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Abstract

Novel view synthesis is a classic problem in computer vision. It refers to the generation

of previously unseen views of a scene from a set of sparse input images taken from

different viewpoints. One example of novel view synthesis is the interpolation of views

in between the two images of a stereo camera. Another classic problem in computer

vision is video frame interpolation, which is important for video processing. It refers

to the generation of video frames in between existing ones and is commonly used to

increase the frame rate of a video or to match the frame rate to the refresh rate of the

monitor that the video is being displayed on. Interestingly, off-the-shelf video frame

interpolation can directly be employed to successfully perform view interpolation to

address the aforementioned stereo view interpolation problem.

Video frame interpolation can be seen as temporal novel view synthesis. However,

this perspective is usually not considered and novel view synthesis generally concerns

generating unseen views in space rather than time. For this reason, the set of sparse

input images that is used for spatial novel view synthesis is commonly either captured

at the same time, or it is assumed that the scene is static. This paradigm limits the

applicability of novel view synthesis in real-world scenarios though.

This thesis addresses three applications of novel view synthesis and provides

practical solutions that do not require difficult-to-acquire multi-view imagery: video

frame interpolation which performs temporal video-to-video synthesis, synthesizing
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the 3D Ken Burns effect from a single image which performs spatial image-to-video

synthesis, synthesizing video action shots which performs spatiotemporal video-to-

video and video-to-image synthesis. These applications not only explore different

dimensions of time and space, they also perform novel view synthesis on everyday

image and video footage. This is in stark contrast to the large body of existing work

which focuses on spatial novel view synthesis while requiring multiple input views that

were either captured at the same time or under the assumption of a static scene.
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1 Introduction

Computer vision is an area within computer science that strives to find computational

ways to gain a high-level understanding from image and video footage. It is a growing

area and one of its prime conferences, the IEEE Conference on Computer Vision and

Pattern Recognition, has recently reached an h5-index of 240 which makes it the most

prominent conference within computer science. Nowadays, one can simply upload an

image to a cloud provider which will then return a high-level description of the image

in the form of tags and object annotations 1 . This technology is based on decades of

research in image recognition. Many other research efforts within computer vision,

like novel view synthesis, are less easy to make use of.

Novel view synthesis focuses on generating previously unseen views of scenes or

3D objects from a sparse set of input images taken at different viewpoints. This set of

images is commonly either captured at the same time, or it is assumed that the scene is

static and does not change between individual captures. This simplified setting makes

novel view synthesis more tractable, but it significantly limits its applications. This

limiting factor is further amplified by existing research that predominately focuses on

novel view synthesis in space, with little exploration of the time domain.

The emphasis of this thesis is to analyze novel view synthesis in the context of time

and space by exploring three different applications. In doing so, each application has a

1https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/
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strong emphasis on practicability and hence performs novel view synthesis on everyday

image and video footage without constraining how the material was captured.

Thesis Statement. Novel view synthesis in time and space can be performed in

a practical manner without requiring difficult-to-acquire multi-view imagery.

This is in stark contrast to the large body of existing work in novel view synthesis

which focuses on the generation of spatially novel views from a sparse set of images

that were either captured at the same time or under the assumption of a static scene.

The three applications that this thesis explores are as follows.

1. Video Frame Interpolation. Given a video, video frame interpolation performs

novel view synthesis in time to generate new video frames in-between existing

ones in order to change the frame rate of the input video (Figure 1.1).

2. 3D Ken Burns Effect from a Single Image. Given an image, the 3D Ken Burns

effect depicts the image as a video where a virtual camera is moving through the

scene in 3D such that the resulting animation correctly depicts motion parallax

and conveys the perception of depth (Figure 1.2).

3. Video Action Shot Synthesis. Given a video, for example of a person riding a

bicycle, an action shot visually summarizes the motion of the person. This can

either be done in the form of an image or of a video that depicts multiple past

and future snapshots of the person at the same time (Figure 1.3).

When not only operating in space but also in time and when not constraining how

the input imagery was captured, novel view synthesis becomes increasingly difficult.

The following outlines a key challenge for each of the three applications.

1. Video frame interpolation is subject to non-rigid deformations between individual

frames. In contrast, when performing view interpolation between stereo images,
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? ?

24 frames per second

48 frames per second

Figure 1.1: An illustration of frame interpolation to double the frame rate of a video.

from

to

Figure 1.2: An example 3D Ken Burns effect, zooming with accurate motion parallax.

Figure 1.3: An example video action shot, which illustrates the motion of a subject.
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one can establish geometrically sound correspondences between the input views.

To deal with these non-rigid deformations, this thesis makes use of a learning-

based approach that compensates for inter-frame motion without making explicit

assumptions about the scene geometry. Further, traditional frame interpolation

techniques employ forward warping but there is no definitive way to implement

this operation in a differentiable manner as required when employing deep

learning. This thesis proposes softmax splatting to account for this.

2. Synthesizing a 3D effect from a single image is inherently challenging and existing

methods are often only applicable to specific scene types, 3D object models, or

domain-specific light field imagery. To make synthesizing the 3D effect more

applicable, this thesis identifies and addresses several key problems with the

common way of estimating the scene geometry as image depth by tailoring the

depth estimate to the task of novel view synthesis.

3. Transferring the appearance of an object in motion from a source frame to a

target frame requires knowing how the camera moves and where the object is

within the world geometry. The former is challenging due to the moving object

since many approaches for visual odometry and structure from motion assume a

static scene. The latter is challenging since the transferred object in the target

frame may be depicted from an angle that differs from the source frame while

simultaneously being subject to non-rigid deformations. This thesis makes use

of human priors to better reason about these aspects, thus making it possible to

effectively synthesize video action shots.

This thesis follows a multi-paper format of the electronic thesis and dissertation

formatting requirements of Portland State University 2 . It is separated into a related

2https://www.pdx.edu/ogs/etd-formatting

https://www.pdx.edu/ogs/etd-formatting
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work section and three main chapters. The related work section summarizes relevant

literature for all main chapters and each main chapter corresponds to an academic

paper that has either already been published, is in the process of being published, or

is being prepared for submission as outlined below.

1. The chapter on frame interpolation has been submitted to the IEEE Conference

on Computer Vision and Pattern Recognition.

2. The chapter on synthesizing the 3D Ken Burns effect from a single image has

been published in the ACM Transactions on Graphics.

3. The chapter on video action shot synthesis will be submitted to a conference

such as the IEEE Conference on Computer Vision and Pattern Recognition.

Please also consider reviewing the supplementary video demos, which accompany

the individual papers. While showing pictures may in many cases be sufficient to

convey the point at hand, motion pictures are at the heart of this thesis and it is thus

important to examine them in their original form.
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2 Related Work

Novel view synthesis focuses on generating novel views of scenes or 3D objects from

input images taken from a sparse set of viewpoints. It is important for a wide

range of applications, including virtual and augmented reality [46, 54, 126], 3D

display technologies [26, 65, 72, 121, 161], and image- or video-manipulation [67,

69, 75, 83, 119, 180]. Novel view synthesis is typically solved using image based

rendering techniques [64], with recent approaches allowing for high-quality view

synthesis results [20, 21, 46, 47, 48, 113]. With the emergence of deep neural networks,

learning-based techniques have become an increasingly popular tool for novel view

synthesis [33, 59, 61, 94, 98, 135, 138, 146, 147, 164, 176]. As such, the research on

novel view synthesis has made and is continuing to make great strides towards enabling

more applications while striving for high-quality results.

The following section reviews the related work concerning three different applica-

tions of novel view synthesis: video frame interpolation (temporal, video-to-video),

synthesizing the 3D Ken Burns effect (spatial, image-to-video), and synthesizing video

action shots (spatiotemporal, video-to-video or video-to-image).

2.1 Video Frame Interpolation

Video frame interpolation concerns the synthesis of frames in between existing

frames of a video. Research on frame interpolation has seen a recent resurgence, with
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multiple papers proposing various flow-based [9, 10, 60, 85, 86, 106, 120, 125, 165],

kernel-based [9, 10, 107, 108], and phase-based [96, 97] approaches. This thesis builds

upon the approach from Niklaus et al. [106] who estimate optical flow between two

input images in both directions, extract generic contextual information from the input

images using pre-trained filters, forward-warp the images together with their context

maps according to optical flow, and finally employ a synthesis network to obtain

the interpolation result. This thesis extends their approach and proposes softmax

splatting, which enables warping task-specific feature pyramids for image synthesis

in an end-to-end manner. This includes fine-tuning the off-the-shelf optical flow

estimator for the task of frame interpolation and supervising the metric that is used

to disambiguate cases where multiple pixels map to the same location.

Differentiable Image Sampling. With the introduction of spatial transformer

networks, Jaderberg et al. [57] proposed differentiable image sampling. Since then, this

technique has found broad adoption in the form of backward warping to synthesize

an image IA from an image IB given a correspondence FA�B for each pixel in IA to

its location in IB. Prominent examples where this approach has been used include

unsupervised depth estimation [39, 90, 175], unsupervised optical flow prediction [93,

154, 169], optical flow prediction [55, 122, 141], novel view synthesis [23, 84, 177],

video frame interpolation [9, 60, 85, 86], and video enhancement [17, 143, 165].

Differentiable Forward Warping. In contrast to differentiable image sampling,

performing forward warping to synthesize IB from IA based on FA�B has seen less

adoption with deep learning, partly due to additional challenges such as multiple

source pixels in IA possibly being mapped to the same target location in IB. For

optical flow estimation, Wang et al. [154] forward-warp an image filled with ones

to obtain an occlusion mask. However, they sum up contributions of all the pixels

that are mapped to the same output pixel without a mechanism to remove possible
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outliers, which limits the applicability of this technique for image synthesis. For

frame interpolation, Niklaus et al. [106] use the equivalent of z-buffering which is well

motivated but not differentiable [104]. Bao et al. [9] linearly weight the optical flow

according to a depth estimate as an approach for dealing with multiple source pixels

mapping to the same target location. However, adding a bias to the depth estimation

affects the result of this linearly weighted warping and leads to negative side effects.

In contrast, the proposed softmax splatting is not subject to these concerns.

Feature Pyramids for Image Synthesis. For image synthesis, Niklaus et al. [106]

warp context information from a pre-trained feature extractor that a synthesis network

can use to make better predictions. Bao et al. [9] refined this approach through

end-to-end supervision of the feature extractor. In contrast, this thesis proposes

extracting and warping a feature pyramid which allows the synthesis network to make

use of a multi-scale representation for better interpolation results. The proposed use of

feature pyramids for image synthesis is inspired by recent work on video analysis. For

video semantic segmentation, Gadde et al. [36] warp features that were obtained when

processing the preceding frame in order to support the segmentation of the current

frame. For optical flow estimation, Hui et al. [55] and Sun et al. [141] extend this

idea of warping features and employ it across multiple scales in the form of feature

pyramids. These approaches do not target image synthesis though.

Task-specific Optical Flow. Learning feature pyramids for image synthesis is not

the only type of task-specific supervision within the proposed frame interpolation

pipeline. Recently, Xue et al. [165] demonstrated the benefit of fine-tuning an optical

flow predictor for the task that the estimated optical flow is being used for. This thesis

follows this principle and fine-tunes the utilized off-the-shelf optical flow predictor

for the task of video frame interpolation. This step requires end-to-end supervision,

which is seamlessly supported by the proposed softmax splatting.
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Temporally Consistent Synthesis. Temporal consistency is a common concern when

synthesizing images in time [7, 52, 53, 73]. For frame interpolation, Jiang et al. [60]

collect a specialized training dataset with frame-nonuples and supervise their network

on seven intermediate frames at a time in order to ensure temporally consistent results.

In the same vein, Liu et al. [85] and Reda et al. [125] utilize cycle consistency to

better supervise their model. In comparison, the proposed softmax splatting leads

to temporally consistent results without requiring a specialized multi-frame training

dataset or additional cycle-consistency during training.

2.2 3D Ken Burns Effect Synthesis

The traditional Ken Burns effect animates images with a 2D scan and zoom, its

3D counterpart augments this paradigm by introducing motion parallax and thus

providing a more compelling result. Creating such an effect from a single image is

painstakingly difficult. The photo must be manually separated into different segments,

which then have to carefully be arranged in the virtual 3D space, and inpainting needs

to be performed to avoid holes when the virtual camera moves away from its origin.

This thesis targets the problem of automatically synthesizing the 3D Ken Burns effect

from a single input image, which is an extreme form of novel view synthesis.

Learning-based View Synthesis from a Single Image. Recent novel view synthesis

methods approach the single-image setting using deep learning [144, 177]. Synthesizing

novel views from a single image is inherently challenging and existing methods are

often only applicable to specific scene types [43, 84, 105], 3D object models [111, 112,

127, 166, 167], or domain-specific light field imagery [139]. Most relevant to this thesis

are methods that estimate the scene geometry of the input image via depth [23, 84],

normal maps [84], or layered depth [148]. To synthesize the 3D Ken Burns effect, the

approach proposed in this thesis likewise first predicts the depth of the input image and
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then performs depth-based view synthesis. This two-step approach explicitly captures

the scene geometry within the depth map, which makes it possible to directly improve

the estimated scene geometry to suppress artifacts such as geometric distortions and

to tailor the depth prediction to the task of view synthesis.

Single-image Depth Estimation. Single-image depth estimation has gained a lot of

research interest over the past decades [68]. Recent advances in deep neural networks

along with the introduction of annotated depth image datasets [1, 22, 74, 80, 129,

133, 159, 173] enabled large improvements in monocular depth estimation. Another

promising direction is the use of spatial or temporal pixel-correspondence to train for

depth estimation in a self-supervised manner [37, 39, 41, 79, 89, 149, 175]. However,

depth estimation from a single image remains an open research problem. The quality

of the predicted depth maps varies depending on the image type and the depth maps

from existing methods are in many scenarios not suitable for generating high-quality

novel view synthesis results due to geometric and semantic distortions as well as

inaccurate depth boundaries. To support the 3D Ken Burns effect synthesis, this

thesis introduces a pipeline consisting of depth prediction, adjustment, and refinement

to specifically address those issues.

Creative Effect Synthesis. With 3D scene information such as depth or scene

layouts, a range of creative camera effects can be produced from the input image,

such as depth-of-field synthesis [152, 153], 2D-to-3D conversion [161], and photo pop-

up [49, 140]. This thesis focuses on synthesizing the 3D Ken Burns effect which is a

camera motion effect. The desired output is a whole video corresponding to a given

camera path. A number of methods have been proposed in the past to enable camera

fly-through effects from a single image. Horry et al. [50] present a semi-automatic

system that lets users represent the scene with a simplified spidery mesh after a manual

foreground segmentation process. The image is then projected onto that simplified
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scene geometry which allows flying a camera through it to obtain certain 3D illusions.

Based on a similar idea, follow-up work enriches the scene representation to handle

scenes with more than one vanishing point and more diverse camera motions [63, 77].

While realistic effects can be achieved for certain types of images, the simplified

scene representation is often too simplistic to handle general types of images and still

requires manual segmentation which demands significant user effort. Most related to

this thesis is the system from Zheng et al. [172] which synthesizes a video with realistic

motion parallax from still images. This method, however, requires multiple images as

input whereas this thesis focuses on a more challenging problem of synthesizing the

desired effect from a single input image.

Image-to-Video Generation. The intended output of the 3D Ken Burns effect

synthesis is a video that is subject to motion parallax. This thesis is thus also related

to image-to-video generation, an increasingly popular research topic in computer vision.

Existing work in this area focuses on developing generative models to predict motions

in video frames given one or a few starting frames [51, 76, 81, 91, 124, 151, 162]. While

promising results have been achieved for synthesizing object motion in videos with

static background, they are often not suitable for the task of synthesizing realistic

camera motion effects as required to produce the 3D Ken Burns effect.

2.3 Video Action Shot Synthesis

Summarizing the motion of an object within a single image is a common objective

in photography, for example in the form of stroboscopic photography or artistic motion

blur [15, 27]. The task that this thesis is addressing, video action shot synthesis, is

likewise concerned with the depiction of motion. However, instead of summarizing

the motion of a video in an image, video action shot synthesis focuses on visualizing

motion within the video itself by projecting past and future occurrences of the main



12

subject into each frame. As such, each frame within a video action shot can already

be considered as a summarization.

Summarizing Videos as Images. Summarizing videos is a classic problem in

computer vision, with early work focusing on aspects like how to incorporate depth to

deal with occlusion [35], how to address redundancies in the motion [18], or how to

represent human motion in particular [6, 171]. With the rise of surveillance cameras,

video summarization further gained traction in the form of video synopsis which

supports people when reviewing hour-long videos [92, 114, 115, 123]. An inherent

aspect of video summarization is that it requires the sampling of moments in time

and not all moments are suitable to create a compelling result. Dedicated efforts thus

analyze interactive video summarization techniques [103, 145]. Most relevant to this

thesis is the work from Klose et al. [67] who show examples of video action shots.

However, their approach requires a camera that also captures scene depth.

Camera Motion Estimation. When analyzing the motion of a subject in a video

in which camera motion is present, one needs to account for the path of the camera

in order to correctly align the main subject across video frames. Visual odometry as

well as simultaneous location and mapping are popular techniques from the robotics

community that estimate the camera motion [30, 31, 100, 101]. Similarly, structure-

from-motion is a common technique within the computer vision community to estimate

the camera extrinsics as well as intrinsics [25, 130, 131, 136]. However, these approaches

assume that the scene is static, which is not the case with video action shot synthesis.

To address this issue, this thesis focuses on video action shots with humans as the

main subject. This makes it possible to easily identify the main subject and to

exclude it from the estimation of the camera motion, for example by employing

COLMAP [130, 131] and removing feature points that belong to the human.

Modeling the Subject. In videos with present camera motion, it is not sufficient
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to align the main subject across video frames in pixel space. It is also necessary to

determine the 3D location as well as the shape of the main subject. While it is possible

to estimate the camera motion and the scene geometry at the same time, current

approaches to do so assume that the scene is static and are hence not applicable

for video action shot synthesis [149, 168, 90, 175]. On the other hand, estimating

the scene geometry from a single image is highly challenging and thus subject to

inaccurate predictions [22, 37, 39, 79, 80, 118]. By focusing on humans, this thesis

allows for a better representation of the main subject thanks to the large body of

work on human modeling [4, 5, 13, 42, 62, 88, 117, 142, 150, 174].

Synthesizing Human Avatars. Even with a known camera path as well as the shape

and 3D location of the main subject, projecting the subject from one frame to another

is not as straightforward as it seems. Since the camera path may significantly alter

the perspective of the main subject, one cannot simply copy the pixels of the human

subject from one frame to another since it may lead to an incomplete representation.

Even when focusing on humans as the main subject, most approaches for human

modeling either only recover a textureless shape [13, 62, 142, 150, 174], assume the

camera to be static [11, 19, 178], assume the human to be static [3], require the

human to be depicted in a canonical pose [4], are trained on single-domain data and

hence lack generalizability [128, 132], or rely on clever heuristics [156]. It is also not

immediately possible to combine information from the main subject across multiple

frames in order to complete its structural representation since it may be subject to

non-rigid deformations. This thesis focuses on synthesizing humans from point clouds

while minimizing noticeable artifacts through rendering heuristics.
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3 Novel View Synthesis in Time

This chapter has been adapted from a pending CVPR submission. All uses of “we”

or “our” refer to the authors of this paper (Simon Niklaus and Feng Liu). Simon’s

contributions are: forward warping via softmax splatting, feature pyramids for image

synthesis, the architecture details such as using PWC-Net for optical flow prediction

and a GridNet for image synthesis, all implementation aspects, the design and execution

of the evaluation, and the paper writing.

3.1 Abstract

Differentiable image sampling in the form of backward warping has seen broad

adoption in tasks like depth estimation and optical flow prediction. In contrast, how

to perform forward warping has seen less attention, partly due to additional challenges

such as resolving the conflict of mapping multiple pixels to the same target location in

a differentiable way. We propose softmax splatting to address this paradigm shift and

show its effectiveness on the application of frame interpolation. Specifically, given two

input frames, we forward-warp the frames and their feature pyramid representations

based on an optical flow estimate using softmax splatting. In doing so, the softmax

splatting seamlessly handles cases where multiple source pixels map to the same target

location. We then use a synthesis network to predict the interpolation result from

the warped representations. Our softmax splatting allows us to not only interpolate

frames at an arbitrary time but also to fine tune the feature pyramid and optical
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flow. We show that our frame synthesis approach, empowered by softmax splatting,

achieves new state-of-the-art results for video frame interpolation.

3.2 Introduction

Video frame interpolation is a classic problem in computer vision with many

practical applications. It can, for example, be used to convert the frame rate of a

video to the refresh rate of the monitor that is used for playback, which is beneficial

for human perception [70, 71]. Frame interpolation can also help in video editing

tasks, such as temporally consistent color modifications, by propagating the changes

that were made in a few keyframes to other frames [95]. Frame interpolation can also

support inter-frame compression for videos [157], serve as an auxiliary task for optical

flow estimation [87, 158], or generate training data to learn how to synthesize motion

blur [15]. While these applications employ frame interpolation in time, it can also be

used to synthesize novel views in space by interpolating between viewpoints [61].

Approaches for video frame interpolation can be categorized as flow-based, kernel-

based, and phase-based. We adopt the flow-based paradigm since it has proven to

work well in quantitative benchmarks [8]. One common approach for these methods is

to estimate the optical flow Ft�0 and Ft�1 between two input frames I0 and I1 from the

perspective of the frame It that is ought to be synthesized. The interpolation result

can then be obtained by backward warping I0 according to Ft�0 and I1 according to

Ft�1 [57]. While it is intuitive, this approach makes it difficult to use an off-the-shelf

optical flow estimator and prevents synthesizing frames at an arbitrary t in a natural

manner. To address these concerns, Jiang et al. [60] and Bao et al. [9] approximate

Ft�0 and Ft�1 from F0�1 and F1�0.

Different from backward warping, Niklaus et al. [106] directly forward-warp I0

according to t · F0�1 and I1 according to (1 − t) · F1�0, which avoids having to
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Niklaus et al. [108] Xue et al. [165] Liu et al. [85] Niklaus et al. [106] Bao et al. [9] (proposed)

Figure 3.1: A difficult example for frame interpolation. Our approach produces a
high-quality result in spite of the flamingo leg that is subject to large motion.

approximate Ft�0 and Ft�1. Another aspect of their approach is to warp not only the

images but also the corresponding context information, which a synthesis network can

use to make better predictions. However, their forward warping uses the equivalent

of z-buffering in order to handle cases where multiple source pixels map to the same

target location. It is thus unclear how to fully differentiate this operation due to

the z-buffering [104]. We propose softmax splatting to address this limitation, which

allows us to jointly supervise all inputs to the forward warping. As a consequence, we

are able to extend the idea of warping a generic context map to learning and warping

a task-specific feature pyramid. Furthermore, we are able to supervise not only the

optical flow estimator but also the metric that weights the importance of different

pixels when they are warped to the same location. This approach, which is enabled

by our proposed softmax splatting, achieves new state-of-the-art results and ranks

first in the Middlebury benchmark for frame interpolation.

In short, we propose softmax splatting to perform differentiable forward warping

and show its effectiveness on the application of frame interpolation. An interesting

research question that softmax splatting addresses is how to handle different source

pixels that map to the same target location in a differentiable way. Softmax splatting
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enables us to train and use task-specific feature pyramids for image synthesis. Further-

more, softmax splatting not only allows us to fine-tune an off-the-shelf optical flow

estimator for the task of video frame interpolation, it also enables us to supervise the

metric that is used to disambiguate cases where multiple source pixels forward-warp

to the same target location.

3.3 Video Frame Interpolation

Given two frames I0 and I1, frame interpolation aims to synthesize an intermediate

frame It where t ∈ (0, 1) defines the desired temporal position. To address this

problem, we first use an off-the-shelf optical flow method to estimate the optical flow

F0�1 and F1�0 between the input frames in both directions. We then use forward

warping in the form of softmax splatting −→σ to warp I0 according to F0�t = t · F0�1

and I1 according to F1�t = (1− t) · F1�0 as follows.

It ≈ −→σ (I0, F0�t) = −→σ (I0, t · F0�1) (3.1)

It ≈ −→σ (I1, F1�t) = −→σ (I1, (1− t) · F1�0) (3.2)

This is in contrast to backward warping ←−ω , which would require Ft�0 and Ft�1 but

computing this t-centric optical flow from F0�1 and F1�0 is complicated and subject

to approximations [9]. We then combine these intermediate results to obtain It using

a synthesis network. More specifically, we not only warp the input frame in color- but

also feature-space across multiple resolutions which enables the synthesis network to

make better predictions.

We subsequently first introduce forward warping via softmax splatting and then

show how it enables us to establish new state-of-the-art results for frame interpolation.
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3.3.1 Forward Warping via Softmax Splatting

Backward warping is a common technique that has found broad adoption in tasks

like unsupervised depth estimation or optical flow prediction [57]. It is well supported

by many deep learning frameworks. In contrast, forward warping an image I0 to

It according to F0�t is not supported by these frameworks. We attribute this lack

of support to the fact that there is no absolute way of performing forward warping.

Forward warping is subject to multiple pixels in I0 being able to map to the same

target pixel in It and there are various possibilities to address this ambiguity. We

thus subsequently introduce common approaches to handle this mapping-ambiguity

and discuss their limitations. We then propose softmax splatting which addresses

these inherent limitations. Please note that we use the terms “forward warping” and

“splatting” interchangeably.

Summation splatting. A straightforward approach of handling the aforementioned

mapping-ambiguity is to sum all contributions. We define this summation splatting

−→
Σ as follows, where IΣ

t is the sum of all contributions from I0 to It according to F0�t

subject to the bilinear kernel b.

let u = p−
(
q + F0�t[q]

)
(3.3)

b(u) = max(0, 1− |ux|) ·max(0, 1− |uy|) (3.4)

IΣ
t [p] =

∑
∀q∈I0

b(u) · I0[q] (3.5)

−→
Σ (I0, F0�t) = IΣ

t
(3.6)

As shown in Figure 3.2, this summation splatting leads to brightness inconsistencies

in overlapping regions like the front of the car. Furthermore, the bilinear kernel b

leads to pixels in It that only receive partial contributions from the pixels in I0 which
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yet again leads to brightness inconsistencies like on the street. However, we use this

summation splatting as the basis of all subsequent forward warping approaches. Its

partial derivatives are as follows.

∂It[p]

∂I0[q]
=

∂It[p]

∂IΣ
t [p]

∂IΣ
t [p]

∂I0[q]
(3.7)

∂It[p]

∂F x
0�t[q]

=
∂It[p]

∂IΣ
t [p]

∂IΣ
t [p]

∂F x
0�t[q]

(3.8)

and analogous for the y component of F0�t. It is not easy to obtain these through

automatic differentiation since few frameworks support the underlying scatter nd

function. We hence provide the relevant derivatives as follows.

let u = p−
(
q + F0�t[q]

)
(3.9)

∂IΣ
t [p]

∂I0[q]
= b(u) (3.10)

∂IΣ
t [p]

∂F x
0�t[q]

=
∂b(u)

∂F x
0�t
· I0[q] (3.11)

∂b(u)

∂F x
0�t

= max(0, 1− |uy|) ·


0, if |ux| ≥ 1

−sgn(ux), else

(3.12)

and analogous for the y component of F0�t. We will be providing a reference imple-

mentation of this summation splatting
−→
Σ , which is written in CUDA for efficiency.

Average splatting. To address the brightness inconsistencies that occur with

summation splatting, we need to normalize IΣ
t . To do so, we can reuse the definition

of
−→
Σ and determine average splatting

−→
Φ as follows.

−→
Φ (I0, F0�1) =

−→
Σ (I0, F0�1)
−→
Σ (1, F0�1)

(3.13)

As shown in Figure 3.2, this approach handles the brightness inconsistencies and

maintains the appearance of I0. However, this technique averages overlapping regions

like at the front of the car with the grass in the background.
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summation splatting
−→
Σ average splatting

−→
Φ linear splatting −→∗ softmax splatting −→σ

Figure 3.2: Given two images I0 and I1 as well as an optical flow estimate F0�1, this
figure shows an example of warping I0 to It according to F0�t = t · F0�1 with four

different forward warping approaches. The summation warping
−→
Σ handles cases where

multiple pixels in I0 map to the same target location in It by taking their sum, which

leads to brightness inconsistencies. The average warping
−→
Φ takes their mean instead

and is able to maintain the overall appearance of I0 but blends overlapping regions.
The linear splatting −→∗ weights the pixels in I0 before warping them but still fails to
clearly separate the front of the car from the grass in the background. In contrast,
our proposed softmax splatting −→σ shows the expected behavior with the car correctly
occluding the background.

Linear splatting. In an effort to separate overlapping regions, one could linearly

weight I0 by an importance mask Z and define linear splatting −→∗ as follows.

−→∗ (I0, F0�1) =

−→
Σ (Z · I0, F0�1)
−→
Σ (Z, F0�1)

(3.14)

where Z could, for example, relate to the depth of each pixel [9]. As shown in

Figure 3.2, this approach can better separate the front of the car from the grass in

the background. It is not invariant to translations with respect to Z though. If Z

represents the inverse depth then there will be a clear separation if the car is at Z = 1/1

and the grass in the background is at Z = 1/10. But, if the car is at Z = 1/101 and the

grass in the background is at Z = 1/110 then they will be averaged again despite being

equally far apart in terms of depth.

Softmax splatting. To clearly separate overlapping regions according to an impor-

tance mask Z with translational invariance, we propose softmax splatting −→σ .

−→σ (I0, F0�1) =

−→
Σ (exp(Z) · I0, F0�1)
−→
Σ (exp(Z), F0�1)

(3.15)

where Z could, for example, relate to the depth of each pixel [9]. As shown in Figure 3.2,
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this approach is able to clearly separate the front of the car from the background

without any remaining traces of grass. Further, it shares resemblance to the softmax

function and is hence invariant to translations β with respect to Z as follows.

let u = p−
(
q + F0�t[q]

)
(3.16)

b(u) = max(0, 1− |ux|) ·max(0, 1− |uy|) (3.17)

Iσt [p] =

∑
∀q∈I0 exp(Z[q] + β) · b(u) · I0[q]∑
∀q∈I0 exp(Z[q] + β) · b(u)

(3.18)

=

∑
∀q∈I0 exp(Z[q]) · exp(β) · b(u) · I0[q]∑
∀q∈I0 exp(Z[q]) · exp(β) · b(u)

(3.19)

=

∑
∀q∈I0 exp(Z[q]) · b(u) · I0[q]∑
∀q∈I0 exp(Z[q]) · b(u)

(3.20)

This property is important when mapping multiple pixels to the same location. If

Z represents depth, then the car and the grass in the background in Figure 3.2 are

treated equally whether the car is at Z = 1 and the grass in the background is at

Z = 10 or the car is at Z = 101 and the grass in the background is at Z = 110. It is

not invariant to scale though and multiplying Z by α will affect how well overlapping

regions will be separated. This parameter can be learned via end-to-end training.

Importance metric. We use Z to weight pixels in I0 in order to resolve cases where

multiple pixels from I0 map to the same target pixel in It. This Z could, for example,

represent depth [9]. However, obtaining such a depth estimate is computationally

expensive and inherently challenging which makes it prone to inaccuracies. We thus

use brightness constancy as a measure of occlusion [8], which can be obtained via

backward warping ←−ω as follows.

Z = α · ‖I0 −←−ω (I1, F0�1)‖1
(3.21)

Since our proposed softmax splatting is fully differentiable, we can not only learn α
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(initially set to −1) but also use a small neural network υ to further refine this metric.

Z = υ
(
I0,−‖I0 −←−ω (I1, F0�1)‖1

)
(3.22)

One could also obtain Z directly from υ(I0) but we were unable to make this υ converge.

Lastly, when applying softmax splatting to tasks different from frame interpolation,

the importance metric may be adjusted accordingly.

Efficiency. PyTorch’s backward warping requires 1.1 ms to warp a full-HD image on

a Titan X with a synthetic flow drawn from N (0, 102). In contrast, our implementation

of softmax splatting requires 3.7 ms since we need to compute Z and handle race

conditions during warping.

3.3.2 Feature Pyramids for Image Synthesis

We adopt the video frame interpolation pipeline from Niklaus et al. [106] who, given

two input frames I0 and I1, first estimate the inter-frame motion F0�1 and F1�0 using

an off-the-shelf optical flow method. They then extract generic contextual information

from the input images using a pre-defined filter ψ and forward-warp −→ω the images

together with their context maps according to t · F0�1 = F0�t and (1− t) · F1�0 = F1�t,

before employing a synthesis network φ to obtain the interpolation result It.

It = φ
(−→ω ({I0, ψ (I0)}, F0�t

)
,−→ω
(
{I1, ψ (I1)}, F1�t

))
This approach is conceptually simple and has been proven to work well. However,

Niklaus et al. [106] were not able to supervise the context extractor ψ and instead used

conv1 of ResNet-18 [45] due to the limitations of their forward warping −→ω approach.

This particular limitation makes it an ideal candidate to show the benefits of our

proposed softmax splatting.

Our proposed softmax splatting allows us to supervise ψ, enabling it to learn

to extract features that are important for image synthesis. Furthermore, we extend
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Figure 3.3: An overview of our frame interpolation framework. Given two input
frames I0 and I1, we first estimate the bidirectional optical flow between them. We
then extract their feature pyramids and forward-warp them together with the input
frames to the target temporal position t ∈ (0, 1) according to the optical flow. Using
softmax splatting enables end-to-end training and thus allows the feature pyramid
extractor to learn to gather features that are important for image synthesis. The
warped input frames and feature pyramids are then fed to a synthesis network to
generate the interpolation result It.

this idea by extracting and warping features at multiple scales in the form of feature

pyramids. This allows the synthesis network φ to further improve its predictions.

Please see Figure 3.3 for an overview of our video frame interpolation framework.

Optical flow estimator. We use an off-the-shelf optical flow method to make use

of the ongoing achievements in research on correspondence estimation. Specifically,

we use PWC-Net [141] and show that FlowNet2 [56] and LiteFlowNet [55] perform

equally well within our evaluation. In accordance with the findings of Xue et al. [165],

we additionally fine-tune PWC-Net for frame interpolation.

Feature pyramid extractor. The architecture of our feature pyramid extractor is

shown in Figure 3.4. Our proposed softmax splatting enables us to supervise this

feature pyramid extractor in an end-to-end manner, allowing it to learn to extract

features that are useful for the subsequent image synthesis. As shown in our evaluation,

this approach leads to significant improvements in the quality of the interpolation

result. We also show that the interpolation quality degrades if we use fewer levels.
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type features kernel stride padding

Input − − − −
Conv2d 3→ 32 3× 3 1× 1 1× 1

PReLU − − − −
Conv2d 32→ 32 3× 3 1× 1 1× 1

PReLU − − − −
Conv2d 32→ 64 3× 3 2× 2 1× 1

PReLU − − − −
Conv2d 64→ 64 3× 3 1× 1 1× 1

PReLU − − − −
Conv2d 64→ 96 3× 3 2× 2 1× 1

PReLU − − − −
Conv2d 96→ 96 3× 3 1× 1 1× 1

PReLU − − − −

Figure 3.4: The architecture of our feature pyramid extractor. The feature visualization
was obtained using PCA and is only serving an aesthetic purpose. See our evaluation
for an analysis of the feature pyramid space for image synthesis.

Image synthesis network. The synthesis network generates the interpolation

result guided by the warped input images and their corresponding feature pyramids.

We employ a GridNet [34] architecture with three rows and six columns for this

task. To avoid checkerboard artifacts [110], we adopt the modifications proposed by

Niklaus et al. [106]. The GridNet architecture is a generalization of U-Nets and is

thus well suited for the task of image synthesis.

Importance metric. Our proposed softmax splatting uses an importance metric

Z which is used to resolve cases where multiple pixels forward-warp to the same

target location. We use brightness constancy to compute this metric as outlined

in Section 3.3.1. Furthermore, we refine this occlusion estimate using a small U-

Net consisting of three levels, which is trained end-to-end with the feature pyramid

extractor and the image synthesis network.

Training. We adopt the training from Niklaus et al. [106]. We thus train two versions

of our model to account for the perception-distortion tradeoff [12], one trained on color
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loss LLap which performs well in standard benchmarks and one trained on perceptual

loss LF which retains more details in difficult cases. However, instead of using a

proprietary training dataset, we use frame-triples from the training portion of the

publicly available Vimeo-90k dataset [165].

Efficiency. With an Nvidia Titan X, we are able to synthesize a 720p frame in 0.357

seconds as well as a 1080p frame in 0.807 seconds. The parameters of our entire

pipeline amount to 31 megabytes when stored.

3.4 Experiments

We evaluate our method, which utilizes softmax splatting to improve an existing

frame interpolation approach, and compare it to state-of-the-art methods quantitatively

and qualitatively on publicly available datasets. To support examining the visual

quality of the frame interpolation results, we also provide a supplementary video.

Methods. We compare our approach to several state-of-the-art frame interpolation

methods for which open source implementations from the respective authors are

publicly available. This includes SepConv [108], ToFlow [165], CyclicGen [85], and

DAIN [9]. We also include the closed source CtxSyn [106] approach wherever possible,

with the results kindly being provided by its authors.

Datasets. We perform the quantitative evaluation on common datasets for frame

interpolation. This includes the Vimeo-90k [165] test dataset as well as the samples

from the Middlebury benchmark with publicly-available ground truth interpolation

results [8]. When comparing our approach to other state-of-the-art methods, we

additionally incorporate samples from UCF101 [86, 137] and Xiph 1 .

Metrics. We follow recent work on frame interpolation and use PSNR and SSIM [155]

1https://media.xiph.org/video/derf/

https://media.xiph.org/video/derf/
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for all quantitative comparisons. We also incorporate the LPIPS [170] metric which

strives to measure perceptual similarity. While higher values indicate better results

with PSNR and SSIM, lower values indicate better results with the LPIPS metric.

3.4.1 Ablation Experiments

We show the effectiveness of our proposed softmax splatting by improving the

context-aware frame interpolation from Niklaus et al. [106]. We thus not only need to

compare softmax splatting to alternative ways of performing differentiable forward

warping, we also need to analyze the improvements that softmax splatting enabled.

Context-aware synthesis. Since we adopt the framework of Niklaus et al. [106], we

first need to verify that we can match their performance. We thus replace our feature

pyramid extractor with the conv1 layer of ResNet-18 [45] and we do not fine-tune the

utilized PWC-Net for frame interpolation. This leaves the training dataset as well

as the softmax splatting as the only significant differences. As shown in Table 3.1

(first section), our implementation performs slightly better in terms of PSNR on the

Middlebury examples. It is significantly better in terms of PSNR on the Vimeo-90k

test data though, but this is expected since we supervise on the Vimeo-90k training

data. We can thus confirm that the basis for our approach replicates CtxSyn.

Softmax splatting for frame interpolation. We discussed various ways of per-

forming differentiable forward warping in Section 3.3.1 and outlined their limitations.

We then proposed softmax splatting to address these limitations. To analyze the

effectiveness of softmax splatting, we train four versions of our approach, each one

using a different forward warping technique. As shown in Table 3.1 (second section),

summation splatting performs worst and softmax splatting performs best in terms

of PSNR. Notice that the PSNR of average splatting is better than linear splatting
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Vimeo-90k Middlebury

[165] [8]

PSNR

↑
SSIM

↑
LPIPS

↓
PSNR

↑
SSIM

↑
LPIPS

↓

CtxSyn 34.39 0.961 0.024 36.93 0.964 0.016

Ours - CtxSyn-like 34.85 0.963 0.025 37.02 0.966 0.018

Ours - summation splatting 35.09 0.965 0.024 37.47 0.968 0.018

Ours - average splatting 35.29 0.966 0.023 37.53 0.969 0.017

Ours - linear splatting 35.26 0.966 0.024 37.73 0.968 0.017

Ours - softmax splatting 35.54 0.967 0.024 37.81 0.969 0.017

Ours - pre-defined Z 35.54 0.967 0.024 37.81 0.969 0.017

Ours - fine-tuned Z 35.59 0.967 0.024 37.97 0.970 0.017

Ours - 1 feature level 35.08 0.965 0.024 37.32 0.968 0.018

Ours - 2 feature levels 35.37 0.966 0.024 37.79 0.970 0.016

Ours - 3 feature levels 35.59 0.967 0.024 37.97 0.970 0.017

Ours - 4 feature levels 35.69 0.968 0.023 37.99 0.971 0.016

Ours - FlowNet2 35.83 0.969 0.022 37.67 0.970 0.016

Ours - LiteFlowNet 35.59 0.968 0.024 37.83 0.970 0.017

Ours - PWC-Net 35.59 0.967 0.024 37.97 0.970 0.017

Ours - PWC-Net-ft 36.10 0.970 0.021 38.42 0.971 0.016

Ours - LLap 36.10 0.970 0.021 38.42 0.971 0.016

Ours - LF 35.48 0.964 0.013 37.55 0.965 0.008

Table 3.1: Ablation experiments to quantitatively analyze the effect of the different
components of our approach.

on the Middlebury examples but worse on the Vimeo-90k test data. We attribute

this erratic behavior of linear splatting to its lack of translational invariance. These

findings support the motivations behind our proposed softmax splatting.

Importance metric. Our proposed softmax splatting uses an importance metric Z

to resolve cases where multiple pixels forward-warp to the same target location. We

use brightness constancy [8] to obtain this metric. Since softmax splatting is fully

differentiable, we can use a small U-Net to fine-tune this metric which, as shown

in Table 3.1 (third section), leads to slight improvements in terms of PSNR. This
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PWC-Net LiteFlowNet Proposed

Figure 3.5: Feature response visualization for different task-specific feature pyramids
using the image from Figure 3.2.

demonstrates that softmax splatting can effectively supervise Z and that brightness

constancy works well as the importance metric for video frame interpolation.

Feature pyramids for image synthesis. Softmax splatting enables us to synthe-

size images from warped feature pyramids, effectively extending the interpolation

framework from Niklaus et al. [106]. In doing so, the softmax splatting enables end-to-

end training of the feature pyramid extractor, allowing it to learn to gather features

that are important for image synthesis. As shown in Table 3.1 (fourth section), the

quality of the interpolation results improves when using more feature levels. Notice

the diminishing returns when using more feature levels, with four levels of features

overfitting on the Vimeo-90k dataset. We thus use three levels of features for our

approach. To examine the difference between feature pyramids for frame interpolation

and those for motion estimation by visualizing their feature responses [32]. Specifically,

we maximize the activations of the last layer of our feature pyramid extractor as well as

equivalent layers of PWC-Net [141] and LiteFlowNet [55] by altering the input image.

Figure 3.5 shows feature activations, indicating that our feature pyramid focuses on
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Figure 3.6: Assessment of the temporal consistency of our approach on the high
frame-rate Sintel dataset [58].

fine details which are important to synthesize high-quality results while the feature

pyramids for optical flow exhibit large patterns to account for large displacements.

Optical flow estimation. To analyze how well our approach performs with dif-

ferent optical flow methods, we consider three diverse state-of-the-art optical flow

methods [55, 56, 141], each trained on FlyingChairs [28]. As shown in Table 3.1

(fifth section), they all perform similarly well. Due to softmax splatting being fully

differentiable, we are further able to fine-tune the optical flow estimation for the task

of frame interpolation [165]. Specifically, we fine-tune PWC-Net and see additional

improvements with this PWC-Net-ft that has been optimized for the task of frame

interpolation. We thus use PWC-Net-ft for our approach.

Perception-distortion tradeoff. We train two versions of our model, one trained

on color loss and one trained on perceptual loss, in order to account for the perception-

distortion tradeoff [12]. As shown in Table 3.1 (sixth section), the model trained using

color loss LLap performs best in terms of PSNR and SSIM whereas the one trained

using perceptual loss LF performs best in terms of LPIPS. We note that the LF-trained

model better recovers details in challenging cases, making it more practical.

Temporal consistency. Since we use forward warping to compensate for motion, we

can interpolate frames at an arbitrary temporal position despite only supervising our

model at t = 0.5. To analyze the temporal consistency of this approach, we perform
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Vimeo-90k Middlebury UCF101 - DVF Xiph - 2K Xiph - “4K”

[165] [8] [86] (4K resized to 2K) (2K crop from 4K)

PSNR

↑
SSIM

↑
LPIPS

↓
PSNR

↑
SSIM

↑
LPIPS

↓
PSNR

↑
SSIM

↑
LPIPS

↓
PSNR

↑
SSIM

↑
LPIPS

↓
PSNR

↑
SSIM

↑
LPIPS

↓

SepConv - L1 33.80 0.956 0.027 35.73 0.959 0.017 34.79 0.947 0.029 34.77 0.929 0.067 32.06 0.880 0.169

SepConv - LF 33.45 0.951 0.019 35.03 0.954 0.013 34.69 0.945 0.024 34.47 0.921 0.041 31.68 0.863 0.097

ToFlow 33.73 0.952 0.027 35.29 0.956 0.024 34.58 0.947 0.027 33.93 0.922 0.061 30.74 0.856 0.132

CyclicGen 32.10 0.923 0.058 33.46 0.931 0.046 35.11 0.950 0.030 33.00 0.901 0.083 30.26 0.836 0.142

CtxSyn - LLap 34.39 0.961 0.024 36.93 0.964 0.016 34.62 0.949 0.031 35.71 0.936 0.073 32.98 0.890 0.175

CtxSyn - LF 33.76 0.955 0.017 35.95 0.959 0.013 34.01 0.941 0.024 35.16 0.921 0.035 32.36 0.857 0.081

DAIN 34.70 0.964 0.022 36.70 0.965 0.017 35.00 0.950 0.028 35.95 0.940 0.084 33.49 0.895 0.170

Ours - LLap 36.10 0.970 0.021 38.42 0.971 0.016 35.39 0.952 0.033 36.62 0.944 0.107 33.60 0.901 0.234

Ours - LF 35.48 0.964 0.013 37.55 0.965 0.008 35.10 0.948 0.022 35.74 0.921 0.029 32.50 0.856 0.071

Table 3.2: Quantitative comparison of various state-of-the-art methods across multiple
datasets for video frame interpolation.

a benchmark on a high frame-rate version of the Sintel dataset [58]. Specifically, we

interpolate frames 1 through 31 from frame 0 and frame 32 on all of its 13 scenes. We

include DAIN for reference since it is also able to interpolate frames at an arbitrary t.

As shown in Figure 3.6, DAIN degrades around frame 8 and frame 24 whereas our

approach via softmax splatting does not.

3.4.2 Quantitative Evaluation

We compare our approach to state-of-the-art frame interpolation methods on

common datasets. Since these datasets are all low resolution, we also incorporate

4K video clips from Xiph which are commonly used to assess video compression.

Specifically, we selected the eight 4K clips with the most amount of inter-frame motion

and extracted the first 100 frames from each clip. We then either resized the 4K frames

to 2K or took a 2K center crop from them before interpolating the even frames from

the odd ones. Since cropping preserves the inter-frame per-pixel motion, this “4K”

approach allows us to approximate interpolating at 4K while actually interpolating
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Boxing Crosswalk Driving Market-1 Market-2 Ritual Square Tango

2K “4K” 2K “4K” 2K “4K” 2K “4K” 2K “4K” 2K “4K” 2K “4K” 2K “4K”

PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑
PSNR

↑

ToFlow 36.75 33.52 33.54 31.42 34.84 33.38 30.87 29.41 34.24 30.30 28.11 22.61 38.87 36.59 34.24 28.67

Sep. - L1 36.75 33.35 36.34 32.79 34.95 33.32 32.03 31.21 36.49 34.62 28.15 23.12 38.63 36.16 34.85 31.90

Sep. - LF 36.54 33.15 35.69 32.10 34.84 33.24 31.69 30.68 36.26 34.27 27.95 23.06 38.41 35.84 34.43 31.08

CyclicGen 36.51 32.95 33.73 31.37 34.74 33.46 30.02 28.69 29.89 27.91 28.21 22.95 37.44 35.13 33.45 29.60

DAIN 37.74 34.75 38.81 35.90 35.14 33.60 33.06 31.99 38.03 36.49 29.16 23.91 39.50 37.00 36.14 34.28

Ctx. - LL. 37.41 33.55 38.14 34.03 34.92 32.71 32.93 31.97 38.33 37.18 28.47 23.08 39.35 37.09 36.16 34.21

Ctx. - LF 36.68 32.88 37.40 33.01 34.56 32.45 32.20 31.10 37.94 36.62 28.24 23.10 38.87 36.61 35.36 33.10

Ours - LL. 38.44 35.44 38.93 34.33 35.69 33.82 33.31 32.37 39.58 38.02 29.43 23.83 40.90 37.96 36.86 34.58

Ours - LF 37.48 34.40 37.82 33.47 35.14 33.27 32.20 31.18 39.07 37.01 29.15 23.72 40.35 37.13 35.89 33.27

Table 3.3: Quantitative comparison on the eight 4K clips from Xiph with the most
amount of inter-frame motion.

at 2K instead. Directly processing 4K frames would have been unreasonable since

DAIN, for example, already requires 16.7 gigabytes of memory to process 2K frames.

In comparison, our approach only requires 5.9 gigabytes to process 2K frames which

can be halved by using half-precision floating point operations.

As shown in Table 3.2, our LLap-trained model outperforms all other methods in

terms of PSNR and SSIM whereas our LF -trained model performs best in terms of

LPIPS. Please note that on the Xiph dataset, all methods are subject to a significant

degradation across all metrics when interpolating the “4K” frames instead of the

ones that were resized to 2K. This shows that frame interpolation at high resolution

remains a challenging problem. For completeness, we also show the per-clip metrics for

the samples from Xiph in the supplementary material. We also submitted the results

of our LLap-trained model to the Middlebury benchmark [8]. Our approach currently

ranks first in this benchmark and we provide the relevant results and accompanying

screenshots in the supplementary material.
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Overlayed ToFlow CyclicGen CtxSyn - LF DAIN Ours - LF

Figure 3.7: Interpolation results for three difficult examples, comparing our approach
with several state-of-the-art methods.

3.4.3 Qualitative Evaluation

Since videos are at the heart of our approach, we provide a qualitative comparison

in the supplementary video. We additionally provide still results in Figure 3.7. These

support the findings of the quantitative evaluation and show difficult examples where

our proposed approach produces high-quality results whereas competing techniques

are subject to visual artifacts.

3.4.4 Discussion

Our proposed softmax splatting enables us to extend and significantly improve the

approach from Niklaus et al. [106]. Specifically, softmax splatting enables end-to-end

training which allows us to not only employ and optimize feature pyramids for image



33

synthesis but also to fine-tune the optical flow estimator [165]. Our evaluation shows

that these changes significantly improve the interpolation quality.

Another relevant approach is the one from Bao et al. [9]. They forward-warp the

optical flow and subsequently backward warp the input images to the target location

according to the warped optical flow. However, they use linear splatting and nearest

neighbor interpolation. In comparison, our approach employs softmax splatting which

is translational invariant and yields better results than linear splatting. Our approach

is also conceptually simpler due to not warping the flow and not incorporating depth-

or kernel-estimates. In spite of it simplicity, our approach compared favorably in the

benchmark and is temporally consistent whereas DAIN was subject to degradations

at t = 0.25 and t = 0.75.

The success of adversarial training as well as cycle consistency in image generation

shows that more advanced ways of supervision can lead to high-quality synthesis

results [40, 85, 125, 179]. While we consider such improvements orthogonal to this

paper, we plan to explore these ideas to better supervise our model in future work.

3.5 Conclusion

In this paper, we presented softmax splatting for differentiable forward warping

and demonstrated its effectiveness on the application of frame interpolation. The

key research question that softmax splatting addresses is how to handle cases where

different source pixels forward-warp to the same target location in a differentiable

way. Further, we show that feature pyramids can successfully be employed for high-

quality image synthesis, which is an aspect of feature pyramids that has not been

explored yet. Our proposed frame interpolation pipeline, which is enabled by softmax

splatting and conceptually simple, compares favorably in benchmarks and achieves

new state-of-the-art results.
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4 Novel View Synthesis in Space

This chapter has been adapted from a SIGGRAPH Asia paper. All uses of “we” or

“our” refer to the authors of this paper (Simon Niklaus, Long Mai, Jimei Yang, and Feng

Liu). Simon’s contributions are: depth estimation for novel view synthesis, context-

aware color- and depth-inpainting, the design of the user interface, the computer-

generated dataset, the architecture details such as using the GridNet architecture,

all implementation aspects, the design and execution of the evaluation except the

usability study, and the paper writing except the related work section.

4.1 Abstract

The Ken Burns effect allows animating still images with a virtual camera scan and

zoom. Adding parallax, which results in the 3D Ken Burns effect, enables significantly

more compelling results. Creating such effects manually is time-consuming and

demands sophisticated editing skills. Existing automatic methods, however, require

multiple input images from varying viewpoints. In this paper, we introduce a framework

that synthesizes the 3D Ken Burns effect from a single image, supporting both a

fully automatic mode and an interactive mode with the user controlling the camera.

Our framework first leverages a depth prediction pipeline, which estimates scene

depth that is suitable for view synthesis tasks. To address the limitations of existing

depth estimation methods such as geometric distortions, semantic distortions, and

inaccurate depth boundaries, we develop a semantic-aware neural network for depth
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prediction, couple its estimate with a segmentation-based depth adjustment process,

and employ a refinement neural network that facilitates accurate depth predictions at

object boundaries. According to this depth estimate, our framework then maps the

input image to a point cloud and synthesizes the resulting video frames by rendering

the point cloud from the corresponding camera positions. To address disocclusions

while maintaining geometrically and temporally coherent synthesis results, we utilize

context-aware color- and depth-inpainting to fill in the missing information in the

extreme views of the camera path, thus extending the scene geometry of the point

cloud. Experiments with a wide variety of image content show that our method enables

realistic synthesis results. Our study demonstrates that our system allows users to

achieve better results while requiring little effort compared to existing solutions for

the 3D Ken Burns effect creation.

4.2 Introduction

Advanced image- and video-editing tools allow artists to freely augment photos

with depth information and to animate virtual cameras, enabling motion parallax as

the camera scans over a still scene. This cinematic effect, which we refer to as 3D

Ken Burns effect, has become increasingly popular in documentaries, commercials,

and other media. Compared to the traditional Ken Burns effect which animates

images with 2D scan and zoom 1 , this 3D counterpart enables much more compelling

experiences. However, creating such effects from a single image is painstakingly

difficult: The photo must be manually separated into different segments, which then

have to carefully be arranged in the virtual 3D space, and inpainting needs to be

performed to avoid holes when the virtual camera moves away from its origin. In

this paper, we target the problem of automatically synthesizing the 3D Ken Burns

1http://en.wikipedia.org/wiki/Ken_Burns_effect

http://en.wikipedia.org/wiki/Ken_Burns_effect
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Figure 4.1: 3D Ken Burns effect from a single image. Given a single input image and
optional user annotations in form of two cropping windows, our framework animates
the input image while adding parallax to synthesize a 3D Ken Burns effect. Our
method works well for a wide variety of content, including portrait (top) and landscape
(bottom) photos. Please refer to our video demo to examine these examples.

effect from a single image. We further optionally incorporate simple user-specified

camera paths, parameterized by the desired start- and end-view, to grant the user

more control over the resulting effect as shown in Figure 4.1.

This problem of synthesizing realistic moving-camera effects from a single image

is highly challenging. Two fundamental concerns need to be addressed. First, to

synthesize a new view from a novel camera position, the scene geometry of the original

view needs to be recovered accurately. Second, from the predicted scene geometry, a

temporally consistent sequence of novel views has to be synthesized which requires

dealing with disocclusion. We address both challenges and provide a complete system

that enables synthesizing the 3D Ken Burns effect from a single image.

To synthesize the 3D Ken Burns effect, our method first estimates the depth map

from the input image. While existing depth prediction methods have rapidly improved
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over the past few years, monocular depth estimation remains an open problem. We

observed that existing depth prediction methods are not particularly suitable for view

synthesis tasks such as ours. Specifically, we identified three critical issues of existing

depth prediction methods that need to be addressed to make them applicable to 3D

Ken Burns synthesis: geometric distortions, semantic distortions, and inaccurate depth

boundaries. Based on this observation, we designed a depth estimation pipeline along

with the training framework dedicated to addressing these issues. To this end, we

developed a semantic-aware neural network for depth estimation and train the network

on our newly constructed large-scale synthetic dataset which contains accurate ground

truth depth of various photo-realistic scenes.

From the input image and the associated depth map, a sequence of novel views

has to be synthesized to produce an output video for the 3D Ken Burns effect.

The synthesis process needs to handle three requirements. First, as the camera

moves away from its original position, disocclusion necessarily happens. The missing

information needs to be filled-in with geometrically consistent content. Second, the

novel view renderings need to be synthesized in a temporally consistent manner. The

straightforward approach of filling-in the missing information and synthesizing each

view independently is not only computationally inefficient but also temporally unstable.

Third, we have found that professional artists that use our system manually produce

the most compelling effects when they are able to immediately perceive the result of

their interaction. The synthesis thus needs to be real-time in order to best support

such users. To address these requirements, we propose a simple yet effective solution:

We map the input image to points in a point cloud according to the estimated depth.

We then perform color- and depth-inpainting of novel view renderings at extreme

views like at the beginning and at the end of the virtual camera path. This allows

us to extend the point cloud with geometrically sound information. The extended
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point cloud can then be used to synthesize all novel view renderings in an efficient

and temporally consistent manner.

Together, our depth prediction pipeline and novel view synthesis approach provide

a complete system for generating the 3D Ken Burns effect from a single image. This

system provides a fully automatic solution where the start- and end-view of the

virtual camera path are automatically determined so as to minimize the amount

of disocclusion. In addition to the fully automatic mode, our system also provides

an interactive mode in which users can control the start- and end-view through an

intuitive user interface. This allows a more fine-grained control over the resulting 3D

Ken Burns effect, thus supporting users in their artistic freedom.

The key contributions of this paper are as follows. We introduce the problem of 3D

Ken Burns synthesis from a single image which enables automatic video generation in

the form of a moving-camera effect. We leverage existing computer vision technologies

and augment them to achieve plausible synthesis results. Our system offers a fully

automatic mode which generates a convincing effect without any user feedback, and a

view control mode which allows users to control the effect with simple interactions.

Experiments on a wide range of real-world imagery demonstrate the effectiveness of

our system. Our study shows that our system enables users to achieve better results

while requiring little effort compared to existing solutions.

4.3 3D Ken Burns Effect Synthesis

Our framework consists of two main components, namely the depth estimation

pipeline (Figure 4.3), and the novel view synthesis pipeline (Figure 4.7). In this

section, we describe each component in detail.
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4.3.1 Semantic-aware Depth Estimation

To synthesize the 3D Ken Burns effect, our method first estimates the depth of the

input image. While recent advanced methods for monocular depth estimation have

shown good performance on public benchmarks, we observed that their predictions

are at times not suitable to produce high-quality view synthesis results. In particular,

there are at least three major issues when applying existing depth estimation methods

to generate the 3D Ken Burns effect:

1. Geometric distortions. While state-of-the-art depth estimation methods can

generate reasonable depth orderings, they often have difficulty in capturing

geometric relations such as planarity. Geometric distortion, such as bending

planes, thus often appear in the synthesis results (Figure 4.2, top row).

2. Semantic distortions. Existing depth estimation methods predict the depth

maps without explicitly taking the semantics of objects into account. Therefore,

in many cases the depth values are assigned inconsistently inside regions of the

same object, resulting in unnatural synthesis results such as objects sticking to

the ground plane or different parts of an object being torn apart (Figure 4.2,

bottom row).

3. Inaccurate depth boundaries. Current state-of-the-art methods for single-image

depth estimation process the input image at a low resolution and utilize bilinear

interpolation to obtain the full-resolution depth estimate. They are thus unable

to accurately capture depth boundaries, resulting in artifacts in the novel view

renderings (Figure 4.5).

In this paper, we design a semantic-aware depth estimation dedicated to addressing

these issues. To do so, we separate the depth estimation into three steps. First,
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Syn. using DeepLens’s depth. Syn. using MegaDepth’s depth. Synthesis using our depth.

Figure 4.2: Geometric- and semantic-distortion examples resulting from off-the-shelf
depth estimation methods. These images were synthesized by moving a virtual camera
left and right. To focus the comparison on the depth estimate quality, we do not show
our final synthesis result and instead only show the intermediate point-cloud rendering
that are subject to disocclusion. In the first row, DeepLens and MegaDepth are
subject to geometric distortions in the white building. In the second row, DeepLens
and MegaDepth are subject to semantic distortions and are inconsistent with respect
to the hand of the boy. Furthermore, MegaDepth’s depth prediction also separates
the head of the boy from the rest of the body.

estimating coarse depth using a low-resolution image while relying on semantic infor-

mation extracted using VGG-19 [134] to facilitate generalizability. Second, adjusting

the depth map according to the instance-level segmentation of Mask R-CNN [44] to

ensure consistent depth values for salient objects. Third, refining the depth boundaries

guided by the input image while upsampling the low-resolution depth estimate. Our

depth estimation pipeline is shown in Figure 4.3 and subsequently elaborated.

4.3.1.1 Depth Estimation

Following existing work on monocular depth estimation, we leverage a neural network

to predict a coarse depth map. To facilitate a semantic-aware depth prediction, we
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Figure 4.3: Overview of our depth estimation pipeline. Given a high-resolution
image, we start by estimating a coarse depth based on a low-resolution input image.
This depth estimation network is guided by semantic information extracted using
VGG-19 [134] and supervised on a computer-generated dataset with accurate ground
truth depth in order to facilitate geometrically sound predictions. To avoid semantic
distortions, we then adjust the depth map according to the segmentation of Mask R-
CNN [44] and make sure that each salient object is mapped to a coherent plane. Lastly,
we utilize a depth refinement network that, guided by the input image, upsamples the
coarse depth and ensures accurate depth boundaries.

further provide semantic guidance by augmenting the input of our network with the

feature maps extracted from the pool 4 layer of VGG-19 [134]. We found that granting

explicit access to this semantic information encourages the network to better capture

the geometry of large scene structures, thus addressing the concern of geometric

distortions. Different from existing work, we do not resize the input image to a fixed

resolution when providing it to the network and instead resize it such that its largest

dimension is 512 pixels while preserving its aspect ratio.

Architecture. We employ a GridNet [34] architecture with the modifications

proposed by Niklaus et al. [106] to prevent checkerboard artifacts [110]. We incorporate

this grid architecture with a configuration of six rows and four columns, where the first

two columns perform downsampling and the last two columns perform upsampling.

This multi-path GridNet architecture allows the network to effectively combine feature

representations from multiple scales. We feed the input image into the first row, while

inserting the semantic features from VGG-19 into the fourth row of the grid. We

explicitly encourage the network to focus more on the semantic features and less on

the input image by letting the first three rows of the grid (corresponding to the input
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image) have a channel size of 32, 48, and 64 respectively while the fourth through

sixth row (corresponding to the semantic features) have 512 channels each. As such,

a majority of the parameters reside in the bottom half of the network, forcing it

to heavily make use of semantic features and in-turn supporting the generalization

capability of our depth estimation network.

Loss Functions. To train our depth estimation network, we adopt the pixel-wise `1

as well as the scale invariant gradient loss proposed by Ummenhofer et al. [149] to

emphasize depth discontinuities. Specifically, given the ground truth inverse depth ξ̂,

we supervise the estimated inverse depth ξ using the `1-based loss as

Lord =
∑

i,j

∥∥∥ξ(i, j)− ξ̂(i, j)∥∥∥
1

(4.1)

Similar to Ummenhofer et al. [149], we encourage more pronounced depth disconti-

nuities and stimulate smoothness in homogeneous regions by incorporating a scale

invariant gradient loss as

Lgrad =
∑

h∈{1,2,4,8,16}

∑
i,j

∥∥∥gh[ξ](i, j)− gh[ξ̂](i, j)
∥∥∥

2
(4.2)

where the discrete scale invariant gradient g is defined as

gh[f ](i, j) =
(

f(i+h,j)−f(i,j)
|f(i+h,j)|+|f(i,j)| ,

f(i,j+h)−f(i,j)
|f(i,j+h)|+|f(i,j)|

)>
(4.3)

We emphasize the scale invariant gradient loss when training our depth estimation

network and combine the two losses as

Ldepth = 0.0001 · Lord + Lgrad (4.4)

As such, we encourage accurate depth boundaries which are important for the resulting

quality when synthesizing the 3D Ken Burns effect.

Training. We utilize Adam [66] with α = 0.0001, β1 = 0.9, and β2 = 0.999

and train our depth estimation network for 3 · 106 iterations. We incorporate 13017
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Input image. Initial estimate. Adjusted depth. Refined depth.

Figure 4.4: Intermediate depth estimation results. This example demonstrates the
contribution of each stage in our depth estimation pipeline. The initially estimated
depth is subject to semantic distortion with respect to the red car and has inaccurate
depth boundaries, for example, at the masonry of the tower. The depth adjustment
addresses the semantic distortion of the red car, while the depth refinement addresses
the fine details at object boundaries.

samples from the raw dataset of NYU v2 [133] together with 8685 samples from

MegaDepth [80]. Since these datasets are subject to noise and an inaccurate depth at

object boundaries, we also leverage our own dataset which is described in Section 4.3.4.

Our dataset consists of realistic renderings which provide high-quality depth maps

with clear discontinuities at object boundaries.

4.3.1.2 Depth Adjustment

We have found that our depth prediction network augmented with semantic features

and trained using our high-quality dataset significantly improves the scene geometry

represented by the estimate depth. However, semantic distortions have not been

entirely resolved. It is extremely challenging to obtain accurate object-level depth

predictions as the neural network not only needs to reason about the boundary of

each object but also needs to determine the geometric relationship between different

parts of an object. One approach to address this problem is to either provide semantic

labels as input to the depth estimation network, or to train the depth estimation

network in a multi-task setting to jointly predict segmentation masks [29, 82, 99, 102]
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Cropped input image. Using initial depth. Using refined depth. Refined and z-filtered.

Figure 4.5: Example of our point cloud rendering. Using the point cloud of the initial
depth estimate exemplifies the importance of our depth refinement, as objects may
otherwise be torn apart at the object boundaries. We further note that moving the
virtual camera forward may lead to cracks through which occluded background points
may erroneously become visible (note the blue grid pattern on the tower), which we
successfully address through z-filtering.

which would encourage the network to reason about object boundaries.

In contrast, we borrow a technique frequently employed by artists when creating

the 3D Ken Burns effect manually: Identify the object segments and approximate

each object with a frontal plane positioned upright on the ground plane. We mimic

this practice and utilize instance-level segmentation masks from Mask R-CNN [44]

for this purpose. Specifically, we select the masks of semantically important objects

such as humans, cars, and animals and adjust the estimated depth values by assigning

the smallest depth value from the bottom of the salient object to the entire mask.

We note that this approximation is not physically correct. However, it is effective in

producing perceptually plausible results for a majority of content as demonstrated by

many artist-created results.

4.3.1.3 Depth Refinement

So far, our depth estimation network is designed to reduce geometric distortions with

the depth adjustment addressing semantic distortions. However, the resulting depth

estimate is of low resolution and may be erroneous at boundary regions. One possible
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solution to this problem is to apply joint bilateral filtering to upsample the depth

map. However, this does not work well in our case. As also observed in previous

work [78], we found that the texture of the guiding image tends to be transferred to the

upsampled depth. In this work, we thus instead employ a neural network that, guided

by a high-resolution image, learns how to perform depth upsampling that is subject

to erroneous estimates at object boundaries. During inference, this model predicts

the refined depth map at an aspect-dependent resolution with the largest dimension

being 1024 pixels. This upscaling factor can further be increased by modifying the

neural network accordingly.

Architecture. We insert the input image into a U-Net with three downsampling

blocks which use strided convolutions and three corresponding upsampling blocks

which use convolutions and bilinear upsampling. We insert the estimated depth at

the bottom of the U-Net, allowing the network to learn how to downsample the input

image in order to guide the depth during upsampling.

Loss Functions. Like with our depth estimation network, we encourage accurate

predictions at object boundaries as well as smoothness in homogeneous regions and

employ the same Ldepth loss when training our refinement network.

Training. We utilize Adam [66] with α = 0.0001, β1 = 0.9, and β2 = 0.999 and

train our depth refinement network for 1 · 106 iterations. Since accurate ground truth

depth boundaries are crucial for training this network, we only use our computer-

generated dataset which is described in Section 4.3.4. Specifically, we downsample

and distort the ground truth depth to simulate the coarse depth prediction and use it,

together with the high-resolution image, as inputs to the depth refinement network.
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4.3.1.4 Summary

Our depth estimation pipeline is designed to address each of the identified issues that

are important when using depth estimation methods to create the 3D Ken Burns

effect: geometric distortions, semantic distortions, and inaccurate depth boundaries.

Please see Figure 4.4 which demonstrates the contribution of each step in our pipeline

to the final depth estimate.

4.3.2 Context-aware Inpainting for View Synthesis

To synthesize the 3D Ken Burns effect from the estimated depth, our method

first maps the input image to points in a point cloud. Each frame of the resulting

video can then be synthesized by rendering the point cloud from the corresponding

camera position along a pre-determined camera path. The point cloud, however, is

only a partial view of the world geometry as seen from the input image. Therefore,

the resulting novel view renderings are incomplete with holes caused by disocclusion.

One possible solution is to utilize off-the-shelf image inpainting methods to fill-in the

missing areas in each synthesized video frame. This approach, however, fails to satisfy

the following requirements:

1. Geometrically consistent inpainting. Due to the nature of disocclusion, the

filled-in area should resemble the background with a clear separation of the

foreground object. Existing off-the-shelf inpainting methods do not explicitly

reason about the geometry of the inpainting result though, which is why they

are unable to satisfy this requirement (Figure 4.6).

2. Temporal consistency. When rendering multiple novel views to generate a moving-

camera effect, the result needs to be temporally consistent. The traditional

inpainting formulation does not consider our given scenario, which is why
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Without inpainting. DeepFill inpainting. EdgeConnect inpainting. Proposed inpainting.

Figure 4.6: Example synthesis results, comparing two popular off-the-shelf inpainting
methods with our approach. DeepFill fails to inpaint a plausible result due to the
non-rectangular nature of the area that is ought to be inpainted. EdgeConnect inpaints
a more plausible result but is not temporally consistent and fails to preserve the object
boundary. In contrast, our inpainting approach is both temporally consistent and
maintains a clear object boundary.

independently applying an existing off-the-shelf inpainting method is subject to

temporal inconsistencies (Figure 4.6).

3. Real-time synthesis. When manually specifying the camera path for the 3D Ken

Burns effect, we found that the best user experience is achieved when users can

immediately perceive the result and make adjustments accordingly. Applying

off-the-shelf inpainting methods in a frame-by-frame manner would be too slow

to adequately support this use case scenario (Section 4.3.3).

In this paper, we design a dedicated view synthesis pipeline to address these

requirements as illustrated in Figure 4.7. Given the point cloud obtained from the

input image and its depth estimate, we perform joint color- and depth-inpainting to

fill-in missing areas in incomplete novel view renderings. Having the inpainting method

also incorporate depth enables geometrically consistent inpainting. The inpainted

depth can then be used to map the inpainted color to new points in the existing point

cloud, addressing the problem of disocclusion. To synthesize the 3D Ken Burns effect

along a pre-determined camera path, it is in this regard sufficient to perform the color-
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Figure 4.7: Overview of our novel view synthesis approach. From the point cloud
obtained from the input image and the estimated depth map, we render consecutive
novel views from new camera positions. This point cloud is only a partial view of
the world geometry though, which is why novel view renderings will be subject to
disocclusion. To address this issue, we perform geometrically consistent color- and
depth-inpainting to recover a complete novel view from an incomplete render where
each pixel contains color-, depth-, and context-information. The inpainted depth can
then be used to map the inpainted color to new points in the existing point cloud.
By repeating this procedure until the point cloud has been extended sufficiently, it is
possible to render complete and temporally consistent novel views in real time. To
synthesize the 3D Ken Burns effect along a camera path, it is in this regard sufficient
to perform the color- and depth-inpainting only at extreme views.

and depth-inpainting only at extreme views like at the beginning and at the end.

Rendering this extended point cloud preserves temporal consistency and can be done

in real-time. To enable real-time synthesis when having an artist specify an arbitrary

camera path, we repeat this procedure at extreme views to the left, right, top, and

bottom. Our synthesis approach is illustrated in Figure 4.7 and we subsequently

elaborate the involved steps.

4.3.2.1 Point Cloud Rendering

We obtain novel view renderings by projecting the point cloud to an image plane

subject to the pinhole camera model. In doing so, we utilize a z-buffer to correctly

address occlusion. When moving the virtual camera forward, the point cloud rendering

may, however, suffer from shine-through artifacts in which occluded background points

becomes visible in foreground regions. Tulsiani et al. [148] address these artifacts by

rendering the point cloud at half the input resolution. In order to preserve the image
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resolution, we instead heuristically filter the z-buffer before projecting the points to

the image plane. Specifically, we identify shined-through artifact regions by identifying

pixels for which two adjacently opposing neighbors are significantly closer to the

virtual camera. We then fill the cracks in the z-buffer with the average depth of the

neighboring foreground pixels.

4.3.2.2 Context Extraction

Niklaus et al. [106] observed that incorporating contextual information is beneficial

for generating high-quality novel view synthesis results. Specifically, each point in

the point cloud can be extended with contextual information that describes the

neighborhood of where the corresponding pixel used to be in the input image. This

augments the point cloud with rich information that can, for example, be leveraged

for computer graphics in the form of neural rendering [3, 16, 94]. To make use of this

technique, we leverage a neural network with two convolutional layers to extract 64

channels of context information from the input image. We train this context extractor

jointly with the inpainting network, which allows the extractor to learn how to gather

information that is useful when inpainting incomplete novel view renderings.

4.3.2.3 Color- and Depth-inpainting

Different from existing image inpainting methods, our inpainting network accepts

color-, depth-, and context-information as input and performs joint color- and depth-

inpainting. The additional context provides rich information that is beneficial for

high-quality image synthesis while the depth enables geometrically consistent inpaint-

ing results with foreground objects clearly being separated from the background.

Specifically, we render the color-, depth-, and context-information of the input image

to a novel view that is incomplete due to disocclusion. We then use our color- and
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depth-inpainting network to fill-in missing areas. The inpainted depth allows us to

map the inpainted color to new points in the existing point cloud, effectively extending

the world geometry that the point cloud represents.

Architecture. Similarly to our depth estimation network, we employ a GridNet [34]

architecture for our inpainting network due to its ability to learn how to combine

representations at multiple scales. Specifically, we utilize a grid with four rows and

four columns with a per-row channel size of 32, 64, 128, and 256 respectively. It

accepts the color, depth, and context of the incomplete novel view rendering and

returns the inpainted color and depth.

Loss Functions. We adopt a pixel-wise `1 loss as well as a perceptual loss based

on deep image features to supervise the color inpainting. Specifically, given a ground

truth novel view Igt, we supervise the inpainted color I using the `1-based loss as

Lcolor = ‖I − Igt‖1 (4.5)

For the perceptual loss, we employ a content loss based on the difference between

deep image features as

Lpercep = ‖φ(I)− φ(Igt)‖2
2 (4.6)

where φ represents feature activations from a generic image classification network.

Specifically, we use the activations of the relu4_4 layer from VGG-19 [134]. To

supervise the depth-inpainting, we use the `1-based loss Lord as well as the scale

invariant gradient loss Lgrad, thus yielding

Linpaint = Lcolor + Lpercep + 0.0001 · Lord + Lgrad (4.7)

as the combination of loss functions that we use to supervise the training of our color-

and depth-inpainting network.

Training. We utilize Adam [66] with α = 0.0001, β1 = 0.9 and β2 = 0.999 and

train our inpainting network for 2 · 106 iterations. Given an input image, we require
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ground truth novel views to supervise the training of the inpainting network. To this

end, we extended our synthetic dataset and collected multiple views as described in

Section 4.3.4 and shown in Figure 4.10.

4.3.2.4 Summary

Our novel view synthesis approach is designed to address each of the identified require-

ments that are important when synthesizing the 3D Ken Burns effect: geometrically

consistent inpainting, temporal consistency, and real-time synthesis. Please consider

our supplementary video demo to further examine our synthesis results. This video

demo also contains an example interaction with our user interface which exemplifies

why real-time synthesis is a key feature when manually specifying the camera path.

4.3.3 User Interface

Given an input image, our system synthesizes the 3D Ken Burns effect from a

virtual camera path parameterized by a start- and end-position. We obtain a sequence

of frames by uniformly sampling novel view renderings across the linear path between

the two positions. Here we describe how to derive camera positions from cropping

windows placed on the input image, how to automatically select suitable cropping

windows, and how to support the artist in using our system interactively.

4.3.3.1 Camera Parametrization

When synthesizing the 2D Ken Burns effect, it is common practice to specify a source-

and a target-crop within the input image. This approach provides an intuitive way to

manually define the 2D scan and zoom. We adopt this paradigm of parameterizing

the start- and end-view for our 3D Ken Burns effect. It is not trivial to match a

cropping window in the 2D image space to a virtual camera position in 3D space. In
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input image
with start-view annotation

input image
with end-view annotation

output video
synthesized 3D Ken Burns effect

Figure 4.8: Example screenshot from the user interface. It allows users to manipulate
the start- and end-view windows while perceiving the resulting effect in real time.

our method, we choose the XY-coordinate of the two virtual cameras such that the

foreground object within the scene moves in accordance with the cropping windows.

That is, if the source- and target-crop are 100 pixels apart then the foreground object

should move by 100 pixels in the synthesized 3D Ken Burns result. Lastly, we use

the size of the cropping windows in relation to the input image to determine the

Z-coordinate of the corresponding virtual cameras.

4.3.3.2 Automatic Mode

In the fully automatic mode, we let the algorithm automatically determine the start-

and end-view such that the amount of disocclusion is minimized. Specifically, we

treat the entire input image as the start-view and employ a uniform sampling grid to

find the cropping window corresponding to the end-view that results in the minimum

amount of disocclusion. In the resulting 3D Ken Burns effect, the virtual camera

naturally approaches the the dominant salient foreground object and emphasizes it
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Sample from NYU v2. Sample from MegaDepth.

Figure 4.9: Examples from the NYU v2 and the MegaDepth dataset, which provide
sparse annotations that are subject to inaccurate depth boundaries.

through motion parallax. An example result that we obtained using the automatic

mode can be found at the top of Figure 4.1.

4.3.3.3 Interactive Mode

Some users may desire a more fine-grained control over the synthesized 3D Ken

Burns effect. To support this use case, we provide an interactive mode in which

users determine the two cropping windows which represent the start- and end-view.

Thanks to our efficient novel view rendering pipeline, our system can provide real-time

feedback when manipulating the start- and end-view windows, which allows users to

immediately perceive the effect of their actions. A screenshot is shown in Figure 4.8,

please refer to our supplementary video for an example of our system in action.

4.3.4 Training Data

We evaluated several datasets that provide ground truth depth information to

supervise the training of our depth estimation pipeline, including the MegaDepth [80]
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Sample from the dataset. Corresponding depth. Corresponding normal.

Figure 4.10: Example sequence of four neighboring views from our training dataset. It
is computer generated and consists of 134041 scene captures with 4 views each from
32 photo-realistic environments.

as well as the NYU v2 [133] dataset. However, as shown in Figure 4.9, these datasets

only provide sparse annotations that are subject to inaccurate depth boundaries. We

also examined the KITTI dataset [38], which also provides multi-view data and thus

would be useful to supervise the training of our color- and depth-inpainting network.

However, it is sparse and subject to inaccuracies as well and particularly limited in

terms of scene types and content. As previously shown in Figure 4.5, accurate depth

boundaries are crucial for novel view synthesis.

We thus created our own computer-generated dataset from 32 virtual environments,

which enables us to extract accurate ground truth depth information. Those virtual

environments were collected from the UE4 Marketplace 2 . We intentionally collected

highly realistic environments covering a wide range of scene types such as indoor scenes,

urban scenes, rural scenes, and nature scenes. More specifically, we use the Unreal

Engine to create a virtual camera rig to capture 134041 scenes from 32 environments

where each scene consists of 4 views. Each view contains color-, depth-, and normal-

maps at a resolution of 512× 512 pixels. Please see Figure 4.10 for an example from

our dataset. While we did not use any normal-maps, we collected them regardless

2http://www.unrealengine.com/marketplace/en-US/store

http://www.unrealengine.com/marketplace/en-US/store
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such that other researchers can make better use of our dataset in the future. Note

that, while training our depth estimation network, we randomly crop either the top

and bottom or the left and right of each sample in order to facilitate invariance to the

aspect ratio of the input image.

4.4 Experiments

4.4.1 Usability Study

We conduct an informal user study to evaluate the usability of our system in

supporting the creation of the 3D Ken Burns effect. In particular, we are interested in

investigating how easy it is for non-expert users to achieve desirable results for images

with different content. To simulate a plausible scenario, we collected 3D Ken Burns

videos created by artists. Specifically, we searched for phrases like “3D Ken Burns

effect” or “Parallax Effect” on YouTube and selected 30 representative results from

tutorial videos. We then only further considered those results that do not contain

additional artistic effects such as compositing, artificial lighting, and particle effects.

We categorize the remaining videos into four groups according to the scene types

of the input image, namely “landscape”, “portrait”, “indoor”, “man-made outdoor

environment” and randomly selected three videos in each category. We thus conduct

our informal user study on those 12 examples, for which we have the input image as

well as reference 3D Ken Burns effect results.

We recruit 8 participants for our study. In each session, the participant is assigned

one image along with the reference result created by an artist. The participant is asked

to use our as well as two other systems to create a similar effect from the provided

image. The order in which the systems are used is randomized. The usability and

quality of each tool is rated by the participant at the end of the session.
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Figure 4.11: Usability study results. Our study shows that our system enables users
to achieve good results while requiring much less effort.

We compare our framework with existing solutions for creating the 3D Ken Burns

effect. We consider two commercial systems. The first is the Photo Motion software

package 3 which is implemented as a template for Adobe After Effects 4 . This

package provides a commercial implementation for the framework introduced by

Horry et al. [50] which is one of the most well-known frameworks for interactive

camera fly-through synthesis. The second baseline system we consider is the mobile

app Viewmee 5 that has been developed to allow non-expert users to easily create the

3D Ken Burns effect. This is one of very few systems that support simple interactions

targeting casual users with limited image- or video-editing experience.

At the end of each session, the participant is asked to rate the three systems in

terms of two criteria: system usability and result quality. For system usability, the

participant rates each system with a score from one to five, with one indicating the

lowest usability (i.e. the tool is too difficult to use to obtain acceptable results within

the allocated 30 minutes) and five indicating the best usability (i.e. the tool is easy to

3http://www.videohive.net/item/photo-motion-pro/13922688

4http://www.adobe.com/products/aftereffects.html

5http://itunes.apple.com/us/app/id1222280873

http://www.videohive.net/item/photo-motion-pro/13922688
http://www.adobe.com/products/aftereffects.html
http://itunes.apple.com/us/app/id1222280873
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use to create good results). For the result quality, the participant is shown the three

results that he or she created and asked to score each result from one to five, with one

indicating the lowest quality and five indicating the highest quality.

We compare the user-provided usability scores as well as the per-system time for

each of the 8 participants in Figure 4.11. The results show that using our system, the

participants can obtain better results with much less effort compared to the other

systems. Viewmee only seems to work for cases with a distinct foreground object

in front of a distant background. Photo Motion Pro can model the scene depth for

scenes with clear perspective but requires a lot of effort for manual segmentation and

scene arrangement. It also is extremely difficult to use in scenes with many different

depth layers. Please refer to our supplementary material for more visual examples

shown in form of a video demo.

4.4.2 Automatic Mode Evaluation

As discussed in Section 4.3.3.2, our system provides an automatic mode that requires

no user interaction. We investigate the effectiveness of our method in generating

3D Ken Burns effects from the input images automatically. In this experiment, we

collect images from Flickr using different keywords, including “indoor”, “landscape”,

“outdoor”, and “portrait” to cover images of different scene types. We collect 12

images in total, with three images with different level of scene complexity in each

category. We then use our automatic mode to generate one result for each image. For

comparison, for each of our 3D Ken Burns effect result, we also generate a 2D Ken

Burns effect result corresponding to the same camera path.

We evaluate the quality of our results with a subjective human evaluation procedure.

We recruit 21 participants to subjectively compare the quality of our 3D Ken Burns

synthesis results and the 2D counterparts. Each participant performs 12 comparison
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Input image. Traditional 2D Ken Burns. Proposed 3D Ken Burns.

Figure 4.12: Example results comparing the 2D Ken Burns with our 3D Ken Burns.
Please consider the supplementary video to examine the motion parallax.

Landscape
Outdoor

Indoor
Portrait

Preference (Percentage)

Ours 2D Ken Burns

Figure 4.13: Results from a subjective user study comparing our 3D Ken Burns
synthesis to a 2D baseline, indicating a strong preference for our system.

sessions corresponding to our 12 test images. Each session consists of a pair-wise

comparison test presenting both the 3D and 2D Ken Burns synthesis results from

an image in our test set. The participant is then asked to determine the result with

better quality in terms of both 3D perception and overall visual quality.

Figure 4.13 shows average user preference percentage for our 3D Ken Burns effect

results and those from the baseline 2D version for images in each category. The result

indicates that our 3D Ken Burns synthesis results are preferred by the users in a

majority of cases, which demonstrates the usefulness and effectiveness of our system.

Please refer to our supplementary video for more visual examples of the comparison.
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Standard Metrics
(σi = 1.25i)

rel log10 RMS σ1 σ2 σ3

Method Training Data ↓ ↓ ↓ ↑ ↑ ↑

DIW DIW 0.25 0.10 0.76 0.62 0.88 0.96

DIW DIW + NYU 0.19 0.08 0.60 0.73 0.93 0.98

DeepLens iPhone 0.27 0.10 0.82 0.58 0.86 0.95

MegaDepth Mega 0.24 0.09 0.72 0.63 0.88 0.96

MegaDepth Mega + DIW 0.21 0.08 0.65 0.68 0.91 0.97

Ours Mega + NYU + Ours 0.08 0.03 0.30 0.94 0.99 1.00

Ours + Refinement Mega + NYU + Ours 0.08 0.03 0.30 0.94 0.99 1.00

Ours w/ DIW arch Mega + NYU + Ours 0.18 0.07 0.56 0.76 0.94 0.98

Ours w/o our data Mega + NYU 0.10 0.04 0.36 0.90 0.98 0.99

Table 4.1: Depth prediction quality on NYU v2. Our method compares favorably to
state-of-the-art depth prediction methods in all depth quality metrics.

Figure 4.12 shows two examples comparing our generated 3D Ken Burns effect with

the 2D version resulting from the same start- and end-view cropping windows. The

2D results show a typical zooming effect with no parallax. Our results, on the other

hand, contain realistic motion parallax with strong depth perception, leading to a

much more desirable effect.

4.4.3 Depth Prediction Quality

We now evaluate the effectiveness of our depth prediction module. We compare

our depth prediction results with those from three state-of-the-art monocular depth

prediction methods, including MegaDepth [80], DeepLens [153], and DIW [22]. For

each method, we use the publicly available implementations provided by the authors.

We evaluate the depth prediction quality using two public benchmarks on single-image

depth estimation. We report the performance of MegaDepth, DeepLens, and DIW

with their models trained on their proposed datasets. To address the scale-ambiguity

of depth estimation, we scale and shift each depth prediction to minimize the absolute

error between it and the ground truth.
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Standard Metrics PE DBE DDE
(σi = 1.25i) (cm / deg) (px) (% for d = 3 m)

rel log10 RMS σ1 σ2 σ3 ε
plan
PE εoriePE εaccDBE ε

comp
DBE ε0DDE ε+DDE ε−DDE

Method Training Data ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↓ ↓

DIW DIW 0.25 0.10 1.00 0.61 0.86 0.95 4.55 41.46 10.00 10.00 81.17 8.76 10.08

DIW DIW + NYU 0.19 0.08 0.80 0.72 0.91 0.97 6.16 30.30 7.93 9.41 85.68 7.25 7.07

DeepLens iPhone 0.26 0.09 1.00 0.61 0.86 0.96 7.20 43.33 7.48 9.72 80.77 8.59 10.64

MegaDepth Mega 0.23 0.09 0.83 0.67 0.89 0.96 7.62 35.51 5.40 8.61 83.11 9.05 7.84

MegaDepth Mega + DIW 0.20 0.08 0.78 0.70 0.91 0.97 7.04 33.03 4.09 8.28 83.74 8.75 7.51

Ours Mega + NYU + Ours 0.10 0.04 0.47 0.90 0.97 0.99 2.17 10.25 2.40 5.80 93.48 2.84 3.68

Ours + Refinement Mega + NYU + Ours 0.10 0.04 0.47 0.90 0.97 0.99 2.19 10.24 2.02 5.44 93.49 2.83 3.68

Ours w/ DIW arch Mega + NYU + Ours 0.15 0.06 0.62 0.80 0.95 0.99 6.31 19.49 3.12 8.04 89.10 5.68 5.22

Ours w/o our data Mega + NYU 0.12 0.05 0.56 0.88 0.97 0.99 3.67 16.03 2.82 6.30 92.41 3.46 4.13

Table 4.2: Depth prediction quality on IBims-1. Our method compares favorably to
state-of-the-art depth prediction methods in all depth quality metrics.

NYU v2. Silberman et al. [133] created one of the most well-known a benchmarks

and datasets for single-image-depth estimation, consisting of 464 indoor scenes. Each

scene contains aligned RGB and depth images, acquired from a Microsoft Kinect sensor.

Following previous works on single-image depth estimation [22, 118, 181], we use the

standard training-testing split and evaluate our method on the 654 image-depth pairs

from the testing set.

IBims-1. Recently Koch et al. [68] introduced a new benchmark aiming for a more

holistic evaluation of the depth prediction quality. This benchmark consists of 100

images with high-quality ground-truth depth maps. These images cover a wide variety

of indoor scenes and the benchmark provides a comprehensive set of quality metrics

to quantify different desired properties of a well-predicted depth map such as depth

boundary quality, planarity, depth consistency, and absolute distance accuracy.

Table 4.1 and 4.2 (top) compare the depth prediction quality of different methods

according to various quantitative metrics defined by each benchmark. Our method

compares favorably to state-of-the-art depth prediction methods in all depth quality

metrics. In addition, the result demonstrates that our depth prediction pipeline
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Input image. DeepLens render. MegaDepth render. Rendered our depth.

Figure 4.14: Depth-based scene rendering. Compared to off-the-shelf methods, our
depth prediction pipeline often better preserves the scene geometry.

improves significantly over off-the-shelf methods in terms of the Planarity Error

(PE) and Depth Boundary Error (DBE) metrics on the iBims-1 benchmark. Those

metrics are particularly designed to assess the quality in planarity and depth boundary

preservation, respectively, which are particularly important for our synthesis task.

Table 4.1 and 4.2 (bottom) list two additional variations of our approach to

better analyze the effect of our depth estimation network as well as our training

dataset. Specifically, we supervised the network architecture from DIW [22] with

all available training data to compare this architecture to ours. Furthermore, we

supervised our depth estimation network only on the training data from MegaDepth

and NYU v2 without incorporating our computer-generated dataset. Both variants

lead to significantly worse depth quality metrics in the benchmark, which exemplifies

the importance of all individual components of our proposed approach. Interestingly,

both variants compare favorably to state-of-the-art depth prediction models.

Figure 4.14 compares the three-dimensional renderings with respect to different

depth predictions. We can observe better preservation of the scene structure such as

the planarity in our result compared to off-the-shelf depth prediction methods.
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Input image. Artist 3D Ken Burns. Proposed 3D Ken Burns.

Figure 4.15: Example result comparing the 3D Ken Burns effect created by a pro-
fessional artist with our automatic 3D Ken Burns synthesis. Please consider the
supplementary video to examine the motion parallax.

Landscape
Outdoor

Indoor
Portrait

Preference (Percentage)

Ours Artists

Figure 4.16: Results from a subjective user study comparing our 3D Ken Burns
synthesis to results from artists, indicating no clear preference.

4.4.4 Discussion

Our previous experiment in Section 4.4.2 shows that users prefer our 3D Ken

Burns effects in favor of the traditional 2D Ken Burns technique. It is also interesting

to investigate how the effects created by our method compare to the ones made by

skilled professional artists through laborious manual processing.

We conduct an additional subjective evaluation test. For each of the 12 artist-

generated 3D Ken Burns results that we collected in Section 4.4.1, we use our system

to create similar 3D Ken Burns effects using the corresponding input image. For each

of the 12 test examples, we thus have a reference result generated by an artist and

our result created by our proposed system. Please see Figure 4.15 for an example. We

follow the same procedure as in Section 4.4.2. We ask the same set of 21 participants

to perform 12 additional pair-wise comparison tests, comparing the results created by

our system with the original artist-generated ones.
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Figure 4.16 shows user preference percentage averaged over test cases in each

category. Interestingly, our results are rated on-par with the ones from professional

artists. Looking closely into each individual category, we observe that our results are

slightly preferred compared to the artist’s results in the indoor category. These scenes

typically have a complicated depth distribution with many objects, which makes it

extremely tedious to manually achieve the 3D Ken Burns effect. Our method can rely

on a good depth prediction to handle those complicated scenes. The artist-created

results, however, are more preferred in the portrait category. Looking into the results,

we observe that portrait images often have simpler scene layouts which makes it easier

to manually achieve good results. More importantly, we found that artists often

intentionally exaggerate the parallax effect in portrait photos to make the effect much

more dramatic to an extent that is not possible with physically-correct depth. This

artistic emphasis is often preferred by viewers. Our method is limited by the parallax

enabled by our depth prediction which is trained to match physically-correct depth

and thus is not able to generate such dramatic effects.

We hope that our geometric- and semantic-aware depth prediction framework

provides useful insights for future research in developing a more effective depth

prediction tailored to view synthesis tasks. We would in this regard like to emphasize

that the 3D Ken Burns effect is an artistic effect. In certain scenarios, view synthesis

results generated from a physically correct scene prediction may not be optimal in

delivering the desired artistic impression. Allowing such artistic manipulation in the

3D Ken Burns effect synthesis is an interesting direction to extend our work.

4.4.5 Limitations

While our method can generate a plausible 3D Ken Burns effect for images of

different scene types, the results are not always perfect as shown in Figure 4.17. Single
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a) Input image (left) and incorrectly
estimated disparity at the reflection (right).

b) Input image (left) and estimated
disparity with missing flagpole (right).

c) Input image (left) and magnified rendering
with an inaccurate segmentation (right).

d) Rendering without (left) and with
poorly inpainted point-cloud (right).

Figure 4.17: Examples of various commonly occurring issues with our proposed
approach. Please see the limitations section for further details.

image depth estimation is highly challenging and our semantic-aware depth estimation

network is not infallible. While our method can produce depth estimates subject to

little or no distortion, we found that our results may still fail to predict accurate

depth maps for challenging cases such as reflective surfaces (the reflection on the

glossy poster in Fig. 4.17 (a)) or thin structures (the flagpole in Fig. 4.17 (b)). Object

segmentation is challenging as well and the salient depth adjustment may fail due to

erroneous masks. While our depth upsamling module can perform boundary-aware

refinement to account for some mask inaccuracies, our result is affected when the error

in the segmentation mask is significantly large. In Fig. 4.17 (c), the nose of the deer

is cut off due to Mask R-CNN providing an inaccurate segmentation. Finally, we note

that while our joint color- and depth-inpainting is an intuitive approach to extend the

estimated scene geometry, it has only been supervised on our synthetic data and thus

may sometimes generate artifacts when the input differs too much from the training

data. In Fig. 4.17 (d), the inpainting result lacks texture and is darker than expected.
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Training the color- and depth-inpainting model with real images and leveraging an

adversarial supervision regime and a more sophisticated architecture, like one that

uses partial convolutions, is an interesting direction to explore in future work.

4.5 Conclusion

In this paper, we developed a complete framework to produce the 3D Ken Burns

effect from a single input image. Our method consists of a depth prediction model

which predicts scene depth from the input image and a context-aware depth-based

view synthesis model to generate the video results. To this end, we presented a

semantically-guided training strategy along with high-quality synthetic data to train

our depth prediction network. We couple its prediction with a semantics-based depth

adjustment and a boundary-focused depth refinement process to enable an effective

depth prediction for view synthesis. We subsequently proposed a depth-based synthesis

model that jointly predicts the image and the depth map at the target view using

a context-aware view synthesis framework. Using our synthesis model, the extreme

views of the camera path are synthesized from the input image and the predicted

depth map, which can be used to efficiently synthesize all intermediate views of the

target video, resulting in the final 3D Ken Burns effect. Experiments with a wide

variety of image content show that our method enables realistic synthesis results. Our

study shows that our system enables users to achieve better results while requiring

little effort compared to existing solutions for the 3D Ken Burns effect creation.
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5 Novel View Synthesis in Time and Space

This chapter will be submitted to a conference such as CVPR or similar. All uses

of “we” or “our” refer to the authors of this paper (Simon Niklaus, Long Mai, Oliver

Wang, Dingzeyu Li, and Feng Liu). Simon’s contributions are: the overall framework

for the video action shot synthesis including the human-aware odometry estimation

and the novel pipeline for reconstructing the protagonist, the human depth dataset,

the architecture details such as using the GridNet architecture, all implementation

aspects, the design and execution of the evaluation, and the paper writing.

5.1 Abstract

Action shots summarize the motion of an object in a video as a still image. In

comparison, a video action shot not only depicts the motion trajectory as a still

image, it augments the input video with past and future appearances of the main

subject. Creating such effects manually is time-consuming and demands sophisticated

editing stills. Existing automatic solutions, however, are limited to video footage

from static cameras or requires videos from cameras with depth sensors. In this

paper, we propose an automated framework for synthesizing video action shots from

everyday video footage of human subjects. To achieve this, we perform human-aware

odometry prediction, estimate the shape and location of the protagonist within the

world geometry, and rerender the video while depicting past and future occurrences of
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the human subject. Experiments on a wide variate of video footage show that our

method enables synthesizing realistic video action shots.

5.2 Introduction

When displaying a collection of videos, it is common to use thumbnails to represent

the videos. Automatically generating a representative thumbnail is challenging though

and the state of the art for automatic thumbnail generation is based on selecting

a representative frame from the video. Generating a meaningful thumbnail that

summarizes the content of the video is a task that is still an open research question.

Existing research typically focuses on domain specific problems, such as the sum-

marization of surveillance footage [92, 114, 115, 123] or the visualization of human

motion [6, 18, 35, 171]. This makes it possible to simplify the problem by, for example,

assuming that the camera is static or by approximating the subject as a textureless

parametric model [13]. However, these simplifications either limit the content for

which this effect can occur, or they yield non-photorealistic renderings.

Summarizing a video of an object in motion is commonly referred to as an action

shot. Given a video, for example of a running person, the summary depicts the motion

trajectory through multiple occurrences of the runner as a still image. In comparison,

a video action shot as shown in Figure 5.1 not only depicts the motion trajectory

as a still image, it augments the input video with past and future appearances of

the main subject. This augmented video makes it possible to carefully observe the

motion of the subject in question. Conceptually, each frame in a video action shot

can be considered as a traditional action shot. Creating such an effect is difficult

though and it is currently predominantly achieved through laborious manual editing

using specialized software 1 . And while Klose et al. [67] have shown how to generate

1https://www.youtube.com/watch?v=lG4IBHPHZP0

https://www.youtube.com/watch?v=lG4IBHPHZP0
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Figure 5.1: An example of a video action shot (bottom) from a sequence of input
frames with a moving human subject (top). Each frame in the output video represents
an action shot and extends the respective input frame with past and future appearances
of the main subject.

this effect automatically through computer vision, their approach requires a camera

that also captures scene depth. In contrast, this paper focuses on photorealistic video

action shots on everyday video footage.

With unconstrained video footage, transferring the appearance of an object in

motion from a source frame to a target frame requires knowing how the camera moves

and which shape and location the object has within the world geometry. The former

is challenging due to the moving object since many approaches for visual odometry

and structure from motion assume a static scene [100, 101, 130, 131]. The latter is

challenging since the transferred object in the target frame may be depicted from

an angle that differs from the source frame while simultaneously being subject to

non-rigid deformations [2, 14, 116, 160]. To make this problem tractable, we focus

on humans as the main subject. This allows us to detect and exclude the non-static

subject from the odometry estimation. Furthermore, it is possible to reconstruct a

reasonably accurate shape of a human from a single image with current state-of-the-art

technologies, which avoids having to deal with non-rigid deformations.

In short, we propose a framework for synthesizing video action shots from uncon-

strained video footage of human subjects. To achieve this, we perform human-aware
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Input frame. Reconstruction from COLMAP, cameras shown in red.

Figure 5.2: Example structure-from-motion reconstruction, visualized as a point cloud
with cameras shown in red. Notice that there are no points corresponding to the
human from the input frame since the related feature points were removed during
pre-processing. Even though the point cloud is noisy due to reflections in the glass
windows, the camera parameters have been estimated sufficiently well.

odometry prediction, estimate the three-dimensional position of the protagonist in

each frame through depth-based localization, predict a per-frame high-resolution

reconstruction of the human, and rerender the video while depicting past and future

occurrences of the human subject.

5.3 Video Action Shot Synthesis

Our framework consists of four steps. First, estimating the camera extrinsics

and intrinsics through human-aware odometry prediction. Second, localizing the

protagonist within the world geometry. Third, predicting a per-frame high-resolution

shape of the human. Fourth, rerendering the video while depicting past and future

occurrences of the human subject. We subsequently describe these steps.

5.3.1 Human-aware Odometry Estimation

Since we do not constrain the input video and allow for camera motion, the

applicability of traditional image-based rendering techniques is limited [171]. To be

able to fully account for the camera motion, this includes not only camera extrinsics
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Input frame. Human estimate. Logo estimate.

Figure 5.3: Example masks for pre-processing an input frame. Odometry estimation
typically assumes a static scene, we thus determine masks which violate this assumption
and withhold these regions from the reconstruction process.

but also its intrinsics. We subsequently assume a pinhole camera model with radial

distortions. Before recovering the camera parameters though, we can pre-process the

video and exclude the human subject as well as any logos from the input.

Mask estimation. Odometry estimation typically assumes a static scene. This

assumption does not hold true for the videos that we are targeting due to the apparent

motion of the human protagonist. However, we can easily apply instance segmentation,

for example using Mask R-CNN [44], to identify a human mask and withhold it

from the odometry estimation. In doing so, we apply morphological dilation to

increase the size of the human mask to account for errors introduced by the instance

segmentation. Furthermore, we extend the masking and additionally include regions

that contain image overlays such as logos or information displays that likewise violate

the assumption of a static scene. We utilize a temporal gradient estimate to identify

such regions [24]. Please see Figure 5.3 for an example of such masks.

Odometry estimation. There are a multitude of techniques to estimate the tra-

jectory of a camera, including visual odometry, simultaneous location and mapping,

and structure-from-motion. We evaluated several approaches for our given purpose,

including COLMAP [130, 131], ORB-SLAM2 [100, 101], and DSO [30]. Note that we

modified each of them to exclude the previously discussed masks. After evaluating
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Input frame. Estimated human depth.

Figure 5.4: We employ single image depth estimation to obtain a dense geometry
reconstruction for each frame in the input video and align this estimate to the sparse
world reconstruction from COLMAP. We employ the approach from Niklaus et al. [109]
to do so, which, for each frame in the input video, yields the three-dimensional location
of the protagonist as a billboard within COLMAP’s coordinate system.

these approaches on our test footage, we opted to use COLMAP and hence structure-

from-motion for the given task. While structure-from-motion is computationally

expensive, it consistently achieved accurate reconstructions in our tests.

5.3.2 Depth-based Human Localization

With video footage that is subject to camera motion, copying past and future

occurrences of the human subject to a given output frame necessitates localizing

the protagonist within the world geometry throughout time. Even though we use

structure-from-motion in the previous step, which yields a point cloud reconstruction

of the world geometry, we cannot directly use this sparse representation to locate the

human subject since it has been excluded from the reconstruction.

Depth-based registration. The point cloud reconstruction obtained via structure-

from-motion represents a sparse representation of the world geometry. We hence
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Without temporal refinement. With temporal refinement.

Figure 5.5: The depth-based registration is subject to temporally inconsistent pre-
dictions which yields undesired results due to incorrect depth orderings (left). We
employ a temporal filter to account for these inaccuracies (right).

employ single image depth estimation and obtain an additional dense reconstruction

of the geometry depicted by each frame in the input video. We employ the approach

from Niklaus et al. [109] to do so, which conveniently approximates humans as three-

dimensional billboards. This dense reconstruction also includes the depth and hence

the three-dimensional location of the human subject. However, these single image

depth estimates are not aligned with COLMAP’s coordinate system. We thus align

each individual dense reconstruction to the global point cloud reconstruction by

solving a least squares problem that recovers the otherwise unknown scale and bias.

As demonstrated in Figure 5.4, this allows us to determine the three-dimensional

location of the protagonist within COLMAP’s coordinate system.

Temporal refinement. The per-frame dense reconstruction is subject to noise, for

example due to erroneous single image depth estimates. As shown in Figure 5.5,

this leads to slight inter-frame inconsistencies with respect to the estimated human

location which yields undesired rendering results due to incorrect depth orderings. We
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Figure 5.6: We smooth the per-frame human depth estimate using a univariate spline
to account for temporally inconsistent single image depth estimates.

account for these by temporally smoothing the per-frame human depth estimate using

a univariate spline as shown in Figure 5.6, which ensures consistent depth orderings.

5.3.3 Per-frame Human Reconstruction

At this point, we are able to estimate the camera trajectory as well as the location

of the human subject throughout time within COLMAP’s reconstruction of the world

geometry. As shown in Figure 5.4, approximating the protagonist as a billboard does

not yield satisfying results when rendering the subject at an angle. We thus augment

the flat billboard with a three-dimensional shape as subsequently discussed.

Human modeling. Human reconstruction is a popular research topic within com-

puter vision and there is a multitude of approaches for modelling humans. Some

common examples are shown in Figure 5.7, which includes keypoints, parametric

models, surface-based representations, and depth. While traditional skeleton keypoints

are comparatively easy to estimate, they lack the structure that the given task neces-

sitates. In comparison, SMPL [13] and DensePose [42] provide a more comprehensive

approximation of the human shape. However, SMPL is lacking texture and DensePose

is lacking shape. We thus opt to directly predict the depth of the human [142, 150]
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OpenPose HMR / SMPL DensePose Depth

Figure 5.7: Example visualization of common approaches for modelling humans, which
includes keypoints, parametric models, surface-based representations, and depth.

using a custom approach that, given an input image, estimates the human depth and

a corresponding human mask at a high-resolution.

Human shape estimation. Our approach for estimating the shape of the human

subject is shown in Figure 5.8, it illustrates our proposed pipeline for predicting the

human depth and a human mask at a high-resolution from a given input image. Our

shape estimation consists of three steps. First, estimating a rough human mask and

the human keypoints through R-CNN [44]. Second, cropping the human according

to the rough human mask and estimating the human depth and a human mask at

a low-resolution using a neural network. This neural network takes not only the

cropped input image as input, but it is also guided by the rough human mask as

well as the human keypoints. Third, refining the low-resolution estimates guided by

the high-resolution input image. This pipeline is loosely modeled after the depth

estimation from Niklaus et al. [109], who identified and addressed several key issues

when using depth for image synthesis. We accordingly also adopted their coarse

estimation approach based on a GridNet [34] that receives VGG-19 [134] features,

together with their proposed refinement network architecture and training regime.

Loss functions. While existing work on single image depth estimation has emphasized

the importance of a scale-invariant loss [29, 149], we have found a simple `1-based

loss to be reasonably successful for our domain-specific human depth estimation task.
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Figure 5.8: Overview of our human shape estimation approach that, given an input
image, predicts the human depth and a human mask at a high-resolution. It consists
of three steps. First, estimating a rough human mask and the human keypoints.
Second, estimating the human depth and a human mask from a crop of the human at
a low-resolution. This coarse estimation is additionally guided by the rough human
mask and the human keypoints. Third, refining the low-resolution estimates guided
by the high-resolution input.

Specifically, we minimize the difference between the ground truth human depth Zgt

and the estimated human depth Z using Ldepth as follows.

Ldepth = ‖Z − Zgt‖1 (5.1)

Note that we only apply this loss term at pixel locations with known ground truth hu-

man depth. To encourage a spatially smooth human depth prediction, we additionally

enforce Ltv to minimize the total depth variation as follows.

Ltv = ‖∇xZ‖+ ‖∇yZ‖ (5.2)

Estimating the human mask is a binary classification problem. As such, we minimize

the difference between the ground truth human mask Hgt and the estimated human

mask H using a loss Lmask based on binary cross entropy as follows.

Lmask = −
(
Hgt · log(H) + (1−Hgt) · log(1−H)

)
(5.3)

We train each of our two networks, the coarse estimation network and the guided

refinement network, with the following combination of these three loss terms.

Ltotal = Ldepth + 0.1 · Ltv + Lmask (5.4)

Training data. Unfortunately, training data with accurate ground truth human

depth and human mask annotations is difficult to acquire. Varol et al. [150] used
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Input image. Human mask. Human depth.

Figure 5.9: Examples from two existing dataset that contain ground truth human
depth annotations. Varol et al. [150] (top) used computer graphics and rendered
texturized SMPL [13] models on top of static images. Tang et al. [142] (bottom) used
a Microsoft Kinect camera to collect RGB-D videos.

computer graphics and rendered texturized SMPL [13] models on top of static image

backgrounds to acquire such data. In comparison, Tang et al. [142] used a Microsoft

Kinect camera to collect RGB-D videos. As shown in Figure 5.9, however, the dataset

from Varol et al. [150] looks unrealistic and the dataset from Tang et al. [142] is

subject to significant inaccuracies around the boundary of the human. We have thus

acquired a new computer-generated training dataset by capturing scenes with human

subjects from within GTA 5 as shown in Figure 5.10, a video game that simulates a

large virtual world. Specifically, we modified the ClearDepthStencilView function to

acquire the depth buffer as well as the stencil buffer which includes information about

the human mask. We then walked through the world of GTA 5 and captured scenes

with human subjects. This task requires a significant amount of manual labor which is

why we automatically capture four different views at two different illumination settings
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Input image. Human Mask. Human depth.

Figure 5.10: Examples form our training dataset which consists of human subjects
captured from within GTA 5, a video game that simulates a large virtual world.

per scene. We eventually collected 1000 scenes and thus 8000 samples in total. Since

this is still a small size for a training dataset, we additionally incorporated the dataset

from Varol et al. [150] which we rerendered at a higher resolution. The samples in our

dataset as well as our rerendering of the data from Varol et al. [150] have a resolution

of 1024× 1024 pixels with accurate human depth and human mask annotations.

Training scheme. We train our coarse estimation and our guided refinement network

in stages. That is, we first train the coarse estimation network until convergence before

training the guided refinement network until convergence. We utilize Adam [66] with

α = 0.00005, β1 = 0.9, and β2 = 0.999 for this purpose. We used 4 samples per batch

and it took 2 · 106 iterations for the coarse estimation network and 1 · 106 iterations

for the refinement network to converge.



78

Input image. Coarse shape, points. Refined shape, mesh.

Figure 5.11: Depth-based rerendering of a human rotated by 40 degrees. The coarse
shape estimate is subject to boundary artifacts as outlined by Niklaus et al. [109]
whereas the rendering from the refined shape estimate yields realistic results. Please
consider the supplementary video to see this example in motion.

5.3.4 Depth-based Human Rerendering

Given an image and the estimated human depth of the depicted protagonist, it is

straightforward to map the pixels of the human to points within COLMAP’s coordinate

system in accordance with the estimated camera parameters. However, rendering

depth-based point clouds requires special care [109]. We thus instead convert the

estimated human shape to a vertex mesh within COLMAP’s coordinate system and

use an off-screen OpenGL context for rendering. We optionally also perform alpha

blending at object boundaries to avoid aliasing artifacts. An example rerendering is

shown in Figure 5.11, please consider the supplementary material to see this example

in motion. Our depth-based vertex mesh rendering yields results that are free from

artifacts that are common when performing depth-based rerendering, such as objects

that are being torn apart at boundary regions [109]. However, the resulting rerendering
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HMR / SMPL DensePose Depth

Figure 5.12: Example combination of SMPL and DensePose estimates, using the
estimated SMPL model to augment the DensePose labels with depth information.

is subject to missing regions due to self-occlusion. This issue could be addressed by,

for example, neural rendering techniques [3, 16, 94]. We consider such research efforts

orthogonal to the work presented in this paper.

5.4 Experiments

We are, to the best of our knowledge, the first to propose a framework for syn-

thesizing video action shots. As such, it is difficult to compare the results from our

approach to those from other methods. We will thus resort to showing qualitative

results of our video action shots in the supplementary video. However, there are

various related approaches for estimating the human depth or a human mask from

an input image. This section will thus focus on evaluating the human depth and the

human mask prediction quality of our proposed human shape estimation.

Methods. As shown in Figure 5.4, it is possible to approximate a human as a

billboard. We include this simple approach in our evaluation as a simple baseline for

human depth estimation. Our human shape estimation is initialized with a rough

human mask predicted by Mask R-CNN [44]. We include this method as a simple

baseline for human mask estimation. Furthermore, we extend it by refining the
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Figure 5.13: Representative examples from our evaluation dataset. It consists of
high-quality human models which we rendered with HDRI backgrounds.

boundary through matting. Specifically, we use an off-the-shelf matting approach [163]

to refine the boundary of the rough human mask. As shown in Figure 5.12, parametric

models like SMPL [62] as estimated via HMR [62] may not always yield ideal results

but we nevertheless include this approach for completeness. Furthermore, Figure 5.12

also shows that one can use an SMPL prediction to augment a DensePose [42] estimate

with depth information which yields slightly better results. Lastly, we include the

recent human depth estimation approach from Tang et al. [142] and use Mask R-CNN

to initialize it as recommended by the authors.

Metrics. We include the mean absolute error (MAE) as well as the root mean square

error (RMSE) for evaluating the human depth estimates. Since the human depth

estimates may not have depth annotations for all pixels that belong to the human
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human depth human mask

MAE RMSE valid preci. recall F1

Method ↓ ↓ ↑ ↑ ↑ ↑

Billboard Baseline 0.045 0.999 N/A N/A N/A 0N/A

Mask R-CNN [44] N/A N/A N/A 0.905 0.974 0.938

Mask R-CNN [44] + Matting [163] N/A N/A N/A 0.958 0.976 0.966

HMR [62] 0.022 0.523 77.0% 0.906 0.770 0.831

HMR [62] + DensePose [42] 0.023 0.516 87.4% 0.964 0.874 0.916

Tang et al. [142] + Mask R-CNN [44] 0.034 0.783 97.4% 0.905 0.974 0.938

Ours w/o Refinement 0.018 0.406 98.1% 0.980 0.981 0.980

Ours w/ Refinement 0.018 0.410 98.8% 0.989 0.988 0.989

Table 5.1: Human depth and human mask prediction quality on our dedicated
evaluation dataset. Our proposed approach compares favorably in this benchmark.

subject, for example due to an inaccurate human mask, we additionally state how many

valid predictions the human depth estimate contained. To address the scale-ambiguity

of depth estimation, we additionally scale and shift each human depth estimate to

minimize the absolute error between it and the ground truth. As for evaluating the

human mask, we use the common metrics of precision, recall, and F1 score.

5.4.1 Evaluation Dataset

While we could have collected additional testing samples from GTA 5 as outlined

in Section 5.3.3, we wanted to create an unbiased dataset that provides the basis for a

fair comparison. We thus created another computer-generated dataset, this time using

high-quality human models with backgrounds consisting of HDRIs to mimic different

lighting conditions. We used a shadow catcher to obtain accurate shading and utilized

GPU-accelerated path tracing with subsequent denoising to render the scenes with a

resolution of 1024× 1024 pixels. Our evaluation dataset consists of 13 human models

with different poses and 15 HDRI backgrounds, resulting in a total of 195 samples.

Please see Figure 5.13 for representative examples from our evaluation dataset.
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Input [62] + [42] Tang et al. Ours w/o Refi. Ours w/ Refi. Truth

Figure 5.14: Qualitative comparison of human depth predictions. Please consider the
supplementary video to see an animated comparison of the resulting renderings.

5.4.2 Quantitative Evaluation

We compare our human shape estimation results with several state-of-the-art

methods. Please see Table 5.1 for the results on our dedicated evaluation dataset.

Our proposed shape estimation compares favorably to state-of-the-art methods with

respect to the quality of the estimated human depth as well as the quality of the

estimated human mask, regardless of whether we just consider our coarse prediction or

the refined one. When comparing our refined prediction with our coarse one, we notice

that the MAE and the RMSE remain largely the same whereas the percentage of valid

predictions, the precision, the recall, and the F-1 score increase slightly. This matches

our expectations, indicating that the refinement improves boundary predictions.

5.4.3 Qualitative Evaluation

We show a visual comparison of the human depth predictions in Figure 5.14, please

consider the supplementary video to see an animated comparison of the resulting

renderings. The visual comparison shows that HMR [62] together with DensePose [42]

yields believable depth orderings but is incomplete at boundary regions and is subject
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Input Mask R-CNN [44] + [163] DensePose Ours w/o Refi. Ours w/ Refi.

Figure 5.15: Qualitative comparison of human mask predictions. Blue indicates a
predicted mask that is too big, red indicates a predicted mask that is too small.

to depth discontinuities. The depth predictions from Tang et al. [142] are smoother

and better capture the silhouette of the human but they deviate from the ground

truth human depth. In comparison, our estimated human depth closely resembles the

ground truth and better captures the human silhouette. These findings support the

results from the quantitative evaluation.

We show a visual comparison of the human mask predictions in Figure 5.15, where

blue indicates a predicted mask that is too big and red indicates a predicted mask

that is too small. The visual comparison shows that Mask R-CNN[44] is subject to

significant inaccuracies due to only estimating instance segments at 28 × 28 pixels.

While matting [163] is able to improve this prediction, the estimated human mask still

deviates significantly from the ground truth. DensePose [42] is able to better capture

the area of the head and of the legs but misses a piece of the jacket due to being

agnostic to clothing. In comparison, our estimated human mask closely resembles the

ground truth. Please consider zooming into this image to better compare the results

from our coarse shape estimation with those from our fine shape estimation.
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Figure 5.16: Example action shots created using our proposed framework. Please
consider our supplementary video to see video action shots in motion.

5.4.4 Results

Videos are at the heart of this paper and we provide video action shots created

with our proposed framework in the supplementary video. We additionally provide

still results in Figure 5.16, which show traditional still action shots.

5.4.5 Limitations

Synthesizing video action shots on footage with a moving camera is inherently

challenging due to having to estimating the camera motion as well as the per-frame

location and shape of the moving protagonist. Furthermore, this cannot be done

separately since the estimates need to be in the same coordinate system. While our

proposed framework accounts for these factors, it involves several steps and errors can

easily propagate. Furthermore, we expect a specific human shape for the main subject.

This assumption can easily be violated as shown in Figure 5.17 where our predicted

human mask is erroneous due to an additional jacket. Other examples where this

assumption may break are backpacks and hats. Our framework also expects that the

main subject is not occluded. This assumption does not hold true if the protagonist

is, for example, briefly occluded by a lamp pole. Lastly, our human shape prediction

does not extend the predicted shape beyond the visible area. As such, renderings from
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Input Mask R-CNN [44] + [163] DensePose Ours w/o Refi. Ours w/ Refi.

Figure 5.17: Example failure case for the human shape estimation. Our predicted
human mask is erroneous due to the additional jacket.

significantly different perspectives may, as shown in Figure 5.17, be incomplete due

to self-occlusion. Our rendering approach also does not account for the environment

lighting and we thus do not not correctly synthesize shadows.

5.5 Conclusion

In this paper, we developed an automated framework for synthesizing video

action shots from everyday video footage of human subjects. To achieve this, we

perform human-aware odometry prediction, estimate the shape and location of the

protagonist within the world geometry, and rerender the video while depicting past

and future occurrences of the human subject. Experiments with a dedicated evaluation

dataset show that our method is able to estimate state-of-the-art human shapes. Our

supplementary video with results on a wide variety of video content shows that our

framework enables realistic video action shot results.
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6 Conclusion

This dissertation addressed three applications of novel view synthesis and provides

practical solutions that do not require difficult-to-acquire multi-view imagery. To

conclude, this chapter will summarize the main contributions and discuss future

directions for subsequent research.

6.1 Summary of Contributions

Broadly, this dissertation contributes approaches for practical novel view synthesis

in space and time. These contributions are summarized below.

1. Softmax Splatting for Video Frame Interpolation:

(a) Forward warping via softmax splatting.

(b) Feature pyramids for image synthesis.

2. 3D Ken Burns Effect from a Single Image:

(a) Semantic-aware depth estimation.

(b) Context-aware inpainting for view synthesis.

3. Synthesizing Video Action Shots with Human Priors:

(a) Human-aware odometry estimation.
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(b) Depth-based human localization.

(c) Depth-based human reconstruction and rerendering.

6.2 Future Directions

Research on novel view synthesis in time in the form of video frame interpolation

still focuses on relatively low resolutions. While state-of-the-art approaches can produce

high-resolution results, they are computationally expensive and have difficulties dealing

with the increased per-pixel motion magnitude. Future research may focus on targeting

high-resolution video frame interpolation explicitly.

Research on novel view synthesis in space by augmenting a single image with depth

is still in its infancy. While the 3D Ken Burns paper has made great strides towards

synthesizing realistic results, its output is hit and miss. Future research may focus on

improving the robustness of this extreme form of novel view synthesis, for example by

better tailoring the depth estimate to the task of image synthesis.

Research on novel view synthesis in time and space has seen little attention so

far. While the paper on video action shot synthesis successfully explored this area,

the proposed framework included multiple sophisticated steps. Future research may

focus on combining individual aspects of this pipeline, for example by merging the

depth-based human localization and the human shape estimation.
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Appendix: Supplemental Files

The following files are provided in the supplementary material, they show video

examples for each of the three main chapters.

1. chapter-3.avi A video that shows the results of the proposed softmax splatting

for video frame interpolation. Totalling 100 megabytes in size, best viewed using

the VLC media player.

2. chapter-4.avi A video that shows the results of the proposed 3D Ken Burns

effect from a single image. Totalling 100 megabytes in size, best viewed using

the VLC media player.

3. chapter-5.avi A video that shows the results of the proposed video action

shot synthesis framework. Totalling 100 megabytes in size, best viewed using

the VLC media player.
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