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Abstract

The identification of isomorphisms between disparate systems is an important

focus of systems science. Such isomorphisms have not only conceptual and peda-

gogical value to systems science, but they also provide pragmatic value to specific

disciplines by suggesting new ways to model familiar phenomena and by serv-

ing as reference models that show how even simple models can generate complex

behavior. Specifically, this dissertation looks at certain classes of stochastic dy-

namic systems (SDS) and shows that similar equations can model phenomena in

sociology and psychology. In both disciplines, what is modeled by these SDS iso-

morphisms is a certain type of reliability, defined as the satisfaction of constraints,

expressed in terms of first passage (exit) times to boundaries.

In mathematical sociology, the work revisits older literature on Markov mod-

els of occupational mobility and generalizes it to show how SDS can model intra-

generational mobility and escape from poverty traps. By looking at exit-times and

exit-probabilities of escape from such traps, it points out features of social dynam-

ics, such as transients, which are often missed by equilibrium macroeconomic and

macro-sociological models.

In mathematical psychology, the work looks at literature on drift-diffusion

models (DDM) of time constrained judgment and decision making. Inspired by

models of escape from attractor and stochastic switching dynamics in simple neu-

rophysiological processes, it proposes extensions of DDM, again illustrating the
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role of exit-times and exit-probabilities. These models could serve as null reference

models for experiments in cognitive psychology and motivate new experiments.

From the highly biology-centered systems science perspective, the probability

distribution (and its moments) of the first exit out of a region in state space has

a natural biosemiotic interpretation in terms of viability or lack thereof. Poten-

tial applications to modeling biological behavior are also sketched in this work.

The SDS approach connects with Ashbys law of requisite variety, Simons concept

of satisficing, and Holling’s dynamic systems idea of resilience. Thus in addi-

tion to offering new ways to model phenomena in the social sciences and biology

and suggesting new mathematical and scientific questions worth pursuing, the

models developed in the dissertation add to the repertoire of significant systems

isomorphisms, continuing the tradition of Ashby’s Introduction to Cybernetics

and Zwicks forthcoming Elements and Relations.
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1 Introduction

This dissertation is motivated by a desire to understand the surprisingly determin-

istic behavior of agents in the presence of stochasticity, especially the reliability 

of this behavior. The general nature of this behavior requires a study centered 

around general principles. This makes it an ideal candidate for a systems ap-

proach. After constructing a specific notion of reliability, we find isomorphisms 

between social and psychological processes that demonstrate how this same notion 

of reliability can be used in sociology to understand escape from poverty traps, 

and in psychology to understand decision making. Along the way, we discover 

connections within related sub-fields in sociology and psychology, illustrating the 

utility of systems approach in scientific inquiry and mathematical exploration.

Systems isomorphisms are distinct from more pervasive interdisciplinary iso-

morphisms. Interdisciplinary isomorphisms arise out of tools shared by epistemic 

communities; such isomorphisms have a serendipitous characteristic and are typi-

cally surface level similarities. Systems isomorphisms are more general but also of 

a specific kind. Any given systems idea involves an interplay of three aspects: a 

conceptual aspect, a scientific aspect and a mathematical aspect. A scientific con-

cept, via a mathematical formalization, is generalized at the conceptual aspect. 

The newly generalized concept can now be used for scientific inquiry in other 

disciplines. Models resulting from such inquiries in different disciplines share sim-

ilarities. These model similarities are the systems isomorphisms.
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The conceptual aspect anchors any particular systems point of view. In the

highly biology-centered perspective [137], the conceptual aspect is based on an

assortment of ideas emphasizing biological semantics and the biological level.

However, this work prefers a more mathematically precise version. Here, the

conceptual aspect is anchored around a generalized biology. In this point of view,

the conceptual aspect is more abstract than the scientific aspect. It carries with it

a general biology like semantics.The mathematical level is more abstract than the

conceptual aspect with no semantics associated with it. In going from a scientific

aspect to a conceptual aspect, a scientific aspect can be thought of as being lifted

from the scientific domain and generalized at the conceptual level. By lifting a

scientific concept and treating it as a systems concept, models associated with the

original scientific concept are available to be used in disciplinary scientific inquiry

in fields unrelated to the original scientific concept. The isomorphisms identified

in this work have this genesis. The above process of lifting is visualized in Figure

1.1.

The approach presented here, especially the idea of lifting, is aligned with

Bunge’s conception of systems philosophy [27] as an exact and scientific meta-

physics. As will be discussed subsequently, the dissertation aspires to lift biologi-

cal reliability to an exact metaphysical concept, in the sense of Bunge. In doing

so, we illuminate the importance of constraint satisfaction, more specifically a

temporal version of constraint satisfaction, discussed in disparate disciplines un-

der various guises. A successful synthesis of a systems idea does not guarantee

the applicability of such a systems idea in every scientific domain. As Bunge ar-

gues [27], Popperian refutability is not applicable to systems theories; either an

idea is useful in a specific scientific context, or it is not.

The concept that is generalized here is a type of reliability of biological be-
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havior. The first step of lifting to the systems aspect is broken down into two

smaller steps. In the first, by appealing to connections between physiology and

behavior, one can reinterpret certain characteristics of nanoscale and microscale

physiological processes and the mechanisms underlying them as being reliable,

especially the ability of these processes to generate low failure rate behavior, even

under high ambient stochastic conditions. These micro and nano scale processes

are modeled by a certain class of stochastic dynamical systems (SDS). First-exits

or first-passage times of these SDS are adequate descriptors of transient charac-

teristics of these biological processes [66]. For example, in the dendritic spines of

neurons [54] –projections on the cell body that serve as chemical isolation com-

partments, Ca+2 ions are trapped and isolated from the rest of the neuron. When

a neuro-transmitter molecule docks onto these spines, the trapped ions are released

through a narrow-exit. The precise geometry and topology of the spine determine

the typical time it takes for the ions to escape out of these spines. Such release

timescales are highly deterministic in spite of the stochastic nature of sub-cellular

environments. Over the course of an organism’s life, these spines change their

shape, tuning their time constants to match both upstream and downstream bio-

logical processes. These characteristics display a certain kind of determinism that

is surprising given the highly stochastic environment in which the processes take

place. This determinism has biological significance for other physiological pro-

cesses that happen downstream. Biophysical and biochemical parameters driving

the processes seem to be fine tuned to produce this same surprising1 determinism,

all without the use of control modules, and only with constraint satisficing. In the

1In the disparate disciplines focused on explaining the macro from the micro, emergence
of determinism from underlying stochastic is of interest. While it is easy to see determinism
emerge from microscopic randomness in physical systems, the emergence of determinism at the
meso-scale –the level of physiological processes, from stochastic processes at the same scale, or
at lower levels, is novel, and hence surprising.
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second step, by identifying reliability with these characteristics, the characteristics

of behavior at higher levels can be modeled.

Though the biological conception of reliability is more important for this disser-

tation, models of reliability conceived and often used to characterize engineering

structures serve as template for the mathematical models of biological reliabil-

ity presented in this dissertation. Reliability is quantified in a variety of ways

in engineering: some focus on risk assessment; some on functional readiness of

systems; some on fault tolerance, and many others. This dissertation identifies

reliability with the quantification of time-dependent failure probability. Such mea-

sures of reliability continue to be used in the analysis of reliability of engineering

structures, especially to study forms of mechanical vibrational instabilities under

environmental stochasticity [127].

Models of these mechanical structures are based on nonlinear stochastic sys-

tems. Time evolution of such systems is calculated as solutions of Fokker-Planck

equations. In all cases, a multidimensional nonlinear dynamical system is assumed

to be perturbed by Gaussian noise. In such mechanical systems undergoing os-

cillations, the time it takes for the oscillation to cross a certain threshold is an

important empirical quantity important for objectively characterizing the system’s

fault tolerance. These empirical measures are often identified with statistics of

first-passage time of the stochastic model, and the same measures are used to

quantify temporal characteristics of micro and nano physiological processes dis-

cussed previously.

This generalized concept of reliability at the systems level comes with math-

ematical models of reliability based on SDS (Section 4 of this chapter). This is

then used for scientific inquiry in sociology (Chapter 2) and psychology (Chapter

3). In sociology, the concept of reliability is associated with dynamics in and

4



out of poverty traps. In psychology, the concept of reliability is associated with

dynamic judgment and decision tasks. The systems isomorphism identifies sim-

ilarities between social and psychological processes of wealth accumulation and

evidence accumulation. The isomorphism between these two processes extends to

the notion of fine tuning and constraint satisfaction, both lifted from physiology.

In sociology, fine tuning and constraint satisfaction are related to questions of

interest to a social policy maker; specifically, reliability is associated with escape

from such traps. In psychology, fine tuning and constraint satisfaction are related

to questions about satisficing decision and judgment heuristics; specifically, relia-

bility is associated with the successful execution of such judgments and decisions.

In sociology, policy makers may seek to fine tune the environment to produce

reliable escape from poverty traps. In psychology, the decision making modules

may fine tune the parameters underlying the dynamics of evidence accumulation

to produce reliable judgments or decisions. While not discussed in greater detail

like other applications in this work, the isomorphisms extend to models of higher

behavior of artificial and natural agents (Chapter 4).
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Increasing abstrac-
tion, less semantics

Mathematics

Systems Ideas

Science Nano-Micro Physiology

Suprising Determinism

Ethology

Viability

Sociology Psychology

Reliability

Stochastic Dynamical Systems:
Fokker-Planck equation, First-
exit, FPT, MFPT

Systems isomorphism

Model isomorphism

Scientific isomor-
phism

Poverty dynamics Decision dynamics

Figure 1.1: Conceptual diagram illustrating the idea of lifting and systems iso-
morphisms

1.1 Systems isomorphisms and their role in scientific discovery

While a systems approach can be justified on purely philosophical, conceptual

and aesthetic grounds [137], it can be argued to be part of conventional scientific

discovery processes. Different perspectives on this process have been offered.

Hofstadter [65] emphasizes the role of analogical reasoning in scientific discov-

ery. Simon [120, 81] offers a computational take, and works from foraging model

of scientific discovery. Holland and Thagard [68]build on Simon’s perspective

and the concept of coherence to develop a model of induction. Along with these

older positions, modern enterprises like machine learning find transfer learning to

be a key concept underpinning many useful artificial systems. Taken together,

these models of scientific discovery require search and recognition heuristics that

are coherent2. They are meant to capture consistency criteria among scientific

2The notion of coherence is discussed in [68]. The concept as envisioned by Thagard is
a way to seek compatibility of scientific knowledge acquired through inductive, abductive and

6



explanations, theory induction and other steps during scientific knowledge accu-

mulation [68]. Such heuristics allow a transfer of concepts and models from one

domain to another. Systems isomorphisms can be simply thought of as belonging

to such a family of heuristics important for scientific inquiry but only more gen-

eral. Pragmatically, a wider and richer model class is available for inquiry when

we use a systems approach.

Although systems isomorphisms are often biological in origin – as is the case

for the physiological nano/micro models drawn upon here – the applications of

these isomorphisms are not restricted to biological domains. In this sense, systems

isomorphisms can connect different disciplines not usually considered similar to

one another. While an ant colony, an operating system and nervous systems may

be materially different, the essential similarity of their information processing na-

ture makes these systems comparable. This is the spirit behind the identification

of isomorphisms in this dissertation.

Unlike interdisciplinary research which typically links adjacent disciplines (such

as physics and chemistry or chemistry or biology), often via reduction, a systems

approach finds isomorphisms from a range of disciplines. In the present work, the

fact that psychology and sociology might be viewed as adjacent disciplines is in no

way involved in the use of the same mathematical models in both. Having iden-

tified shared characteristics of all these systems, discussions of generalities often

but not always involve the use of biology-like categories. Reasoning and explana-

tions using these generalized biological categories provide insight for the specific

systems in a disciplinary context. For example, using insights in collective animal

behavior in ants [59], models and mechanisms of how immune cells respond to

foreign objects have been built [60]. The same models have been used to develop

deductive means. More coherence a theory or model possesses, the more constraints it satisfies.
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distributive detection algorithms, and have provided insights for collective human

behavior.

In this dissertation, we identify isomorphisms in certain classes of stochastic

dynamical systems (SDS), construct a notion of reliability as satisfaction of con-

straints, and express them as first-passage time to a boundary. The probability

distribution (and its moments) of the first exit out of a region in state space has a

natural biosemiotic interpretation: an interpretation of state space as some kind

of adaptive behavior in the context of the behaving agent’s cognitive ecology, and

ethological importance.

We work with this biosemiotic interpretation, unpack consequences for specific

disciplines (here sociology and psychology, Chapter 2 and 3 respectively), and

demonstrate how this systems approach generates scientific insights for specific

disciplines (Chapters 2, 3 and 4). This is the precise sense in which a systems

approach adds value to specific scientific inquiry.

Below, first, we present core ideas that motivate this work; then, present

the model of reliability; and conclude by summarizing the contributions of this

dissertation.

1.2 Motivation

Biological motivations of this dissertation lie in ethology and physiology. A reverse

engineering orientation allows us to formalize the specific concept of reliability us-

ing systems ideas of Simon, Ashby and Holling. The dynamic nature of behavior,

together with stochasticity, leads us to mathematical theories of stochastic dy-

namical systems which we discuss in section 4.
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1.2.1 Biological Motivation

Two ideas from physiology and ethology are of interest here. In physiology,

nanoscale and microscale processes demonstrate surprising determinism in their

temporal characteristics in spite of ambient stochasticity. In ethology, at meso

and macro scales, reliable behavior has a biosemiotic salience and shares similar

deterministic characteristics, especially in the behavioral primitives underlying

complex sequences of behavior.

Physiology

In On Growth and Form [128], Thompson sketched an outline for applied mathe-

maticians and biologists, inviting them to construct a scientifically rigorous theory

of morphogenesis: the study of how forms arise in biology. This entails that one

acquires an understanding of how genes and biological macromolecules use am-

bient substrate in an environment to produce a specific stable (reliable) shape in

the presence of uncertainty.

The morphospace, the space of all possible shapes, is a very high dimensional

space; if one wanted to enumerate these possibilities, their number would be

extremely large. However, biology seems to operate on a much lower dimensional

space. Research exploring reasons for such a collapse in dimensions have begun

to show [82]how a potentially low-dimensional state space emerges, and points

to the role of environmental constraints in enabling this collapse of dimensions.

Also, this collapse is not an active process –no controls guiding this collapse. This

is consistent with what is known about biological processes; they typically operate

at a narrow set of possibilities. In subsequent sections and in chapters 2 and 3,

this fine tuned nature of biological processes is further elaborated. Since in many
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biological scenarios, shape modulates and makes biological function possible, the

connections to physiology are more than speculative [82].

Patterns are generally associated with regularities in space. However, regular-

ities are possible not only in space but also in time. Patterns can be abstract, or

can be chemical or electrical in nature. If morphology is the study of static pat-

terns, then some aspects of physiology can be interpreted as the study of dynamic

patterns. Such a generalized pattern constrains and enables biological function,

and it is in this sense that physiology and behavior are similar. Just as such

morphology is the scientific study of form, physiology could be envisioned as a

study of generalized spatio-temporal form. And just as morphogenesis involves

the interaction of the internal and the external, physiology also involves similar

interactions. And constraints have a similar role to play in both morphology and

physiology, especially in how it enables reliability. Most importantly, the collapse

of dimensions and matching of parameters to enable function seen in morphology

has analogs in physiology. This has implications for the work presented in this

dissertation.

Recent studies have uncovered details of complex physiological processes at the

nano and micro scale. Common to many physiological processes at those scales

seem to be a certain recurrence of timing based sequence of events. This implies a

certain capacity for the system to exhibit partially deterministic behavior in spite

of the highly stochastic exogenous and endogenous conditions.

Nano and micro physiology

Diffusive particles play a key role in both cellular and molecular biology [115, 67].

The particle trajectory, typically modeled as a Brownian motion, can represent

the motion of molecules, proteins, ions, receptors and various cellular organelles

10



present in cellular membranes and in cellular cytoplasm. In all these cases, the

mean time to reach a target while avoiding obstacles is a key regulator of cellular

function. The cell’s function or behavior is in response to environmental regulari-

ties and the precise relationship between these regularities and internal physiology

is of interest to biologists.

Even though the physics of the system is known in principle via Netwon’s

laws and Maxwell’s equations, the peculiarities of biological matter, the way it

is arranged spatially and the nature of biomolecules that make up the system,

leads to emergence of novel equations [66, 67] at these small spatial and temporal

scales. Not only that, chemical kinetics, which is usually defined for large numbers

of reacting species, breaks down for small numbers, requiring modifications of their

own. Also critical is the role of geometry and topology of the domain in which

these processes take place.

Apart from escape of Ca+2 ions out of dendritic spines discussed elsewhere [20],

other examples include stochastic molecular search mechanisms in the cytoplasm,

receptor docking mechanisms on cell membranes, cytoplasmic viral trafficking,

endosomal viral escape and diffusive transfer of genetic material during cell divi-

sions. In all these cases, the mean time to an event is critical, whether it is for

ion transport or viability of virus inside a cell. The time constant matches some

aspects of temporal regularities of the environment, enabling function3.

Similar processes are relevant in understanding neural excitability [54]. Robust

and stable time constants drive processes at synapses, axons and bio-chemically

localized sub-cellular compartments. In many cases, the time constants are de-

pendent on diffusion type transport of macromolecules and ions within the cyto-

3In all these cases, the models of these biological processes make use of stochastic dynamical
system theories, solutions of Fokker-Planck equations, and first-passage time analysis
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plasm, towards the cell membrane; some processes rely on extra-cellular diffusive

transport and movement on the membrane. Such processes are seen in neurophys-

iological processes at the same scales.

In neuroscience, especially in the literature on neural microcircuits [117, 63],

the importance of such time constants and their implications for downstream

biological function is beginning to be discussed [117, 63]. Also, while diffusion

induced neural spiking and temporal coding is salient in the neural encoding lit-

erature and is discussed in the context of cognitive neuroscience, its relevance

for neuro-ethology is not explicitly discussed. The focus on encoding decoding

mechanisms and neural representations makes neuroscience biased towards cog-

nitive aspects of neural substrate –it pushes aside questions that are relevant

for biological function aside. Importance of reliability and biophysical (neural)

processes enabling it are discussed as such in ethology and neuro-ethology, es-

pecially in the studies of neural microcircuits underlying insect locomotion and

escape response [54, 117, 63]. Since the models in this dissertation are behavioral,

discussions of relevant neuro-ethology are neglected; instead, focus is on whole

animal behavior (ethology) with special attention towards reliability.

The nature of the environmental regularity or irregularity has some shared

characteristics across scales spanning macro and meso level all the way to micro

and nano levels: they are stochastic; the environment possess non-trivial but reg-

ular topological and geometric feature; and possess clear timescales. This suggests

that the same models that are useful in nano and micro physiology are potentially

useful also in meso or macro physiology, i.e., the subject of ethology. This is

not because higher level phenomena are reducible to lower level phenomena, but

rather because isomorphisms exist that make phenomena at both levels similar.
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Ethology

Although very old, Tinbergen’s vision for ethology [129] is still a good start-

ing point for talking or researching principles about animal behavior. His Four

Questions are

• What is its physiological causation?

• What is its function or survival value?

• How has it evolved over time?

• How has it developed in the individual?

Shettleworth [118] summarizes these four questions to be about cause, func-

tion, evolution and development respectively and added fifth question on intralevel

and interlevel integration of different disciplines answering these Four Questions.

Webb [132] expands the discussion to include behavior of artificial agents and is

related to an early work by Brooks [25]. And finally, focusing on higher organ-

isms, Bullock’s work on comparative neuro-ethology [26]4 emphasizes diversity of

neural mechanisms that generate behavior.

Animal behavior is typically documented using ethograms [71], a recording of

behavioral repertoires decomposed into behavioral primitives. An understanding

of these primitives is of general interest to ethologists. These behavioral primitives

can be mathematically characterized and modeled. Among the various observed

characteristics, a behavior’s reliability is the core focus of the dissertation. And

this reliability is often defined by time-to-event constraints that need to be satisfied

4Biological explanations can be structural, functional or historical. Neuroscience mostly
focuses on structural explanations, while neuro-ethology focuses on structural explanations with
function in mind.
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in the presence of stochasticity. In the rest of this discussion (in this chapter and

in Chapter 4), we restrict ourselves to two such primitives.

Escape behavior is evasion in response to typically harmful environmental

signal. Startle response is an abrupt and fast behavior and may be building blocks

of more complex startles. From a modeling point of view, we can ignore the subtle

differences between escapes and startles and in what follows focus on startles,

treating escapes to be conceptually synonymous. Fixed action patterns, on the

other hand, are also triggered by environmental cues, but are spatio-temporally

complex and longer timescale behavior.

Consider an organism with or without a nervous system whose body size and

weight are small enough so that environmental fluctuations induce instability in

the organism’s movement. Suppose the organism is exposed to sudden harmful

stimulus. In response to this environmental signal, the organism must reliably

escape or respond to avoid consequences. Adaptation to exposure to harmful

signals may occur evolutionarily, developmentally or over its life history. Similarly,

consider a situation where the organism, upon presentation of a cue, is expected

to locomote in space. This locomotion, a fixed action pattern (FAP), requires

the system repeat its body configurations over an extended but finite period of

time, in a stochastic environment. The disturbance may wobble and destabilize

locomotion but not by much.

In the case of escape and startles, ideal behavior is one that completes the

act by a definite time. In the case of FAP, ideal behavior is one that maintains

the pattern for a definite time. Both primitives involve time constants; in case of

startles and escape, it is time to viability; in the case of FAP, it is persistence of

viability. It is in this sense that both the processes guaranteeing reliability at the

nano and micro scale are related to behavioral primitives at the meso and macro
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scale.

Typically, both these kinds of behaviors are modeled either using optimality

principles or are built ad-hoc to reproduce behavioral templates. A key ques-

tion is the source of reliable behavior under varying conditions of internal and

external stochasticity. Reliable startle behavior involves movement of the body

of the organism in an environment; it involves avoiding a subset of space of pos-

sible configurations while reaching a subset of final configurations within a fixed

time. Reliable fixed action pattern involves repetitive movement of the body in

an environment while being subjected to uncertainty in conditions both internal

and external to the organism. Also,reverse engineering explanations make use of

control theory based modules to explain reliability. Instead, we find constraint

satisfaction simpler and adequate in many cases. The models of reliable behavior

discussed in section 4 is based on expectation valued measures and is routinely

used in the literature studying reliability of engineering structures. Stronger forms

of reliability require advances in mathematics behind these models. This issue is

addressed in chapter 4.

The particular dynamic systems type of reliability considered in this work dif-

fers from the conventional type of reliability which is defined control-theoretically

and studied in the traditional engineering disciplines. Our focus on dynamic sys-

tems reliability can be justified biologically [26], and it can also be justified by

an argument similar to that of Brooks[25], who denied the need for representation

in control. One can instead think of behavior as being generated by making use

of internal representations. One potential remedial strategy might be to think

of behavior as being generated by merely a biological substrate. Once can call

such a lower form of internal process physiological, as opposed to cognitive; and

can correspondingly consider the dynamic systems type of reliability discussed in
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this work as also lower than the type of reliability that is achieved via control

modules. This work does not seek to replace the cognitive, it merely suggests

that some aspects of control can be regained with a lower form of behavior. We

illustrate this idea with two examples.

Closure of Venus flytrap leaf [49] is an uncharacteristically fast movement

among plants. It is especially interesting given the lack of a muscular system or

a nervous system. The closure of the trap is triggered by stimulation of hairs in

the trap but the post-stimulation movement is a result of mechanical instability.

The rapid closure is not controlled but dynamics arising out of the physics of the

system and is a result of the system entering an instability phase. The parameters

of the system are fine tuned to be at the edge of this bifurcation instability.

Another example is the crawling locomotion of soft-bodied animals [96]. While

such repetitive behavior is usually generated by central pattern generators (CPG),

evidence for CPG in organisms like earthworms and insect larvae is weak. In such

cases, a neuromechanical model that enables rhythmic movement by coupling

the neuro-muscular dynamics with the environment, via friction generated by the

body, is able to generate full organism coordination of patterned crawling. In this

example, even if nervous system is involved, the locomotion is not due to precisely

controlled neural circuits. It is because of fine tuning of parameters of the coupled

dynamics.

Both these examples illustrate one of the main points of the dissertation: fine

tuning without constraint satisfaction –under some circumstances– replace the

need for control modules.

Further discussions of these notions require the generality provided by systems

approaches. While related ideas are already present in the systems literature, the

particular emphasis on viewing behavioral reliability through the lens of physi-
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ology has not been discussed in the literature. Next, we discuss ideas useful for

understanding lifted concepts like fine tuning and reliability. Then we point out

ways in which the ideas presented previously differ from extant ideas in systems

literature.

1.2.2 Systems Science

We find four systems ideas essential to a conceptually and mathematically rigorous

formulation of of the type of biological reliability that we are considering here,

in biochemistry, Monod’s idea [90] of chance and necessity; in decision theory,

Simon’s [121] concept of satisficing; in cybernetics, Ashby’s [5] law of requisite

variety, and in ecology, Holling’s [69] idea of resilience.

Biological reliability is associated with the concept of biological viability. Reli-

ability is a measure of an agent’s ability to stay or reach viable regions of biological

activity. Viability is necessary; once viability constraints are met, other dimen-

sions in the system’s state can be subject of chance, subject to constraints that

make sure the system is viable.

According to Simon, biological optimality is a concept that makes sense only

in the context of environment of an agent. A weaker notion of satisfaction suffices

in lieu of optimization. Satisficing for reliability requires the internal structure

to interact with the environment, via an interface in such a way to guarantee

reliability. In some instances, constraint satisfaction is sufficient for generation of

reliable behavior.

According to Ashby, biological regulation requires internal complexity to match

the agent’s environmental complexity. Variety in the agent’s degrees of freedom

must supersede that of the environment for the system to persist. Maintenance

of viability or time to reach viability requires not only variety but also requires

17



constraints on the structure or topology on the space of internal variety. Fine

tuning and constraints on internal variety without the use of a internal control

module can also generate reliable behavior.

According to Holling, biological resilience requires behavioral states to stay

within a basin of attraction. Escape from a basin of attraction may also make

behavior resilient by taking the system to a more desirable basin of attraction.

This intrinsically dynamic notion of resilience is in contrast to the more tradi-

tional notion of stability. While control modules guarantee stability, constraint

satisfaction via fine tuning can, in principle, guarantee reliability.

Notions like reliability, fine tuning, constraint satisfaction and viability re-

quired the generality of systems ideas. The work of Simon and Ashby is used

to understand the conventional control theoretic points of view. However, it is

possible to discuss regulation and optimality from a lower physiological point

of view. This approach allows the fine tuning discussed in the context of lower

physiological processes and lift it to discuss reliability of biological behavior.

1.3 Systems approach to questions and solutions

Motivations for this dissertation as presented in the previous section are typical of

systems approach. All the aforementioned systems ideas originated in specialized

contexts: Monod’s ideas were a result of his work on molecular biochemistry;

Simon’s ideas arose in his work on administrative and organizational behavior;

Ashby’s ideas were originally conceived for purposes of understanding control

and regular in cybernetic systems; and finally Holling’s ideas were developed to

understand aspects of ecological systems that were dynamical in nature. Systems

approach lifts them out of their disciplinary grounding and leaves them in an
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abstract category of systems ideas.

Similarly, specific questions one is interested in can be lifted to the systems

aspect. If one manages to find answers at the systems aspect, the arrived upon

solutions match the generality of systems discourse, making them solutions in all

disciplines.

In particular, the motivations of this work lie in developing a conception of

stochastic dynamic systems type of reliability at the level afforded by systems

ideas. In particular, both study of biological behavior and study of biological

function underlying this behavior find generalizations at the systems level. And

like other systems ideas, once we provide an exact (mathematical) formalization

of the question and an associated answer, the solution is then potentially appli-

cable in all domains. The applied domains are themselves related by systems

isomorphisms.

The conception of reliability is related to Holling’s notion of resilience and

is based on constraint satisfaction via fine tuning and is different from ideas of

Simon and Ashby. Simon’s notion of satisficing says nothing about the specific

implementation of an internal structure. In typical models of internal structure,

control elements are used. Similarly, Ashby’s law of requisite variety says that the

variety of the regulator should match the variety of disturbances. While control

elements optimize behavior, constraints need to be imposed. The imposing of

constraints can be thought of as restricting the parameters of the internal parts

to a lower dimensional space of possible. It is this restriction that we call fine

tuning.

Having identified interesting ideas from nano-micro physiology and ethology,

we lifted them to the conceptual aspect, elevating them to systems ideas. The

processes at that scale show a certain kind of surprising determinism despite am-
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bient stochasticity. These processes are constrained by physiological structure of

other background processes. Satisfying these constraints require tuning the chem-

ical, electrical and mechanical properties of the substrate. The tuning constrains

the space of the possible. Natural selection forces act like a sieve to constrain the

possible to the viable. Geometry, topology and boundaries of the underlying state

spaces are also constrained. In many instances, viability can be further charac-

terized as also being reliable. The systems approach allows us to lift all this to

a level of abstraction that enables application to these ideas to other unrelated

systems.

In the next section, we formalize this idea of reliability of agents using stochas-

tic dynamical systems, use first-exit techniques used in the field to formalize the

notion of reliability. We then find discipline grounded phenomena in sociology

and psychology that are amenable by these models.

1.4 Models of Reliable Behavior

An exact formalization of reliable behavior in the presence of stochasticity that

unfolds in time and in space requires the model be a dynamical system, contain

stochasticity, has a continuous state space, and evolve in continuous time. The

simplest possible system with all these features is a stochastic dynamical system

with Brownian noise.

dx(t) = v(x)dt+
√

2Ddw (1.1)

where

• x is an one-dimensional state space
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• D is the diffusion constant for Brownian noise w

• v(x) is called the drift coefficient and can depend on the state space

The Brownian noise process or Weiner process w(t) satisfies

• w(0) = 0

• w(t) is almost surely continuous

• w(t) has independent increments

• w(t) − w(s) ∼ N(0, t − s) for 0 ≤ s ≤ t and where N(µ, σ2) is a normal

distribution with mean µ and variance σ2

If one sets D = 0, the noise term vanishes and what one gets is a deterministic

nonlinear dynamical system

dx(t) = v(x)dt (1.2)

While this connection with deterministic dynamical systems makes the system ap-

pealing to motivate, it is not clear how to perform an analysis of such a stochastic

evolution. In order to do this, one needs a mapping to a more rigorous formulation

in terms of measure theoretic probability [74]. In that formulation what is more

natural is the notion of Markov processes.

Markov processes are stochastic processes that satisfy the following independence

relation

P (past, future|present) = P (past|present)P (future|present) (1.3)

and can also be rewritten as
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P (future|present, past) = P (future|present) (1.4)

making it a statement about what knowledge is required to adequately albeit

probabilistically know the future of the system and any given present moment.

From this point of view, ordinary differential equation based dynamical systems

are Markov processes.

Both equations 1.3 and 1.4 can be made precise in measure theoretic terms

and can be rewritten for any stochastic evolution on any kind of state space. In

particular, when the state space is discrete and finite and the evolution discrete.

It becomes a discrete time Markov chain (DTMC) whose evolution is uniquely

determined by the transition matrix

Tij = P (j|i) (1.5)

where P (j|i) is the probability of making a transition from state i to state j at

any given discrete time instant.

One could generalize Markov chains to address the limitation of discreteness

in time by looking at a continuous time discrete space analog of DTMC. The

corresponding evolution equation then looks like

dPi(t)

dt
= GijPi(t) (1.6)

where Gij is called the generator of the continuous time Markov chain (CTMC)

and is the replacement for the transition matrix Tij for DTMC. So, knowledge

about the temporal evolution of the system Pi(t) is a solution to the ordinary

differential equation (2.2) and is known as the Kolmogorov Forwards Backwards
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Equation.

Following this strategy, one could remove the discreteness of the state space

by going to a continuous state space. If one did this, one gets a fairly general

stochastic process called the Markov process. Even if both time and state space

are continuous, knowledge about the system still follows a probabilistic evolution

equation. The generator Gij for CTMC in equation (2.2) is now a partial differ-

ential operator called the Fokker-Planck operator. The precise general form of

the Fokker-Planck operator can get unwieldy but for simple state spaces like state

spaces on real line R and line segment [0, 1], it is equivalent to the following partial

differential equations (PDE) below. Both equations (1.7) and (2.5) are examples

of PDE defined by Fokker-Planck operators.

∂c(x, t)

∂t
+ v

∂c(x, t)

∂x
= D

∂2c(x, t)

∂x2
(1.7)

where c(x, t) is the probability density of finding the system in state x at time

t. It should be noted that this partial differential equation is deterministic, even

though the underlying system is stochastic.

When v vanishes

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
(1.8)

This equation is the classic diffusion equation originally constructed to model evo-

lution of heat conduction in extended finite temperature materials and is identical

to Schrodinger’s equation. They also capture probabilistic evolution of particle in

the absence of drift v.

Just as ordinary differential equations require some initial (boundary) condi-

tions to make them completely and uniquely specified, PDE require boundary
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conditions. Taken together, the equation encodes all the knowledge one can ac-

quire about the system.

In classical mechanics [58], the Lagrangian L(q, q̇) is defined as a function of

x and ẋ, the position and velocity of the system. In an equivalent Hamiltonian

formulation, the Hamiltonian H(p, q) is defined as a function of x and q, the posi-

tion and momentum of the system. Any observable quantity of importance can be

gotten as functions of the original parameters or via equivalent canonical trans-

formations. The important feature is that the state evolution in these systems

satisfies Euler-Lagrange family of PDE.

In quantum mechanics, the Euler-Lagrange PDE is replaced by the Schrodinger

equation where the evolution of wave function is determined by the Hamiltonian

operator. Once we solve the equation for a specific Hamiltonian operator, the

wave function can be used to calculate the expectation value of any observable of

interest. The Hamiltonian is the generator of probabilistic evolution, just like Gij

from equation (2.2).

In SDS, the Fokker-Planck operator (generator of the Markov process) is the

analog of Euler-Lagrange PDE operator and the Hamiltonian operator. Just as

all relevant observables in classical mechanics satisfy this equation, all relevant

observables in SDS satisfy a PDE based on the Fokker-Planck operator 5.

1.4.1 First-exits of SDS

An important observable in SDS and stochastic processes in general is first-exit

time, the time it takes for the state of a system to cross a certain threshold.

In higher dimensions, it makes sense to think of exit from a domain with domain

5Fokker-Planck operator and the Schrodinger operator are related to each other through
analytical continuation of time into the complex domain.
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boundary. One can associate with first-exit, a probability distribution function for

the first-exit time or first-passage time (FPT), a random variable in this system.

u(x, T ) = P {τ < T |x(t = 0) = x} (1.9)

where u(x, T ) is the cumulative probability of a particle starting at x to reach

the boundary before time T . D is the domain and Bd(D), its boundary. The

associated random variable is represented by τ . L is the Fokker-Planck operator.

The associated PDE for the cumulative probability is given by

∂u(x, t, T )

∂t
+ Lu(x, t, T ) = 0 for x ∈ D, t < T

u(x, t, T ) = 1 for x ∈ Bd(D), t < T

u(x, t, T ) = 0 for x ∈ Bd(D)

(1.10)

Finding solutions to this equation is hard even numerically as even straight-

forward techniques like finite element methods for solving PDE become hard in

higher dimensions. For certain one dimensional problems, u may be solved exactly.

We discuss one such example in chapter 3.

Instead a simpler PDE for mean first-passage time can be derived. For one

dimensional PDE with state space lying in an interval [a, b], the MFPT (t(x))

satisfies a PDE

For one dimensional PDE with state space lying in an interval [0, 1], the MFPT

(E[τ(x)]) satisfies a PDE

D
∂2E[τ(x)]

∂x2
+ v(x)

∂E[τ(x)]

∂x
= −1 (1.11)

and E[τ(a)] = E[τ(b)] = 0. In other words, E[τ(x)] is the mean time to reach
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the boundary when starting at x. Equation (1.11) and it more general version

is called the Pontryagin-Andronov-Witt equation. Higher order moments can be

recursively derived from lower order moments. Except in few cases, these PDEs

are all solved numerically when necessary.

While solving equation 1.11 and 4.5 gives MFPT and FPT in theory, they are

the observed characteristics of the real system. What one needs instead is a way

to find solutions to the inverse problem of determining L given û. This issue is

discussed more in chapter 4.

In Figures 1.2, 1.3, 1.4, and fig 1.4 we present some basic examples of typical

paths of a SDS with constant diffusion coefficient and constant drift. They are

all solutions of equation ( 1.1)The boundary points are 0 and 1. As the velocity

(drift constant) increases, one can see that almost all paths exit boundary point

1. This is in contrast to the case where drift is zero.

First-exit problems and analysis surrounding them are useful ways of thinking

about transient nature of stochastic processes and have found their use in the

sciences and in engineering disciplines [105]. In many non-equilibrium systems,

traditional equilibrium analysis washes away details about non-asymptotic dy-

namics and patterns. These finite time structures require finite time analysis of

26



t

x

0

1

v very small; D dominates

Figure 1.3: DDM

t

x

0

1

v small; D dominates

Figure 1.4: DDM

t

x

0

1

v large and dominates D

Figure 1.5: DDM
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such transients and FPT methods are one method to analyze such systems. In

all these cases, the boundary and the domain is associated with some meaningful

event for the system’s evolution. In this dissertation, we identify transients and

their timescales as ways to characterize biological reliability.

1.4.2 From first-exits to reliability

Previously, we borrowed the notion typically discussed in biological behavior,

at the level of organisms, and used in to characterize aspects of physiological

processes. As mentioned there, first-exit models of physiological processes at the

nano and micro scale are effective models of those processes. As discussed earlier,

we further characterize such processes as being reliable, a concept more natural

in ethological settings.

Behavior of agents in environments is not just a time series; the state space

evolution carries biological meaning. The time series and an interpretation of

observable patterns carry semantic and pragmatic information. In other words,

these patterns, codes and symbols carry biologically relevant semiotic information.

In general, one can identify the state variable x with some biosemiotically

salient behavior state, and imbue FPT and MFPT with biosemiotic salience. Us-

ing a reverse engineering perspective, one could ask whether it is possible to

identify satisfactory parameters of an SDS so that the derived FPT or MPFT is

close enough to observed FPT and MFPT respectively. For example, in the Venus

flytrap example presented earlier, the trapping mechanism of the plant must op-

erate on a timescale that is considerably faster than the typical escape timescale

of an insect capable of being trapped.

In our introduction to SDS, we introduced equation (4.5). The solution u of the

PDE subject to boundary conditions is a classical boundary value problem. From a
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reverse engineering perspective, one is interested in going in the opposite direction.

Given û, one is interested in determining the parameters that at least partially

specify the Fokker-Planck operator L. In the language of this dissertation, one

is seeking a subspace of space of all possible dynamical systems that satisfies the

constraints set by û.

Even when complete information about û is not available, a rough specifica-

tion of this quantity like lower and upper bounds on probability, in the form of

inequality is sufficient. This process of fitting to a desired û or t̂ can be cast as

a constraint satisfaction problem. And in the process of satisficing constraints,

the reduction of the space of possible parameters of the SDS to good enough

values is what this work calls fine tuning. That is, the internal structure of the

agent stays within a viable set in order to guarantee a certain kind of reliability.

And since this process does not use any explicit control modules, good enough

reliability without control is feasible if successful fine tuning occurs. Only in the

case where û is involved where one could convincingly argue that the constraint

satisfaction based fine tuning gives rise to reliability of the worst-case kind. By

this, we mean constraint satisfaction of various features of the probability density

function directly, not their average properties like mean and variance.

While the focus of the dissertation is on MFPT based approach to reliabil-

ity, the full problem is not as intractable as it sounds. The inverse problem of

importance to us is also of interest to both robotics and applied mathematics.

In the case of robotics, quick reverse engineering of natural laws obeyed by the

environment of an agent is critical for the design of control system for artificial

agents [13, 114]. In several areas of applied sciences, automated reconstruction

of dynamical systems from data speed up development of effective models of the

phenomena [107, 108, 113]. In many instances, the phenomena are described in
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terms of spatio-temporal time series where the objective is to discover nonlinear

partial differential equations from available data. It is this latter body of work

that is partially aligned with the objective of the fine tuning based constraint

satisfaction approach.

Our inverse problem may be more tractable than the problems considered by

the above literature because the narrow specification of equation (4.5) contains a

lot of details. We know the structure of the PDE operator and boundary condi-

tions. Already this restricts the space of search many fold. Another way in which

our inverse problem is more tractable is how the data for the inverse problem is

specified: they are specified in terms of constraints of û and the boundaries. We

are not limited by availability of data as is typical in such data driven approaches.

On the other hand, the precise boundary conditions and non-trivial topological

properties of state spaces may make the construction of space of solutions harder

to construct. A more detailed space of solutions via finite element methods might

be more desirable. Still, the problem remains challenging. In typical scenarios,

given difficulty in finding an algorithm that solves the inverse problem, one could

use MFPT or other approximate substitutes. It is this measure that is used in

applications discussed in chapters 2 and 3.

For example, in a system with boundaries at a and b, the constraint E[τ(x)] >>

τr guarantees dynamics reaches the boundary reliably faster than the timescale τr.

Similarly, the constraint E[τ(x)] << τa guarantees dynamics avoids the boundary

reliably faster than the timescale τa.

The next section (and in more detail in chapters 2 and 3) picks up from

this particular mathematical conception of reliability and uses SDS to social and

psychological processes. Precise correspondence between MFPT based reliability

and features of the psychological and social phenomenon is made. While this
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dissertation makes no concrete application to animal behavior, a sketch of first

steps on how fine tuning based constraint satisfaction works as an algorithmic

scheme is provided in chapter 4.

1.5 Micro-nano physiology: processes and models

While equation (4.5) is very general, only a simple version of Pontryagin-Andronov-

Witt equation [115] (equation (1.11)), the PDE governing MFPT is provided, an-

ticipating applications discussed in chapters 2 and 3. Just like the equation for

FPT, the PDE for MFPT is a typical boundary value problem with appropri-

ate boundary conditions. Solutions to both these PDEs depend upon not only

the drift and diffusion parameters but also on the geometry and topology of the

boundaries. We present two categories of phenomena: escape phenomena and

transport phenomena. Escape phenomena are richer as the MFPT in those cases

are a function of geometry, topology, drift and diffusion parameters. Transport

phenomena are more simple but still rich enough to encompass a wide variety of

DDM models from chapter 3. Both phenomena exhibit sharp timescales, indirectly

indicating the lack of variance in MFPT.

Escape phenomena [66, 116] are pervasive in the highly stochastic sub-cellular

environments. We focus on two different kinds: escape from sub-cellular compart-

ments and escape to cell membranes. Escapes from sub-cellular compartments are

good abstractions of how electrical and chemical localization is enabled and dis-

abled in sub-cellular regions. Escapes to cell membranes are good abstractions of

how macromolecules created in the cell reach the cell membrane dock themselves

onto moving surface channels. The SDS models of these phenomena are three

dimensional but the defining equations are the same form as equation (1.1)
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dx(t) = v(x)dt+
√

2Ddw

D
∂2E[τ(x)]

∂x2
+ v(x)

∂E[τ(x)]

∂x
= −1

• x state variables corresponding to the position of the macromolecule or ion

• D is the domain (the cell) and Bd(D), its boundary (cell membrane) with

the domain modeled as a smooth sphere or ellipsoid

• The boundary Bd(D) has both reflecting and absorbing regions

• v(x) drift

• D diffusion

• E[τ(x)] MFPT to reach one of the several absorbing regions located on the

cell membrane

The parameters that can be fine tuned are the density of absorbing regions and

drift. Typically, the molecules have internal motors that power their drift. Fine

tuning this Brownian motor’s capacity is one way to achieve a desired MFPT.

Another parameter is the surface diffusive and density characteristics of docking

proteins on the cell membrane.

Escapes from confined sub-cellular compartments, like the ones discussed ear-

lier are important structural features that enable localization. These compart-

ments provide mechanical ways to modulate chemical reactions within the cell.

Such a localization also modulates release of macromolecules produced within the

nuclear membrane. The models of these transport processes differ only in the

geometry and topology of the domain.
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• x state variables corresponding to the position of the macromolecule or ion

• D is the domain (the cell) and Bd(D), its boundary (cell membrane) with

the domain modeled as a non-trivial geometric object.

• The boundary Bd(D) is mostly reflective with a few absorbing barriers

• v(x) drift

• D diffusion

• E[τ(x)] MFPT to reach one of the absorbing regions allowing the molecules

to be released out of the compartment

Of predominant importance is the precise geometric shape and topological

characteristics of the confined space as this alone strongly modulates the MFPT.

Typically, extra-cellular chemical forces fine tune the geometric characteristics of

the compartment.

Transport phenomena [21, 79, 29] occur along various sub-cellular structures

like actin filaments and cytoplasmic structures. They are responsible for trans-

porting molecules to distant regions of large cells like neurons or transporting

molecules in and out of the cell and between various sub-cellular organelles. Unlike

the previous category of phenomena, the transporter molecules cling to skeletal

structures, making the transport effectively one dimensional. This makes these

models closest to the models used in chapters 2 and 3.

dx(t) = v(x)dt+
√

2Ddw

D
∂2E[τ(x)]

∂x2
+ v(x)

∂E[τ(x)]

∂x
= −1
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• x state variable corresponding to the position of the macromolecules on the

sub-cellular transportation line

• D is the time constant

• The boundary Bd(D) are boundary points typically corresponding to the

end points of the transport process

• v(x) drift may be deterministic or stochastic

• D diffusion may also change along the line

• E[τ(x)] MFPT to reach one of the several absorbing regions located on the

cell membrane

In most intra-cellular transport processes, the drift exhibits non-trivial prop-

erties and corresponds to the velocity of the transporter molecular. These trans-

porter molecules are modeled as a Brownian motor, a system capable of using

stored internal energy to power itself. It is the characteristics of such motors that

are fine tuned to achieve the desired MFPT.

The next section (and in more detail in chapters 2 and 3) picks up from

this particular mathematical conception of reliability and uses SDS to social and

psychological processes. Precise correspondence between MFPT based reliability

and features of the psychological and social phenomenon is made. While this

dissertation makes no concrete application to animal behavior, a sketch of first

steps on how fine tuning based constraint satisfaction works as an algorithmic

scheme is provided in chapter 4.
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1.6 Applications

In mathematical sociology (Chapter 2), the work revisits older literature on Markov

models of occupational mobility and generalizes it to show how SDS can model

intra-generational mobility and escape from poverty traps. By looking at exit-

times and exit-probabilities of escape from such traps, it points out features of

social dynamics, such as transients, which are often missed by equilibrium macroe-

conomic and macro-sociological models.

In mathematical psychology (Chapter 3), the work looks at literature on drift-

diffusion models (DDMs) of time constrained judgment and decision making. In-

spired by models of escape from attractor and stochastic switching dynamics in

simple neurophysiological processes, it proposes extensions of DDM, again illus-

trating the role of exit-times and exit-probabilities. These models could serve as

reference models for experiments in cognitive psychology and motivate new ex-

periments. That is, theoretical models with exact properties may be useful in

comparing data from experiments.

While use of stochastic process models is not new in mathematical sociology or

in mathematical psychology, the semantics of reliability, fine tuning and constraint

satisfaction provide additional insight in the respective disciplines (chapters 2 and

3), suggest links among related fields within the same discipline, and generate

insights and directions (chapter 4) for further exploration.

In both applications, the form of the models are the same. They are all one-

dimensional models with drift and diffusion term with dynamics that take place

in an interval.

dx(t) = v(x)dt+
√

2Ddw
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D
∂2E[τ(x)]

∂x2
+ v(x)

∂E[τ(x)]

∂x
= −1

• x state variables

• [a, b] boundaries

• v(x) drift

• D diffusion

• E[τ(x)] MFPT

In the two applications, a different interpretation of constraint satisfaction and

fine tuning is provided. The differences are due to the different endowed semantics.

1.7 Summary

The specific systems approach to understanding reliable behavior arose from at-

tempts to generalize physiology and lift it to the systems level. In particular,

by noting the surprisingly deterministic behavior of physiological processes at the

nano and micro scale, and by considering this behavior in the context also of

physiological processes at higher scales, the concept of reliable behavior is gener-

alized. In doing so, models of nano and micro physiology are also lifted to the

systems level. Once at this level, these models of reliable behavior are ready for

application in any discipline. In the next two chapters, these models are used to

model social and psychological processes, and offer novel insights.

By virtue of this lifting, additional insights not available to inquiry with a

strictly disciplinary focus comes into view (Chapter 4). Along with such insights,

questions regarding worst-case reliability and associated inverse problems point
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to gaps in the mathematical literature (Chapter 4). This gives rise to potentially

fruitful areas of mathematical research. This, along with other virtues, make

systems approach an integral part of scientific inquiry.

In system science,

• identifies FPT measures like MFPT with measures of resilience

• examines the role of physiology in the biology-centered perspective

• identifies a fine tuning based constraint satisfaction model that can –under

some circumstances– replace control modules

In Sociology,

• introduces diffusion models to the theoretical literature on intragenerational

mobility and poverty traps and proposes new ecometric measures for soci-

ologists

In Psychology,

• introduces new DDM of judgment and decision making for modeling bias

and uncertainty and connects DDM literature and ecological rationality lit-

erature
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2 Revisting Markov models of Intragenerational Mobility

2.1 Introduction

This chapter

1. proposes drift-diffusion models as models of intragenerational economic mo-

bility

2. proposes drift-diffusion models in a finite interval as a model of poverty trap

3. identifies diffusion parameter as an ecometric measure – a family of measures

important for urban sociologists

In Chapter 1, we introduced the idea of constraint satisfaction and fine tuning

as a way to quantify certain kinds of reliability in systems. Mean first passage

time (MFPT) is one such measure. In this chapter, we use MFPT based analysis

to discuss models of poverty traps. MFPT in these models are shown to depend on

the parameters of the stochastic dynamical system –drift-diffusion model (DDM)–

and their boundary conditions. By changing the drift v and the diffusion D of

these SDS, one can change the MFPT, tuning the system to satisfy constraints

specified in terms of exit time characteristics. We show that the language of

fine tuning and constraint satisfaction introduced in Chapter 1 can be naturally

cast as unexpected social policy levers –instruments that can help influence social

conditions. Chapter 3 uses the same ideas to develop new models of dynamic
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decision making. And just like in this application, we point out insights generated

by MFPT based notion of reliability.

In principle, the models of this chapter can be motivated independently of the

systems philosophical considerations that motivated the dissertation; similarly,

the conclusions we draw at the end of the chapter can be reached without explicit

attention to the dissertation’s systems orientation. However, the specific insights

offered here arose out of the transdisciplinary nature of systems science reasoning

and illustrate the pragmatic role of systems isomorphisms: they are scaffolds

which help build bridges within disparate areas of disciplines; and connect distant

disciplines that would otherwise not be connected; once connected, such scaffolds

may be removed.

Specifically, the systems isomorphism from the previous chapter identifies con-

tinuous state space continuous-time Markov models as a candidate model for oc-

cupational and intragenerational social and economic mobility. The boundary

conditions of the DDM further help model poverty traps. The use of DDM for

intragenerational mobility, the proposal to identify the diffusion constant D as an

ecometric measure, and use of DDM with boundary conditions to model poverty

traps are this chapter’s main contributions.

In this chapter, we revisit an old idea from mathematical sociology of using

Markov models to model social and occupational mobility [8, 14] with the intention

of using the models to illuminate the role of environment. The models presented

here are generalizations of past work previously used in that the dynamics take

on values in continuous state space and evolve in continuous time. The original

models used such models for both deductive and inductive tasks. However, the

goal of this chapter is to reintroduce these ideas into the literature and illustrate

their use in understanding issues of contemporary import, emphasizing their po-
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tential in simulating related social processes: economic mobility leading to escape

from poverty; and loss of ability to a poverty trap.

Increasing economic inequality and lack of social mobility has become one of

the few unifying issues among otherwise polarized public spheres of the Global

North. Starting with the work of Piketty [98], quantitative social scientists have

been increasingly drawn towards inequality, its origins and its subsequent durabil-

ity, approaching them from different perspectives. Some models have sought to ad-

dress and acknowledge more explicitly, the role of race, ethnicity, gender and even

geography as determinants of economic and other life outcomes [31, 34, 100, 111].

Researchers have also focused on 20th century capitalist economic system in sus-

taining multi-generational poverty.

Such intense interests in these issues have attracted scrutiny of neo-classical

economic models and their failure to incorporate sociological processes and mech-

anisms. These limitations have been addressed by recent work, both in public

microeconomics, in the work of Chetty and his colleagues [32, 33]; and in sociol-

ogy, in the work of Sampson and others [109, 62, 110]. Interestingly, both these

literatures give prominence to the role of environment. A desire to complement

the empirical approach of these bodies of work is one of the motivations behind

this work discussed in this chapter. Further analysis of these issues may require

completely new experimental and observational study designs but in lieu of data,

computational social science models inspired by analytical sociology may help us

gain insights through adequately designed analytical and simulation models.

This work, with a greater focus on individual social processes involving in-

teraction between agents and their environment, is a contribution to such an

effort. Typically, the machinery of stochastic process modeling –the solution of

Fokker-Planck equation and numerical solution methods of stochastic differential

40



equations– assume the state space of the system to be the real line. Further-

more, they are used as black-box models, and are not intended to encode detailed

substantive mechanisms about the system. The models presented here are mean-

ingful in that every free parameter and boundary conditions carry a sociological

meaning. This distinguishes our models from the epistemological orientation of

the models available in the literature.

In what follows, we motivate and develop models of intragenerational mobil-

ity by building on and adapting old models of occupational transitions and we

demonstrate how they could be used to model the emergence of inter-individual

variations and the role of environmental noise as a source of inequality. The

models developed in this chapter, as extensions and generalizations of older occu-

pational mobility models, turn out to be diffusion process models. Despite their

pervasive use in other disciplines, these diffusion models have not been used as

models of social processes.These simple diffusion models are known to produce

rich long term dynamics from simple interaction mechanisms. The use of DDM

as a generative mechanism oriented model within analytical sociology for use in

computational social science is not contribution of this chapter.

In contrast to the coarse grained, equilibrium assumptions-based approaches

of traditional macroeconomics, we focus on shorter term transients in wealth and

other social demographic factors. Such transients are more important to model

the volatility of day to day economic activity of individual social actors living

well below the poverty line. While wealth and income better understood, the

environmental origins of residual stochasticity are not emphasized in the literature.

Also our model focuses on both the transient and stochastic nature of escape from

poverty dynamics.
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2.2 Social Mobility: Literature and Models

Within the social sciences, the fields of sociology and economics have had a long

tradition of research on social [91] and economic [40] inequality and mobility.

Depending on specific traditions, one could either explain mobility using inequal-

ity as an explanatory variable or vice-versa. Within sociology [91], mobility is

viewed broadly as either transitions between occupations or as attainment of sta-

tus. While in economics [91], mobility is studied from a longer term perspective

with more emphasis on a microeconomic approach based on human capital models

which in turn are based on rational choice models [91]. In both disciplines, the

emphasis has been more on intergenerational mobility with some discussion as to

how one could adapt such models to study intragenerational mobility. Compared

to the models proposed in this chapter, these are all discrete-time discrete-state

space Markov models.

In recent years, the predominant mode of analysis has shifted towards descrip-

tive and empirical analysis with very little theoretical model building. This move

away from theory driven model building is much needed because of the growing

gap between theoretical assumptions and ground realities seen in economic sys-

tems. While such a shift is correct, this approach has limitations because of a lack

of data, and lack of insights on the underlying social mechanisms. Despite this,

research questions and discussions allude to causal social processes and mecha-

nisms. In recent years, the advent of scalable methods [95] including machine

learning have enabled researchers to detect patterns among dozens of variables

with growing emphasis on causal inference. Still the emphasis remains on de-

scription and prediction [76]. A better approach, making use of theoretical and

computational models, may be able to fill the lacuna and provide partial answers
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and counter-examples to questions and claims established using only inferential

and descriptive methods. However, with a focus on prediction and the use of

’just-so’ or ’as-if’ models1, computational social science(CSS) methods lack the

culture of aspiring for clear social mechanism-based explanations [64, 76]. Analyt-

ical sociology(AS), with its emphasis on mechanisms to explain macro-sociological

phenomena, can resolve current limitations of computational social science by re-

quiring computational models to be based on plausible models of underlying social

mechanisms.

Before its current empirical turn, sociology had a distinct literature of theo-

retically motivated mathematical models [8, 41]. Unlike economics’ emphasis on

optimality and rationality based models, these models were stochastic dynami-

cal systems based. One of the criticisms of these models were that they were

overly simplistic and hence badly misspecified. However, in the intervening pe-

riod, social science has adopted inferential approaches like event-history analysis,

counting process models and other latent process models, all of which are closely

related to the Markov models introduced here. Although the current work borrows

heavily from models used in the physical sciences, the way we use them to model

social processes has its intellectual lineage in the models of Boudon, Bartholomew

and others [8, 14]. The models of this chapter are continuous state space Markov

models, in contrast to their discrete-time and discrete space Markov models of the

1Two categories of models from two different disciplines use this approach. One is the econo-
physics approach where social processes and social systems are treated as statistical mechanical
systems. The literature uses models that are well-known in the equilibrium statistical physics
literature. Similarly, inspired by economics, several game theoretical models are used as models
of social interactions. In the former instance, the use of models of equilibrium ensembles for
non-equilibrium social and economic processes are never justified; the starting premise is that
complex social systems are just like equilibrium matter at finite temperatures. Similarly, even
if rational actor hypothesis is not justified, the economists still insist on using game theoretic
rationality as a model of economic agents; the claim is that the agents behave ‘as if’ they are
rational actors.
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older literature.

This work focuses on intragenerational economic mobility [8, 14]. In older lit-

erature, given the difficulty of collecting data, upward movement of an individual

in an organization via promotions, were used as a surrogate for more traditional

wealth growth measurements, which are much more common in the economic lit-

erature. This upward movement can be transitions within the same organization

or jumps to different jobs in a labor market. This can be contrasted with simple

wealth and wealth growth as a measure of economic and social mobility of indi-

viduals over their lifespan. Occupational mobility data are fit to Markov models.

Unlike the discrete transitions of the stochastic models used in sociology, we focus

on a continuous state that evolves with time: a diffusion model. While partial

differential equations have been used in the economics literature and more rarely

in sociology, to the best of our knowledge, the use of diffusions to model social

mobility seems to be novel.

2.3 Models of Intragenerational Mobility

Stochastic models of social processes were introduced in the early works of Cole-

man, Boudon, Bartholomew and others [42]. Several models were concerned about

representing stochastic change over time, especially of intergenerational social and

economic mobility, occupational mobility and social and economic mobility over

an individual’s lifecourse [8, 14].

A Markov chain is a discrete dynamical system that evolves stochastically.

Suppose the state space of the model is indexed by natural numbers {1, 2, ...N} .

The evolution of this dynamical system is given by a transition matrix Tij where

the entries of this matrix correspond to conditional probabilities of transition from
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one state i to another state j. That is,

Tij = P (j|i) (2.1)

So the probility of finding the system in a given state after n time steps can be

extracted from the matrix T n. In the continuous time case, one can show that

Pi(t), the probability of finding the system in a state i at time t is given by

dPi(t)

dt
= GijPi(t) (2.2)

where Gij is called the generator of the CTMC.

The models [8] discussed in this literature are all variations of Markov chains,

Discrete-time Markov chains(DTMC), with discrete time steps and discrete state-

spaces; continuous-time Markov chains(CTMC), with continuous-time and dis-

crete spaces; time-inhomogenous CTMC, with temporal heterogeneity in the tran-

sitions; and stratified CTMC, with multiple Markov chains for different demo-

graphic sub-populations.

In these models, the state space is an ordered space corresponding to rising

social status of the occupations.The mobility dynamics stops when the individual

drops out of the work force due to exogenous factors. So, given data on occupa-

tional transitions, one can infer the generator G or T .

Alternatively, one can model associated upward changes in status of wealth

coming from upward mobility in occupation. Suppose we wish to further stratify

the social actors by various social and demographic variables. One straightforward

approach is to vary the drift and diffusion parameters accordingly.These model

parameters can be used to denote external environmental conditions or intrinsic

individual, social or other demographic states. We discuss this in the later sections
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of this chapter.

The continuous time continuous state Markov chain is what is of interest in

this chapter, where the state variable is an individual’s wealth x(t). We assume

that there is a steady growth in wealth v and environmental fluctuations D that

randomly perturb this steady growth of wealth. Taken together, the dynamics are

captured by the following stochastic differential equation.

dx(t) = vdt+
√

2Ddw (2.3)

One can show that the solution of the stochastic dynamical system satisfies the

diffusion equation with drift v and diffusion constant D

∂c(x, t)

∂t
+ v

∂c(x, t)

∂x
= D

∂2c(x, t)

∂x2
(2.4)

or when drift v vanishes

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
(2.5)

c(x, t) is the probability density of finding an individual with wealth x at time t.

The important point to chapter is that solutions to partial differential equations

make sense only after the appropriate boundary conditions and initial conditions

are defined. The solution to the above equation when x(0) = 0 and the range of

x is {−∞,∞}can be shown to be

c(x, t) =
1√

4πDt
e−x

2/4Dt (2.6)

Similarly, the solution to equation (2.4) can be shown to be
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c(x, t) =
1√

4πDt
e−(x−vt)

2/4Dt (2.7)

And the solution to equation (2.5) under absorbing boundary conditions can be

shown to be

c(x, s) =
sinh(

√
s
D
x<)sinh(

√
s
D

(L− x>))
√
tDsinh(

√
s
D
L)

(2.8)

In all cases, the solution is represented in terms of the Laplace transform c(x, s) of

the original solution c(x, t) as the transformed solution can be exactly calculated.

L is the length of the interval and x< = min(x, x0) and x> = max(x, x0) where

x0 is the initial starting condition. Since solutions to equations along the entire

dimension, (2.5) and (2.4) are Gaussian functions with time dependent mean and

variance, time evolution of the probability density function can be interpreted

easily. The analog equation (2.8) where drift is non-zero is given by

c(x, s) =
ev(x−x0)/2D

DwsinhwL
sinh(wx<)sinh[w(L− x>)] (2.9)

where w =
√
v2 + 4Ds/2D

In Figure (2.1), we plot the time evolution of equation (2.5) corresponding to

diffusion in one dimension. At short times, the probability density function is

localized at the initial starting point at x = 0. As time increases, the particle

diffuses, the increased variance denotes the delocalized nature of the particle but

the peak probability density stays at the same point, consistent with v = 0.

In Figure (2.2), we plot the time evolution of equation (2.4) corresponding to

diffusion in one dimension with positive drift. At short times, the probability den-

sity function is localized at the initial starting point at x = 0. As time increases,
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the particle diffuses, the increased variance denotes the delocalized nature of the

particle but the peak probability density shifts towards the right, consistent with

the positive velocity v in that direction.

x

I

II
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IV

V

VI

VII

VIII

x

1

Figure 2.1: Diffusion on an infinite line
Roman numerals are numbered in the direction of increasing time. The x axis is the

state space and y axis is the probability density.

In figure ( 2.3), we plot the first passage time density for a particle starting

at the center of a finite interval to reach one of the boundaries. As the diffusion

increases, in the absence of drift in either direction, the time to reach the boundary

becomes shorter. Also important is the sharpness of the peaks in FPT density.

We discuss variations of FPT under various initial conditions in chapter 3 where
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Figure 2.2: Diffusion with drift on an infinite line
Roman numerals are numbered in the direction of increasing time. The x axis is the

state space and y axis is the probability density.

the context of response time analysis in cognitive psychology.

Next we discuss models of escape from poverty by analyzing mean first passage

time (MFPT), the key recurring concept used to characterize reliability as defined

in chapter 1. Both in micro nano physiology, and in other physical and applied

sciences, MFPT analysis is used for studying exit phenomena [105, 115]2. The key

2Models of FPT were discussed in the physical sciences as models of chemical reactions and
diffusion in media. Simultaneously, as mentioned in the first chapter, the models were also used
in engineering as models of dynamic noise in several areas. As the field of molecular biology and
sub-cellular biology expanded its ability to attain precise measurements of diffusion constants in
sub-cellular domain, models of macro bio-molecular movement began to be modeled as diffusion
processes. Currently, almost all nano and micro physiological processes in highly stochastic
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Figure 2.3: First passage time density for varying diffusion constants
Roman numerals are numbered in the direction of increasing diffusion.

premise in this analysis is the idea that MFPT is an adequate measure of FPT as a

whole. That is, FPT has peaks sharp enough for the phenomena to be predictable

using only the first moment of FPT. Such an assumption is backed up by empircal

literature [66, 54] in nano and micro physiology and in other disciplines.

In the next subsection, we discuss various MFPT curves that are analytically

calculated as solutions of PDE. They are functions of the initial starting point,

drift and diffusion terms and show peaks. This suffices to operationalize the fine

tuning based constraint satisfaction mechanism introduced in the first chapter.

In all these cases, the MFPT t(x) of the one-dimensional drift-diffusion model

corresponds to the mean time for a wealth to cross a certain threshold starting at

a point x. Crossing the threshold from below corresponds to escaping the poverty

trap.

Consider the case when there is no drift but the system has two absorbing

environments are modeled as diffusions.

50



boundary conditions. Figure (2.4) shows MFPT in such situations. By merely

changing the diffusion constant D and making sure that the initial starting point

is within a certain range, we could guarantee that the system’s MFPT is above

a certain threshold, if such a constraint is needed for viability. The blue curve is

such an example. In contrast, we could also guarantee that the MFPT is below

a certain desired threshold, if such a constraint is needed for viability. The green

and orange curves are examples. One could also desire an MFPT that is below a

certain threshold but also above a certain other lower threshold. In that case, one

could pick the orange curve as the one that satisfies the viability constraints. The

associated range of diffusion are then the fine tuned parameters of this stochastic

dynamic system.

2.3.1 First-passage time models of escape from poverty

In the literature, some notions of mobility involve the idea of status attainment.

That is, mobility is measured by looking for attainment of a social or economic

status. Some debates on inequalities are around the lack of growth of the middle

class, focusing on intergenerational mobility through status attainment. Also,

recent work in public microeconomics like Moving To Opportunity 3 projects have

tried to measure the effects of exposure to certain environments on the economic

prospects of individuals over the course of their lives. Inspired by such research on

status attainment and environmental exposure and other studies of urban poverty,

a specific question of interest is the idea of time to escape from poverty or return

to poverty. Next we introduce a model of one dimensional first-passage time on

an interval model and use it to model escape from poverty.

In this and subsequent discussions, we focus on a simplified model of poverty

3https://www.huduser.gov/portal/datasets/mto.html
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dynamics. We assume that an actor escapes poverty permanently once the actor’s

wealth crosses a certain threshold. Such questions about stochastic systems are

discussed under the rubric of first-passage time problems (FPT) [105, 101]4. That

is, the distribution of times of the state variables of a system to cross a threshold

and its associated moments. For simplicity, we assume that the wealth of an

individual is always positive and the individual escapes poverty once the wealth

crosses the threshold L. Condition x = 0 corresponds to an actor’s descent into

permanent poverty. Poverty traps are then the region [0, L[ where actors have a

chance of escaping poverty.

In the language of diffusion problems, L is the absorbing point and the diffu-

sions stops once it crosses the boundary. In these systems, the following natural

quantities are of importance

• What is the first-passage probability F (t) to the exit point?

• How long does it take for the particle to reach the exit point?

• What is the survival probability S(t)? The probability that a diffusing

particle does not reach the absorbing boundaries.

• How do these quantities depend on the initial starting point?

• What is the mean exit time, that is, the on average time until the particle

hits the boundary, starting at an initial time?

• What is the conditional exit time, that is, when does the particle reach one

boundary (while avoiding the other x = 0)?

4Mathematical discussions in the rest of this article closely follows discussion in Redner,
especially Chapter 2
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For what is to follow, we study models with or without drift(v)5 under various

boundary conditions at x = 0 and x = L. In some cases, we directly calculate the

mean first-passage time (MFPT). A reflecting boundary condition is one where the

particle simply bounces back. Transmission mode is one where there is reflection

at the origin and absorption at x = L. The particle starts closer to the reflecting

point.

2.3.2 MFPT under different conditions

Here we present results of first-passage time calculations under various boundary

conditions of standard pure-diffusion or convection-diffusion systems in a bounded

interval. We refer the reader to Redner’s book [105]for more details. These results

are not new, but their application to discuss poverty traps is.

Diffusion with no drift in absorption mode

t(x) =
1

2D
x0(L− x) (2.10)

Figure (2.4) shows the quadratic variation of MFPT for case with pure diffusion.

The survival probability can be shown to be

S(t) ∝ e−t/τ1 with τ1 = L2/Dπ2

Diffusion with drift in absorption mode

t(x) =
L2

2D

1

Pe

(1− e−2uPe)− u(1− e−2Pe)
1− e−2Pe

(2.11)

5The problem of v → 0 and v = 0 is qualitatively different and mathematically intricate. We
merely mention here that both solutions have to be calculated independently.

53



0.00 0.25 0.50 0.75 1.00

0

20

40

60

80

100

120
D very small
D small
D large

Figure 2.4: MFPT for diffusion on an interval
MFPT as a function of starting point x is plotted for different diffusion constants

based on equation (2.10). As the diffusion increases, the expected time to reach the
boundary gets smaller.

where u = x/L and Pe = vL/2D is called the Peclet number. The survival

probability

S(t) = e−t/τ2 with τ2 =
L2/Dπ2

1 + (vL/2πD)2

Figure (2.5) plots MFPT for diffusion with drift scenarios. As the magnitude

of drift increases, the expected time to reach the boundary reduces. Depending on

the distance from the boundary, the relative time to get to the boundary depends

on the sign of the drift.

Conditioned first-passage problem with drift and absorbing boundaries

To illustrate the nature of these calculations, we illustrate the MFPT calculation

for a conditioned first-passage time problem.
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Figure 2.5: MFPT for diffusion on an interval
MFPT as a function of starting point x is plotted for different drift velocities in

opposite directions.

Eventual hitting probability to reach the absorbing boundary without reaching

the origin is E+

Eventual hitting probability to reach the origin without reaching the absorbing

boundary is E−

Mean conditional exit time of a particle to reach the absorbing boundary without

reaching the origin is t+(x) Mean conditional exit time of a particle to reach

the origin without reaching the absorbing boundary is t−(x) Boundary conditions

E+(0) = 0 and E−(L) = 1 and vice versa for the opposite condition. Similarly,

for t(0) = t(L) = 0 as boundary conditions for t(x)

D∇2t(x) + v(x).~∇t(x) = −1 (2.12)

D∇2[E±(x)t±(x)] + ~v.~∇[E±(x)t±(x)] = −E±(x)
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DE±(x)′′ + vE±(x)′ = 0

D[E±(x)t±(x)]′′ + v[E±(x)t±(x)]′ = −E±(x)

t+ =
L

v

(
1 + e−vL/D

1− e−vL/D

)
− x

v

(
1 + e−vx/D

1− e−vx/D

)
(2.13)
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Figure 2.6: Conditional MFPT diffusion with drift on an interval
MFPT as a function of starting point x is plotted for different diffusions but keeping

drift constant.

In figure (2.6), we note the differences in conditioned MPFT as we increase dif-

fusion. As diffusion increases, the MFPT reduces overall. The red and the blue

curves correspond to the boundary condition that is conditioned to reach one of

the boundaries.
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Diffusion with drift in transmission mode

Mean exit time6 for a particle starting at the reflecting boundary is given by

〈t〉 =
L

v
− D

v2
(1− e−vL/D) (2.14)

Diffusion with fluctuating drift

Building on the above models, one can use stochasticity to any deterministic

component of the model. More specifically, if we promote drift to a random

variable that switches between a positive and negative values at a certain rate7,

one can repeat the conditioned first-passage problem, now with a fluctuating drift8.

We discuss this in the next chapter in greater detail.

Absorbing boundaries along one direction and a transmission type

boundary in another direction

Consider a rectangular region with different diffusion and drift constants D1, v1, L1

and D2, v2, L2 along the x-axis and y-axis respectively. Since the two dynamics9

are independent, it is straightforward to discuss this in terms of time constants

that were introduced above τ1, τ2 and 〈t〉 . If 〈t〉 � τ1, then on average, most of

the paths are transmitted before it gets absorbed in the other direction. Similarly,

if 〈t〉 � τ1, then most of the paths are absorbed before they get transmitted. We

will use this model to describe two dimensional escape from poverty in the next

6In this case, a particle is injected near the reflecting boundary at t = 0
7This is a continuous-time Markov chain with two states.
8We will not sketch the mathematical details but provide heuristic argument on the conse-

quences for the first-passage times. At very low fluctuation rates, the system behaves as if there
were no fluctuations and the results mimic the one without randomness of the drift parameter.
For very high fluctuation rate, the system essentially cancels the drift leaving a pure diffusion
component.

9One could do any other combination of boundary conditions in a similar manner.
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sub-section.

2.3.3 From one dimensional first-passage time problems to escape

from poverty and intragenerational mobility

Before we impart meaning to these models by mapping them onto social processes

underlying wealth based intragenerational mobility, let us summarize the tools and

exact results we’ve presented previously.

When we moved from simple DTMC to CTMC, we moved from a discrete-time

transition matrix based probabilistic evolution to a first-order differential equa-

tion called the Kolmogorov forward-backward differential equation (2.2). Simi-

larly, when we moved from CTMC to a diffusion process, the resulting evolution

equations are Fokker-Planck type we discussed in the previous chapter. In doing

so, the emphasis shifts from state space point of view to the probability density

evolution equations of observables. Quantities like expected probability of exit

from a given starting point x, E(x) and the expected time to exit the interval

starting from x, t(x) all satisfy PDEs belonging to the Fokker-Planck type. The

FPT probability distribution function (PDF) also satisfies a PDE but even in the

case of one-dimensional FPT problems, it satisfies an infinite series. In higher di-

mensions, calculating the PDF requires sophisticated techniques. In this chapter

and the next, we focus on MFPT.

First passage models are ideally suited to model phenomena where exit from

or to an observable phase is stochastically dependent on time. The extant liter-

ature on first-passage phenomena all share this characteristic [105]. Exemplary

phenomena from nano and micro physiology presented in the previous chapter all

exhibit this characteristic. Another important feature that these are properties of

individual state-space histories and are transient in nature. Both these features of
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these models provide clues about what kinds of social processes are best modeled

as first-exit problems.

The field using the model class identical to ours is finance where Markov

models of wealth and asset dynamics are common in financial modeling. Several

aspects of financial contracts are modeled as first-passage time questions. There

is also a burgeoning literature on heterogeneous agent models. We discuss this in

the concluding section of this chapter and make important comparisons with our

models.

In macroeconomics, wealth and income distributions are sometimes studied

using stochastic differential equations [10, 9]. In such works, the focus is on

expected values of wealth, their distributions and skewness, and not in the specific

nature of individual histories or the time to cross a threshold. This is because

of the macroeconomic nature of their questions. We discuss extensions of the

analysis of this chapter to such models in Chapter 4.

In contrast, macrosociologists are also interested in demographic and social

determinants of wealth over the life-course [17, 44]. Their models based on discrete

event based data are more aligned with the focus of this chapter because of shared

emphasis in modeling life-course trajectories as transients of stochastic systems.

But our continuous state space approach is different than their approach based

on continuous-time semi-Markov models. The measures of intensity of events and

their mediating factors are of importance. Also our interest in using FPT models

for computational and analytical purposes are in contrast to the statistical nature

of their models.

Recently, a greater appreciation of the phenomena unique at the level(s) be-

tween macro and micro have come into focus. Researchers studying dynamics note

high volatility [36, 6] in income and wealth of individuals below the poverty line.
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This is due to the fact that both income and expenses are often unpredictable

below the poverty line. Also, both development economists [7] and sociologists of

urban poverty [111, 109] argue for a multi-dimensional definition of poverty. That

is, focusing only on wealth and income is of limited value and other sociological

and social-psychological variables play important roles in understanding wealth

stagnation or descent into poverty.

So far, none of the above research areas and their research questions really

warrant a model having a finite extent domain and domain boundary. The key

additional feature of a social phenomenon like intragenerational of life-course eco-

nomic mobility, requiring a finite extent domain for the model, is the concept of

poverty traps [15],which has been used to explain failures of well-known macroe-

conomic and microeconomic thinking about development, especially persistence

of poverty.

In simple terms, poverty traps are sub-optimal equilibria of society viewed in

economic terms. The efforts required for designers of markets to move it towards

more optimal equilibria are very different than traditional economic policy dis-

cussions as they involve the study of systems that defy market idealizations10.

There are three categories of explanations for why such traps arise and persist:

critical thresholds of economic transformation exist; dysfunctional institutions

and extra-market forces generate inertia that resist developmental processes; and

neighborhood effects corresponding to effects of sociological variables arise in spa-

tial settings.

While neighborhood effects can be modeled using variations in parameters of

10Conventional economics starts with the assumption that there is a market to begin with.
However, economists studying the nature of traps point to conditions that are not at all market-
like. That is, the socio-economic conditions cannot justify market equilibrium assumptions.
This and other observations made by developmental economists suggest that poverty traps have
to be studied and modeled on its own; market microeconomics are not the right starting point.

60



the stochastic dynamical system, the defining characteristic of the presence of

critical thresholds is the most interesting because of its similarities to first-exit

phenomena. Specifically, given the understanding of poverty traps in terms of

failure of market forces, the threshold economic variables above which market

forces begin working to produce efficient markets are natural candidates for do-

main boundaries 11.

While empirical studies have focused on individual level variables: psycholog-

ical, social-psychological, and other variables, and how they mediate economic

outcomes, the social ecology of individuals and groups have been ignored until

recently. Careful analysis of geographical variations in economic and social out-

comes indicate systematic correlations in collections of variables with changes in

neighborhood. Urban sociologists speculate that stable social processes, which are

hard to study empirically, maybe the causal force behind persistence of various eco-

nomic development measures. In order to incorporate such social mechanisms into

generative and inferential models, surrogate measures have been proposed [109]

and confirmed to be better predictive of economic and social development indices.

These measures are called ecometric measures. Such measures include measures

of organizational efficacy within residents of a block, neighborhood disorderiness,

data on emergency and other social service calls, etc.

Generative models of poverty traps and ecometric measures have not been

proposed in the literature. The drift-diffusion models discussed in this chapter

are thus candidate models. Specifically, we identify the boundaries of the models

with trap boundaries, and the diffusion parameter with an ecometric measure.

11For example, in neighborhoods with durable poverty, most credit and debt facilities are
informal and based on illegal and unlawful lending agents. This informal market exists because
the formal legal banking and financial institutions provide financial instruments for debt ame-
lioration only if individuals satisfy certain economic criteria. In such cases, it can be argued
that the market has failed –in the economic sense– to cater to the needs of the poor.
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This model of poverty trap with ecometric parameters is a novel contribution to

urban sociology.

An improved model of poverty traps is in terms of escape from attractor sce-

narios12. Instead, we make simplifying assumptions and treat the dynamics in

terms of simple constant drift-diffusion models. In the future, we plan to create

models without these simplifying assumptions. Associated neighborhood effects

can be modeled in terms of neighborhood dependent drift-diffusion parameters.

We discuss this and other extensions in Chapter 4.

Although all MFPT equations presented previously could be used as models

of social mobility in the presence of traps, we focus on models based on (2.13)

which we use in the next section.

2.3.4 Modeling mobility dynamics and escape from poverty traps
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Escape from Poverty trap
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t

Figure 2.7: Model of poverty traps

Having presented a series of diffusion models, we are now ready to use FPT

analysis to model social and economic mobility dynamics. We discuss the models

12We will encounter such models in the next chapter where we use it to model time constrained
judgment and decision making
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Figure 2.8: Model of poverty traps with a small drift component
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Figure 2.9: Model of poverty traps with a moderate drift component

in a qualitative manner referring back to the previous discussion when necessary.

The models introduced above have three categories of parameters: diffusion co-

efficient (D), drift (v) and the length of the bounded interval (L) on which the

dynamics take place.

Suppose x corresponds to wealth of an social actor. This social actor has a

steady rate of growth of wealth v. This rate is an aggregate value that includes all

sources of income and all sources of consumer commitments. For actors in middle
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Figure 2.10: Model of poverty traps wirth large drift component

and higher socio-economic classes, the day-to-day or month-to-month shocks of

random commitment shocks13. For simplicity we model this unanticipated com-

mitment shocks as Brownian noise D. The boundary points at x = 0 corresponds

13This corresponds to mundane events like sicknesses of actors themselves or their family
members, transportation failures, etc.,
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to abject unrecoverable poverty and x = L corresponds to the poverty trap thresh-

old which the wealth threshold, if crossed, would allow the social actor to escape

poverty permanently.

Now that we have imparted meaning to SDS, we revisit (2.13) and look at

that equation and the associated system. MFPT presented there corresponds to

a conditional exit time of reaching one boundary without reaching another. That

is, the equation is an answer to the question: Given that an actor is observed with

wealth x at a start time, what is the expected time by which this individual is

expected to escape abject poverty and cross the poverty threshold at L?

Suppose a social scientist were to perform a long term study of different neigh-

borhoods within the same city using techniques pioneered by Sampson [109, 62,

110]. The neighborhood effects hypothesis of poverty traps suggest that different

neighborhoods (say labeled by i) have different different unexpected consumer

commitment shocks Di. Given the same level of wealth growth rate, one could

observe systematic differences between different neighborhoods. From the sam-

ple expected time of escape from trap, which could be leaving the neighborhood

permanently, could be calculated. From this, one could estimate the D̂i. Urban

sociologists who work with theories of place have developed various neighborhood

level ecometric measures. If D̂i is found to be correlated with other neighbor-

hood ecometric measures, then one can make an argument for the inclusion of the

MFPT based measure into the gamut of existing ecometric measures. This is a

very testable claim assuming we have the necessary data at hand.

Figure (2.7) presents the basic model of poverty trap14. It models a case

with no drift. Upon reaching a, the actor enters a state of permanent poverty.

14The notation presented in the figure is meant to be consistent with the rest of the chapters
of the dissertation. In this chapter, the dynamics take place in [0, L]
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Upon reaching b, the actor enters a state of permanent escape from poverty. It is

the average time to reach the boundary from a given point (MFPT). This is an

important characteristic of escape from poverty dynamics.

In figures (2.8,2.9,2.10), we present sample dynamics with drift turned on.

Notice how the sample paths increasingly tend towards escape from poverty point.
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Figure 2.11: Poverty dynamics in the presence of health failures
While the second dimension in this figure corresponds to health failures, the second
dimension can correspond to other demographic variables too. Time is implicit.

In Figure ( 2.11), we present a simple extension of one dimensional dynamics

to two dimensional settings. The process starts at a point (x0, y0), an initial state

of wealth and health. As the dynamics unfolds in time, depending on the two

independent drift and diffusion constants in the two dimensions, the path may

hit the failure zones before hitting the escape from poverty point. Using MFPT
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expressions presented earlier, relevant questions about these escapes from two

dimensional traps may be answered.

This simple model can capture other realistic variants. The random consumer

commitment shock D could be a function of various social and demographic pa-

rameters. For example, family stability [17] is a known predictor of wealth in-

equality. Given what is known in works in urban sociology, it is reasonable to

postulate that, after controlling for all other variables, whether or not an actor is

divorced would predict the value of D. More specifically, Dmarried < Ddivorced.

While other plausible models can be envisioned15, we continue our focus on

models involving equation (2.13). While we could survey the rich literature on

urban sociology for inspiration with the same basic empirical stance, we shift our

attention towards what this analytical model in tandem with other computational

social science approaches can offer.

Already, as will be discussed in the subsequent sections, more specific analysis

of individual trajectories of social actors shows interesting complexity. Instead

here, we speculate on a simulation project that could be undertaken as a next

step. Previously, we emphasized the role of neighborhood effects in explaining or

predicting escape out of poverty traps. One of the aggregate ecometric measures

involve the actor’s social network characteristics. In sociology, this is done in

lieu of actually determining the social network structure because of the expense

15For example, consider in addition, the health status of an individual. For simplicity, let us
collapse all aspects of health into one single variable. It is reasonable to assume that, like BMI,
there is an optimal range of values. So, anytime an individual goes below or above the optimal
range of values, the individual drops out of the escape from poverty process because of poor
health. In the literature, health transitions are modeled using event-history analysis [75]. Since
these are related to CTMC, this can be modeled as yet another diffusion with or without a drift
process, just like our original transition from CTMC, to a diffusion processes with absorbing
boundaries to model the dropping out of the mobility evolution process. We model dynamics
as a two-dimensional drift-diffusion in section (2.3.2), then we could use the analyze above to
calculate the conditions under which individuals are able to escape from poverty before a health
failure.
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nature of network sampling exercises. These are natural questions addressed by

both computational social science and analytical sociology [64, 76].

Consider the original model defined in (2.1). Now suppose there are N social

actors that all satisfy their own wealth evolution equation

dxi(t) = vidt+
√

2Didwi (2.15)

Further, suppose the N actors are part of a social network corresponding to the

graph G with adjacency matrix Aij. Potentially both vi and Di could be func-

tions of network characteristics. As a preliminary set of models, a simulation on

simple reference networks like the one discussed in [94] could be used. Typically,

in networked dynamical systems, both the node level dynamics and the global

dynamics are mediated by network characteristics like centrality measures, mod-

ularity measures, graph Laplacian, etc. The interplay of drift-diffusion dynamics

of network structure might produce interesting results.

One could do better also by constructing networks using models of social pro-

cesses. As we might recall, the ecometric measures are aggregates for neighbor-

hood explanatory factors. Some of these factors correlate with known social forces

of empirical and theoretical import like homophily16 [89], consolidation17 [88], and

social cohesion18 [50]. Social network models can be generated based on specific

values of these social forces and the results from the simulation can be compared

16Homophily is the tendency of social actors with similar social and psychological attributes
to form stable relationships. The are important in understanding social structure formation and
maintenance.

17In modern societies, social, economic and cultural roles of actors tend to overlap. This
overlap creates dense clustering of social relations. One consequence of consolidation is the
tendency of highly clustered societies to repel or discourage relationships from actors not belong
to such cross-cutting social circles.

18Cohesive forces are forces that are catalyzed by synchronized behavior. Actors whose be-
haviors are synchronized –performing a social ritual together, for example– tend to form social
ties, even if they do not share any homophilous traits.
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with purely ecometric models. A similar experiment could be performed in the

presence of social influence19.

2.4 Conclusion

Stochastic dynamics thus offers a novel model class useful for discussing social

processes; this novelty is despite their well-known use of such models in physical

and engineering sciences. Interestingly, these models have not been popular even

in the economics literature as questions about income and social mobility are

dealt with at the coarse grained macroscopic level. Since we discussed sociology

literature in the earlier section, we conclude the chapter by shifting our focus

towards economic models.

In macro and micro economics, the concept of representative agents is a perva-

sive one. These are agents constructed to be idealized versions of economic actors.

Typically, results in macro and micro economics are derived by maximizing the

utility functions of such agents. Despite their limitations, such models continue to

be the basis for economic theory in spite of their overly simplifying assumption of

homogeneity of representative agents. Not only that, these representative agent

models are all deterministic in nature. Only recently, heterogeneous agent models

[2] based on stochastic components have been proposed as alternatives. Solutions

19Recently, there has been a lot of focus on social simple and complex contagion [30]. Suppose
D, the exogenous commitment can be decomposed into two terms D = Di +Dnorms. Further-
more, suppose the norms can spread through a given social contagion model where ideas spread
as it it is a disease carrying contagion. As is observed in the literature, the structure of the social
network shapes the spread of norms and conventions. And this indirectly influences escape from
poverty traps of individual actors. Since such interventions have been seen to be effective in
spreading various health related and other economic habit forming behavior [72], these exper-
iments can be useful proxies for whether one could use social network based interventions to
enable actors to get out of poverty traps more efficiently than with other conventional policy
interventions. For example, the work by Centola [30] suggests that healthy habits can be trans-
mitted only in certain kinds of social networks. Similar experiments may be possible for policy
interventions for promoting escape from poverty.
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to these models are based on Fokker-Planck partial differential equations. So,

despite their pervasive use in physical sciences, the one-dimensional models in-

troduced in this chapter are state of the art in economics and sociology. More

importantly, even in these heterogeneous agent models, finite time transients and

constraints are not discussed; instead they are constructed to model economic

processes at a macroscopic scale. To the best of our knowledge, the models pro-

posed in this chapter have not been used to study poverty traps, making it an

important contribution of this dissertation.

The models proposed here have other secondary roles to play, especially as

models of social processes. They provide insights that sometimes confirm and at

other times refute commonsense explanations of social phenomena. For empir-

ically oriented researchers, these computational models can help researchers to

avoid attributing population-level noise to causal narratives. Specifically, the pa-

rameters of these diffusion models, especially the first-passage time distribution

may become useful measures of dynamics of mobility and escape from poverty.

Even with simplifying assumptions, the models are able to capture key many as-

pects of mobility dynamics like diversity in individual histories. FPT measures

are one of several mathematical measures used to describe diffusions and other

Markov processes. Like FPT, we expect those measures to also be useful measures

of mobility dynamics.

Also of theoretical interest is use of dynamical systems as a way to expand on

the scope of traditional agent-based modeling approach common within compu-

tational social science. Interestingly, dynamic process models are more used in

analytical sociology as a way to encode social mechanisms. The current model

affords a two-way interaction between computational social science and analytical

sociology [64, 76] that is argued to be necessary for sociology and social science
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in general, with AS structuring models in CSS, and with CSS models provid-

ing mathematical and computational realizations of social mechanisms concocted

with AS.

While the models of poverty traps and escape from poverty dynamics make

sense as a continuation of literature on models of individual social processes, it is

worth pointing out that the dissertation arrived upon these models through the

idea of lifting biological reliability and projecting onto social processes. The fact

that all of the biological notions of reliable behavior along with quantitative models

of those concepts were transferable to social concepts and models is a vindication

of systems approach espoused in this dissertation. In the next chapter, we do the

same, but to understand models of dynamic judgment and decisions.

71



3 Drift-Diffusion Models of Bias, Uncertainty and Conflicts in 

Judgment and Decision Making

3.1 Introduction

This chapter

1. Introduces two new models to the drift-diffusion model literature

2. Links drift-diffusion models with models of ecological rationality

In this chapter, we introduce two variants of drift-diffusion models(DDMs) and

suggest potential judgment and decision tasks that may utilize the mechanisms

underlying these models. Due to presence of multiple scales and levels, these mod-

els exhibit interesting first-passage dynamics. Inspired by sub-neuronal biology

and by theoretical speculations, the associated stochastic accumulator dynamics

displayed here could motivate us to look for such features in existing experimental

data. We suggest the use of these new variants in modeling biased judgment and

decision tasks.

Like the contributions discussed in Chapter 2, the systems approach of lifting

and then applying the concept to unrelated domains leads to two distinct kinds

of contributions: suggesting models to DDM literature; connecting unrelated sub-

fields. The new models could –with some effort– be motivated directly, without

having to invoke the idea of systems isomorphisms. However, the connections

between DDM models of noisy accumulation and ecological rationality –missed by
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the literature– is made possible only because we framed noisy accumulation-based

dynamic judgment and decision processes as reliable in a lifted sense, allowing us

to connect in the idea of Simon and Giegerenzer’s concept of satisficing [52].

A DDM attempts to capture the idea of imperfection, temporality and dynam-

ics associated with everyday judgments and decisions. The imperfect nature is

captured by both a local stochasticity (Brownian noise) and a global stochasticity

–captured by the qualitatively different exit paths of a stochastic process. The

temporality and dynamics are captured by the generative mechanism underlying

a stochastic process. In one-dimensional setting, the DDM corresponds to a dy-

namic system with state space lying on an interval, a steady drift and Brownian

noise. Taken together, it captures the idea of imperfect accumulation of evidence

as the end point of such a dynamic system could be at 0 or at 1. Such a model was

first proposed by Ratcliff [102] to model the imperfect nature of memory retrieval.

Since Ratcliff’s original construction [102], drift-diffusion models1 have been

extended and generalized along various dimensions [126]. Response time distribu-

tions associated with DDM have been used to characterize differences in cognitive

performance metrics of control and stratified test populations. They have been

used to study group and inter and intra individual differences in aging, anxiety

disorders, ADHD, etc., and in clinical populations. Furthermore, recent works

use DDM and its generalizations to lay a dynamical process based foundation for

random utility theory and stochastic choice and order theories2. More generally,

building on DDM based random utility models [28], these models provide founda-

1Although we abbreviate drift-diffusion models to DDM, in the literature, diffusion-decision
models have also been abbreviated to DDM. Even though these two senses are mostly synony-
mous, we prefer the former sense as it better reflects the nature of the model.

2Traditionally, both order theory and utility theory do not encode probabilistic knowledge.
Both stochastic order theories and random utility theories incorporate probabilistic knowledge
by making binary relations and preference ordering based on a probability distribution.
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tions for rational information processing models of neuroeconomics. Motivated by

these generalizations and expansions in scope, we propose two variants of DDM

and suggest their value for modeling existing and novel dynamical decision and

judgment tasks.

Luce’s work[85, 84] on response time data and its emphasis on using response

time models to infer and reconstruct mental organization is an important precur-

sor to DDM, and more generally, to work in sequential sampling models [47] and

model-based cognitive neuroscience [48] [46]. Identifying design principles under-

lying judgment and decision making, and cognition more generally continues to

be of interest, be it in the pragmatic approach of Simon [119], or in the program-

matic approach of Marr [87]. While we discuss Simon’s approach later, we briefly

discuss Marr’s Levels.

Marr’s original suggestion was to organize cognitive neuroscientific explana-

tions in terms of levels: a computational level, a representational level, and an

implementational level. Further, he insisted that focus must be directed towards

explanations and integration of all three levels Computational level analyzes the

system in terms of the problems they solve; algorithmic or implementational level

studies the processes by which the problem is solved; and the implementation level

addresses questions regarding actual physical instantiation of representations and

algorithms.

A predominant school of thought interprets the computational level consti-

tute search for universal principles of representationalistic cognitive psychology,

but others point out limitations of this interpretation as it neglects time and dy-

namic self-organizational and coordinative aspects of cognition, especially with a

focus on behavior. Such alternative approaches [112] tend to view the highest of

Marr’s Levels as questions surrounding an architectural blueprint of how ‘satis-
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factory’ behavior is enabled by the underlying cognitive processes. DDMs, with

their emphasis on trade-offs between response times and accuracy fall under this

alternative interpretation.

This dissertation was conceived of in an attempt to understand reliable be-

havior of biological agents. Although not emphasized in the literature, we argue

later that DDMs are models of theories of ecological rationality [130, 22] where

concepts like response times explain performance relative to ecological structural

constraints. It attempts to build upon Simon’s concept of satisficing in which

judgments and decisions made by agents are always understood relative to the

characteristics of the agent’s environment, in contrast to absolute optimality based

principles in classical theories of decision making. From this perspective, DDM

are dynamical constraint satisfaction models. Setting aside our conceptual moti-

vations in rationality and satisficing, the models introduced in the next section can

be motivated more simply as an exercise in model-based cognitive neuroscience.

This is in contrast with more mathematical approaches that use combinatorial

theory [39, 106, 45, 93] and that avoid dynamical models.

The first generation of DDMs were developed as empirical models to explain

response time data. Since then, advances in neuroscience, and the need to inte-

grate findings across different levels of the neural information processing system,

have resulted in different motivations for the next generation of DDMs. Model-

based cognitive neuroscience offers a commonsense approach towards integration

of empirical and theoretical knowledge spanning multiple levels. For example,

statistical models used to explain cognitive neuroscientific data can incorporate

ideas from mathematical psychology, allowing for more expressive empirical mod-

els. Similarly, empirically identified mechanisms in neuroscience can serve as

inspirations for new models in mathematical psychology, allowing for synthesis
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with existing formally constructed models. This attitude is reflected in the liter-

ature where sequential sampling models and DDM are used to model static judg-

ment and decisions even though traditionally judgments, decisions, and actions

are perceived as static tasks not requiring dynamics. This reflects the increasing

confidence in the use of dynamical process based models as the right approach to

cognitive models because the the underlying neural mechanisms are themselves

dynamic. Similar justification has allowed the use of DDM to interpret data from

EEG and fMRI experiments. Given such motivations, DDM and sequential sam-

pling models have been generalized along different dimensions and found uses

beyond the original scope. Apart from more direct extensions like making the

decision boundaries dynamic, drift and diffusion coefficients non-stationary, other

conceptually significant generalizations have been made, both in cognitive psy-

chology and cognitive neuroscience. For example, DDM are in use as models of

multi-attribute, multi-alternative [78] and value-based decisions [28] not only in

psychological tasks but also to identify neural mechanisms and to localize neural

correlates statistically in neuroscientific experiments [99]. DDMs are also in use to

study one-choice tasks [104] and to study models in neuroeconomics [73, 134, 133]

and moral judgment tasks [37]. On the mathematical side, far reaching generaliza-

tions have been made, extending the underlying dynamical state space to higher

dimensions [124, 125] and even to infinite dimensions [103].

Aligned with the goals of model-based cognitive neuroscience, and with the

major themes of this dissertation, we observe that the generative mechanisms un-

derlying DDMs are present in neural processes [55, 66] across at scales of space

and time, from whole brain electrical activity to sub-cellular organelle level bio-

physics. A deeper scrutiny of these processes reveal generative mechanisms that

can be modeled by structured generalizations of diffusion processes. In particular,
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more general diffusion processes like piecewise-deterministic Markov processes and

multi-timescale diffusion processes are possible. Inspired by them, we lift these

models out of the sub-neuronal realm and cast them as generalizations of DDM,

fit for use as sequential sampling models.

The two models introduced in this chapter illustrate this idea of lifting that

we introduced in Chapter 1. In other DDM extensions, the models were con-

structed as interesting extensions of existing DDM models. In contrast to models

motivated by response time experiments, the lifted models have the distinguish-

ing feature of being models of nano and micro physiology. One model [86] was

recently constructed in order to understand the movement of bacteria; the other

model [66] is a model of biomolecular transition often used in modeling sub-cellular

physiological processes. The use of such biophysical models to construct DDM is

a contribution of this dissertation.

In the next section, we introduce these two models and discuss their potential

uses for modeling psychological processes involving sequential sampling models

and We conclude in the following section by discussing other extensions inspired

by this approach of borrowing models from nano and micro physiology.

3.1.1 Connections to models of Chapter 2

The basic DDM introduced by Ratcliff is identical to the models of intragenera-

tional mobility presented in Chapter 2. Both are based on FPT analysis on an

interval. The key differences between the mathematical sociology application from

the previous chapter and this application lie in their pragmatic value. While the

both models are good reference models, the models of the previous chapter are

deductively used; this is in contrast to the inductive use here as good explana-

tory models of response time distributions. As is practiced in empirically oriented
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cognitive psychology, where experimental design issues constrain how model or

hypothesis space are enlarged, researchers rightly focus on addition of one or two

explanatory factors at the time. While optimal within the field, it restricts itself

to a narrow class models. However, a theoretical orientation inspired by nano and

micro physiological process models suggests new model classes not discussed in

the literature.

MPFT equations from Chapter 1 is identified with response time distribution’s

statistical mean under various experimental protocols. Specifically, the variants

of DDM as cognitive psychological models are isomorphic to models of poverty

traps and the dynamics of escape from poverty traps. This strategy of repurposing

models from one discipline for use in others by careful identification of isomor-

phisms between systems is extremely potent. We will continue to do this in the

next chapter when we sketch work in progress where the same kind of FPT and

MFPT analysis is used to model biological behavioral primitives like fixed action

patterns and startles.

One of the goals of this chapter is to use the models introduced here to dis-

cuss how probabilities of choices made in two alternative forced choice (2AFC)

experiments and other related protocols would change if different alternative drift

and diffusion terms are used. In 2AFC experiments, experimental subjects are

presented with two choices, only one of them is the correct choice. Furthermore,

the subjects are pressed to make their choice as soon as possible. This creates a

scenario where response-accuracy trade-offs can be studied. Data in such experi-

ments consist of the choices made and their associated response times.

For this purpose, we have focused on E(x), the expected probability, start-

ing from x to reach one of the two decision boundaries. While we can perform

a similar analysis with MFPT t(x), we focus on E(x). In addition, the second
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of the two models introduced here requires asymptotic techniques like Wentzell-

Kramers-Brillouin approximations and is mathematically different from the mod-

els presented in Chapter 2. In such models, even in simplest of cases, a proper

analysis of MFPT in those scenarios requires the use of techniques from rare-event

simulations. Since we were more interested in the establishment of systems iso-

morphisms, we did not focus on this aspect of the analysis and it is the most

natural next step in our future work.

The models presented here are different from traditional DDM. For example,

DDM are fit assuming that the models contain drift and diffusion terms that

are constant or slowly varying piecewise linear functions of time. This leaves

the MFPT approximately the same as the ones for the finite interval case. The

models in such cases are identical to the ones presented in Chapter 2. However,

in the models presented here, drifts are either stochastic or nonlinear. This has

implications for FPT characteristics. We note this in the subsequent sections of

the chapter by pointing out differences with conventional DDM with simple drift

and diffusion terms.

3.2 Models

In what follows, we present two incremental extensions: one adds stochasticity to

the drift via a continuous time Markov chain (CTMC); the other adds nonlinear

deterministic structure that adds an additional timescale into our analysis. These

extensions are used as models of biased judgment and decision making by linking

them to experiments in cognitive neuroscience.

Sequential sampling models are a plausible and attractive way to think about

how agents make judgments and decisions in cognitive tasks with response times
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(RT) – the time taken for judgments and decisions to be made being of funda-

mental experimental importance. The sampling for evidence, if it happens in

continuous-time, collapse to DDMs. Since evidence accumulation can be thought

of as a continual perceptive process, an interesting comparison made with with sig-

nal detection theory (SDT), in which perception happens instantaneously. DDMs

are tied to a dynamic sampling and evidence accumulation over time unlike static

exposure assumptions in SDT and general recognition theory [4] (GRT). All the

same, the generalization of SDT and GRT to multidimensional manifold setting

parallels extensions proposed here and in discussions of future work. The mod-

els presented here and elsewhere can be thought of as dynamical analogues of

Fechnerian psychophysics.

Fechner’s law [4] is a phenomenological feature observed in psychophysics ex-

periments. In such experiments, the perceived difference between two stimuli of

different magnitude is logarithmic rather than linear. This nonlinear relation-

ship between physical magnitude of the stimuli and the perceived intensity can

be generalized for multidimensional stimuli and pereception spaces. The gen-

eralized Fechner’s law is then posed in differential geometric terms. In such a

generalized experiment, the result is attributed to differences in metric structure

of underlying psychological spaces. GRT is a generalization of Fechner’s laws of

psychophysics where the psychological spaces are postulated to be non-trivial Rie-

mannian manifolds. While GRT models encode stimuli as static points, DDM are

dynamic process versions of signal detection models; instead of a single point on a

non-trivial Riemannian manifold, it is a stochastic path on a non-trivial domain.

Irrespective of its historical connections [102, 85, 84] with sequential statisti-

cal decision theory, DDM’s current attractiveness is its association with model-

ing of cognitive processes, motivated by neural mechanisms. This connection to
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underlying neural processes directly informed the construction of the models to

be discussed in this chapter. Although discussions of DDM can be made with

greater generality3, we focus on a one dimensional DDM here. Since the focus of

this chapter is theoretical in nature, we do not discuss model fit here4.

The boundary of the domain, D represents the decision criteria, the thresh-

old for evidence for a decision or judgment task. The drift µ(x(t), t) parameter

represents evidence accumulation. σ(x, t) corresponds to the noisy nature of the

evidence accumulation process. Since, the state variable x(t) represents the psy-

chological measure of evidence, representations of noise and evidence accumulation

need to be clearly delineated in generic DDM. Sometimes, non-decision compo-

nents and associated latent response times are incorporated into the model as

additional parameters to match the specifics of the psychological process. Non-

stationarity can be encoded in the functions defining the SDE and in the bound-

ary as well. The resulting evolution equations become harder to solve but still

3The mathematical model of accrual of evidence for a judgment or decision in DDM are
modeled as stochastic differential equations (SDE) as follows [123], discrete-time and discrete-
state versions of DDM, although important, are not not relevant, and hence not discussed here.

The original diffusion model [102, 126] assumes that dynamic evidence accumulation leads
to one of two correct decisions or judgments. The evidence accumulation is considered to be
noisy, but with a steady drift in the direction of the correct response, but errors may occur, even
within multiple trials with the same subject, controlling for all other variables. The evidence
accumulation state space is an one dimensional interval with boundaries corresponding to the
two decisions that a subject could make. The times to decision under changing experimen-
tal conditions is the basis for subsequent inferential arguments about the mental organization
underlying such decision making tasks.

dx(t) = µ(x(t), t)dt+ σ(x(t), t)dB(t) (3.1)

where the functions µ(.) and σ(.) are the drift and diffusion coefficients for the state space X
variable’s evolution over time with the decision or judgment deemed to have taken place once
the state exits the domain D via the boundary ∂D. τD is the response time, the time taken for
the process to cross the decision threshold. Analytical calculations of response time is calculated
via an associated Fokker-Planck equation. We keep the SDE, associated domain and boundary
general as DDM are no longer confined to the restricted models historically constructed to model
2AFC experimental data. Typically, the goal of DDM is to explain data from experiments.

4We refer the reader to packages like HDDM, fast-dm and DMAT for more details.
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tractable by numerical means.

The analytical properties are typically not emphasized in the literature be-

cause of its peripheral relevance to model estimation and fit; something that is

usually done using the statistically oriented martingale approach [126]. That is,

precise analytical structure of solutions of DDM models are not emphasized; only

an expectation value based analysis is conducted. Since our proposals are theo-

retically inspired, analytical approach is more suitable as it is used to derive FPT

and MFPT of associated SDE. This also makes the isomorphisms more manifest

in terms of MFPT.

In one dimensional settings, equations are as follows

dx(t) = vdt+
√

2Ddw (3.2)

One can show that the solution of the stochastic dynamical system satisfies the

diffusion equation 5 with drift v and diffusion constant D.

∂c(x, t)

∂t
+ v

∂c(x, t)

∂x
= D

∂2c(x, t)

∂x2
(3.3)

where c(x, t) is the one probability density function. When drift v vanishes

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
(3.4)

The MPFT t(x) satisfies another PDE 6

5The equation follows from the fact that diffusion processes are all Markov processes and
hence must satisfy Kolmogorov’s forward-backward equation

6We encountered this in the previous chapters and will encounter the same equation in the
models to be presented in the subsequent sections of this chapter but with different state spaces
and boundary conditions.
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D∇2t(x) + v(x)∇t(x) = −1 (3.5)

The two proposed variants are extensions of these one-dimensional models. In

the first variant, we add a stochastic switching component, v can change signs

at the rate induced by a simple CTMC 7 with a Poisson rate γ. In the second

variant, v = −U ′(x) where U(x) is a multimodal function, so drift now is not

a trivial constant. Theoretical response times can be calculated for both these

cases, sometimes using asymptotic approximations.

3.2.1 Classical DDM

In this section, we present the original Drift-Diffusion Model [102, 123], and

present some known properties of response times of such processes.

Conceptually, DDM (figure 3.1) is identical to the model from chapter 2 where

we introduced the drift-diffusion model as a model of escape from poverty. As is

customary in the literature, the process starts at a time t0, at the initial evidence

point x0. Response time and accuracy is dependent on the starting point x0 as

well as the diffusion constant D and the rate of information accumulation v.

For example, subjects in one such experiment [47] are asked to judge the gen-

eral direction(right or lef) of a collection of moving dots. The drift rate represents

the magnitude of evidence accumulated per unit time, and is considered to be

an index of task difficulty and subject capability. The separation between the

boundaries represent the degree to which subjects can be cautious: greater the

separation, greater the accuracy in the given task, fewer the errors. This way a

7Like the discrete-time version, transitions to the next state depend only on the transition
matrix. In addition, because we are dealing with continuous time, the transition from one state
i to another state j follows a Poisson process λij

83



trade-off between accuracy and speed is established. The starting point of the

diffusion can be thought of as the bias. In some cases, there is a non-decision time

corresponding to predictable lags in the start of any cognitive process. All these

parameters together completely specify a given DDM.
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Lower Decision Boundary
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Upper Decision Boundary

b

t
Response Time

(x0, t0)

Figure 3.1: Drift-Diffusion Model

Solutions of Fokker-Planck equations associated with first-passage times of

certain simple processes can be calculated as an infinite series. Fast numerical

routines are available [43]8 for certain kinds of diffusion models. While the pro-

cesses from Chapter 2 have FPT densities similar to ones plotted here, since the

focus was on economic applications, expectation values were more important as

measures of wealth growth. In DDM, the response times to reach various decisions

constitute the data and it is more natural to look for FPT density. However, as the

DDM gets more complex, MFPT bases analysis is more prevalent. In appendix

(), we present a brief introduction to parametric inference of DDM given data.

8We used publicly available julia code to generate all FPT plots
(https://github.com/DrugowitschLab/DiffModels.jl)
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Figure 3.2: DDM with (almost) pure diffusion starting at the center
U and L correspond to upper and lower decision boundaries. For convention, U is

assumed to be the right choice in a 2AFC experiment. x axis denotes time and y axis
denotes first-passage time probability density.

In Figure (3.2) is based on a simulated FPT density of a simulated diffusion

process. The process was started at the mid point with no drift term. Curves U

and L in the figure correspond to FPT density for reaching the upper and lower

boundary. We artificially biased it infinitesimally to show the symmetric nature

of the two distributions. Without the bias, the two densities will be identical.

Next we move the starting point closer to the lower boundary.

In Figure (3.3), we plot a DDM with an asymmetric starting point. Since the

starting point is closer to the lower boundary L, the paths lead faster out of the

lower boundary. The sharp peak in response time very at short time confirms

this expectation. Next we discuss variations in FPT density as we change drift

parameters.

In Figure (3.4), we plot FPT densities for DDM with varying drift (informa-
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Figure 3.3: DDM with (almost) pure diffusion starting at the center
U and L correspond to upper and lower decision boundaries. The initial starting point
is asymmetric, starting closer to the lower boundary. x axis denotes time and y axis

denotes first-passage time probabilty density.

tion accumulation rate) parameters. All curves correspond to FPT densities for

reaching the upper decision boundary. When drift is positive (blue), curves tend

to develop sharp peak and have earlier response times. In contrast, negative drift

produces shallower peaks but later response times. Next we discuss the nature of

FPT peaks by increasing drift to very large values

In Figure (3.6), we plot FPT densities to reach the upper boundary for various

values of v. As is expected, as the magnitude increases for negligible to higher

and higher order of magnitudes, the FPT density peaks shift towards the left and

is increasingly sharp. For large values of v, drift dominates over D.
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Figure 3.4: DDM with (almost) positive and negative drift
U and L correspond to upper and lower decision boundaries. FPT densities in blue

correspond to positive drift towards U. FPT in red correspond to negative drift against
U. x axis denotes time and y axis denotes first-passage time probabilty density.
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Figure 3.5: DDM with positive drift of increasing magnitude
U and L correspond to upper and lower decision boundaries. FPT densities in blue

correspond to positive drift with increasing magnitude. x axis denotes time and y axis
denotes first-passage time probability density.
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3.2.2 Models with stochastic drift

One dimensional drift-diffusion and FPT characteristics have been extensively

studied in the physics literature [105]. Recently [86], a simple one dimensional

model of movement of run and tumble (RTP) bacteria and active particle was

constructed and studied for their FPT properties. RTP particles tend to move in

approximately deterministic fashion, occasionally changing direction. [86] made

simplifying assumptions, modeling the run portion as a drift-diffusion and the

occasional tumbling as a CTMC. Such stochastic hybrid models are frequently

used as models of sub-cellular biophysics and as models of ion and protein trans-

port [20].

The modified equation for RTP is

dx(t) = vdt+
√

2Ddw where v = sv (3.6)

where s = ±1, changing signs according to a CTMC. Following their analysis [86],

we define P±1(x, t) as the probability density for the particle to be at position x

with velocities ±v respectively. Also for convenience, we work with the dimen-

sionless constants D = Dγ/v2 and l = Lγ/v9. Here, the dynamics is assumed to

take place in an unit interval [−L,+L]. Both −L and +L are absorbing. While

similar to models in Chapter 2, the interval is different from interval in Chapter

2 where the interval used was [0, L].

We define E±1(x) are the exit probabilities given the particle starts at x with

velocity ±1 exiting at −l.
9If γ → 0, the effective parameters of the problem all go to zero. This is indicative of the fact

the CTMC produces a singular perturbation [105, 115] in the Fokker-Planck equations. Such
behavior is pervasive in these systems. For example, if we have v = 0, the PDE needs to be
reworked as that is yet another singular perturbation.
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For analyzing FPT properties for exit from a finite interval, the following two sets

of equations involving exit probabilities 10 are more pertinent

D∂
2E(x,+)

∂x2
+
∂E(x,+)

∂x
− ((E(x,+)− E(x,−)) = 0 (3.7)

D∂
2E(x,−)

∂x2
− ∂E(x,−)

∂x
+ (E(x,+)− E(x,−)) = 0 (3.8)

with boundary conditions E(0,±) = 1 and E(0,±) = 1. Solutions to the above

equation can be obtained in close form solutions and are as follows

E(x,+) =
eαl[(l − x)− αγ−][(l − x) + αγ+] + γ+e

α(l−x) + γ−e
αl

eαl[l + 1
Dα ] + [l − 1

Dα ]
(3.9)

E(x,−) =
eαl[(l − x) + αγ+][(l − x) + αγ−]− γ−eα(l−x) − γ+eαl

eαl[l + 1
Dα ] + [l − 1

Dα ]
(3.10)

where

α2 =
1

D2
+

2

D
and γ± =

1

2

( 1

α
± 1

Dα2

)
Similar expressions for t+(x, t) and t−(x, t), the mean first-passage time (to either

boundary) for a particle that is at x and is also in the +(−) state can be calculated.

The above equation can be contrasted with exit probability without the CTMC

but with a constant v as

10These equations can be derived from the coupled diffusion and CTMC evolution equations
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E(x) =
e−vx/D − e−vL/D

1− e−vL/D
(3.11)

We suggest potential roles for these models in the concluding part of the sec-

tion. Next, we construct another model by relaxing the constant magnitude v

assumption, making it dependent on the state space. This leads to non-trivial

exit path profiles. We argue that these models could better explain data from

cognitive neuroscience experiments. Specifically, models of fluctuating drives may

serve as models of dynamic conflict in certain conflict tasks.
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Figure 3.6: DDM with positive drift of increasing magnitude
U and L correspond to upper and lower decision boundaries. FPT densities in blue

correspond to positive drift with increasing magnitude. x axis denotes time and y axis
denotes first-passage time probability density.
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v(x) = U ′(x)U(a)
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U ′(x) > 0 U ′(x) < 0

U ′(x) = 0

U ′(x) = 0

Figure 3.7: DDM with nonlinear deterministic drift

3.2.3 Models with non-trivial deterministic drift

The model presented previously had constant magnitude but stochastically fluctu-

ating drift. In this model 11 (see figure 3.2.3, the deterministic dynamics is made

interesting by a state space dependent drift function. We begin with a simple

one dimensional dynamical system with a state space evolution determined by an

ordinary differential equation.

dx

dt
= −U ′(x) with x(0) = x0

where U(x) is a potential function for the particle. The stable points of this

system are exactly where U ′(x) vanishes. Suppose there are three extrema of

U(x) at a, b, and c with a < c < b. Further suppose U(b) < U(a) < U(c) and c is

a local maxima and a and b are the system’s local and global minima respectively.

The deterministic system is stable to perturbations around a and c but any small

11There are several variants of this noisy escape from attractor problem in the literature. We
closely follow Gardiner’s analysis [51]
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perturbation away from b in either direction pushes it towards one of the two

minima, depending on the direction of perturbation.

To this system, we now add stochasticity modeled via a diffusion constant

D which is small in comparison to the scale of the deterministic dynamics, the

system’s stability is completely lost because the stochastic perturbation, in the

long run can take the system to different parts of state space. The associated

Fokker-Planck PDE is

∂p(x, t)

∂t
=
∂[U ′(x)p(x, t)]

∂x
+D

∂2p(x, t)

∂x2
(3.12)

One can perform calculations analogous to the previous model, to determine

the probability of a particle starting a generic point x going to either minima a

or b. We summarize the main results here but leave the details for the appendix.

Again, the tools are similar and calculations approximate in nature. We follow

[51] 12 closely in the rest of this subsection. In the asymptotic limit D → 0, the

two probabilities πa(x0) and πc(x0), the probability that a particle at x0 falls into

a or c respectively.

Two cases are important because the singularly perturbed nature of the solutions.

One in which x0 is more than ∼
√
D away from c; the other where x0 is at a finite

distance from c.

When x0 is infinitesimally distant from c, the solution can be shown to be

Ec =
1

2

{
1− erf

[
(b− x0)

√
|U ′′(b)|
D

]}
(3.13)

where

12The calculations follow standard techniques and the interested reader can consult the book
[51] section 9.1 for the derivations.
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erf(x) =

√
π

2

∫ x

0

dte−t
2

When x0 is at a finite distance, the solution is

Ec =
1

U ′(x0)

√
|U ′′(b)|D

2π
exp
[U(x0)− U(b)

D

]
(3.14)

with the splitting probability is only dependent on c. The probability of reach-

ing b in this limit is dependent on the particle jumping over the barrier c with

the other points being effectively infinite distance apart from each other in this

approximation.

Having introduced the two models, we discuss applications of these models.

In particular, we point out how the structure of models affords interpretation as

models of psychological bias and codification of uncertainty in knowledge available.

3.2.4 Applications

We introduced two DDM extensions and demonstrated their analytical properties

and calculated MFPT and expectation probabilities of exit. Typically measured

experimentally like response time histograms may be identified with expressions

for MFPT derived here. The extensions appeal to their dynamical systems nature

and not to their statistical decision theoretic roots; they are plausible theoretical

models whose empirical justification needs to be confirmed, but they are theoret-

ically interesting and provide alternative generative models. This allowed us to

employ newer class of SDE like stochastic hybrid models, piecewise-deterministic

Markov models and multi-scale models [20]. Among the zoo of available interest-

ing stochastic dynamical models available, the models discussed above were picked

for their simplicity and novelty. To illustrate the use of these extensions, we con-
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sider their utility in biased decision making tasks. We add to discussions already

present in the literature, specifically in [92] and suggest that the models intro-

duced in this chapter may have relevance in explaining some of the documented

results from their experiments.

A major objective in [92]was to identify neural correlates (fMRI) of prior

knowledge in electrophysiological (EEG) and blood oxygenation dependent (BOLD)

signals. These are multi-paradigm experiments as three different experimental

tasks: electrophysiological, fMRI, and response time tasks are performed simul-

taneously. This allows a tighter integrating of data across different scales of the

cognitive system.

In the experiment, subjects participated in an RT version of random dot mo-

tion task we discussed earlier in this chapter. In addition, cue indicating bias

was presented next to the moving random dot images. The time it took for the

subjects to decide whether the random dots moved to the right or to the left is

the primary data for this task. They tested two models of prior knowledge. In

one case, bias was encoded as changes in the starting point of the evidence ac-

cumulation process, the initial condition of a one-dimensional SDE; in the other,

bias was encoded in a drift-rate that varied depending on the knowledge encoded.

They conducted experiments to confirm their encoding of bias. While the DDM

response times are measured like in conventional experiments, the subjects are in-

side a fMRI scanner so that their brain activities can also be measured simultane-

ously. In other experimental protocols, there is a possibility of even incorporating

other imaging or recording techniques like EEG and MEG. Taken together, the

collected data is capable of providing insights for different related disciplines in

cognitive neuroscience.

Their results suggested that same regions of the brain were involved in both
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forms of prior knowledge. That is, when v = 0

E(x) =
e−vx/D − e−vL/D

1− e−vL/D
(3.11)

x is the starting point of the drift-diffusion process. It thus encodes informa-

tion on prior knowledge. The choice probabilities are explicitly dependent on it.

Similarly, changing v can also change choice probabilities13.

Our models suggest additional ways in which prior knowledge (or norms [37]

if we are looking at moral judgments) could be encoded. In many instances, in-

stead of clear perceived evidence, one could envision a scenario where background

knowledge is uncertain or if evidence is perceived to be continuously conflicting.

Such uncertainty and confusion is exploited in various cognitive tasks like Stroop,

Flanker and Simon tasks 14 . We discuss this in more detail later in this section.

In such cases a RTP type DDM like the one discussed previously might be useful.

Clearly, the functional form response time distributions for RTP-type model (see

3.7) and regular DDM (see equation 3.11) with bias as suggested by [92] are

different; they suggest that the underlying neural and psychological processes are

different.

In studies exploring the neural basis of pro-social behavior [77, 70], the response

13As we noted earlier, MPFT expressions derived in Chapter 2 can be used to generate syn-
thetic data, if necessary. For example, DDM community uses very complicated hierarchical
Bayesian models for fit response time data. the models introduced in this chapter could serve as
alternative generative models. If the few parameter models of this chapter fit the data better,
then it offers a simpler generative alternative to more complex statistical models.

14In Stroop tasks, the written word can conflict with the color in which it is rendered. For
example, in experiments, subjects find it difficult to name the ink color of a color world if it is
different from the ink color and the word.

In flanker tasks, flanking items can conflict with target items. The phenomena is that when
stimuli are presented alongside other redundant stimuli, the original task becomes more difficult
and error prone.

In Simon task, the location of the stimulus can conflict with the response.For example, subjects
tend to perform better if the action to be taken and the direction of the stimuli are both in the
same direction.
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time in subjects playing the public goods game15were observed to be higher on

average when considering altruistic pro-social behavior. Furthermore, as the game

payoffs are changed, the subject response times change, and suggests a change in

the parameters of the underlying DDM. The models of this chapter are candidate

models of formal models of moral judgment [37].

In our model, the difference is due to the presence of a switching rate, the

Poisson intensity γ. Since the DDMs presented in [92] and the fluctuating DDM,

it would be interesting to see whether the brain regions encoding prior knowledge

change to a new location, as uncertainty in knowledge is encoded in different

regions of the brain. Testing this hypothesis about the location of uncertain prior

knowledge might be an interesting complementary task to perform.

The second model which is based on multiple extrema offers a different mech-

anism for incorporating bias as the presence of two scales in the escape from

attractor system creates dramatic differences in comparison to the conventional

DDM case. As the analysis shows, MFPT and probabilities of transition to the

exit points depend only on the value of the potential and its first and second

derivatives at points a, b, and c (see equations 3.23, 3.13 and 3.14).

Also noticeable in the escape from attractor model are two phases (see equa-

tions 3.13 and 3.14), one where the initial point x0 is close to the local maxima

b; the other where x0 is a finite distance away from b. Instead of a variable drift

rate model of bias as suggested in [92], this model encodes bias through a state

dependent drift U ′(x). The interpretation in this case is that the rate of conven-

tional evidence accumulation rate U ′(x) is state space dependent, slowing down in

15In a public goods game, players may contribute one’s private coins towards a common pot.
At the next stage, the pooled public tokens are multiplied by a factor, and evenly shared among
the participants in the game. The Nash equilibrium of this game depends on the number of
players and the public token multiplication factor.
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specific regions of state space corresponding to the extrema where U ′(x) is close

to 0 as the accumulation rate v is a function of U ′(x). Also, unlike conventional

DDM, in this case, implicit in the model are two scales16, one, the order of the

evidence accumulation process (deterministic dynamics); and the other, the scale

set by the diffusion constant (noise). The neural correlates of such biases are

expected to be different than the one found by [92] as the mechanism behind a

subject’s decision is different in the models presented in this chapter. Confirm-

ing this expectation via experiments like Forstmann et al [92] is an interesting

direction for future work.

The two models may be useful in other settings too. Let us focus on the escape

from attractor model. In a typical DDM, the relative frequency of choices, say

2AFC tasks, is of comparable magnitude. However, because noisy escape from

attractors work differently (see equations 3.13 and 3.14), if we wish to guarantee

rarity of one of the two choices, a model based on the escape from attractor is a

better model than a conventional DDM.

Consider another scenario where transient evidence is presented at the start of

the task in the form of a brief exposure. After an initial exposure, let us assume

that only the internal processes dictate the dynamics. The initial exposure is

going to set the value of x0. Because of the strong nonlinearities present in the

dynamics, the probability of a judgment depends only on the initial evidence

point relative to the extrema b. We suggest that such scenarios potentially explain

moral judgments tasks like norm violations [37] where framing effects and strongly

internally embedded moral constraints are known to strongly determine judgment

results.

16Unlike the models presented in Chapter 2 and in the CTMC based fluctuating drift model,
the nontrivial deterministic dynamics modulated by U(x) takes place at a different scale than
the scale of the diffusion.
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The variants introduced here can also be thought as contributing to DDM

based RT modeling of conflict tasks [135] like the Stroop task, Flanker task and

Simon task. DDM used to explain RT characteristics observed in these tasks

involve the use of time dependent drift functions v(t), clearly leading to differences

from simple model choice probabilities as described in equation 3.11. Both models

introduced here encode conflicts either as a stochastic fluctuation term or in the

form of static nonlinearity, which is different from conventional conflict DDM.

As the neural basis or the specific psychological processes behind conflict tasks

have not been identified, the models discussed in this chapter add to the pool of

available candidate dynamic models for conflict tasks.

3.3 From DDM to Ecological Rationality

In Chapter 2, the same family of SDS was used to model escape from poverty

traps. While the notion of traps has clear connections to the biological concept of

viability, its connections to judgment and decision making in general, including

models introduced in this chapter, needs to be clarified. In this section, we make

these connections to viability via Giegerenzer’s program [52, 53] around ecological

rationality and its ancestry in systems ideas of satisficing and law of requisite

variety discussed in Chapter 1.

DDM literature’s original motivation in trying to explain speed-accuracy trade-

offs in cognitive tasks like 2AFC suggests natural connections between DDM and

ecological, but the argument needs to be made. 2AFC and its variants mimic real

world decision making tasks under time constraints. Without such constraints,

almost all agents arrive at the right judgment. In other scenarios like one-choice

reaction time tasks [104], it is the time it takes for the agent to reach a judgment
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or perform an action. Correspondence between DDM and ecological rationality

could be established by appealing to the viability point of view espoused in chap-

ter 1 using the correspondence between time to error or action as in [104] and

persistence in a viable region.

While these models were developed within cognitive psychology, as an ap-

proach to dynamical psychological process modeling [85, 84], they could also be

understood in terms of statistical decision theory, as decision processes that unfold

over time. From this perspective, for an agent, it is sufficient to generate good

enough decisions or judgments using available cognitive substrate. Furthermore,

it suffices for decisions to be reached at times that match the temporal regularities

and requirements of the environment; enabling the fastest possible judgments and

decisions is not necessary. Both these points are in contrast to more traditional

optimization oriented view of judgments and decision making. The perspective

that normative evaluations of actions make sense only relative to the structure of

the environment is associated with the concept of satisficing. And the demand

that adaptive capability of materials should match the complexity of the environ-

ment is related to Ashby’s law of requisite variety. These two systems ideas form

the conceptual underpinnings of ecological rationality.

Giegerenzer’s ecological rationality [130, 22] is offered an alternative to both

the traditional conception of economic rationality and the error taxonomy based

approach developed by Kahneman and Tversky. This ecological perspective dis-

avows an optimization theoretic mathematical formalization of rationality, even

if it is enriched by expressive computational models. It also rejects the error

classification approach popularized by Kahneman and Tversky as scientifically

unproductive because of its lack of reliance on computational models. Instead,

ecological rationality proposes to develop computational and optimization based
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models that encode the structure and regularity of the environment; the norma-

tive criteria of what is rational is based on whether or not actions are good enough

in an agent’s environment. The fine tuning and constraint satisfaction based ap-

proach formulated in chapter 1 seeks to refine existing ecologically rational models

by more explicitly and manifestly incorporating constraints of a temporal nature.

Typically, models of ecological rationality [52] focus on providing alternatives to

statistical decision theoretic conception of optimality based on environmental reg-

ularities. To the best of our knowledge, this proposed refinement of ecological

rationality models via the conception of reliability articulated in Chapter 1 is an

insight provided by the approach first introduced in Chapter 1.

The SDS underlying DDM is dynamical and process oriented by definition

and computational via its focus on specific FPT scenarios. By associating the

quality of decisions and judgments with various first-exit characteristics, a com-

putational task completion models can be constructed, a suitable version of reli-

ability is enabled, and robustness guaranteed via constraint satisfaction. While

DDM has been cast as a stochastic optimal control problem [12, 11], viewing exit-

probabilities and exit-time moments as constraints to be fine-tuned in modules has

not been discussed in the literature. This fine tuning is achieved by restricting the

parameters to enable good enough actions. This fine tuning without any explicit

control modules makes in contradistinct with models of rationality using optimal-

ity as a criteria. In other words, both in ecological rationality literature [130, 22]

and in this dissertation, rationality may be accomplished via optimization, via

mere constraint satisfaction. As discussed earlier, DDM models are acknowledged

to capture the idea of response time-accuracy trade-off. By associating this trade-

off with reliability and viability as conceptualized in Chapter 1, DDM can now be

thought of as a model of ecological rationality.

100



This conception of DDM as part of ecological rationality is also consistent

with alternative views [112, 22] of Marr’s Levels, which tries to emphasize non-

computational aspects of biological systems. In such viewpoints, understanding

the architecture of cognitive function relative to biological behavior does not pre-

clude the use of non-representationalistic dynamic models of processes. Use of

DDMs in cognitive psychology as inferential models occludes their theoretical and

conceptual value, and this insight was made clear and precise using the systems

isomorphims from Chapter 1.

3.4 Conclusion

The two variants of DDM introduced above stand out in their novel use of nonlin-

ear stochastic dynamical systems theory. To the best of our knowledge, the use of

noisy escape from attractor scenarios in dynamical systems to model psychological

processes is a novel contribution of this work. Also, the use of RTP as a DDM

is also a contribution. As more bells and whistles are added to DDMs, inferring

models from only response time distributions become increasingly intractable, a

feature that is shared by all extant variants [66] and not just our models. A

few natural steps can be taken to make these models more appealing, which we

address in Chapter 4.

The novelty of the one dimensional models introduced in this chapter share

many features of similar models introduced in Chapter 2 where they were used

to study theoretically certain aspects of escape from poverty traps. Just like the

models of Chapter 2, these models have not been discussed in DDM literature.

While the models with stochastic drift were only recently introduced in micro nano

physiology, the model with nonlinear gradient based drift is older and well known
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in physics, chemistry, biology and also in neuroscience. Despite its connections

to neural spike initiation models, the model remained unused as a DDM. To the

best of our knowledge, this work seems to be the first to introduce such models

as models of dynamic judgment and decision making.

Similarly, while both ecological rationality literature and DDM literature inde-

pendently discuss response-accuracy tradeoffs, the explicit connection between the

two areas is made possible only by the notions of reliability, constraint satisfaction

and fine tuning introduced in Chapter 1. Also, the models introduced here and

others planned to be discussed in the future are all models used in micro and nano

physiology. The model of escape from attractor discussed here has a potential role

to play in escape from poverty traps as yet another model of poverty dynamics.

Such crossovers between different unrelated disciplines is made possible by the no-

tion of lifting introduced and discussed in chapter 1. The isomorphisms between

models of poverty dynamics and models of judgment and decision making are not

merely model isomorphisms; they are systems isomorphisms in that the theme

of reliability, constraint satisfaction and fine tuning all carry over. This makes

them semantically and pragmatically richer than simple transfer of mathematical

knowledge about models.

Finally, at the very least, given the interesting features of the two models

presented in this chapter, it is our hope that these models inspire ideas for new

experiments or reanalysis of old experimental data in new light.
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Appendix

Given the relative magnitude of the noise and deterministic dynamics, WKB ap-

proximation 17 suggests the following form for the solution

p(x) = N exp[−U(x)/D]

N is a normalization constant defined in equation 3.20 that is calculated order by

order in perturbation theory to make sure that the probabilities add up to 1 .

A feature this model shares with the previous is that the nature of pertur-

bation. Just as the CMTMC perturbation encountered previously, the addition

of the diffusion constant D is a singular perturbation; D → 0 and D = 0 are

qualitatively different. Exact solutions are unavailable but approximate solutions

using WKB approximations are available. We calculate them next. Assuming

(U(x) is sufficiently well-behaved, we can perform a a series expansion around the

minima a and c.

U(x) ' U(a) +
1

2
U ′′(a)(x− a)2 |x− a| → 0 (3.15)

' U(a) +
1

2
U ′′(a)(x− c)2 |x− c| → 0 (3.16)

since D is small, WKB ansatz gives us

17Originally used in quantum mechanics, Wentzell-Kramers-Brioullin approximation is a
workhorse technique for calculating approximate solutions of (partial) differential equations
involving multiple spatial and temporal scales

103



p(x) ' N [−U(a)/D − 1

2
U ′′(a)(x− a)2/D] |x− a| → 0 (3.17)

' N [−U(a)/D − 1

2
U ′′(c)(x− c)2/D] |x− c| → 0 (3.18)

' 0 everwhere else (3.19)

with the normalization constant given by

N−1 = e−U(a)/D
√

2πD/U ′′(a) + e−U(c)/D
√

2πD/U ′′(c) (3.20)

Since we are working with asymptotic approximations (D → 0)

the second term in the approximation can be dropped, leaving us with

p(x) =

√
U ′′(c)

2πD
exp[−1

2
U ′′(c)(x− c)2/D] |x− c| ∼

√
D (3.21)

= 0 everwhere else (3.22)

showing that the global minima is the most stable. While correct, for large time

t→∞ (more precisely ∼ exp(−const/D)), the above approximation breaks down

and the solution can cross the barrier maxima onto the other minima.

One can show that the time for the state at a, to reach b, the barrier is

T (a→ b) = π[|U ′′(b)|U ′′(a)]−1/2exp
[U(b)− U(a)

D

]
(3.23)

The above equation 3.23 can be generalized to arbitrary points x and y on the state

space but as mentioned earlier, in the absence of closed form solutions, numerical

evaluation requires other techniques . This will be pursued in a future work.
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Inference for DDM

In this appendix, we present inference procedure used for extracting paramters of

the drift-diffusion model [131]. Consider the basic DDM with constant drift and

diffusion constant18

dx = vdt+ sdW (3.24)

where x is the evidence and v is the evidence accumulation rate. sdW is the stan-

dard Gaussian noise. This is for the 2AFC experiment. In this specific model, the

agent accumulates evidence in favor of an action C1 with a rate v, called the drift,

meaning that in the case of a classical 2AFC, the agent will also accumulate evi-

dence against this evidence towards C2. . Once the evidence crosses one of the two

absorbing boundaries (the boundary b positioned at a distance a corresponding to

the action C1 or the boundary ¬b. at position 0 corresponding to action C2. This

corresponds to upper decision boundary U and lower boundary L respectively.

The corresponding action is selected after a delay t0. The accumulation can start

wherever at z0 ∈ [0, a]. We rescale z0 to w = z0/a.

The FPT density has a closed formula θ = {a, v, w, t0}

Wiener(t, b; z) =
π

a2
exp

(
−vaw− v

2(t− t0
2

) ∞∑
k=1

k exp
(
− k

2π2(t− t0)
2a2

)
sin(kπw)

(3.25)

θ∗ = argmax
θ

p(y; θ) (3.26)

18A simplified notation is used for diffusion to better illustrate the steps in estimation.
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= argmax
θ

1

S

S∑
i=1

1

T

T∑
t=1

l(yt,s; θs) (3.27)

S correspond to the number of experimental subjects used in the trial. T

corresponds to the number of trials.

where the likelihood is

l(yt,s; θs) = log

∫
Wiener(yt,sz)p(zt; θs)dz (3.28)

The data for such experiments come as pairs (RT i, Ci) corresponding to re-

sponse time and the choice made.
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4 Conclusion

This dissertation makes the following contributions

1. In Chapter 1, using the concept of lifting, we generalized a specific notion

of reliability and used it to define measures of resilience based on MFPT

and FPT, and identified a constraint satisfaction pathway to guaranteeing

reliable behavior that is in contrast to the more popular control theoretic

approach. We generalized models of nano and micro physiology and applied

it to two different domains: in mathematical sociology, to model poverty

traps; and in mathematical psychology, to model bias and conflict in dy-

namic judgment and decision making tasks.

2. Chapter 2 introduced diffusion models to the theoretical literature on intra-

generational social mobility and poverty traps and proposes new ecometric

measures for urban sociologists.

3. Chapter 3 introduced new DDMs of judgment and decision making for mod-

eling bias, uncertainty and conflicts and connected DDM and ecological ra-

tionality literature.

In this chapter, we suggest future work that builds upon the work discussed in

chapters 1, 2 and 3.

In mathematical sociology, we argue for
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• higher dimensional escape from attractor scenarios as the next step towards

developing more realistic models of poverty traps

• the use of Levy noises instead of just Brownian noise in models of intragen-

erational mobility

In mathematical psychology, we argue for

• higher dimensional models of escape from attractors to model multi-attribute

decision making and judgment tasks

• the use of DDM is moral judgment and decision making

Additionally, we argue for

• the use of diffusion on rotation groups to model biological agents at the nano

and micro scale

• the irreducibility of constraint satisfaction problems to simple optimization

problems

• the need to develop better techniques to solve the inverse Fokker-Planck

problem

In the remainder of this concluding chapter, we discuss future research directly

inspired by the notion of reliability in SDS introduced in Chapter 1 and the work

exemplifying this idea in Chapters 2 and 3. Future work mentioned here can be

grouped together into three categories. The first category of work aims to improve

upon the models used in Chapters 2 and 3. The second category of work aims to

apply techniques used in Chapters 2 and 3 to model animal behavior at the meso

and micro scale. The last category of work aims to develop mathematical tools
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necessary to extend MFPT analysis used in the dissertation to FPT analysis in

more general settings, illuminating the role of fine constraint satisfaction and fine

tuning in characterizing reliability of behavior.

4.1 Summary of contributions and future work: Mathematical Soci-

ology

Chapter 2 models intragenerational mobility in the presence of poverty traps.

While intragenerational mobility is not as well discussed in the economic litera-

ture as compared to intergenerational mobility, they are still discussed, but not in

the context of poverty traps. The SDS approach sketched previously in Chaper

2 allows us to synthesize related domain knowledge and illustrate the impor-

tance of traps in understanding how actors escape poverty. Traditionally, wealth

mobility and aspects of poverty are all studied separately in macroeconomics, mi-

croeconomics, economic sociology, urban sociology etc. The organizing principle

of reliability helped us integrate ideas from different substantive disciplines, and

propose new measures for use in analyzing sociological data.

SDS is given the following meaning. The state variable x corresponds to wealth

that evolves in time x(t) and starts at x0. The rate of growth of wealth is v that

is subjected to a Brownian shock represented by a diffusion constant D. The

boundary of the domain is an unit interval say [0, 1] where 0 corresponds to a state

of being trapped in permanent poverty and 1 corresponds to the actor escaping

poverty.

While poverty traps are discussed as attracting fixed points of deterministic

dynamics in equilibrium macroeconomic models, stochastic models of individual

trajectory in poverty traps have not been discussed in economics or sociology.
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The work identifies the domain of dynamics D with a trap with escape out of the

domain is considered to be desirable. The diffusion constant D captures an eco-

logical measure not directly interpretable as an economic measure, and may prove

insightful to urban sociologists working with such ecometric measures. While

policy makers are usually interested in wealth growth, the work points out how

D plays an important role in determining when social actors get out of poverty.

A policy maker with sufficient resources could use such underappreciated policy

levers to change D, fine tuning mobility to satisfy socially desirable constraints.

The models display a diversity of life histories for the social actors because of

the diffusion constant and point out the role of chance in wealth accumulation

dynamics; the divergence in life histories may arise due to luck, in the absence of

explicit differences in the wealth accumulation rate. For an ensemble of actors,

the first to escape from poverty and the last to escape from poverty all evolve

as parts of the same dynamics. Identifying D using data could be insightful for

a better understanding of escape from poverty dynamics. From a policy maker

perspective, the wealth growth rate can be controlled but D can only be fine

tuned. Such a tuning is one way to reduce divergence in outcomes of such social

processes.

4.1.1 Additional insights

In deterministic dynamical systems, initial value conditions and boundary con-

ditions structure the sample paths. These, along with the parameters of the

dynamical systems, dictate its qualitative aspects of the associated global dy-

namics. Such phenomena appear in the models considered in this dissertation.

One of the trivial and underappreciated aspects of stochastic systems is the sheer

diversity of sample paths; diffusion models are no exception. One can demon-
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strate [101, 56] that the notion of a typical path to an absorbing boundary and

MPFT makes sense only if path starts away from the boundary. The closer the

starting point is to the boundary, the more diversity there is in the paths. The

important point here is that the mechanisms are the same and only the initial

starting point of the process is different. A similar aspect of stochasticity is the

mere presence of other diffusion particles in shaping the first arrival time of a

multiparticle system. When we consider an ensemble of large number of particles,

the order statistics of first passage times are quite complex and varied. So the

variances in particle-to-particle arrival times are an aspect of the rank ordered

arrival time statistics [101, 136].

Pointing out such aspects of stochasticity may help illuminate some coun-

terexamples to commonsense intuitions on social mobility dynamics among social

scientists. For example, it is often assumed that differential rates of mobility for

different demographic groups might be because of systemic institutional and envi-

ronmental differences. That is, the drift and diffusion constants of the model are

different for different socio-economic groups. But the above features of a simple

diffusion model can capture a large amount of person-level variations without any

differences in exposure to environmental mechanisms. A semi-analytical numeri-

cal exploration of these phenomena in the context of social and economic mobility

is part of an on-going work and will be pursued in a future work.

Finally, the focus is on individual agents and not on collections of agents. In

the future, we hope to develop mean field models of interacting agents and ana-

lyze their first-passage properties. Also important to include will be the roles of

random environments, spatial and temporal heterogeneity of diffusion and drift

parameters in shaping FPT models of mobility. Recent literature in comparative

developmental economics suggest that the dynamics of poverty traps is non-trivial
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and highly variable; we suspect that stochastic dynamical systems and their asso-

ciated exit phenomena, like the ones discussed in Chapter 2, have much to offer.

4.2 Summary of contributions and future work: Mathematical Psy-

chology

Chapter 3 develops new drift-diffusion models of judgment and decision making.

Traditionally, because of their association with explanatory models of response

time data, proposed models have an incremental characteristic. The models are

typically used as statistical models even though they purport to model actual evi-

dence accumulation processes. A recent approach in cognitive psychology, model-

based cognitive neuroscience aspires to be integrative, utilizing models from dif-

ferent disciplines in neuroscience, electrophysiology and other disciplines. These

approaches are still within cognitive psychology and neuroscience, in contrast to

the ethological oriented approach espoused by this dissertation.

We found connections between DDM literature and ecological rationality liter-

ature by viewing an agent’s psychological processes in the context of the environ-

ment in which a behavior takes place. Doing so frames such processes as dynamic

analogs of static heuristics used by decision making agents. These heuristics are a

result of encoding environmental regularities, resulting in biased heuristics. Simi-

larly, conflicting evidence or uncertainty in evidence may be perceived because of

other kinds of environmental regularities. The general SDS approach presented in

Chapter 1, and discussed in the context of DDM in Chapter 2, proposes models

of evidence accumulation processes in the presence of uncertainty, conflicts and

bias and is given the following meaning.

The state variable x corresponds to the state of evidence that evolves in time
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x(t) and starts at a starting state of evidence x0. The rate of change of evidence

v is subjected to a noisy Brownian accumulation model represented by a diffusion

constant D. The boundary of the domain is a unit interval say [0, 1] where 0

corresponds to one decision and 1 corresponds to another. In one model, v is based

on a CTMC and is identified with uncertainty in knowledge. In another model, v

is dependent on the state space x and corresponds to intrinsic psychological bias.

While DDMs are discussed in the context of response accuracy trade-offs in

time constrained decision making scenarios, their connections to ecological ratio-

nality, missed by the literature, and pointed out in Chapter 3, are first steps in

establishing the relationship more formally. From this point of view, decisions and

judgments are considered satisfactory or unsatisfactory relative to specific envi-

ronmental state. The decision maker can be thought to fine tune the parameters

like v and D based on learning over the life course to make sure a desired accuracy

is reached.

The variants of DDMs provided here captures different aspects of these trade-

offs. In one model, a CTMC based drift is incorporated into the original model as

an alternative model of uncertainty and conflicts. In another model, a nonlinear

deterministic drift is used to model bias exhibited in such tasks. Both these mod-

els add to the literature on heuristics underlying judgment and decision making.

The desired response times and accuracy of judgments are constrained by eco-

logical requirements. The parameters of the models may be fine tuned by some

learning processes that seek to satisfy constraints. This suggests the possibility

that ecological rationality may be achieved with just fine tuning based constraint

satisfaction.
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4.2.1 Additional Insights

The most rigorous way to confirm the utility of these two novel additions to DDM

is to design new experiments by tweaking ones discussed here [92, 135]. But in

lieu of this, an alternative analysis with synthetic data could also be useful.

The parameter space of the original DDM is three dimensional:x0, the starting

point; v, the evidence accumulation rate; and D, the noise in the accumulation

process. Our models add one or two additional parameters, depending on the

form of either the stochastic switching rate γ, or U(x). By systematically varying

these parameters, one can generate synthetic data, which can be used to compare

results from the original models.

Beyond the simplest of cases, the increasingly common approach to inference

has been the use of non-parametric Bayesian methods. Scalable inference meth-

ods are difficult to employ without the use of advanced methods like variational

inference [131]. In the future, we plan to collaboratively explore the use of such

methods to statistically infer parameters of that model.

One of the attractive features of DDMs is that they are amenable to param-

eter estimation and model fit procedures. While the CTMC based DDM case

maybe amenable through hierarchical modeling, the MFPT calculated using large

deviation techniques are more difficult as they are based on rare-event analysis.

Identifying approaches for model estimation and fit procedures is a direction that

is being explored. Also necessary are very clear and specific proposals for exper-

iments where sequential sampling models like the ones proposed here could be

relevant. On that front, a preliminary step where synthetic data generated by

simulations of these two models might be helpful. If such artificially generated

data show novel signatures, one could look for them in existing datasets. For
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example, existing models all fit response time data to some variant of the stan-

dard DDM model with constant drift and diffusion coefficients. So, any signatures

of deviation from the basic model family may be washed out because of model

misspecification. If one were to fit response time data nonparametrically, then

one could test whether such a nonparametrically fit data are comparable to the

synthetic data produced from simulations.

The original home of these models is in biophysics, as models of ion and protein

transport, electro-diffusion pheonmena and related processes [20, 115]. Thus,

model based cognitive neuroscience provides a justification for transferring models

used in neuronal and sub-neuronal biophysics and biochemistry into the realm of

cognitive psychology. Inspired by this conceptual transfer of model families, other

candidate models from such sources could be useful additions to DDM literature.

Among them, escape from attractors in higher dimensions and narrow exits are

two interesting phenomena that might have use as dynamical process models.

Unlike the simple escape from a one dimensional attractor scenario considered

here, higher dimensions have potentially more interesting attractors. For example,

in a future work, we plan on developing a two-dimensional escape from a stable

limit cycle scenario where response time distributions are multimodal, providing

an alternative to mixture model based explanation of multimodality. Other related

models are based on higher dimensional systems where interface enabling exits out

of the domain are narrow in comparison with the rest of the domain. Calculations

of MPFT and exit distributions are similar in their use of WKB and other singular

perturbation approximation techniques. Such models do belong to the class of SDS

models presented in this dissertation.
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4.3 Pragmatic value of these SDS systems isomorphisms

Chapter 2 initiated the discussion of systems isomorphisms of stochastic dynamical

systems (SDS) in mathematical sociology. The work revisits older literature on

Markov models of occupational mobility and generalizes it to show how SDS can

model intragenerational mobility and escape from poverty traps. By looking at

exit-times and exit-probabilities of escape from such traps, it points out features

of social dynamics, such as transients, which are often missed by equilibrium

macroeconomic and macro-sociological models. Specifically, the parameters of

the boundary value problem like D and the boundary points may be identified

with empirically observable quantities of interest to urban sociologists. Like other

ecometric measures, these identified measures provide additional ways of thinking

about interventions in such systems.

Chapter 3 used the same family of SDS in mathematical psychology The work

looks at literature on drift-diffusion models (DDM) of time constrained judgment

and decision making. Inspired by models of escape from attractor and stochastic

switching dynamics in simple neurophysiological processes, it proposes extensions

of DDM, again illustrating the role of exit-times and exit-probabilities. These

models could serve as not only as null reference models for experiments in cog-

nitive psychology and motivate new experiments, but also suggest alternative

psychological mechanisms. As discussed in chapter 3, these models suggest alter-

native ways of encoding uncertainty and bias in dynamic psychological processes.

While both applications make sense as contributions in their respective disci-

plines, they can be viewed as good examples of the lifted concept of fine tuning

based constraint satisfaction, originally identified in physiology. In poverty trap

models, parameters available for fine tuning corresponded to ecometric measures.
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Their precise value was mapped to the diffusion constant D of the SDS. In psy-

chological DDMs , fine tuning corresponded to keeping the parameters of SDS like

D and v in order to produce an observed response time for judgment or decision.

As we argued in Chapter 1, isomorphisms have not only conceptual value but

they also provide value to scientific disciplines. Chapters 2 and 3 exemplifies how

this contributes to respective discipline-centric scientific enterprise. Typically,

establishment of isomorphisms identify gaps within disciplinary boundaries and

suggest advances in the form of new models not considered before by discipline

centric epistemic community. In many cases, the relations between phenomena

in different disciplines, and between related areas of research within a discipline

can be made more obvious with this approach. For example, a natural model

of escape from poverty traps(Chapter 2) and the connections between DDM and

ecological rationality(Chapter 3) was made possible by the isomorphism.

This dissertation was based on how a specific family of SDS endow a kind

of reliability in agents in the presence of exogenous and endogenous stochastic-

ity. This starting point in micro and nano physiology, with all its biosemiotic

significance, is what makes this approach to systems science biology-centric. We

used mathematical ideas of first-exits in stochastic dynamical systems to model

this reliability in the presence of stochasticity. Having established a mathemati-

cal model of a specific kind of biological reliability, this approach postulates their

existence in unrelated disciplines with non-interacting epistemic communities. In

this research project, the presence of such models in two disciplines, albeit framed

in disciplinary language, is a vindication of this systems perspective.
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4.3.1 Gaps and connections in scientific literature identified by SDS

isomorphisms

In sociology, an existing body of work was identified pertaining to models of

occupational mobility over the life course, and mobility of actors within firms and

organizations. In all these cases, sociological inquiry was focused on systematic

differences between actors belonging to different socio-economic and demographic

groups, on the mean time for reaching higher occupational status, and reasons for

differential times for different groups. If we frame these questions from a policy

maker perspective, tuning the social environment to guarantee more equality in

outcomes is related to questions pertaining to reliability –the primary focus of this

dissertation. While the literature [14, 42, 8] employs discrete time Markov chains

(DTMC) or continuous time Markov chains (CTMC) in their analysis, diffusion

models were not included in their stochastic models. Similarly, while economic

sociologists use diffusion models to study wealth growth, the literature [10] is not

interested in first-passage time questions as the questions are more aligned towards

macroeconomics and macro-sociology, and ignore temporal features of transients.

And finally, while urban sociologists are aware of the dynamics of poverty and

the presence of traps, the empirical focus of research on urban poverty is more

statistically oriented. The simple models of chapter 2 contribute to these questions

by offering complementary generative and mechanistic models.

In psychology, literature surrounding response time experiments where judg-

ment and decision response times are explained using noisy evidence accumulator

based models. Although a wide variety of DDM were proposed since their original

introduction, their focus on explaining actual response time data likely prevented

them from using deductive models like the ones we proposed in chapter 3. From a
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fine-tuning perspective, the reliability of response times has obvious connections

to satisficing. However, in spite of being very influential, the DDM community

has not made connections to ecological rationality literature. Concurrently, while

foraging models are used in ecological rationality literature [22, 130], they have

mostly ignored DDM as possible models of satisficing. The systems oriented ap-

proach discussed in chapter 3 offers unique contributions to this research literature,

again by finding rigorous theoretical connections between related sub-fields like

ecological rationality and time constrained judgment and decision making.

4.3.2 Gaps and connections in the mathematical literature identified

by SDS isomorphisms

The key analytical tool in SDS is the Fokker-Planck partial differential equation

boundary value problem (FPE) . As discussed previously, both FPT PDF and

MFPT satisfy a PDE that involves the Fokker-Planck operator. Even for simple

cases discussed in this dissertation, while MFPT could be derived analytically, the

PDF associated with the more important quantity of FPT, is intractable analyt-

ically. Also, from a reverse engineering point of view, the inverse problem where

one specifies a PDF for FPT, and asks for an appropriate Fokker-Planck operator

that satisfies constraints, is rarely discussed in the mathematical literature. In ad-

dition, while FPEs associated with simple SDS state spaces are well-understood,

the correspondence between higher dimensional SDS with non-trivial state spaces

and the associated PDE operator seems to have not been dealt with comprehen-

sively in the literature. To provide a model instantiation of biological functional

requirement seems to require new ways of thinking about old mathematical ques-
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tions. Other related issues also require filling gaps in the mathematical literature1.

In chapter 3, an escape from attractor scenario was used to model bias. A

natural question is whether such models can be generalized to higher dimensional

dynamical systems with non-trivial attractors. Such models are not only useful

for DDM, they are potentially useful also for developing more realistic models

of poverty traps. FPE for such systems involving multiple scales become very

complicated and the theory behind generalized escapes does not exist, but needs to

be developed. Similarly, while nonlinear dynamics on non-trivial state spaces like

rigid body dynamics necessary for animal behavior applications are well-known,

FPT and MFPT analysis of rotational and rigid body diffusions, as suggested by

the biological motivations of this dissertation, is another gap that needs filled.

Finally, the conceptual argument behind this dissertation was to provide a

constraint satisfaction based worst-case analysis of certain kinds of reliability.

However, because the mathematics required to develop such a worst-case anal-

ysis is absent, we relied on a MFPT based analysis. The proposed fine tuning

without control modules approach requires that we are able to demonstrate the

construction of SDS that satisfy viability constraints. This requires a solution to

the inverse problem that starts with a FPT PDF, provides a Fokker-Planck oper-

ator, and makes sure the problem is not ill-posed. To the best of our knowledge,

1While conventional methods for numerically solving PDE, like finite element methods, work
well for low dimensions, as the dimensions of the PDE increase, the grids associated with finite
elements fall to the curse of dimensionality. This is true for other approaches for obtaining solu-
tions like Monte Carlo methods. Also, while finite element methods and Monte Carlo methods
are well-established for simple state spaces like the unit-interval, PDE on non-trivial mani-
folds, like the ones required for modeling animal behavior, are not so well-established. On the
other hand, MFPT equations are equations about expectation values of probability distribu-
tions. Typically, they are easier to calculate than the full FPT probability density function
(PDF). Although FPT PDF is available in closed form for simple one-dimensional processes,
only numerical approximations are available for general diffusion processes. Therefore, in many
situations, MFPT is used as a surrogate quantity and is therefore much more prevalent than
FPT analysis.
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literature on such inverse problems is sparse.

4.4 Scientific explorations suggested by these systems isomorphisms

Chapter 2 developed simple diffusion with drift to illustrate time characteristics of

intragenerational mobility. While similar out-of-equilibrium models are prevalent

in the literature [1, 122], models better informed by developmental economics,

social geography and economic sociology may contribute substantively to the dis-

course on intragenerational social processes. In Section 1.1, we present potential

future work inspired by these possibilities.

Chapter 3 cast DDM through the lens of first-passage time analysis and ex-

tended it to model biased decision making. As discussed there, mathematical psy-

chologists have gone beyond two-alternative forced choice experiments to model

different kinds of psychological processes involving decisions that occur under

noisy evidence accumulation scenarios. Inspired by such extensions, we briefly

outline additional variants that employ aspects of stochastic dynamics not cur-

rently employed in the literature in Section 1.2.

In this section, we briefly discuss a variety of scientific questions that are a

direct outgrowth of questions suggested by implications of systems isomorphisms,

and natural continuation of discipline focused inquiries conducted in Chapters 2

and 3. In most instances, the extensions sketched here are merely an enlargement

of model class of SDS discussed earlier.

In some instances, extensions to models come in the form of addition of ran-

dom jumps to SDS models discussed in this dissertation. For example, instead of

just drift and diffusion terms, we also include a jump term, making it a Levy pro-

cess. Similarly, we could generalize the models to multidimensional drift-diffusion
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models of escape from poverty dynamics. Finally, the pertinent example of biolog-

ical behavior extends the one-dimensional analysis to state spaces of non-trivial

topology like spheres and the space of rotations of a rigid body.

4.4.1 More general models of escape from poverty

In chapter 2, models of intragenerational poverty were developed based on simple

drift-diffusion models. The resulting work was intended to be a proof of con-

cept illustration of the utility of temporal characteristics of social processes in

understanding social and economic pathways out of poverty over the life course.

While useful, poverty dynamics are prone to shocks, resulting in abrupt changes

in wealth. Also, wealth dynamics of more standard economic models maybe useful

in certain instances. Both these features can be modeled by adding more structure

into the stochastic process.

For example, to model more general forms of wealth shocks, the original model

must be replaced with

dx = F (x)dt+H(x)dL (4.1)

where H(x) corresponds intensity of a Levy noise [97]. While this term makes

the SDE analytically intractable, it is a natural next step implementable through

simulations.

Another limitation of the models discussed in chapter 2 and its new version

presented above (4.1) is that they are not derived from microeconomic and macroe-

conomic foundations. It is desirable to derive models from economic and socio-

logical first principles and study their FPT characteristics. It is possible to derive

such SDE from first principles [9]. One such equation, which is a special case of
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the Levy noise based SDE is

dX = r(s)Xdt+ σ(s)dw (4.2)

where s is an exogenous Markov process, X is the wealth and w is standard Brow-

nian noise. It can be shown that the stationary distribution of such a stochastic

process is a fat tailed distribution, making it an attractive model of observed in-

equalities in wealth. FPT and MFPT analysis of such models as discussed for

simple models in chapter 2 might be an interesting future research direction.

One aspect that is under-explored is their finite time property and associ-

ated FPT, as most of in economics relies on standard equilibrium assumptions of

macroeconomic models. We expect finite time characteristic to play a role in un-

derstanding economic geographic processes. Another aspect that is often ignored

are effects of spatial extents and the use of models from chapter 2 and those based

on equation (4.1 and 4.2) to study neighborhood level processes [61].

4.4.2 More variants of DDMs

As discussed in chapter 3, DDMs and their variants were deployed to explain

time constrained judgment and decision tasks under noisy evidence accumulation

scenarios. The psychological state of a DDM can be attributed to not only single

neuron activity, but also to neural assemblies and emergent macrostate dynamics

like EEG activity. Inspired by goals of model-based cognitive neuroscience, we

argue that the models discussed in Chapter 3 are also useful models of collective

electrophysiological processes.

Also discussed earlier, cross-pollination between ecological rationality litera-

ture and DDM literature is absent. A reliability perspective offered in this dis-
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sertation provides a concrete mathematical example of rationality without opti-

mality [23]. Constructing of clear model theoretically motivated by making the

connection more explicit are needed.

Continuing our presentation of variants of DDM, other models based on stochas-

tic dynamical systems [115] can be introduced. As discussed at the end of the

last Chapter 3, rather than use a continuous noise accumulation process, one

can introduce jumps reflecting sudden availability of evidence alongside existing

continuous accumulation. This leads to Levy process based DDM. Another in-

teresting class of models is one where boundaries themselves are drift-diffusion

processes. Processes where the boundary thresholds are set by other dynamic

psychological processes are good situations where such models could prove useful

and consistent with processes in nano and micro physiology.

Similarly, in higher dimensions, PDF of FPT in systems with non-trivial at-

tractors exhibit multimodality and localization not seen in simple situations. They

suggest alternatives to existing DDMs. These extensions are not just theoretically

interesting; they suggest a more careful reanalysis of existing data with these new

model families in mind. For example, Levy noise based evidence accumulation

models, like in equation (4.1), can lead to fat-tailed response times [97]. Escape

times on non-trivial attractors [38] display oscillations in FPT distribution. Also,

when response time distributions are fitted using DDM, the models are assumed

to be of the simple drift-diffusion kind. If the data were really fat-tailed or show

multimodality, Levy noise or higher dimensional models would better characterize

the data.
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4.4.3 Animal Behavior

A natural continuation of applications of ideas from Chapter 1 are discussions of

models of animal behavior that uses first-passage time characteristics to under-

stand reliability of behavioral primitives. The mathematical techniques required

to address stochastic dynamical systems of extended objects is surprisingly non-

trivial. Also, significant steps are required to model stochasticity in such con-

strained state spaces as even simple extensions of Levy processes to non-linear

manifolds become mathematically very difficult [3, 83] and requires advances not

made in the literature.

Here, we sketch two important directions as first steps: one model uses a

nonlinear oscillator as a template for a fixed action pattern; the other uses a

motion of a thin rigid rod as a template for a startle. Models presented here can

be reworked to be good prototypes of agents in stochastic environments.

Fixed Action Patterns Locomotion or repetitive animal movements are ex-

emplars of fixed action patterns. Under idealized conditions, these movements

are enabled by microcircuits that span both the muscular-skeletal system and the

nervous system. Similar movement is possible even in organisms without a ner-

vous system. Such movements are reliable even in the presence of stochasticity in

the environment. Continuing with the premise of this dissertation, we break away

from an optimal control based model of FAP and suggest a constraint satisfaction

approach using FPT characteristics.

A direct and general approach is possible using results from [18]. In this case,

the system corresponds to a d-dimensional SDE on Rd

dx = F (x)dt+
√
εG(x)dW (4.3)
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where the noise free dynamical system has a stable periodic solution. By doing a

phase-amplitude decomposition, one can derive a separate SDE for amplitude and

phase variables. Using techniques similar to ones used in Chapters 2 and 3, FPT

and MFPT for the amplitude to exceed a certain threshold can be calculated. A

very recent work [19] uses this to study synchronization of oscillators under the

presence of various kinds of noise.

Startle and Escape Response Startles and escape responses are known for

their high reliability and are quintessential behavioral primitives documented by

ethologists. In such behaviors, an ideal response is one that with high certainty,

avoids certain regions of state space; and with high certainty, reaches other regions

of state spaces. Both requirements can be cast as a kind of probabilistic constraint

satisfaction. All this makes it ideal extensions of MPFT and FPT based reliability

analysis discussed in this dissertation.

A typical organism is extended in space and behavioral states are specified

by both center of mass coordinates and body coordinates. Although unrealistic,

an idealized version of an agent is a rigid body in three dimensional space. For

example, a typical change in state of a rigid body from x to x′in space can be

represented as

x′ = Rx + b

where R corresponds to a rotation and b to a translation. Now if we were to

include stochasticity, then the equation needs to be adapted to look like

x′ = Rx + b + noise
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making it a stochastic differential equation in 6-dimensions. Solutions to Fokker-

Planck equation is such spaces are non-trivial but available, requiring a numerical

approach in all but the simplest of cases [35].

As a first step, we begin with an idealized agent fixed in space but now the

agent is an extended rigid rod. The state space of such a system can be specified

by spherical polar coordinates (θ, φ). Suppose the viable region for this agent is a

small polar cap θ ≤ θ0 at the north pole of this sphere. Also suppose the agent’s

orientation at initialization starts at the south pole θ(0) = π. In the presence of

spherically diffusive noise, FPT and MFPT characteristics for the state to enter

the viable north polar cap can be calculated [24] via solutions to FPE on the

sphere S2.

4.5 Mathematical explorations suggested by these systems isomor-

phisms

This dissertation formulates reliability as a fine tuning and constraint satisfac-

tion property. However, a conceptual argument alone is insufficient; a rigorous

mathematical demonstration of the concept’s irreducibility of constraint satisfac-

tion to optimization is necessary. Among the various reliability measures, FPT

characteristics played an extensive role in our analysis. For example, unimodality

of FPT PDF is one such characteristic. The presence or absence of unimodality

in SDS has consequences for reliability, and necessary and sufficient conditions

for unimodality2 are of importance for the program outlined in this dissertation.

In the remainder of this section, we discuss two potentially useful future research

directions inspired by these motivations.

2Even when unimodality can be established, bounds on magnitude of variance must is another
important dimension along which fine tuning may be necessary.
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4.5.1 Duality between Optimization and Constraint Satisfaction

This first exploration arose out of a need to mathematically justify the status of

constraint satisfaction. In typical presentations of how optimality is achieved in

natural systems, primary status is given to optimization, and constraint satisfac-

tion is afforded only a secondary more peripheral role. This has had consequences

especially in model of cognition based on optimality principles [80]. In this litera-

ture surrounding Bayesian models of cognition, a Marrian approach to cognition

is based on Bayesian decision theory, ignoring the role of constraint satisfaction.

Typical claims defending the choice to ignore constraint satisfaction invoke

arguments based on the presence of dual problems. It argues that even if the

problem is framed in terms of constraints, there always exist dual problems that

do not involve constraints. The following argument is part of ongoing work that

counters this commonly held view.

Linear programming formulations of optimization problems are one of the eas-

iest to discuss and is used to explain the premise of this project. Consider a linear

program

minimize cTx

subject to Ax � b

A dual program can be defined where λ is the dual variable.
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maximize − bTλ

subject to ATλ + c = 0

λ � 0

Although simple to state, finding solutions to these programs can be com-

putationally hard, sometimes falling into the class of NPHard problems. One

approach to finding solutions to these problems is to create duals to the original

problems and solving them instead. Under certain conditions, solutions to the

original problem x∗ and λ∗ are identical. When they are not, a duality gap is

said to exist. It is possible to convert hard to compute inequalities to easier dual

programs with only equalities or pure optimization with constraint problems via

duality transformations. In what follows, this notion of duality gap and constraint

free linear programs are important.

The primacy of constraint satisfaction can be confronted using duality theo-

rems. One could argue that any sequence of constraint satisfaction problems can

be converted to pure optimization problems. Given that duality gaps are non-zero

for all but certain special families of programs and that bounds on those gaps can-

not be bounded for all programs, all conversions to pure optimization problems

are approximate.

Even if duality gaps are zero, duality transformations are computationally non-

trivial; this has consequences for systems for questions of biological reliability and

viability. Biological agents are usually resource constrained, designed to satisfice.

In ethologically salient scenarios, the agent may not have the resources to per-
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form non-trivial duality transformations to environmental cues that are naturally

codified as constraint satisfaction problems.

To illustrate this point, consider a linear program formulation [16] which has

a gap free solution. The costliest step in the computation of a dual is a matrix

inversion. If one considers a specific matrix inversion problem, say Strassen’s algo-

rithm, the complexity scales as O(n2.8), or the Winograd algorithm with complex-

ity O(n2.4). Since matrix inversion can be done exactly, one can analyze specific

approximate methods for matrix inversion by comparing the approximate solution

with the actual solution. This discrepancy can be quantified by using some ma-

trix norm. If we demand that the matrix inversion takes place in sub-quadratic

time, then the accuracy of the resulting matrix inverse suffers. The difference

between an actual solution and an approximate solution induces a duality gap in

an otherwise gap free problem.

To the best of our knowledge, the occurrence of resourced constraints induced

gaps and their applications to game theory has not been discussed in the literature.

4.5.2 Inverse problem approach for general stochastic dynamical sys-

tems

The second exploration arose out of attempts to address the indirect way in which

FPT analysis was used in the dissertation. The dissertation, motivated by a re-

verse engineering approach to understanding certain kinds of reliability in agents,

used FPT analysis of SDS in different state spaces to demonstrate this. While the

arguments made in chapter 1 require PDF of FPT, only MPFT based analysis is

presented in chapters 2 and 3. Also, to establish the constructive (algorithmic)

nature of fine tuning based constraint satisfaction, an reverse formulation is re-

quired. Rather than solve the FPE to derive the PDF u, what is necessary is to
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derive a Fokker-Planck operator L∗x from a given û.

As introduced in chapter 1, the specific definition of reliability introduced in

this dissertation is discussed around general solutions to the following boundary

value problem [115]

u(x, T ) = P {τ < T |x(t = 0) = x} (4.4)

where u(x, T ) is the cumulative probability of a particle starting at x to reach

the boundary before time T . D is the domain and Bd(D), its boundary. The

associated random variable is represented by τ . L is the Fokker-Planck operator.

The associated PDE for the cumulative probability is given by

∂u(x, t, T )

∂t
+ Lu(x, t, T ) = 0 for x ∈ D, t < T

u(x, t, T ) = 1 for x ∈ Bd(D), t < T

u(x, , t, T ) = 0 for x ∈ Bd(D)

(4.5)

If the work in this dissertation were to be used, to model behaving agents to

satisfy certain constraints, solutions to inverse problems that start with PDF of

τ , seeking an appropriate L needs to be constructed.

Most of the model cases we have examined in this dissertation have very sim-

ple FPT distribution structure. In some instances, the distributions can be mul-

timodal or have fat tails [57]. When this happens, MFPT becomes meaningless

and FPT based characterization of behavior becomes inadequate. The necessary

and sufficient conditions for FPT distribution to be unimodal have consequences

for understanding biological reliability and is part of future work.
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4.6 Conclusion

In this dissertation, a systems approach of identifying isomorphisms among phe-

nomena in disparate fields was shown to be useful in scientific inquiry. Specifically,

it introduced novel models in mathematical sociology, as models of intragenera-

tional mobility; and mathematical psychology, as models of drift-diffusion model

for judgment and decision making. By connecting models to a certain kind of

reliability, via first-passage time analysis, the importance of fine tuning based

constraint satisfaction was demonstrated.

Fine tuning and control mechanisms are two different ways to generate optimal

behavior. Constraint satisfaction seems to be as important as optimization. In

certain scenarios, constraint satisfaction is more relevant, especially in the version

of reliability presented in this work. Finally, much insight stands is gained from

viewing higher biological behavior as a physiological process. While the way we

lifted physiological concepts and elevated them to systems ideas is quiet common,

it has not been formalized as such. This way of looking at systems ideas holds

promise.

Pertinent questions in specific disciplines often do catalyze progress in the tools

used for scientific inquiry, and motivate progress in related disciplines; physics for

much of the 20th century and then biology in the present century are apt examples.

We consider the use of systems isomorphisms to be akin to such efforts.
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