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Abstract

As of the year 2019, only about five percent of the seafloor has been topo-

logically mapped and classified for type (e.g., sand, silt, gravel). To rapidly

survey the seabed from surface ships or underwater vehicles, acoustic remote

sensing methods are needed. In this thesis, acoustic measurements and inverse

modeling is investigated as a way to classify seabed type based on estimating

parameters such as density, sound speed, and interface roughness. The method

uses normal incident acoustic measurements that can be made using either a

single beam echo sounder or the normal incident beams from a side scan sonar.

The inverse method consists of a forward model to simulate the signal and a

directed search over parameter space based on an evolutionary algorithm. To

direct the search, the similarity between modeled and data envelopes are quan-

tified using a Huber Loss objective function. The large search space requires

rapid forward model calculations so a ray-based model was implemented. To

determine the applicability of the ray-based model at low frequencies, a val-

idation study is presented to compare the approximate ray method against

exact solutions. The full inversion problem was also considered for sediment

types of sand, silt and gravel at various signal to noise ratios and those results

are included.
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Chapter 1

Introduction

As of the year of 2019, only about five percent of the seafloor has been topo-

logically mapped and classified. If you consider that seventy percent of the

Earth is covered in water, this percentage seems insignificant. There are a

variety of reasons to understand the seabed type. For example, for deploying

equipment on the seabed it is important to know if the mooring will bury or

will be sitting proud. There are similar concerns that arise when laying cables

on the seabed. It is also common to use sonars to search over the seabed (e.g.,

for downed airplanes, unexploded ordinance or ship wrecks) and objects can

be fully or partially buried in silts or sands. Searching over rock and other

severely rough seabeds usually leads to many artifacts (false detections) in a

sonar image. Knowing the seabed type, therefore, leads to better decisions

about how (or if) to operate at a particular site.

To efficiently explore and map the seabed, acoustic remote sensing meth-

ods have become an important field of study. Acoustic waves propagating

in the ocean are subject to a possibly dynamic and rough upper boundary

(sea-surface) and a static but rough lower boundary (seabed) (2). Acoustic re-

flections from the seabed changes the waveform amplitude and phase in a way

that depends on the seabed sound speed, density and interface roughness. The

remote sensing method considered here is based on inverse modeling. In this
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case, acoustic measurements (data) are compared with a parameterized numer-

ical signal model. The model parameters (such as seabed sound speed, density

and roughness) are adjusted and the output is compared against the data and

agreement is quantified with an objective function. A search is conducted over

a parameter space and the minimum value of the objective function represents

the best estimate for the seabed parameters. If the parameter set is small

enough, an exhaustive search is made but for larger parameter spaces, this is

not feasible and an alternative approach to finding the optimal parameters is

needed. Here, the parameter space is large so an evolutionary algorithm is

used to greatly reduce the required forward model evaluations.

A major part of the inverse modeling method requires an accurate forward

model that captures the acoustic propagation and scattering and can represent

a realistic, received signal (7). However, somewhat in opposition to this is the

simultaneous need for a forward model to be computationally efficient since

typically many evaluations are needed. These constraints can make model se-

lection tricky. There are a fairly large number of forward models to choose from

in underwater acoustics depending on the application. Some are more phe-

nomenological (empirical or measurement-based) while a large number of the

more accurate ones are based on the physics of wave theory (1). Of the physics

based models, the choice generally comes down to the frequency regime and the

trade-offs between accuracy and speed (based on various approximations) (8).

To balance efficiency and the required accuracy, a ray-based approach was

selected here. A new ray model that can treat rough interfaces has recently
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been developed (4) and an extensive validation study of this model was con-

ducted as part of this thesis. This was necessary to confirm the validity of the

ray model in the frequency regime being considered here. The ray model was

compared against an exact solution based on the Helmholtz-Kirchhoff integral

equation.

After a forward model has been selected, the search algorithm and cost

function are chosen to solve the specific inverse problem. The cost function

used here, the Huber loss, compares the envelopes of the model with the

received echo from either a single beam echo sounder or from the normal

incident beam on a side scan sonar. The seabed type modifies the envelope

shape so the cost function has to be sensitive to the various parameters being

inverted for. Huber loss is a combination of mean absolute error and mean

squared error. It has a tunable parameter that determines how to balance

error functions at a specific point. The ability to switch between these two

error functions makes it robust to noise and outliers.

To avoid an exhaustive parameter search, a evolutionary algorithm is used.

While similar approaches have been considered for other underwater acoustic

applications, this is the first time evolutionary algorithms have been used for

single beam seabed classification. Evolutionary algorithms describe a subset of

dynamic programming inspired by biological structures that minimize a cost

function. There are a wide variety of evolutionary algorithms to chose from

when performing parameter estimation including particle swarm optimization,

bees algorithm and ant colony optimization. Differential evolution was selected

3



as the optimization strategy in this research.

The main objective of this thesis is to develop a seabed classification

method based on measurements of normal incident acoustic reflections. The

method developed uses inverse modeling with parameter estimation based on

an evolutionary algorithm. For this, an efficient yet accurate forward model

was selected and thoroughly tested against multiple physics-based scattering

models using a variety of rough interfaces. For the first time for this ap-

plication, the Huber loss cost function was implemented with a differential

evolution algorithm. In the final chapter of this thesis, the complete inversion

process is tested using simulations for different seabed types and roughness as

well as for a range of signal to noise ratios.
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Chapter 2

Parameter Estimation Using Inverse Modeling

The inverse problem that is being investigated here is for seabed parameter

estimation. Parameter estimation problems can be solved with multiple search

strategies and objective or cost functions that determine the best fit between

simulated (modelled) acoustic fields and measurement data from sonar sensors

(7). The inversion method and cost function are dependent upon the precision

required in the seabed parameters (9). In order to select the proper forward

model, this chapter will review parameter estimation and inversion modeling.

Inverse problems, in ocean acoustics, generally fall into two categories:

source localization and environmental classification (9). This research is fo-

cused on the latter. Suppose the interface roughness parameters are defined

by the vector m. The parameters m can be determined from a measurement

data d (7). All measured data has inherent noise n, so the data d can be

defined as:

d = d0 + n (2.1)

The dependence of d on the model parameters m is defined by a function f

such that

f(m)− d = 0 (2.2)

5



2.1 Forward Modeling

The function f in eq. 2.2 is the forward model, which is the “key factor gov-

erning the solvability of an inverse problem” (7). Forward models for wave

propagation produce predictions of output signals at different source and re-

ceiver positions at some time t. Forward models can be formulated from

observations, physics, and simulations (numerical implementation of physical

models, as shown in fig. 2.1) (1).

For seabed classification the precise values of parameters is not necessary

because a large range of parameter values can lead to the same classification.

In other words, the classification problem can be somewhat easier than trying

to obtain precise values for each of the parameters. The model used will de-

fine what parameters classify the seabed and how accurately these parameters

model the environment. Acoustic propagation can, in general, be non-linear

in nature which makes the forward model f complicated (7). However, most

models are linearized making them somewhat less realistic but more com-

putationally feasible. In any case, model selection is based on a variety of

constraints including the complexity of the classification problem and the ap-

proximations used in the formulation of the model. The parameterization as

well as the approximations can sometimes cause the system to be underdeter-

mined or overdetermined (7). Overdetermined systems have more equations

than unknowns, while underdetermined systems have less equations than un-

knowns. Later sections will provide more details on the specific approximations

and constraints.

6



Figure 2.1: Types of forward modeling

2.2 Inversion Methods

After a forward has been selected selected, an inversion method is required

to estimate the parameters m. The main goal of an inversion method is to

find the optimal parameters that minimize the error between the simulated

and measurement data. The optimal values are found by exploring the search

space (parameter values) (10). Initially, modeled signals are produced and

compared to the measurement data. If the simulated signals are defined as

d̂ = f(m, t) and the measurement data is d the optimal solution would be:

d = d̂ (2.3)

Signals are produced by the forward model is compared to the real signal

using a difference metric which is defined by a cost function. The difference

or error between the simulate and measurement data is minimized by the
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following process: a new model prediction is compared to the measurement

data, an the error is quantified through the cost function. The result is then

compared to the previous ‘best’ fitting value. This process is repeated over

and over again until some predetermined error value is reached or all possible

model predictions have been produced. This structure is shown in fig. 2.2.

8



Figure 2.2: Inverse modeling cycle
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Chapter 3

Background on Propagation and Scattering

To gain a better understanding of interface scattering forward models and

inverse methods, this chapter introduces wave theory and scattering.

3.1 Wave Theory

Fundamentally, scattering models are based on the physics of wave propagation

and are solutions to the acoustic wave equation. The acoustic wave equation

is derived from hydrodynamics, see (11) for derivation.

In the underwater acoustic environment, the material properties change

slowly over time allowing certain parameters to be assumed constant or slowly

varying. Specifically, density ρ and sound speed c. Under this assumption the

wave equation can be defined in terms of pressure P :

∇2P − 1

c2

∂2P

∂t2
= 0 (3.1)

In order to simplify the solution of the wave equation, a transformation

from the time domain into the frequency domain is made (11). This pro-

duces the Helmholtz equation defined in 3.2 where Ψ is defined as the particle

displacement potential (from which pressure can be derived), (11).

(
∇2 + k2(r)

)
Ψ(r, ω) = 0 (3.2)

10



3.1.1 Solutions to the Wave Equation

The solution to the wave equation depends on the boundary conditions in-

cluding what is being referred to in this report as the interface roughness

parameters. It also depends on source-receiver geometry, frequency and band-

width, and sound speed (11). In this research the medium of propagation

is assumed to be homogeneous, resulting in a wavenumber k that no longer

depends on location in space, r. This assumption leads to a simple solution

to equation 3.2 in the Cartesian coordinate system. In fact, an exact integral

solution can be found, which will be presented and used as reference ground

truth in the model validation section.

To find a solution to the wave equation requires the Laplacian operator,

which is unique to coordinate system: Cartesian, cylindrical, and spherical. In

Cartesian coordinates the Laplacian operator is defined as:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.3)

In cylindrical:

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r

∂2

∂φ2
+

∂2

∂z2
(3.4)

In spherical:

∇2 =
1

r2

∂

∂r

(
r2∂Ψ

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂Ψ

∂θ

)
+

1

r2sin2θ

∂2Ψ

∂φ2
+ k2Ψ (3.5)

Acoustic sources can be arranged in different geometries that produce dif-

11



ferent solutions to the Laplacian operator. For example, in cylindrical coordi-

nates a uniform line source reduces the Helmholtz equation to:

[
1

r

∂

∂r
r
∂

∂r
+ k2

]
Ψ(r) = 0 (3.6)

The solution can be described as Bessel functions or in terms of Hankel

functions. The Bessel function solution is:

Ψ(r) =


AJ0(kr)

BJ0(kr)

(3.7)

The solution in terms of Hankel functions is:

Ψ(r) =


CH

(1)
0 (kr) = C[J0(kr) + iY0(kr)]

DH
(2)
0 (kr) = D[J0(kr)− iY0(kr)]

(3.8)

Note that C represents converging waves while D represents diverging waves.

As kr −→∞ the Hankel function is approximately equal to:

H
(1)
0 (kr) ≈

√
2

πkr
ei(kr−

π
4

) (3.9)

The Laplacian in spherical coordinates, for a point source, only depends

on r, the distance from the source, so φ and θ in the Laplacian are 0 resulting

12



in the Helmholtz equation being:

[
1

r2

∂

∂r
r2 ∂

∂r
+ k2

]
Ψ(r) = 0 (3.10)

With the solutions:

Ψ(r) =


A
r
eikr

B
r
eikr

(3.11)

A summary of theoretical approaches to propagation modeling based on

the wave equation is shown in Fig. 3.1. (This figure uses a slightly different

notation for the wave equation but should easily translate.)

3.1.2 Plane Wave Approximation

A plane wave approximation can be used to reduce the complexity of solving

the wave equation. Plane waves define an acoustic field that only depends on

the spatial coordinate in the direction of propagation (12). This type of wave-

front is not a realistic phenomena but is a useful approximation of spherical

waves far from the source (13). Figures 3.2 to 3.4 illustrate a spherical source

propagating over space, as the wave gets further from the source it becomes

more planar in shape, explaining the practicality of this approximation (14).

However, there is a constraint on the valid region in which the plane wave

approximation can be made. Depending on the frequency, The distance d

required can be found using eq. 3.12.

f <
c

2d
(3.12)

13



Figure 3.1: Summary of relationships among theoretical approaches for prop-
agation modeling (Source((1))
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Figure 3.2: Spherical point source

Figure 3.3: Spherical wave propagation away from point source
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Figure 3.4: Spherical wave propagation far from point source

Under the plane wave approximation the propagation direction can be

defined in terms of a single coordinate, x in the Cartesian coordinate system

(15). The resulting solution when ky and kz equal 0 is:

Ψ(x) =


Aeikx

Beikx
(3.13)

In terms of pressure P this equation can be re-written as:

P (x, t) = P0e
j(ωt−kx)e−αx, (3.14)

where α is a loss term.
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3.2 Transmission Loss

The acoustic intensity for an approximate plane wave with amplitude P is

given by:

I =
P 2

2ρc
in Watts/m2. (3.15)

However, it is important to realize that intensity diminishes with distance (for

non-planewave propagation) due to geometrical spreading, which is referred

to as transmission loss: the reduction of the signal intensity over the distance

traveled d (16). Transmission loss TL is defined in dB as:

TL = 10log10

(
I0

Ir

)
, (3.16)

where I0 is the acoustic intensity at a point 1 meter from the source and Ir

is the received intensity at some receiver at a location r (11). The signal

loss observed is caused by spherical/cylindrical spreading that attenuates the

signal as it propagates due to the source/receiver geometry (often referred to

as geometric spreading loss). It can also attenuate from the α losses introduced

earlier which is due to the medium itself.

The transmission loss from a single point source is illustrated in fig. 3.5.

Note, that in environments with multiple reflections off boundaries, the

transmission loss can be complicated and are not as simple as these direct

propagation equations. However, these more complicated cases usually require

numerical solutions.
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Figure 3.5: Single point source transmission loss

3.2.1 Geometric Spreading Loss

Spreading loss is a measure of signal weakening due to geometrical spreading of

the propagating wavefronts. In underwater acoustics there are two important

geometries to consider for spreading loss: spherical and cylindrical (17).

Spherical spreading, as shown in Fig. 3.6, results from a point source in a

medium that is unbounded and homogeneous such that the wavefronts retain

a spherical shape. The intensity of the signal decreases with distance r as an

inverse square (16). For a source of constant power P spreading loss is defined

in eq. 3.17.
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Figure 3.6: Spherical spreading from point source

I(r) =
P

4πr2
(3.17)

If a medium has an upper and lower boundary the wavefronts emitted from

a source are often better approximated as cylindrical in shape. The intensity

of these signals decreases with distance r as an inverse (16). If the power P is

constant and dc is the width of the cylinder the intensity is defined as:

I(r) =
P

2πrdc
(3.18)

However, in most cases a far field approximation is made so geometric

spreading loss occurs at a rate of 1
r

(16).
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3.2.2 Attenuation

Attenuation losses can be attributed to frequency dependent absorption and

scattering (18). The wave equation, defined in eq. 3.14, incorporates the

attenuation coefficient α, which has dimensions length−1, equivalently (Np/m)

(16). The attenuation coefficient can be defined as a proportional intensity

change during propagation by:

dI

I
= −2αdx (3.19)

integration of which gives,

Ir = I0exp(−2α(xr − x0)). (3.20)

Attenuation from scattering is caused by, for example, inhomogenities in the

seafloor caused by rocks or other irregularities.

3.3 Scattering and Reflection

As sound waves propagates through the ocean they are reflected, transmitted,

or scattered by the surface and bottom (19). The variation of sound speed,

which varies due to density, temperature, and salinity causes the waves to

refract in a way similar to light through a lens (19). Analogous to the index of

refraction that causes light to reflect and scatter, the characteristic impedance

ρc in different rough interfaces in the ocean cause sound waves to reflect and
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scatter (1). The scattering and reflection processes are described in high level

schematic shown in Fig. 3.7.

Figure 3.7: High level schematic to describe acoustic rough interface scattering
(adapted from (2))

In the case of a plane wave, the reflected signal is coherently reflected in

a direction symmetric with its grazing angle (18). The loss observed in the

reflected signal can be quantified by the reflection coefficient, derived from

Snell’s Law, of the interface defined below:

R =
ρ2kz,1 − ρ1kz,2
ρ2kz,1 + ρ1kz,2

(3.21)

Consider the case of a perfectly flat homogeneous medium where scattering

can be ignored (1). In this idealized case, the spherical wave propagates from

a source and interacts with a flat seabed causing the energy to reflect back

towards the source and be partially transmitted through the boundary (1).

The reflectd pressure field is defined in eq. 3.22. Note, this equation does not
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include an attenuation factor α. That means the reflected signal is simply the

source signal with less intensity defined by the geometry of the source and

receiver and the boundary loss.

P = R
P0

r
eikr (3.22)

A realistic seafloor is generally not homogeneous or flat due to its proper-

ties varying randomly in space. The amount of energy scattered is a function

of density, sound speed and size of aberrations in the propagation path (e.g.,

roughness) (18). The frequency of the transmitted signal also affects the scat-

tered field because the reflection coefficient can depend on frequency and the

roughness appears different as acoustic wavelengths change. In particular the

wavelength dictates the amount of scatter caused by a given reflector. Under

the assumption that all incident power is scattered isotropically the scattering

cross section for an interface is:

σsr = 4π

(
Isca
Iinc

)
(3.23)

where Isca is the intensity scattered from a unit surface measured one meter

from the source (18). The scattering cross section can be defined by different

parameters such as scattered intensity, or in terms of the roughness root mean

squared height and correlation length, spectral strength.
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Chapter 4

Scattering Modeling and Methodology

4.1 Motivation

Scattering models for acoustics were investigated as far back as World War II

to improve the understanding of sonar systems in support naval operations (1).

Despite initial research having military applications, numerical models of the

ocean as an acoustic medium have been widely published in open literature.

Over time the interest in interface scattering and its applications outside the

military grew. Recently, interest in remote sensing using low-frequency side

scan sonar has grown (20). However, in low frequency applications, analyzing

the short range acoustic propagation is dependent on source-receiver separa-

tion, source frequency, and ocean depth (11).

4.2 Model Considerations

4.2.1 Systems for Classification

Constraints and considerations in model selection are impacted by geometry

and the type of source and receiver that define the physical space and propa-

gating parameters. An acoustic source vibrating produces a wave motion that

propagates through the surrounding medium (e.g. air or water); the catalyst

of wave propagation is the variation of pressure in the outside medium, and for
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this reason, sound waves are called pressure waves (18). The speed at which

the acoustic wave propagates is a function of the medium, while the shape and

bandwidth of the acoustic wave is determined by the source. The receivers of

acoustic waves in underwater applications are typically called hydrophones:

transducers that convert pressure into a voltage signal; underwater sources,

on the other hand, are comprised of transducers that can be arranged in dif-

ferent geometries: uniform line, point, etc. (21). Often, sound sources are

treated as point sources although it is common for these to not radiate uni-

formly in all directions but to have some inherent directionality. Sometimes,

this is by design and other times simply due to the transducer geometry. The

transmission of acoustic signals from a source followed by reception of the

echo (reflection) off a boundary is an example of an active sonars (SOund

Navigation and Ranging) (21).

Single-beam echosounders (SBES) are a type of active sonar primarily used

to determine the distance to the seabed and are comprised of one or more

transducers typically mounted to the hull of a ship as shown in fig. 4.1. SBES

operate at near vertical incidence with a small receptive field that produce

narrow beam signals at specific frequencies (21). The narrow beam pattern

produced lends itself to also being used for seabed classification (22). The re-

turned acoustic signal contains both normal incident (specular) and backscat-

ter information from the seabed (14). This information about intensity and

signal spread due to scattering can then be combined across successive points

along the seabed to produce a wider area for the classification of the bottom
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type (22).

Figure 4.1: Single beam echosounder (Source (3))

Sidescan sonar (SSS) are another active sonar typically used to image rather

than classify the type of the seabed (22). This acoustic system can be mounted

on AUVs or towed close to the bottom with transducers on each side. The

sonar transmits in a nearly horizontal direction that sweeps the bottom (21),

as shown in fig. 4.2. This means the receptive field of the SSS is larger than

the SBES since the acoustic signal covers a larger ensonified area due to the

geometry of the source and receiver. An image is formed from a returned echo

using the intensity of the returned signal over multiple pulses in time (14).
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These types of acoustic systems are generally more useful in the detection of

small isolated features such as coral and rocks (22). However, these features

can also dictate what bottom type and interface roughness parameters are used

for seabed classification. To accomplish this, again the normally incident signal

is extracted from the SSS but the processing requires an array of hydrophones

so that the received signal can be beamformed (spatially filtered) to extract

the normal incident returns.

Figure 4.2: Side scan sonar (Source (3))

Both the SBES and SSS acoustic systems perform differently for classifi-

cation and typically operate at different frequencies. The frequency range of
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the signal places constraints on the valid regions of scattering approximations,

since the frequency range is directly linked to the wavelength. In particular,

low frequency signals can have longer wavelengths therefore “see” the rms

height and slope of the seabed differently than shorter wavelength signals.

Further, lower frequency signals can penetrate deeper into the seabed possibly

scattering from different features in the seabed compared to a higher frequency

signal. The scattering models that will be presented use approximations that

require the ratio of wavelength to seabed rms height and correlation length to

be within a constrained range of values. One of the issues considered here is

the wide range of frequencies that may be needed for this application.

4.2.2 Model Approximations

Determining if the forward model can be used within a frequency range of

interest is dependent upon the approximations used in the model.

Kirchhoff Approximation

The Kirchhoff approximation applies to surfaces having arbitrary height and

slope but requires a local radius of curvature Rc that satisfies:

Rc ≤
λ

π sin3 θg
(4.1)

where θg is the grazing angle of the acoustic wave on the seabed (23).

This approximation is also called the tangent plane approximation since

the region ensonified is considered locally planar (4). The structure function
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D corresponding to the isotropic spatial spectrum W (24),

W (K) =
w2

Kγ2
(4.2)

is given by,

D(r) = C2
hr

2α (4.3)

Where,

C2
h =

2πw2Γ(2− α)2−2α

hγ0α(1− α)Γ(1 + α)
(4.4)

and

α =
γ

2
− 1. (4.5)

Note that Γ is the gamma function and the α here is unrelated to the atten-

uation of the propagating wave described earlier (the notation used is to be

consistent with the published literature but the context should make it clear

which value is represented). Parameters derived from the structure function

parameters α and C2
h

qc = C2
h21−2αk2(1−α) (4.6)

a =

(
8α2Γ(

1

2α
+

1

2
)

Γ(
1

2
)Γ(

1

α
)Γ(

1

2α
)

)2α

(4.7)

b =
a

1
2
− 1

2αΓ(
1

α
)

2α
(4.8)
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The resulting approximation for the Kirchhoff backscattering cross section

σkr(θ) is,

σkr(θ) =



bqc|R(90)|2

8π[cos4α(θ) + aq2
c sin4(θ)]

1+α
2α

, θ ≥ 40

0 θ < 40

(4.9)

It is important to note that this approximation is valid for near normal

incident angles and small RMS slope (25). This approximation is commonly

used, since the seabed can generally be assumed to be smooth, with a root

mean squared slope that rarely exceeds 10 degrees (11).

Rayleigh-Rice Approximation

The Rayleigh-Rice Perturbation method models the scattered field as super-

imposed plane waves (26). This type of field is assumed to be valid arbitrarily

close to the rough interface. The bottom backscattering cross section in the

Rayleigh-Rice perturbation approximation defined as:

σpr = 4k4 sin4(θ) |Y (θ)|2 W2(Kθ). (4.10)

In this expression Y (θ) is the complex function

Y (θ) =
(ρ− 1)2 cos2(θ) + ρ2 − κ2

[ρ sin(θ) + P (θ)]2
(4.11)
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where P (θ) and κ (the complex wave number ration) are defined as:

κ =
1

v
(1 + iδ) (4.12)

P (θ) =
√
κ2 − cos2 θ (4.13)

The power spectrum W2, for random bottom relief appears in Eq. (27).

W2(K) =
w2

(h0K)−γ
(4.14)

It is evaluated at the wavenumber

Kθ =

[
4k2 cos2(θ) + (

k

10
)2

] 1
2

(4.15)

The term involving k
10

has been added to the usual expression for the argu-

ment of the spectrum. This is done to avoid the singularity in the power-law

spectrum at zero wavenumber (i.e, as θ −→ 90); this is somewhat arbitrary

modification of the usual small-roughness expression only affects the cross sec-

tion for grazing angles near 90, and these angles are unimportant owing to the

interpolation scheme used.

Born Approximation

The assumption that the acoustic wave scatters only once before forming the

scattered wave is referred to as the Born approximation (15). The interaction
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between the incoming wave at some direction r is deflected in a new direction r′

while retaining its amplitude and frequency. Allowing a spatial approximation

of Green’s function is defined as:

G(r− r′) ≈ − e
ikr

4πr
e−ikr

′
(4.16)

More detail on Green’s functions and the Born approximation are given in the

chapter dealing with the forward modeling.

4.3 Seabed Parameters

The seabed parameters that are being solved for are defined in this section. In

addition to the usual medium parameter such as sound speed and density, the

interface roughness (or scattering) parameters also need to be defined. De-

pending on the type of interface roughness and the forward model the rough-

ness parameters can be defined in terms of rms height and correlation length or

spectral strength and exponent. These parameters directly affect the strength

and duration of the echoed (backscattered) signal (20). As previously dis-

cussed, the models of interest will assume constant density and sound speed.

This is justified since the frequencies considered here are relatively high and

the seabed penetration depth relatively low.

Below is a list of seabed parameters:

• h: Root mean squared height of interface

• L: Correlation length of interface roughness
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• v: Sound speed ratio between two mediums

• ρ: Density ratio between two mediums

• δ: Ratio of imaginary wavenumber to real wavenumber

• w2: Strength of bottom relief spectrum (2D)

• γ2: Exponent of bottom relief spectrum (2D)

Examples of bottom types and parameter values is shown in table 4.1.

4.4 Seabed Classification

Although the seabed parameters are being estimated, the objective is seabed

classification which allows some error in how accurately the parameters are

estimated. This is shown in Table 4.1 as there is a range of values for each

parameter that results in the same seabed classification. In this research the

inverse method will find the best fitting parameters and produce a seabed type

based on the return values. The seabed type classification will be split into

three classes: silt, sand and gravel. The roughness type will also be classified

as either smooth, moderate or rough. This classification is based on a simple

but useful scheme developed by the US Navy to characterize seabed types

for various operations. The roughness characterization has some subtleties

however. In other words, one type of roughness isn’t always the same (even

statistically) as another type even if the RMS height is the same. There are

different types of rough surfaces that will be discussed in in the next chapter

and depending on the type, the surface parameters will be different.
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Parameterization of Sediment Types

Sediment
Name

Density Ratio
ρ

Sound Speed
Ratio
v

Spectral Strength
w2

(cm4)

Clay 1.14876 0.9801043
5.175x104,
51.75x104

Silt 1.149182 0.981798
5.175x104,
51.75x104

Fine Sand 1.615902 1.139692 0.0035

Medium Sand 2.151217 1.74087 0.00558833

Coarse Sand 2.313 1.2278 0.00860511

Very Coarse
Sand

2.492159 1.286925
0.012935;

0.026

Gravel 2.5 1.5 0.014

Rock 2.5 2.5
0.01862;
0.0518;
0.20693

Table 4.1: Table of General Sediment Parameter Values (adapted from (4))
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Chapter 5

Random Rough Surfaces

The modeled echo envelope of acoustic signals are dependent on the propaga-

tion medium and interface boundaries, which define the roughness parameters.

In order to model this phenomenon, random rough surfaces are generated.

These surfaces are random processes that represent the variability and un-

certainty in a realistic seabed (27). The roughness distribution is described

statistically through a probability density function which is defined by the dis-

placement from a surface position, the surface slopes, and the temporal and

spatial spectra of the surface in combination with the correlation function(18).

5.1 Gaussian Roughness Spectrum

In underwater acoustics an often made assumption is that the roughness spec-

trum can be approximated using a Gaussian distribution (18). Gaussian rough

surfaces are generated from a Gaussian spectrum that is calculated using rms

height (h) and correlation length (l) (28).

A Gaussian one dimensional roughness spectrum is given by,

W (Kx) =
Lh2

2
√
π

e
−k2xL

2

4 . (5.1)

In Fig. 5.1 a Gaussian rough surface is displayed using an rms height

of 1.5 cm and a correlation length of 0.5 m. The surface has a Gaussian
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curvature resulting in smoothed edges. The appeal of the Gaussian processes

is that they can be completely represented through their first two moments

–mean and variance (27). Due to this, Gaussian rough surfaces can be easily

generated to give a somewhat realistic rough surface.

Figure 5.1: Gaussian random surface

5.2 von-Karman Roughness Spectrum

The von Karman Spectral form is another random surface that is sometimes

used in scattering models (2) and thought of as being somewhat more repre-

sentative of true seabeds. The von-Karman spectrum is defined by the bottom

relief spectral exponent γ, the strength of the bottom relief spectrum w and
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complex wavenumber K. The one dimensional spectrum is defined as (4):

W (Kx) =
w1

(K2
x + 1

L

2
)
γ1
2

(5.2)

To transform from the one dimensional case to the two dimensional case w1

and w2 are related through the following equations.

First find γ2

γ2 = γ1 + 1 (5.3)

w2 = w1 ∗
Γ(γ2

2
)

√
πΓ
(
γ2−1

2

) (5.4)

Below is the equation for the two dimensional von-Karman spectrum:

W (K) =
w2

(K2 +K2
0)

γ2
2

(5.5)

The mean-squared roughness height in this case is

h2 =
2πw2

(γ2 − 2)Kγ2−2
0

(5.6)

The von Karman spectrum approaches a constant value as wavenumber

approaches zero, and for large wavenumbers (K >> K0) approaches zero as

an inverse power of wavenumber (2). This phenomenon is shown in fig. 5.2 .

The roughness spectrum is also assumed to follow the simple power law,

which simplifies the spectral equation. Based on the simplified von Karman

spectrum defined in eq. 5.7, it can be shown that spectrum only depends on the
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Figure 5.2: von Karman spectrum
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magnitude, K. This comes from the assumption that the seafloor roughness

is isotropic.

W (K) =
w2

Kγ2
(5.7)

The rough surface created using the von Karman spectrum, shown in fig.

5.3, is a more realistic interface than a Gaussian random surface since it com-

bines sharp and smooth edges.

Figure 5.3: von Karman random surface
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Chapter 6

Numerical Model Theory and Validation

There are many forward models that have been developed for underwater

acoustics application and these have been defined and discussed in detail (see

for example, (11)). The model being proposed for this work is ray based and

develped by Pinson and Cordioli (4). This section will present the Pinson-

Corioli model along with two others for comparison and validation.

6.1 Pinson-Cordioli Model

The Pinson-Cordioli model was developed to study the influence seabed rough-

ness has on sound speed profile measurement uncertainties (4). This was

mainly to improve results from bathymetric surveys. However, in this research

the model is used as the forward model in the inversion method to classify the

seabed.

The Pinson-Cordioli model is also a three dimensional model that was

conceived based on the inhomogeneous wave equation using Green’s function

and the ray approximation. More information on ray theory and modeling is

presented in (11) and (21).

This model can be applied to layered and three dimensional environments,

which differs from other wave propagation models. This model defines Ψ(r, ω)

as in eq. 3.2. Including a spatial point source (delta function δ, the Helmholtz

39



equation becomes:

∇2Ψ + k2Ψ = −
Nes∑
a=1

Saδ(r− ra) (6.1)

where Ψ is the displacement potential, Nes is the number of sources, and Sa

is the magnitude of the source signal, r is the receiver location, and ra is the

source position (4).

In order to solve the wave equation, the Born and Kirchhoff approximations

are applied. From the Born approximation for a finite homogeneous medium

Green’s Theorem can be applied.

∆G(r, r′) +

(
ω

c

)2

G(r, r′) = −δ(r, r′) (6.2)

G(r, r′) =
eik|r−r

′|

4π|r− r′|
(6.3)

The derivation of this model results in the following equation:

P (r) = 4πSG(r, r′) + I i(r) + Ir(r) + Is(r) (6.4)

where

I i(r) =

∫ (
G(r, r′)∇nP

i(r′)− P i(r′)∇nG(r′, r)

)
dr′ = 0 (6.5)
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Ir(r) = −
∫ (

G(r, r′)R01∇nP
i(r′) +R01P

i(r′)∇nG(r, r′)

)
dr′ (6.6)

Is(r) =

∫ (
G(r, r′)T10∇nP

s(r′)− T10P
s(r′)∇nG(r, r′)

)
dr′ (6.7)

where R01 is the reflection coefficient, T10 is the transmission coefficient from

one interface to another.

The geometry of the seabed in this model is shown in figure 6.1.

In order to numerically evaluate this model, ray paths need to be calculated

based on the Langston method (29) outlined below:

1. Send a ray parameterized by the angles θ0 and ψ0 from the source to the

receiver.

2. Find the intersection point of this ray on the next surface.

3. Using Snell’s equation, calculate the transmission coefficient.

4. Iterate over all interfaces.

5. Determine reflection coefficient of the surface.(4)

41



Figure 6.1: Pinson model layered rough interface geometry (Source (4))

6.2 Exact integral solution

For validating the Pinson model, an exact solution to 1D scattering has been

determined in Cartesian coordinates using the Helmholtz-Kirchhoff integral

equation (30). The geometric interpretation of scattering for the exact integral

equation is shown in figure 6.2. The boundary is assumed to be a pressure

release surface that falls off smoothly near the ends to avoid edge affects (30).
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The Helmholtz integral formula defines the total acoustic pressure P (r) that

results from an incident field Pinc and a scattered field from a surface S as:

P (r̄) = Pinc(r̄)−
1

4i

∫
s

H
(1)
0 (k(|r̄ − r̄′|)∂P (r̄′)

∂n′
ds′ (6.8)

In eq. 6.8 ∂r
∂n′

is the undetermined normal derivative of the total pressure

on the surface. This derivative can be described by two integral equations by

letting r approach the pressure release boundary giving:

Pinc(r̄) =
1

4i

∫
s

H
(1)
0 (k(|r̄ − r̄′|)∂P (r̄′)

∂n′
ds′ (6.9)

and

∂P (r̄)

∂n
= 2

∂Pinc(r̄)

∂n
− 1

2i

∫
s

∂

∂n
×H(1)

0 (k|r̄ − r̄′|) ∂r̄
′

∂n′
ds′ (6.10)

Once the normal derivative has been calculated via eq. 6.9 or eq. 6.10 the

scattered field can be calculated using eq. 6.11.

Ps(r̄) = P (r̄)− Pinc(r̄) (6.11)

where,

Pinc = exp

(
ik̄inc · r̄[1 + w(r̄)]− (x− z cot θ)2

g2

)
(6.12)

w(r̄) =

2(x−z cot θ)2

g
− 1

(kg sin θ)2
(6.13)
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Figure 6.2: Geometry of exact integral equation

H
(1)
0 (k|r̄ − r̄′|) ∼

(
2

πk

) 1
2

e−
iπ
4

(
eikr√
r

)
e−k̄s·r̄

′
(6.14)

Ps(r̄) = −
(

2

πk

) 1
2

e−
iπ
4

(
eikr√
r

) N∑
n=1

e−k̄s·r̄nbn (6.15)

bn =
∆x

4i
γn
∂p(r̄′)

∂n′

∣∣∣∣rn (6.16)

∆x =
D

N
(6.17)

N number of surface partitions and D is the total surface length.

Since this model integrates over the entire acoustic field it is computa-
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tionally complex and sensitive to the field and grid used in the simulation.

The exact integral model uses a plane wave source in Cartesian coordinates,

however, this source will be changed into a spherical point source for direct

comparison with the Pinson model.

6.3 The Snellen, Siemes, and Simon Model

Single beam echosounders (SBES) are being widely used to classify sediment

properties. The Snellen Siemes Simon Model, which will be referred to as the

Snellen models a SBES echo envelope (5). Modeling of the echo envelope is

based on interface and volume scattering using the Rayleigh-Rice perturbation

approximation. The received SBES signal is modeled as:

y(t) =

∫
A(t)

σb(θ)B(θ)
e−4αr

r4
S(r)dA (6.18)

The schematic of the SBES footprint is shown in figure 6.3.

To numerically compute the returned SBES envelope, the following equa-

tions are defined in terms of the area of the ensonified area.

y(t) =

∫ x2(t)

x1(t)

σb

(
tan−1

(
x

H

))
×B

(
tan−1

(
x

H

))
S

(
2

c
(r2 − r)

)
2πxdx

(6.19)

for t ≤ t0 + T

x1(t) = 0 (6.20)
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Figure 6.3: Geometry of Snellen, Siemes, and Simon Model (Adapted from
(5))
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for t > t0 + T

x1(t) =

√(
ct

2
− cT

2

)2

−H2 (6.21)

for t > t0

x2(t) =

√
c2t2

4
−H2 (6.22)

t0 =
2H

c
(6.23)

r =
√
x2 +H2 (6.24)

r2 =
√
x2

2 +H2 (6.25)

The scattering parameter in eq. 6.19 is σb which is the combination of

interface and volume scattering.

σb(θ) = σv(θ) + σs(θ) (6.26)

6.4 Model Validation

In order to select a forward model, parameters and classification results were

compared between the different scattering models. The accuracy of the Pinson

model is validated by comparison with an exact integral solution and the

physics based echo envelope model. Fifty realizations of Gaussian random

surfaces were generated and passed to each model as input for the seabed.

47



Return echo envelopes were simulated for six surface types: smooth, slightly

rough, moderately rough, considerably rough, very rough, and extremely rough

which are defined in table 6.1. Additionally, three source frequencies were

simulated: 1.5 kHz (low), 5 kHz (moderate), and 10 kHz (high), all using a

bandwidth of 1 kHz.

The exact integral solution provides the most accurate solution because

makes no physics based approximations for interface scattering and will be

used as the ground truth.

A total of nine simulated test cases were analyzed the three models. To

fully compare these models, different seabed types and different source fre-

quencies were simulated to determine the validity of these models at a variety

frequencies. Below is a table that lists the parameters used:

Gaussian Interface Parameterization

Surface Type RMS height (cm) Correlation Length(m)
Smooth 1.25 15.0

Slightly Rough 10.0 5.0
Moderately Rough 5.0 0.75

Considerably Rough 5.0 1.0
Very Rough 7.5 0.5

Extremely Rough 2.5 0.05

Table 6.1: RMS Height and Correlation Length for Simulated Rough Interfaces
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6.4.1 10 kHz Source

A 10 kHz source with a bandwidth of 1 kHz was simulated over the six rough

surfaces defined in table 6.1. This signal was selected, since the physics based

acoustic scattering models are typically valid at high frequencies (2). Overlaid

model comparison of simulated echo envelopes are shown in fig. 6.4 and fig.

6.5.

6.4.2 5 kHz Source

The second source frequency was 5 kHz again with a bandwidth of 1 kHz. This

frequency is utilized in both side scan sonars and single beam echosounders,

which are the acoustic systems of interest in this research. Model comparison

of simulated echo envelopes are shown in fig. 6.6 and fig. 6.7

6.4.3 1.5 kHz Source

Lastly a source operating at 1.5 kHz was simulated to determine if the Pinson

model had a lower bound on valid frequency ranges. Model comparison of

simulated echo envelopes are shown in fig. 6.8 and fig. 6.9

49



Figure 6.4: Pinson model compared to exact integral equation and Snellen
envelope model for different smooth surface types at 10kHz
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Figure 6.5: Pinson model compared to exact integral equation and Snellen
envelope model for different rough surface types at 10kHz
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Figure 6.6: Pinson model compared to exact integral equation and Snellen
envelope model for different smooth surface types at 5kHz
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Figure 6.7: Pinson model compared to exact integral equation and Snellen
envelope model for different rough surface types at 5kHz
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Figure 6.8: Pinson model compared to exact integral equation and Snellen
envelope model for different smooth surface types at 1.5kHz
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Figure 6.9: Pinson model compared to exact integral equation and Snellen
envelope model for different rough surface types at 1.5kHz
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6.5 Summary and Discussion of Modeling Results

Figures 6.4 to 6.9 display the results for all three models over six seabed

types and three frequencies. When the interface is smooth, all models at all

frequencies return very similar envelopes. However, as the surface roughness

increases the Pinson and Snellen models diverge from the exact solution.

In fig. 6.9 the extremely rough surface results for the Pinson model do

not match the returned results from the exact or the approximated envelope

models. Upon investigation this result can be explained by the Kirchhoff

approximation. The constraint in eq. 4.1 is not satisfied in this test case. This

equation can be rewritten as

2kRcsin
3θg ≥ 1 (6.27)

For a Gaussian roughness spectrum, which was used in these test cases,

Rc =
L2

√
12h

(
1 +

2h2

L

) 3
2

(6.28)

This ‘Kirchhoff parameter’ defines the valid region of approximation (30). For

the extremely rough surface, Rc ≈ .03 which means 0.06k sin3 θg ≥ 1. At

normal incidence, this inequality relative to wavelength becomes 12π
100
≥ λ.

This inequality is not satisfied at 1.5 kHz, explaining the results shown in fig.

6.9.

The amplitude and shape of the envelope returned by the Snellen model do
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agree with the results from the exact integral and Pinson model. However, the

smoothing of the envelope tail muddies the differences between rough surfaces.

For example at 5 kHz, the Snellen envelope for moderately and considerably

rough surfaces are almost the same, as are the results for very and extremely

rough surfaces. The over simplification and lack of randomness and the possi-

bility of anomalies in the seafloor make this model have limited applications.

The Snellen model is computationally cheap but it makes large generaliza-

tions about the seafloor, which result in the over smoothed signal envelopes.

Despite the Kirchhoff approximation limiting the range of frequencies below

4 kHz the Pinson model returns results that are more exact than the Snellen

envelope model. The Pinson model can also be applied to non-pressure release

surfaces, 3D geometries and multiple sources. It is a “Goldie Locks” model

choice since it has the best trade off between computational complexity and

accuracy.
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Chapter 7

Inversion and Classification

The forward model has been selected –the Pinson model– and validated so

that it can be applied to seabed classification. However, an inverse method

is another requirement to determine the parameters that define the seabed

types. Most inverse methods involve two stages. First, define a cost function

(cost and objective function will be used interchangeably) C that quantifies

the difference between the measured and simulated data (31). The second

stage is to seek the values m̂ of the parameters in m that minimize the cost

function.

7.1 Objective Function: Huber Loss

The objective (cost) function determines the difference between the real and

simulated data while incorporating constraints (32). There are a variety of ob-

jective functions for parameter estimation, not limited to but including resid-

uals, unweighted least squares, weighted least squares, and multiple linear

regression (31). The most commonly used methods in linear programming are

residuals and unweighted least squares. Residuals are more commonly referred

to as the mean absolute error (MAE) defined in eq. 7.1, where f is the forward

model.

C(d, f(m̂)) = |d− f(m̂)| (7.1)
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Unweighted least squares are simply the mean squared error (MSE) defined

in eq. 7.2

C(d, f(m̂)) =

(∑N
n=1 dn − f(m̂)n

N

)2

(7.2)

The objective function used in the inversion method determines the parameters

space that will be used and how it is updated, so the determining the best

function for the specific problem is crucial (31).

In this research, Huber loss, defined in eq. 7.3 is the objective function to

be minimized,

Cδ(y, f(x)) =


1
2
(d− f(m̂))2 for |d− f(m̂)| ≤ δ

δ|d− f(m̂)| − 1
2
δ2 otherwise.

(7.3)

Huber loss was selected as the objective function for scattering parameter es-

timation because it is robust against asymmetric departures from normality

(33). This is a desirable property in underwater acoustics, since small aber-

rations in the seafloor can cause outliers in the data, especially when the en-

semble size is small. The envelope of the signal is also heavy-tailed or skewed,

which causes mean squared error to become sub-optimal since the deviations

from the empirical mean are greater (34).

Huber loss is a combination of mean absolute error and mean squared

error. The tunable parameter δ determines which error function will be applied

to a specific point. The ability to switch between these two error functions

makes the difference metric. If the error e is >> 1 MSE gives more weight

to outliers, which is undesirable because random noise and interference will
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corrupt the mean value (34). MAE returns the median of the dataset, which

can also be undesirable if the data contains large sections of silence or irrelevant

information. Selecting a value for δ is critical in implementing the Huber loss

function because it determines what is considered an outlier in the data. A

standard value for a Gaussian random process is 1.345 (33).

7.2 Inverse Methods

Parameter estimation problems fall into two categories: unconstrained and

constrained (31). When the parameter vector m is free to take on any values

the problem is called unconstrained optimization. Constrained optimization

means that only parameter values satisfying certain criteria are permitted.

However, constraints play a relatively minor role in most estimation problems,

so generally, both unconstrained and constrained problems can be solved with

the same inversion methods (31).

Inversion methods are iterative in nature. Starting with a given parameter

set m̂1, known as an initial guess, the forward model generates predictions

using a sequence of m̂ values (31). Each prediction is referred to as an iteration,

and the search terminates after a finite sequence of N iterations and m̂ is

selected as an approximation of m. There are three conventional iterative

search methods for linear problems: Newton’s method, the bisection method,

and Jacobi iteration. In non-linear problems, exhaustive search is the most

general iterative search (31). However, all of these methods require the forward

model to be evaluated at every iteration and have a significant computational
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complexity, especially in problems where more than one parameter is being

estimated; these methods are slow and inefficient since a substantial number

of model evaluations are required.

When objective functions are non-linear, direct search approaches are typ-

ically used (31). The most well know are the Nelder and Mead, genetic al-

gorithms, and evolutionary strategies. A directive search strategy requires a

method to generate variations of parameter vectors and decide if the newly

formed parameter vector will be accepted (32). These optimization strategies

all follow the same structure. Define a discrete window of values for each

parameter and update the values accordingly.

Most standard direct search methods use the greedy criterion to determine

if newly derived parameters should be excepted. (32). This decision rule

converges quickly but can get stuck in a local minimum. Misconvergence can

be avoided in most parallel search techniques: genetic algorithms, evolutionary

strategies, etc. (32). Misconvergence can also be avoided by using simulated

annealing (10). Simulated annealing does not require that the parameters

get updated only in the direction of the minimum; instead, this condition is

relaxed, and the algorithm can ’climb’ out of local minima (10).

7.3 Differential Evolution

Seabed classification is a constrained and non-linear parameter estimation

problem, and this research utilizes an evolutionary algorithm to determine

the optimal parameter set (32). Evolutionary algorithms describe a subset
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of dynamic programming inspired by biological structures that minimize an

objective function (35). These algorithms are based on parameter mutation

that follows a simple structure:

• Create a subset of the possible parameter combinations.

• Change the parameter values by some step size, slightly and at random.

• If the objective function value is not improved return to the old param-

eters (35).

There are a wide variety of evolutionary algorithms to chose from when

performing parameter estimation including particle swarm optimization, bees

algorithm and ant colony optimization. Differential evolution was selected as

the optimization strategy in this research.

7.3.1 Motivation

Differential evolution was designed to fulfill four requirements:

1. Utilize nonlinear and multimodal objective functions.

2. Parallelizability to reduce computational complexity.

3. Simple implementation.

4. Consistent convergence to global minimum.

Differential evolution uses a stochastic direct search method that allows non-

differentiable functions to be optimized satisfying requirement 1. Requirement
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2 is met by the vectorization of parameter populations, which can be updated

independently. Differential evolution is simple to implement because it requires

little user input and is self-organizing.

7.3.2 Algorithm

Differential evolution is a parallel direct search method that uses a selected

number of population members, NP that contain a multidimensional parame-

ter vector m̂.

m̂i,G i = 1, 2, ...,NP

This parameter vector is an estimate of the true parameter vector m discussed

in Chapter 2. The subscript G represents the generation of the population

member. The search space is updated or mutated by the following rule. For

each target vector m̂i,G a mutant vector is generated according to

v̂i,G+1 = m̂r1,G + F ∗ (m̂r2,G − m̂r3,G) (7.4)

where r1, r2, andr3 are random indices that are mutually different. F is the

step size that controls the amplification of differential variation (32). The

recommended value of F is .8, but any F ε [0, 2] can be used. An additional

search space parameter is crossover. Crossover (CR) is a constant that exist

in the interval [0, 1] that determines if a parameter value will be updated

to v̂ji,G+1 or remain m̂ji,G at a specific index (32). Note j is the parameter

number currently being observed. For instance in a parameter vector with five

63



parameters j would range from 1 to 5. The process for updating parameters

is,

v̂ji,G+1 =


v̂ji,G+1 if (randb(j) ≤ CR) or j = rnbr(i)

m̂ji,G otherwise

(7.5)

where randb(j) is the jth evaluation of a binary random generator and rnbr(i)

is a randomly selected index (32). This inverse method is summed up in fig.

7.1.

7.4 Inversion Structure

Three seabed types were simulated: silt, sand, and gravel using the values

found in Table 4.1. The simulated measurement data was created using a

linear modulated chirp at 5 kHz with a bandwidth of 1.5 kHz. Noise was

also added to the simulated measurement data to test different signal-to-noise

(SNR) values: 10 dB, 20 dB, and 40 dB. A von-Karman rough surface was

generated with 50 realizations to get an ensemble averaging and the seabed

parameters ρ, v, γ1, and w1 were inverted for. The input to the Pinson 2D

model uses w1 not w2, similarly γ1 instead of γ2. These parameters were

calculated from table 4.1 using eq. 5.3 and eq. 5.4.

The inversion combined the objective function, Huber loss, and the opti-

mization strategy of differential evolution. Both Huber loss and differential

evolution include hyperparameters that must be set prior to evaluation. For

differential evolution: NP = 40, F = .75 and CR = .9 were selected. The
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Figure 7.1: Structure of differential evolution (Source (6))
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Huber loss function was applied to both log and normal amplitude with each

having a different δ value. For log amplitude δ = std(10*log10(d)) and nor-

mal amplitude δ = std(d). Using those parameters the evaluation strategy is

outlined below:

1. Produce or provide an initial parameter value vector to the differential

algorithm.

2. Create predictions using these parameters for 50 rough surface realiza-

tions and average the results. This will be the simulated signal that will

be compared with the simulated measurement data.

3. Find the start and endpoints of the scattered signal envelope to crop out

irrelevant data. This step can also include source and simulation signal

alignment, which has been ignored since this is a purely simulated study.

Evaluation of the objective function

4. For the log amplitude: determine the range of datapoints to compare the

simulated signals to the simulated measurement data. The simulated

measurement data will be corrupted by noise making the tail of the

envelope irrelevant information. In this research 50 datapoints following

the peak were used.

5. Take the absolute difference between the selected portions of simulated

measurement data and simulated signal.
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6. Calculate the Huber loss for the log amplitude.

7. Calculate the Huber loss for the absolute difference between the simu-

lated measurement data and simulated signal.

8. Add the objective function results for both log and normal amplitude.

9. Iterate until a specified time limit has been reached. In this case each

experiment ran for 90 minutes resulting in approximately 4000 parameter

combinations.

7.5 Inversion Results

The tables report the error value between the true and estimated parame-

ters and the cost function evaluation over each parameter is displayed. The

estimated signal envelope with the simulated measurement data is also shown.

7.5.1 Sand

The following section contains the inversion results for the seabed type sand,

which has a roughness type of moderate.

40dB SNR
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Seabed Type: Sand
SNR: 40dB

Parameters True Value Estimated Value Percent Error

ρ 1.81 1.8 0.5525
v 1.18 1.18 0.0
γ1 1.95 1.84 5.6410
w1 0.00225 0.002 11.11

Table 7.1: Inversion Results For Sand at High SNR

Figure 7.2: Cost function evaluation for sandy surface parameters at High
SNR
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Figure 7.3: Real and estimated signal for sandy surface at high SNR

20dB SNR

Seabed Type: Sand
SNR: 20dB

Parameters True Value Estimated Value Percent Error

ρ 1.81 1.70 6.0773
v 1.18 1.26 6.7797
γ1 1.95 1.97 1.0256
w1 0.00225 0.00220 3.5556

Table 7.2: Inversion Results For Sand at 20dB SNR
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Figure 7.4: Cost function evaluation for sandy surface parameters at 20dB
SNR

Figure 7.5: Real and estimated signal for sandy surface at 20dB SNR
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10dB SNR

Seabed Type: Sand
SNR: 10dB

Parameters True Value Estimated Value Percent Error

ρ 1.81 1.56 13.812
v 1.18 1.54 30.51
γ1 1.95 2.3 17.9487
w1 0.00225 0.004 76.8889

Table 7.3: Inversion Results For Sand at 10dB SNR

Figure 7.6: Cost function evaluation for sandy surface parameters at 10dB snr
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Figure 7.7: Real and estimated signal for sandy surface at 10dB SNR

7.5.2 Gravel

The following section contains the inversion results for the seabed type gravel,

which has a roughness type rough.

40dB SNR
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Seabed Type: Gravel
SNR: 40dB

Parameters True Value Estimated Value Percent Error

ρ 2.5 2.54 1.6
v 2.49 2.26 9.2369
γ1 2.15 2.12 1.3953
w1 0.0093 0.0094 1.1828

Table 7.4: Inversion Results For Gravel at High SNR

Figure 7.8: Cost function evaluation for gravel surface parameters at High
SNR
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Figure 7.9: Real and estimated signal for gravel surface at High SNR

20dB SNR

Seabed Type: Gravel
SNR: 20dB

Parameters True Value Estimated Value Percent Error

ρ 2.5 2.6 0.40161
v 2.49 2.5 4.0
γ1 2.15 2 6.9767
w1 0.0093 0.0079 15.4839

Table 7.5: Inversion Results For Gravel at 20dB SNR
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Figure 7.10: Cost function evaluation for gravel surface parameters at 20dB
SNR

Figure 7.11: Real and estimated signal for gravel surface at 20dB SNR
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10dB SNR

Seabed Type: Gravel
SNR: 10dB

Parameters True Value Estimated Value Percent Error

ρ 2.5 2.55 2.0
v 2.49 2.5 0.40161
γ1 2.15 2.3 6.9767
w1 0.0093 0.0096 3.2258

Table 7.6: Inversion Results For Gravel at 10dB SNR

Figure 7.12: Cost function evaluation for gravel surface parameters at 10dB
SNR
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Figure 7.13: Real and estimated signal for gravel surface at 10dB SNR

7.5.3 Silt

The following section contains the inversion results for the seabed type silt,

which has a roughness type smooth.

77



40dB SNR

Seabed Type: Silt
SNR: 40dB

Parameters True Value Estimated Value Percent Error

ρ 1.14 1.14 0.0
v 0.99 0.99 0.0
γ1 1.85 1.84 0.54054
w1 0.00056 0.00059 5.92

Table 7.7: Inversion Results For Silt at High SNR

Figure 7.14: Cost function evaluation for silt surface parameters at 40dB snr
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Figure 7.15: Real and estimated signal for silt surface at 40dB SNR

20dB snr

Seabed Type: Silt
SNR: 20dB

Parameters True Value Estimated Value Percent Error

ρ 1.14 1.18 3.5088
v 0.99 0.98 1.0101
γ1 1.85 1.75 5.4054
w1 0.00056 0.00073 31.0592

Table 7.8: Inversion Results For Silt at 20dB SNR
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Figure 7.16: Cost function evaluation for silt surface parameters at 10dB snr

Figure 7.17: Real and estimated signal for silt surface at 20dB SNR
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10dB snr

Seabed Type: Silt
SNR: 10dB

Parameters True Value Estimated Value Percent Error

ρ 1.14 1.09 4.386
v 0.99 1.03 4.0404
γ1 1.85 2.3 24.2343
w1 0.00056 0.00082 47.2172

Table 7.9: Inversion Results For Silt at 10dB SNR

Figure 7.18: Cost function evaluation for silt surface parameters at 10dB SNR
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Figure 7.19: Real and estimated signal for silt surface at 10dB SNR

7.6 Summary and Discussion of Results

The results presented in the previous section demonstrate the classification

method proposed in this thesis. The parameters v, ρ, γ1 and w1 were inverted

for and the seabed type and roughness can be classified based on the estimated

parameter values. The classifications are based on Table 6.1, which was pre-

sented in the APL High Frequency Handbook. The range of values for each

seabed type are summarized in Table 7.10. The range of values for roughness

type are defined in Table 7.11. These values will be used to gauge whether the

estimated interface parameters correctly classify the seabed type and seabed

roughness.
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Parameter Ranges for Sediment Types

Sediment Type
Density Ratio

ρ
Sound Speed Ratio

v

Silt 1.145 - 1.224 0.9806 - 1.0364

Sand 1.268 - 2.400 1.0568 - 1.3370

Gravel 2.5 - 2.6 1.8 - 2.5

Table 7.10: Parameter Ranges for Sediment Type (adapted from (4))

Parameter Ranges for Roughness Types

Roughness Type
Spectral Exponent

γ2

Spectral Strength
w2

(cm4)

Smooth 2.8 - 3.7 0.000518 - 0.001119

Moderate 2.8 - 3.7 0.001544 - 0.008602

Rough 2.8 - 3.7 0.010573 - 0.20693

Table 7.11: Parameter Ranges for Roughness Type (adapted from (4))
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The classification results for each sediment type are shown in table 7.12.

Classification of Seabed Type Based on Estimated Parameters

Seabed Type SNR
Density Ratio

ρ

Sound Speed
Ratio
v

Classification
Successfully
Classified

Sand 40dB 1.80 1.18 Sand Yes

Sand 20dB 1.70 1.26 Sand Yes

Sand 10dB 1.56 1.54 Undetermined No

Gravel 40dB 2.54 2.26 Gravel Yes

Gravel 20dB 2.6 2.5 Gravel Yes

Gravel 10dB 2.55 2.5 Gravel Yes

Silt 40dB 1.14 0.99 Silt Yes

Silt 20dB 1.18 0.98 Silt Yes

Silt 10dB 1.09 1.03 Silt Yes

Table 7.12: Classification Results: Seabed Type
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The roughness classification results are shown in table 7.13. Note that w1

and γ1 are translated to w2 and γ2 using eq. 5.4 and eq. 5.3.

Classification of Seabed Roughness Type Based on Estimated Parameters

Roughness Type SNR
Spectral

Exponent
γ2

Spectral Strength
w2

(cm4)
Classification

Successfully
Classified

Moderate 40dB 2.84 0.004 Moderate Yes

Moderate 20dB 2.97 0.0044 Moderate Yes

Moderate 10dB 3.3 0.0080 Moderate Yes

Rough 40dB 3.12 0.0188 Rough Yes

Rough 20dB 3.0 0.0158 Rough Yes

Rough 10dB 3.3 0.0192 Rough Yes

Smooth 40dB 2.84 0.00118 Smooth Yes

Smooth 20dB 2.75 0.00146 Moderate No

Smooth 10dB 3.3 0.000164 Moderate No

Table 7.13: Classification Results: Roughness Type

The results in Table 7.12 and Table 7.13 are promising, since the estimated

values fall within the correct classification range. There is some discrepancy in

the roughness classification for smooth surfaces and the estimated parameters.

This could be caused by the true value of w2 falling very close to the smooth-
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moderate boundary. Unfortunately the parameter γ2 cannot be used to infer

the roughness when the value of w2 is near the boundary since it can take on

the same range of values for any the roughness type.

The seabed type is correctly classified for all test cases except sand at low

SNR. The returned value for sound speed does not fall within any specified

range according to table 7.10, which led to the classification being undeter-

mined. If the value ρ was enough to make a classification, however, sand would

have been correctly classified.
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Chapter 8

Conclusions and Future Work

This research presented a seabed classification method based on measure-

ments of normal incident acoustic reflections from a sidescan or single beam

echosounder. New techniques that were utilized in seabed classification in-

clude:

• Inversion modeling was used for multiple parameter classification as op-

posed to prior work that searched for a single parameter.

• The forward model was validated against an exact and approximate solu-

tion at low frequencies. Most underwater acoustic research has utilized a

higher frequency range, but lower frequencies have applications in seabed

mapping, specifically with single beam echosounders.

• The inversion technique was not an exhaustive search over parameters;

instead, differential evolution was applied to the parameter search space.

• Huber loss was used as the objective function to measure the difference

in the data and modeled signals due to the robustness and tunability.

The results of the presented classification method are promising when com-

pared with the APL Handbook definitions for bottom types; however, certain

SNR values and seabed types were misclassified or undetermined. This leaves

room for additional model and parameter tuning along with an exploration
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into the relationship between each parameter. The Huber loss function could

be optimized by searching over different values of the δ parameter. Along with

the step size and cross over probability in differential evolution.

Additionally, the inversion time could be extended to allow for more pa-

rameter combinations, especially at low SNR or the parameter search could

be split into two parts. Initially, the sound speed and density could be found

while keeping the other parameters fixed. After those parameters have been

determined, set them as fixed and search over w1 and γ1.
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