of three modules: Power Analysis Interface

(PAI), Power Library Manager (PLM), and PAD Annotation Manager (PAM).

The PAI provides all power specific functions to be called by the HSI to perform

power commands. It creates and maintains the power instance list, and the hierarchical

power block list.

The PLM and PAM functionality will be described later.

55

Power Model and Compiler

In APAS, each cell instance is associated with a power model that maintains the infor­

mation used to assess and track energy dissipation due state changes at the perimeter of

the instance. The power models' job is to associate a change on the "pins" of a cell

instance with a quantity of energy that is the amount characteristically dissipated when the

specific change is made.

The creation and textual format of the power model has been discussed in chapter II.

The Power Model Compiler (PMC) compiles a power model into its binary form to be

used by APAS. To assist power modeler when creating and debugging power model, PMC

can optionally compile with trace mode. With power model in trace mode, power modeler

can observe all power events due to any input and or state change.

Power models should have all significant switching events accurately characterized for

energy dissipation (see chapter Ill). Static power dissipation, if significant, should also be

included as a function of the state of the cell and the elapsed time in the specified state.

Although State dependency is a cost of redundant information already existed in func­

tional model, it is a feature of APAS power models that improves accuracy and differenti­

ates them from known competitors. Assessing energy dissipation based on known internal

state allows better accuracy. We have seen accuracy improvement of 20% in a simple tri­

state buffer-driver when the internal node state is known.

See Appendix D for more on the Power Model Compiler. These compiled models are

independent of the target simulator, its design language and/or data base. They are also

platform independent. A single library should support all simulator environments.

i
t

~(

56

In connection with each simulator functional instance in the design, a power instance

is created. This shadow power instance is dynamically connected with its functional

instance through power relevant pins. Power relevant pins are those that are used in the

corresponding power model. This connection allows power instance to monitor any pin

transition that occurs during simulation.

Slooe=l.7
Slope=l.1
CL= 2.3

"------ Power _.__---.
Ins ts

TRANS DATA

! 2, T 3 Slope=l.6
! 4,f 5 Slope=l.4
!3,f 2 CL=}.3

NAND Power Model

Trans Tbl. Energy Eqn

INI! f(slope, Cr)
INI' f(slope, CL)
IN2! f(slope, CL)
IN2' f(s1or, cL)
OUT* f(CL

TRANSi DATA

!3,f 2

'2,f 3
!2,f 2

Slooe=2.l
Slope=3.l
CL= 7.3

Trans Tbl. Energy Eqn

INI!
INI'
IN2!
IN2'
OUT*

f(slope, CL)
f(slope, CL)
f(slope, CL)
f(slofe, CL)
f(CL

~ Power Models ~

Figure 19. Power instances with their power models

I
f.

I
f
i
f

f
J
I

57

Figure 19 shows how power instances and their power models are associated in a sim-

pie design being simulated. The integration point is at the perimeter of instances, since it is

necessary to monitor pin activity on all instances in the design.

The power instance will track switching activity (shown in the TRANS columns) of

the inputs and outputs. It also maintains any instance specific data called for in the energy

equations of the model. This data is obtained in a session when APAS reads a Power Anal-

ysis Data (PAD) file.

The common model structures (bottom of figure) are shared by instances of like cell

types. Using this structure, power consumption can be made available for each instance at

any time during simulation.

To determine average power for an instance over a given time period, the energy dissi-

pation of each transition is determined by the energy equation (usually a function of slew

and/or load capacitance) multiplied by the number of the times the transition occurred.

The energy quantities for all transitions are summed to give the total energy dissipated by

the instance for the current period. If average power for the instance is reported, it is sim-

ply the total energy divided by the elapsed time.

Power Model Library

The success of APAS in ASIC design flows is highly dependent on the availability of

accurate power model libraries. Normally, ASIC vendors are primary sources of these

power model libraries.

58

The Power Library Manager (PLM) provides the interface to power model libraries.

This section describes how a library of power models are cataloged so that the PLM can

determine which model to use for a given cell instance. It is our intention that power

model libraries support multiple simulators.

When a hierarchical block of a design is activated for power analysis, the PLM will

use the Power Library Catalog file, described below, to find power models associated with

instances in the block. This file is a part of power model library.

The catalog syntax is flexible enough to accommodate the (existing) library organiza-

tion preferred by key vendors. Some modelers may treat process variables (voltage for

example) as model variables, others may create separate library directories for expected

process parameters (perhaps a 2.5v and a 3.3v library). Others may put all models in a sin-

gle directory and use naming conventions to find the right one.

To find the power library catalog file, the environment variable PWR_LIB should be

set to a value that is the path to the directory where the catalog file can be found. A com-

mon place to store the catalog file might be in the directory of the library: $PWR_LIB/

pwr.cat.

Inside the catalog file, there are several elements needed to find the correct power

model.

1) Cell type Key -- A set of strings, properties, parameters and environment variables

that identify the cell (and its parameters) so that the power model is uniquely identified

for an instance of a cell.

2) Library Path -- A system path that is common to all binary models in the catalog.

(This is optional, mainly for readability.)

59

3) Catalog List --A set of celltype/path pairs. Where the path is given to each binary

power model for a given celltype value.

The syntax of the catalog file will allow the use of design and environment variables in

the celltype key and the file paths.

Design variables will be evaluated in the context of the design for each cell.

The syntax of a variable is simply a variable name in parentheses preceded by a '$'

symbol.

$(<name>)

When this system function is encountered in a catalog file the value of the named vari-

able is returned. The value is found by searching in the following order:

A. A local variable (defined previously in the catalog file).

B. A design property (or generic in VHDL) found through the simulator interface. In

the case of VHDL, the name "entity" will automatically return the entity name of

the current instance.

C. An environment variable.

The resolved value is returned as a character string and is inserted in the catalog file in

place of the system function.

Below is an example catalog file. See Appendix D, for complete syntax.

II define a local variable "celltype" as a concatenation of the

II property value of the MODEL and the value of the VOLTAGE

II environment variable:

CELL TYPE $(MODEL}_$(VOL TAGE)

II Define the path to the library by environment variables

LIBPATH $(PWR_LIB)/$(PACKAGE)

II define a catalog list that uses the CELL TYPE value, the

II resolved celltype value is then used to find the model.

CATALOG: $(CELLTVPE) {

and2: $(LIBPATH)/and2.pow

nand2: $(LIBPATH)/nand2.pow

mux21: $(LIBPATH)/mux21.pow

dffr: $(LIBPATH)/dffr.pow ...

}

60

Given the example above, APAS might arrive at a cell, consult the catalog and select a

model as follows:

• Determine a value for the local variable CELLTYPE by concatenating the value

returned from MODEL, found as an instance property, and the value of environment

variable VOLTAGE.

• Next LIBPATH must be resolved by using the values of environment variables

PWR_LIB and PACKAGE.

• So, given an AND2 model, and assuming a commercial package at 3.3 volts. The

model: $PWR_LIB/com/and2/a2_33.pow is returned.

Power Analysis Data (PAD)

To do accurate power analysis, simulation should be done with accurate timing delays.

61

For optimum accuracy, post layout parasitic should be used to calculate timing delays. In

addition to accurate timing, there is also design dependent data specifically required by the

power models: the capacitive load on outputs and input slew.

The PAD Annotation Manager (PAM) reads Power Analysis Data file to receive

design dependent data. The PAD file is written in a format that is very similar to the OVI

Standard Delay Format (SDF). See appendix B for detail PAD syntax.

SDF files are generated by timing calculators, and it is expected that PAD files will be

generated in the same way. Most ASIC design kits use vendor supplied timing calculators.

So, in addition to power modeling support, we will also need ASIC vendor's timing calcu-

lator to optionally output PAD files as well as SDF files. As with timing, post layout data

will give the best results.

Once a model is found for an instance cell, a shadow power instance is constructed

that will monitor activity and calculate power in the design context. When all the power

instances for the desired analysis have been constructed the next step is to import the data

needed by the power models.

The instance specific design data needed by the power models is obtained from a

Power Analysis Data file. The example below shows a PAD file. Note that it is almost

identical to the Standard Delay Format output by timing calculators. This is by design.

This file will be generated in the same way timing delays are, and usually by the same tim-

ing calculation tool supplied by ASIC vendors.

The ability to generate the PAD file containing the specific data required by the models

in the power library will be a condition of ASIC vendor support. (Pre-layout estimation of

this data may be available from synthesis tools too.) Preliminary discussions with several

62

vendors indicate that PAD file can be generated using the same technique, and in most

cases the same tools, that generate SDF and other back annotation files.

In the first version of APAS, the PAM will parse the PAD file and send the data

directly to specified power instances. This is much faster than annotating design properties

(or generics in VHDL) but imposes some limitations on applying the data. No persistent

cache of this data is created. So the file must be applied each time the tool is invoked. And

since the data is contained in the power instance, the power instances must be constructed

to receive their data prior to the time the file is read.

To set up a circuit for PAM this order is important:

1) Invoke the simulator.

2) Enable power analysis in ALL the regions to be annotated.

3) Read the PAD file.

Example PAD file:

(PAD FILE
(PADVERSION "0.1 ")
(DESIGN "$DESIGN/top_hier_sh/default")
(DATE "Thu Nov 7 11:19:40 1996")
(DIVIDER/)
(VOLTAGE 5.25:5.0:4.75)
(PROCESS "0.8micron")
(TEMPERATURE 25)
(TIMESCALE Ins)
(CAPSCALE lpt)
(CELL(CELLTYPE "NAND2")

)

(INSTANCE 1/$3)
(POWERDATA

)

(SLEW A (3.1 :3.4:3.7)(3.2:3.5:3.9))
(SLEW B (0.9: 1.1: 1.3)(3.2:3.4:3.5))
(CAPLOAD Y (3.4))

63

II remaining cells ...
)

RUNTIME EVALUATION

The basic algorithm for calculating average power for a design block is simply to sum

the energy dissipated by each instance in the block during the simulated period and divide

by the time elapsed in that period. This section discusses several refinements to that gen­

eral algorithm.

APAS strives to get more consistent results by recognizing these special cases:

· Nets with multiple drivers

· Bus Contention

·Glitches

Nets with Multiple Drivers

A special case exists when cells with tri-state drivers are driving a net. From the con­

text of the cell model it is difficult to determine energy dissipation when drivers transition

from driving state (0 or I) to a high impedance (called "Z") state.

Assuming no bus contention, that is the design, and its software, are well behaved

such that only one driver charges or discharges the bus net at any given time, we can

assume that the act of "turning off', that is, going to a Z state does not dissipate any of the

64

energy stored on the net. For this reason all transitions to Z will be ignored by APAS.

When a driver transitions from a "Z" to some logic state, the energy needed to "drive"

the net depends on the current state of the net. If the "turning on" of the driver causes the

net to change state then the amount of energy associated with a transition (usually 112

*C*V**2) should be assessed. But, if the net does not change state, no current will flow

and the transition should be ignored.

APAS will do the needed analysis of the net to make the right decision if it is possible

to get the net state from the design interface of the host simulator. If the net state is not

available, we will assume that there is a 50% chance that the node will change state when

a driver turns on, and 50% of the transition energy will be assessed.

Bus Contention

Another special case that occurs on bus nets is called "contention". Contention exists

when more than one driver is attempting to drive a net. Most host simulators are capable

to report warnings for illegal contention.

Some forms of contention may not be considered bad design practice and may be

allowed. For example, all active drivers driving the same state may be fine. Contention

during transitions, for a very short period of time, may also be allowed. Still, bus conten­

tion may noticeably affect the power dissipation of a design.

o~

1~
-:-

Short Circuit
when states differ

I

1~

1~

-:-

-:-

~No Current
.L when net is same state

when driver is enabled
Bus
___, 1

I

Figure 20. Bus Contention

65

Figure 20 shows some situations where bus contention affects power consumption. In

the first figure, a short circuit is created when drivers connected to the same net are driving

different values.

APAS will allow modelers to estimate the power dissipation as a function of the time

elapsed while in this condition, similar to static power elements. This can be specified in

the model language. In most cases, if this condition persists the chip will fail. But this con-

dition may exist briefly in transient conditions.

The second figure shows the case when more than one driver drives a bus high, in this

case it is inaccurate to assess the energy used to charge the net twice (once from each

instance). On nets with multiple drivers, APAS will not assess energy when there is

already a driver in the same state.

Glitches on Drivers

We have seen estimates that the power used by glitches (which generally do nothing

for functionality) can approach 25% of the total. The appearance of a glitch in ASIC

designs is often dependent on timing conditions. Glitches that appear with one set of con-

66

ditions may disappear in another.

The effect of a glitch is usually to cause incomplete transitions on nodes. That is, the

voltage change (dV) is less than V dd. Glitch power can be expressed as:

P glitch
1 = 2cvdddv (16)

Where:

dV : Reduced Voltage Swing

Voltage swing is dependent on the ratio of glitch width (tg) and gate delay (td), hence

can be approximated as:

tg
dV = tdVdd (17)

In theory, dV is dependent on input slew, output load (figured in tp) and input pattern

(figured in tg), however in engineering trade-off between efficiency and accuracy of glitch

power computation at gate level, the ratio (tg/td) can be further approximated to a reason-

able constant value.

In designs at the cell level, glitches may be hidden inside the cell (or macrocell). In

this case APAS must depend on the cell model's characterization of internal energy dissi-

pation to assess the energy of the internal glitch as it will not be seen at the cell's perime-

ter. This may not be possible when the glitch is due to multiple inputs changing at nearly

the same time since this scenario is difficult to characterize, and so, is not modeled. But

when internal glitches occur with specific input slew or intrinsic delay (based in load

capacitance) their effect can be characterized.

Glitches on drivers (output pins) may be represented in digital simulation by turning

67

on detection algorithms usually called "spike checking".

APAS wants to recognize glitch occurrence during simulation so that glitch power is

computed instead of normal switching power. In general, glitch behaviors are modeled in

logic simulators with a "three band" model. Which band a glitch falls into is determined

by its pulse width. When a glitch is narrow enough to fall into the first band it is "swal­

lowed" and nothing is propagated. Pulses in the second band represent partial transitions

and an X state is output to indicate the uncertainty that a threshold voltage was reached.

Pulses in the third band are wide enough that threshold voltage is certain and propagated

(transported) intact.

APAS will be unaware of first band (swallowed) glitches and ignore them. Since these

glitches are small, accuracy will not be greatly affected. Third band (transported) pulses

will be seen as full transitions, which they are by definition.

It is the second band glitches, that generate X pulses, that APAS will treat as a special

case. Instead of assessing the energy of a full transition when a 1 or 0 to X transition is

encountered, APAS will use 50% as the energy of an average partial transition. This quan­

tity was determined by empirical means and appears to approximate the size of the aver­

age glitch.

KEY FEATURES

APAS implements its 1/0 tasks through the user interface of the host simulator. The UI

features of APAS fall into the following categories:

68

• Command Set -- Basic commands to setup and report on a power analysis session.

The command set is casted in the userware format of the host simulator. The Command

Interface section later will describe in details each available command and its

functionality.

• Textual Reports -- A textual report of average power calculated as specified by the

user's setup process. This data may be sent to a file and may also be viewed from the

simulators' Uls.

• Graphic Results -- A histogram of average power over a specified time periods is

available for each block being monitored. This feature is useful when power

consumption is being calculated over short periods of time.

Textual Reports

The primary output of APAS is the average power dissipation during the simulation

run. Depending on the user's setup specifications, more detailed analysis may be pre-

sented:

· Total power broken down by type (i.e. dynamic and static as indicated in the model).

· Power dissipation of specific regions of the design.

· Power dissipation during fixed time periods.

A report may be generated at any time during the simulator session by issuing a

POWER REPORT command. Using the POWER FORMAT command prior to POWER

REPORT will allow the user to specify one of several formats so that it can easily be read

or parsed by a post processing utility.

69

Reporting Dynamic and Static Power

The APAS model format allows the classification of energy dissipation to be either

dynamic (due to state changes in the circuit) or static (due to leakage or static short circuit

conditions). Power dissipation due to one or both of these factors can be reported as well

as the sum of the two. The choice is made when the POWER FORMAT command is

issued.

Linear Format

This format keeps each data element in an individual line for text parsing. Its syntax is:

<block name> <period start time> <period end time> <dyn. power> : <static power> :

<total>

Where the block name is the hierarchical path to an element being monitored. (Any

and all of those elements explicitly monitored prior to simulation will be reported.) The

period times tell the simulation period over which power was calculated. And the fields

for power results are filled in with the average power in the block for each category over

the timing period indicated. If a power category is not being reported (see above) it is left

blank.

Example:

I 0.0 20000.0 7.65mW:2.05mW:9.70mW

/ALU 0.0 20000.0 3.69mW:l.07mW:4.76mW

/ALU/A 0.0 20000.0 l.12mW:0.43mW:l.55mW

/ALU/B 0.0 20000.0 l.03mW:0.22mW:l.25mW

/ALU/C 0.0 20000.0 0.97mW:0.21mW:l.28mW

/ALU/D 0.0 20000.0 0.57mW:0.21mW:0.78mW

70

Hierarchical Format

This format is meant to be more readable. Data for all time periods of each hierarchi­

cal block being reported are grouped together. Average power for the total time is always

the last entry for each block.

Example:

Average Power for: /ALU

Period: 0.0:100.0 Dyn: l.12rnW Static: 0.43rnW Total: l.55rnW

Period: 100.0:200.0 Dyn: 1.13rnW Static: 0.42rnW Total: l.55rnW

Period: 200.0:300.0 Dyn: l.14rnW Static: 0.4lrnW Total: l.55rnW

*Period: 0.0:300.0 Dyn: l .13rnW Static: 0.42rnW Total: l.55rnW

Average Power for: /ALU/A

Period: 0.0:100.0 Dyn: 0.12rnWStatic: 0.13rnWTotal: 0.25rnW

Period: 100.0:200.0 Dyn: 0.13rnWStatic: 0.12rnWTotal: 0.25rnW

Period: 200.0:300.0 Dyn: 0.14rnWStatic: O.llrnWTotal: 0.25rnW

*Period: 0.0:300.0:Dyn: 1.13rnWStatic: 0.12rnWTotal: 0.25rnW

Time Period Format

This format organizes the data by time period, and hierarchically within each period,

similar to the graphic display (See below):

Period: 0.0:100.0

/ALUDyn: 1.12rnW Static: 0.43rnW Total: 1.55rnW

/ALU/ADyn: 0.12rnW Static: 0.13rnW Total: 0.25rnW

/ALU/BDyn: 0 .13rnW Static: 0.12rnW Total: 0.25rnW

/ALU/CDyn: 0.14rnW Static: 0.llrnW Total: 0.25rnW

/ALU/DDyn: 0.39rnW Static: 0.36rnW Total: 0.75rnW

71

Period: 100.0:200.0

/ALUDyn: 5.12mW Static: 0.43mW Total: 5.55mW

/ALU/ADyn: l.12mW Static: 0 .13mW Total: l.25mW

/ALU/BDyn: l.13mW Static: 0.12mW Total: 1.25mW

/ALU/CDyn: l.14mW Static: O.llmW Total: 1.25mW

/ALU/DDyn: 1.39mW Static: 0.36mW Total: 1.75mW

Graphic Display

In order to display the time based data above in a graphical format, alongside the sig­

nal waveforms of the simulation, we have connected the periodical data to the list window

in and to a charting window in the host simulator to give a graphic indication of power

usage in the form of a histogram.

This feature is useful when power consumption is being calculated over short periods

of time. A histogram of average power over each time period is available for each block

being monitored.

The ability to print, save and review graphical data is dependent on the existing fea­

tures of the host UL

InA OJ
InB [!]
InC [!]
Clk ITJ

BlkA~

BlkB f 1.2~

I
Et n

I w
I
I
I

I
I
ID

Figure 21. Histogram of power per cycle

Additional Diagnostics

Other diagnostics -supported by APAS are listed below:

72

1) Tracking "greater that expected" activity, such as more than one transition per clock

cycle on cells.

2) Keeping more detailed profiles of the most active periods. More detail might

include more hierarchical information, split out by type, etc.

4) Tracking instances with high input to output toggle ratios in second logic levels and

up.

73

Command Interface

The rest of this chapter is now used to describe the set of available power commands

that are added to the command interface of the host simulator for controlling APAS. To

insure uniqueness, all command are preceded with the keyword POWER. Note that, in the

commands all significant letters are shown in UPPER case.

POWer ANAiyze blk_list [-QN I -OFF] [-Warn I -NOWarn]

Description

Turns on or off a hierarchical block for power analysis.

The Power Analyze command designates that one or more hierarchical
blocks in a design will be analyzed for power during a simulation. The
blk_list argument lists the design paths of the hierarchical blocks.

Arguments

blk_list

A list of named or selected hierarchical blocks to be analyzed.
-ON

An optional switch that enables power analysis for the specified
hierarchical block. This is the def a ult.

-OFF

An optional switch that disables power analysis for the specified
hierarchical block.

-Warn

Displays a warning message indicating that one or more models cannot
be found. This is the default.

74

-NO Warn

Disables warning messages regarding models that cannot be found.

POWer ANNotate filename hier_path [-Min 1-J:m I -Max]

Description

Loads design data from the file designated by filename.

The Power Annotate command loads design data contained within a Power
Analysis Data (PAD) reference file. Minimum, typical, or maximum data
values can be specified for loading.

Arguments

filename

A required string argument specifying the name of the PAD file from
which to load power data.

hier_path

Optional string specifying the relative path to a hierarchical block that
needs power annotation data attached to it. Default: "/" level.

Pathnames in the PAD file must be relative to the "/" level in the design.

-Min

An optional switch specifying that minimum values should be used
when triplets are present in PAD file data fields.

-Tun

An optional switch specifying that typical values should be used when
triplets are present in PAD file data fields. This is the default for the
initial simulation run.

-Max

An optional switch specifying that maximum values should be used
when triplets are present in PAD file data fields.

POWerCLear

Description

Clears all power data accumulated up to the current simulation time.

75

The Power Clear command resets all the power-related data that has
accumulated during the simulation and resets the time for further power
calculations to the present time. If a Power Clear command is not issued,
all the existing power data to the present time will remain during a
subsequent simulation, and new power data will be averaged into it.

POWer FOrmat -POWER [-DYNAMIC I -NODYNAMIC}
[-STATIC 1-NOSTATIC} [-TOTAL 1-NOTOTAL}

Description

Sets the format for textual reports.

The Power Format command determines the format that the simulator must
use for textual reports when a Power Report or Power Sort command is
issued. Average current can be designated instead of average power. If
information on average power is required, the type of power can be
specified--dynamic, static, and/or total.

Arguments

-Power

An optional switch that specifies average power as the type of data to
report. Default.

-Dynamic

An optional switch specifying that dynamic power is to be reported.
Default.

-Nodynamic

An optional switch specifying that dynamic power should not be
reported.

-Static

An optional switch specifying that static power is to be reported.
Default.

-Nostatic

76

An optional switch specifying that static power should not be reported.

-Total

An optional switch specifying that total power is to be reported; that is,
power consisting of both dynamic and static power. Default.

-Nototal

An optional switch specifying that total power should not be reported.

POWer Library path

Description

Specifies the pathname to a power library directory if PWR_LIB is not set.

The Power Library command designates where the power library manager
can find a power library directory if the PWR_LIB environment variable
was not set prior to invocation

Arguments

path

77

Designates a pathname to the power library that contains the catalog file.

POWer PEriod period

Description

Establishes the time period for calculating average power.

The Power Period command is most commonly used with the Power Trace
command and determines the time period in nanoseconds over which
average power is to be periodically calculated during a simulation. If the
time period is set to 0.0 ns, the time period is effectively infinite. A positive
nonzero number specifies that the simulator should calculate average power
for each period of time during a simulation.

If the Power Start command has been used to specify a particular start time,
then the first time period will begin at that start time. If the simulation
continues beyond the first time period, then average power will be
calculated for each successive time period possible for the duration of the
simulation. The time period can be changed during a simulation session.

Arguments

period

A required real number that specifies the period of time over which
average power is to be calculated. Default: 0.0 ns.

POWer REport blk_list [-Out.filename] [-NOUPDATE I -UPDATE]
[-NOAYERAGE I -AVERAGE]

78

[-PRESENT 1-NOPRESENT] [-NOMAX I -MAX] [-NOALL I -ALL]

Description

Displays power analysis results for a specified hierarchical block.

The Power Report command outputs power analysis results to the
simulation user interlace (UI) or to an output file; the default is to send it to
the UL The results are written out for a specific hierarchical block or
blocks. The -Out switch specifies that the report is to be placed in a file
located by the filename path.

You can choose to have the simulator automatically remove
accumulated power data when starting a new simulation, to report
average power data, to report present power when the simulation stops,
to report maximum power during the simulation

Arguments

-Out filename

An optional label and string argument that specifies an output file to
which the power results for the hierarchical block are to be written.

-Noupdate

Switch specifying that power data are not to be reset to zero (0) for
further simulation; that is, power data continues to accumulate in
subsequent simulations. Default.

-Update

Switch specifying that power data are to be reset to zero (0) for further
simulation.

-Noaverage

Switch specifying that average power will not be reported. Default.

-Average

79

Switch specifying that average power will be reported.

-Present

Switch specifying that the present power will be reported. Default.

-Nopresent

Switch specifying that the present power will not be reported.

-Nomax

Switch specifying that the maximum power will not be reported.
Default. ·

-Max

Switch specifying that the maximum power will be reported.

-Noall

Switch specifying that power is not to be reported for all the blocks in
the design that are being analyzed for power; requires a selected or
named instance. Default.

-All

Switch specifying that power is to be reported for all the blocks in the
design that are being analyzed for power.

POWer SOrt blk [-PRESENT I -AVERAGE] [-Top number]

Description

Sorts the instances in a specified block by the amount of power dissipated.

The Power Sort command lists the instances in a block from the most power
dissipated to the least power dissipated. Either average power or present
power can be requested. The number indicates how many of the most
power-intensive instances should be reported.

80

Arguments

blk

Specifies the name of the hierarchical block containing instances that are
to be sorted from most to least power dissipation.

-Present

Switch specifying that only present power should be sorted. Default.

-Average

Switch specifying that only average power should be sorted.

-Top number

Label and number pair specifying how many instances should be
reported for highest dissipation of power.

POWer STARt start

Description

Sets power analysis to begin at a specified absolute time.

The Power Start command causes the power analysis to begin at a
user-defined time, which is in nanoseconds and defaults to 0.0 ns. This
command is especially helpful when used to avoid an initialization stage
during which part or all of a circuit may begin in an unknown state (X).
This enables the user to avoid inaccuracies caused by the unknown states.

Arguments

start

A required real number that specifies the absolute time at which to begin
power analysis. Default: 0.0 ns.

81

POWer STATus

Description

Lists the status of AP AS commands.

The Power Status command returns information regarding the present
simulation time, the types of power to be reported, the start time, the period,
and the level at which power analysis and power tracing is enabled.

POWer TRace blk_list

Description

Creates a waveform in the Trace window for each of the specified
instances.

The Power Trace command enables for power analysis all instances
designated in the blk_list argument, even if they have not been explicitly
specified in the Power Analyze command. A waveform is then created and
displayed in the Trace window for each instance.

If the end of the power trace coincides with the end of a power period, the
trace will not be updated until the simulation time is advanced slightly.
Thus, a Power Report -Present command will show the current values of
the reported blocks, but a Power Trace command will show only the value
that occurred during the last power period.

Arguments

blk_list

A list of named or selected hierarchical blocks to be traced.

POWer UPdate

Description

Asynchronously ends a period, calculates average power, and updates
traces.

82

The Power Update command enables the period in a simulation to be reset
to zero (0) without resetting the start time or the accumulated power data­
the power data that has accumulated continues to be averaged in during
subsequent runs. The power traces are also updated to include average
power data. Power Update can be used instead of Power Clear to change
the period in the middle of a simulation without losing
previously-accumulated power data.

This command can also be accomplished by using the -Update switch in the
Power Report command.

CHAPTERV

EXPERIMENTS AND RESULTS

INTRODUCTION

This chapter reports the results of our experiments to measure the power estimation

accuracy, performance and capacity of the ASIC Power Analysis System.

Accuracy, the ultimate goal, is compared against the well known, traditional circuit

simulator - SPICE, a proxy for real silicon measurement. Since performance, our second­

ary design focus, is comparable to gate-level simulator which is typically several orders of

magnitude faster than circuit-level simulator, only small circuits with short test patterns

are measured against SPICE. For larger circuits with long test patterns, performance will

be measured against the gate-level simulator into which APAS engine is integrated.

Besides being capable to handle mainstream ASIC design sizes which are typically in the

range of tens of thousand gates [5], we also attempt to access the tool at higher capacity,

250K gate design [27].

In addition to the three primary design goals APAS, as a dynamic snap-on engine to

existing ASIC simulators, will also be measured against the integrated simulators: Quick­

sim II and Quickhdl to assure that the accuracy is consistently maintained, and perfor­

mance, capacity is comparably driven by its host simulator.

84

To obtain the high degree of consistency, top down design method which is the pre-

ferred method in ASIC design, especially when design complexity exceeds 10,000 gates,

is applied. At the top level, design circuits, based on design specification and require-

ments, are functionally described and simulated. Then they are synthesized and technol-

ogy-mapped into the 0.8 micron standard cell library. This selected standard cell library

contains different models for circuit-level and gate-level simulators: SPICE (SPICE

CMOS model), VHDL(VITAL model), and Quicksim II (AMP model). The synthesis

environment allows writing resultant designs targeting different simulator's design

descriptions. In companion with the standard cell library, there is a power model library

which have been pre-characterized through our power characterization process. Pre-layout

design parasitic described in PAD format is also generated from the synthesis process.

SETUP AND ENVIRONMENT

The experiments are conducted on a Spare 10 with 256Mb of RAM and an available

swap space of at least 500Mb. This environment represents today's typical design environ-

ment in the industry.

Below are the configuration profiles of the machines used in the experiments:

• Uname -a: SunOS curly 4.1.3 1 sun4m:

Hostname: curly
OS release: 4.1.3
CPU: SPARC_lO
Memory: 256 MB
Swap: Total swap: 830 MB

• Uname -a: SunOS hercules 4.1.4 2 sun4m

Hostname: hercules
OS system: SunOS
OS release: 4.1.4
CPU: SPARC_lO
Memory: 256 MB
Swap: Total swap: 625MB

85

Before the start of every new experiment, the RAM is "chilled". Disk usage is mea­
sured by making a UNIX call to /etc/pstat with option -s, and runtime measurement is
done by calculating the elapsed time between calls to the UNIX function /bin/date.

EXPERIMENTS

Accuracy

The accuracy of our power estimation is mainly dependent on the following factors:

•The accuracy of event-driven logic simulation.

• Timing accuracy of logic simulation

• The accuracy of the power characterization procedure which has been fully discussed

in chapter III.

In addition, special computation techniques in consideration of special conditions such

as bus contention and glitching also improve the accuracy in exchange for some accept-

able performance costs. We will test accuracy in these special cases as well as general

cases.

86

Bus Contention

Description

The first test uses just a single tristate buffer to do accuracy calibration. Using an edg­

erate of l .2NS and a load of 0.05pF

The second test is a simple design with 3 tristate drivers driving a common output net

with load 0.05pF.

The first set of stimulus, 3drivers.pat, simulates a good condition where, ena, enb, enc

take turns to drive the net alternating 0 and 1.

The second set of stimulus, contention_eqstate.pat, is similar to the first except that the

ena and enb signals are skewed a little. ena and enb will both be active for 5ns, and the

driven inputs are both the same either driving to gnd or both driving to vdd.

The third set of stimulus, contention_opstate.pat, is similar to contention_eqstate.pat

except that the inputs ia and ib are also skewed so that during the contention period, ia and

ib are at opposite states.

The last set of stimulus, contention_ueqdelays.pat simulate the X region created due to

unequal delays when 1 driver is turning off say H to Z and this delay is longer than the

delay of another driver turning on the bus from Z to L. In SPICE, this momentary X region

caused a VDD to GND path, static power. The sdf file contention_ueqdelays.sdf was used

to simulate this effect.

This test case uses tribufL, a VITAL model in c8lib_ vital.power, with it's own power

model, tribufL. pwr. This power model is characterized during the development stage of c8

lib, 0.8 micron power model library.

87

Result

Table 1: Bus Contention

APAS SPICE %Error

calibrate 8.962e-05 8.9747e-05 1.2%

3drivers 1.030e-04 l.0809e-04 5.3%

contention 1.177e-04 1.1661e-04 0.9% -
eqstate

contention l.166e-04 l.277e-04 9.5% -
opstate

contention l.186e-04 1.564e-04 5.2% -
ueqdelays

Table 1 shows that even in the bad design case, contention_opstate, when a short-cir-

cuit current flows in the net, the accuracy is still within 10% of SPICE.

Glitch Power

Description

This test case depends on the invlx, nand2H, and and2H power models. The design is

a simple glitch generator circuit, mux2. Pin sel is toggled with inputs a and b tied at 0.

Glitch will occur during sel rising. Experiment is carried out 4 times for different loads of

Y.

88

Table 2: Glitch Power

APAS SPICE %Error

glitchl 4.382e-04 4.220e-04 3.8%

glitch0.5 3.646e-04 2.960e-04 3.1%

glitch2 6.158e-04 6.803e-04 10.5%

glitch4 9.668e-04 1.1232e-03 14%

Glitch power, a partial transition switching power, is dependent on load capacitance.

The accuracy shown in table 2 is mostly within 10% of SPICE except case when load is

significantly large (glitch4, 14% Error).

General cases

Description

In these general cases which represent general operating conditions in design circuits,

most selected circuits are synthesized using Autologic II, except small and simple circuits

which are hand-crafted. Some tests are simulated using post-layout data when it is avail­

able from AutoCells. Otherwise pre-layout data estimated from synthesis environment

will be used. No matter what design data, pre or post layout, is used, SPICE representation

of the circuits must be equivalent to the gate-level descriptions.

ca - accuracy _chainbuff.qs.power

The circuit is a chain of 16 buffers and inverters. Power models consist of inv12x,

89

invlX, bufl. The PAD file data, test.padf, is consistent with the design data specified in

the spice deck chainbuff.sp. Capload in PAD file are computed by adding net capacitance

and inpin capacitance:

• inv12x inpin cap is 0.0716pF

• invlx inpin cap is 0.0112pF

• bufl inpin cap is 0.0186pF

All net capacitances used in interconnecting nets are 0.25pF. Each Input slews are

approximated from driving output slope. Output slopes are taken from c8 data book, at

characterized points:

• inv12x (0.25pF) 0.27 0.17 (0.50pF) 0.46 0.28

• invlx (0.25pF) 1.48 0.98

• bufl (0.25pF) 0.37 0.41

cb - accuracy _dec24.qs.power

The circuit is a 2 to 4 decoder synthesized to gates using Autologic II, AL2. The result

is a 5 cell combinatorial circuit. Power models consist of nand2H, invlX, or2H. The PAD

file data in padf is consistent with the design data specified in dec24 spice deck dec24.sp.

All outputs of cells are modelled with 0.25pf, all primary input slews are modelled with

0.8ns except /gl/a and /g2/a where they are driven by /g2/0 has slews 1.48, 0.98 based on

c8 data sheet of 0.25pf load. In this test, we used a random but periodic test patterns and

did not figure out the toggle counts of each cell. The periodic test sequence is (ab) 00->01-

90

>11->10->00

cc - accuracy _simple.qs.power

d 1 is a single inverter IV 1, and d5 is 5 instantiations of the inverter with separate

inputs and outputs. The PAD file data in padfl, padf5 are consistent with the design data

specified in the spice deck designl.sp and design5.sp. Input slopes are 0.4ns and load is

0."12pF, a characterized point in the power model of IV 1.

cd - basicalu4.power

The circuit is a 4bit ALU synthesized to gates using AL2. The synthesized circuit con­

tains 255 gates of the following cells: and2H, and3H, bufl, invlX, inv12X, mux2L,

nand2H, nor2H, or2H, or3H, xor2L.

All caploads are post-layout data generated using AutoCells.

ce - basiccrc32.power

The 32-bit CRC with its RTL model at crc32.vhd is synthesized to gates using AL2,

and the gate representation contains 1060 gates of C8_LIB cells: and2H, and3H, bufl,

dffr, invlX, inv12X, mux2L, nand2H, nor2H, or2H, or3H, xor2L.

cf - basicshift4.power

The circuit is a 4bit shift register synthesized to gates using AL2. It contains 52 gates

of C8_LIB cells: and3H, bufl, dffr, invlX, inv12X, nand2H, nor2H, or2H

91

All caploads are post-layout data generated using AutoCells.

Result

Table 3: Power Estimation Accuracy

Circuit
APAS SPICE

%Error gate count
(mW) (mW)

ca 16 6.90 6.65 3.6%

cb 5 1.03 1.07 4.9%

cc 5 1.08 1.04 3.2%

cd 255 34.97 36.66 4.6%

ce 1060 41.08 37.54 9.4%

cf 52 1.31 1.43 8.1%

Table 3 shows that for the selected circuits which span from 5 to 1060 gates, combina-

tional or sequential, the accuracy of APAS is within 10% of SPICE.

Performance and Capacity

APAS compared against SPICE

In this experiment the following two circuits are selected:

cd - basicalu4.power

cf - basicshift4.power

Table 4 shows the speed advantage over SPICE and the degradation in simulation

speed over original logic simulator without power.

92

Table 4: APAS vs. SPICE Performance

Circuit APAS Quicksim II SPICE

cd 1.0 0.67 26.4e3

cf 1.0 0.68 9.17e3

APAS is 4 order of magnitude faster than SPICE and suffers only 33% speed degrada­

tion compared to the base logic simulator, Quicksim II.

perf15K_alu32.power

Description

The design is a 32bit ALU synthesized to gates using Autologic II and targeted to the

0.8 micron technology library that was internally characterized for power. A design data

annotations file is size of 5Mbytes. The run is for 100,000ns. This circuit contains 15050

gates of C8_LIB cells: and2H, and3H, bufl, invlX, inv12X, mux2L, nand2H, nor2H

or2H, xor2L. The structural vhdl description contains three blocks: addsub block, multi­

plier block, division block.

Performance and capacity tests are done in several areas:

• measures the disk usage and runtime performance for the power annotation operation

• measures the disk usage and runtime performance for the default power sort operation

• measures the disk usage and runtime performance for the power load operation

93

•measures the disk usage and runtime performance for a RUN (long time) operation,

and compare it with the same RUN without the power option. Also compares with

RUN's for different power period values of "half a clock" (implies 6000 power

calculations), "a clock cycle" (implies 3000 power calculations), and "full simulation

run time" (1 power calculation).

• measures and compares QuickSim II I QuickHDL invocation with and without

power option.

Result

Table 5: alu32 Performance

Tasks QuickSim II QuickHDL

In general, the power estimation accuracy from Quicksim II and QuickHDL are the

same since both simulators are integrated with the same power kernel using the same

power model library, the same power design data, and equivalent timing and functional

models. However, the performance and capacity (memory overhead) are dependent on the

host simulator. Some host simulator such as Quicksim II allows a tight integration which

94

results in better performance, less memory overhead, but less flexibility to maintain. Table

5 shows that a degradation of 30% in power simulation with Quicksim II, and 44% in

Quickhdl. Design data annotation operation is at the speed of 11.5Mbytes per minute.

CHAPTER VI

CONCLUSION AND FUTURE WORK

We have developed an ASIC Power Analysis System (APAS) in this thesis. APAS is

capable of supporting the following major features:

. Snaps on to the leading ASIC simulators: - QuicksSim II - QuickHDL - Verilog-XL

with a common library .

. Easy to learn: Start analyzing your design for power in a single day .

. Interactive power diagnostics tell when and where - not just how much .

. Performance and capacity for today's complex designs (33% degradation) .

. Flexible models to support gates, RAMs, and higher-level macros .

. State-dependent dynamic and static power for superior accuracy (10% of SPICE).

APAS takes the guess work out of power analysis. It is the industry's first power anal-

ysis tool that combines accuracy with easy of use. It is also the first to support the three

leading ASIC simulators: QuickSim II, QuickHDL, and Verilog-XL, all with a common

library.

APAS "snaps on" to the designer's chosen simulator. This allows the designer to use

the same environments for power simulation as is used for functional and timing simula­

tion. Since the host simulator uses the same netlist, vectors, models, and back-annotated

parasitic, the same behavior is guaranteed. The familiar simulation environment also

makes power analysis easy to learn and use. APAS is also easy to learn that it can be

installed in the morning and used productively in the afternoon.

96

APAS is an interactive power analysis tool that helps the designer reduce power con-

sumption. In addition to reporting how much power is being consumed, it helps the

designer determine where and when. APAS's hierarchical capabilities can be used to find

out which blocks in the design are consuming the most power. The designer can then

focus on reducing power in these blocks. Analyzing the dynamic behavior of the circuit is

also key to power reduction. APAS can dynamically trace the power consumption of any

block in the design, giving the user a graphical representation of the periods of high and

low activity. Moreover, the real strength of interactivity comes from combining these two

capabilities. By stopping the simulator at a time of high activity and then listing the blocks

consuming the most power at that moment, the designer can identify candidate blocks for

power down. Powering down blocks can often result in dramatic power savings, but the

savings need to be verified. APAS 's interactive simulation environment allows the

designer to perform "what if' experiments to verify power reduction.

Not only are the diagnostics important, but the designer must have confidence in the

accuracy of the results. The key to accuracy is the power models. The power models must

represent the ways that current flows in the design. This includes dynamic switching cur-

rent, dynamic short-circuit current and static current. Achieving optimum accuracy

requires models which account for input slew, load and internal state. APAS uses power

models written in the Power Modeling Format (PMF). PMF has the robustness to handle

state-dependent dynamic and static power. Its combination of equations and interpolated

tables provide the means to capture the most detailed cell characterization data under

varying slew, load and state conditions. PMF not only supports gates but it can also handle

1/0 cells, RAMs, and higher-level macros. These higher-level models become increasing

97

important as the amount of Intellectual Property (IP) used in designs continues to grow.

Closing market windows are putting tremendous pressure on design throughput. How

a tool fits in the design flow is critical. The ability to perform power analysis in the chosen

environment streamlines the iteration cycle because no additional steps are required in the

design flow. Simply tum APAS on to measure power during the usual functional or timing

simulations, making power analysis part of the simulation flow - not an afterthought.

Designers need to meet market demands by increasing functionality while reducing

system costs. APAS snaps on to the designer's chosen simulator to reduce design iteration

and improve productivity. APAS's unique interactive power diagnostics enable designers

to meet these challenges. APAS also delivers the required accuracy for both dynamic and

static power consumption.

FUTURE WORK

Early in the design verification, especially when power models are not yet available,

designers want a first look at the power consumption in their design. A fast power estima-

tion algorithm is required to be added to APAS. This fast estimation is based only on the

load switching power. The load capacitance can be estimated from cell fanout or from

back annotation. Other extensions to APAS includes a mechanism or backplane that can

connect power estimation algorithms from lower-level of abstraction (switch-level power

estimation) to higher-level of abstraction (RTL power estimation), and make APAS a mul-

tilevel power estimation system.

REFERENCES

[1] E. Melancon, M. Rosneck, "Low-Power IC Design", Communication Systems
Design, pp. 30-34, December 1995.

[2] L. Maliniak, "IC Analysis Tools Help Manage Power", Electronic Design, pp. 71-
80, January 1996.

[3] L. Cooper, "IC Power: a Hot Problem", Integrated System Design, pp. 63, July
1996.

[4] B. Nadel, "The Green Machine", PC Magazine, Vol.12, no. 10, pp.110, May 1993.

[5] W. Roethig, "Full Chip Gate Level Power Analysis Requirementes", LSI Logic
Power Methodology Group, Rev. 5, May 1996.

[6] H.J.M. Veendrick, "Short-circuit Dissipation of Static CMOS Circuitry and Its
Impact on The Design of Buffer Circuits", IEEE Journal of Solid-State Circuits, Vol.
SC-19, pp. 468-473, August 1984.

[7] R. Burch, F. Najm, P. Yang, I. Hajj, "Probabilistic Simulation for reliability analy­
sis of CMOS VLSI circuits", IEEE Transactions on Computer-Aided Design of Inte­
grated Circuits and Systems, 9(4), pp. 439-450, April 1990.

[8] B.J. George, D. Gossain, S.C. Tyler, M.G. Wloka, G.K.H Yeap, "Power analysis
and characterization for semi-custom design", In Proceedings of the 1994 Interna­
tional Workshop on Low-Power Design, pp. 215-218, April 1994.

[9] L. Benini, M. Favalli, B. Ricco, "Analysis of hazard contribution to power dissipa­
tion in CMOS I C's", In Proceedings of the 1994 International Workshop on Low­
Power Design, pp. 27-32, April 1994.

[10] R. Burch, F. Najm, P. Yang, D. Hocevar, "Pattern independent current estimation
for reliability analysis of CMOS circuits", In Proceedings of the 25th Design Automa­
tion Conference, pp. 294-299, June 1988.

[11] A. Ghosh, S. Devadas, K. Keutzer, J. White, "Estimate of average switching
activity in combinational and sequential circuits", In Proceddings of the 29th Design
Automation Conference, pp. 253-259, June 1992.

[12] S.M King, "Accurate simulation of power dissipation in VLSI circuits", IEEE
Journal of Solid State Circuits, 21(5), pp. 889-891, October 1986.

99

[13] S. Rajgopal, G. Mehta, "Experiences with simulation-based schematic level cur­
rent estimation", In Proceedings of the international Workshop on Low Power
Design", pp. 9-14, April 1994.

[14] A. Tyagi, "Hercules: A power analyzer of MOS VLSI circuits", In Proceedings of
the IEEE International Conference on Computer Aided Design, pp. 530-533, Novem­
ber 1987.

[15] A. Chandrakasan, R. Brodersen, "Low Power Digital CMOS Design", Kluwer
Academic Publishers, pp. 56-95, 259-306, 1995.

[16] J. Rabaey, M. Pedram, "Low Power Design Methodologies", Kluwer Academic
Publishers, pp.1-15, 21-33, 129-156, 1996.

[17] A. Bellaouar, M. Elmasry, "Low Power Digital VLSI Design Circuits·and Sys­
tems", Kluwer Academic Publishers, pp. 1-10, 115-251, 510-522, 1995.

[18] F. Najm, "A Survey of Power Estimation Techniques in VLSI Circuits", IEEE
Transactions on VLSI Systems, Vol. 2, No 4, pp.446-454, December 1994

[19] G. Frenkil, "Power Dissipation of CMOS AS I CS", VLSI Technology Inc. 1991.

[20] F. Dresig, P. Lanches, 0. Rettig, U. Baitinger, "Simulation and reduction of
CMOS power dissipation at logic level", European Design Automation Conference,
pp. 341-346, 1993.

[21] M. Cirit, "Estimating dynamic power consumption of CMOS circuits", IEEE Int.
Conf. Computer Aided Design, pp. 534-537, November 1987.

[22] C. Tsui, M. Pedram, A. Despain, "Efficient estimation of dynamic power con­
sumption under a real delay model", IEEE Int. Conf. Computer Aided Design, pp.
224-228, November 1993.

[23] F. Najm, "Transition density: a new measure of activity in digital circuits", IEEE
Trans. Computer Aided Design, Vol. 12, No 2, pp. 310-323, February 1993.

[24] C. Huizer, "Power dissipation analysis of CMOS VLSI circuits by means of
switch-level simulation", in IEEE Europ. Solid State Circ. Conf. pp. 61-64, 1990.

[25] R. Burch, F. Najm, P. Yang, T. Trick, "McPOWER: A Monte Carlo approach to
power estimation", IEEE/ ACM Int. Conf. Computer Aided Design, pp. 90-97,
November 1992.

[26] J. Lipman, "EDA tools let you track and control CMOS power dissipation", EDN

100

Design Feature, pp. 65 75, November 1995.

[27] ---, "Power Analysis and Optimization", TI ASIC CAD Flow, Internal product
requirement survey, November 1993.

[28] Harish Sarin, Andrew McNelly, "A Power Modelling and Characterization
Method For Logic Simulation", IEEE CICC, pp363-366, 1995.

[29] B. George, G. Yeap, M. Wloka, S. Tyler, D. Gossain, "Power Analysis For Semi­
custom Design", Proc. CICC-94, pp. 249-252, 1994.

[30] M.A. Cirit, "Characterizing a VLSI standard cell library", Proc. CICC, pp.25.7.1,
1991.

[31] M. N. Misheloff, "Improved Modeling and Characterization System for Logic
Simulation", Proc. IEEE Asic Intl. Conference, 1992.

I

I

1
)

APPENDIX A

POWER MODEL FORMAT

We start with an overview of the model format. Details and syntax of each section fol-

lows.

In the examples of this chapter, compiler keywords will appear in capital letters and

user defined names will be lower case. However, the compiler is not case sensitive.

Model Data and Expressions:

Signal Declarations
Default Data
Defined Constants
Table Data
Equations
Internal Signal Definitions

Model Evaluation:

Transition Energy Statements
Static Power Statements

Figure 22. Power Model Format

Comments

Comment text can be put in models using either C comment style,/* <lines of text>*/:

/*

This is a C style comment

*/

Or, comments can be proceeded by a double slash (as with C++) where a carriage

102

return terminates the comment:

II This is also a comment

Signal Definitions I Declarations

Cell Signal Declarations

Any signals used in the power model that exist as "pins" or "ports" on the cell inter-

face need to be declared prior to appearing in an equation or table. This simplifies inter-

face validation and indicates pin direction to the model compiler. Signals are declared as

inputs, outputs or bidirectional. This is done with the keyword SIGNAL followed by

INPUT, OUTPUT or BIDIR. It is not necessary to declare signals on the functional model

that are not used in the power model.

Wide pins (buses) must include their range so that their width is determined. Once the

busses are declared (or defined), if only the bus name appears in an expression, then the

operation applies to all of its bits. Alternatively a specific bit can be referenced, e.g.

'DATA[O]'.

Examples:

SIGNAL INPUT bist, rd, cs, ada[0:31], adb[0:31];

SIGNAL OUTPUT data[0:8];

SIGNAL BIDIR datb[0:8];

103

Grouping Signals

For convenience, a signal may be defined in the power model as a group of pins. To

create a group use the following syntax:

SIGNAL GROUP buspins : ad1, ad2, ad3, ad4;

Boolean signals may be included as a contributing signal to a group. Internal states,

defined below, may also be included. Group signals get their width implicitly from their

definition. All contributing signals in the group must be declared previously in the model.

The state of the group is always the combined current state of their contributors. This

differs from an internal state (see below) which is initialized at model construction then

updated only by the power model following evaluation.

Defined Internal State

The definition of 'internal' signals within the 'black-box' cell boundary may be

needed, to accurately represent the state and operation of a cell for a given power con­

sumption data point.

The internal state may be a single bit or a bus, it inherits the width of the signal used to

initialize it. An internal signal may used in any GROUP defined after the internal state

definition.

Internal states are explicitly updated during model evaluation. An internal signal must

be initialized in its definition with

a port signal, a GROUP, or an explicit state. The initial signal must be defined prior to the

104

internal state definition.

Example:

This example shows an internal state used and updated in a model. First, define inter-

nal state "lastd" and initialize it with signal 'd':

SIGNAL INTERNAL lastd <= d;

In the transition energy statements (described in detail below), the statement shown

will be active if the enable pin "en" goes low-to-high and "lastd" is a logical '1' when

evaluation occurs. The state of "lastd" is updated with the current value of 'd' AFfER it is

evaluated in the statement:

DYNAMIC {

en(/) & lastd: energy_eqn1 ($PAD(CAPLOAD)), lastd <= d;
};

Boolean Signals

There may be some cases where it is necessary to compare signals or buses to deter-

mine the state or mode of a cell. A binary boolean expression is available for this purpose.

It tests for equivalence,"==", (for non-equivalence use"!=") of two evaluated expres-

sions. The result may be used like a single bit binary signal. The return value will be a log-

ical '1' if the equivalence tests true and zero 'O' otherwise.

The arguments to the boolean operators may be two signals or two arithmetic expres-

sions. (A mix of signals and expressions are not supported.)

The boolean "signal" can be used in a transition statement (see below) as a condition,

105

to impose state dependency. A boolean may also be a "signal" in a GROUP.

Example:

The mode of a dual port RAM cell is dependent on comparing two address buses. The

following expression will return non-zero if the condition is true and zero if it is not.

An arithmetic expression:

SIGNAL BOOL bus_comp { $DIFFBITS(A 1,A2) == 0 };

A direct signal compare:

SIGNAL BOOL bus_comp {A 1 == A2};

Next the "bus_comp" and the control lines of a RAM are combined as a GROUP:

SIGNAL GROUP mode : bus_comp, rd, wr, ce;

The resulting group may be used to test for "read through" mode using the $STATE

system function (defined below). The mode is defined as '1111 ',the state where the

address buses match, both read, "rd", and write, "wr", control line are asserted, and the

cell is enabled:

$STATE(mode, '1111 ')

System Functions

The system functions defined below will be used in the energy expressions associated

with the transitions and state of the cell.

106

Data Access Function

The $PAD system function is used to access instance specific data from the client

application. For example, the data will usually come from a Power Analysis Data (PAD)

file. Default values may be set in the model format or design wide in the library file.

Syntax:

"$PAD(" <data type> [, <port name>] ")"

Where:
<data type> -- is one of a set of data elements found in the PAD file. These elements

are defined in the syntax of the PAD file. Data in the PAD file will be either design wide -

VOLTAGE and TEMPERATURE, or instance and port specific -SLEW and CAPLOAD.

<port name> -- (optional) Used for instance/port specific data to indicate which port's

data to access. (The instance context is set in the PAD file.) This field is optional, the

active pin is used as a default. (Dynamic pin equations are evaluated in the context of an

instance and active pin transition, more on this later.)

Examples:

$PAD(VOLTAGE) -- Get voltage.

$PAD(CAPLOAD) -- Get load capacitance of active pin.

$PAD(CAPLOAD, QBAR) -- Get load capacitance of pin "QBAR".

$PAD(SLEW) -- Get the slew of the active pin.

$PAD(SLEW, IN 1) -- Get the slew of pin IN 1.

Special case for SLEW type data:

SLEW statements in the PAD file have positions for both rising and falling data. If the

context of the equation specifies a specific transition of an active pin,('/' for rising or'\'

107

for falling) then the data for the active transition will be used. If no transition is specified

the average of the rising and falling slews will be used.

Units:
$PAD returns a real number in primary units, as follows:

VOLTAGE (Volts)
TEMPERATURE (Degrees Celsius)
SLEW (seconds)
CAP LOAD (farads)

State Check Function

The $STATE function compares a signal to an explicit state and returns "true" (some

non-zero value) if they do not match and "false" (0) if they do not.

Syntax:

"$STATE(" <Sig>"," <explicit state>")"

The signal, <sig>, may be a bus (wide), a GROUP (see above), or single pin. The

<explicit state> is a string of bit states, 'O,' '1' or'-' (dash is "don't care") that must be the

same width as the signal. The two arguments are compared bitwise, if any bits in the cur-

rent state of <sig> do not match the <explicit state> ("don't care" always matches) a value

of zero "O" is returned.

Signal Comparison Function

The $DIFFBITS function does a bitwise comparison and returns the number of bits

that differ between two signals as an integer. If a bit is in an unknown state (X) it will

108

always be counted as different, unless matched with a "don't care" in an explicit state. The

arguments are optional and supply the signals to be compared.

Syntax:

"$DIFFBITS(" [<sig1 >] [, <sig2>] ")"

The signals, <sigl> and <sig2>, may be buses (wide) or single pins.

Examples:

When given a single argument, the signal, DATA, is compared with its own previous

state. This allows the current and previous state of a bus to be compared to determine how

many bit changed.

$DIFFBITS(DATA)

When used with no arguments the function must be used in the context of a transition

statement (defined below). The bus is assumed to be the active pin and is compared with

it's previous value.

$DIFFBITS()

It is possible to use an explicit state (in quotes) as the second argument. A dash('-') in

the explicit state means "don't care" and will always count as a match, even with a bit in

the X state:

$DIFFBITS(DATA, '010101--')

When given two arguments the function simply compares the two bus pins (or internal

109

states) specified.

$DIFFBITS(ADA, ADB)

If the arguments are not the same width, then the smallest bus will be extended with

the value of its MSB (the left-most bit). Example:

$DI FFBITS (enables, 'O')

The function call above may be used to determine the number of active (high) read or

write enable pins on the RAM, since the bits in the state '1' will differ from the "all zeros"

argument 'O'.

Bus Width Function

This $WIDTH function will return the width of a bus given as the argument as an inte-

ger. When used with no argument the width of the active pin is returned.

$WIDTH(<bUS>)

Where <bus> is a declared port signal or defined internal state or group.

Natural Log

The $LN function returns the natural log of the argument.

$LN(<operand>)

Where operand is a real number, constant or a reference to an expression that has been

110

previously defined.

Model Data and Expressions

Constants

Constant variable can be defined for use in generic equations. This simplifies incorpo-

rating characterized data into expressions.

Examples:

CONST int_cap 4.53;

CONST nano 1 e-9;

Def a ult Data

Equations that use $PAD system functions to access data expect design specific data to

be annotated into the power instances. The DEFAULT statement sets a model-wide default

for these data elements.

Example:

DEFAULT VOLTAGE 5.0;

DEFAULT CAPLOAD 0.02(nano);

The conversion operator "(nano)" is used to normalize data values and is discussed

further in the "Tables" section below.

111

Tables

One, two or three dimensional table can be used to enter piece-wise linear data. They

are designed to allow real numbers in their subscripts.

Conversion Operators:

For readability, the indices "cap" and "slew" in the example below, are given conver-

sion operators, which follow them in the table definition. The table's data also has a con-

version operator, shown following the table indices: "(1 e-14)". These are optional but

allow the table to be more compressed and readable.

When used, the conversion operator scales its associated data by the operator's value.

This is useful since data received through the $PAD system function is always in primary

units, and the energy or power quantities returned must also be in primary units Goules

and watts).

The syntax is simply a number or defined CONST enclosed in parenthesis.

Table Example:

A three dimensional table.

TABLE dim3 (

cap (1 e-12) : 0.05, 0.1, 0.15, 0.2;
slew (nano): 1.2, 2.3, 3.7;
voltage : 2.5, 3.5, 4.5;

) (1 e-14){

};

{{0.1, 1.1, 2.1 }, {0.2, 1.2, 2.2}, {0.3, 1.3, 2.3}},

{{0.4, 1.4, 2.4}, {0.5, 1.5, 2.5}, {0.6, 1.6, 2.6}},

{{0.7, 1.7, 2.7}, {0.8, 1.8, 2.8}, {0.9, 1.9, 2.9}},
{{1.0, 2.0, 3.0}, {1.1, 2.1, 3.1 }, {1.2, 2.2, 3.2}}

112

Nesting order of data elements is done from outside in (as in C language). The real

number indices are mapped one-to-one with their corresponding array or data points. Lin­

ear interpolation (and extrapolation) is used to return a value when the real number indices

are between the data points explicitly specified in the table.

Given the example and a table reference:

dim3[$PAD(CAPLOAD,out)][$PAD(SLEW)][3.0]

Assume the load capacitance is 0.15pF and the slew is l .2ns. The conversion operators

of "cap" and "slew" anticipates that the index values passed in from the $PAD system

function, or any other source, such as an equation, will be in primary units, farads and sec­

onds, and convert the index values accordingly. Note that slew uses the defined constant

"nano" that we defined in the CONST example above.

A resulting 0.15 value for "cap" would indicate the third row. "Slew" has value 1.2 so

the first set of three values will be used from that row and a "voltage" value of 3.0 would

require interpolation between the first (0.7) and second (1.7) data point. A value of 1.2 is

found in the table and 1.2e-14 is returned due to the data conversion operator: "(le-14)".

Table Data Tags

It may be desirable to include several sets of characterized data into a single table

when the table's dimensions are the same for all sets of data. The use of "data tags" will

allow this as shown below. A one dimensional table using data tags:

TABLE dim1 (
slew (nano): 0.5, 1.0, 1.5, 2.0;

) (1e-12) {
rise : { 0. 1 , 1 . 1 , 2. 1 , 3 .1 } ;
fall : {0.2, 1.2, 2.2, 3.3};
};

113

To access the desired data when referencing a table, follow the table reference with a

dot'.' and the tag. Example of a table reference: to the table above, "diml", we want to

pass in a pin's slew and get data for a falling transition:

dim1 .fall[$PAD(SLEW)]

Expressions

Equations

Energy dissipations may be modeled using mathematical equations. An equation

(EQN) returns a real number.

Operators:

'+'
''

'*'
'/'
'**'

: add
: subtract
: multiply
: divide
: exponent

Operands:
Equation operands may be real numbers, constants, passed in arguments, system func-

tions, or references to tables or other equations.

Tables and equations referenced in an equation definition must be defined in the model

prior to being referenced. Forward declarations are not supported.

114

Example:
To define switching energy for a typical output pin transition:

1 2
Energy (trans) = 2c x V

In model syntax:

EQN out_erg() { 0.5 * $PAD(CAPLOAD) * ($PAD(VOLTAGE) ** 2) };

Alternatively the modeler may want to pass in the variables using an argument list:

EQN out_erg(cap, volts) { 0.5 * cap * (volts ** 2) };

Model Evaluation Section

This model section must follow data and expression definitions. It is where transition

energy and static power dissipation is specified based on a state change on the perimeter of

the cell.

Transition Statements

A transition statement is used to associate a specific pin transition with a quantity of

energy, or update the internal state(s) of the model, or both.

A transition statement should exist in the model for each pin transition that is known to

produce energy dissipation. The quantity of energy is specified by an energy expression.

The energy expression can be either a constant, a reference to a defined expression, or a

table reference.

Internal states can be updated in transition statements following an energy expression,

115

if one exists.

State Dependence

If the amount of energy dissipated depends on the (static) state of other signals, an

entry for unique transition/state combinations may be included in the model. To specify a

state dependence, follow the active pin with syntax: "& <expression>"; where the expres­

sion is a boolean signal, a $STATE system function, or a single bit signal. The result of the

expression can be inverted by preceding it with a'-' (tilde) character. A non-zero result of

expression evaluation will satisfy state dependence.

It is important to note that output pin changes, caused by an input pin change, will not

appear at the output until the propagation delay time elapses. So, power models may need

to use internal state to help determine the effect an input change will have on output state

to accurately determine internal energy dissipation.

Specifying Transitions

Statements may, if necessary, explicitly specify the direction of the transition by fol­

lowing the active signal with "(/)", for rising, or "(\)" for falling. A "(*)" indicates "any

change" and is the default. Transitions will NOT. be allowed if the subject signal is a bus

(i.e. more than one bit wide). Transitions to and from X and Z are handled implicitly by

the evaluator, (more on this below).

Examples:

For any change on out driver "out":

116

out : out_erg($PAD(CAPLOAD)) ;

For any change on input "in" IF en is true (a 1 state):

in(*) & en : intbl.en[$PAD(CAPLOAD, out)][$PAD(SLEW)];

For falling input "in" IF en is 0. Note that internal state "last_st" is also updated:

in(\) & -en : intbl.off[$PAD(CAPLOAD, out)][$PAD(SLEW)], last_st <=
in;

For a rising transition on pin "en" IF signals "in" and "last_st" are the same. First,

define a BOOL signal, then reference it in the transition condition.

SIGNAL BOOL same_state { $DIFFBITS(in, last_st) == 0 };

en(/) & same_state : entbl.rise.same[$PAD(CAPLOAD)][$PAD(SLEW)];

Statement Organization: Blocks

Transition energy statements are organized in "blocks" starting with the keyword

DYNAMIC and enclosed in braces.

Example:

DYNAMIC {

in(*) & en :intbl.en[$PAD(CAPLOAD, out)][$PAD(SLEW)];
in(*) & -en :intbl.off[$PAD(CAPLOAD, out)][$PAD(SLEW)], last_st <= in;

};

Block Evaluation:

When more that one transition and condition is "true" within a block, only the first

transition statement, by order of appearance, will be evaluated. This may be used to avoid

117

double counting internal energy dissipation. (e.g. All inputs of a 3 input and gate going 0

to 1 at the same time.)

Blocks allow better control over the situation when more that one pin transition

occurs. It is also useful with complex state dependence as a "catch-all" row may be used at

the end of a block after the transitions with specific state dependencies.

Example:

SIGNAL GROUP ins : iO, i1, i2;

DYNAMIC{// rising input pin causing output change
iO(/) & outrises(ins) : in_erg_ri();
i1 (/) & outrises(ins) : in_erg_ri();
i2(/) & outrises(ins) : in_erg_ri();
ins: in_erg_noop();

};

Modelers can use as many blocks as necessary to describe the power model. Each

block will be evaluated separately. Internal state updates may be more conveniently han-

dled in separate blocks but this is not required.

Wide Pins and Buses

When a wide pin or bus is used as the active signal the following rules apply:

• Specific transitions may not be specified.

• The associated equation is evaluated only once regardless of the number of bits

changing.

•An alternative to whole-bus statements is to specify each bit (e.g.: BUS[O]) so that

transitions may be used.

Modelers may use system functions, such as $DIFFBITS and $WIDTH, to scale

energy consumption for the case of multiple bits changing.

Example:

EQN addr_trans(bus) { $DIFFBITS(bus) * column_erg[$PAD(SLEW)] };

DYNAMIC {
addr & cs :addr_trans(addr);

};

Static Power Statements

118

Static power entries should be added for any states for which static power has been

characterized. Static power may be state dependent using the same expression syntax

described in transition energy statements above. Static power expressions will contribute

to total average power by a ratio of the time they were in the specified state to total analy-

sis time. Static power statements are organized in blocks titled STATIC.

Examples:
Static power for this model is dependent on the state of the "en" pin.

STATIC {
en : st_pwr_en1 ();
-en : st_pwr_enO();

};
Static power characterized for variable voltage, not state dependent.

STATIC {: leakage[$PAD(VOLTAGE)] };

119

Units

The units of the data for energy expressions for dynamic power should be returned in

joules (J). Static power expressions should be returned in watts (W).

State Abstraction

This power model format will be based on a standard four state abstraction. The fol-

lowing symbol definitions will be used in the model syntax:

'1'
'O'

'Z'
''
'/'
'\'
'*'

-- A logical high state (Vdd)
-- A logical low state (Ground)
-- High impedance state (Hi-Z)
-- A "don't care", used when defining state dependence
-- A rising transition
-- A falling transition
-- Either a rising or falling transition

A reasonable mapping from the state abstraction of the host simulator to the Power

Model's four state abstraction will be created for each host.

The Unknown "X" State

Unknown states occur in digital simulation in several situations:

• Initialization (power up)

• Multi-driver node resolution (bus contention).

•Uncertainty during transition (such memory data bus transitions)
'
• Partial transitions (spikes glitches)

•
Note that it is not possible to explicitly specify transitions to or from an unknown "X"

state. The model evaluator will automatically handle these events based in the energy

120

specifications for "good state" events. Transition from 0 to X or from X to 1 will assess

50% of the energy specified for a 0 to 1 (a "f' symbol) transitions. X to 0 and 1 to X will

assess 50% of 1 to 0 ('\') energy.

Users will be encouraged to avoid power analysis during initialization periods when

the state of the circuit is unknown. In the other cases the assessment of 50% of a full tran-

sition has shown to work well in most cases when Xis encountered. Consider the O>X>l

case in which two 50% transitions will give the same result as a single 0> 1 transition that

certainly has occurred. Only if the real silicon undergoes multiple partial transitions in the

X region is inaccuracy introduced.

Partial transitions, O>X>O or l>X>l, which usually indicate glitches will assess half

of the power of a full pulse.

The High Impedance "Z" State

The model evaluator will also implicitly handle tri-state transitions. It will be assumed

that Hi-Z drivers are attached to multiply driven (bus) nets. The analysis tool will need to

handle situations where bus contention causes anomalies such as a short circuit caused by

two or more drivers driving opposing states.

Assuming no bus contention, we can assume that the act of "turning off' - that is,

going to a Z state - does not dissipate any of the energy stored on the net (or internal

node). For this reason transitions to Z will be ignored on both inputs and outputs.

When a driver transitions from a "Z" to some logic state, the energy needed to "drive"

the net depends on the current state of the net. If the "turning on" of the driver causes the

net to change state then the amount of energy associated with a transition should be

121

assessed. But, if the net does not change state, no current will flow and the transition

should be ignored.

If it is possible to get the net state from the design interface of the host simulator, the

scenario above can be modeled. If the net state is not available, we will assume that there

is a 50% chance that the node will change state when a driver turns on, and 50% of the

transition energy will be assessed.

Inputs will assess internal energy based on the last valid driven state and the current

driven state, with intermittent Hi-Z state ignored.

Model Syntax

• Keywords are shown in capital letters. They will be parsed case insensitive.

• Syntax punctuation is in single quotes.

• Element may be grouped in brackets ' {' '}' to clarify definition

• Elements in braces -- [] -- are optional.

• A star -- '*' -- means "zero or more" of the preceding bracketed or braced element.

• A plus sign '+' means one or more.

•Elements separated by bars (i.e. AIBIC) mean "one of A or B or C".

•name -- can be any string of alphanumeric characters, or '_', starting with a non­
numeric.

•real -- is a floating point number, may use exponential format (ex: 3.456e-2).

• posint -- a positive integer (or zero)

Note: Text preceded by double slash -- "If' -- are comments, not part of syntax.

Model Syntax:

<model> ::= <model name> <defs_and data>* <eval model>

<model name>::= MODELNAME name';'

<defs_and_data>::= <signal_def>
11= <expression_def>

Signal Definition Syntax:

<signal_def>::= SIGNAL <pin_dir> <sig_name> [',' <sig_name>]* ';'
II= SIGNAL GROUP <grp_name> ':' <grp_list> ' ;'

II= SIGNAL INTERNAL <int_name> '<=' <int_assign> ';'

II= SIGNAL BOOL <sig_name> '{'<test_expression>'}' ';'

<pin_dir>::= INPUT
II= OUTPUT
II= BIDIR

<grp_list>::= <gen_signal> [',' <gen_signal>]*

<gen_signal>::= <pin_name>

II= <int_name>

11= <bool_ref>// Reference to a boolean signal
11= <state_dep>// $STATE system function

<sig_name>::= <pin_name>

II= <bus_name> <range>

<grp_name> ::=name// Name of state to be used in model table.

122

<int_name>: := name// Name of state to be used in model table. Cannot conflict
II with pin name.

<int_assign>::= <pin_name>
II= <bus_name>

<range> ::= '[' posint ':' posint ']'

<pin name> : := name II Name of pin found on instance of model.

11= name <bit>// bus name followed by a bit specification

<bit>::= '[' posint ']'

<bus~name>::= name II Name of bus found on instance of model, full
II range implied

<test_expression> ::= <simple_expr> <equality_op> <simple_expr>
II= <sig_ref> <equality_op> <sig_ref>

<equality_op> ::='=='//expressions are equal

II='!=' II expressions not equal

<bool_ref>::= <sig_name>

Energy Expressions:

<expression_def> ::=<constant>
11= <default_data>
11= <data_table>
II= <equation_def>

<constant>::= CONST <const_name> <value>';'

<Const name> ::=name// to be substituted for value in equation.

<default_data> ::=DEFAULT <data_type> <value> [<conversion>]';'

<data_type>::= VOLTAGE// data elements of PAD file
II= TEMPERATURE
ll=CAPLOAD
II= SLEW

<Value> ::= real

<conversion> ::='('<Const name>')'
11= '(' real ')'

Table Svntax:

<data_table> ::=TABLE <table_name> '(' <tab_var_def>+ ')'
[<conversion>] '{' <table_data> '}' ';'

<tab_var_def> ::= <var_name> [<conversion>]':' <data list>';'
I one for each table dimension

<table_data>::= <labeled_array>
11= <nested_array>
11= <data_list>

<labeled_array>::= <data_tag> ':' <nested_array> ';'

<nested_array> ::= '{' <nested_array> [',' <nested_array>]+ '}'
II='{' <data_list> '}'

<data_list> ::=real[',' real]*

<table_name> ::=name II the name by which the table is called in an
expression.

123

<var_name> ::=name II the name given to a range variable. Expected to be
passed II as a real number.

<data_tag> ::=name II To store data from several characterizations in a single
II table, the optional "data tag" can be used. It is required if
II more than one set of TABLE DAT A is present.

<table_ref> ::= <table_name> { '[' <table_index> ']' }+
II as many as 3 dimensions allowed. Number must match

definition.
II= <table name>'.'<data_tag> { '[' <table_index> ']' }+

II use data tags if used in definition

<table_index> ::=real
11= <constant>
11= <expr _ref>
11= <system_function>

Equation Syntax:

124

<equation_def> ::= EQN <expr_name> '(' [<args>] ')' '{' <math_expr> '}' ';'

<expr_name> ::= name II used to call expression evaluator.

<args> : := name [, name]* II A list of passed-in variables. Expected to be a
II real number valued variable.

<math_expr> ::= <simple_expr>
II='(' <math_expr> ')'
II= <math_expr> <biriary_op> <math_expr>

<binary op>::='+'
II='-'
II='*'
II='/'
II='**' II exponential

<simple_expr> ::=<operand>
II= '(' <simple_expr> ')'

<operand> ::= real
11= name II name of passed arg
11= <constant>
II= <expr_ref>
II= <table_ref>
11= <system_function>

<expr_ref> ::= <expr_name> '(' [<expr_args>] ')'

<expr _args> : := <table_index>
II= <sig_name>

<system function>::= $PAD'(' <data_type> [',' <pin_name>] ')'

II= $DIFFBITS '(' [<diff_args>] ')'
II= $WIDTH'(' [<bus_name>] ')'II name of bus
11= $LN '(' <math_expr> ')'

<state_dep>::= $STATE'(' <sig_ref> ',' <state_vec> ')'

<diff_args>: := <sig_ref> ',' <sig_ref>
II= <sig_ref> ',' <state_vec>
11= <sig_ref>ll compare pin with it previous state

II (if no pin name use active pin)

<sig_ref>::= <pin_name>
II= <bus_name>
II= <grp_name>
II= <int_name>

125

<state_vec>::="' ['O' I '1' I '-']+"'II number of characters relates to number
and

II order of pins in pin list of state's definition. '-'
II means "don't care". String in single quotes.

Model Evaluation Syntax:

<model_stmt> : := <dyn_blk>

II= <static_blk>

<dyn_blk>::= DYNAMIC '{' dyn_stmt> '}' ';'

<dyn_stmt> ::= <trans_sig> ['&' <St_dep>] ':' <energy_ref> [state_update]';'

<trans_sig>::= <pin name> [<trans>]
II= <bus_name>
II= <grp_name>

<trans>::= '(' '\' ')'II a falling transition
II= '(' '/' ')' II a rising transition

II='(''*' ')' II any transition (this is default if none given).

<St_dep>::= ['-'] <gen_signal >II reference to a defined state, must be 1 bit
II' ' inverts signal

<state_update>::= int_name '<=' <int_assign> [',' int_name '<=' <int_assign>
]*

<Static_blk>::= STATIC '{' <static_stmt> '}' ';'

<static stmt>::= <st_dep> ':' <energy_ref> ';'
II=':' <energy_ref> ';'II no signal indicates "all states"

<energy_ref>::= <expr_ref>
11= <table_ref>

II= real
11= <constant>

A Three-input AND

MODELNAME and3;

CONST ns 1.0e-9;
CONST pF1 .Oe-12;

Power Model Examples

II declare signals

SIGNAL INPUT iO, i1, i2;
SIGNAL OUTPUT z;

II define a specific cell state based on input pin states

SIGNAL GROUP ins : iO, i1, i2;

II A 30 piece-wise linear table for short circuit power

126

II (Data from characterization with variable load capacitance, input slew and
voltage)

TABLE dim3 (

cap (pF): 0.5, 1.0, 1.5, 2.0;
slew (ns): 1, 2, 3;
volts : 2.5, 3.3, 5.0;

)(1 e-13){

in_rise:

};

{{{0.1, 1.1,2.1 }, {0.2, 1.2,2.2}, {0.3, 1.3,2.3}},
{{0.4, 1.4,2.4}, {0.5, 1.5,2.5},{0.6, 1.6,2.6}},
{{0.7, 1.7,2.7}, {0.8, 1.8,2.8},{0.9, 1.9,2.9}},
{{1.0,2.0,3.0}, {1.1,2.1,3.1 },{1.2,2.2,3.2}}};

in_fall :

{{{0.1, 1.1,2.1 }, {0.2, 1.2,2.2}, {0.3, 1.3,2.3}},
{{0.4, 1.4,2.4}, {0.5, 1.5,2.5},{0.6, 1.6,2.6}},
{{0.7, 1.7,2.7}, {0.8, 1.8,2.8},{0.9, 1.9,2.9}},

{{1.0,2.0,3.0}, {1.1,2.1,3.1 },{1.2,2.2,3.2}}};

II A table for leakage power dissipation

TABLE leakage(

volts : 2.5, 3.3, 5.0;
) (1e-15) { 1.1, 1.2, 1.3 };

II set default data

DEFAULT CAPLOAD 0.03 (pF);
DEFAULT VOLTAGE 5;

DEFAULT SLEW 1.2 (ns);

II a typical equation for switch power dissipation of a driver

EQN out_erg(cap, volts) { 0.5 * cap * (volts **2) };

II local sub-expressions

EQN cload() { $PAD(CAPLOAD, z) + 0.013 };

II a lookup for internal energy when inputs rise

EQN in_erg_ri() { dim3.in_rise[cload()][$PAD(VOLTAGE)][$PAD(SLEW)] };

II a lookup for internal energy when the output goes to O

EQN in_erg_fa() { dim3.in_fall[cload()][$PAD(VOL TAGE)][$PAD(SLEW)] };

II Transition/state statements

127

DYNAMIC {

z : out_erg{$PAD(CAPLOAD), $PAD(VOL TAGE)) ;
};

DYNAMIC{ II rising input pin causing output change

iO(/) & $STATE(ins, '-11 '): in_erg_ri();

};

i1(/) & $STATE(ins, '1-1'): in_erg_ri();
i2(/) & $STATE(ins, '11-') : in_erg_ri();

II falling signal resulting in output change.

iO(\) & $STATE(ins, '-11 ') : in_erg_fa();
i1 (\) & $STATE(ins, '1-1 '): in_erg_fa();
i2(\) & $STATE(ins, '11-'): in_erg_fa();

II an expression for leakage current (no state dependency)

STATIC {: leakage[$PAD(VOLTAGE)]; };

128

129

A Tri-State Buffer
This table for a tri-state buffer shows how internal states are updated. Note that the

internal state is updated when the enable falls and when in changes while enabled, thus

capturing the last state driven. Also note that the output, input and enable are treated in

separate blocks so that if more than one pin changes at once power will be assessed for all

events. (This is done at the discretion of the modeler):

MODELNAME buf_3st;

CONST ns 1.0e-9;
CONST pF 1.0e-12;

SIGNAL INPUT a, en;
SIGNAL OUTPUT z;

II define an internal state to keep last driven state
SIGNAL INTERNAL last_st <= a;

II a test for signal equivalence

SIGNAL BOOL same_st { $DIFFBITS(a, last_st) == 0 };

II data for static power

CONST st_en 0.0063;
CONST st_nen 0.0012;

TABLE intbl (cap : 0.5, 1.0, 1.5, 2.0;) {0.01, 1.01, 2.01, 3.01 };

TABLE entbl (

cap(pF) : 0.5, 1.0, 1.5;
slew(ns) : 1, 2, 3;

) (1e-12) {

};

rise_nc:
rise_ch:

fall:

{{0.03,0.42,0.71 }, {0.06,0.47,0.74}, {0.10,0.38,0.76}};

{{0.12, 1.13,2.11 }, {0.27, 1.28,2.29}, {0.38, 1.35,2.31 }};
{{0.01,0.11,0.21 }, {0.02,0 .. 21,0.22}, {0.03,0.13,0.23}};

II equation for driver power dissipation

EQN out_erg(cap, volts) { 0.5 *cap* (volts **2) };

DYNAMIC { z : out_erg($PAD(CAPLOAD)) ; };

DYNAMIC{
a(*) & en : intbl[$PAD(CAPLOAD)], last_st <=a;

};
DYNAMIC{

en(/) & same_st : entbl.rise_nc[$PAD(CAPLOAD, z)][$PAD(SLEW)];
en(/) & -same_st: entbl.rise_ch[$PAD(CAPLOAD,z)][$PAD(SLEW)];

130

en(\) : entbl.fall[$PAD(CAPLOAD, z)][$PAD(SLEW)],last_sk= a;
};

STATIC{
-en :st_nen;
en :st_ en;

};

131

A D-Flip-Flop

II This negative edge 0-Flip-Flop model is characterized for a voltage of 4.5v.

II signal declarations

MODELNAME dff;

CONST ns 1.0e-9;
CONST pF 1 .Oe-12;
CONST pJ 1.0e-12;

SIGNAL INPUT ckn, d;
SIGNAL OUTPUT qn;
SIGNAL GROUP cur_st : d, qn;

II output switching power equation

EQN node_pwr() { 4.5 ** 2 * $PAD(CAPLOAD) * 1.0e-2 * 0.5 };

TABLE tab_clk_2dim(
cload(pF) : 0, 0.25, 0.5, 1, 2.5, 5 ;
slew(ns) : 0, 1.2, 2, 4, 6 ;

) (pJ) {

};

fall_dO_q1:
{{3.974e-2, 3.0994e-2, 3.3769e-2, 3.4613e-2, 3.5252e-2, 3.5081 e-2},
{3.9006e-2, 3.4302e-2, 3.4898e-2, 3.0213e-2, 2.9842e-2, 2.9796e-2},
{3.4232e-2, 4.0576e-2, 4.39e-2, 4.1577e-2, 4.0579e-2, 4.0459e-2},
{5.8654e-2, 4.0317e-2, 3.5113e-2, 3.3995e-2, 3.4068e-2, 3.3739e-2},
{5.0407e-2, 4.2158e-2, 4.0427e-2, 3.4845e-2, 3.5392e-2, 3.4513e-2}};

fall_d1 _q0:
{{4.8449e-2, 3.8375e-2, 3.003e-2, 3.0024e-2, 3.9709e-2, 4.1301 e-2},
{3.5001 e-2, 3.0209e-2, 3.3085e-2, 3.4681 e-2, 3.4235e-2, 3.3853e-2},
{5.1888e-2, 4.2568e-2, 4.2027e-2, 4.4994e-2, 4.5027e-2, 4.5834e-2},
{4.8066e-2, 4.2745e-2, 3.1542e-2, 3.147e-2, 3.3391 e-2, 3.2414e-2},
{3.3796e-2, 3.6753e-2, 3.1979e-2, 3.3546e-2, 3.4167e-2, 3.3534e-2}};

132

TABLE tab_clk_1dim(
slew(ns) : 0, 1.2, 2, 4, 6 ;

) (pJ) {

fall_d1_q1 :{1.6837e-2, 1.2341 e-2, 1.7523e-2, 1.3552e-2, 1.4915e-2};

rise_d1 : {1.9667e-4, 2.8740e-3, 6.3183e-4, 3.2267e-3, 3.5620e-3};
fall_dO_qO :{1.1194e-2, 1.7557e-2, 1.1486e-2, 1.2422e-2, 1.3525e-2};
rise_dO : {3.8123e-3, 2.1425e-3, 3.5092e-3, 3.5030e-3, 3.241 Oe-3};

};

TABLE tab_d(

slew(ns) : 0, 1.2, 2, 4, 6 ;
) (pJ) {

};

fall_ckn1: {1.7184e-2, 1.3748e-2, 2.1493e-2, 1.4666e-2, 1.4828e-2};
fall_cknO: {3.0177e-3, 3.1572e-3, 3.3195e-3, 3.3850e-3, 3.5388e-3};
rise_ckn1: {1.5459e-3, 1.5407e-3, 1.4681 e-3, 1.6305e-3, 1.7655e-3};
rise_cknO: {4.4968e-4, 3.8350e-4, 3.9492e-4, 3. 7668e-4, 5.2090e-4};

EQN cload() { $PAD(CAPLOAD, qn) };

II evaluation statements

11 change on output
DYNAMIC{

q : node_pwr() ;
};

II clock change, data high, wl various output states
DYNAMIC{

ckn(\) & $STATE(cur_st,'10'):
tab_clk_2dim.fall_dO_q1 [$PAD(SLEW)][cload()];

ckn(\) & $STATE(cur_st, '11 '): tab_clk_ 1 dim.fall_d1_q1 [$PAD(SLEW)];
ckn(/) & d : tab_clk_ 1 dim.rise_d1 [$PAD(SLEW)] ;

II clock change, data low
ckn(\) & $STATE(cur_st, '01 ~) :

tab_clk_2dim.fall_dO_q1 [$PAD(SLEW)][cload()];

ckn(\) & $STATE(cur_st, '00'): tab_clk_ 1 dim.fall_dO_q0[$PAD(SLEW)];
ckn(I) & -d : tab_clk_ 1 dim.rise_d0[$PAD(SLEW)] ;

II change on data pin

d(\) & ckn : tab_d.fall_ckn1 [$PAD(SLEW)];
d(\) & -ckn : tab_d.fall_ckn0[$PAD(SLEW)];
d(I) & ckn : tab_d.rise_ckn1 [$PAD(SLEW)];
d(I) & -ckn : tab_d.rise_ckn0[$PAD(SLEW)];
};

133

134

A Multi-port RAM
This requires an internally defined boolean equation to determine whether two read

address pins are accessing the same location. (See the "bus_comp" expression.) If the

result is true then an offset to the read power can then be applied to the calculation for this

case.

MODELNAME ram32;

CONST pF 1.0e-12;

SIGNAL INPUT AA[0:31], AB[0:31];
SIGNAL INPUT AWA, RWB; CS;
SIGNAL OUTPUT: QA[0:31], QB[0:31)];
SIGNAL INTERNAL IAr <= QA; II Defines a state for the last word read
from the
SIGNAL BOOL bus_comp { AA== AB};

SIGNAL GROUP mode : bus_comp, AWA, RWB;

TABLE rdtab(II A table for internal read power (data omitted)

cap (pF) : 0.5, 1.0, 1.5;
Nbits: 0, 4, 8, 12, 16;

)
{{
.......... }};

II 112CV2N
EQN node_pwr(nbits) { $pad(VOLTAGE) ** 2 * $pad(CAPLOAD) * 0.5 * nbits };

EQN cload() { ($pad(CAPLOAD, QA) + $pad(CAPLOAD, QB)) I 2 };

II note: some energy statements omitted

dynamic {

II Power for Port A when Address A = Address B and both are READ
enabled

QA & $state(mode, '111 ') : 0.75 * rdtab [cload()][$diffbits(QA,1Ar)]
+ node_pwr($diffbits()), IAr <=QA;

II Power for Port A when Address A differs from Address B
QA & $state(mode, '01-') : rdtab [cload()][$diffbits(QA,1Ar)]

+ node_pwr($diffbits()), IAr <=QA;

};

dynamic {

II Power for Port B when Address A = Address B and both are READ
enabled

QB & $state(mode, '111 ') : 0.75 * rdtab [cload()][$diffbits(QB,1Br)]

+ node_pwr($diffbits()), IBr <=QB;

135

II Power for Port B when Address A differs from Address B
QB & $state(mode, '0-1 ') : rdtab [cload()][$diffbits(QB,1Br)]

+ node_pwr($diffbits()), IBr <= Q;
};

APPENDIXB

POWER ANALYSIS DATA FORMAT

PAD syntax

The syntax of the PAD file is identical to SDF with the following exceptions:

CAP SCALE is added to specify capacitive units. Unit can be 1, 10, or 100 of either pf

(picofarads) or ff (femtofarads).

The POWERDATA section replaces the DELAY and TIMINGCHECK sections.

POWERDATA contains instance specific data for input slew in SLEW, and output

load capacitance, given by CAPLOAD.

Min, Typ, Max Data fields

As with SDF, data can be generated in sets of three, called triplets. The field to be used

is often determined by the process comer being simulated. The three fields are usually

called, from left to right, "min", "typ" and "max" when referring to timing data. When

annotating power data with APAS, the same mode should be used as is being used for tim­

ing data. The choice of min, typ, max is made for APAS as an argument to the annotate

command.

Note: The terminology here may be confusing. The notion of "min" or "max" may

imply "minimum power" and "maximum power", respectively. This is not necessarily the

case. It is more likely to be meant to be consistent with timing min, typ, max values to be

137

consistent with SDF. That is, "min" will indicate the conditions that minimizes input slew,

which may, in fact, result in greater power consumption than "max" timing data.

Slew Data

SLEW is usually defined as the time it takes from 10% to 90% of V dd. This definition

may differ in various technologies. What is most important is that the definition used first,

in characterizing the model, and second, in calculating slew in the design, be consistent to

maintain accurate energy sums. The syntax is:

(SLEW <pin name> (<rising slope>)(falling slope>))

Where the pin name identifies an input pin on the instance and the rising and falling

slew values are triplets of real numbers.

Load Capacitance Data

(CAPLOAD <output pin> (<capacitance>))

CAPLOAD is defined as the external capacitive load seen by an output driver. This

should include the capacitance of the net, the driven input(s).

As with slew, it is very important to the accuracy of APAS to make sure that total load

is defined and calculated with a definition that is equivalent to that used in characteriza-

tion. Specifically, the capacitance of the driver (usually attributed to drain-source junction

capacitance) may or may not have been considered part of external capacitance when cali-

brating the energy due to internal switching and dynamic short circuit. The definitions

used in modelling and annotation should be consistent.

138

Voltage Data

The VOLTAGE triplet in the PAD file is made available to power models through the

APAS power model interface. This will allow fine tuning based on voltage level. In the

first version of APAS, only one voltage triplet will be allowed in a PAD file. If instance

specific voltage is needed, it may be added in the future.

Temperature Data

The TEMPERATURE triplet is also made available to the power models as with volt­

age.

APPENDIXC

POWER MODEL COMPILER

This section describes the APAS power model compiler, a stand alone utility which

converts the Power Model language into a binary file that is the actual model used by

APAS.

To invoke the compiler, named pwrcom:

pwrcom <path to source> [-out <path to destination>] [-r]

Where:

<path to source> A system path to an ASCII description of the model in the specified

syntax.

-out This optional switch allows the user to specify the destination of the resulting

binary model.

<path to destination> A system path to the binary model. The file suffix ".pow" will

automatically be appended if not included in the leaf name. The default will be to use the

leaf name of the source with any extension removed and the ".pow" extension appended.

Default directory is the current working directory.

-r This switch is required to overwrite an existing file.

Invoking this tool will parse the model language and check for syntax and semantic

errors. Errors will be reported to standard output. A binary file will not be created if errors

are found.

Error checking will NOT include verification of the port names with the functional

Otl

APPENDIXD

CATALOG FILE SYNTAX

• Keywords are shown in capital letters. They will be parsed case insensitive.

• Syntax punctuation is in single quotes.

• Elements in symbols < > are defined further in this syntax.

• Elements in brackets -- [] -- are optional.

• A star -- '*' -- means "zero or more" of the element.

•A plus sign '+' means one or more of the element.

•Elements separated by bars (i.e. AIBIC) mean "one of A or B or C".

• name -- can be any string of alphanumeric characters, starting with a non-numeric.

• chars -- a string of any characters, except white space

•number - is a floating point number, may use exponential format (ex: 3.456e-2).

Note: Text preceded by double slash -- "If' -- are comments, not part of syntax.

<catalog file> .. -
<local variable> .. -
<string> .. -

II=

<variable> .. -

<catalog list> .. -
<celltype var> .. -
<cell model pair> ::=

<local variable>* <catalog list>

name ':' <string>+ ';' II concatenated strings

<variable>
chars

'$' '(' name ')' II name is a previously defined variable,
II property or env variable

CATALOG ':' <celltype var> ' {' <cell model pair>+ '}'

<variable> II this variable is evaluated for list lookup

name ':' <model path> ';' 11 names are expected

<model path>

II celltype values

[<path branch> '/'] * <model file>

<path branch> ::= <string>
<model file>::=>name II leaf name of model file

142

	An ASIC Power Analysis System for Digital CMOS Design
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1579809794.pdf.XmWn6

