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ABSTRACT 

An abstract of the thesis of Du Van Nguyen for the Master of Science in Electrical 

and Computer Engineering presented December 10, 1996. 

Title: An ASIC Power Analysis System for Digital CMOS Design 

Consumers demand for products with ever-increasing functionality, performance, and 

longer battery life is making low power a critical factor in most system designs. Lower­

power designs are less expensive to produce, more reliable, and cost less to operate - fac­

tors which create a real competitive advantage. As a result, ASIC designers are demanding 

better ways to analyze the power of their designs. 

In this thesis, an ASIC Power Analysis System (APAS) is developed. APAS is an 

interactive simulation-based power analysis tool. Using a non-intrusive design technique, 

APAS can dynamically "snap on" to an existing simulation environment. APAS currently 

supports three ASIC simulators: QuickSim II, QuickHDL, and Verilog-XL, all with a 

common library. 

Diagnostics is one of the key features in designing APAS. APAS's hierarchical capa­

bilities can be used to find out which blocks in the design are consuming the most power. 

The designer can then focus on reducing power in these blocks. Analyzing the dynamic 

behavior of the circuit is also key to power reduction. APAS can dynamically trace the 

power consumption of any block in the design, giving the user a graphical representation 



of the periods of high and low activity. 

The key to accuracy in APAS is the power models. APAS's power models represent 

dynamic switching, dynamic short-circuit and static currents. To Achieve optimum accu­

racy, APAS's models account for input slew, load and internal state. APAS's power mod­

els are written in the Power Modeling Format (PMF). PMF's combination of equations 

and interpolated tables provide the means to capture the most detailed cell characterization 

data under varying slew, load and state conditions. PMF is designed to support not only 

gates but also 1/0 cells, RAMs, and higher-level macros. 
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CHAPTER I 

INTRODUCTION 

Consumers continue to demand products of smaller size yet larger feature sets while 

market competition requires lower prices [1]. For example, today's hand-held cellular 

phones are less than one quarter the price, one quarter the size, and one quarter the weight, 

while batteries last four times longer as compared to early models. Systems that used to 

requires multiple chips on a circuit board are now designed on single integrated circuits. 

With product life cycle shrinking and product prices falling, the reality of time-to-profit 

requires development of more sophisticated design methodology and with clock rates and 

chip component densities on the rise, power analysis is quickly emerging as one of the 

"hottest" issues for today's designers [2]. 

THE NEED FOR POWER ANALYSIS 

The demand for smaller size coupled with increased functionality has resulted in 

densely packed electronics products, increased thermal concerns, and headaches over how 

to sustain and improve battery life. Overheating and battery life are major concerns for 

portable consumer products [3]. A design that generates too much heat or shortens battery 

life can delay or sometimes obstruct the successful introduction of new product [ 4]. The 

best and most cost effective solution is for designs to consume less power which requires a 

methodology for practical power analysis. Accurately determining power consumption 
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prior to production is a critical component for this methodology that is key to the success 

of today's as well as tomorrow's systems on silicon. 

To further complicate matters, the added constraints of stricter power budgets is set 

against the background of increasing pressure to design more complex, yet less expensive 

devices in less time. As a result, designers requires that solutions fit easily into existing 

design flows. A power analysis solution must have the performance and capacity to 

address the complex designs. Finally, the solution must deliver high accuracy so that the 

results can be used to make critical design decisions: from architecture and circuit changes 

to reduce power, to package selection and cooling specifications to improve system reli-

ability and lower cost. 

THE VARIETY OF SOLUTIONS 

Designers require a full spectrum of analysis choices at each level: estimation, optimi-

zation and simulation. Although research has produced some promising methods to help 

designers create reduced power systems and chips, a full power analysis solution presents 

a significant development challenge. While most agree that design changes at the earlier 

stages of the design process (architecture or RTL) offer the highest potential gain [1], a 

proven general methodology is not yet available. Available solutions are very limited in 

their scope. On the other end of the spectrum, there is transistor-level simulation primarily 

for back-end verification [2]. This requires a transistor-level description, which enables 

the highest level of accuracy, but is simply not an option for most designers. Gate-level 

power analysis is faster by orders of magnitude than transistor-level while still providing 
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the accuracy necessary to produce lower power designs. The fact that gate-level simula-

tors do not require transistor-level models makes them a prime candidate for an ASIC 

power simulation solution [l]. Gate-level power analysis tools can be applied at several 

stages in the design flow: after synthesis, after floor planning, and after layout parasitic 

have been extracted. Better estimates of the routing parasitic will lead to more accurate 

power analysis results. 

Actually 'gate-level' is somewhat of a misnomer. This type of tool must solve the 

power analysis problem facing the ASIC designer. As such it must not only work at the 

gate level, but must also be able to handle the other kinds of blocks that occur in ASIC 

designs. Most notably, it is rare to find designs which do not include memories (RAMs or 

RO Ms). Furthermore, with the growth of Intellectual Property (IP) to manage complexity, 

even more complex blocks such as cores (uProcessors, uControllers, DSP, etc.) will 

become commonplace [5]. 

ASIC LEVEL POWER ANALYSIS 

The primary goal of any power analysis tool is to provide information about the power 

consumption of the design. The designers use these results to determine if the device has 

exceeded the power budget and, if possible, to explore ways to reduce the power. To this 

end, a power analysis tool must first of all provide accurate power estimates. Secondly, the 

tool should provide the performance, ease of use, and power diagnostics the designer 

needs to efficiently reduce power consumption. 

Before detailing the different power analysis tools and how they compare, it is impor-
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tant to review what causes power consumption in a design. Power consumption can be 

divided into two types: dynamic and static. Dynamic power is the power consumption due 

to a signal change of state. This includes both the power consumed in charging the capac­

itance of the signal as well as the dynamic short-circuit current of the driver or receiver of 

the signal. Dynamic short-circuit is caused by the momentary path from supply to ground 

when the input of a complementary gate changes state and the pull-up and pull-down are 

both partially on. This current is highly dependent on the slew of the input signal and typ­

ically accounts for 10% to 30% of the total power consumption [6]. 

Static power is most commonly due to technology process issues. These include leak­

age of reversed-biased diodes and off transistors. While most designers tend to consider 

leakage power negligible today, it will become more significant as supply voltage and con­

sequently threshold voltage continues to drop. There can also be state-dependent static 

power. Two examples are NMOS logic gates and current sources in sense amps. If a 

designer is not careful, or aware of how widely these kinds of circuits are used in a design, 

the static power can be a significant portion of the total power. 

In an ASIC, the designer specifies the interconnection of a set of cells from a library. 

This makes it is convenient to group power in another way: nets versus cell internal. The 

power dissipated when a net changes state depends upon the capacitance (C) of the net and 

the supply voltage (V). The formula is l/2*C*V**2 for a single transition. The power of 

the cell internal depends upon the internal structure of the cell, its state, and the slew of the 

inputs. The cells can be modeled for power analogously to the way they are modeled for 

functionality or timing. The model can represent both dynamic and static power consump­

tion for the cell under a variety of input or state conditions. Power analysis tools differ 
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fundamentally both in how they determine the activity of the circuit and in how they use 

power models. 

Probabilistic Estimation 

One approach to power analysis today is to do a static power estimation of the activity 

of the design. The designer specifies signal switching frequencies at the circuit inputs and 

the tool uses a probabilistic technique to determine the switching frequencies of all of the 

internal nodes as well as to the outputs. Once the frequencies have been determined, the 

power is calculated based on the net switching power and possibly a simple power model 

for the cell. Probabilistic tools [7] provide fast, pattern-independent results at the expense 

of accuracy. It is not possible to predict how well, or poorly, the estimated frequencies will 

match the real circuit behavior. Furthermore, the cell power models can not be state-

dependent since there is no correlation between the states of any two signals. Finally, a 

probabilistic tool is not able to analyze the effect of common power-down techniques such 

as gated clocks or latch insertion. 

Post-processed Simulation Results 

To address the unpredictable inaccuracy of the probabilistic approach, power analysis 

tools have been developed that connect to logic simulators to access the actual switching 

activity of the design. These simulation-based power analysis tools differ in the kind of 

information they receive from a host logic simulator. Most use the simulator to create a 

file of node toggle activity which is post-processed by the power analysis tool [8]. For 
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example, a static estimation tool, instead of probabilistically computing signal switching 

frequencies, can use the actual frequencies of each net as determined by the simulation 

run. This solves some of the accuracy problems of the static estimation tool, but still does 

not provide the correlation of signal states needed to accurately determine cell internal 

power. 

Instead of getting just the node frequencies from the simulator, it is possible to obtain a 

complete transaction log of all of the signal state changes and when they occur. This tech-

nique is used in some tools because it provide enough information to correctly determine 

the states of the cells. It provides the additional advantage of giving the designer an indi-

cation of when the design is consuming power. There is also a significant disadvantage to 

this approach. The generated log files can easily exceed a Gigabytes in size, creating 

problems with storage and management, not to mention the time required by the tools 

writing and reading such enormous files. 

Dynamic Power Simulation 

A better approach is to tightly connect the power analysis tool to the host simulators so 

that as the simulation progresses, the power is computed dynamically. This technique is 

even more accurate than the post-process tools, since effects such as multiple bus drivers, 

which may not appear as signal changes can be detected and analyzed. Furthermore, it 

does not require writing and manipulating large log files. Where the dynamic power simu-

lation approach has tremendous advantages over the other methods is in the area of diag-

nostics. A power analysis tool that works dynamically with the simulator can be used 
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interactively. This means that the designer can see how the power consumption of the 

design blocks varies with time as the simulation progresses. Even more significantly, the 

designer can stop the simulator at any time, and determine which blocks are consuming 

power at that moment. This is extremely valuable in exploring power-down techniques for 

reducing power. 

Ease of use is another advantage of the dynamic power simulation. Since the power 

analysis tool "snaps-on" to a host simulator, the designer is able to perform power analysis 

at the same time as functional or timing simulation. Thus power analysis becomes part of 

the existing design flow - not an afterthought. No additional steps or separate tools are 

required. The designer is able to leverage existing simulator experience to quickly learn 

the power analysis tool. 

THESIS OVERVIEW 

In this thesis, an ASIC Power Analysis System (APAS) is created to provide ASIC 

designers a power analysis solution with accurate results, high performance, and diagnos­

tics capability. 

APAS is an interactive simulation-based power analysis tool. With a non-intrusive 

design technique, APAS is designed to work seamlessly with the existing ASIC simula­

tors: Quicksim II, QuickHDL and IEEE-1364 compliant Verilog simulators. 

Consistent results are critical for accurate power analysis. APAS guarantees the same 

behavior by relying on the ASIC simulator for functionality and timing. Accurate results 

required not only the proper simulation context but also a versatile modeling language. 
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APAS's power modelling language, the Power Model Format (PMF), is designed to 

handle gates, 1/0 cells and macros. PMF models are simulator-independent. PMF can be 

used to model the main contributors of power: dynamic (switching) current, dynamic 

(internal) short-circuit current, and static current. To gain the optimum accuracy, PMF 

models support input slew, output load and state-dependent power. State dependencies are 

key contributors at the gate level but their importance only increases with the development 

of IP like RAMs (including multi-ports), multipliers, other macros, and cores. 

Performance is another important criteria in designing APAS. APAS's performance is 

compatible to the performance of the gate-level host simulator. The hierarchical nature of 

APAS allows the user to select specific blocks to work on, or the whole design. In addition 

the user has the ability to tum power analysis on and off interactively. The minor overhead 

for power analysis is controlled by the user, and allows the user to do power analysis at 

the same time as functional and timing analysis. This greatly helps the design throughput 

by making the most of the simulation time. 

APAS leverages the power of consistency by using the designer's flow and simulation 

environment for power analysis. Technology and design challenge are changing rapidly so 

it is important to use consistency to improve productivity. APAS allows the user to lever­

age the simulation environment to gain consistent behavior and performance. 

Diagnostics is key to reducing power. Designers of low power devices not only need 

to know how much power the ASIC consumes, but what can be done to reduce the power 

consumption. Using APAS, the designer can selectively delve deeper into problems, 

working with a combination of graphical and textual modes to find out where and when 

the design is consuming power. 
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THESIS ORGANIZATION 

In this chapter, INTRODUCTION, we have discussed the power dissipation issue and 

hence the need for a power analysis solution. Diverging from some previous approaches, 

our approach is based on interactive simulation to provide ASIC designers a power analy­

sis solution with high accuracy, high performance and diagnostic capability. 

In chapter II, POWER MODELING, sources of power dissipation are examined and 

modeled from cell instance perspective. A Power Model Format (PMF) to describe power 

view of an ASIC cell is described. This format is capable of describing essential factors 

that attributes to the accurate simulation of power dissipation. 

Chapter III, POWER CHARACTERIZATION, discusses power characterization tech­

nique to create accurate power model for standard cell. Accurate power model is a major 

factor in estimation of power dissipation. Power characterization can be done using exist­

ing cell timing characterization environment. 

Chapter IV, ASIC POWER ANALYSIS SYSTEM, describes the design and features 

of the power analysis system, a dynamic simulation-based power analysis tool for cell­

based ASIC designs. 

Chapter V, EXPERIMENTS AND RESULTS, reports results of experiments to mea­

sure the power estimation accuracy, performance and capacity of the ASIC Power Analy­

sis System. 

Chapter VI, CONCLUSION, gives a summary of the ASIC Power Analysis System 

developed in this thesis and future work. 

Appendix A, POWER MODEL FORMAT. 



Appendix B, POWER ANALYSIS DATA FORMAT. 

Appendix C, POWER MODEL COMPILER 

Appendix D CATALOG FILE SYNTAX. 
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CHAPTER II 

POWER MODELING 

INTRODUCTION 

ASIC designs differ from traditional integrated circuit design in that standard gate­

level primitives (cells), such as nand, nor, buffer, and flip-flop are the lowest level con­

structs used, as opposed to transistors of varying sizes. Designing at this higher level of 

abstraction permits greater productivity and allows for increased design automation[5] 

Power dissipation at the transistor level is relatively well understood [2][24], however 

despite significant advances in ASIC design tools and methodologies, effort in modeling 

and analyzing power dissipation for ASICs from an ASIC design methodology is still in 

its infancy[ I]. 

In this chapter, we will describe a dynamic method to model and analyze power dissi­

pation for digital CMOS ASIC design. Since this method is based on the dynamic infor­

mation available at the functional instance during simulation, combined with pre­

characterized data, it provides a very accurate estimation of the power behavior of the 

instance in the design. We will also propose a simple, flexible format to describe a power 

model. This simulator-independent power model format plays a crucial role in the design 

of our non-intrusive power analysis system that will be described in chapter IV. 



12 

Previous Work 

There are reports of power estimation techniques which use the well perceived for­

mula: P = a*f*C*Vdd**2 to perform a quick power estimation [21][22] assuming that 

static power and short-circuit power is very small, therefore ignored. In the above formula 

which represents the capacitive load switching power, a is the activity factor or number of 

node transitions per clock cycle, f is clock frequency, C is switching capacitance, and V dd 

is the operating supply voltage. To compute capacitive load switching power, It is impor­

tant to accurately determine the activity factor and the node switching capacitance [23]. 

Switching capacitance can vary, depending on whether pre or post-layout information is 

used. The activity factor is not only a function of the inputs to the circuit, but also of the 

delay model used [ 1 O] . Zero, unit and gate-specific delay models can each contribute 

varying magnitudes of switching activity due to glitches, hazards and spikes [9]. Deter­

mining the accurate activity factor is the main challenge for these power estimation tech­

niques. In general, these power estimation techniques fall into two categories: 

probabilistic and simulation based [ 18]. 

Probabilistic techniques have been proposed to efficiently propagate activity factors 

within a circuit [l 1][23][28]. These approaches have been demonstrated on combina­

tional circuits, though Devadas[ 11] also discusses an approach to estimate activity in 

sequential circuits. Probabilistic estimation work well in the power-directed logic minimi­

zation and technology mapping[29][30], since combinational logic synthesis can use these 

fast estimation algorithms inside the synthesis loop. Moreover, while doing minimization 

and technology mapping, relative accuracy is often sufficient. But using probabilistic 
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techniques for large block level power estimation, requires the handling of different circuit 

styles, dynamic/precharged logic, tristate drivers, latches, flip-flops etc. Developing mod-

els for some of these scenarios is not entirely feasible [22]. In addition, the effects of 

known inaccuracies (in the probabilistic approaches) such as reconvergent fanout at inter-

nal nodes, temporal and spatial correlation of primary inputs, and glitching activity (which 

arise due to signal skew) need resolution. 

Simulationed-based techniques such as Entice-Aspen[8] are based on a logic simulator 

to monitor power activities during simulation and combine with pre-characterized power 

models[19] to compute total power dissipation in a cell-based ASIC design. Entice-Aspen 

- an in-house power analysis system - is a post-simulation process, also suffers inaccu-

racy due to dynamic problems such as glitch power and bus contention. Moreover, this 

post-simulation technique is not able to provide diagnostic capability to determine where 

and when power is wasted and observe the dynamic power profile. 

Our approach to ASIC power analysis 

Our approach is based on dynamic simulation. Power dissipation is modeled and esti-

mated during simulation in contrast to post simulation. In this approach, a shadow power 

instance is created for each instance in the design to monitor power activities based on its 

power model. A power model contains characterized power/energy data, and power state-

men ts. 
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MODELING SOURCES OF POWER DISSIPATION 

When considering an ASIC's power dissipation, the total power can be viewed from 

several different perspectives: static vs dynamic, cell vs load, core vs I/O. For the purposes 

of calculating an ASIC's total power, all three perspectives will be valuable; however the 

first two, static vs dynamic and cell vs load, will form the backbone of this analysis meth­

odology. 

Static Power 

As described above, total power dissipation may be split into static and dynamic 

power, otherwise known as DC and AC power. Static power represents the power dissi­

pated when the gate is in a steady state, and dynamic power represents the power dissi­

pated when the gate is switching. 

Although static power is only a small component of the total power, it is becoming 

important for portable (battery-operated) designs where static power dissipation during 

idle phases becomes a significant part of the overall power dissipation [ 1]. 

The sources of static power consumption in a digital CMOS device are leakage cur­

rents, and static currents. 

Leakage currents consist of reverse-bias diode leakage at the transistor drains, and 

sub-threshold leakage through the channel of an "off' device. Diode leakage occurs when 

a transistor is turned off and another active transistor charges up/down the drain with 

respect to the former's bulk potential. Sub-threshold leakage current from source to drain 

is caused by reduced threshold voltages that prevent the gate from completely turning off. 
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Leakge power is processing technology dependent and typically in the microamp 

range [ 15]. While this is typically a small fraction of the total power consumption, it 

could be significant for a system application which spends much of its time in standby 

operation, since this power is always being dissipated even when no switching is occur-

ring. Regardless of the physical reasons, leakage power dissipated in a cell can be mod-

eled as a cell-specific value, and computed as: 

P - V ·I leakage - dd leakage (1) 

In CMOS technology, when circuits are in steady state operation (i.e. non transient 

operation), static currents exist in two situations: reduced voltage levels feeding into 

complementary static gates and pseudo NMOS circuit styles. Usually static currents are 

dependent on the state of the device. 

As a result of reduced input voltage level (V dd - Vt), as shown in Figure 1. one 

device (NMOS) of the complementary static gate is ON while the other device (PMOS) is 

also weakly ON; there exists a static current from the supply to ground. This might con-

sume significant power if the circuit is idle most of the time. 
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Figure 1. Reduced Voltage Level Feeding a CMOS Gate 

In the pseudo-NMOS logic implementation style, as an example shown in Figure 2, 

the PMOS device is always ON. When the output is driven low by a resistive path from 

output node to ground through the NMOS network, there is a conducting path from supply 

to ground. 
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Figure 2. Pseudo-NMOS AND_OR_INVERT Gate 
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For an ASIC cell, static power resulted from static current can be modeled as equation 

(2), where c is the percentage of time the cell instance stays in a particular steady state. 

P -c·V ·I static - dd static (2) 

Dynamic Power 

The components of dynamic power consumption in CMOS ASIC are cell power and 

capacitive load switching power. The (internal) cell power is the power dissipated within 

the boundary of the cell. Cell power consists of short-circuit (or crossbar) power and inter-

nal capacitive switching power. 
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When a CMOS gate is switched by an input signal switching with a nonzero rise or fall 

time, both the n- and p-transistors will conduct simultaneously for a short time. During 

this time when input signal voltage is between Vtn and Vdd-Vtp, there will be a "short-

circuit current", flowing directly between Vdd and ground and not participating in charg-

ing or discharging load capacitance. 

Consider the CMOS inverter in Figure 3. With the input low, then-channel is OFF 

and the p-channel is ON. No current flows as there is no path from Vdd to ground. As the 

inverter is switching due to the input switching, the n-channel is ON as the input voltage 

crosses Vtn while the p-channel remains ON until the input voltage rises to V dd-Vtp. 

Thus there is a significant amount of time during which both devices are ON resulting in a 

resistive path from V dd to ground. 

Vdd 

lsc 

I 

':' 

ICL 

Figure 3. CMOS Inverter 

Short-circuit power is dependent on input rise/fall times and output load capaci-

tance[6]. Short-circuit power are significant when rise/fall time at the input of a gate is 

much longer than the output rise/fall time (which is dependent on output load capaci-
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tance). This is because the short-circuit path will be active for a longer period of time. 

Internal cell capacitive power results from the charging and discharging of internal 

capacitances of the cell. Consider the CMOS OR gate in Figure 4. This two-level logic 

cell has an internal node between the NOR structure and the output inverter structure. As 

an input is switching, the internal capacitance will be charged or discharged depending on 

the state of the other input pin. 

Vdd 

a~ Vdd 

b~ I 
In ode 

l_ 

a-1 b-1 
":" 

Tel 

":" 

Figure 4. CMOS OR 

In more complex cells, when an input is switching, the cell output may not change 

state but there is still a "hidden" power dissipated by those portions internal of the cell 

which change state. The predominant example of this hidden power is the buffered flip-
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flop. This hidden power is due to the switching of the clock buffering in each individual 

flip-flop, and has been found to account up to 50% of an ASIC's total dynamic power[19]. 

In this thesis, internal cell power can be conveniently modeled as a function of input 

slope, output load and cell internal state. This function can be represented as a set of 

piecewise linear equations or multi-dimensional tables. The piecewise linear equations 

and multi-dimensional tables capture data created by power characterization of the cell 

over a typical range of operating conditions. 

The capacitive load switching power which is the dominant component (more than 

90% for "properly" designed circuits[15]) of dynamic power arises when energy is drawn 

from the power supply to charge load capacitance or when the load capacitance is dis-

charged to the ground. This component is the primary target of any power estimation 

technique. 
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Figure 5. Capacitive load switching power of a CMOS gate 

Consider any input transition which causes a 0 -> V dd transition at the output of the 
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generic CMOS gate. The instantaneous power and energy can be computed as follows: 

P - dE = i . V - dt supply dd (3) 

Where isupply is the instantaneous current being drawn from the supply voltage V dd 

and is equal to, 

i _ dV 
supply - C · _.!!!!:!. dt 

(4) 

Therefore, the energy drawn from the power supply for a 0->Vdd transition at the out-

put node is given by: 

T T V 

Esupply = f pdt = VddJ isupplydt = VddJ CdVout = CVd} (5) 
0 0 0 

The energy stored in the output load capacitor is given by: 

T T v 
: 1 2 

Ecap = f Pcapdt = f vout1capdt = J CVoutdVout = 2CVdd (6) 
0 0 0 

Therefore, half of the energy drawn from the power supply is stored in the output 

capacitor and half of the energy is dissipated in the PMOS network. For the V dd->0 tran-

sition at the output, no charge is drawn from the power supply and the energy stored in the 

capacitor is dissipated in the pull-down NMOS network. 

In addition to all the power components described so far, from a ASIC gate point of 

view there are two more power concerns that must be addressed in order to improve accu-
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racy: glitch power and bus-contention problem. 

Glitch power 

Glitches are identified as unwanted appearances of signal transitions. These logical 

hazards usually occur in connection with reconverting paths in logic, that is spurious sig­

nals are caused by different arrival times of input signals to a gate. 

_r 

l_ 

1f 

Figure 6. Glitch in XOR gate 

If several parallel paths with different delays are merged into one gate, glitches may 

occur, e.g. as shown in Figure 6, two opposite-state input signals have different arrival 

times to an XOR gate. Their "briefly change to same state then back to different state" 

makes the output change twice, in spite of the fact that the final result do not change. This 

glitch give rise to unnecessary power consumption. 

Some investigations of typical effect of glitches have been performed. Empirical 

results showed that glitch power is from 8% to 25% of dynamic power [9]. For more com­

plex cell, glitch power is observed to reach 67% of dynamic power (for a 16X16 bit multi­

plier, logical depth about 30) [ 15]. 

During glitching, output transition is usually an incomplete transition, that is the out-
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put node voltage change ( dV) is less than V dd. Hence, glitch power can be expressed as: 

Pg/itch 
1 = 2: · C · Vdd · dV (7) 

Where dV is the Reduced Voltage Swing 

Voltage swing is dependent on the ratio of glitch width (tg) and gate delay (td), hence 

can be approximated as: 

tg 
dV = td · Vdd (8) 

In theory, dV is dependent on input slope, output load (figured in td) and input pattern 

(figured in tg), however in engineering tradeoff between efficiency and accuracy of glitch 

power computation at gate level, the ratio {tg/td) can be further approximated to a reason-

able constant value ( e.g 50% as an average). This value can be an empirical result and may 

be specified as a constant value in the gate power model. 

Bus contention 

When multiple tristate output drivers driving the same external load (bus), error in 

power simulation may occur due to two reasons: bus contention short circuit and dupli-

cated account of capacitive load switching power. Consider the following scenarios with 

two tristate drivers: 
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Figure 7. Bus Contention 
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One output transitions from Z to H, and the other output changes from L to Z. The sig-

nal delays may be slightly different so that the first output transition may complete some 

short amount of time before the second output changes to Z. During this brief period of 

time, a short circuit path exists from V dd through PMOS plane of the first gate, through 

external bus, and through NMOS plane of the second gate to Gnd. In a typical design, this 

delay variation is small and the power dissipation is negligible. In fact, for some logic sim-

ulator, this grace period (e.g lns) is reasonably ignored. The first output drives the bus 

logic, and charges the load capacitance to V dd. 

If the bus logic is already H, that is the second output changes from H to Z, there is 

neither short circuit nor charging power. 

If initially the bus is in logic state Z, that is both outputs are in Z state, then one of the 

output changes from Z to a valid state (H/or L). If the bus capacitance is free of charge/ or 

full of charge then there may be a charging/ or discharging power. In some logic simulator, 

the bus state can be represented as HZ or LZ, and based on this information we can deter-

mine whether there is a charging/discharging power. However in other logic simulator 

such as VHDL we must explicitly keep track of the previous bus state before its floating. 
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Now assume that one output is at H state, and the other output changes from Z to L. 

Bus contention occurs, and there is a short circuit path from Vdd through PMOS plane of 

the first gate, through external bus, and through NMOS plane of the second gate to Gnd. If 

the first driver is stronger than the second, the bus does not change state, there is no dis-

charging power. However if the first driver is weaker than the second, the bus will changes 

state to Land there is discharging power. The short circuit is dependent on particular driv-

ers and can be significant as long as the drivers stay unchanged. This case is a bad design 

for power and requires a special mechanism to recognize and calculate power effect. 

In general, the bus contention occurs during a time period (tb) less than the gate delay 

(td) of the drivers. One approach to approximately model this bus short-circuit behavior is 

to assume that both drivers are the same strength, and one is charging the bus with a power 

effect of 1/2*C*Vdd**2, and the other is simultaneously discharging the bus with the 

same power effect 1/2*C*Vdd**2. The bus short-circuit power effect can be modeled as: 

Pb us = th · 2( ! · C · V. ) 
td 2 dd 

(9) 

Above we have analyzed power effects in details for different types of circuits and 

suggested how to appropriately model these sources of power dissipation. In the next sec-

tion, we will present a format that can be used to describes the power effects of ASIC 

cells. 

POWER MODEL FORMAT 

The fundamentals of our simulation based approach to ASIC cell-level power analysis 
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are to accumulate energy usage during a simulation by tracking the power activity of the 

cells in the circuit. The challenge is to approach the accuracy levels of transistor level 

power estimation while maintaining cell-level simulation performance and capacity. Sue-

cess is dependent almost entirely on the quality of "power models" to accurately access 

power/energy dissipation given a state change in the circuit. 

In this section, we present an overview of the ASCII model format that has the con-

structs necessary to describe all power effects in a ASIC cell. The complete description of 

the power model format will be described in appendix A. It is expected that model gener-

ation will be automated, using data generated by characterization tools operating on mod-

els at a lower level of abstraction, such as SPICE. 

The power model format can be considered to be the model interface to power analysis 

tools. It is independent of any specific database or hardware modeling language. 

Overview of the Power Model Format 

Model Data And Expressions 

Signal Declarations 

Default Data 

Defined Constants 

Table Data 

Equations 

Internal Signal Definitions 
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Model Evaluation 

Transition (dynamic) Energy Statements 

Static Power Statements 

In general, a power model consists of two sections: Model Data and Expressions sec-

tion, and Model Evaluation section. The Model Data and Expressions section contains 

signal declarations, default data, defined constants, table data, defined equations, and 

internal signal definitions. The Model Evaluation section contains two types of power/ 

energy statements: dynamic and static. Dynamic transition energy statements describe 

energy dissipated due to a power transition (signal change that results in power dissipa-

tion). Static power statements describe the static power component which includes leak-

age and static power. Both statement types can have additional condition to specify their 

state-dependency. 

SUMMARY 

We have analyzed in details all sources of power dissipation in an ASIC design which 

can be grouped into two main categories: static power and dynamic power. From there, we 

described methods to model the power behaviors from a gate-level standpoint. At gate-

level, there exists two additional cases that must be considered in order to improve power 

estimation accuracy: glitch power and bus contention. Finally, we presented a format used 

to describe a power model using data pre-characterized with circuit simulator (SPICE) 

using transistor-level description of the ASIC cell. In the next chapter we will discuss 

technique to characterize power for an ASIC cell. 



CHAPTER III 

POWER CHARACTERIZATION 

INTRODUCTION 

The accuracy of cell-based power simulator depends upon the accuracy of cell power 

models. The accuracy of cell power model is further dependent upon the accuracy of the 

power characterization process that generates them. 

Power characterization process is one that captures power behavior of a cell by simu­

lating its lower-level description over a typical range of operating conditions. That lower­

level simulation is usually circuit simulation using SPICE. During the circuit simulation, 

selected stimuli are applied to the circuit and measurement points are specified so that the 

resultant data will represent all or most of actual behaviors of the cell in real designs. 

In order to obtain the requisite accuracy, the power characterization for cell must 

account for all power components (dynamic cell power, static power) within the cell 

boundary as well as their dependency on cell state and operating conditions (input slew 

and output load). 

In this chapter, we first develop a principle to separate cell power from total power by 

examining power dissipation under individual cases. From this developed principle, a 

power characterization technique is presented to measure cell power using a pair of Amp 

meters. Then applying the described characterization technique, we characterize a sample 
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ASIC library based on 0.8 micron technology using an existing standard cell characteriza-

tion environment. The characterized data obtained from the power characterization are 

processed to automatically generate accurate cell power models. In order to assure the 

quality of the generated cell power models, a verification method is presented. Using this 

presented verification method we have verified that the generated power models simulated 

with our cell-based power simulator produce consistent result within 5 percent of SPICE. 

Figure 8 shows an overview of the power characterization process 

SPICE deck 

Figure 8. Power characterization process 
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PRINCIPLE 

As discussed in previous chapter, the total power dissipated in a CMOS circuit 

includes dynamic and static powers. Dynamic power includes cell power and load switch­

ing power. As load switching power can be computed separately with the well-known for­

mula (1/2*CL*Vdd**2), we need only to isolate and characterize cell power and static 

power. 

In order to isolate dynamic cell power and static cell power we consider the case when 

the circuit is active and the case when the circuit is in idle state. Then for the case when 

the circuit is active, we further consider subclasses when output is switching and not 

switching. 

Input Switching 

When an input is switching, the circuit is active and the output may or may not be 

switching accordingly. However, there are energies dissipated in the circuit in both cases. 

The energy dissipated when output is switching is significantly different from the energy 

dissipated when output is not switching. 

Output switching 

Let's consider energy components during charging and discharging the load capaci­

tance of a representative CMOS circuit. 



31 

Charging load capacitance (L->H transition) 

.!_CV~ i! Echarge 

2 
PMOS1 

L 
NMOS 

Ecellchaie i V • qdsc 

Figure 9. Energy components in charging load capacitance 

When the output is switching from L to H, output capacitance is charged to V dd as 

shown in Figure 9. The total energy consumption (Echarge) drawn from the power sup-

ply Vdd is divided into load charging energy (1/2*CL*Vdd**2), plus the same amount of 

energy dissipated in the PMOS plane, and internal cell energy (Ecell_charge ). The inter-

nal cell energy includes short circuit energy and internal capacitive switching energy: 

Echarge = ~C~d + ~C~d + Ecellcharge (lO) 



Discharging load capacitance (H->L transition) 
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When output is switching from H to L, output capacitance is discharged as shown in 

Figure 10. The total discharging energy (Edischarge) includes load discharging energy 

and internal cell energy (Ecell_discharge). The load discharging energy which is the 

same as the energy previously stored in the load capacitance (1/2*CL*Vdd**2) is dissi-

pated in the NMOS plane. The internal cell energy includes short circuit energy and 

internal capacitive switching energy: 

Ed. = !c0,dd + E 1 d. (ll) ischarge 2 ce l ischarge 

Output not switching 

Although output is not switching (as in a DFF when clock is switching but output is 
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stable), there is still internal cell energy due to dynamic short-circuit and internal cell 

capacitances switching: 

E II = E h . . + E . h. (12) ce s ortcircult swltc mg 

Input not switching 

When input is not switching, the circuit is in idle state; static power dissipated in the 

circuit is due to leakage current and state dependent static current: 

Pcellstatic = Pleakage + Pstatic (13) 

TECHNIQUE 

To measure cell energy in a CMOS cell we use a pair of Amp meters as shown in fig-

ure 11. The first Amp meter Mdd is inserted between V dd and PMOS plane. The second 

Amp meter Mss is inserted between NMOS plane and V ss. Mdd meter is used to measure 

total energy consumption drawn from V dd when PMOS plane is open. Mss meter is used 

to measure total energy dissipated when NMOS plane is open. 
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Figure 11. Two Amp meters used to measure cell energies 

When input is switching and the PMOS plane is open to charge the load CL, total 
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energy consumption (Echarge) is measured by Mdd. Therefore, cell energy can be derived 

from equation ( 10) as: 

Ecellcharge = Echarge - C~d (14) 

Similarly, when the load is discharged, total energy dissipated (Edischarge) is mea-

sured by Mss, and the cell energy is simply computed from equation (11) as: 
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Ecelldischarge = Edischarge - ~C~d (15) 

For both cases cell energy is dependent on both input slew and output load. Hence 

measurements should be done with varying input slew and output load. 

When output is not switching, cell energy is measured by Mdd or Mss when PMOS or 

NMOS is conducting. In this case, cell energy is not dependent on output load but is 

dependent on input slew. Therefore, measurements should be done with varying input 

slew. Note that the cell energy can also be dependent on the internal state of the cell. 

When the cell is in idle state, Mdd is used to measure leakage power. For circuit that 

can have static power, the circuit should first be initialized to the state when static power 

occurs, and then Mdd will be used to measure the average static power. 

Range of Typical Operating Conditions 

When cell energy is dependent on load capacitance and/or input slew, we should 

measure it over a range of typical operating conditions. The range of typical operating 

conditions is technology dependent, and should be selected carefully so that it sufficiently 

covers the real operating conditions of the cell in design, but is not so wide that it requires 

long characterization time. 

As an example, typical operating range can be selected as: 

Load capacitance CL: [O, 4inv] 

where inv is an inverter input capacitance used as a standard unit fanout load 

Input slope: [0.5tp, 4tp] 
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where tp is typical delay of an standard inverter. 

SPICE Time Step 

In SPICE simulation, cell energy is measured by integrating average power over time. 

The accuracy is critically dependent on the precision, especially time step set during simu­

lation. Smaller time step produces better result, however the simulation will also take 

longer to complete. Therefore, the time step should be set to a reasonable value. To obtain 

this time step value we continuously simulate average power of a chain of 5 inverters with 

the same periodic input pulse over many runs. In each simulation run, time step is gradu­

ally reduced until measured average power is within 1 % from the previous run. This cali­

bration process is done only once per ASIC library. 

APPLICATION 

Applying the above described power characterization technique, we characterize an 

ASIC cell library based on a 0.8 micron technology with voltage fixed at 5 Volts, and 

using the nominal values for the process parameters. 

As a starting point, we use an existing standard cell characterization tool. This tool is 

primarily used for timing characterization. As data dependencies, specifically input slews 

and output load capacitances, for existing timing characterization processes are quite sim­

ilar to those for power, little to moderate incremental effort is required to generate SPICE 

data to compute energy measurements. The resultant data for each cell is put into Power 
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Model Format (described in previous chapter), and compiled into a power library so that 

unit verification tests using the Power Analysis Tool (described in the next chapter) can be 

performed. 

'~; 



* * * * * * * * process comer: slow 
.lib hspice_models.lib SLOW 
.option brief nomod autostop 
.option absv=SOe-6 

.SUBCKT dff 
+CKN 
+D 
+QN 
+VCC 
+VSS 

<cell description removed> 

.ENDS 

XO pO_O pl_O p2_0 P4 PS dff 

Cout_O p2_0 0 LC 

VpO_O pO_O 0 PULSE(S.0,0,40NS,TRF,TRF,190NS,460NS) 

.TEMP2S 

VP4P4 0 S.O 
VPS PS 00 
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Vpl_O pl_O 0 PWL ON 0 460N 0 460.SN S.O 920N S.O 920.SN 0 1380N 0 1380.SN S.O 
1840N S.O 

.MEAS pO_p2_TPHL[2] TRIG V(pO_O) V AL=2.SO TD=SOON FALL=l 
+ T ARG V(p2_0) V AL=2.SO FALL= 1 

.MEAS pO_p2_TPLH[3] TRIG V(pO_O) V AL=2.SO TD=960N FALL=l 
+ TARG V(p2_0) VAL=2.SO RISE=l 

.TRAN IN 1840N SWEEP DATA=DF 

.DATA DF TRF LC 

<data values removed> 
.ENDDATA 
.END 

Figure 12. Partial SPICE deck for OFF timing characterization 
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Figure 13. Timing relationship as specified from the OFF 
SPICE deck 

Let's look in details at the power characterization process for the DFF. The DFF 

SPICE deck that is used for timing characterization as shown in Figure 12 is modified for 

power characterization. Stimulus for timing delay measurements were already generated 

for paths between CKN (pO_O) to QN (p2_0) when D was HIGH and LOW at Time 

Marker (2) and (6) respectively. Therefore, a measurement like the following would be an 

example to measure the energy due to those transitions: 



.MEAS p2 AVG POWER from=<Time2> to=<Time2+50NS> 

.MEAS e2 PARAM= 'p2*50e-9' 

.MEAS p6 AVG POWER from=<Time6> to=<Time6+50NS> 

.MEAS e6 PARAM='p6*50e-9' 
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But if we want to capture a more accurate power model, there are several other cases 

to consider too. It had been observed that some significant amount of energy was dissi-

pated when clock is active but with no output change, for example at Time Marker ( 4) and 

(8). We must do some modifications to the stimulus set for this D Flip-Flop in order to 

make these 2 measurements: 

.MEAS p4 AVG POWER from=<Time4> to=<Time4+50NS> 

.MEAS e4 PARAM='p4*50e-9' 

.MEAS pB AVG POWER from=<TimeB> to=<Time8+50NS> 

.MEAS eB PARAM='p8*50e-9' 

And for completeness to this D Flip-Flop illustration, we also measured the energy 

values at Time Markers (3) and (7) when ckn was inactive and D was HIGH and LOW. 

Therefore, unlike timing characterization where one measured the delays between an 

input pin change to an output pin change, power characterization for a cell should also 

consider those cases where the output did not change, if accuracy was of utmost impor-

tance. 

For simple combinatorial cells like 2 or 3 inputs NANDs, NORs, ANDs, and ORs, it 

was still relatively easy to capture energy values for input vectors that had no output 

change. In this experiment, these input conditions were already in the original timing stim-

ulus, and it was just a matter of putting a measurement statement at the correct time 
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period. Considering that these energy values were observed to be 1 to 2 orders of magni-

tude less than those whose output changes state, we, however, might be willing to lose 

some accuracy if the effort in adding additional power test vectors was not justifiable 

when characterizing for a full and complete set of standard cell library. 

Continuing to use the DFF as an example, Figure 13 illustrates a fragment of the 

Power Model that we wanted to achieved. 

EQN node_pwr: 0.5*GETCAP()*1.0e-12 * 5 * 5; 

BOOL cmp(sig1, sig2) : diffBITS(sig1, sig2) == O; 

II signal declarations 

SIGNAL INPUT : ckn, d; 
SIGNAL OUTPUT : qn; 

SIGNAL GROUP : cur _st : d, qn ; 

... <omitted> 

dynamic { 

qn(*): node_pwr(); 

ckn(\) & cmp(cur_st,'11 '): tab_E1 [GETFALL()][GETCAP(QN)] ; 

ckn(/) & d : tab_E3[GETRISE()] ; 

ckn(\) & cmp(cur_st, '10'): tab_E2[GETFALL()]; 

ckn(\) & cmp(cur_st,'00'): tab_E4[GETFALL()][GETCAP(QN)] ; 

ckn(/) & -d : tab_E6[GETRISE()] ; 

ckn(\) & cmp(cur_st, '01 ') : tab_E5[GETFALL()] ; 

} 

Figure 14. Fragment of OFF Power Model 

To characterize the internal cell energy value for the second statement (tab_El), this 

input vector corresponded to Time Marker 2.: 



.MEAS p2 AVG POWER from=<Time2> to=<Time2+50NS> 

.MEAS e2 PARAM= 'p2*50e-9' 
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Actually, measurement variable e2 as illustrated should be corrected. Since there was 

already an energy equation to model output node switching, node_pwr(), e2 should not 

account for the "half CV squared" component. And finally, e2 should be factored with 

l .Oe9 since the units for energy expressions for dynamic power were in nanoJoules . 

. MEAS p2 AVG POWER from=<Time2> to=<Time2+50NS> 

.MEAS cknFA_ 11 PARAM= '((p2*50e-9)-(0.5*LC*25))*1 .Oe9' 

Note that the measurement variable e2 had also been carefully changed to cknFA_l 1 

so that such a label gave meaning with respect to the input vector transition and state. 

Thus, a filter program could be written to easily reconstruct these Power Models from 

SPICE output transcripts. 

The third and fourth statements corresponded to Time Markers 3 and 4 respectively. 

In these cases, since the output did not change state, the "half CV squared" component 

was not subtracted from the energy measurement. 

.MEAS p3 AVG POWER from=<Time3> to=<Time3+50NS> 

.MEAS cknRl_ 10 PARAM='(p3*50e-9)*1.0e9' 

.MEAS p4 AVG POWER from=<Time4> to=<Time4+50NS> 

.MEAS cknFA_ 10 PARAM= '(p4*50e-9)*1 .Oe9' 

Based on the same reasoning, the fifth, sixth and seventh statements could be 
measured using the following: 

.MEAS p6 AVG POWER from=<Time6> to=<Time6+50NS> 

.MEAS cknFA_OO PARAM='((p6*50e-9)-(0.5*LC*25))*1.0e9' 

.MEAS p7 AVG POWER from=<Time7> to=<Time7+50NS> 



.MEAS cknR/_01 PARAM='(p7*50e-9)*1.0e9' 

.MEAS pB AVG POWER from=<TimeB> to=<Time8+50NS> 

.MEAS cknFA_ 11 PARAM='(p8*50e-9)*1.0e9' 
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Originally, each table of energy values was modelled using either a simple surface or 

linear equation of the form: 

KO + K1 * Capacitance + K2 * EdgeRate 

or 

KO + K1 * EdgeRate 

where KO, Kl and K2 were constants. 

The reason this was done because the early prototype of the power analysis tool did 

not support tabular data. This turned out to be an issue as we could see from Figure 15, an 

example where the power distribution for the test vector (cknFA_l 1 of DFF) across a 

range of load capacitances and input edge rates were not linear in any predictable manner. 

Therefore, in this experiment, the energy values were put in a 2-dimension and 1-dimen-

sion tables for linear or spline interpolation lookup. 

This was just a DFF example. The timing characterization spice decks for the remain-

ing cells were also enhanced in a similar manner. 

Spice simulations were then performed on these power characterizing spice decks and 

the spice results were processed by a set of shell and Perl scripts. What these scripts did 

were to automatically generate a set of ASCII files (power model for each cell) written in 

the Power Model Format. 

In these power models, those test yectors that resulted in an output change had energy 

values characterized as a function of the load capacitance and input slews. The test vectors 
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that did not cause an output change were dependent on only the input slews. 
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...- 0.2 
0.15 

...- 0.1 Caploads {pF) 
0.05 

Figure 15. Power distribution for a particular input vector of a OFF 

VERIFICATION 

Unit Test 

After all the cells have been characterized and their power models created, a test bench 

is created for each cell and tested using the Power Analysis Tool. A set of stimulus is cho-
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sen for each cell so that all or most of the characterized input conditions are exercised. The 

stimulus also has the characteristic where no 2 signals (for cells with 2 or more inputs) are 

transitioning at the same time or close to avoid glitch situations. The average power is 

computed and compared with SPICE result which also has unit test circuits generated in a 

similar manner. Each unit test circuit consisted of just a single instance of the cell, and 

tested under different load capacitances and input slews. 

Results 

In general, the error margins were within 5 percent if the characterization and model-

ing were done correctly. For cases where the error margins were significantly large like 10 

percent or more, they were investigated and debugged. 

The DFF was one example where the error margin was initially large. On closer look, 

there were several human errors. 

First, the test vectors for the case of data D rising and falling (unshaded in Figure 16) 

when the clock CKN was either HIGH or LOW were not characterized. Actually, these 

vectors were overlooked in this experiment because the timing characterization process 

did not generate these conditions as no timing delay measurements were needed. 

Figure 16 illustrates the energy values for the DFF captured at a load capacitance of 

0.1 pF and input (CKN, D) edge rates of lns. Notice that the energy values for the D tran-

sitions (unshaded), depending on the state of CKN, were either negligible or in the same 

order of magnitude as those with an active CKN transition and had an output change 

(darkest shade). So, ignoring these D transitions would introduce some degree of model 
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maccuracy. 
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Figure 16. Energy Values for OFF characterized at 0.1 pF load and edge rates 
of 1ns 

Second, recall in Figure 14 that an assumption was made when modeling an inactive 

CKN: 

ckn{/) & d : tab_E3[GETRISE{)] ; 
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ckn(/) & -d: tab_E6[GETRISE(}]; 

The above 2 model statements don't care about the state of QN but from Figure 16 

(medium shade) we could see that different power consumption resulted depending on the 

present state of output QN. 

Another model that needed careful consideration during modeling was the tristate 

buffer with pins en, in and out. 
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---------1.__ 
I \ I 
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' \ I 
' - -- / L ____ _ OUT 

Xz Os Oz ls lz ls lz Os Oz 

Figure 17. Tristate buffer transition diagram 

The model statement concerned was: 

en(/) & in : < ... energy expression ... > 

On closer look, two situations fulfilled this statement as shown in Figure 17. The 

model was missing another state dependent variable to differentiate whether it was a case 
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of output OUT transitioning from Oz to ls, or lz to ls. The energy values between these 

two cases differed as much as 40 percent over the range of load capacitances and edge 

rates. 

In summary, the experiment had provided some hints on how to create more accurate 

power models for a set of standard cells. Although the complexity of this cell library 

ranged from simple to slightly moderate, observations from the power characterization 

and modeling experiments, were sufficient to generalize a handful of important points 

worthy of consideration: 

• input vectors that produced an output change had energy values quite significantly 

different from those that did not produce an output change. Timing characterization 

need not consider the latter, but to have accurate power models, they could not be 

ignored. 

• state dependency of other input pins and internal states was crucial in creating 

accurate power models. As illustrated in the cases of the DFF and tristate buffer, 

making certain assumptions to simplify the power model could lead to unwanted 

inaccuracy error. 

Therefore, in order for the power analysis tool to be effective, equal responsibility 

should also ,be undertaken to create accurate power models. And finally, it was hoped that 

this chapter would give an understanding on how to trade-off model accuracy with the 

amount of effort needed in the characterization process. 



CHAPTER IV 

ASIC POWER ANALYSIS SYSTEM 

INTRODUCTION 

This chapter describes the design of a ASIC Power Analysis System (APAS), a 

dynamic simulation-based power analysis tool for ASIC designs. The dynamic nature of 

the tool provides not only superior accuracy, but also diagnostics that the designers can 

use to determine when and where power is being consumed, or wasted. 

The non-intrusive technique facilitates the tool to dynamically snap-on to majority of 

existing ASIC simulators. In fact, APAS has been integrated with three leading ASIC sim­

ulators: Quicksim II - schematic-based simulator, Quickhdl - dual language (VHDL-VER­

ILOG) simulator, and Verilog-XL simulator. With the same simulator user interface, the 

integration is so transparent that the designers can comfortably stay in their familiar simu­

lation environment while performing power analysis of their designs. 

Targeting power analysis for ASIC designs at the gate level, APAS features interac­

tive power analysis that will get consistent accuracy near that obtained by transistor level 

tools, and performance compatible to gate-level simulator speed without power analysis. 

The consistent accuracy over a wide range of design scenarios is warranted by the quality 

of power models, the quality of annotated design data, as well as special techniques used 

to handle glitches and bus contention conditions. 
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During simulation, simulator will be run in full timing mode to maintain the temporal 

and partial correlations of input signals to an instance, since the power dissipation behav-

ior of an instance is strongly dependent on these correlations. It's this dynamic nature that 

makes dynamic simulation-based power estimation method superior in accuracy com-

pared to the static probability-based power estimation method. 

APAS estimates power dissipation based on the activity of a simulated circuit over 

some period of time. For the results of APAS to be meaningful, the input patterns must be 

representative of the expected usage of the circuit. If input patterns are well chosen and 

weighted for their expected rate of occurrence, the accuracy of APAS should exceed that 

of static, probabilistic analysis. 

In the first version of APAS, the focus is on gate level modeling and analysis. Higher 

level (of abstraction) models of the type found in ASIC cell libraries, such as memories, 

macro cells, will also be supported. However, RTL models do not fit the modeling para-

digm presented by this project. Further work will be needed to understand the require-

ments for RTL models. 

OVERVIEW 

In addition to the two primary goals: consistent accuracy and compatible (to gate-level 

simulator) performance, APAS is designed towards the following goals: 

• Non-intrusive design: existing ASIC designs used for functional and timing 

verification do not require any modification for power analysis. 
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• Dynamic nature: APAS can be dynamically snapped-on to existing simulation 

environment regardless of design languages or databases. 

• Diagnostics/advisory capability: APAS will provide an interactive power diagnostics, 

advisory, and analysis environment. 

Figure 18 shows an APAS overview. Primarily, the host simulator provides functional 

and timing simulation of behavioral and structural designs. At the same time, APAS 

(shaded area) which works interactively with the host simulator by accessing the host's 

user interface (UI), as well as simulation events through the simulator interface, supple-

ments the host simulator functionality by: 

• Providing access to power analysis functionality through specialized power 

commands. 

• Providing a power-specific user interface. 

• Accessing a library of power models. 

• Creating a list of power model instances and managing power-specific instance data. 

•Optionally using post-layout, power-specific data values obtained through a Power 

Analysis Data (PAD) annotation file. 

APAS uses a library of power models--one for each unique cell in a given design-to 

monitor switching activity and to determine the amount of energy required during each 

switching event. These power models can assess energy dissipation on both input and out-

put changes, as well as monitor static power elements at the cell level. 
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Power models are binary files compiled using the Power Model Compiler (PMC) 

from ASCII files written in specialized power syntax-the Power Model Format (PMF). 

Power Library contain compiled power models, and an ASCII catalog file to locate power 

model binary files and associate them with cells used in the design. 

Initially, APAS can perform simulations on a design using default values for power 

data-specifically, load capacitance and slew rate. The default values can originate from 

defaults in the power model itself or from standard values provided to APAS. The results 

data obtained from using defaults could be sufficient to provide a general idea of whether 

or not the design falls within acceptable power limits. 

For more accurate results later in the design cycle, power analysis models require data 

that are dependent on the context of the instances in the design and their interactions. Spe­

cifically, load capacitance on output pins and signal slew at the inputs are necessary for 

accurately determining the energy required by the cells when the states of the nodes in a 

design change. 

In order to communicate load capacitance and input slews to power model instances, 

APAS uses an ASCII Power Analysis Data (PAD) file-similar to Standard Delay Format 

(SDF) used for timing data. The data values in this file provide post-layout values for load 

capacitance and slew, essentially overriding the default values used in earlier simulations. 

Data determined in these later simulations help the user to fine-tune the design in order to 

account for and correct inappropriate levels of power dissipation and waste. 

PAD files can be generated by timing calculators-which are usually maintained by 

ASIC vendors-or synthesis tools. These PAD files make use of data that are extracted 
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when generating delays for timing models. 

APAS works interactively with the host digital simulator by accessing the host's user 

interface (UI), as well as simulation events through the simulator interface. 

APAS GENERAL DESCRIPTION 

Host Specific Simulator Interface (HSI) 

The Host Specific Simulator Interface module is responsible for all the interactions 

between the host simulator and The Power Analysis Kernel. The HSI is mostly imple-

mented using the host simulator's Application Procedural Interface (API). Most existing 

ASIC simulator supports a proprietary API, or an industry standard API such as Verilog 

PLI. 

Power Analysis Kernel 

The Power Analysis Kernel consists of three modules: Power Analysis Interface 

(PAI), Power Library Manager (PLM), and PAD Annotation Manager (PAM). 

The PAI provides all power specific functions to be called by the HSI to perform 

power commands. It creates and maintains the power instance list, and the hierarchical 

power block list. 

The PLM and PAM functionality will be described later. 
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Power Model and Compiler 

In APAS, each cell instance is associated with a power model that maintains the infor­

mation used to assess and track energy dissipation due state changes at the perimeter of 

the instance. The power models' job is to associate a change on the "pins" of a cell 

instance with a quantity of energy that is the amount characteristically dissipated when the 

specific change is made. 

The creation and textual format of the power model has been discussed in chapter II. 

The Power Model Compiler (PMC) compiles a power model into its binary form to be 

used by APAS. To assist power modeler when creating and debugging power model, PMC 

can optionally compile with trace mode. With power model in trace mode, power modeler 

can observe all power events due to any input and or state change. 

Power models should have all significant switching events accurately characterized for 

energy dissipation (see chapter Ill). Static power dissipation, if significant, should also be 

included as a function of the state of the cell and the elapsed time in the specified state. 

Although State dependency is a cost of redundant information already existed in func­

tional model, it is a feature of APAS power models that improves accuracy and differenti­

ates them from known competitors. Assessing energy dissipation based on known internal 

state allows better accuracy. We have seen accuracy improvement of 20% in a simple tri­

state buffer-driver when the internal node state is known. 

See Appendix D for more on the Power Model Compiler. These compiled models are 

independent of the target simulator, its design language and/or data base. They are also 

platform independent. A single library should support all simulator environments. 
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In connection with each simulator functional instance in the design, a power instance 

is created. This shadow power instance is dynamically connected with its functional 

instance through power relevant pins. Power relevant pins are those that are used in the 

corresponding power model. This connection allows power instance to monitor any pin 

transition that occurs during simulation. 

Slooe=l.7 
Slope=l.1 
CL= 2.3 

"------ Power _.__---. 
Ins ts 

TRANS DATA 

! 2, T 3 Slope=l.6 
! 4,f 5 Slope=l.4 
!3,f 2 CL=}.3 

NAND Power Model 

Trans Tbl. Energy Eqn 

INI! f( slope, Cr) 
INI' f( slope, CL) 
IN2! f( slope, CL) 
IN2' f(s1or, cL) 
OUT* f(CL 

TRANSi DATA 

!3,f 2 

'2,f 3 
!2,f 2 

Slooe=2.l 
Slope=3.l 
CL= 7.3 

Trans Tbl. Energy Eqn 

INI! 
INI' 
IN2! 
IN2' 
OUT* 

f( slope, CL) 
f(slope, CL) 
f( slope, CL) 
f(slofe, CL) 
f(CL 

~ Power Models ~ 

Figure 19. Power instances with their power models 



I 
f. 

I 
f 
i 
f 

f 
J 
I 

57 

Figure 19 shows how power instances and their power models are associated in a sim-

pie design being simulated. The integration point is at the perimeter of instances, since it is 

necessary to monitor pin activity on all instances in the design. 

The power instance will track switching activity (shown in the TRANS columns) of 

the inputs and outputs. It also maintains any instance specific data called for in the energy 

equations of the model. This data is obtained in a session when APAS reads a Power Anal-

ysis Data (PAD) file. 

The common model structures (bottom of figure) are shared by instances of like cell 

types. Using this structure, power consumption can be made available for each instance at 

any time during simulation. 

To determine average power for an instance over a given time period, the energy dissi-

pation of each transition is determined by the energy equation (usually a function of slew 

and/or load capacitance) multiplied by the number of the times the transition occurred. 

The energy quantities for all transitions are summed to give the total energy dissipated by 

the instance for the current period. If average power for the instance is reported, it is sim-

ply the total energy divided by the elapsed time. 

Power Model Library 

The success of APAS in ASIC design flows is highly dependent on the availability of 

accurate power model libraries. Normally, ASIC vendors are primary sources of these 

power model libraries. 
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The Power Library Manager (PLM) provides the interface to power model libraries. 

This section describes how a library of power models are cataloged so that the PLM can 

determine which model to use for a given cell instance. It is our intention that power 

model libraries support multiple simulators. 

When a hierarchical block of a design is activated for power analysis, the PLM will 

use the Power Library Catalog file, described below, to find power models associated with 

instances in the block. This file is a part of power model library. 

The catalog syntax is flexible enough to accommodate the (existing) library organiza-

tion preferred by key vendors. Some modelers may treat process variables (voltage for 

example) as model variables, others may create separate library directories for expected 

process parameters (perhaps a 2.5v and a 3.3v library). Others may put all models in a sin-

gle directory and use naming conventions to find the right one. 

To find the power library catalog file, the environment variable PWR_LIB should be 

set to a value that is the path to the directory where the catalog file can be found. A com-

mon place to store the catalog file might be in the directory of the library: $PWR_LIB/ 

pwr.cat. 

Inside the catalog file, there are several elements needed to find the correct power 

model. 

1) Cell type Key -- A set of strings, properties, parameters and environment variables 

that identify the cell (and its parameters) so that the power model is uniquely identified 

for an instance of a cell. 

2) Library Path -- A system path that is common to all binary models in the catalog. 

(This is optional, mainly for readability.) 
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3) Catalog List --A set of celltype/path pairs. Where the path is given to each binary 

power model for a given celltype value. 

The syntax of the catalog file will allow the use of design and environment variables in 

the celltype key and the file paths. 

Design variables will be evaluated in the context of the design for each cell. 

The syntax of a variable is simply a variable name in parentheses preceded by a '$' 

symbol. 

$(<name>) 

When this system function is encountered in a catalog file the value of the named vari-

able is returned. The value is found by searching in the following order: 

A. A local variable (defined previously in the catalog file). 

B. A design property (or generic in VHDL) found through the simulator interface. In 

the case of VHDL, the name "entity" will automatically return the entity name of 

the current instance. 

C. An environment variable. 

The resolved value is returned as a character string and is inserted in the catalog file in 

place of the system function. 

Below is an example catalog file. See Appendix D, for complete syntax. 

II define a local variable "celltype" as a concatenation of the 

II property value of the MODEL and the value of the VOLTAGE 

II environment variable: 

CELL TYPE $(MODEL}_$(VOL TAGE) 



II Define the path to the library by environment variables 

LIBPATH $(PWR_LIB)/$(PACKAGE) 

II define a catalog list that uses the CELL TYPE value, the 

II resolved celltype value is then used to find the model. 

CATALOG: $(CELLTVPE) { 

and2: $(LIBPATH)/and2.pow 

nand2: $(LIBPATH)/nand2.pow 

mux21: $(LIBPATH)/mux21.pow 

dffr: $(LIBPATH)/dffr.pow ... 

} 
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Given the example above, APAS might arrive at a cell, consult the catalog and select a 

model as follows: 

• Determine a value for the local variable CELLTYPE by concatenating the value 

returned from MODEL, found as an instance property, and the value of environment 

variable VOLTAGE. 

• Next LIBPATH must be resolved by using the values of environment variables 

PWR_LIB and PACKAGE. 

• So, given an AND2 model, and assuming a commercial package at 3.3 volts. The 

model: $PWR_LIB/com/and2/a2_33.pow is returned. 

Power Analysis Data (PAD) 

To do accurate power analysis, simulation should be done with accurate timing delays. 
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For optimum accuracy, post layout parasitic should be used to calculate timing delays. In 

addition to accurate timing, there is also design dependent data specifically required by the 

power models: the capacitive load on outputs and input slew. 

The PAD Annotation Manager (PAM) reads Power Analysis Data file to receive 

design dependent data. The PAD file is written in a format that is very similar to the OVI 

Standard Delay Format (SDF). See appendix B for detail PAD syntax. 

SDF files are generated by timing calculators, and it is expected that PAD files will be 

generated in the same way. Most ASIC design kits use vendor supplied timing calculators. 

So, in addition to power modeling support, we will also need ASIC vendor's timing calcu-

lator to optionally output PAD files as well as SDF files. As with timing, post layout data 

will give the best results. 

Once a model is found for an instance cell, a shadow power instance is constructed 

that will monitor activity and calculate power in the design context. When all the power 

instances for the desired analysis have been constructed the next step is to import the data 

needed by the power models. 

The instance specific design data needed by the power models is obtained from a 

Power Analysis Data file. The example below shows a PAD file. Note that it is almost 

identical to the Standard Delay Format output by timing calculators. This is by design. 

This file will be generated in the same way timing delays are, and usually by the same tim-

ing calculation tool supplied by ASIC vendors. 

The ability to generate the PAD file containing the specific data required by the models 

in the power library will be a condition of ASIC vendor support. (Pre-layout estimation of 

this data may be available from synthesis tools too.) Preliminary discussions with several 
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vendors indicate that PAD file can be generated using the same technique, and in most 

cases the same tools, that generate SDF and other back annotation files. 

In the first version of APAS, the PAM will parse the PAD file and send the data 

directly to specified power instances. This is much faster than annotating design properties 

(or generics in VHDL) but imposes some limitations on applying the data. No persistent 

cache of this data is created. So the file must be applied each time the tool is invoked. And 

since the data is contained in the power instance, the power instances must be constructed 

to receive their data prior to the time the file is read. 

To set up a circuit for PAM this order is important: 

1) Invoke the simulator. 

2) Enable power analysis in ALL the regions to be annotated. 

3) Read the PAD file. 

Example PAD file: 

(PAD FILE 
(PADVERSION "0.1 ") 
(DESIGN "$DESIGN/top_hier_sh/default") 
(DATE "Thu Nov 7 11:19:40 1996") 
(DIVIDER/) 
(VOLTAGE 5.25:5.0:4.75) 
(PROCESS "0.8micron") 
(TEMPERATURE 25 ) 
(TIMESCALE Ins) 
(CAPSCALE lpt) 
(CELL(CELLTYPE "NAND2") 

) 

(INSTANCE 1/$3) 
(POWERDATA 

) 

(SLEW A (3.1 :3.4:3.7)(3.2:3.5:3.9)) 
(SLEW B (0.9: 1.1: 1.3)(3.2:3.4:3.5)) 
(CAPLOAD Y (3.4)) 
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II remaining cells ... 
) 

RUNTIME EVALUATION 

The basic algorithm for calculating average power for a design block is simply to sum 

the energy dissipated by each instance in the block during the simulated period and divide 

by the time elapsed in that period. This section discusses several refinements to that gen­

eral algorithm. 

APAS strives to get more consistent results by recognizing these special cases: 

· Nets with multiple drivers 

· Bus Contention 

·Glitches 

Nets with Multiple Drivers 

A special case exists when cells with tri-state drivers are driving a net. From the con­

text of the cell model it is difficult to determine energy dissipation when drivers transition 

from driving state (0 or I) to a high impedance (called "Z") state. 

Assuming no bus contention, that is the design, and its software, are well behaved 

such that only one driver charges or discharges the bus net at any given time, we can 

assume that the act of "turning off', that is, going to a Z state does not dissipate any of the 
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energy stored on the net. For this reason all transitions to Z will be ignored by APAS. 

When a driver transitions from a "Z" to some logic state, the energy needed to "drive" 

the net depends on the current state of the net. If the "turning on" of the driver causes the 

net to change state then the amount of energy associated with a transition (usually 112 

*C*V**2) should be assessed. But, if the net does not change state, no current will flow 

and the transition should be ignored. 

APAS will do the needed analysis of the net to make the right decision if it is possible 

to get the net state from the design interface of the host simulator. If the net state is not 

available, we will assume that there is a 50% chance that the node will change state when 

a driver turns on, and 50% of the transition energy will be assessed. 

Bus Contention 

Another special case that occurs on bus nets is called "contention". Contention exists 

when more than one driver is attempting to drive a net. Most host simulators are capable 

to report warnings for illegal contention. 

Some forms of contention may not be considered bad design practice and may be 

allowed. For example, all active drivers driving the same state may be fine. Contention 

during transitions, for a very short period of time, may also be allowed. Still, bus conten­

tion may noticeably affect the power dissipation of a design. 
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Figure 20 shows some situations where bus contention affects power consumption. In 

the first figure, a short circuit is created when drivers connected to the same net are driving 

different values. 

APAS will allow modelers to estimate the power dissipation as a function of the time 

elapsed while in this condition, similar to static power elements. This can be specified in 

the model language. In most cases, if this condition persists the chip will fail. But this con-

dition may exist briefly in transient conditions. 

The second figure shows the case when more than one driver drives a bus high, in this 

case it is inaccurate to assess the energy used to charge the net twice (once from each 

instance). On nets with multiple drivers, APAS will not assess energy when there is 

already a driver in the same state. 

Glitches on Drivers 

We have seen estimates that the power used by glitches (which generally do nothing 

for functionality) can approach 25% of the total. The appearance of a glitch in ASIC 

designs is often dependent on timing conditions. Glitches that appear with one set of con-
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ditions may disappear in another. 

The effect of a glitch is usually to cause incomplete transitions on nodes. That is, the 

voltage change ( dV) is less than V dd. Glitch power can be expressed as: 

P glitch 
1 = 2cvdddv (16) 

Where: 

dV : Reduced Voltage Swing 

Voltage swing is dependent on the ratio of glitch width (tg) and gate delay (td), hence 

can be approximated as: 

tg 
dV = tdVdd (17) 

In theory, dV is dependent on input slew, output load (figured in tp) and input pattern 

(figured in tg), however in engineering trade-off between efficiency and accuracy of glitch 

power computation at gate level, the ratio (tg/td) can be further approximated to a reason-

able constant value. 

In designs at the cell level, glitches may be hidden inside the cell (or macrocell). In 

this case APAS must depend on the cell model's characterization of internal energy dissi-

pation to assess the energy of the internal glitch as it will not be seen at the cell's perime-

ter. This may not be possible when the glitch is due to multiple inputs changing at nearly 

the same time since this scenario is difficult to characterize, and so, is not modeled. But 

when internal glitches occur with specific input slew or intrinsic delay (based in load 

capacitance) their effect can be characterized. 

Glitches on drivers (output pins) may be represented in digital simulation by turning 



67 

on detection algorithms usually called "spike checking". 

APAS wants to recognize glitch occurrence during simulation so that glitch power is 

computed instead of normal switching power. In general, glitch behaviors are modeled in 

logic simulators with a "three band" model. Which band a glitch falls into is determined 

by its pulse width. When a glitch is narrow enough to fall into the first band it is "swal­

lowed" and nothing is propagated. Pulses in the second band represent partial transitions 

and an X state is output to indicate the uncertainty that a threshold voltage was reached. 

Pulses in the third band are wide enough that threshold voltage is certain and propagated 

(transported) intact. 

APAS will be unaware of first band (swallowed) glitches and ignore them. Since these 

glitches are small, accuracy will not be greatly affected. Third band (transported) pulses 

will be seen as full transitions, which they are by definition. 

It is the second band glitches, that generate X pulses, that APAS will treat as a special 

case. Instead of assessing the energy of a full transition when a 1 or 0 to X transition is 

encountered, APAS will use 50% as the energy of an average partial transition. This quan­

tity was determined by empirical means and appears to approximate the size of the aver­

age glitch. 

KEY FEATURES 

APAS implements its 1/0 tasks through the user interface of the host simulator. The UI 

features of APAS fall into the following categories: 
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• Command Set -- Basic commands to setup and report on a power analysis session. 

The command set is casted in the userware format of the host simulator. The Command 

Interface section later will describe in details each available command and its 

functionality. 

• Textual Reports -- A textual report of average power calculated as specified by the 

user's setup process. This data may be sent to a file and may also be viewed from the 

simulators' Uls. 

• Graphic Results -- A histogram of average power over a specified time periods is 

available for each block being monitored. This feature is useful when power 

consumption is being calculated over short periods of time. 

Textual Reports 

The primary output of APAS is the average power dissipation during the simulation 

run. Depending on the user's setup specifications, more detailed analysis may be pre-

sented: 

· Total power broken down by type (i.e. dynamic and static as indicated in the model). 

· Power dissipation of specific regions of the design. 

· Power dissipation during fixed time periods. 

A report may be generated at any time during the simulator session by issuing a 

POWER REPORT command. Using the POWER FORMAT command prior to POWER 

REPORT will allow the user to specify one of several formats so that it can easily be read 

or parsed by a post processing utility. 
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Reporting Dynamic and Static Power 

The APAS model format allows the classification of energy dissipation to be either 

dynamic (due to state changes in the circuit) or static (due to leakage or static short circuit 

conditions). Power dissipation due to one or both of these factors can be reported as well 

as the sum of the two. The choice is made when the POWER FORMAT command is 

issued. 

Linear Format 

This format keeps each data element in an individual line for text parsing. Its syntax is: 

<block name> <period start time> <period end time> <dyn. power> : <static power> : 

<total> 

Where the block name is the hierarchical path to an element being monitored. (Any 

and all of those elements explicitly monitored prior to simulation will be reported.) The 

period times tell the simulation period over which power was calculated. And the fields 

for power results are filled in with the average power in the block for each category over 

the timing period indicated. If a power category is not being reported (see above) it is left 

blank. 

Example: 

I 0.0 20000.0 7.65mW:2.05mW:9.70mW 

/ALU 0.0 20000.0 3.69mW:l.07mW:4.76mW 

/ALU/A 0.0 20000.0 l.12mW:0.43mW:l.55mW 

/ALU/B 0.0 20000.0 l.03mW:0.22mW:l.25mW 

/ALU/C 0.0 20000.0 0.97mW:0.21mW:l.28mW 

/ALU/D 0.0 20000.0 0.57mW:0.21mW:0.78mW 
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Hierarchical Format 

This format is meant to be more readable. Data for all time periods of each hierarchi­

cal block being reported are grouped together. Average power for the total time is always 

the last entry for each block. 

Example: 

Average Power for: /ALU 

Period: 0.0:100.0 Dyn: l.12rnW Static: 0.43rnW Total: l.55rnW 

Period: 100.0:200.0 Dyn: 1.13rnW Static: 0.42rnW Total: l.55rnW 

Period: 200.0:300.0 Dyn: l.14rnW Static: 0.4lrnW Total: l.55rnW 

*Period: 0.0:300.0 Dyn: l .13rnW Static: 0.42rnW Total: l.55rnW 

Average Power for: /ALU/A 

Period: 0.0:100.0 Dyn: 0.12rnWStatic: 0.13rnWTotal: 0.25rnW 

Period: 100.0:200.0 Dyn: 0.13rnWStatic: 0.12rnWTotal: 0.25rnW 

Period: 200.0:300.0 Dyn: 0.14rnWStatic: O.llrnWTotal: 0.25rnW 

*Period: 0.0:300.0:Dyn: 1.13rnWStatic: 0.12rnWTotal: 0.25rnW 

Time Period Format 

This format organizes the data by time period, and hierarchically within each period, 

similar to the graphic display (See below): 

Period: 0.0:100.0 

/ALUDyn: 1.12rnW Static: 0.43rnW Total: 1.55rnW 

/ALU/ADyn: 0.12rnW Static: 0.13rnW Total: 0.25rnW 

/ALU/BDyn: 0 .13rnW Static: 0.12rnW Total: 0.25rnW 

/ALU/CDyn: 0.14rnW Static: 0.llrnW Total: 0.25rnW 

/ALU/DDyn: 0.39rnW Static: 0.36rnW Total: 0.75rnW 
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Period: 100.0:200.0 

/ALUDyn: 5.12mW Static: 0.43mW Total: 5.55mW 

/ALU/ADyn: l.12mW Static: 0 .13mW Total: l.25mW 

/ALU/BDyn: l.13mW Static: 0.12mW Total: 1.25mW 

/ALU/CDyn: l.14mW Static: O.llmW Total: 1.25mW 

/ALU/DDyn: 1.39mW Static: 0.36mW Total: 1.75mW 

Graphic Display 

In order to display the time based data above in a graphical format, alongside the sig­

nal waveforms of the simulation, we have connected the periodical data to the list window 

in and to a charting window in the host simulator to give a graphic indication of power 

usage in the form of a histogram. 

This feature is useful when power consumption is being calculated over short periods 

of time. A histogram of average power over each time period is available for each block 

being monitored. 

The ability to print, save and review graphical data is dependent on the existing fea­

tures of the host UL 
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Figure 21. Histogram of power per cycle 

Additional Diagnostics 

Other diagnostics -supported by APAS are listed below: 
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1) Tracking "greater that expected" activity, such as more than one transition per clock 

cycle on cells. 

2) Keeping more detailed profiles of the most active periods. More detail might 

include more hierarchical information, split out by type, etc. 

4) Tracking instances with high input to output toggle ratios in second logic levels and 

up. 
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Command Interface 

The rest of this chapter is now used to describe the set of available power commands 

that are added to the command interface of the host simulator for controlling APAS. To 

insure uniqueness, all command are preceded with the keyword POWER. Note that, in the 

commands all significant letters are shown in UPPER case. 

POWer ANAiyze blk_list [-QN I -OFF] [-Warn I -NOWarn] 

Description 

Turns on or off a hierarchical block for power analysis. 

The Power Analyze command designates that one or more hierarchical 
blocks in a design will be analyzed for power during a simulation. The 
blk_list argument lists the design paths of the hierarchical blocks. 

Arguments 

blk_list 

A list of named or selected hierarchical blocks to be analyzed. 
-ON 

An optional switch that enables power analysis for the specified 
hierarchical block. This is the def a ult. 

-OFF 

An optional switch that disables power analysis for the specified 
hierarchical block. 

-Warn 

Displays a warning message indicating that one or more models cannot 
be found. This is the default. 
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-NO Warn 

Disables warning messages regarding models that cannot be found. 

POWer ANNotate filename hier_path [-Min 1-J:m I -Max] 

Description 

Loads design data from the file designated by filename. 

The Power Annotate command loads design data contained within a Power 
Analysis Data (PAD) reference file. Minimum, typical, or maximum data 
values can be specified for loading. 

Arguments 

filename 

A required string argument specifying the name of the PAD file from 
which to load power data. 

hier_path 

Optional string specifying the relative path to a hierarchical block that 
needs power annotation data attached to it. Default: "/" level. 

Pathnames in the PAD file must be relative to the "/" level in the design. 

-Min 

An optional switch specifying that minimum values should be used 
when triplets are present in PAD file data fields. 

-Tun 

An optional switch specifying that typical values should be used when 
triplets are present in PAD file data fields. This is the default for the 
initial simulation run. 



-Max 

An optional switch specifying that maximum values should be used 
when triplets are present in PAD file data fields. 

POWerCLear 

Description 

Clears all power data accumulated up to the current simulation time. 
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The Power Clear command resets all the power-related data that has 
accumulated during the simulation and resets the time for further power 
calculations to the present time. If a Power Clear command is not issued, 
all the existing power data to the present time will remain during a 
subsequent simulation, and new power data will be averaged into it. 

POWer FOrmat -POWER [-DYNAMIC I -NODYNAMIC} 
[-STATIC 1-NOSTATIC} [-TOTAL 1-NOTOTAL} 

Description 

Sets the format for textual reports. 

The Power Format command determines the format that the simulator must 
use for textual reports when a Power Report or Power Sort command is 
issued. Average current can be designated instead of average power. If 
information on average power is required, the type of power can be 
specified--dynamic, static, and/or total. 

Arguments 

-Power 

An optional switch that specifies average power as the type of data to 
report. Default. 

-Dynamic 



An optional switch specifying that dynamic power is to be reported. 
Default. 

-Nodynamic 

An optional switch specifying that dynamic power should not be 
reported. 

-Static 

An optional switch specifying that static power is to be reported. 
Default. 

-Nostatic 
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An optional switch specifying that static power should not be reported. 

-Total 

An optional switch specifying that total power is to be reported; that is, 
power consisting of both dynamic and static power. Default. 

-Nototal 

An optional switch specifying that total power should not be reported. 

POWer Library path 

Description 

Specifies the pathname to a power library directory if PWR_LIB is not set. 

The Power Library command designates where the power library manager 
can find a power library directory if the PWR_LIB environment variable 
was not set prior to invocation 

Arguments 

path 
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Designates a pathname to the power library that contains the catalog file. 

POWer PEriod period 

Description 

Establishes the time period for calculating average power. 

The Power Period command is most commonly used with the Power Trace 
command and determines the time period in nanoseconds over which 
average power is to be periodically calculated during a simulation. If the 
time period is set to 0.0 ns, the time period is effectively infinite. A positive 
nonzero number specifies that the simulator should calculate average power 
for each period of time during a simulation. 

If the Power Start command has been used to specify a particular start time, 
then the first time period will begin at that start time. If the simulation 
continues beyond the first time period, then average power will be 
calculated for each successive time period possible for the duration of the 
simulation. The time period can be changed during a simulation session. 

Arguments 

period 

A required real number that specifies the period of time over which 
average power is to be calculated. Default: 0.0 ns. 

POWer REport blk_list [-Out.filename] [-NOUPDATE I -UPDATE] 
[-NOAYERAGE I -AVERAGE] 
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[-PRESENT 1-NOPRESENT] [-NOMAX I -MAX] [-NOALL I -ALL] 

Description 

Displays power analysis results for a specified hierarchical block. 

The Power Report command outputs power analysis results to the 
simulation user interlace (UI) or to an output file; the default is to send it to 
the UL The results are written out for a specific hierarchical block or 
blocks. The -Out switch specifies that the report is to be placed in a file 
located by the filename path. 

You can choose to have the simulator automatically remove 
accumulated power data when starting a new simulation, to report 
average power data, to report present power when the simulation stops, 
to report maximum power during the simulation 

Arguments 

-Out filename 

An optional label and string argument that specifies an output file to 
which the power results for the hierarchical block are to be written. 

-Noupdate 

Switch specifying that power data are not to be reset to zero (0) for 
further simulation; that is, power data continues to accumulate in 
subsequent simulations. Default. 

-Update 

Switch specifying that power data are to be reset to zero (0) for further 
simulation. 

-Noaverage 

Switch specifying that average power will not be reported. Default. 

-Average 
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Switch specifying that average power will be reported. 

-Present 

Switch specifying that the present power will be reported. Default. 

-Nopresent 

Switch specifying that the present power will not be reported. 

-Nomax 

Switch specifying that the maximum power will not be reported. 
Default. · 

-Max 

Switch specifying that the maximum power will be reported. 

-Noall 

Switch specifying that power is not to be reported for all the blocks in 
the design that are being analyzed for power; requires a selected or 
named instance. Default. 

-All 

Switch specifying that power is to be reported for all the blocks in the 
design that are being analyzed for power. 

POWer SOrt blk [-PRESENT I -AVERAGE] [-Top number] 

Description 

Sorts the instances in a specified block by the amount of power dissipated. 

The Power Sort command lists the instances in a block from the most power 
dissipated to the least power dissipated. Either average power or present 
power can be requested. The number indicates how many of the most 
power-intensive instances should be reported. 
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Arguments 

blk 

Specifies the name of the hierarchical block containing instances that are 
to be sorted from most to least power dissipation. 

-Present 

Switch specifying that only present power should be sorted. Default. 

-Average 

Switch specifying that only average power should be sorted. 

-Top number 

Label and number pair specifying how many instances should be 
reported for highest dissipation of power. 

POWer STARt start 

Description 

Sets power analysis to begin at a specified absolute time. 

The Power Start command causes the power analysis to begin at a 
user-defined time, which is in nanoseconds and defaults to 0.0 ns. This 
command is especially helpful when used to avoid an initialization stage 
during which part or all of a circuit may begin in an unknown state (X). 
This enables the user to avoid inaccuracies caused by the unknown states. 

Arguments 

start 

A required real number that specifies the absolute time at which to begin 
power analysis. Default: 0.0 ns. 
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POWer STATus 

Description 

Lists the status of AP AS commands. 

The Power Status command returns information regarding the present 
simulation time, the types of power to be reported, the start time, the period, 
and the level at which power analysis and power tracing is enabled. 

POWer TRace blk_list 

Description 

Creates a waveform in the Trace window for each of the specified 
instances. 

The Power Trace command enables for power analysis all instances 
designated in the blk_list argument, even if they have not been explicitly 
specified in the Power Analyze command. A waveform is then created and 
displayed in the Trace window for each instance. 

If the end of the power trace coincides with the end of a power period, the 
trace will not be updated until the simulation time is advanced slightly. 
Thus, a Power Report -Present command will show the current values of 
the reported blocks, but a Power Trace command will show only the value 
that occurred during the last power period. 

Arguments 

blk_list 

A list of named or selected hierarchical blocks to be traced. 



POWer UPdate 

Description 

Asynchronously ends a period, calculates average power, and updates 
traces. 

82 

The Power Update command enables the period in a simulation to be reset 
to zero (0) without resetting the start time or the accumulated power data­
the power data that has accumulated continues to be averaged in during 
subsequent runs. The power traces are also updated to include average 
power data. Power Update can be used instead of Power Clear to change 
the period in the middle of a simulation without losing 
previously-accumulated power data. 

This command can also be accomplished by using the -Update switch in the 
Power Report command. 



CHAPTERV 

EXPERIMENTS AND RESULTS 

INTRODUCTION 

This chapter reports the results of our experiments to measure the power estimation 

accuracy, performance and capacity of the ASIC Power Analysis System. 

Accuracy, the ultimate goal, is compared against the well known, traditional circuit 

simulator - SPICE, a proxy for real silicon measurement. Since performance, our second­

ary design focus, is comparable to gate-level simulator which is typically several orders of 

magnitude faster than circuit-level simulator, only small circuits with short test patterns 

are measured against SPICE. For larger circuits with long test patterns, performance will 

be measured against the gate-level simulator into which APAS engine is integrated. 

Besides being capable to handle mainstream ASIC design sizes which are typically in the 

range of tens of thousand gates [5], we also attempt to access the tool at higher capacity, 

250K gate design [27]. 

In addition to the three primary design goals APAS, as a dynamic snap-on engine to 

existing ASIC simulators, will also be measured against the integrated simulators: Quick­

sim II and Quickhdl to assure that the accuracy is consistently maintained, and perfor­

mance, capacity is comparably driven by its host simulator. 
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To obtain the high degree of consistency, top down design method which is the pre-

ferred method in ASIC design, especially when design complexity exceeds 10,000 gates, 

is applied. At the top level, design circuits, based on design specification and require-

ments, are functionally described and simulated. Then they are synthesized and technol-

ogy-mapped into the 0.8 micron standard cell library. This selected standard cell library 

contains different models for circuit-level and gate-level simulators: SPICE (SPICE 

CMOS model), VHDL(VITAL model), and Quicksim II (AMP model). The synthesis 

environment allows writing resultant designs targeting different simulator's design 

descriptions. In companion with the standard cell library, there is a power model library 

which have been pre-characterized through our power characterization process. Pre-layout 

design parasitic described in PAD format is also generated from the synthesis process. 

SETUP AND ENVIRONMENT 

The experiments are conducted on a Spare 10 with 256Mb of RAM and an available 

swap space of at least 500Mb. This environment represents today's typical design environ-

ment in the industry. 

Below are the configuration profiles of the machines used in the experiments: 

• Uname -a: SunOS curly 4.1.3 1 sun4m: 

Hostname: curly 
OS release: 4.1.3 
CPU: SPARC_lO 
Memory: 256 MB 
Swap: Total swap: 830 MB 



• Uname -a: SunOS hercules 4.1.4 2 sun4m 

Hostname: hercules 
OS system: SunOS 
OS release: 4.1.4 
CPU: SPARC_lO 
Memory: 256 MB 
Swap: Total swap: 625MB 
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Before the start of every new experiment, the RAM is "chilled". Disk usage is mea­
sured by making a UNIX call to /etc/pstat with option -s, and runtime measurement is 
done by calculating the elapsed time between calls to the UNIX function /bin/date. 

EXPERIMENTS 

Accuracy 

The accuracy of our power estimation is mainly dependent on the following factors: 

•The accuracy of event-driven logic simulation. 

• Timing accuracy of logic simulation 

• The accuracy of the power characterization procedure which has been fully discussed 

in chapter III. 

In addition, special computation techniques in consideration of special conditions such 

as bus contention and glitching also improve the accuracy in exchange for some accept-

able performance costs. We will test accuracy in these special cases as well as general 

cases. 
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Bus Contention 

Description 

The first test uses just a single tristate buffer to do accuracy calibration. Using an edg­

erate of l .2NS and a load of 0.05pF 

The second test is a simple design with 3 tristate drivers driving a common output net 

with load 0.05pF. 

The first set of stimulus, 3drivers.pat, simulates a good condition where, ena, enb, enc 

take turns to drive the net alternating 0 and 1. 

The second set of stimulus, contention_eqstate.pat, is similar to the first except that the 

ena and enb signals are skewed a little. ena and enb will both be active for 5ns, and the 

driven inputs are both the same either driving to gnd or both driving to vdd. 

The third set of stimulus, contention_opstate.pat, is similar to contention_eqstate.pat 

except that the inputs ia and ib are also skewed so that during the contention period, ia and 

ib are at opposite states. 

The last set of stimulus, contention_ueqdelays.pat simulate the X region created due to 

unequal delays when 1 driver is turning off say H to Z and this delay is longer than the 

delay of another driver turning on the bus from Z to L. In SPICE, this momentary X region 

caused a VDD to GND path, static power. The sdf file contention_ueqdelays.sdf was used 

to simulate this effect. 

This test case uses tribufL, a VITAL model in c8lib_ vital.power, with it's own power 

model, tribufL. pwr. This power model is characterized during the development stage of c8 

lib, 0.8 micron power model library. 
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Result 

Table 1: Bus Contention 

APAS SPICE %Error 

calibrate 8.962e-05 8.9747e-05 1.2% 

3drivers 1.030e-04 l.0809e-04 5.3% 

contention 1.177e-04 1.1661e-04 0.9% -
eqstate 

contention l.166e-04 l.277e-04 9.5% -
opstate 

contention l.186e-04 1.564e-04 5.2% -
ueqdelays 

Table 1 shows that even in the bad design case, contention_opstate, when a short-cir-

cuit current flows in the net, the accuracy is still within 10% of SPICE. 

Glitch Power 

Description 

This test case depends on the invlx, nand2H, and and2H power models. The design is 

a simple glitch generator circuit, mux2. Pin sel is toggled with inputs a and b tied at 0. 

Glitch will occur during sel rising. Experiment is carried out 4 times for different loads of 

Y. 
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Table 2: Glitch Power 

APAS SPICE %Error 

glitchl 4.382e-04 4.220e-04 3.8% 

glitch0.5 3.646e-04 2.960e-04 3.1% 

glitch2 6.158e-04 6.803e-04 10.5% 

glitch4 9.668e-04 1.1232e-03 14% 

Glitch power, a partial transition switching power, is dependent on load capacitance. 

The accuracy shown in table 2 is mostly within 10% of SPICE except case when load is 

significantly large (glitch4, 14% Error). 

General cases 

Description 

In these general cases which represent general operating conditions in design circuits, 

most selected circuits are synthesized using Autologic II, except small and simple circuits 

which are hand-crafted. Some tests are simulated using post-layout data when it is avail­

able from AutoCells. Otherwise pre-layout data estimated from synthesis environment 

will be used. No matter what design data, pre or post layout, is used, SPICE representation 

of the circuits must be equivalent to the gate-level descriptions. 

ca - accuracy _chainbuff.qs.power 

The circuit is a chain of 16 buffers and inverters. Power models consist of inv12x, 
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invlX, bufl. The PAD file data, test.padf, is consistent with the design data specified in 

the spice deck chainbuff.sp. Capload in PAD file are computed by adding net capacitance 

and inpin capacitance: 

• inv12x inpin cap is 0.0716pF 

• invlx inpin cap is 0.0112pF 

• bufl inpin cap is 0.0186pF 

All net capacitances used in interconnecting nets are 0.25pF. Each Input slews are 

approximated from driving output slope. Output slopes are taken from c8 data book, at 

characterized points: 

• inv12x (0.25pF) 0.27 0.17 (0.50pF) 0.46 0.28 

• invlx (0.25pF) 1.48 0.98 

• bufl (0.25pF) 0.37 0.41 

cb - accuracy _dec24.qs.power 

The circuit is a 2 to 4 decoder synthesized to gates using Autologic II, AL2. The result 

is a 5 cell combinatorial circuit. Power models consist of nand2H, invlX, or2H. The PAD 

file data in padf is consistent with the design data specified in dec24 spice deck dec24.sp. 

All outputs of cells are modelled with 0.25pf, all primary input slews are modelled with 

0.8ns except /gl/a and /g2/a where they are driven by /g2/0 has slews 1.48, 0.98 based on 

c8 data sheet of 0.25pf load. In this test, we used a random but periodic test patterns and 

did not figure out the toggle counts of each cell. The periodic test sequence is (ab) 00->01-
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>11->10->00 

cc - accuracy _simple.qs.power 

d 1 is a single inverter IV 1, and d5 is 5 instantiations of the inverter with separate 

inputs and outputs. The PAD file data in padfl, padf5 are consistent with the design data 

specified in the spice deck designl.sp and design5.sp. Input slopes are 0.4ns and load is 

0."12pF, a characterized point in the power model of IV 1. 

cd - basicalu4.power 

The circuit is a 4bit ALU synthesized to gates using AL2. The synthesized circuit con­

tains 255 gates of the following cells: and2H, and3H, bufl, invlX, inv12X, mux2L, 

nand2H, nor2H, or2H, or3H, xor2L. 

All caploads are post-layout data generated using AutoCells. 

ce - basiccrc32.power 

The 32-bit CRC with its RTL model at crc32.vhd is synthesized to gates using AL2, 

and the gate representation contains 1060 gates of C8_LIB cells: and2H, and3H, bufl, 

dffr, invlX, inv12X, mux2L, nand2H, nor2H, or2H, or3H, xor2L. 

cf - basicshift4.power 

The circuit is a 4bit shift register synthesized to gates using AL2. It contains 52 gates 

of C8_LIB cells: and3H, bufl, dffr, invlX, inv12X, nand2H, nor2H, or2H 
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All caploads are post-layout data generated using AutoCells. 

Result 

Table 3: Power Estimation Accuracy 

Circuit 
APAS SPICE 

%Error gate count 
(mW) (mW) 

ca 16 6.90 6.65 3.6% 

cb 5 1.03 1.07 4.9% 

cc 5 1.08 1.04 3.2% 

cd 255 34.97 36.66 4.6% 

ce 1060 41.08 37.54 9.4% 

cf 52 1.31 1.43 8.1% 

Table 3 shows that for the selected circuits which span from 5 to 1060 gates, combina-

tional or sequential, the accuracy of APAS is within 10% of SPICE. 

Performance and Capacity 

APAS compared against SPICE 

In this experiment the following two circuits are selected: 

cd - basicalu4.power 

cf - basicshift4.power 

Table 4 shows the speed advantage over SPICE and the degradation in simulation 

speed over original logic simulator without power. 
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Table 4: APAS vs. SPICE Performance 

Circuit APAS Quicksim II SPICE 

cd 1.0 0.67 26.4e3 

cf 1.0 0.68 9.17e3 

APAS is 4 order of magnitude faster than SPICE and suffers only 33% speed degrada­

tion compared to the base logic simulator, Quicksim II. 

perf15K_alu32.power 

Description 

The design is a 32bit ALU synthesized to gates using Autologic II and targeted to the 

0.8 micron technology library that was internally characterized for power. A design data 

annotations file is size of 5Mbytes. The run is for 100,000ns. This circuit contains 15050 

gates of C8_LIB cells: and2H, and3H, bufl, invlX, inv12X, mux2L, nand2H, nor2H 

or2H, xor2L. The structural vhdl description contains three blocks: addsub block, multi­

plier block, division block. 

Performance and capacity tests are done in several areas: 

• measures the disk usage and runtime performance for the power annotation operation 

• measures the disk usage and runtime performance for the default power sort operation 

• measures the disk usage and runtime performance for the power load operation 
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•measures the disk usage and runtime performance for a RUN (long time) operation, 

and compare it with the same RUN without the power option. Also compares with 

RUN's for different power period values of "half a clock" (implies 6000 power 

calculations), "a clock cycle" (implies 3000 power calculations), and "full simulation 

run time" ( 1 power calculation). 

• measures and compares QuickSim II I QuickHDL invocation with and without 

power option. 

Result 

Table 5: alu32 Performance 

Tasks QuickSim II QuickHDL 

In general, the power estimation accuracy from Quicksim II and QuickHDL are the 

same since both simulators are integrated with the same power kernel using the same 

power model library, the same power design data, and equivalent timing and functional 

models. However, the performance and capacity (memory overhead) are dependent on the 

host simulator. Some host simulator such as Quicksim II allows a tight integration which 



94 

results in better performance, less memory overhead, but less flexibility to maintain. Table 

5 shows that a degradation of 30% in power simulation with Quicksim II, and 44% in 

Quickhdl. Design data annotation operation is at the speed of 11.5Mbytes per minute. 



CHAPTER VI 

CONCLUSION AND FUTURE WORK 

We have developed an ASIC Power Analysis System (APAS) in this thesis. APAS is 

capable of supporting the following major features: 

. Snaps on to the leading ASIC simulators: - QuicksSim II - QuickHDL - Verilog-XL 

with a common library . 

. Easy to learn: Start analyzing your design for power in a single day . 

. Interactive power diagnostics tell when and where - not just how much . 

. Performance and capacity for today's complex designs (33% degradation) . 

. Flexible models to support gates, RAMs, and higher-level macros . 

. State-dependent dynamic and static power for superior accuracy (10% of SPICE). 

APAS takes the guess work out of power analysis. It is the industry's first power anal-

ysis tool that combines accuracy with easy of use. It is also the first to support the three 

leading ASIC simulators: QuickSim II, QuickHDL, and Verilog-XL, all with a common 

library. 

APAS "snaps on" to the designer's chosen simulator. This allows the designer to use 

the same environments for power simulation as is used for functional and timing simula­

tion. Since the host simulator uses the same netlist, vectors, models, and back-annotated 

parasitic, the same behavior is guaranteed. The familiar simulation environment also 

makes power analysis easy to learn and use. APAS is also easy to learn that it can be 

installed in the morning and used productively in the afternoon. 
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APAS is an interactive power analysis tool that helps the designer reduce power con-

sumption. In addition to reporting how much power is being consumed, it helps the 

designer determine where and when. APAS's hierarchical capabilities can be used to find 

out which blocks in the design are consuming the most power. The designer can then 

focus on reducing power in these blocks. Analyzing the dynamic behavior of the circuit is 

also key to power reduction. APAS can dynamically trace the power consumption of any 

block in the design, giving the user a graphical representation of the periods of high and 

low activity. Moreover, the real strength of interactivity comes from combining these two 

capabilities. By stopping the simulator at a time of high activity and then listing the blocks 

consuming the most power at that moment, the designer can identify candidate blocks for 

power down. Powering down blocks can often result in dramatic power savings, but the 

savings need to be verified. APAS 's interactive simulation environment allows the 

designer to perform "what if' experiments to verify power reduction. 

Not only are the diagnostics important, but the designer must have confidence in the 

accuracy of the results. The key to accuracy is the power models. The power models must 

represent the ways that current flows in the design. This includes dynamic switching cur-

rent, dynamic short-circuit current and static current. Achieving optimum accuracy 

requires models which account for input slew, load and internal state. APAS uses power 

models written in the Power Modeling Format (PMF). PMF has the robustness to handle 

state-dependent dynamic and static power. Its combination of equations and interpolated 

tables provide the means to capture the most detailed cell characterization data under 

varying slew, load and state conditions. PMF not only supports gates but it can also handle 

1/0 cells, RAMs, and higher-level macros. These higher-level models become increasing 
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important as the amount of Intellectual Property (IP) used in designs continues to grow. 

Closing market windows are putting tremendous pressure on design throughput. How 

a tool fits in the design flow is critical. The ability to perform power analysis in the chosen 

environment streamlines the iteration cycle because no additional steps are required in the 

design flow. Simply tum APAS on to measure power during the usual functional or timing 

simulations, making power analysis part of the simulation flow - not an afterthought. 

Designers need to meet market demands by increasing functionality while reducing 

system costs. APAS snaps on to the designer's chosen simulator to reduce design iteration 

and improve productivity. APAS's unique interactive power diagnostics enable designers 

to meet these challenges. APAS also delivers the required accuracy for both dynamic and 

static power consumption. 

FUTURE WORK 

Early in the design verification, especially when power models are not yet available, 

designers want a first look at the power consumption in their design. A fast power estima-

tion algorithm is required to be added to APAS. This fast estimation is based only on the 

load switching power. The load capacitance can be estimated from cell fanout or from 

back annotation. Other extensions to APAS includes a mechanism or backplane that can 

connect power estimation algorithms from lower-level of abstraction (switch-level power 

estimation) to higher-level of abstraction (RTL power estimation), and make APAS a mul-

tilevel power estimation system. 
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APPENDIX A 

POWER MODEL FORMAT 

We start with an overview of the model format. Details and syntax of each section fol-

lows. 

In the examples of this chapter, compiler keywords will appear in capital letters and 

user defined names will be lower case. However, the compiler is not case sensitive. 

Model Data and Expressions: 

Signal Declarations 
Default Data 
Defined Constants 
Table Data 
Equations 
Internal Signal Definitions 

Model Evaluation: 

Transition Energy Statements 
Static Power Statements 

Figure 22. Power Model Format 

Comments 

Comment text can be put in models using either C comment style,/* <lines of text>*/: 

/* 

This is a C style comment 

*/ 

Or, comments can be proceeded by a double slash (as with C++) where a carriage 
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return terminates the comment: 

II This is also a comment 

Signal Definitions I Declarations 

Cell Signal Declarations 

Any signals used in the power model that exist as "pins" or "ports" on the cell inter-

face need to be declared prior to appearing in an equation or table. This simplifies inter-

face validation and indicates pin direction to the model compiler. Signals are declared as 

inputs, outputs or bidirectional. This is done with the keyword SIGNAL followed by 

INPUT, OUTPUT or BIDIR. It is not necessary to declare signals on the functional model 

that are not used in the power model. 

Wide pins (buses) must include their range so that their width is determined. Once the 

busses are declared (or defined), if only the bus name appears in an expression, then the 

operation applies to all of its bits. Alternatively a specific bit can be referenced, e.g. 

'DATA[O]'. 

Examples: 

SIGNAL INPUT bist, rd, cs, ada[0:31 ], adb[0:31 ]; 

SIGNAL OUTPUT data[0:8]; 

SIGNAL BIDIR datb[0:8]; 
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Grouping Signals 

For convenience, a signal may be defined in the power model as a group of pins. To 

create a group use the following syntax: 

SIGNAL GROUP buspins : ad1, ad2, ad3, ad4; 

Boolean signals may be included as a contributing signal to a group. Internal states, 

defined below, may also be included. Group signals get their width implicitly from their 

definition. All contributing signals in the group must be declared previously in the model. 

The state of the group is always the combined current state of their contributors. This 

differs from an internal state (see below) which is initialized at model construction then 

updated only by the power model following evaluation. 

Defined Internal State 

The definition of 'internal' signals within the 'black-box' cell boundary may be 

needed, to accurately represent the state and operation of a cell for a given power con­

sumption data point. 

The internal state may be a single bit or a bus, it inherits the width of the signal used to 

initialize it. An internal signal may used in any GROUP defined after the internal state 

definition. 

Internal states are explicitly updated during model evaluation. An internal signal must 

be initialized in its definition with 

a port signal, a GROUP, or an explicit state. The initial signal must be defined prior to the 
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internal state definition. 

Example: 

This example shows an internal state used and updated in a model. First, define inter-

nal state "lastd" and initialize it with signal 'd': 

SIGNAL INTERNAL lastd <= d; 

In the transition energy statements (described in detail below), the statement shown 

will be active if the enable pin "en" goes low-to-high and "lastd" is a logical '1' when 

evaluation occurs. The state of "lastd" is updated with the current value of 'd' AFfER it is 

evaluated in the statement: 

DYNAMIC { 

en(/) & lastd: energy_eqn1 ($PAD(CAPLOAD)), lastd <= d; 
}; 

Boolean Signals 

There may be some cases where it is necessary to compare signals or buses to deter-

mine the state or mode of a cell. A binary boolean expression is available for this purpose. 

It tests for equivalence,"==", (for non-equivalence use"!=") of two evaluated expres-

sions. The result may be used like a single bit binary signal. The return value will be a log-

ical '1' if the equivalence tests true and zero 'O' otherwise. 

The arguments to the boolean operators may be two signals or two arithmetic expres-

sions. (A mix of signals and expressions are not supported.) 

The boolean "signal" can be used in a transition statement (see below) as a condition, 
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to impose state dependency. A boolean may also be a "signal" in a GROUP. 

Example: 

The mode of a dual port RAM cell is dependent on comparing two address buses. The 

following expression will return non-zero if the condition is true and zero if it is not. 

An arithmetic expression: 

SIGNAL BOOL bus_comp { $DIFFBITS(A 1,A2) == 0 }; 

A direct signal compare: 

SIGNAL BOOL bus_comp {A 1 == A2}; 

Next the "bus_comp" and the control lines of a RAM are combined as a GROUP: 

SIGNAL GROUP mode : bus_comp, rd, wr, ce; 

The resulting group may be used to test for "read through" mode using the $STATE 

system function (defined below). The mode is defined as '1111 ',the state where the 

address buses match, both read, "rd", and write, "wr", control line are asserted, and the 

cell is enabled: 

$STATE( mode, '1111 ') 

System Functions 

The system functions defined below will be used in the energy expressions associated 

with the transitions and state of the cell. 



106 

Data Access Function 

The $PAD system function is used to access instance specific data from the client 

application. For example, the data will usually come from a Power Analysis Data (PAD) 

file. Default values may be set in the model format or design wide in the library file. 

Syntax: 

"$PAD(" <data type> [, <port name>] ")" 

Where: 
<data type> -- is one of a set of data elements found in the PAD file. These elements 

are defined in the syntax of the PAD file. Data in the PAD file will be either design wide -

VOLTAGE and TEMPERATURE, or instance and port specific -SLEW and CAPLOAD. 

<port name> -- (optional) Used for instance/port specific data to indicate which port's 

data to access. (The instance context is set in the PAD file.) This field is optional, the 

active pin is used as a default. (Dynamic pin equations are evaluated in the context of an 

instance and active pin transition, more on this later.) 

Examples: 

$PAD( VOLTAGE) -- Get voltage. 

$PAD( CAPLOAD) -- Get load capacitance of active pin. 

$PAD( CAPLOAD, QBAR) -- Get load capacitance of pin "QBAR". 

$PAD(SLEW) -- Get the slew of the active pin. 

$PAD( SLEW, IN 1) -- Get the slew of pin IN 1. 

Special case for SLEW type data: 

SLEW statements in the PAD file have positions for both rising and falling data. If the 

context of the equation specifies a specific transition of an active pin,('/' for rising or'\' 
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for falling) then the data for the active transition will be used. If no transition is specified 

the average of the rising and falling slews will be used. 

Units: 
$PAD returns a real number in primary units, as follows: 

VOLTAGE (Volts) 
TEMPERATURE (Degrees Celsius) 
SLEW (seconds) 
CAP LOAD (farads) 

State Check Function 

The $STATE function compares a signal to an explicit state and returns "true" (some 

non-zero value) if they do not match and "false" (0) if they do not. 

Syntax: 

"$STATE(" <Sig>"," <explicit state>")" 

The signal, <sig>, may be a bus (wide), a GROUP (see above), or single pin. The 

<explicit state> is a string of bit states, 'O,' '1' or'-' (dash is "don't care") that must be the 

same width as the signal. The two arguments are compared bitwise, if any bits in the cur-

rent state of <sig> do not match the <explicit state> ("don't care" always matches) a value 

of zero "O" is returned. 

Signal Comparison Function 

The $DIFFBITS function does a bitwise comparison and returns the number of bits 

that differ between two signals as an integer. If a bit is in an unknown state (X) it will 
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always be counted as different, unless matched with a "don't care" in an explicit state. The 

arguments are optional and supply the signals to be compared. 

Syntax: 

"$DIFFBITS(" [<sig1 >] [, <sig2>] ")" 

The signals, <sigl> and <sig2>, may be buses (wide) or single pins. 

Examples: 

When given a single argument, the signal, DATA, is compared with its own previous 

state. This allows the current and previous state of a bus to be compared to determine how 

many bit changed. 

$DIFFBITS(DATA) 

When used with no arguments the function must be used in the context of a transition 

statement (defined below). The bus is assumed to be the active pin and is compared with 

it's previous value. 

$DIFFBITS() 

It is possible to use an explicit state (in quotes) as the second argument. A dash('-') in 

the explicit state means "don't care" and will always count as a match, even with a bit in 

the X state: 

$DIFFBITS( DATA, '010101--') 

When given two arguments the function simply compares the two bus pins (or internal 
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states) specified. 

$DIFFBITS(ADA, ADB) 

If the arguments are not the same width, then the smallest bus will be extended with 

the value of its MSB (the left-most bit). Example: 

$DI FFBITS (enables, 'O') 

The function call above may be used to determine the number of active (high) read or 

write enable pins on the RAM, since the bits in the state '1' will differ from the "all zeros" 

argument 'O'. 

Bus Width Function 

This $WIDTH function will return the width of a bus given as the argument as an inte-

ger. When used with no argument the width of the active pin is returned. 

$WIDTH(<bUS>) 

Where <bus> is a declared port signal or defined internal state or group. 

Natural Log 

The $LN function returns the natural log of the argument. 

$LN( <operand>) 

Where operand is a real number, constant or a reference to an expression that has been 
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previously defined. 

Model Data and Expressions 

Constants 

Constant variable can be defined for use in generic equations. This simplifies incorpo-

rating characterized data into expressions. 

Examples: 

CONST int_cap 4.53; 

CONST nano 1 e-9; 

Def a ult Data 

Equations that use $PAD system functions to access data expect design specific data to 

be annotated into the power instances. The DEFAULT statement sets a model-wide default 

for these data elements. 

Example: 

DEFAULT VOLTAGE 5.0; 

DEFAULT CAPLOAD 0.02(nano); 

The conversion operator "(nano)" is used to normalize data values and is discussed 

further in the "Tables" section below. 
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Tables 

One, two or three dimensional table can be used to enter piece-wise linear data. They 

are designed to allow real numbers in their subscripts. 

Conversion Operators: 

For readability, the indices "cap" and "slew" in the example below, are given conver-

sion operators, which follow them in the table definition. The table's data also has a con-

version operator, shown following the table indices: "( 1 e-14 )". These are optional but 

allow the table to be more compressed and readable. 

When used, the conversion operator scales its associated data by the operator's value. 

This is useful since data received through the $PAD system function is always in primary 

units, and the energy or power quantities returned must also be in primary units Goules 

and watts). 

The syntax is simply a number or defined CONST enclosed in parenthesis. 

Table Example: 

A three dimensional table. 

TABLE dim3 ( 

cap (1 e-12) : 0.05, 0.1, 0.15, 0.2; 
slew (nano): 1.2, 2.3, 3.7; 
voltage : 2.5, 3.5, 4.5; 

) (1 e-14){ 

}; 

{{0.1, 1.1, 2.1 }, {0.2, 1.2, 2.2}, {0.3, 1.3, 2.3}}, 

{{0.4, 1.4, 2.4}, {0.5, 1.5, 2.5}, {0.6, 1.6, 2.6}}, 

{{0.7, 1.7, 2.7}, {0.8, 1.8, 2.8}, {0.9, 1.9, 2.9}}, 
{{1.0, 2.0, 3.0}, {1.1, 2.1, 3.1 }, {1.2, 2.2, 3.2}} 
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Nesting order of data elements is done from outside in (as in C language). The real 

number indices are mapped one-to-one with their corresponding array or data points. Lin­

ear interpolation (and extrapolation) is used to return a value when the real number indices 

are between the data points explicitly specified in the table. 

Given the example and a table reference: 

dim3[$PAD(CAPLOAD,out)][$PAD(SLEW)][3.0] 

Assume the load capacitance is 0.15pF and the slew is l .2ns. The conversion operators 

of "cap" and "slew" anticipates that the index values passed in from the $PAD system 

function, or any other source, such as an equation, will be in primary units, farads and sec­

onds, and convert the index values accordingly. Note that slew uses the defined constant 

"nano" that we defined in the CONST example above. 

A resulting 0.15 value for "cap" would indicate the third row. "Slew" has value 1.2 so 

the first set of three values will be used from that row and a "voltage" value of 3.0 would 

require interpolation between the first (0.7) and second (1.7) data point. A value of 1.2 is 

found in the table and 1.2e-14 is returned due to the data conversion operator: "(le-14)". 

Table Data Tags 

It may be desirable to include several sets of characterized data into a single table 

when the table's dimensions are the same for all sets of data. The use of "data tags" will 

allow this as shown below. A one dimensional table using data tags: 



TABLE dim1 ( 
slew (nano): 0.5, 1.0, 1.5, 2.0; 

) (1e-12) { 
rise : { 0. 1 , 1 . 1 , 2. 1 , 3 .1 } ; 
fall : {0.2, 1.2, 2.2, 3.3}; 
}; 
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To access the desired data when referencing a table, follow the table reference with a 

dot'.' and the tag. Example of a table reference: to the table above, "diml", we want to 

pass in a pin's slew and get data for a falling transition: 

dim1 .fall[$PAD(SLEW)] 

Expressions 

Equations 

Energy dissipations may be modeled using mathematical equations. An equation 

(EQN) returns a real number. 

Operators: 

'+' 
'' 

'*' 
'/' 
'**' 

: add 
: subtract 
: multiply 
: divide 
: exponent 

Operands: 
Equation operands may be real numbers, constants, passed in arguments, system func-

tions, or references to tables or other equations. 

Tables and equations referenced in an equation definition must be defined in the model 

prior to being referenced. Forward declarations are not supported. 
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Example: 
To define switching energy for a typical output pin transition: 

1 2 
Energy (trans) = 2c x V 

In model syntax: 

EQN out_erg() { 0.5 * $PAD(CAPLOAD) * ($PAD(VOLTAGE) ** 2) }; 

Alternatively the modeler may want to pass in the variables using an argument list: 

EQN out_erg(cap, volts) { 0.5 * cap * (volts ** 2) }; 

Model Evaluation Section 

This model section must follow data and expression definitions. It is where transition 

energy and static power dissipation is specified based on a state change on the perimeter of 

the cell. 

Transition Statements 

A transition statement is used to associate a specific pin transition with a quantity of 

energy, or update the internal state( s) of the model, or both. 

A transition statement should exist in the model for each pin transition that is known to 

produce energy dissipation. The quantity of energy is specified by an energy expression. 

The energy expression can be either a constant, a reference to a defined expression, or a 

table reference. 

Internal states can be updated in transition statements following an energy expression, 
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if one exists. 

State Dependence 

If the amount of energy dissipated depends on the (static) state of other signals, an 

entry for unique transition/state combinations may be included in the model. To specify a 

state dependence, follow the active pin with syntax: "& <expression>"; where the expres­

sion is a boolean signal, a $STATE system function, or a single bit signal. The result of the 

expression can be inverted by preceding it with a'-' (tilde) character. A non-zero result of 

expression evaluation will satisfy state dependence. 

It is important to note that output pin changes, caused by an input pin change, will not 

appear at the output until the propagation delay time elapses. So, power models may need 

to use internal state to help determine the effect an input change will have on output state 

to accurately determine internal energy dissipation. 

Specifying Transitions 

Statements may, if necessary, explicitly specify the direction of the transition by fol­

lowing the active signal with "(/)", for rising, or "(\)" for falling. A "(*)" indicates "any 

change" and is the default. Transitions will NOT. be allowed if the subject signal is a bus 

(i.e. more than one bit wide). Transitions to and from X and Z are handled implicitly by 

the evaluator, (more on this below). 

Examples: 

For any change on out driver "out": 
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out : out_erg($PAD(CAPLOAD)) ; 

For any change on input "in" IF en is true (a 1 state): 

in(*) & en : intbl.en[$PAD(CAPLOAD, out)][$PAD(SLEW)]; 

For falling input "in" IF en is 0. Note that internal state "last_st" is also updated: 

in(\) & -en : intbl.off[$PAD(CAPLOAD, out)][$PAD(SLEW)], last_st <= 
in; 

For a rising transition on pin "en" IF signals "in" and "last_st" are the same. First, 

define a BOOL signal, then reference it in the transition condition. 

SIGNAL BOOL same_state { $DIFFBITS(in, last_st) == 0 }; 

en(/) & same_state : entbl.rise.same[$PAD(CAPLOAD)][$PAD(SLEW)]; 

Statement Organization: Blocks 

Transition energy statements are organized in "blocks" starting with the keyword 

DYNAMIC and enclosed in braces. 

Example: 

DYNAMIC { 

in(*) & en :intbl.en[$PAD(CAPLOAD, out)][$PAD(SLEW)]; 
in(*) & -en :intbl.off[$PAD(CAPLOAD, out)][$PAD(SLEW)], last_st <= in; 

}; 

Block Evaluation: 

When more that one transition and condition is "true" within a block, only the first 

transition statement, by order of appearance, will be evaluated. This may be used to avoid 
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double counting internal energy dissipation. (e.g. All inputs of a 3 input and gate going 0 

to 1 at the same time.) 

Blocks allow better control over the situation when more that one pin transition 

occurs. It is also useful with complex state dependence as a "catch-all" row may be used at 

the end of a block after the transitions with specific state dependencies. 

Example: 

SIGNAL GROUP ins : iO, i1, i2; 

DYNAMIC{// rising input pin causing output change 
iO(/) & outrises(ins) : in_erg_ri(); 
i1 (/) & outrises(ins) : in_erg_ri(); 
i2(/) & outrises(ins) : in_erg_ri(); 
ins: in_erg_noop(); 

}; 

Modelers can use as many blocks as necessary to describe the power model. Each 

block will be evaluated separately. Internal state updates may be more conveniently han-

dled in separate blocks but this is not required. 

Wide Pins and Buses 

When a wide pin or bus is used as the active signal the following rules apply: 

• Specific transitions may not be specified. 

• The associated equation is evaluated only once regardless of the number of bits 

changing. 

•An alternative to whole-bus statements is to specify each bit (e.g.: BUS[O]) so that 

transitions may be used. 



Modelers may use system functions, such as $DIFFBITS and $WIDTH, to scale 

energy consumption for the case of multiple bits changing. 

Example: 

EQN addr_trans(bus) { $DIFFBITS(bus) * column_erg[$PAD(SLEW)] }; 

DYNAMIC { 
addr & cs :addr_trans(addr); 

}; 

Static Power Statements 
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Static power entries should be added for any states for which static power has been 

characterized. Static power may be state dependent using the same expression syntax 

described in transition energy statements above. Static power expressions will contribute 

to total average power by a ratio of the time they were in the specified state to total analy-

sis time. Static power statements are organized in blocks titled STATIC. 

Examples: 
Static power for this model is dependent on the state of the "en" pin. 

STATIC { 
en : st_pwr_en1 (); 
-en : st_pwr_enO(); 

}; 
Static power characterized for variable voltage, not state dependent. 

STATIC {: leakage[$PAD(VOLTAGE)] }; 
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Units 

The units of the data for energy expressions for dynamic power should be returned in 

joules (J). Static power expressions should be returned in watts (W). 

State Abstraction 

This power model format will be based on a standard four state abstraction. The fol-

lowing symbol definitions will be used in the model syntax: 

'1' 
'O' 

'Z' 
'' 
'/' 
'\' 
'*' 

-- A logical high state (Vdd) 
-- A logical low state (Ground) 
-- High impedance state (Hi-Z) 
-- A "don't care", used when defining state dependence 
-- A rising transition 
-- A falling transition 
-- Either a rising or falling transition 

A reasonable mapping from the state abstraction of the host simulator to the Power 

Model's four state abstraction will be created for each host. 

The Unknown "X" State 

Unknown states occur in digital simulation in several situations: 

• Initialization (power up) 

• Multi-driver node resolution (bus contention). 

•Uncertainty during transition (such memory data bus transitions) 
' 
• Partial transitions (spikes glitches) 

• 
Note that it is not possible to explicitly specify transitions to or from an unknown "X" 

state. The model evaluator will automatically handle these events based in the energy 
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specifications for "good state" events. Transition from 0 to X or from X to 1 will assess 

50% of the energy specified for a 0 to 1 (a "f' symbol) transitions. X to 0 and 1 to X will 

assess 50% of 1 to 0 ('\') energy. 

Users will be encouraged to avoid power analysis during initialization periods when 

the state of the circuit is unknown. In the other cases the assessment of 50% of a full tran-

sition has shown to work well in most cases when Xis encountered. Consider the O>X>l 

case in which two 50% transitions will give the same result as a single 0> 1 transition that 

certainly has occurred. Only if the real silicon undergoes multiple partial transitions in the 

X region is inaccuracy introduced. 

Partial transitions, O>X>O or l>X>l, which usually indicate glitches will assess half 

of the power of a full pulse. 

The High Impedance "Z" State 

The model evaluator will also implicitly handle tri-state transitions. It will be assumed 

that Hi-Z drivers are attached to multiply driven (bus) nets. The analysis tool will need to 

handle situations where bus contention causes anomalies such as a short circuit caused by 

two or more drivers driving opposing states. 

Assuming no bus contention, we can assume that the act of "turning off' - that is, 

going to a Z state - does not dissipate any of the energy stored on the net (or internal 

node). For this reason transitions to Z will be ignored on both inputs and outputs. 

When a driver transitions from a "Z" to some logic state, the energy needed to "drive" 

the net depends on the current state of the net. If the "turning on" of the driver causes the 

net to change state then the amount of energy associated with a transition should be 
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assessed. But, if the net does not change state, no current will flow and the transition 

should be ignored. 

If it is possible to get the net state from the design interface of the host simulator, the 

scenario above can be modeled. If the net state is not available, we will assume that there 

is a 50% chance that the node will change state when a driver turns on, and 50% of the 

transition energy will be assessed. 

Inputs will assess internal energy based on the last valid driven state and the current 

driven state, with intermittent Hi-Z state ignored. 

Model Syntax 

• Keywords are shown in capital letters. They will be parsed case insensitive. 

• Syntax punctuation is in single quotes. 

• Element may be grouped in brackets ' {' '}' to clarify definition 

• Elements in braces -- [] -- are optional. 

• A star -- '*' -- means "zero or more" of the preceding bracketed or braced element. 

• A plus sign '+' means one or more. 

•Elements separated by bars (i.e. AIBIC) mean "one of A or B or C". 

•name -- can be any string of alphanumeric characters, or '_', starting with a non­
numeric. 

•real -- is a floating point number, may use exponential format (ex: 3.456e-2). 

• posint -- a positive integer (or zero) 

Note: Text preceded by double slash -- "If' -- are comments, not part of syntax. 

Model Syntax: 

<model> ::= <model name> <defs_and data>* <eval model> 

<model name>::= MODELNAME name';' 

<defs_and_data>::= <signal_def> 
11= <expression_def> 



Signal Definition Syntax: 

<signal_def>::= SIGNAL <pin_dir> <sig_name> [ ',' <sig_name> ]* ';' 
II= SIGNAL GROUP <grp_name> ':' <grp_list> ' ;' 

II= SIGNAL INTERNAL <int_name> '<=' <int_assign> ';' 

II= SIGNAL BOOL <sig_name> '{'<test_expression>'}' ';' 

<pin_dir>::= INPUT 
II= OUTPUT 
II= BIDIR 

<grp_list>::= <gen_signal> [ ',' <gen_signal> ]* 

<gen_signal>::= <pin_name> 

II= <int_name> 

11= <bool_ref>// Reference to a boolean signal 
11= <state_dep>// $STATE system function 

<sig_name>::= <pin_name> 

II= <bus_name> <range> 

<grp_name> ::=name// Name of state to be used in model table. 
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<int_name>: := name// Name of state to be used in model table. Cannot conflict 
II with pin name. 

<int_assign>::= <pin_name> 
II= <bus_name> 

<range> ::= '[' posint ':' posint ']' 

<pin name> : := name II Name of pin found on instance of model. 

11= name <bit>// bus name followed by a bit specification 

<bit>::= '[' posint ']' 

<bus~name>::= name II Name of bus found on instance of model, full 
II range implied 

<test_expression> ::= <simple_expr> <equality_op> <simple_expr> 
II= <sig_ref> <equality_op> <sig_ref> 

<equality_op> ::='=='//expressions are equal 

II='!=' II expressions not equal 

<bool_ref>::= <sig_name> 

Energy Expressions: 



<expression_def> ::=<constant> 
11= <default_data> 
11= <data_table> 
II= <equation_def> 

<constant>::= CONST <const_name> <value>';' 

<Const name> ::=name// to be substituted for value in equation. 

<default_data> ::=DEFAULT <data_type> <value> [<conversion>]';' 

<data_type>::= VOLTAGE// data elements of PAD file 
II= TEMPERATURE 
ll=CAPLOAD 
II= SLEW 

<Value> ::= real 

<conversion> ::='('<Const name>')' 
11= '(' real ')' 

Table Svntax: 

<data_table> ::=TABLE <table_name> '(' <tab_var_def>+ ')' 
[<conversion>] '{' <table_data> '}' ';' 

<tab_var_def> ::= <var_name> [<conversion>]':' <data list>';' 
I one for each table dimension 

<table_data>::= <labeled_array> 
11= <nested_array> 
11= <data_list> 

<labeled_array>::= <data_tag> ':' <nested_array> ';' 

<nested_array> ::= '{' <nested_array> [',' <nested_array> ]+ '}' 
II='{' <data_list> '}' 

<data_list> ::=real[',' real]* 

<table_name> ::=name II the name by which the table is called in an 
expression. 

123 

<var_name> ::=name II the name given to a range variable. Expected to be 
passed II as a real number. 

<data_tag> ::=name II To store data from several characterizations in a single 
II table, the optional "data tag" can be used. It is required if 
II more than one set of TABLE DAT A is present. 



<table_ref> ::= <table_name> { '[' <table_index> ']' }+ 
II as many as 3 dimensions allowed. Number must match 

definition. 
II= <table name>'.'<data_tag> { '[' <table_index> ']' }+ 

II use data tags if used in definition 

<table_index> ::=real 
11= <constant> 
11= <expr _ref> 
11= <system_function> 

Equation Syntax: 

124 

<equation_def> ::= EQN <expr_name> '(' [ <args>] ')' '{' <math_expr> '}' ';' 

<expr_name> ::= name II used to call expression evaluator. 

<args> : := name [, name ]* II A list of passed-in variables. Expected to be a 
II real number valued variable. 

<math_expr> ::= <simple_expr> 
II='(' <math_expr> ')' 
II= <math_expr> <biriary_op> <math_expr> 

<binary op>::='+' 
II='-' 
II='*' 
II='/' 
II='**' II exponential 

<simple_expr> ::=<operand> 
II= '(' <simple_expr> ')' 

<operand> ::= real 
11= name II name of passed arg 
11= <constant> 
II= <expr_ref> 
II= <table_ref> 
11= <system_function> 

<expr_ref> ::= <expr_name> '(' [ <expr_args> ] ')' 

<expr _args> : := <table_index> 
II= <sig_name> 



<system function>::= $PAD'(' <data_type> [',' <pin_name>] ')' 

II= $DIFFBITS '(' [ <diff_args>] ')' 
II= $WIDTH'(' [ <bus_name>] ')'II name of bus 
11= $LN '(' <math_expr> ')' 

<state_dep>::= $STATE'(' <sig_ref> ',' <state_vec> ')' 

<diff_args>: := <sig_ref> ',' <sig_ref> 
II= <sig_ref> ',' <state_vec> 
11= <sig_ref>ll compare pin with it previous state 

II (if no pin name use active pin) 

<sig_ref>::= <pin_name> 
II= <bus_name> 
II= <grp_name> 
II= <int_name> 
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<state_vec>::="' [ 'O' I '1' I '-']+"'II number of characters relates to number 
and 

II order of pins in pin list of state's definition. '-' 
II means "don't care". String in single quotes. 

Model Evaluation Syntax: 

<model_stmt> : := <dyn_blk> 

II= <static_blk> 

<dyn_blk>::= DYNAMIC '{' dyn_stmt> '}' ';' 

<dyn_stmt> ::= <trans_sig> ['&' <St_dep>] ':' <energy_ref> [state_update]';' 

<trans_sig>::= <pin name> [<trans>] 
II= <bus_name> 
II= <grp_name> 

<trans>::= '(' '\' ')'II a falling transition 
II= '(' '/' ')' II a rising transition 

II='(''*' ')' II any transition (this is default if none given). 

<St_dep>::= ['-'] <gen_signal >II reference to a defined state, must be 1 bit 
II' .... ' inverts signal 

<state_update>::= int_name '<=' <int_assign> [',' int_name '<=' <int_assign> 
]* 

<Static_blk>::= STATIC '{' <static_stmt> '}' ';' 



<static stmt>::= <st_dep> ':' <energy_ref> ';' 
II=':' <energy_ref> ';'II no signal indicates "all states" 

<energy_ref>::= <expr_ref> 
11= <table_ref> 

II= real 
11= <constant> 

A Three-input AND 

MODELNAME and3; 

CONST ns 1.0e-9; 
CONST pF1 .Oe-12; 

Power Model Examples 

II declare signals 

SIGNAL INPUT iO, i1, i2; 
SIGNAL OUTPUT z; 

II define a specific cell state based on input pin states 

SIGNAL GROUP ins : iO, i1, i2; 

II A 30 piece-wise linear table for short circuit power 
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II (Data from characterization with variable load capacitance, input slew and 
voltage) 



TABLE dim3 ( 

cap (pF): 0.5, 1.0, 1.5, 2.0; 
slew (ns): 1, 2, 3; 
volts : 2.5, 3.3, 5.0; 

)(1 e-13){ 

in_rise: 

}; 

{{{0.1, 1.1,2.1 }, {0.2, 1.2,2.2}, {0.3, 1.3,2.3}}, 
{{0.4, 1.4,2.4}, {0.5, 1.5,2.5},{0.6, 1.6,2.6}}, 
{{0.7, 1.7,2.7}, {0.8, 1.8,2.8},{0.9, 1.9,2.9}}, 
{{1.0,2.0,3.0}, {1.1,2.1,3.1 },{1.2,2.2,3.2}}}; 

in_fall : 

{{{0.1, 1.1,2.1 }, {0.2, 1.2,2.2}, {0.3, 1.3,2.3}}, 
{{0.4, 1.4,2.4}, {0.5, 1.5,2.5},{0.6, 1.6,2.6}}, 
{{0.7, 1.7,2.7}, {0.8, 1.8,2.8},{0.9, 1.9,2.9}}, 

{{1.0,2.0,3.0}, {1.1,2.1,3.1 },{1.2,2.2,3.2}}}; 

II A table for leakage power dissipation 

TABLE leakage( 

volts : 2.5, 3.3, 5.0; 
) (1e-15) { 1.1, 1.2, 1.3 }; 

II set default data 

DEFAULT CAPLOAD 0.03 (pF); 
DEFAULT VOLTAGE 5; 

DEFAULT SLEW 1.2 (ns); 

II a typical equation for switch power dissipation of a driver 

EQN out_erg(cap, volts) { 0.5 * cap * (volts **2) }; 

II local sub-expressions 

EQN cload() { $PAD(CAPLOAD, z) + 0.013 }; 

II a lookup for internal energy when inputs rise 

EQN in_erg_ri() { dim3.in_rise[cload()][$PAD(VOLTAGE)][$PAD(SLEW)] }; 

II a lookup for internal energy when the output goes to O 

EQN in_erg_fa() { dim3.in_fall[cload()][$PAD(VOL TAGE)][$PAD(SLEW)] }; 

II Transition/state statements 
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DYNAMIC { 

z : out_erg{$PAD(CAPLOAD), $PAD(VOL TAGE)) ; 
}; 

DYNAMIC{ II rising input pin causing output change 

iO(/) & $STATE(ins, '-11 '): in_erg_ri(); 

}; 

i1(/) & $STATE(ins, '1-1'): in_erg_ri(); 
i2(/) & $STATE(ins, '11-') : in_erg_ri(); 

II falling signal resulting in output change. 

iO(\) & $STATE(ins, '-11 ') : in_erg_fa(); 
i1 (\) & $STATE(ins, '1-1 '): in_erg_fa(); 
i2(\) & $STATE(ins, '11-'): in_erg_fa(); 

II an expression for leakage current (no state dependency) 

STATIC {: leakage[$PAD(VOLTAGE)]; }; 
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A Tri-State Buffer 
This table for a tri-state buffer shows how internal states are updated. Note that the 

internal state is updated when the enable falls and when in changes while enabled, thus 

capturing the last state driven. Also note that the output, input and enable are treated in 

separate blocks so that if more than one pin changes at once power will be assessed for all 

events. (This is done at the discretion of the modeler): 

MODELNAME buf_3st; 

CONST ns 1.0e-9; 
CONST pF 1.0e-12; 

SIGNAL INPUT a, en; 
SIGNAL OUTPUT z; 

II define an internal state to keep last driven state 
SIGNAL INTERNAL last_st <= a; 

II a test for signal equivalence 

SIGNAL BOOL same_st { $DIFFBITS(a, last_st) == 0 }; 

II data for static power 

CONST st_en 0.0063; 
CONST st_nen 0.0012; 

TABLE intbl ( cap : 0.5, 1.0, 1.5, 2.0; ) {0.01, 1.01, 2.01, 3.01 }; 

TABLE entbl ( 

cap(pF) : 0.5, 1.0, 1.5; 
slew(ns) : 1, 2, 3; 

) (1e-12) { 

}; 

rise_nc: 
rise_ch: 

fall: 

{{0.03,0.42,0.71 }, {0.06,0.47,0.74}, {0.10,0.38,0.76}}; 

{{0.12, 1.13,2.11 }, {0.27, 1.28,2.29}, {0.38, 1.35,2.31 }}; 
{{0.01,0.11,0.21 }, {0.02,0 .. 21,0.22}, {0.03,0.13,0.23}}; 

II equation for driver power dissipation 

EQN out_erg(cap, volts) { 0.5 *cap* (volts **2) }; 

DYNAMIC { z : out_erg($PAD(CAPLOAD)) ; }; 



DYNAMIC{ 
a(*) & en : intbl[$PAD(CAPLOAD)], last_st <=a; 

}; 
DYNAMIC{ 

en(/) & same_st : entbl.rise_nc[$PAD(CAPLOAD, z)][$PAD(SLEW)]; 
en(/) & -same_st: entbl.rise_ch[$PAD(CAPLOAD,z)][$PAD(SLEW)]; 
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en(\) : entbl.fall[$PAD(CAPLOAD, z)][$PAD(SLEW)],last_sk= a; 
}; 

STATIC{ 
-en :st_nen; 
en :st_ en; 

}; 
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A D-Flip-Flop 

II This negative edge 0-Flip-Flop model is characterized for a voltage of 4.5v. 

II signal declarations 

MODELNAME dff; 

CONST ns 1.0e-9; 
CONST pF 1 .Oe-12; 
CONST pJ 1.0e-12; 

SIGNAL INPUT ckn, d; 
SIGNAL OUTPUT qn; 
SIGNAL GROUP cur_st : d, qn; 

II output switching power equation 

EQN node_pwr() { 4.5 ** 2 * $PAD(CAPLOAD) * 1.0e-2 * 0.5 }; 

TABLE tab_clk_2dim( 
cload(pF) : 0, 0.25, 0.5, 1, 2.5, 5 ; 
slew(ns) : 0, 1.2, 2, 4, 6 ; 

) (pJ) { 

}; 

fall_dO_q1: 
{{3.974e-2, 3.0994e-2, 3.3769e-2, 3.4613e-2, 3.5252e-2, 3.5081 e-2}, 
{3.9006e-2, 3.4302e-2, 3.4898e-2, 3.0213e-2, 2.9842e-2, 2.9796e-2}, 
{3.4232e-2, 4.0576e-2, 4.39e-2, 4.1577e-2, 4.0579e-2, 4.0459e-2}, 
{5.8654e-2, 4.0317e-2, 3.5113e-2, 3.3995e-2, 3.4068e-2, 3.3739e-2}, 
{5.0407e-2, 4.2158e-2, 4.0427e-2, 3.4845e-2, 3.5392e-2, 3.4513e-2}}; 

fall_d1 _q0: 
{{4.8449e-2, 3.8375e-2, 3.003e-2, 3.0024e-2, 3.9709e-2, 4.1301 e-2}, 
{3.5001 e-2, 3.0209e-2, 3.3085e-2, 3.4681 e-2, 3.4235e-2, 3.3853e-2}, 
{5.1888e-2, 4.2568e-2, 4.2027e-2, 4.4994e-2, 4.5027e-2, 4.5834e-2}, 
{4.8066e-2, 4.2745e-2, 3.1542e-2, 3.147e-2, 3.3391 e-2, 3.2414e-2}, 
{3.3796e-2, 3.6753e-2, 3.1979e-2, 3.3546e-2, 3.4167e-2, 3.3534e-2}}; 
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TABLE tab_clk_1dim( 
slew(ns) : 0, 1.2, 2, 4, 6 ; 

) (pJ) { 

fall_d1_q1 :{1.6837e-2, 1.2341 e-2, 1.7523e-2, 1.3552e-2, 1.4915e-2}; 

rise_d1 : {1.9667e-4, 2.8740e-3, 6.3183e-4, 3.2267e-3, 3.5620e-3}; 
fall_dO_qO :{1.1194e-2, 1.7557e-2, 1.1486e-2, 1.2422e-2, 1.3525e-2}; 
rise_dO : {3.8123e-3, 2.1425e-3, 3.5092e-3, 3.5030e-3, 3.241 Oe-3}; 

}; 

TABLE tab_d( 

slew(ns) : 0, 1.2, 2, 4, 6 ; 
) (pJ) { 

}; 

fall_ckn1: {1.7184e-2, 1.3748e-2, 2.1493e-2, 1.4666e-2, 1.4828e-2}; 
fall_cknO: {3.0177e-3, 3.1572e-3, 3.3195e-3, 3.3850e-3, 3.5388e-3}; 
rise_ckn1: {1.5459e-3, 1.5407e-3, 1.4681 e-3, 1.6305e-3, 1.7655e-3}; 
rise_cknO: {4.4968e-4, 3.8350e-4, 3.9492e-4, 3. 7668e-4, 5.2090e-4}; 

EQN cload() { $PAD(CAPLOAD, qn) }; 

II evaluation statements 



11 change on output 
DYNAMIC{ 

q : node_pwr() ; 
}; 

II clock change, data high, wl various output states 
DYNAMIC{ 

ckn(\) & $STATE(cur_st,'10'): 
tab_clk_2dim.fall_dO_q1 [$PAD(SLEW)][cload()]; 

ckn(\) & $STATE(cur_st, '11 '): tab_clk_ 1 dim.fall_d1_q1 [$PAD(SLEW)]; 
ckn(/) & d : tab_clk_ 1 dim.rise_d1 [$PAD(SLEW)] ; 

II clock change, data low 
ckn(\) & $STATE(cur_st, '01 ~) : 

tab_clk_2dim.fall_dO_q1 [$PAD(SLEW)][cload()]; 

ckn(\) & $STATE(cur_st, '00'): tab_clk_ 1 dim.fall_dO_q0[$PAD(SLEW)]; 
ckn(I) & -d : tab_clk_ 1 dim.rise_d0[$PAD(SLEW)] ; 

II change on data pin 

d(\) & ckn : tab_d.fall_ckn1 [$PAD(SLEW)]; 
d(\) & -ckn : tab_d.fall_ckn0[$PAD(SLEW)]; 
d(I) & ckn : tab_d.rise_ckn1 [$PAD(SLEW)]; 
d(I) & -ckn : tab_d.rise_ckn0[$PAD(SLEW)]; 
}; 
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A Multi-port RAM 
This requires an internally defined boolean equation to determine whether two read 

address pins are accessing the same location. (See the "bus_comp" expression.) If the 

result is true then an offset to the read power can then be applied to the calculation for this 

case. 

MODELNAME ram32; 

CONST pF 1.0e-12; 

SIGNAL INPUT AA[0:31], AB[0:31]; 
SIGNAL INPUT AWA, RWB; CS; 
SIGNAL OUTPUT: QA[0:31], QB[0:31)]; 
SIGNAL INTERNAL IAr <= QA; II Defines a state for the last word read 
from the 
SIGNAL BOOL bus_comp { AA== AB}; 

SIGNAL GROUP mode : bus_comp, AWA, RWB; 

TABLE rdtab( II A table for internal read power (data omitted) 

cap (pF) : 0.5, 1.0, 1.5; 
Nbits: 0, 4, 8, 12, 16; 

) 
{{ ...... . 
.......... }}; 

II 112CV2N 
EQN node_pwr(nbits) { $pad(VOLTAGE) ** 2 * $pad(CAPLOAD) * 0.5 * nbits }; 

EQN cload() { ($pad(CAPLOAD, QA) + $pad(CAPLOAD, QB)) I 2 }; 

II note: some energy statements omitted 

dynamic { 

II Power for Port A when Address A = Address B and both are READ 
enabled 

QA & $state(mode, '111 ') : 0.75 * rdtab [cload()][$diffbits(QA,1Ar)] 
+ node_pwr($diffbits()), IAr <=QA; 

II Power for Port A when Address A differs from Address B 
QA & $state(mode, '01-') : rdtab [cload()][$diffbits(QA,1Ar)] 

+ node_pwr($diffbits()), IAr <=QA; 



}; 

dynamic { 

II Power for Port B when Address A = Address B and both are READ 
enabled 

QB & $state(mode, '111 ') : 0.75 * rdtab [cload()][$diffbits(QB,1Br)] 

+ node_pwr($diffbits()), IBr <=QB; 
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II Power for Port B when Address A differs from Address B 
QB & $state(mode, '0-1 ') : rdtab [cload()][$diffbits(QB,1Br)] 

+ node_pwr($diffbits()), IBr <= Q; 
}; 



APPENDIXB 

POWER ANALYSIS DATA FORMAT 

PAD syntax 

The syntax of the PAD file is identical to SDF with the following exceptions: 

CAP SCALE is added to specify capacitive units. Unit can be 1, 10, or 100 of either pf 

(picofarads) or ff (femtofarads). 

The POWERDATA section replaces the DELAY and TIMINGCHECK sections. 

POWERDATA contains instance specific data for input slew in SLEW, and output 

load capacitance, given by CAPLOAD. 

Min, Typ, Max Data fields 

As with SDF, data can be generated in sets of three, called triplets. The field to be used 

is often determined by the process comer being simulated. The three fields are usually 

called, from left to right, "min", "typ" and "max" when referring to timing data. When 

annotating power data with APAS, the same mode should be used as is being used for tim­

ing data. The choice of min, typ, max is made for APAS as an argument to the annotate 

command. 

Note: The terminology here may be confusing. The notion of "min" or "max" may 

imply "minimum power" and "maximum power", respectively. This is not necessarily the 

case. It is more likely to be meant to be consistent with timing min, typ, max values to be 
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consistent with SDF. That is, "min" will indicate the conditions that minimizes input slew, 

which may, in fact, result in greater power consumption than "max" timing data. 

Slew Data 

SLEW is usually defined as the time it takes from 10% to 90% of V dd. This definition 

may differ in various technologies. What is most important is that the definition used first, 

in characterizing the model, and second, in calculating slew in the design, be consistent to 

maintain accurate energy sums. The syntax is: 

(SLEW <pin name> (<rising slope> )(falling slope>)) 

Where the pin name identifies an input pin on the instance and the rising and falling 

slew values are triplets of real numbers. 

Load Capacitance Data 

(CAPLOAD <output pin> (<capacitance>)) 

CAPLOAD is defined as the external capacitive load seen by an output driver. This 

should include the capacitance of the net, the driven input(s). 

As with slew, it is very important to the accuracy of APAS to make sure that total load 

is defined and calculated with a definition that is equivalent to that used in characteriza-

tion. Specifically, the capacitance of the driver (usually attributed to drain-source junction 

capacitance) may or may not have been considered part of external capacitance when cali-

brating the energy due to internal switching and dynamic short circuit. The definitions 

used in modelling and annotation should be consistent. 
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Voltage Data 

The VOLTAGE triplet in the PAD file is made available to power models through the 

APAS power model interface. This will allow fine tuning based on voltage level. In the 

first version of APAS, only one voltage triplet will be allowed in a PAD file. If instance 

specific voltage is needed, it may be added in the future. 

Temperature Data 

The TEMPERATURE triplet is also made available to the power models as with volt­

age. 



APPENDIXC 

POWER MODEL COMPILER 

This section describes the APAS power model compiler, a stand alone utility which 

converts the Power Model language into a binary file that is the actual model used by 

APAS. 

To invoke the compiler, named pwrcom: 

pwrcom <path to source> [-out <path to destination>] [-r] 

Where: 

<path to source> A system path to an ASCII description of the model in the specified 

syntax. 

-out This optional switch allows the user to specify the destination of the resulting 

binary model. 

<path to destination> A system path to the binary model. The file suffix ".pow" will 

automatically be appended if not included in the leaf name. The default will be to use the 

leaf name of the source with any extension removed and the ".pow" extension appended. 

Default directory is the current working directory. 

-r This switch is required to overwrite an existing file. 

Invoking this tool will parse the model language and check for syntax and semantic 

errors. Errors will be reported to standard output. A binary file will not be created if errors 

are found. 

Error checking will NOT include verification of the port names with the functional 
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APPENDIXD 

CATALOG FILE SYNTAX 

• Keywords are shown in capital letters. They will be parsed case insensitive. 

• Syntax punctuation is in single quotes. 

• Elements in symbols < > are defined further in this syntax. 

• Elements in brackets -- [] -- are optional. 

• A star -- '*' -- means "zero or more" of the element. 

•A plus sign '+' means one or more of the element. 

•Elements separated by bars (i.e. AIBIC) mean "one of A or B or C". 

• name -- can be any string of alphanumeric characters, starting with a non-numeric. 

• chars -- a string of any characters, except white space 

•number - is a floating point number, may use exponential format (ex: 3.456e-2). 

Note: Text preceded by double slash -- "If' -- are comments, not part of syntax. 

<catalog file> .. -
<local variable> .. -
<string> .. -

II= 

<variable> .. -

<catalog list> .. -
<celltype var> .. -
<cell model pair> ::= 

<local variable>* <catalog list> 

name ':' <string>+ ';' II concatenated strings 

<variable> 
chars 

'$' '(' name ')' II name is a previously defined variable, 
II property or env variable 

CATALOG ':' <celltype var> ' {' <cell model pair>+ '}' 

<variable> II this variable is evaluated for list lookup 

name ':' <model path> ';' 11 names are expected 



<model path> 

II celltype values 

[<path branch> '/'] * <model file> 

<path branch> ::= <string> 
<model file>::=>name II leaf name of model file 
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