
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

Fall 1-14-2020

Optimal Boundary Detection Using Autonomous Optimal Boundary Detection Using Autonomous

Mobile Sensors Mobile Sensors

Phillip Justin Kearns
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Electrical and Computer Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Kearns, Phillip Justin, "Optimal Boundary Detection Using Autonomous Mobile Sensors" (2020).
Dissertations and Theses. Paper 5395.
https://doi.org/10.15760/etd.7268

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5395&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5395
https://doi.org/10.15760/etd.7268
mailto:pdxscholar@pdx.edu

Optimal Boundary Detection Using Autonomous Mobile Sensors

by

Phillip Justin Kearns

A thesis submitted in partial fulfillment of the
requirements for the degree of

Master of Science
in

Electrical and Computer Engineering

Thesis Committee:
John Lipor, Chair
Bruno Jedynak

Christof Teuscher

Portland State University
2019

Abstract

A fundamental challenge to modern science and engineering is the ability to

rapidly and accurately determine the spatial extent of environmental phenomena. In

monitoring the spread of hazardous pollution, for example, all points with pollutant

concentration above or below a fixed threshold can be considered as two classes in

a binary classification problem. In this instance, the goal is to accurately estimate

the decision boundary as quickly as possible. To generate models and predictions,

scientists must choose their sampling locations from a vast array of possibilities. This

thesis develops a policy for determining the optimal sample locations for a fixed

number of samples.

The motivating scenario for this work is that of determining the spatial extent

of particulate matter from a wildfire with an autonomous aerial vehicle. Algorithms

designed to rapidly determine a decision boundary fall within the category of active

learning or adaptive sampling. These methods typically try to maximize information

gain per sample, but will be accompanied by potentially dramatic drawbacks in terms

of sampling costs like distance or time. Meanwhile, state-of-the-art methods that

balance the above costs by sampling a certain fraction into the remaining interval at

each step do not guarantee to find the optimal search procedure.

For the first situation we consider, a one-dimensional step function, we propose

a finite-horizon sampling procedure that optimally balances the distance traveled

during the search with the final estimation entropy. We show the resulting cost for

a uniform probability distribution with noiseless measurements can be optimized

in closed form, and derive the expected number of samples necessary to fall below

a given final estimation error. We show our method is suitable for both distance-

and time-penalized search procedures, and demonstrate that the resulting policy

generalizes and improves upon existing approaches to this problem. Empirical results

i

demonstrate that our sampling strategy outperforms existing approaches by up to 35%

and agrees with our analytical predictions in terms of the resulting distance traveled

and average interval size.

To extend our proposed method to two-dimensional searches, we show how a series

of sequential one-dimensional transect searches can be combined to estimate a spatial

boundary, assuming we have some known statistics about the function we are modeling.

We demonstrate how the results from each successive search can be used to update

the estimated boundary and select where to start sampling for the next search. We

also illustrate the tradeoff between the number of transect searches performed and the

number of samples per search when constrained by a fixed number of total samples.

We find that the optimal allocation lies somewhere between the maximum number of

steps and maximum number of samples.

Finally, we introduce and implement four popular methods for solving reinforcement

learning problems: dynamic programming, Q-learning, deep Q networks, and rollout.

Starting with a uniform distribution on the change point of a step function, we show

how formalizing our search as a Markov decision process yields an optimal policy

through model-based dynamic programming, which we benchmark our three model-

free algorithms against. We then approach a scenario with a more complicated model,

where the change points are drawn from a nonuniform distribution. In both scenarios,

rollout is the fastest model-free method while a deep Q network performs best. All

algorithms improve upon existing approaches, ranging from 4% to 23% improvement.

Considering future work, we propose a number of algorithmic extensions and

improvements to our models, as well as a few considerations for potential further

investigation. The contributions of this thesis are an optimal search policy for a

distance- or time-penalized one-dimensional search, an extension of this policy to a

two-dimensional boundary, and the use of reinforcement learning methods to derive

optimal policies without prior knowledge of the change point’s distribution.

ii

To Madison.

iii

Acknowledgements

I would like to start by thanking my advisor, John Lipor, for his guidance and patience

over the past year. I feel truly fortunate to have had the opportunity to learn, forget,

and re-learn in an environment of academic freedom and support, where showing up

to every meeting with more questions than answers was met with enthusiasm and

encouragement. I am grateful to be able to count John as both an impactful teacher,

and, more importantly, a close friend.

I want to extend my gratitude to every professor that I have had the chance to

learn from; each has taught me valuable lessons and shaped the student and person

that I am. A special thanks to Karen and James Frenzel for igniting my curiosity

about engineering, and to Eric Wan for cultivating my interest in signal processing.

Thanks to Bruno Jedynak for showing me the power of statistics, and Ted Willke the

power of deep learning. And thanks to Christof Teuscher for saving my committee.

I would also like to thank a handful of my peers for being exceptional collaborators,

mentors, supporters and friends. To David Handy for teaching me patience and

persistence when answers do not come easily. To Aaron Brown for his willingness

to help me re-think and re-work anything and everything, and for instilling in me

a desire to “actually” learn. To Annabel Li-Pershing for her generosity with both

knowledge and time, helping shape the way I approach problems in school and life.

And to Philippe Proctor for the motivation to stay inquisitive and the chance to learn

through meaningful conversation.

Lastly, I would like to thank my family. To my parents for their unfailing support,

and the incredible opportunities and experiences their hard work and love has afforded

me. To my sisters, Nora and Paula, for their relentless confidence in me and for the

best friendship I could ask for. And finally, to Madison, for keeping me in school,

helping me to see the good, and believing in the person I can be.

iv

Table of Contents

Abstract i

Dedication iii

Acknowledgements iv

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

1.2.1 Finite Horizon Search . 2
1.2.2 Two-Dimensional FH Search 3
1.2.3 Reinforcement Learning for Adaptive Sampling 3

2 Finite-Horizon Search 4
2.1 Introduction . 4
2.2 Problem Formulation . 5
2.3 Related Work . 5
2.4 Finite-Horizon Search . 8

2.4.1 Closed-Form Solution . 9
2.4.2 Samples Needed for Fixed Estimation Error 11
2.4.3 Error-Threshold Search Procedure 12

2.5 Simulations . 12
2.5.1 Cost as a Function of Entropy and Distance 12
2.5.2 Cost as a Function of Sampling Time 14

2.6 Two-Dimensional Boundary Estimation 15
2.6.1 Introduction to Gaussian Processes 16

v

2.6.2 Estimating Spatial Boundaries with Gaussian Processes 17
2.6.3 Simulations . 19

3 Reinforcement Learning For Adaptive Sampling 21
3.1 Introduction . 21
3.2 Background . 21

3.2.1 Markov Decision Processes . 21
3.2.2 Policies and Value Functions 22

3.3 Model-Based Methods . 25
3.3.1 Dynamic Programming . 25

3.4 Model-Free Methods . 27
3.4.1 Q-Learning . 27
3.4.2 Deep Q-Learning . 28
3.4.3 Rollout . 29

4 Performance of Reinforcement Learning Algorithms 31
4.1 Uniform Change Point Distribution 31

4.1.1 Methodology . 31
4.1.2 Results & Discussion . 34

4.2 Nonuniform Change Point Distribution 36
4.2.1 Methodology . 36
4.2.2 Results & Discussion . 36

5 Conclusion & Future Work 39
5.1 Finite-Horizon Search . 39
5.2 GP-Based FH Search . 40
5.3 Reinforcement Learning . 41

Appendix 42
A.1 Differential Entropy of a Uniform Distribution 42
A.2 Proof of Theorem 1 (Value Function) 42
A.3 Proof of Theorem 2 (Optimal Policy) 44
A.4 Proof of Policy Invariance to Interval Length 45

Bibliography 48

vi

List of Tables

4.1 Total training time (h:mm:ss) and average performance for each method
over 1,000 change points drawn from a uniform distribution. Fastest
computation and best performance are shown in bold, with improvement
scores relative to Quantile Search. 35

4.2 Total training time and average performance for each method over 1,000
change points drawn from a nonuniform distribution with µ = 0.5 and
σ = 0.1. Fastest computation and best performance are shown in bold,
with improvement scores relative to Quantile Search. 37

vii

List of Figures

2.1 Left: map of air quality following the California Camp Fire. Points
represent measurement stations and contours are generated with a
Gaussian regression. The red contour represents a hazardous level as a
potential decision boundary. Right: modeling a decision boundary as a
GP and combining transect searches to estimate a spatial boundary. . 6

2.2 Example search for the change point on a step function performed by
finite horizon search (λ = 1, left) and the corresponding quantile search
(m = 4, right). 8

2.3 Optimal sampling behavior for a fixed-length policy. Left: fractions
of the interval to cover at each step of a 20-step policy. Right: corre-
sponding values of ρk for calculating the policies. 11

2.4 Performance of proposed FH algorithm for fixed N samples. Each
data point represents an optimal N -step policy. Left-to-right: average
entropy of hypothesis space, average distance traveled, and average
total cost after last sample. 14

2.5 Components of the time-penalized FH search procedure. Left: Nλ and
Dλ to reach an interval of 0.01 for each value of λ. Middle: values of
λ∗ for each ratio of Tt/Ts. Right: average improvement of FH search
over QS and UTB algorithms. 15

2.6 Two-dimensional boundary estimate from series of one-dimensional
searches. Each search is performed using FH sampling. The black line
represents the true boundary and the final estimate (solid red line) is
obtained using GP regression, with the confidence bounds shown in gray. 16

2.7 Random boundaries drawn from a periodic covariance kernel with
varying length scales. The length scale determines the smoothness of
the boundary. 18

viii

2.8 Boundary estimates with fixed total samples but varying number of
transects. Left-to-right: 3 strips of 8 samples, 4 strips of 6 samples, 6
strips of 4 samples. 19

2.9 Search performance for a fixed number of total samples as a function of
number of transects. Left-to-right: total search cost, distance traveled,
and final estimation error. 20

4.1 Verification of DP performance and comparison of learned policies. Left:
DP matches the closed form solution almost perfectly. Right: learned
policies for a uniform distribution. 35

4.2 Learned policies for each of the RL algorithms when sampling from a
nonuniform distribution. DP serves as the reference for the optimal
policy. 37

ix

Chapter 1

Introduction

1.1 Motivation

The ability to provide accurate measurements across a large physical area as quickly and

efficiently as possible is paramount to modern environmental science and engineering.

Wildfires create an immediate safety threat and a persistent air quality hazard across

the western United States [1, 2] and pollutants from heavy traffic pose health risks in

urban environments [3]. Toxic algae blooms in fresh water lakes and rivers not only

impair access to drinking water, but cause low oxygen levels, effectively suffocating

aquatic ecosystems [4]. We focus on the first example above as a motivating problem,

and our goal is to apply optimal sampling policies to determine the spatial extent of

hazardous particulate matter from a wildfire (see Fig. 2.1). In this case, we establish

binary classification of pollutant concentration using a fixed threshold on air quality

measurements, and we aim to estimate the decision boundary. Further, we consider

the case of an autonomous mobile sensor such as a rotary-winged unmanned aerial

vehicle, or drone, obtaining these measurements, where there is a significant cost

associated with travel.

Algorithms for efficiently determining a decision boundary can be classified as

active learning or adaptive sampling [5, 6], and typically try to maximize information

gain per sample. However, in the above example, there is a cost associated with both

the time to take a measurement and the distance traveled throughout the sampling

1

procedure. Additionally, using a search vehicle such as a drone requires a hard upper

limit on search time and distance due to the finite battery life and need for recharging.

Hence, standard approaches to active learning based in search space reduction [7, 8, 9]

or adaptive submodularity [10] are accompanied by shortcomings in terms of total

sampling cost.

Newer, bisection-style search methods [11, 12] balance the above costs by sampling a

certain fraction into the remaining interval at each step, effectively trading off between

number of samples and distance traveled. Though these methods provide improvements

on previous approaches in terms of total sampling time, neither guarantees to find the

optimal search procedure. This thesis studies the problem of minimizing a weighted

combination of estimation error and distance traveled for a fixed number of samples.

1.2 Contributions

1.2.1 Finite Horizon Search

The finite-horizon (FH) search method presented in Chapter 2 is a novel active learning

algorithm for binary classification in spatial sampling. Motivated by the case of using a

drone with a fixed sampling capacity, the FH algorithm minimizes a combination of the

final entropy of the estimate and the distance traveled after obtaining N measurements.

We show that for a one-dimensional step function with a uniform distribution on

the change point, fixing N allows the resulting cost to be optimized in closed form,

eschewing the need for dynamic programming.

Generalizing our search scenario to consider the case where we seek to achieve

estimation error below a certain error threshold in the least time possible, we provide

an algorithm to derive the expected number of samples and subsequent policy for

various search time parameters. Here, we show that the quantile search algorithm

from [11] can be viewed as an instance of the proposed FH algorithm in the case

2

where N = 1 (i.e., greedy sampling). Empirical results demonstrate that FH search

outperforms existing approaches and agrees with our analytical predictions in terms

of the resulting distance traveled and average interval size.

1.2.2 Two-Dimensional FH Search

To apply our algorithm to two-dimensions, we propose modeling potential spatial

boundaries as instances drawn from a Gaussian process (GP). By using a periodic GP

model, we are able not only to combine a series of one-dimensional searches to estimate

the boundary function, but also to choose the best place to start each sequential

search. We demonstrate the tradeoff in performance for a fixed number of samples

between the number of transects searched and the number of samples per transect.

1.2.3 Reinforcement Learning for Adaptive Sampling

In Chapters 3 and 4, we provide background on a select number of reinforcement

learning algorithms and show how they can be applied to a distance-penalized search

procedure. We implement four different approximate solution methods on a discrete

Markov decision process formalization of our problem. To demonstrate the effectiveness

of these methods, we start with a uniform distribution on the change point’s prior,

and compare the learned policies against the optimal closed-form solution. We then

expand the sampling scenario to a non-uniform distribution for the change point,

showing the learning capacity of model-free methods in a stochastic environment.

3

Chapter 2

Finite-Horizon Search

2.1 Introduction

This chapter includes collaborative work with Professors John Lipor in the department

of Electrical and Computer Engineering and Bruno Jedynak in the department of

Mathematics and Statistics as part of a submission to the 2019 Asilomar Conference

on Signals, Systems, and Computers. The extended abstract, titled “Optimal Adaptive

Sampling for Boundary Estimation with Mobile Sensors”, was accepted on Aug. 1,

2019, and the full paper will be published in March 2020.

Robotic systems are being increasingly utilized as data-gathering tools by sci-

entists and engineers, bringing new perspective and a greater understanding of the

environment. As the need for large-scale environmental monitoring rises due to an

elevated frequency of natural and man-made disaster like floods, fires, and chemical

spills [13, 14, 15], autonomous sensing vehicles are a promising solution. Robotic

sampling is being implemented in locations ranging from ocean bottoms to volcanic

ridges, gathering new information on algae, pollution, and climate patterns, all while

lowering the associated human risk [16].

Consider our motivating scenario of using a drone to estimate the spatial extent

of hazardous particulate matter emanating from a wildfire. Drones are increasingly

being used to to gather environmental information; an overview of recent drone usage

for forestry research and wildfire monitoring is provided in [17]. While these use cases

4

are encouraging, drone use in forestry or agricultural work thus far has been focused

largely on aerial image gathering with little consideration given to non-visual data like

air quality, let alone optimal path planning for the drone taking these measurements

[18]. The design of optimal algorithms for intelligently sampling the environment is

the focus of this chapter.

2.2 Problem Formulation

As stated in the introduction, the full two-dimensional boundary estimation can be

reduced to a series of one-dimensional search problems, where we wish to locate the

change point of a step function, i.e., a function from the class

F = {fθ : [0, 1]→ R : fθ(x) = 1[0,θ)(x), θ ∈ [0, 1]}

where 1S(x) denotes the set indicator function. These one-dimensional estimates may

then be combined either in a piecewise-linear fashion [11] or using Gaussian process

regression [19] as illustrated in Figs. 2.1 and 2.6.

Assume we obtain observations {Yn}Nn=1 ∈ {0, 1}
N from the sample locations

{Xn}Nn=1 in the unit interval in a sequential fashion according to Yn = fθ(Xn), where

θ is the actual, unknown, change point location. Under this model, each sample

obtained reduces the interval in which the change point may lie. Our goal is then

to estimate the change point location while minimizing the sampling cost for a fixed

number of samples, a function of both the final expected interval size and expected

distance traveled.

2.3 Related Work

Many previous approaches to finding an unknown change point are based in search

space reduction (SSR) [7, 8, 9] and do not permit the inclusion of general or dynamic

5

True boundary
Search strip
Search points
Estimated boundary

Figure 2.1: Left: map of air quality following the California Camp Fire. Points represent measure-
ment stations and contours are generated with a Gaussian regression. The red contour represents a
hazardous level as a potential decision boundary. Right: modeling a decision boundary as a GP and
combining transect searches to estimate a spatial boundary.

costs. In the motivating example of a drone performing a search for a spatial boundary,

it is critical to consider the time required to travel between measurement locations

in addition to the time to take each measurement. Using a battery-powered search

vehicle enforces a hard upper limit on search time and distance due to finite battery

life and recharging requirements. Because SSR methods do not take into account

these extra parameters, they tend to result in bisection-type solutions [20] that will

have higher total sampling cost. Methods that seek to maximize hypothesis space

reduction at each step can be classified as “greedy” search methods. Greedy methods

in active learning [7, 8] lack theoretical guarantees of minimum total sampling cost,

and even those that incorporate realistic costs into the algorithm formulation [21] have

been shown to perform worse than the bisection-style approach in [11] when applied

to distance-penalized searches.

A popular greedy approach to active learning relies on the concept of adaptive

submodularity (AS) [22]. AS is a diminishing returns principle that states samples

are more informative or valuable early on in the search procedure, and [10] shows

that a greedy procedure is optimal up to a constant factor. However, AS is a property

of set functions, and does not consider a sequential dependency among sampling

6

locations. While [23] provides a theoretical analysis of greedy active learning with

non-uniform costs, the authors only consider the case of query costs being fixed. In

contrast, our scenario has non-uniform and dynamic costs, where travel time depends

on the distance between points.

The authors of [24] introduce the idea of adaptive data collection for mobile path

planning, or informative path planning, where previous samples are used to guide the

motion of the sensing vehicles for further sampling. This is a prolific and evolving

field of research and much of the literature so far focuses on maximizing information

gain over a scalar field for an underwater autonomous vehicle. Algorithms presented

in [24, 25, 26] accommodate a wide range of sampling scenarios that include varied

sampling time, path constraints, and limited battery. However, these methods require

a coarse sampling of the entire feature space, which is not feasible in our problem, and

[26] requires mixing a network of stationary sensors with a mobile sensor. In contrast,

boundary detection methods like those in [27, 28, 29] use mobile sensors to map a

spatial threshold as closely as possible. These methods provide efficient and accurate

mappings of a binary classification boundary, but unfortunately do not account for

constraints like limited on battery life or samples on a single vehicle.

One category of particular interest is that of level set estimation (LSE) [30]. LSE

focuses on the targeted estimation of measurement points relative to a threshold value,

seeking to assign them into either a super- or sub-threshold level set. With the use

of Gaussian process statistics to generate a posterior estimate for the distribution

following each measurement, this allows for effective creation of a spatial classification

boundary in 2- or 3-dimensional space. The initial algorithm in [30] was expanded in

[31] and [32], providing novel approaches for selecting and grouping measurements

in the fewest samples possible but neglecting to account for the distance between

these points. Subsequently, a method for path-efficient LSE that seeks to reduce the

distance traveled by the mobile sensor is proposed in [33], but this method assumes

7

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

FH Search, λ=1

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

Quantile Search, m = 4

Figure 2.2: Example search for the change point on a step function performed by finite horizon
search (λ = 1, left) and the corresponding quantile search (m = 4, right).

the vehicle can continuously acquire measurements with a negligible cost.

Of primary relevance to the work presented in this paper is the work of [11], which

introduces the quantile search (QS) algorithm for determining the change point of a

one-dimensional step function while balancing the above costs. QS is a generalization

of binary bisection [34, 35, 20], where the idea is that by successively sampling a

fixed fraction 1/m, where m > 2, into the remaining hypothesis space (defined by

an interval), the desired tradeoff between number of samples and distance traveled

can be achieved. This work was extended in [12], introducing the uniform-to-binary

(UTB) algorithm where the key observation is that QS can be improved by allowing

the fraction to grow as the hypothesis space shrinks. Yet, neither algorithm provides

guarantees of optimality in terms of the total sampling cost. We believe that this

work is the first to provide a theoretical guarantee of optimal search procedure for an

environment with non-uniform, dynamic sampling costs.

2.4 Finite-Horizon Search

It is convenient, while not restrictive, to define search strategies in terms of the fraction

of the remaining interval to move at each step, whether forward or backward, in an

analogous fashion to [11, 12]. The resulting class of policies is adaptive to the unknown

8

location of θ and non-restrictive in the sense that any optimal policy will not sample

in locations with probability zero (locations outside the remaining interval).

Begin with a uniform prior on the change point θ, and let the N fractions be

{xn}Nn=1. A straightforward Bayesian update yields the posterior distribution after

each sample. Let HN be the entropy of the posterior distribution after N observations,

DN be the total distance traveled, and λ > 0 be a tuning parameter that governs the

tradeoff between these costs. We define the total sampling cost after N observations

as

J(x1, . . . , xN) = Eθ
[
eHN + λDN

]
. (2.1)

Note that for a uniform distribution on an interval of length a, eHN = elog(a) = a;

thus, eq. (2.1) is equivalent to minimizing a weighted combination of the (expected)

final interval length and expected distance traveled (proof in Appendix A.1).

2.4.1 Closed-Form Solution

We now demonstrate that the cost can be minimized in closed form. Theorem 1 admits

a representation of the cost function that allows us to compute the optimal sampling

fractions in linear time, resulting in an optimal policy.

Theorem 1. Let λ ∈ [0, 2] and assume the unknown change point has distribution

θ ∼ Unif([0, 1]). Further, assume the N measurements are defined via N fractions

x1, . . . , xN denoting the proportion of the current hypothesis space to sample. Define

the expected interval size at step i, ξi, as

ξi = x2
i + (1− xi)2, i = 1, . . . , N.

9

The cost function can then be written as

J(x1, . . . , xN) =
N∏
i=0

ξi + λ

N∑
i=1

xi

i−1∏
j=0

ξj, (2.2)

where ξ0 represents the initial interval size of 1.

Proof. A complete proof can be found in Appendix A.2.

Thm. 1 shows that the entropy and distance components of the sampling cost can

both be written in terms of the expected interval size. This allows us to minimize the

cost function analytically by computing the optimal policy in Theorem 2.

Theorem 2. Under the same conditions as Thm. 1, the optimal sampling fractions

are of the form

x∗k =
1

2
− λ 1

4ρk
, k = 1, . . . , N, (2.3)

where ρN = 1 and

ρk =
N∏

i=k+1

ξi + λ
N∑

i=k+1

xi

i−1∏
j=k+1

ξj, k = 1, . . . , N − 1,

depends only on the fractions xk+1, . . . , xN .

Proof. A complete proof can be found in Appendix A.3.

Thm. 2 shows that the optimal N -step lookahead policy may be computed in linear

time, beginning with xN and proceeding backwards. Because ρk is largest at k = N

and continues to get smaller with each step backwards, so too will the sample fractions,

as can be seen in Fig. 2.3. A higher value for the distance penalty parameter λ results

in a less aggressive policy, as the higher cost for potential overshoot encourages smaller

steps. When λ ≥ 2, the cost of travelling to obtain a measurement, λx1, is larger than

10

0 5 10 15 20
Sample Number

0.0

0.1

0.2

0.3

0.4

0.5

St
ep

 F
ra

ct
io

n

λ= 0.1
λ= 0.7
λ= 1.2
λ= 1.8

0 5 10 15 20
k

0.0

0.2

0.4

0.6

0.8

1.0

ρ k

Figure 2.3: Optimal sampling behavior for a fixed-length policy. Left: fractions of the interval to
cover at each step of a 20-step policy. Right: corresponding values of ρk for calculating the policies.

the expected reduction in entropy, 1− ξ1, and the trivial sample which requires no

displacement is preferred.

An alternative to N -step lookahead is to choose the greedy policy that minimizes

the one-step lookahead for the value function without concern for future consequences.

Following this protocol means calculating x∗k in eq. (2.3) with k = N = 1 at each step,

which results in sampling a constant fraction into the remaining interval (since the

optimal action depends only on k, not interval length; see proof in Appendix A.4).

This is exactly the strategy of the QS algorithm, and thus QS may be considered an

instance of our proposed method with N = 1.

2.4.2 Samples Needed for Fixed Estimation Error

In certain instances, it is desirable to use a threshold on the final interval size rather

than a fixed number of samples to terminate the search procedure. When this is

the case, we use eq. (2.3) to calculate the optimal action for the final step and then

proceed backwards, calculating the optimal action at each preceding step until a policy

of subsequent length such that a final interval smaller than the error threshold is

expected. Pseudocode for finding the optimal policy (expected number of samples and

search fractions for each sample) starting with a given interval of length L and subject

to a desired final estimation error and distance penalty λ is given in Algorithm 1. The

11

Algorithm 1 Calculating Policy for Expected Convergence
1: Input: interval length L, penalty λ, stopping error ε
2: Initialize: xN ← 1

2
− λ

4
, l← 1

3: while L
∏
i

ξi > ε do

4: xN−l ← 1
2
− λ/(4ρN−l)

5: l← l + 1
6: end while
7: N ← l

relationship between λ and the expected samples needed can be seen in Fig. 2.5.

2.4.3 Error-Threshold Search Procedure

In the case where a search terminates only after a certain estimation error has been

obtained, we follow a two-phase procedure. Pseudocode is provided in Algorithm 2.

Before the search begins, we use the method presented in Algorithm 1 to calculate

the N steps such that the expected final interval size is less than ε. Then, in the first

search stage, samples are taken according to this N -step policy. If the hypothesis

space is smaller than the desired threshold before all N samples have been taken, the

search terminates. Otherwise, the algorithm performs a greedy search (optimal 1-step

policy, line 7) until the interval is sufficiently small.

2.5 Simulations

In this section, we verify the performance of the proposed finite-horizon sampling

policy. We compare theoretical and simulated distance-penalized search costs over a

range of λ values and policy lengths, and benchmark our FH search algorithm against

QS and UTB in a time-penalized search scenario.

2.5.1 Cost as a Function of Entropy and Distance

To obtain a profile of performance as a function of λ, we perform 100 searches over a

range of 100 uniformly-spaced values of θ in the interval [0, 1] for 5 different values of

12

Algorithm 2 Finite Horizon Search
1: Input: policy x, stopping error ε
2: Initialize: X0 ← 0, Y0 ← 1, a← 0, b← 1, n← 1
3: while b− a > ε do
4: if n ≤ N then
5: x← xn
6: else
7: x← 1

2
− λ

4

8: end if
9: if Yn−1 = 1 then
10: Xn ← Xn−1 + x(b− a)
11: else
12: Xn ← Xn−1 − x(b− a)
13: end if
14: Yn ← f(Xn)
15: a = max {Xi : Yi = 1, i ≤ n}
16: b = min {Xi : Yi = 0, i ≤ n}
17: θ̂n ← a+b

2

18: n← n+ 1
19: end while

λ between 0.1 and 1.8. Fig. 2.4 shows the resulting average entropy, distance traveled,

and final cost for each corresponding N -step policy. The plots demonstrate that

our proposed method enacts a tradeoff between average final entropy and distance

traveled via the tuning parameter λ. Further, comparing our empirical results with

the expected entropy and distance calculated in Section 2.4.1, we see the values align

almost exactly. It is worth noting that as the number of samples increases, the total

costs tends to decrease. While the sampling cost function in eq. (2.1) trades off

final entropy against distance traveled (and thus prefers a policy in which a greater

number of less aggressive samples yields less error and less potential overshoot), we

also consider a cost function that considers the total sampling time.

13

5 10 15 20
N Samples

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e
E
nt
ro
py

Theoretical
Simulated
λ= 0.1
λ= 0.7
λ= 1.2
λ= 1.8

5 10 15 20
N Samples

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

D
is

ta
nc

e

5 10 15 20
N Samples

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

t

Figure 2.4: Performance of proposed FH algorithm for fixed N samples. Each data point represents
an optimal N -step policy. Left-to-right: average entropy of hypothesis space, average distance
traveled, and average total cost after last sample.

2.5.2 Cost as a Function of Sampling Time

If we seek to minimize the total time that a vehicle takes to complete a search, we

need to consider a cost function of the form

JT (x1, . . . , xN) = TsN + TtD, (2.4)

where Ts and Tt represent the time per sample and time per unit distance traveled, and

N and D represent the number of samples and total distance. In order to minimize

this cost in expectation, first calculate the number of samples, Nλ, and total distance,

Dλ, expected for the optimal policy for each value of λ to reach a final interval size

smaller than desired error ε using Algorithm 1. Then, selecting the value of λ that

minimizes the total search time,

λ∗ = arg min
λ

TsNλ + TtDλ, (2.5)

yields the optimal policy.

The left-side plot of Fig. 2.5 depicts the results from first step in the above

procedure. We see that the expected number of steps to convergence increases with

λ, while the expected distance decreases. Intuitively, this makes sense. A small λ

corresponds to a lower distance penalty and thus entails a more aggressive search

14

0.0 0.5 1.0 1.5
λ

0

50

100

150

N
 S

am
pl

es
 to

 E
[ε

] <
 0

.0
1

0.5

0.6

0.7

0.8

0.9

1.0

D
is

ta
nc

e
to

 E
[ε

] <
 0

.0
1

Nλ
Dλ

0 200 400 600 800 1000
Tt/Ts

0.0

0.2

0.4

0.6

0.8

1.0

O
pt

im
al

 λ

0 200 400 600 800 1000
Tt/Ts

400

600

800

1000

Im
pr

ov
em

en
t (

se
c)

QS-FH
UTB-FH

Figure 2.5: Components of the time-penalized FH search procedure. Left: Nλ and Dλ to reach
an interval of 0.01 for each value of λ. Middle: values of λ∗ for each ratio of Tt/Ts. Right: average
improvement of FH search over QS and UTB algorithms.

policy, which takes larger steps to maximize entropy reduction and will converge in

fewer samples. A large λ means a greater distance penalty and a more conservative

policy with smaller steps, which requires more samples to converge. The middle plot of

Fig. 2.5 shows how eq. (2.5) trades off between these values of Nλ and Dλ for various

ratios of Tt/Ts. As Tt increases we prefer a higher value of λ∗ that takes more samples

but is less likely to overshoot the change point.

We compare the performance of the above method with the existing QS and

UTB algorithms. We consider the same 100 uniformly-spaced instances of θ for 1,000

different ratios of Tt/Ts in the range of 1× 10−4 to 1× 103 with Ts = 100 as the base

sampling cost. The right-side plot in Fig. 2.5 shows the resulting improvement in

sampling time obtained via the proposed finite-horizon policy. When the Tt/Ts ratio

is small, we see a savings of about 380 seconds over both UTB and QS for a search

that takes roughly 1,100 seconds, generating an improvement of approximately 34%.

At the highest ratios of Tt/Ts, the relative improvement decreases, with savings of 470

seconds over a 55,900 second UTB search (0.8% improvement), and 1,060 seconds

over a 56,500 second QS search (1.9% improvement).

2.6 Two-Dimensional Boundary Estimation

The proposed FH policy is for a single, one-dimensional search, but the goal in

our motivating example is to estimate a two-dimensional spatial boundary. In [11],

15

True boundary
Search strip
Search points
Estimated boundary

Figure 2.6: Two-dimensional boundary estimate from series of one-dimensional searches. Each
search is performed using FH sampling. The black line represents the true boundary and the final
estimate (solid red line) is obtained using GP regression, with the confidence bounds shown in gray.

the authors show we can combine multiple one-dimensional strip searches to find a

two-dimensional boundary, and point out that a great deal of time would be lost by

starting each search from the origin. To prevent this, they present two methods for

intelligently initializing successive searches: using the previous estimate as a starting

point or assigning a nonuniform prior based on a confidence interval around the

previous estimate. In order for these approaches to work, the authors assume their

boundary functions are restricted to a class of Hölder smooth functions known as

Lipschitz functions. An alternative approach from spatial statistics [36, 37] that allows

us to make weaker assumptions is to model our boundary as a Gaussian process.

2.6.1 Introduction to Gaussian Processes

As discussed in [38, 19], a Gaussian process (GP) is a nonparametric generalization of

linear regression that allows for the representation of uncertainty about predictions

made over the sensed field. To learn the parameters of a certain GP model, we can

use data from a pilot study or use previous expert knowledge about the environment.

16

The learned GP can then be used to predict the boundary with greater accuracy and

increase the efficiency of our search procedure. Figure 2.6 illustrates this point: once

the change point has been estimated on the first transect, we can use this to generate

an estimate and confidence interval for where the boundary is likely to be on the next

transect, and start sampling there. This process repeats at each strip until our search

procedure terminates.

The crucial component of a GP predictor is the covariance function, which encodes

our assumptions about the function we want to learn by defining the similarity between

data points. The covariance function is a function of two arguments, mapping input

pairs x ∈ X and x′ ∈ X into R; the general name for this type of function is a kernel.

A kernel is stationary if it is a function of (x− x′), and falls into the category of radial

basis functions if it is an isotropic function only of r = |x− x′|. Further, a kernel is

symmetric if k(x, x′) = k(x′, x); all covariance functions are symmetric by definition.

2.6.2 Estimating Spatial Boundaries with Gaussian Processes

To model our spatial boundary of interest, we use a smooth periodic covariance function.

The non-linear mapping of the one-dimensional input x to the two-dimensional

u(x) = (cos(x), sin(x)) provided in [39] creates a periodic random function of x.

Using the squared exponential kernel in u-space then gives

k(x, x′) = exp

(
−

2 sin2(x−x
′

2
)

l2

)
, (2.6)

where l is the characteristic length scale and x is constrained to the interval [0, 2π].

The effect of varying l on samples drawn from this prior can be seen in Figure 2.7.

Clearly, a smaller length scale causes functions to vary more rapidly while a larger

length scale produces slower variations and a smoother function.

With prior knowledge (or an initial measurement) that the average distance of the

17

l = 0.1 l = 0.2 l = 0.3 l = 0.4

Figure 2.7: Random boundaries drawn from a periodic covariance kernel with varying length scales.
The length scale determines the smoothness of the boundary.

change point θ from the origin is µθ, and assuming we know the characteristic length

scale l for the covariance kernel, it is possible to estimate a new boundary function

after each strip. Assume we start sampling at an angle of ϕ = 0 and distance µθ from

the origin. Depending on this result, we then proceed to sample either back towards

or away from the origin according to the N -step FH policy. To calculate where to

start sampling along the next strip, we estimate the boundary function using the GP

equations for a multivariate normal distribution given in [19] eq. (2.18 - 2.24).

If we have performed searches along n strips at angles in the n × 1 vector φ

from the origin and wish to estimate the boundary at n′ potential locations of angle

φ′, then Kφφ′ denotes the n × n′ matrix of the covariances evaluated at all pairs of

observed and future points. The same notation holds for Kφφ and Kφ′φ′ . Assuming

we have some measurement noise in our model with variance ε2, we incorporate this

as Kφφ = Kφφ + ε2In. Each new search gives an estimate of the change point, θ̂, which

can be appended to the observation vector Θ. Noting that Kφ′φ = KT
φφ′ , the boundary

estimate and standard deviation for establishing a confidence interval are then

θpred = µθ +Kφ′φK
−1
φφ (Θ− µΘ)

σpred = Kφ′φ′ −Kφ′φK
−1
φφK

T
φ′φ.

18

True boundary
Search strip
Search points
Estimated boundary

Figure 2.8: Boundary estimates with fixed total samples but varying number of transects. Left-to-
right: 3 strips of 8 samples, 4 strips of 6 samples, 6 strips of 4 samples.

The search strategy shown in Fig. 2.6 relies on using a fixed, pre-determined

number of evenly-spaced transects. If our search procedure is constrained by a finite

number of total samples, then minimizing search cost is a tradeoff between the number

of strips and samples per strip, balancing local and global estimation error and distance

traveled. Intuitively, fewer strips with more samples per strip means more accurate

estimates at the selected locations and less total distance, but higher total estimation

error due to less accurate predictions between transects. Searching more transects

will give less accurate local estimates but better overall estimation, though it requires

greater distance. Figure 2.8 demonstrates this concept, splitting a fixed number of

samples Nsamp = 24 between 3, 4, or 6 transects.

2.6.3 Simulations

To quantify this tradeoff, we limited total samples to a maximum of Nsamp = 100 and

compared the distance, estimation error, and cost for every number of transects, Ntrans,

from 3 to 20. The number of samples per transect, Nst, was determined using the

floor of the total samples divided by number of transects, Nst = bNsamp/Ntransc. For

each Ntrans, we performed searches over the same 100 boundaries randomly generated

by the covariance kernel in eq. (2.6) with µθ = 3, l = 0.4, and ε = 0.1. We compare

the average performance of the FH policy for λ = 0.4 and corresponding QS policy.

We define our error as the total area between actual and estimated boundaries.

19

5 10 15 20
Number of Strips

14

16

18

20

22

24

26

28

Av
er

ag
e

C
os

t

FH
QS

5 10 15 20
Number of Strips

0

10

20

30

40

50

60

70

Av
er

ag
e

D
is

ta
nc

e

5 10 15 20
Number of Strips

0

2

4

6

8

10

12

Av
er

ag
e

E
rr

or

Figure 2.9: Search performance for a fixed number of total samples as a function of number of
transects. Left-to-right: total search cost, distance traveled, and final estimation error.

Figure 2.9 shows the results of our simulation. As expected, total distance traveled

increases with the number of transects while total estimation error decreases. Initially,

the increase in accuracy outweighs the increase in λ-penalized distance, but we see

diminishing returns as Ntrans continues to grow, achieving our minimum cost at 9

transects. However, examining the differences in costs reveals less than a 2% spread

between Ntrans = 8 and 12.

Confirming the results from Section 2.5, we see that FH search outperforms QS

once again, achieving similar estimation accuracy with substantially less travel. Over

the range of our simulations, the improvement in cost is anywhere from 10% to 24%.

It is worth noting that the performance numbers reported here depend on all of the

parameters of the GP covariance kernel, µθ = 3, l = 0.4, and ε = 0.1. A different mean

boundary distance, shorter length scale or more uncertainty on the model would lead

to a different conclusion in terms of the optimal number of transects and reported

estimation error, as would a different value of our search parameter, λ.

20

Chapter 3

Reinforcement Learning For Adaptive Sampling

3.1 Introduction

Reinforcement learning (RL) refers to learning how to act (mapping situations to

actions) so as to maximize a reward. Because action selection determines future

situations and rewards in addition to the immediate reward, the key components of

reinforcement learning are interactive search and delayed reward. Most RL methods

fall into one of two categories: model-free methods (trial-and-error) that rely on

exploration and learning as the primary component, or model-based methods (finding

optimal control sequences using value functions and dynamic programming) that rely

principally on planning. However, the computation of value functions is at the heart

of both methods; they look ahead to future events, compute a backed-up value, and

use this as an update target for approximating a value function.

In this chapter we introduce model-based and model-free methods for optimizing

search procedures in scenarios where the change point is drawn from either a uniform

or nonuniform distribution.

3.2 Background

3.2.1 Markov Decision Processes

Markov decision processes (MDPs), developed in [40], are a formalization of sequential

decision making where actions influence not just immediate rewards but also subsequent

21

states and future rewards. MDPs thus involve the tradeoff between immediate and

delayed reward. In MDPs we estimate the optimal value q∗(s, a) of each action a

in each state s, or the optimal value v∗(s) of each state assuming optimal action

selections. Classical MDP framing involves a learner and decision maker called the

agent interacting with an environment. At each time step, t = 0, 1, 2, . . . the agent

receives a representation of the environment’s state, St ∈ S, and selects an action,

At ∈ A(s). The environment then responds, and at the next time step the agent

receives a reward, Rt+1 ∈ R ⊂ R, and is in a new state, St+1.

In this instance, the random variables for reward Rt and state St have a well-defined

probability distribution that depends on the previous state and action. The dynamics

of a finite stochastic MDP are completely characterized by the probability distribution

p(s′, r|s, a)
.
= Pr{St = s′, Rt = r | St−1 = s, At−1 = a}.

The goal of the agent is to maximize the return, Gt, or sum of rewards it receives

from time t until the end of the procedure,

Gt
.
= Rt+1 +Rt+2 + · · ·+RT ,

where T is the final time step, and corresponds to reaching the terminal state. It is

common to introduce a discounting factor γ for future rewards, but we have omitted

it since we do not use discounting in the cost function of our scenarios of interest.

3.2.2 Policies and Value Functions

Value functions estimate how good it is for an agent to be in a given state or perform a

given action based on the expected return. Because this return depends on the action

the agent takes, value functions are defined with respect to certain ways of acting,

22

known as policies. A policy maps states to probabilities of selecting each action: π(a|s)

represents the probability that an agent following policy π selects At = a if St = s.

The value of state s under policy π is the expected return starting in s and following

policy π until termination, written vπ(s). For an MDP, we define the state-value

function, vπ, as

vπ(s)
.
= Eπ[Gt | St = s].

Similarly, the value of taking action a in state s and thereafter following policy π,

known as the action-value function, qπ(s, a), is defined as

qπ(s, a)
.
= Eπ[Gt | St = s, At = a].

The value functions satisfy recursive relationships between the value of a state and

the values of its successor states, wherein the value of the start state must equal the

value of the expected next state plus the expected reward upon transition. These are

known as the Bellman equations for vπ and qπ,

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + vπ(s′)] (3.1)

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)

[
r +

∑
a′

π(a′|s′)qπ(s′, a′)

]
. (3.2)

The Bellman equation forms the basis for updates or backup operations that are the

core of reinforcement learning methods: transferring value information back to a state

from its successors in order to inform decisions.

Solving a reinforcement learning task means finding a policy that leads to a high

expected return [41]. For finite MDPs (where the state, action, and reward sets are

finite), there is always one policy, known as the optimal policy, π∗, that is equal to or

better than all other policies. The optimal state-value function, v∗(s), satisfies the

23

Bellman optimality equation and expresses the fact that the value of any state under

an optimal policy must equal the expected return for the best action from that state,

v∗(s)
.
= max

π
vπ(s)

= max
a
qπ∗(s, a)

= max
a

Eπ∗ [Gt | St = s, At = a]

= max
a

E[Rt+1 + v∗(St+1) | St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a) [r + v∗(s
′)] ,

for all s ∈ S and a ∈ A.

The same holds true for the optimal action-value function, q∗(s, a),

q∗(s, a)
.
= max

π
qπ(s)

= E[Rt+1 + v∗(St+1) | St = s, At = a]

= E[Rt+1 + max
a′

q∗(St+1, a
′) | St = s, At = a]

=
∑
s′,r

p(s′, r|s, a)
[
r + max

a′
q∗(s

′, a′)
]
,

for all s ∈ S and a ∈ A.

Once one has v∗ or q∗, it is relatively easy to determine the optimal policy. For

any state, the agent can simply select the action that maximizes q∗(s, a). However,

explicitly solving the Bellman optimality equation is equivalent to an exhaustive

search, looking ahead at all possibilities and computing the probability of occurrence

and expected reward. This solution requires an accurate model of the environment

and a large amount of computation to complete and store the corresponding q-table

to be used for the solution.

24

3.3 Model-Based Methods

If we have a perfect model of the environment, the optimal search procedure problem

becomes one of optimal control. Using a system’s state and value functions to define

a Bellman equation, we can cast this problem as a stochastic MDP to be solved via

dynamic programming.

3.3.1 Dynamic Programming

Dynamic programming (DP) [42] refers to a collection of algorithms that, given a

perfect model of the environment as an MDP, can be used to compute optimal policies.

DP can be used to compute the value functions defined in Section 3.2.2, and through

an iterative process of evaluation and improvement devised in [43], allows us to obtain

the optimal policies. A more in-depth description of this process can be found in [41],

but using Bellman equations as updating rules for improved function approximation

essentially consists of three steps:

Policy evaluation computes the state-value function, vπ, for an arbitrary policy π.

If environment dynamics are completely known, then the Bellman equation is a

system of |S| linear equations in |S| unknowns, and solving it is a straightforward

computation. Starting with an initial value function approximation v0, each

successive approximation is calculated using the Bellman equation as an update

rule,

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + vk(s
′)] ,

in an algorithm known as iterative policy evaluation. Each iteration updates the

value of every state once to produce the new approximate value function vk+1.

This update is called an expected update because it is based on an expectation

over all possible next states rather than a sample next state.

25

Policy improvement compares the value of all possible actions a ∈ A(s) for a given

state and selects the option with the highest expected return under policy π for

all future states. For a given state s, this greedy policy is given by

π′(s)
.
= arg max

a
qπ(s, a)

= arg max
a

∑
s′,r

p(s′, r|s, a) [r + vπ(s′)] .

Applying the same action selection criteria at each subsequent state yields the

improved policy, π′.

Policy iteration is the process of repeatedly alternating between policy evaluation

and improvement to yield a series of monotonically improving policies and value

functions. Ultimately, because a finite MDP has a set number of policies, this

process must converge to an optimal policy and optimal value function after a

finite number of iterations.

In order to reduce the iterative computation associated with policy evaluation

at each step, the method of value iteration can be used instead. Value iteration

combines the policy improvement step with a shortened policy evaluation, stopping

after just one sweep and requiring the maximum to be taken over all actions,

vk+1(s) = max
a

∑
s′,r

p(s′, r|s, a) [r + vk(s
′)] .

As demonstrated by [41], truncating the policy iteration step maintains the convergence

guarantees of policy iteration while significantly reducing computational time.

26

3.4 Model-Free Methods

If we do not have perfect knowledge of the environment, we cannot rely on straight-

forward dynamic programming to derive an optimal policy. Instead, we must learn

good policies by estimation and iteration. Many of the same ideas from model-based

methods still apply, but the agent relies on learning from experience rather than a

model. Methods that require only experience to estimate value functions and deter-

mine optimal policies are known as Monte Carlo methods. Experience can be in the

form of real or simulated sequences of interaction with the environment, and solutions

are reached by sampling and averaging returns from each state-action pair.

3.4.1 Q-Learning

Q-learning (QL) is a widely-adopted algorithm that learns a policy by estimating the

optimal action value function in the case of an unknown model. For a non-deterministic

reward function, the QL algorithm consists of two main steps: sampling an action a

in state s and updating the policy values according to the equation

q(s, a)← αq(s, a) + (1− α)[r + max
a′

q(s′, a′)], (3.3)

where α is the learning rate of the algorithm. QL can be viewed as a stochastic

formulation of the value iteration in Section 3.3.1. Within each state, an action is

selected according to a policy π derived from q. A theoretical guarantee that the

QL algorithm will converge to the optimal action-value function q∗(s, a) regardless of

the policy, so long as it ensures every (s, a) pair is visited infinitely many times, is

provided in [44].

A standard choice of policy is the ε-greedy policy determined by the action-value

function at time t. ε-greedy selects the greedy action, a = arg maxa qt(s, a), with

27

probability (1-ε), and selects a random action with probability ε for some ε ∈ [0, 1]. It

is common practice to use a policy which starts with a high value of ε and decays over

time, so the QL algorithm will explore the environment early on, effectively building a

model of the environment, and exploit its knowledge of the environment later.

3.4.2 Deep Q-Learning

Q-learning, while popular for many reinforcement learning agents, is limited in appli-

cability to domains in which useful features can be handcrafted, or domains with fully

observed, low-dimensional states spaces [45]. Q-learning also struggles to generalize

past experiences to new situations, needing to explore every action from a given state

before it is capable of making a good policy.

The work of [45] proposes a novel reinforcement learning agent, called a Deep Q

Network (DQN), that learns good policies using end-to-end reinforcement learning. To

approximate the optimal action-value function the authors use a deep neural network

to generate an approximate action-value function, q(s, a; θi), where θi represents the

parameters (weights) of the network at iteration i. DQN utilizes experience replay [46],

wherein the agent’s experiences et = (st, at, rt, st+1) are stored in a data set, D, at

each time step. During learning, updates are applied based on samples of experience,

(s, a, r, s′) ∼ U(D), drawn uniformly at random from the pool of stored samples to

remove correlations in the observation sequence. The target values for the updates,

r + maxa′ q(s
′, a′), are updated only periodically to reduce correlations between the

action-values and target. The Q-learning update at iteration i thus uses the loss

function,

Li(θi) = E(s,a,r,s′)∼U(D)

[(
r + max

a′
q(s′, a′; θ−i)− q(s, a; θi)

)2
]

where θi are the parameters of the network at iteration i and θ−i are the parameters

28

used to compute the target at iteration i. The target network parameters θ−i are only

updated with the Q-network parameters every C steps.

Recently, the work of [47] and [48] has shown that function approximation with QL

and DQN can lead to overoptimism and subsequent under-performance, issues that

are addressed in [48, 49] by proposed Double Q-Learning and Double-DQN solutions.

However, for the complexity of our motivating scenario, which has a relatively low-

dimensional state space and can be discretized effectively into finite state and action

spaces, these more advanced methods are beyond the scope of our work.

3.4.3 Rollout

Rollout algorithms [50, 51] are function-approximation and policy improvement algo-

rithms based on Monte Carlo simulation. Starting in a given state, rollout estimates

the values of each possible action by averaging the returns of many simulated trajec-

tories that start with that action and then follow a heuristic policy from the next

state. When action-values estimates are accurate enough, the action with the highest

estimated value is executed, then the process repeats from the next state. This is

also known as limited lookahead minimization, and the aim of rollout is to improve

upon the default policy. Naturally, performance of the improved policy depends on

performance of the heuristic policy and accuracy of the Monte Carlo estimates. Rollout

is similar to the policy improvement method discussed in Section 3.2.2, but relies

on simulated trajectories instead of a perfect model of the environment for policy

evaluation. Additionally, rollout produces estimates of action values only for the

current state under the selected policy, and does not store the estimates after selecting

an action.

Consider a stochastic MDP with finite controls and given initial state, s. For each

possible action, rollout generates simulations of the next states and uses the chosen

base heuristic H to estimate their value. Rollout then selects the optimal action, a∗,

29

given by the maximization

a∗ = arg max
a

q̃(s, a),

where q̃(s, a) is the approximate Q-factor defined by

q̃(s, a) = r + vH(s′),

and vH(s′) represents the value of the subsequent state, s′, following heuristic H until

termination.

A single pass through this method generates an improved but still sub-optimal

policy known as the rollout policy, π̃. Proofs for the guarantee of sequential improve-

ment on this algorithm can be found in [52]. As with policy iteration, we can then

repeat this estimation and improvement procedure, now using use the rollout policy

as a base heuristic.

30

Chapter 4

Performance of Reinforcement Learning Algorithms

To assess the performance of both model-based and model-free value-approximation

methods, we compare learned policies against the closed-form optimal policy for a

uniform probability distribution on the change point. We then examine the case of a

nonuniform distribution, where we do not have a closed-form solution. In both cases,

we compare the policies, computation time, and performance of each algorithm over a

large number of simulations.

4.1 Uniform Change Point Distribution

4.1.1 Methodology

To model a search over an assumed uniform distribution as an MDP, we represent

the state of an N -step procedure at step n as sn = (Ln, n), where Ln is length of our

hypothesis space. Here, we make use of the concept of a sufficient statistic [53] to

summarize the essential content of the state information available to the controller

and reduce the size of the state space. Because our actions are the fractions into the

remaining hypothesis space to travel (not fixed locations) and a uniform distribution

guarantees equal probability over the hypothesis space, the end points of the search

interval at step n are irrelevant to choosing an action and only the length L matters.

In order to generate a finite q-table, we discretize the initial hypothesis space [0, 1]

into 501 possible lengths, L = [0, 0.002, . . . , 1], and the action space into 101 possible

31

fractions A = [0.0, 0.005, . . . , 0.5]. Because action an may choose a point that causes

the subsequent state Ln+1 to be a value not in L, Ln+1 is selected as the closest value

in L.

In all instances, we are evaluating a 5-step search procedure. All tests will be

performed using the same 1000 values of θ drawn from the unit interval (set with

random seed of 0), with a distance penalty of λ = 0.4. All simulated training values

of θ are generated starting with a random seed of 1.

Dynamic Programming

To provide an initial benchmark for comparing value-approximation-based solution

methods against the closed-form policy, we start with tabular dynamic programming

in the form of value iteration. The value of each terminal state is the total reduction

in hypothesis space

v(sN) = 1− LN .

The value of all preceding state-action pairs will be determined by backing up the

probabilistic sum of terminal state values plus rewards using the Bellman equation

given in eq. (3.2). We use known transition probabilities to build up a q-table, which

the agent can then use to select the action that maximizes q(s, a) at each step.

Rollout

Unlike dynamic programming, rollout does not rely on a perfect model of the environ-

ment to create a tabular solution. Instead, rollout selects the best action at each step

by averaging returns for each action and subsequent heuristic search over simulated

values of θ drawn from the remaining hypothesis space. Initially, our heuristic policy

is a greedy constant fraction. To implement policy improvement in the form of policy

iteration, we keep track of the actions taken at each of the 5 steps for every search,

32

and average the selected actions for each step after every 100 searches to generate an

updated heuristic.

At every step, the rollout algorithm sweeps all actions with 10 simulated values of

θ. For 1,000 instances of a 5-step search, with 101 possible actions at each step and

10 simulations per action, this yields 5,050,000 total θ simulations.

Q-Learning

In an attempt to establish a fair comparison, we restricted the learning process for

Q-learning to 5,050,000 simulations of θ as well. The QL algorithm was trained for

50,500 epochs, drawing 100 random values of θ from a uniform distribution every

epoch. For each value of θ, the QL algorithm performed a 5-step search procedure,

and at each step selected action an according to an ε-greedy policy, starting with ε = 1

and using a decay rate of εk+1 = 0.99995 · εk per epoch until reaching a minimum

value of ε = 0.1. After each step, the Q-learning update was performed according to

eq. (3.3) with a learning rate of α = 0.001 and a reward of rn = −λ · an · Ln. As in

the DP q-table, the value of each terminal state is the total reduction in hypothesis

space, 1− LN .

DQN

Due to the greater computational time associated with DQN updates, the DQN

agent was trained with only 10% of the simulations of QL, for 5,050 epochs with

100 random values of θ each. The network consisted of two hidden layers with 16

neurons each, ReLU activation, and a learning rate of α = 0.001 was used for both the

Q-network and the target network. The target was updated after every 10 searches,

and the replay buffer held 100,000 instances of (st, at, rt, st+1) experience tuples. DQN

selected actions using an ε-greedy policy, starting with ε = 1 and using a decay rate

of εk+1 = 0.9995 · εk per epoch until reaching a minimum value of ε = 0.1.

33

Computation

All simulations were run on an AMD Ryzen 7 1800x CPU using parallel processing

over 8 cores and 16 threads. The search costs provided are calculated by averaging the

final interval size and λ-penalized distance travelled over 1,000 change points drawn

with a set random seed from either the uniform or nonuniform distributions. The

policies shown are the average actions taken at each step across the 1,000 searches,

except for the rollout policy, where the most updated heuristic is shown.

4.1.2 Results & Discussion

To establish the effectiveness of dynamic programming, we first compare the policy

generated by the DP algorithm to the policy generated by the closed-form solution

in Section 2.4.1. The left-side plot of Fig. 4.1 shows that DP learns the exact policy

of the closed-form solution, with the only deviations coming from the discretization

of actions in the DP method. The performance of DP was also verified to match

the performance of the optimal policy, and serves as a benchmark for comparing the

other reinforcement learning algorithms. A summary of the computational times and

performances for each method can be found in Table 4.1.

In the case of a uniform distribution, where the state depends only on length and

sample number, the q-table has only 5× 501× 101 ≈ 250, 000 entries and DP is the

fastest approximation method. Rollout is the second-fastest method, more than twice

as fast as Q-learning, and roughly four times as fast as DQN. As expected, dynamic

programming performs the best. Despite limited training data, DQN performs second

best, ahead of both rollout in third and Q-learning in fourth. All approximation

methods beat a standard QS search procedure.

Examining the policies shown in the right-side plot of Fig. 4.1, we see that rollout

with policy improvement learns a policy similar to DP. While this policy would

34

1 2 3 4 5
n

0.0

0.1

0.2

0.3

0.4

0.5

Ac
tio

n

DP
Closed Form

1 2 3 4 5
n

0.0

0.1

0.2

0.3

0.4

0.5

Ac
tio

n

DP
QL
DQN
Rollout

Figure 4.1: Verification of DP performance and comparison of learned policies. Left: DP matches
the closed form solution almost perfectly. Right: learned policies for a uniform distribution.

Method Time Cost Improvement
DP 0:00:03 0.3231 9.70%

Rollout 0:06:24 0.3432 4.08%
Q-Learning 0:16:33 0.3486 3.83%

DQN 0:27:33 0.3388 5.29%
QS - 0.3578 -

Table 4.1: Total training time (h:mm:ss) and average performance for each method over 1,000
change points drawn from a uniform distribution. Fastest computation and best performance are
shown in bold, with improvement scores relative to Quantile Search.

seemingly produce better results than given in Table 4.1, this is because early searches

rely on a greedy heuristic, and performance suffers accordingly. For example, rollout

with no policy improvement performs roughly 3% worse over the last 100 searches than

rollout with improvement. Both DQN and Q-learning generate policies that differ

significantly from DP, taking a larger step in the middle of the search but smaller

steps at the end.

It is worth noting that the performances listed in Table 4.1 and the policies seen in

Fig. 4.1 are dependent on both the training and test values of θ, as well as the model

parameters; some random seeds and values of ε for training yield better test results

for certain models. However, the overall rankings (DP > DQN > Rollout > QL) seem

constant across multiple seeds, and we have chosen model parameters that generally

perform well. The optimization of hyperparameters is a topic for future work.

35

4.2 Nonuniform Change Point Distribution

4.2.1 Methodology

In the instance of a nonuniform prior for the change point, we model the state of

an N -step procedure at step n as sn = (Xcn, Xon, n), where Xcn is the current

location of our sampling vehicle and Xon the opposite end of the hypothesis space.

Similar to the uniform case, we discretize the unit interval into 501 possible search

locations X = [0.0, 0.002, . . . , 1.0] and the action space into 101 possible fractions

A = [0.0, 0.005, . . . , 0.5]. Because the action an may choose a location not in X , the

next sampling location is decided by the closest location in X . We use a truncated

normal distribution on the interval [0, 1] with µ = 0.5 and σ = 0.1. All tests will be

performed using the same 1,000 values of θ drawn from this distribution (again with a

random seed of 0), with a distance penalty of λ = 0.4. All simulated training values

of θ are generated starting with a random seed of 1.

Algorithm Implementation and Computation

The framework for all of the RL algorithms remains the same for the nonuniform case,

except that the state depends on the ends of the hypothesis space instead of just the

length, which causes the value tables to be of higher dimension. The computational

resources remain the same.

4.2.2 Results & Discussion

Though dynamic programming was by far the fastest method for a uniform prior on

the change point, this is not the case for a nonuniform distribution. As the q-table has

grown to 5× 501× 501× 101 ≈ 125M entries, DP becomes the slowest approximation

method to compute. A summary of results can be found in Table 4.2.

Rollout and DQN barely change in terms of total computation time, becoming the

36

1 2 3 4 5
n

0.0

0.1

0.2

0.3

0.4

0.5

Ac
tio

n

DP
QL
DQN
Rollout

Figure 4.2: Learned policies for each of the RL algorithms when sampling from a nonuniform
distribution. DP serves as the reference for the optimal policy.

Method Time Cost Improvement
DP 1:08:48 0.2719 23.15%

Rollout 0:06:23 0.2837 19.82%
Q-Learning 0:23:25 0.3154 10.85%

DQN 0:27:30 0.2742 22.49%
QS - 0.3538 -

Table 4.2: Total training time and average performance for each method over 1,000 change points
drawn from a nonuniform distribution with µ = 0.5 and σ = 0.1. Fastest computation and best
performance are shown in bold, with improvement scores relative to Quantile Search.

first and third fastest methods, while Q-learning increases by about 50% to move into

second. Dynamic programming is the slowest by a significant margin, nearly three

times slower than Q-learning. The order of performance remains the same as last time:

DP, DQN, Rollout, Q-learning. This time, however, rollout performs nearly as well as

DQN, and Q-learning displays improved performance relative to the competition as

well. Additionally, all approximation methods show much greater improvement over a

standard QS search procedure.

Examining the policies shown in the right plot of Fig. 4.1, all methods learn to

take aggressive steps initially due to the low probability of overshoot when θ is drawn

from a distribution that is tightly concentrated around X = 0.5. The policy generated

by QL again takes a larger first step than other methods but mimics the DP policy

more closely in the nonuniform case than the uniform, as does DQN.

37

Comparing the results from Tables 4.1 and 4.2, we can see that all methods perform

better on average over a nonuniform distribution for the change point. Intuitively,

this makes sense: tightly grouped change points means a smaller effective window to

search, thus causing fewer instances of overshoot and ultimately smaller final intervals.

Once again, the exact performance is subject to the seeding of the training data and

the choice of parameters, but the general performance trends seem to hold across

multiple training sets.

38

Chapter 5

Conclusion & Future Work

This thesis has presented a number of methods for solving spatial sampling problems

with dynamic costs. We have presented a novel active learning algorithm for a one-

dimensional search and used Gaussian methods to generalize to two dimensions. We

have considered the case of both distance- and time-penalized search procedures,

and shown how our method improves upon the current state-of-the-art. We have

implemented a select few reinforcement learning methods and compared their relative

performance on both simple and more complex search scenarios. We now summarize

the key contributions of this thesis, and propose future work for each.

5.1 Finite-Horizon Search

We have presented a novel active learning algorithm for spatial sampling that optimally

balances the final estimation error and the distance traveled for a fixed number of

samples. We have derived the closed-form solution and to the best of our knowledge,

believe that this work is the first to provide a theoretical guarantee of an optimal

search procedure for an environment with non-uniform, dynamic sampling costs. We

have also shown how our solution generalizes existing approaches to this problem,

and empirical results indicate the performance benefits of finite-horizon search over

existing methods in the literature.

Though we have considered only the case of noiseless measurements, extending

to noisy measurements as done in [11] is an important next step. While the search

39

parameter λ allows for various search costs (sampling time, travel time, recharging,

etc.) to be approximated in a compact state space notation, we have only provided

a formula for converting travel and sample time into our notation. Further work is

needed to fully understand how to represent other search considerations into this single

parameter. Finally, while the FH algorithm calculates one policy at the beginning of

the search and then follows that policy until termination regardless of the subsequent

hypothesis space sizes, it is possible to implement an adaptive FH algorithm that

re-calculates the optimal policy after each step.

5.2 GP-Based FH Search

Following the ideas in [11, 34] and implementing knowledge of Gaussian processes

from [19, 39], we have generalized a one-dimensional search to a two-dimensional prob-

lem. Using a periodic GP model enabled us to to combine a series of one-dimensional

transect searches to estimate the boundary function, and calculate updated priors to

efficiently choose the start for each sequential search. Under the constraint of a limited

total number of samples, we demonstrated how to determine the optimal number of

transects and samples per transect, and showed the performance improvement of the

FH algorithm relative to QS in this setting.

While we base our two-dimensional search procedure around sampling along pre-

defined transects, one potential option for improvement is to select sequential search

locations by setting a threshold on the uncertainty of the updated prior. The sampling

vehicle can then selectively perform searches further apart when the estimates are of

high quality and the boundary appears smooth, and closer together when measurements

indicate greater variability. Though our initial results are promising, this thesis relies

on being able to use known or assumed statistics about a boundary to combine

one-dimensional searches into a two-dimensional procedure. Because we do not focus

40

on boundaries of arbitrary shape, optimal methods for two- or even three-dimensional

searches continue to be an interesting problem.

5.3 Reinforcement Learning

Chapter 3 provided a summary of several relevant RL algorithms, applied to our

problems of interest in Chapter 4. After demonstrating that model-based dynamic

programming learns the optimal policy for a uniform prior on the change point, we

compared the chosen methods over both uniform and nonuniform distributions for the

change point, analyzing computational expense and total search cost for each.

While rollout and DQN were both highly promising methods, rollout requires the

learning agent to simulate trajectories from the environment, something that is not

always possible without a well-defined model. Thus, enhanced implementation of

DQN or one of its many successors (e.g., [48, 49]) is of primary interest for future

investigation. Large-scale neural networks show incredible promise in their ability to

make sense of high-dimensional state and action spaces, and do not need a model

of the environment to learn, relying instead on gathering real-world experience or

equivalent simulation. However, deep neural networks require vast amounts of data

to learn effective policies and are computationally power hungry. Thus, the use

case of autonomous sensing, where gathering real-world experience necessitates hours

of battery charging and monitoring search procedures and which sometimes relies

on limited on-board computational resources, merits continued effort to develop an

algorithm capable of learning on less data and operating on a low-power system.

41

Appendix

A.1 Differential Entropy of a Uniform Distribution

Given a continuous random variable X with probability density function fX(x), the
differential entropy h(X) is defined as

h(X) = −
∫ ∞
−∞

fX(x) ln fX(x)dx.

Consider a random variable distributed uniformly over the interval [0, a], so that its
density is 1/a over this interval and 0 elsewhere. The differential entropy is then

h(X) = −
∫ a

0

1

a
ln

1

a
dx

= − ln
1

a
,

and the exponential of the entropy is thus

eh(X) = e− ln 1
a = a.

A.2 Proof of Theorem 1 (Value Function)

Thm. 1 states we can represent our cost function after N measurements as

J(x1, . . . , xN) = E
[
eHN + λDN

]
=

N∏
i=0

ξi + λ
N∑
i=1

xi

i−1∏
j=0

ξj, (A.1)

where ξ0 = 1 and
ξi = x2

i + (1− xi)2, i = 1, . . . , N

represents the expected interval length of the hypothesis space at step i.

Proof. By Lemma 1 below, we have that

E
[
eHN

]
=

N∏
i=0

ξi.

42

Let DN be the distance traveled after N samples. Note that

DN =
N∑
i=1

xie
Hi−1 .

Therefore,

E [DN] = E

[
N∑
i=1

xie
Hi−1

]

=
N∑
i=1

xiE
[
eHi−1

]
.

Applying Lemma 1 then yields

E [DN] =
N∑
i=1

xi

i−1∏
j=0

ξj.

The proof is completed by applying linearity of expectation.

Lemma 1. Let HN be the entropy of the hypothesis space after N measurements.
Assuming the unknown change point has a distribution θ ∼ Unif([0, 1]) and our actions
are defined via N fractions x1, . . . , xN denoting the proportion of the current hypothesis
space to sample, we have

E
[
eHN

]
=

N∏
i=0

ξi. (A.2)

Proof. First note that the exponentiated differential entropy of a uniform distribution
is the length of the hypothesis space after N samples. The proof will proceed by
induction on N . Consider the base case, N = 1, for which it is trivial to show that,
since ξ0 = 1,

E
[
eH1
]

= x2
1 + (1− x1)2 = ξ1.

Now assume that (A.2) holds for some N ∈ N. Sampling some fraction xN+1

into the remaining hypothesis space eHN results in two potential entropies with
corresponding probabilities

eHN+1 =

{
xN+1e

HN w/ probability xN+1

(1− xN+1)eHN w/ probability 1− xN+1.

43

Therefore,

E[eHN+1] = x2
N+1E[eHN] + (1− xN+1)2E[eHN]

=
(
x2
N+1 + (1− xN+1)2

)
E[eHN]

=
N+1∏
i=0

(
x2
i + (1− xi)2

)

=
N+1∏
i=0

ξi.

A.3 Proof of Theorem 2 (Optimal Policy)

Thm. 2 states the optimal sampling fractions are of the form

x∗k =
1

2
− λ 1

4ρk
, k = 1, . . . , N, (A.3)

where ρN = 1 and

ρk =
N∏

i=k+1

ξi + λ
N∑

i=k+1

xi

i−1∏
j=k+1

ξj, k = 1, . . . , N − 1,

depends only on the fractions xk+1, . . . , xN .

Proof. The cost function given by eq. (A.1) is differentiable, and taking the gradient
yields

∂J

∂xk
=

(
k−1∏
i=0

ξi

)
((4xk − 2) ρk + λ) ,

which, when set to 0, yields a critical point (minimum) at

xk =
1

2
− λ 1

4ρk
.

44

To prove that this is at least a local minimum, we find the Hessian of the cost function,

∂2J

∂xk∂xl
=



4xk−2
ξk

(
l−1∏
i=0

ξi

)
[(4xl − 2)ρl + λ] , k < l

4ρl

(
l−1∏
i=0

ξi

)
, k = l

4xl−2
ξl

(
k−1∏
i=0

ξi

)
[(4xk − 2)ρk + λ] , k > l.

At the critical point, the off-diagonal entries evaluate to 0, which gives

∂2J

∂xk∂xl
=



0, k < l

4ρl

(
l−1∏
i=0

ξi

)
, k = l

0, k > l.

The Hessian at the critical point is thus a diagonal matrix with positive entries on the
diagonal, constituting a positive definite matrix, and proving the critical point is at
least a local minimum.

Showing that this critical point is not simply a local minimum but rather the
global minimum over the domain λ ∈ [0, 2] and x ∈ [0, 0.5] requires verifying that the
global minimum does not occur in the boundary of [0, 0.5]N . Checking this condition
remains as future work.

A.4 Proof of Policy Invariance to Interval Length

In Section 2.4 we claim that, under the assumption of a uniform prior on the change
point, the optimal action at any step is independent of the length of the hypothesis
space. Thms. 1 and 2, which give us the cost function and the subsequent optimal
search policy, assume we start with a uniform distribution over the unit interval,
θ ∼ Unif([0, 1]). Assume instead we start with an interval of length L.

Theorem 3. Assume the unknown change point has a distribution θ ∼ Unif([0, L])
and our actions are defined via N fractions x1, . . . , xN denoting the fraction into the
current hypothesis space to sample from our current position. The cost function after
N measurements is

J(x1, . . . , xN) = L

(
N∏
i=0

ξi + λ

N∑
i=1

xi

i−1∏
j=0

ξj

)
, (A.4)

45

and the optimal fractions are

x∗k =
1

2
− λ 1

4ρk
, k = 1, . . . , N. (A.5)

Proof. By Lemma 2 below, we have that

E
[
eHN

]
= L

N∏
i=0

ξi.

Let DN be the distance traveled after N samples. As in Section A.2,

E [DN] =
N∑
i=1

xiE
[
eHi−1

]
,

and applying Lemma 2 yields

E [DN] =
N∑
i=1

xiL
i−1∏
j=0

ξj.

We thus have the cost function,

J(x1, . . . , xN) = L
N∏
i=0

ξi + λ
N∑
i=1

xiL
i−1∏
j=0

ξj

= L

(
N∏
i=0

ξi + λ
N∑
i=1

xi

i−1∏
j=0

ξj

)
,

As in Section A.3, the cost function given by eq. (A.4) is differentiable, and because L
is a constant, taking the gradient and setting to 0 yields a critical point (minimum) at

xk =
1

2
− λ 1

4ρk
.

This critical point does not depend on L, and thus, the optimal action does not depend
on interval size, only step number.

Lemma 2. Let HN be the entropy of the hypothesis space after N measurements.
Under the same conditions as Thm. 3, we have

E
[
eHN

]
= L

N∏
i=0

ξi. (A.6)

Proof. First note that the exponentiated differential entropy of a uniform distribution
is the length of the hypothesis space after N samples. The proof will proceed by

46

induction on N . Consider the base case, N = 1, for which it is trivial to show that

E
[
eH1
]

= x2
1L+ (1− x1)2L = ξ1L.

Now assume that (A.6) holds for some N ∈ N. Sampling some fraction xN+1

into the remaining hypothesis space eHN results in two potential entropies with
corresponding probabilities

eHN+1 =

{
xN+1e

HN w/ probability xN+1

(1− xN+1)eHN w/ probability 1− xN+1.

Therefore,

E[eHN+1] =
(
x2
N+1 + (1− xN+1)2

)
E[eHN]

= L
N+1∏
i=0

ξi.

47

Bibliography

[1] Q. Sun, X. Hong, and L. E. Wold, “Cardiovascular effects of ambient particulate
air pollution exposure,” Circulation, vol. 121, p. 2755–2765, june 2010.

[2] State of Oregon. (2018, Aug.) Fire information and statistics. [Online]. Available:
https://www.oregon.gov/ODF/Fire/pages/FireStats.aspx

[3] E. T. Gall, L. A. George, R. B. Cal, and A. Laguerre, “Indoor and outdoor air
quality at harriet tubman middle school and the design of mitigation measures:
Phase i report,” Portland State University, Tech. Rep., 2018.

[4] Oregon Health Authority. (2018, Jun.) Harmful algae blooms, environmen-
tal public health. [Online]. Available: https://www.oregon.gov/OHA/PH/
HealthyEnvironments/Recreation/HarmfulAlgaeBlooms/pages/index.aspx

[5] B. Settles, Active Learning. Morgan & Claypool, 2012.

[6] R. Castro and R. Nowak, “Active learning and sampling,” in Foundations and
Applications of Sensor Management, 1st ed. New York, NY: Springer, 2008,
ch. 8.

[7] R. Nowak, “Generalized binary search,” in Proc. Allerton Conference on Commu-
nication, Control, and Computing, 2008.

[8] S. Dasgupta, “Analysis of a greedy active learning strategy,” in Proc. Advances in
Neural Information Processing Systems, 2005.

[9] R. Willett, R. Nowak, and R. M. Castro, “Faster rates in regression via active
learning,” in Advances in Neural Information Processing Systems, 2006, pp.
179–186.

[10] D. Golovin and A. Krause, “Adaptive submodularity: Theory and applications
in active learning and stochastic optimization,” Journal of Artificial Intelligence
Research, vol. 42, pp. 427–486, 2011.

[11] J. Lipor, B. P. Wong, D. Scavia, B. Kerkez, and L. Balzano, “Distance-penalized
active learning using quantile search,” IEEE Transactions on Signal Processing,
vol. 65, no. 20, pp. 5453–5465, 2017.

48

https://www.oregon.gov/ODF/Fire/pages/FireStats.aspx
https://www.oregon.gov/OHA/PH/HealthyEnvironments/Recreation/HarmfulAlgaeBlooms/pages/index.aspx
https://www.oregon.gov/OHA/PH/HealthyEnvironments/Recreation/HarmfulAlgaeBlooms/pages/index.aspx

[12] J. Lipor and G. Dasarathy, “Quantile search with time-varying search parameter,”
in 2018 52nd Asilomar Conference on Signals, Systems, and Computers. IEEE,
2018, pp. 1016–1018.

[13] M. M. Keen, M. P. K. Freeman, and M. M. Mani, Dealing with increased risk of
natural disasters: challenges and options. International Monetary Fund, 2003,
no. 3-197.

[14] L. Coleman, “Frequency of man-made disasters in the 20th century,” Journal of
Contingencies and Crisis Management, vol. 14, no. 1, pp. 3–11, 2006.

[15] C. for Research on the Epidemiology of Disasters, “Em-dat: the international
disaster database.”

[16] M. Dunbabin and L. Marques, “Robots for environmental monitoring: Significant
advancements and applications,” IEEE Robotics & Automation Magazine, vol. 19,
no. 1, pp. 24–39, 2012.

[17] L. Tang and G. Shao, “Drone remote sensing for forestry research and practices,”
Journal of Forestry Research, vol. 26, no. 4, pp. 791–797, 2015.

[18] A. H. Goktogan, S. Sukkarieh, M. Bryson, J. Randle, T. Lupton, and C. Hung, “A
rotary-wing unmanned air vehicle for aquatic weed surveillance and management,”
Journal of Intelligent and Robotic Systems, vol. 57, no. 1-4, p. 467, 2010.

[19] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning.
MIT Press Cambridge, MA, 2006, vol. 2, no. 3.

[20] M. V. Burnashev and K. S. Zigangirov, “An interval estimation problem for
controlled observations,” Problems in Information Transmission, vol. 10:223-
231, 1974, translated from Problemy Peredachi Informatsii, 10(3):51-61, July-
September, 1974.

[21] P. Donmez and J. G. Carbonell, “Proactive learning: cost-sensitive active learning
with multiple imperfect oracles,” in Proceedings of the 17th ACM conference on
Information and knowledge management. ACM, 2008, pp. 619–628.

[22] D. Golovin and A. Krause, “Adaptive submodularity: A new approach to active
learning and stochastic optimization.” in COLT, 2010, pp. 333–345.

[23] A. Guillory and J. Blimes, “Average-case active learning with costs,” in Proc.
Algorithmic Learning Theory, 2009.

[24] A. Singh, R. Nowak, and P. Ramanathan, “Active learning for adaptive mobile
sensing networks,” in Proc. Information Processing in Sensor Networks, 2006.

[25] J. Binney, A. Krause, and G. S. Sukhatme, “Informative path planning for an
autonomous underwater vehicle,” in 2010 IEEE International Conference on
Robotics and Automation, May 2010, pp. 4791–4796.

49

[26] B. Zhang and G. S. Sukhatme, “Adaptive sampling for estimating a scalar
field using a robotic boat and a sensor network,” in Proc. IEEE International
Conference on Robotics and Automation, 2007.

[27] D. Marthaler and A. L. Bertozzi, “Tracking environmental level sets with au-
tonomous vehicles,” in Recent developments in cooperative control and optimiza-
tion. Springer, 2004, pp. 317–332.

[28] C. J. Cannell and D. J. Stilwell, “A comparison of two approaches for adaptive
sampling of environmental processes using autonomous underwater vehicles,” in
Proceedings of OCEANS 2005 MTS/IEEE. IEEE, 2005, pp. 1514–1521.

[29] Z. Jin and A. L. Bertozzi, “Environmental boundary tracking and estimation
using multiple autonomous vehicles,” in 2007 46th IEEE Conference on Decision
and Control. IEEE, 2007, pp. 4918–4923.

[30] A. Gotovos, N. Casati, G. Hitz, and A. Krause, “Active learning for level set esti-
mation,” in Twenty-Third International Joint Conference on Artificial Intelligence,
2013.

[31] G. Hitz, A. Gotovos, M.-É. Garneau, C. Pradalier, A. Krause, R. Y. Siegwart et al.,
“Fully autonomous focused exploration for robotic environmental monitoring,”
in 2014 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 2658–2664.

[32] I. Bogunovic, J. Scarlett, A. Krause, and V. Cevher, “Truncated variance reduction:
A unified approach to bayesian optimization and level-set estimation,” in Advances
in neural information processing systems, 2016, pp. 1507–1515.

[33] L. Bottarelli, J. Blum, M. Bicego, and A. Farinelli, “Path efficient level set
estimation for mobile sensors,” in Proceedings of the Symposium on Applied
Computing. ACM, 2017, pp. 262–267.

[34] R. Castro and R. Nowak, “Minimax bounds for active learning,” IEEE Trans. Inf.
Theory, vol. 54, pp. 2339–2353, May 2008.

[35] M. Horstein, “Sequential decoding using noiseless feedback,” IEEE Trans. Inf.
Theory, vol. 9, 1963.

[36] W. Caselton and J. Zidek, “Optimal network monitoring design, star,” Prob. Lett,
vol. 2, pp. 223–227, 1984.

[37] N. Cressie, “Statistics for spatial data,” Terra Nova, vol. 4, no. 5, pp. 613–617,
1992.

[38] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in gaussian
processes: Theory, efficient algorithms and empirical studies,” Journal of Machine
Learning Research, vol. 9, no. Feb, pp. 235–284, 2008.

50

[39] D. J. MacKay, “Introduction to gaussian processes,” NATO ASI Series F Computer
and Systems Sciences, vol. 168, pp. 133–166, 1998.

[40] R. Bellman, “A markovian decision process,” Journal of mathematics and me-
chanics, pp. 679–684, 1957.

[41] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1st ed.
Cambridge, MA, USA: MIT Press, 1998.

[42] R. Bellman, Dynamic Programming, 1st ed. Princeton, NJ, USA: Princeton
University Press, 1957.

[43] R. A. Howard, Dynamic programming and markov processes. John Wiley, 1960.

[44] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning.
The MIT Press, 2012.

[45] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis, “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[46] J. L. McClelland, B. L. McNaughton, and R. C. O’Reilly, “Why there are com-
plementary learning systems in the hippocampus and neocortex: insights from
the successes and failures of connectionist models of learning and memory.”
Psychological review, vol. 102, no. 3, p. 419, 1995.

[47] S. Thrun and A. Schwartz, “Issues in using function approximation for reinforce-
ment learning,” in Proceedings of the 1993 Connectionist Models Summer School
Hillsdale, NJ. Lawrence Erlbaum, 1993.

[48] H. v. Hasselt, “Double q-learning,” in Proceedings of the 23rd International
Conference on Neural Information Processing Systems - Volume 2, ser.
NIPS’10. USA: Curran Associates Inc., 2010, pp. 2613–2621. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2997046.2997187

[49] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” in Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, ser. AAAI’16. AAAI Press, 2016, pp. 2094–2100. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3016100.3016191

[50] G. Tesauro and G. R. Galperin, “On-line policy improvement using monte-carlo
search,” in Advances in Neural Information Processing Systems, 1997, pp. 1068–
1074.

[51] D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu, “Rollout algorithms for combinatorial
optimization,” Journal of Heuristics, vol. 3, no. 3, pp. 245–262, 1997.

51

http://dl.acm.org/citation.cfm?id=2997046.2997187
http://dl.acm.org/citation.cfm?id=3016100.3016191

[52] D. P. Bertsekas, Reinforcement Learning and Optimal Control, 1st ed. Nashua,
NH, USA: Athena Scientific, 2019.

[53] E. J. G. Pitman, “Sufficient statistics and intrinsic accuracy,” in Mathematical
Proceedings of the cambridge Philosophical society, vol. 32, no. 4. Cambridge
University Press, 1936, pp. 567–579.

52

	Optimal Boundary Detection Using Autonomous Mobile Sensors
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Motivation
	Contributions
	Finite Horizon Search
	Two-Dimensional FH Search
	Reinforcement Learning for Adaptive Sampling

	Finite-Horizon Search
	Introduction
	Problem Formulation
	Related Work
	Finite-Horizon Search
	Closed-Form Solution
	Samples Needed for Fixed Estimation Error
	Error-Threshold Search Procedure

	Simulations
	Cost as a Function of Entropy and Distance
	Cost as a Function of Sampling Time

	Two-Dimensional Boundary Estimation
	Introduction to Gaussian Processes
	Estimating Spatial Boundaries with Gaussian Processes
	Simulations

	Reinforcement Learning For Adaptive Sampling
	Introduction
	Background
	Markov Decision Processes
	Policies and Value Functions

	Model-Based Methods
	Dynamic Programming

	Model-Free Methods
	Q-Learning
	Deep Q-Learning
	Rollout

	Performance of Reinforcement Learning Algorithms
	Uniform Change Point Distribution
	Methodology
	Results & Discussion

	Nonuniform Change Point Distribution
	Methodology
	Results & Discussion

	Conclusion & Future Work
	Finite-Horizon Search
	GP-Based FH Search
	Reinforcement Learning

	Appendix
	Differential Entropy of a Uniform Distribution
	Proof of Theorem 1 (Value Function)
	Proof of Theorem 2 (Optimal Policy)
	Proof of Policy Invariance to Interval Length

	Bibliography

