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Abstract

Encryption is an important tool for protecting data, especially data stored

in the cloud. However, standard encryption techniques prevent efficient search.

Searchable encryption attempts to solve this issue, protecting the data while

still providing search functionality. Retaining the ability to search comes at a

cost of security, performance and/or utility.

An important practical aspect of utility is compatibility with legacy sys-

tems. Unfortunately, the efficient searchable encryption constructions that are

compatible with these systems have been proven vulnerable to attack, even

against weaker adversary models.

The goal of this work is to address this security problem inherent with

efficient, legacy compatible constructions. First, we present attacks on previous

constructions that are compatible with legacy systems, demonstrating their

vulnerability. Then we present two new searchable encryption constructions.

The first, weakly randomized encryption, provides superior security to prior

“easily deployable” constructions, while providing similar ease of deployment

and query performance nearly identical to unencrypted databases. The second

construction, EDDiES, provides much stronger security at the expense of a

slight regression on performance.

These constructions show that it is possible to achieve a better balance of se-

curity and performance with the utility constraints that come with deployment

in legacy systems.

i



Contents

Abstract i

List of Tables v

List of Figures vi

List of Algorithms viii

List of Theroems ix

1 Introduction 1

1.1 Research Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 4

2.1 Search Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Full-Text Indexing . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Database Indexing . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Cryptography Background . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Origins of Searchable Encryption . . . . . . . . . . . . . . . . . . . . 11

2.4 Symmetric Searchable Encryption (SSE) . . . . . . . . . . . . . . . . 12

2.5 Property Preserving Encryption (PPE) . . . . . . . . . . . . . . . . . 16

2.6 Linear and Superlinear Searchable Encryption . . . . . . . . . . . . . 17

2.7 Trusted Third Party Searchable Encryption . . . . . . . . . . . . . . 18

2.8 Attacks on Searchable Encryption . . . . . . . . . . . . . . . . . . . . 19

3 Attacking PPE With Weighted Graph Matching 25

3.1 Graph Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Attacks on ShadowCrypt . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Graph Matching Attacks . . . . . . . . . . . . . . . . . . . . . 31

3.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Initial Experiments . . . . . . . . . . . . . . . . . . . . . . . . 33

ii



3.3.2 Experiments with Imperfect Auxiliary Info . . . . . . . . . . . 36

3.3.3 Runtime Performance . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.4 Experiments with Time Delay . . . . . . . . . . . . . . . . . . 41

3.4 Attacks on Mimesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Recovering tags from Bloom filters . . . . . . . . . . . . . . . 42

3.4.2 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.3 Bloom Filter Attack . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.4 Graph Matching Attacks . . . . . . . . . . . . . . . . . . . . . 48

3.5 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Weakly Randomized Encryption 56

4.1 Security Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Weakly Randomized Encryption . . . . . . . . . . . . . . . . . . . . . 60

4.3 WRE Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.1 Fixed Salts Method . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Proportional Salts Method . . . . . . . . . . . . . . . . . . . . 65

4.3.3 Remainder Salts . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.4 Poisson Random Frequencies . . . . . . . . . . . . . . . . . . . 67

4.3.5 Bucketized Poisson Random Frequencies . . . . . . . . . . . . 71

4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 77

5 Easily Deployable Database Encrypted Search (EDDiES) 83

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Probability Background . . . . . . . . . . . . . . . . . . . . . 84

5.1.2 Bloom Filter Background . . . . . . . . . . . . . . . . . . . . 85

5.2 Security Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 SSE Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Searchable Encryption Construction with Bloom Filters . . . . . . . . 89

5.3.1 Easily Deployable Database Encrypted Search (EDDiES) Con-
struction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

iii



5.3.2 False-Positive Rate . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.3 Parameters – Effects on Security and False Positive Rates . . 91

5.4 Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1 L0(I) Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.2 L1(I) Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.3 Trapdoor Combinations and Probabilities . . . . . . . . . . . 97

5.4.4 SSE Security . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Leakage Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 L0(I) Leakage, Multi-Occurrence Frequencies . . . . . . . . . . . . . 104

5.6.1 Fake Tag Distribution . . . . . . . . . . . . . . . . . . . . . . 108

5.6.2 Number of Solutions for All Frequencies . . . . . . . . . . . . 110

5.6.3 Known Trapdoor Effect . . . . . . . . . . . . . . . . . . . . . 111

5.6.4 L0(I) Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 L1 Leakage – Chosen Plaintexts . . . . . . . . . . . . . . . . . . . . . 111

5.7.1 Number of Possible Trapdoors for a Given Bloom Filter Index 112

5.8 Partial Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.9 Updates – Forward Privacy . . . . . . . . . . . . . . . . . . . . . . . 116

5.10 Range Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.11 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.11.1 Custom Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.11.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 119

5.11.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 119

5.12 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Conclusions 124

References 126

iv



List of Tables

2.1 Inverted Index Example . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Email and Chat Corpora . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Impact of Bloom filter parameters on bit frequency; Parameters from
[48] give q0 = 6.01x10−5 . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Table Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Ciphertext Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Index Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Worst Case Statistical Distance Example, IS = 240,OS = 10, h = 20 107

5.3 Ciphertext Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Insertion Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

v



List of Figures

2.1 Bloom filter insertion example, h hash functions, Bloom filter size=s . 6

2.2 Range Query Tree Example 0-7 . . . . . . . . . . . . . . . . . . . . . 15

2.3 Adversarial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Accuracy of weighted graph matching attack (PATH algorithm) against
ShadowCrypt for users in the Enron email corpus, using perfect auxil-
iary information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Accuracy of Frequency Analysis and Weighted Graph Matching (Umeyama)
attacks for Enron data, with imperfect auxiliary information . . . . . 37

3.3 Accuracy of Weighted Graph Matching attack (PATH Algorithm) against
ShadowCrypt for Enron data, with imperfect auxiliary information . 38

3.4 Accuracy of Weighted Graph Matching attack (PATH Algorithm) for
Ubuntu data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Runtime performance of the Weighted Graph Matching attack (PATH
Algorithm) for the Enron email corpus . . . . . . . . . . . . . . . . . 40

3.6 Accuracy of Weighted Graph Matching attack (PATH Algorithm) for
Ubuntu data; 1 month delay between auxiliary and target . . . . . . 41

3.7 Example Bloom filter counts . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Tag Finding accuracy on Enron corpus Bloom filters with parameters:
h=10 and Bloom filter size = 224, matching on 8 and 10 bits . . . . . 48

3.9 Accuracy of Weighted Graph Matching attack (PATH Algorithm) for
Mimesis and ShadowCrypt on Enron Data . . . . . . . . . . . . . . . 49

3.10 Tag finding accuracy on Enron corpus with variable sized Bloom filters 52

4.1 Weakly Randomized Encryption, Decryption and Search . . . . . . . 61

4.2 Complementary cumulative distribution for capped versus standard
exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Poisson Search Tag Frequency Example . . . . . . . . . . . . . . . . . 73

4.4 “SELECT ID” Equality Query Runtime . . . . . . . . . . . . . . . . 79

4.5 “SELECT *” Equality Query Runtime . . . . . . . . . . . . . . . . . 79

4.6 “SELECT ID” Equality Query Runtime . . . . . . . . . . . . . . . . 80

4.7 “SELECT *” Equality Query Runtime . . . . . . . . . . . . . . . . . 80

4.8 Bucketized Poisson False Positive (λ = 1000) . . . . . . . . . . . . . . 81

4.9 Bucketized Poisson False Positive (λ = 10, 000) . . . . . . . . . . . . . 81

vi



5.1 Easily Deployable Database Encrypted Search, Decryption and Search 93

5.2 Insertion, OS = 2, IS = 6, h = 2 . . . . . . . . . . . . . . . . . . . . 94

5.3 Search, OS = 2, IS = 6, h = 2 . . . . . . . . . . . . . . . . . . . . . . 94

5.4 wa, wb, wc L0 Example . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Co-occurrence Frequency Example, h = 40, u = 2 . . . . . . . . . . . . . 113

5.6 Partial Trapdoor Knowledge - False-Positive Rates . . . . . . . . . . . . 115

5.7 Equality Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.8 Equality Queries - Parallel . . . . . . . . . . . . . . . . . . . . . . . . 121

5.9 Range Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

vii



List of Algorithms

3.1 Bloom Filter Tag Extraction . . . . . . . . . . . . . . . . . . . . . . . 44
4.1 Remainder Salt Method . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Poisson Salt Distributions . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Bucketized Poisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

viii



List of Theorems

2.1 Definition (Symmetric Encryption) . . . . . . . . . . . . . . . . . . . 7

2.2 Definition (Negligible Function) . . . . . . . . . . . . . . . . . . . . . 8

2.3 Definition (IND-CPA Security) . . . . . . . . . . . . . . . . . . . . . 8

2.4 Definition (Pseudo-Random Function (PRF)) . . . . . . . . . . . . . 9

2.5 Definition (Statistical Distance) . . . . . . . . . . . . . . . . . . . . . 10

2.6 Definition (Distinguishing Two Distributions) . . . . . . . . . . . . . 10

2.7 Definition (Shuffle) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 Definition (Pseudo-Random Shuffle (PRS)) . . . . . . . . . . . . . . . 11

2.9 Definition (Searchable Symmetric Encryption) . . . . . . . . . . . . . 13

4.1 Definition (The IND-SME Indistinguishability Experiment) . . . . . . 59

4.2 Definition (IND-SME Indistinguishability) . . . . . . . . . . . . . . . 59

4.1 Theorem (Single-Column Security for Bucketized Poisson WRE) . . . 73

5.1 Definition (History) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Definition (Access Pattern) . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Definition (Search Pattern) . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Definition (Trace) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Definition (Leakage) . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Definition (Non-adaptive semantic security) . . . . . . . . . . . . . . 88

5.7 Definition (Bloom Filter Multi-occurrence Frequency F(·)) . . . . . . 95

5.8 Definition (Index Leakage, L0(I)) . . . . . . . . . . . . . . . . . . . . 96

5.9 Definition (Index Leakage, L1(I)) . . . . . . . . . . . . . . . . . . . . 96

5.1 Theorem (SSE Security) . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.10 Definition (Partial Trapdoor) . . . . . . . . . . . . . . . . . . . . . . 103

ix



1 Introduction

Many organizations today are moving to the cloud, shipping their critical data to

servers over which they have little control. Utilizing the cloud comes with numerous

benefits, including high availability, easy data access, reduced infrastructure costs,

faster ramp up time for development, and ability to access data from anywhere.

This ability to access data from anywhere is almost a universal requirement for many

companies and individuals. In house enterprise servers also provide this ability to

access data from anywhere. This feature comes with added security risk. Any server

that allows data access from anywhere is now subject to attacks from anywhere.

It is not surprising then that data breaches are becoming more common and gaining

more attention as businesses of all sizes become increasingly reliant on digital data

and cloud computing. As companies store sensitive data on enterprise databases and

cloud servers, breaching a company’s data is a matter of gaining access to restricted

networks.

Using cloud services also comes with a new threat to data privacy, the cloud provider

itself. The server has full access to the users data. They may only be curious, but

they might also abuse this data access.

The most common way of securing this data is to encrypt it before storing the data

on the cloud or enterprise servers. This provides end to end security from the time

it leaves the user. In many instances, companies do not encrypt their data. They

rely on access controls to protect it. The reason for not encrypting the data is that

standard encryption mechanisms also prevent the server from performing any useful

computation on the clients behalf. One of the most desirable operations on encrypted

data is search. Encrypting the data would not stop all breaches, but it would require

the attacker to compromise the account or password of specific user(s) to gain access

1



to the data.

The research community has attempted to address this need with searchable encryp-

tion. The origins of this research start in the year 2000. But even with almost 20

years of research in this field, we are still far from the ideal practical solution. All

the proposed constructions so far have varying compromises in security, performance

and utility. The most secure systems include extensive performance and utility limi-

tations.

In an ideal setting, encrypted data should not leak even 1 bit of information about

the encrypted plaintext. Anyone without the key should not be able to distinguish

between the ciphertext and random bits of the same length. This is the informal

security definition for encryption. With encrypted search, in order to achieve sub-

linear performance, relaxing this standard is necessary.

Each efficient encrypted search construction has a leakage profile. With some security

definitions, this is formally defined. With other security definitions, the leakage is

implicit and determined by either a limitation of the attacker’s power in the definition

or an assumption of the data that is encrypted. The consequences of this leakage vary.

Some types of leakage are easily attacked, while others are more resistant.

Utility can refer to many features, ease of deployment, multiple user support and types

of queries supported. Most encrypted search systems support only basic equality and

range queries. Some have added support for boolean queries, prefix queries and others.

One of the most important practical aspects of utility is compatibility with legacy

systems. Without this compatibility, the time and money required to deploy search-

able encryption is too great. If the costs of data breaches increase enough, that may

change. But until the incentives or economics change regarding data security, this

type of utility is a practical necessity. Unfortunately, the systems that offer the best

2



performance and compatibility have severe security issues.

1.1 Research Problem

The research problem addressed in this dissertation is, “Is it possible to produce

searchable encryption techniques that provide acceptable levels of performance and

security, with a hard constraint of being compatible with existing systems?” This dis-

sertation focuses on a specific class of existing systems, legacy Database Management

Systems (DBMS). Contributions. We provide the following contributions towards

the development of searchable encryption that is compatible with legacy systems:

• In Chapter 3 we analyze recent attempts to provide searchable encryption to

legacy systems on the web and Android platform. The constraints of these

systems placed significant restrictions on the type of searchable encryption that

could be implemented. We demonstrate that these constructions are vulnerable

to attacks.

• In Chapter 4 we present a new construction: weakly randomized encryption

(WRE). WRE utilizes various techniques to add enough randomness to deter-

ministic encryption, resulting in a system that is significantly more resistant to

inference attacks, while still retaining high performance and ease of deployment.

• In Chapter 5, we present another new construction, EDDiES, which takes in-

spiration from Bloom filters. This construction provides much stronger security

over WRE, but it makes some sacrifices in performance relative to WRE or

unencrypted databases.

3



2 Background and Related Work

This chapter provides necessary background information used in the rest of the thesis.

Chapter 2.1 provides background information on generic search strategies. Chapter

2.2 contains a cryptographic background. Chapters 2.3 through 2.7 provide back-

ground on encrypted search. Chapter 2.8 reviews attacks against encrypted search.

2.1 Search Background

The desire to perform searches in sub-linear time resulted in the creation of search

indexes. These indexes provide data structures tailored to specific search strategies.

2.1.1 Full-Text Indexing

A standard approach for efficient, full-text sub-linear search over unencrypted doc-

uments is to utilize an inverted index. In an inverted index, each keyword contains

a list of all the documents that contain the keyword. Common words are typically

excluded from the index. The search complexity can be reduced to O(|D(w)|) where

|D(w)| is the number of documents containing keyword w when utilizing inverted

indexes. Table 2.1 is an example of an inverted index.

keyword document ids
w1 3,5
w2 1,9,6
... ...
wm ...

Table 2.1: Inverted Index Example

4



2.1.2 Bloom Filters

Bloom filters [8] are probabilistic data structures that represent sets and support

membership queries. For applications that can tolerate a small false-positive rate,

Bloom filters offer a space-efficient alternative to the full inverted index. Conceptually,

the Bloom filter is an array or bit vector of m bits, all initially set to zero. To insert

an element x into the set, we hash x with each of k hash functions and set each of

the k bits bi = hi(x), 1 ≤ i ≤ k to one in the Bloom filter. To check if an item z is in

the set, we check if hi(z) = 1 for all 1 ≤ i ≤ k.

The standard Bloom filter construction described by Bloom allows anyone to check

for the presence of an item in the filter. This is not desirable for indexing encrypted

data; it could be leveraged by an attacker to perform a dictionary attack. Therefore

searchable encryption schemes use a ether a keyed hash function or a pseudorandom

function (PRF) (See Definition 2.4) to set the bits in the Bloom filter. Informally, it

is not possible to tell the difference between the output of a pseudorandom function

and random sequences. More formally, let f1, f2, ..., fk be a family of k pseudorandom

functions. Let F (w) be the set of bits in the Bloom filter that correspond to keyword

w, i.e. F (w) = {fi(w) : i ∈ [1, k]}. Only someone who has the secret symmetric key

can compute F (w). The use of keyed functions prevent simple brute-force dictionary

attacks on the hash function. In practice, the PRF can be instantiated as a truncated

message authentication code (MAC), sometimes also called a “keyed hash.” For

example, Mimesis Aegis [48] uses HMAC-SHA256 to set bits in a Bloom filter of size

224. Figure 2.1 illustrates the insertion into a Bloom filter using keyed hash functions.

Since the typical variable names for Bloom filters are similar to cryptographic variable

names, we will use the following variables for Bloom filters:

• s, the size of the Bloom filter (instead of m)

5



Item to be inserted

H1 H2 H... Hh

00000001 00000005 00000007 25AJK91

0 1 0 0 0 0 0 1 0 1 0
0 1 2 3 4 5 6 7 · · · s-2 s-1

Figure 2.1: Bloom filter insertion example, h hash functions, Bloom filter size=s

• t, the number of words inserted into the Bloom filter (instead of n)

• h, the number of hash functions (instead of k)

Using these parameters, there is a formula from [13] that gives us the probability of

any specific bit is set to one:

PR[biti = 1] = 1− (1− 1

s
)ht ≈ 1− e

−ht
s (2.1)

For a false positive to occur, each bit position in a Bloom filter for a word has to be

set to one. Since it requires h of these bits for the false positive, it follows that the

false positive rate is

ph where p = PR[biti = 1] (2.2)
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2.1.3 Database Indexing

Database management systems support many different index types. They differ in

their structure and query types supported.

B-Tree. One of the most common indexes is a B-Tree. It is the default index on

many systems and supports efficient equality and range queries. However some data

types, such as geometric and some queries (such as those with wildcards), do not

work with the standard B-Tree index.

Generalized Inverted Indexes (GIN). GIN indexes allow efficient search for an

item within data, such as arrays or full text. GIN also allows custom data types,

provided that the appropriate access functions are implemented.

Generalized Search Tree (GIST). The Gist [37] framework utilizes a tree struc-

ture to store its data types. It is designed to index custom data types. Similar to

GIN, it is extensible to these custom data types, requiring specific functions to be

implemented.

2.2 Cryptography Background

This section provides some background on symmetric encryption, also known as

private-key encryption. Since this work focuses on symmetric searchable encryption,

it omits background work related to public-key encryption. A significant portion of

this background are definitions. These definitions are a key foundation of modern

cryptography, formal definitions and proofs of security.

Definition 2.1 (Symmetric Encryption). A symmetric encryption construction is a

tuple of probabilistic polynomial-time algorithms (Gen,Enc,Dec):
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• Gen is a key generation algorithm whose input is a security parameter 1n and

whose output is a key k. This is written as k ← Gen(1n) and is a randomized

algorithm. Any key k output satisfies |k| ≥ n.

• Enc is the encryption algorithm. It takes as inputs the key k and a plaintext

message m ∈ {0, 1}∗ and outputs a ciphertext c. Enc may be randomized and

is written as c← Enck(m).

• Dec is the decryption algorithm. It takes as input a key k and ciphertext c

and outputs a plaintext message m or error. Dec is a deterministic algorithm

and is written m := Deck(c).

For every k,m ∈ {0, 1}∗, it is required that Deck(Enck(m)) = m.

Definition 2.2 (Negligible Function). A function µ : N → N is negligible in k if

for every positive polynomial p(·) and sufficiently large k, µ(k) < 1/p(k). Let poly(k)

and negl(k) denote unspecified polynomial and negligible functions in k, respectively.

The negligible function definition is used in numerous security definitions. Practical

cryptographic constructions achieve computational security. That is, against attack-

ers with bounded computational power, they leak a very small amount of information.

This small amount of information leaked is often defined in the form of a negligible

function.

Definition 2.3 (IND-CPA Security).

CPA Indistinguishability experiment IND − CPAA,Π

• k ← Gen(1n)

• Adversary A is given 1n and oracle access to Enck(·). A outputs a pair of

messages m0,m1 of equal length.
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• A uniform bit b ∈ {0, 1} is chosen. A is given c← Enck(mb).

• A is given oracle access Enck(·).

• A outputs a bit, b′

• If b = b′, then the output is 1 and A succeeds. A zero is output otherwise.

An encryption scheme Π = (Gen,Enc,Dec) is indistinguishable under chosen

plaintext attack, IND-CPA if for all probabilistic polynomial time adversaries A there

is a negligible function:

Pr[IND − CPAA,Π = 1] ≤ 1

2
+ negl(n)

IND-CPA security is a commonly used security definition and is often a requirement

for most cryptographic systems. Its adversary is given access to an encryption oracle,

a black box which encrypts messages that the attacker chooses using a key that is

unknown to the attacker. The attacker then chooses two messages for the challenger to

encrypt using the same key. The challenger chooses one of these messages randomly,

encrypts it and returns it to the attacker. The attacker then has oracle access again.

If the attacker cannot guess which message with probability higher than random

guessing (1
2
), then the system is IND-CPA secure.

Definition 2.4 (Pseudo-Random Function (PRF)). Let F : {0, 1}k × {0, 1}n →

{0, 1}m be an efficient keyed function. F is a pseudo-random function if for all

probabilistic polynomial time distinguishers D there is a negligible function negl such

that: ∣∣∣Pr[DFk(·) = 1]− Pr[Df(·) = 1] ≤ negl(k)
∣∣∣
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where the first probability is taken over the uniform random choice of k and the

randomness of D and the second probability it taken over the uniform choice of f ∈

Funcn and the randomness of D.

Informally, a pseudo-random function is a polynomial time function that is indistin-

guishable from a truly random function by any polynomial time adversary.

Definition 2.5 (Statistical Distance). The statistical distance ∆ between two random

variables X, Y over a common domain ω is defined as:

∆(X, Y ) =
1

2

∑
α∈ω

∣∣∣∣Pr(X = α)− Pr(Y = α)

∣∣∣∣
Two random variables X, Y are said to be ε-close if the statistical distance between

them is at most ε. Variables X, Y are called statistically indistinguishable if ε =

negl(α) with security parameter α.

An important application of Definition 2.5 is its use in the probability of distinguishing

between two random variables or two distributions [10]. This probability is bounded

by the statistical distance between the distributions.

Definition 2.6 (Distinguishing Two Distributions). Let P0 and P1 be probability dis-

tributions on a finite set R. Then, for every adversary A, we have the distinguishing

advantage of A between P0 and P1,

Pr[DistA(P0, P1)] ≤ ∆(P0, P1)

Definition 2.7 (Shuffle). Let S be a set containing n distinct objects. A Shuffle

of S is an ordered list of the objects in S. A Shuffle of the set {1, 2, ..., n} is called

a Shuffle of n.
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To shuffle a list, the set S is the indexes into the list. The shuffle of a list re-orders

the indexes. Informally, this is a permutation of a list.

If S contains n distinct objects, then there are exactly n! Shuffles of n.

Definition 2.8 (Pseudo-Random Shuffle (PRS)). Let PRS be a deterministic poly-

nomial time function that on input key k ∈ {0, 1}n, message m ∈ {0, 1}∗, and list

of messages [l0, l1, ...li] where li ∈ {0, 1}∗, outputs a Shuffle of [l0, l1, ...li]. We say

PRS is a Pseudo Random Shuffle if:

• (Pseudorandomness:) For any probabilistic polynomial time algorithm D, there

is a negligible function negl such that

∣∣∣∣Pr[D(PRS(k,m, l))]− Pr[D(R(l))]

∣∣∣∣ ≤ negl(n)

where the first probability is taken over the uniform choice of k ∈ {0, 1}n, m ∈

{0, 1}∗ and the randomness of D, and the second probability is taken over R(l),

where R is a uniformly random shuffle algorithm.

2.3 Origins of Searchable Encryption

Song, Wagner, and Perrig proposed the first scheme for searching on encrypted data

[56]. Their construction encrypts keywords in documents by exclusive XORing them

with the output of a stream cipher and a Pseudo-Random Function (PRF). A keyword

is given the same PRF key across multiple documents, which facilitates the search.

Searching is linear in the number and size of the documents. Being the first research

product in this field, there were no standard security definitions. They proved their

construction is a pseudo-random generator, proving the security of the ciphertexts,

but not addressing the security when queries are issued.
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Goh [29] provided the first formal security definition for searchable encryption, se-

mantic security against adaptive chosen keyword attacks (IND-CKA). Informally, it

ensures that an attacker cannot deduce a document’s contents from the index. Their

construction utilizes Bloom filters for indexes, where the input to the PRFs is the

search term and document ID. A given keyword sets different Bloom filter address

locations for different documents. As a result, the search time is linear in the number

of documents.

The IND-CKA definition did not address documents of varying sizes. An updated

definition by Goh and also Chang and Mitzenmacher [17] resolved the varrying sized

documents. Even this latest definition was proven insufficient, as Curtmola et al. [21]

shows that an insecure scheme meets their definition.

2.4 Symmetric Searchable Encryption (SSE)

Curtmola et al. [21] provided the set of security definitions for Symmetric Searchable

Encryption (SSE) [15, 21, 40, 57] that are still used today. Their improved definitions

allowed for varying sized documents, and protected the contents of the document and

the keywords. They also added an adaptive adversarial definition where the adversary

is allowed to issue a query and see the results before issuing another query.

Early Symmetric Searchable Encryption schemes assumed a relatively static docu-

ment corpus and offered somewhat limited performance. Current SSE schemes can

handle dynamic data [40] and offer effective performance even on very large data sets

[15]. However, the security definitions for SSE require that the server must engage in

a cryptographic protocol with the client to execute searches on their behalf.

A typical SSE scheme will encrypt the data using IND-CPA encryption and provide

an encrypted index as well to facilitate search.
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Definition 2.9 (Searchable Symmetric Encryption). Symmetric Searchable Encryp-

tion (SSE) consists of the following algorithms run by the client and server:

K ← Gen(1k) : is a probabilistic key generation algorithm that is run by the user

to setup the scheme. It takes as input a security parameter k, and outputs a

secret key K.

(I, c) ← Enc(K,D): is a probabilistic algorithm run by the user to encrypt the doc-

ument collection. It takes as input a secret key K and a document collection

D = (D1, ..., Dn), and outputs a secure index I and a sequence of ciphertexts

c = (c1, ..., cn). We sometimes write this as (I, c)← EncK(D).

t ← Trpdr(K,w) : is a deterministic algorithm run by the user to generate a

trapdoor for a given keyword. It takes as input a secret key K and a keyword

w, and outputs a trapdoor t. We sometimes write this as t← TrpdrK(w).

X ← Search(I, t) is a deterministic algorithm run by the server to search for the

documents in D that contain a keyword w. It takes as input an encrypted index I

for a data collection D and a trapdoor t and outputs a set X of (lexicographically-

ordered) document identifiers.

Di ← Dec(K, ci): is a deterministic algorithm run by the client to recover a doc-

ument. It takes as input a secret key K and a ciphertext ci, and outputs a

document Di. We sometimes write this as Di ← DecK(ci).

To search, the server is provided a trapdoor (one way function) to access one key-

word’s list of documents from the index. The trapdoor does not allow the server to

see the plaintext version of the keyword, it only allows the server to decrypt the list

of documents that contain the keyword. If an adversary steals the encrypted data,
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but does not see the queries, no real information is leaked. Most SSE schemes achieve

efficiency comparable to the most efficient encrypted search solutions (e.g., determin-

istic encryption) but provide superior security as they only leak query search pattern

and access pattern results.

The SSE constructions offer one of the best combinations of performance and security.

However applying SSE to database systems has its issues, because of the requirement

that clients perform all index creation and updating.

Locality. More recent SSE research deals with improving the performance of SSE.

The practical performance of SSE schemes depends on the locality – the number of

non-continuous locations that the server accesses for each query. Cash et al. proposed

new SSE schemes with good locality [15] to allow scaling to large data sizes. Various

other works [4, 16, 18, 23] provide constructions with improved locality, read efficiency

and server storage.

Dynamic SSE. The early SSE schemes had inefficient ways of handling updates,

forward and backward security. Updates are challenging with SSE because the act

of updating an index leaks information. Forward security deals with the issue of

inserting new data into the corpus after searches have been performed. Backward

privacy guarantees that queries do not reveal their association to deleted documents.

Once a search is issued, the server has the trapdoor for that search and can perform

the search at any time. Thus, when data is inserted or deleted, the server can see

if that data matches previous searches or not. The early SSE schemes dealt with

updates and achieved forward security by issuing batch updates. Each update would

contain its own new set of encrypted indexes. Periodically these indexes would be

combined into one.

Several works have focused on improving dynamic SSE [11, 15, 39, 40, 40, 57]. The
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notion of forward and backward privacy was proposed by Stefanov et al. [57] and

later formalized by Bost [11, 12]. Several works have been produced with forward

privacy [11, 12, 24, 26, 28, 43, 57, 58] and backward privacy [12, 28, 58].

Range Queries. SSE constructions do not natively support range queries due to

their inverted-index structure. Range queries are reduced to multiple single keyword

queries. A tree structure is used to cover all the possible ranges. Figure 2.2 shows an

example with range values from 0-7. Each node in the tree is an index for values in

that range. If a document or record had the value 3, it would be in the index for 0-7,

0-3, 2-3 and 3.

However this structure leaks additional information to the adversary. In Figure 2.2,

node (3) is in the range search for 3, 3-5, and 3-7. Also range queries have varying

number of nodes, the range from 0-3 uses one node and the range 2-4 uses 2.

Demertzis et al. [22] address this additional leakage with revisions to the search

strategies and tree structures. Wang et al. [62] propose a dynamic SSE construction

that supports range queries.
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2.5 Property Preserving Encryption (PPE)

Another type of searchable encryption evolved in a different path. The desire to

encrypt databases, but still use SQL queries, led to Property Preserving Encryption

(PPE). Property preserving encryption is useful because it allows comparative opera-

tions over the ciphertexts. This facilitates using database indexes on the ciphertexts

with no modifications. There are a few commonly used types of Property Preserving

Encryption used. Deterministic encryption [5] is one of them. Unlike randomized

encryption, with deterministic encryption, each message m is mapped to a single

ciphertext under a key K.

Order Preserving Encryption (OPE) [9] is a symmetric encryption scheme with the

following property: If m1 < m2, then EncK(m1) < EncK(m2). Order Preserving

Encryption allows the user to perform range queries on an encrypted database. Order

Revealing Encryption (ORE) typically results in ciphertexts that appear random. It

uses a publicly computable function which takes two ciphertexts as input and outputs

the relative ordering of the two ciphertexts.

These constructions do not follow a universal security model. Instead each construc-

tion uses a different security definition with limitations on the adversary’s power,

depending on what the construction leaks.

There are instances where these constructions are used outside their intended scope.

For example, the security definition for deterministic encryption places a high min-

entropy requirement on the data it is encrypting. Essentially deterministic encryption

is secure only for unique data such as social security numbers. However it has been

used in applications that do not meet this key security requirement [36, 53] because

of the constraints on the system they were using.
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2.6 Linear and Superlinear Searchable Encryption

This encrypted search group is called linear and superlinear searchable encryption

due to the linear or greater search time in the size of the data set. These include

systems built with Fully Homomorphic Encryption; Secure Multiparty Computation;

and Oblivious Ram (ORAM). These constructions often provide superior security to

SSE and often provide special functionality – but they trade off performance for this

advantage.

Fully Homomorphic Encryption (FHE). Creating a searchable encryption scheme

utilizing Fully Homomorphic Encryption (FHE) [27] would likely result in a highly se-

cure searchable encryption scheme. Fully Homomorphic Encryption allows operations

to be performed on ciphertexts. For example, if there are two plaintext messages, m1

and m2, and encryption algorithm Ek and decryption algorithm Dk, ciphertexts c1

= Ek(m1), c2 = Ek(m2), m1 + m2 = Dk(c1 + c2), then it is homomorphic under ad-

dition. However, a searchable encryption system built solely from FHE will require

linear search time.

Secure Multiparty Computation (MPC). Secure Multiparty Computation [63]

considers the problem of different parties computing a joint function of their separate,

private inputs without revealing any extra information about these inputs other than

what is leaked from the result of the computation. With Secure Multiparty Com-

putation, a number of users each have private data d1, d2, ...dn and can compute the

value of a public function F (d1, d2, ..., dn) while keeping their inputs secret from the

other users. A searchable encryption system built from SMC would have minuscule

leakage, achieving a high level of security. However the performance is linear in the

size of the database, which is not practical for most uses.

Two recent projects built database systems with MPC [35] and the Jana [3] system
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from Galois.

Oblivious Ram (ORAM). Oblivious Ram [30] is designed to hide access patterns.

Specifically, for any two sequences y, y′ of equal length, access patterns A(y) and A(y′)

are computationally indistinguishable. Access pattern refers to the information that is

implied by the query results. For example, one query can return a document x, while

the other query could return x and another 10 documents. The size of the return

results implies that the predicate used in the first query is more restrictive than

that in the second query. Implementing this technique in a searchable encryption

construction would provide protection against an active adversary. Like FHE and

SMC, ORAM suffers from performance issues that prevent it from being practical on

all but very small databases.

2.7 Trusted Third Party Searchable Encryption

This group we call trusted third party searchable encryption, because their construc-

tions require a trusted third party, often a separate index server. However in many

instances, the purpose of the third party is to gain some other privacy attribute, such

as protecting the identity of the client performing the search. Systems such as Secure

Anonymous Database Search [54] and Blind Seer [50] fall into this category.

Secure Anonymous Database Search (SADS). The Secure Anonymous Database

Search (SADS) [54] construction requires a separate semi-trusted Index Server to fa-

cilitate search. The Index Server (IS) uses a Bloom filter per document built from the

encryptions of all words of the document. The encryptions are deterministic, which

is the reason for the separate Index Server (IS) to facilitate search. Without this

trusted IS server, the index structure would leak.

The SADS construction was improved by Pappas et al. [51], increasing performance
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and adding range query functionality. But it still requires a trusted index server.

Blind Seer. The Blind Seer [50] project also utilizes a separate index server. This

index server stores the Bloom filters in a search tree. Each leaf holds a Bloom filter

from a database record. The Bloom filter contains all of the keywords from this

record. Each node in the tree stores a Bloom filter that contains all of the keywords

of its children.

The search tree for this method is encrypted. To perform searches, the tree is traversed

using a secure computation between the client and the index server. This traversal

with secure computation requires communication between the client and server for

each node traversed in the tree.

2.8 Attacks on Searchable Encryption

All known searchable encryption constructions that are efficient leak some informa-

tion. This leakage profile varies on the construction, but each type of leakage is

vulnerable to attacks.

Encrypted Search Security Models. The security models for encrypted search

come in two primary categories. The first is the offline or passive adversarial model.

In this model, the attacker receives a snapshot of the encrypted data and nothing

else. The second model is the online or persistent adversarial model. With this

model we assume the attacker has a presence in the server and not only can see the

encrypted data, but also observes the encrypted queries, return results and updates

to the encrypted data. Figure 2.3 illustrates the two models.

It is important to distinguish the two models because the security definitions for an

encrypted search system will be under one of these two models in most cases. A
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system may have a proof of security under the passive adversarial model, but be

insecure under the persistent model.

Inference Attacks on Encrypted Data. In an inference attack, the adversary

uses some outside “auxiliary” information to exploit leakage from a cryptographic

construction in order to infer the value of some hidden data. The original statistical

inference attack was Al-Kindi’s frequency analysis, first proposed in the 9th century

AD. It was developed to break classical cryptographic schemes such as substitution

ciphers, and it is still widely used to illustrate the weakness of these schemes in

introductory cryptography courses. More recent inference attacks have also targeted

efficient schemes for storing and searching records in relational databases [49, 55].

Interestingly, a new analysis by Lacharité and Paterson [46] proves that frequency

analysis is the maximum likelihood estimator for deterministic encryption.

Islam, Kuzu, and Kantarcioglu (IKK) [38] presented the first inference attack against

symmetric searchable encryption. They noted that over time, as more searches are

performed in an SSE, the server can see which keywords tend to occur together
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in the same documents. In the IKK attack, the adversary observes the frequency

of co-occurrence for each pair of words in some corpus of training data, then uses

this information to map keywords in the encrypted corpus back to plaintext words.

IKK prove that the adversary’s task is an NP-complete combinatorial optimization

problem, but they also demonstrate that simulated annealing can be used to recover

most of the top few hundred keywords in under 14 hours.

Unfortunately the IKK experiments use the same data for the target and for the

adversary’s auxiliary information—this implicitly assumes that the adversary has

perfect knowledge of the word co-occurrence frequencies. Cash, Grubbs, Perry, and

Ristenpart (CGPR) [14] attempted to reproduce the IKK experiments, and their

results show that the accuracy of the IKK attack degrades quickly as the adversary’s

knowledge of the encrypted corpus decreases. CGPR present new, simpler attacks

that outperform the IKK attack but also require knowledge of a large fraction of the

target data.

Frequency Analysis and `p-Optimization. The application of frequency analysis

to attack PPE is straightforward. Given an auxiliary corpus of plaintext messages, a

target corpus of encrypted messages and their tags, the adversary simply counts the

number of times that each keyword appears in the auxiliary data and the number

of times each tag appears in the target data. He sorts both the list of keywords

w = {w1, ...,wn} and the list of tags t = {t1, ..., tn} by their frequency. So, for

example, w1 is the most common keyword and w2 is the second-most common, and

so forth. Finally, the adversary concludes that the ith most common tag corresponds

to the ith most common keyword; that is, ti ≡ wi, for all i ∈ [1, n].

Naveed, Kamara, and Wright [49] use frequency information in an inference attack.

Rather than simply matching up plaintexts to ciphertexts in order of decreasing
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frequency, they pose the problem as a linear sum assignment problem to find the

optimal matching that minimizes the total difference in frequencies. For p ≥ 2, they

found that `p-optimization produced results that are identical to frequency analysis;

these results strongly suggests that the two approaches may in fact be equivalent.

Both of these previous attacks rely solely on the frequencies of individual plaintexts

and ciphertexts. Although they were highly effective against categorical data in

encrypted databases, our experimental results in Chapter 4.1.1 show that they are

less accurate against natural language data, where the frequencies distribution of

plaintext keywords are much noisier and the keyword domains a great deal larger.

Multi-Column Inference Attack. Many previous attacks against encrypted

databases attack one column at a time, relying solely on the ciphertext frequencies

in a column. Another attack technique utilizes the relationships between columns.

In a database, it is likely that the contents of one column are related in some way

to the contents of another. For example, in the US census database from 1994, the

income column is highly correlated to the eduction column. Once an adversary re-

covers plaintext data from the income column, they would have a higher chance of

guessing the eduction column correctly.

The multi-column inference attack exploits the data relationships between columns in

a database. Bindschaedler et al. [6] calls this a multinomial attack, since they model

the vector of plaintexts as sampled according to the multinomial distribution.

Using the relationships between columns, they show the technique is more accurate

than the single column attacks, especially on columns where the data is close to

uniformly distributed.

Access Pattern Attacks. In the past few years, research has been published

attacking the access pattern leakage that SSE and other systems have. Using just
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this leakage, attackers attempt to reconstruct the database or search terms. Kellaris,

Kollios, Nissim, and ONeill (KKNO) [42] presented the initial research for this type

of attack. Their attack required O(N4logN) range queries to fully reconstruct a

database where N is the number of possible values in the database. For databases

where every possible value is in the data, they improved the bound to O(N2logN).

However these values assume that all the queries follow a uniform distribution on the

ranges. This performance was further improved by Lacharit, Minaud, and Paterson

[47] to O(NlogN) under the same assumptions.

The practicality of these attacks due to the high number of queries required led

to ε-Approximate Database Reconstruction [47]. Instead of fully reconstructing the

database, the attacker’s goal is to find the value of every record up to an error of ε.

This attack is still very useful to an adversary for small values of ε. They require only

O(Nlog ε−1) queries, but still require the assumption that every possible value is in

the database.

Two recent works [34, 45] demonstrated that this type of attack is possible without the

restriction of uniform queries. Further improvements by Grubs et al. [34] improved

the ε attack to only a function of ε, O(ε−4log ε−1).

These more recent works show that practical attacks are possible using only access

pattern leakage. The most obvious defense against this attack is to use ORAM.

However the performance characteristics of ORAM are not practical for many appli-

cations. A new and open field of research is how to stop these access pattern attacks

efficiently.

File Injection Attacks. In file injection attacks, the attacker sends files that it

chooses to the client who encrypts and uploads them to the server. SSE constructions

without forward privacy will reveal which queries match that documents. Zhang et
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al. [65] shows an attacker can learn a very high fraction of the keywords searched by

the client with file injection attacks.
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3 Attacking PPE With Weighted Graph Matching

In this chapter, we demonstrate the vulnerability of Property Preserving Encryption

(PPE) constructions to inference attacks. Prior to this work along with similar re-

search [14, 49], consequences of the leakage inherent with PPE constructions was not

fully known.

The desire to add encryption to existing applications without losing functionality such

as the ability to perform searches has resulted in a few resourceful projects. In order

to add end-to-end encryption to legacy applications while retaining the convenience

of full-text search, ShadowCrypt [36] and Mimesis Aegis [48] use Property Preserv-

ing Encryption (PPE). The Mimesis project coined a new cryptographic technique

called “efficiently deployable efficiently searchable encryption” (EDESE) that allows

a standard full-text search system to perform searches on encrypted data. However

their construction is actually an instance of PPE, since they use a form of determin-

istic encryption. Compared to other recent techniques for searching on encrypted

data, these PPE-EDESE schemes leak a great deal of statistical information about

the encrypted messages and the keywords they contain.

To support end-to-end encryption in applications that do not provide encryption

support, both ShadowCrypt and Mimesis insert themselves between the user interface

and the application. ShadowCrypt targets web applications, taking advantage of the

Shadow Dom, built to keep components on a web page isolated from each other.

Mimesis creates an Android layer between the application layer and user layer. Both

systems encrypt user input before the application receives any data, and conversely

decrypt data received from the application before presenting it to the user.

Using unmodified applications and user interfaces creates constraints on the types

of encryption used, especially if search functionality is required. To satisfy these
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constraints and achieve backwards compatibility with legacy systems, PPE encryption

constructions are used. These PPE constructions often have an aggressive leakage

profile.

To enable a legacy service or application to search on encrypted messages, Mimesis

and ShadowCrypt attach to each message a list of identifiers—here we call them

“search tags”—that correspond to the set of keywords in the message. Each tag

t is computed as a pseudorandom function of a keyword w, using a secret key k.

When the user initiates a search for a keyword w, they intercept the user’s input and

replace the plaintext query with one or more search tags t = Fk(w) before returning

control back to the legacy app. On the back end, the legacy application can use

any standard full-text indexing technique to keep track of the list of messages that

contain each tag. Given a search request for tag t, the legacy app’s back end consults

its index and returns the encrypted documents to the front end. When the front end

goes to display the search results, Mimesis and ShadowCrypt again intercept the user

interface to decrypt the messages and display the plaintext to the user.

The practical benefits of this are clearly compelling. It allows users to immediately

begin encrypting their communications, without changing providers or losing familiar

application user interfaces. This approach also has much lower startup costs compared

to other techniques for searching encrypted data.

However there are consequences for using PPE-EDESE as an encryption primitive.

These constructions leak information that is very useful to an attacker, such as the

relative frequency of each tag in the corpus and the frequency with which tags occurs

together in the same message.

In contrast, with a conventional SSE scheme, the adversary is only allowed to learn

the relationship between a tag and a document when the user performs a search for
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corresponding keyword.

This additional leakage provides the opportunity for statistical inference attacks

whereby the adversary uses known word frequencies to match the observed tags back

to the keywords that they represent.

A key insight underlying our approach is that the ShadowCrypt adversary’s task re-

duces to well-known combinatorial optimization problems based on graph matching:

weighted graph matching and labeled graph matching. Although these graph matching

problems are in NP, there exist several efficient solvers that can find good approx-

imate solutions in polynomial time. Another key observation of our work is that

constructions such as Mimesis that use Bloom filters for encrypted search must be

careful in how they configure the Bloom filter’s parameters. If the filter parameters

are chosen carelessly, or with only efficiency in mind, then the adversary can use an

additional pre-processing step to apply the graph matching attacks against the bits

in the Bloom filter.

Using real email and chat data, we show in Chapter 3.2.1 how these solvers can be

used to efficiently and accurately recover the list of keywords for messages encrypted

with Mimesis and ShadowCrypt. For example, for several users in the Enron email

corpus, the attack can recover more than 900 of the top 1000 most common keywords.

In a corpus of chat messages from the Ubuntu Linux project, it recovers more than

half of the top 500 keywords. Recovering so many of the top keywords would enable

the adversary to perform a variety of interesting analyses on the encrypted documents,

such as grouping similar documents together in clusters or identifying the sentiment

(positive-negative, happy-sad-angry) expressed in each message.

Our threat model is conservative, in that we give the adversary access to only the

ciphertext messages and the search tags. Unlike the standard adversary model for
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SSE, our adversary cannot issue queries and has no control over the plaintext data.

To mitigate against our attacks, we demonstrate and evaluate a new strategy based

on careful tuning of the Bloom filter parameters to reduce the information leaked

by the tags. Experimental results show that an efficient choice of parameters is

sufficient to break our current attack, while better protection is possible at the cost

of increased space overhead. However, we caution that our defense does not eliminate

the information leakage entirely. Given a sufficient amount of data, it is still possible

that a clever adversary might be able to reverse-engineer the Bloom filter.

Beyond the immediate impact to efficiently searchable encryption, our results here

may have implications for the security of other encrypted search systems that use

Bloom filters, such as SADS [51, 54] and BlindSeer [25, 50], and for systems that

perform symmetric searchable encryption over natural language documents [15, 21,

29].

3.1 Graph Matching

Weighted Graph Matching.

The weighted graph matching (WGM) problem is a well known combinatorial opti-

mization problem that has been studied for nearly 30 years [20]. Given two edge-

weighted graphs G and H with n nodes each, the problem is to find the permutation

that re-labels the nodes in H so that the permuted graph most closely resembles G.

More formally, let AG = [gij] and AH = [hij] be the adjacency matrices of G and

H, respectively. Here, gij ≥ 0 gives the weight of the edge connecting nodes i and

j in G, and hij ≥ 0 gives the weight in H. Further, let X be an n × n permutation

matrix, and let A′H = XAHX
T be the adjacency matrix for the permuted version of

H, with edge weights h′ij. The goal of the optimization problem is then to find the
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permutation matrix that minimizes the matrix distance between AG and A′H . For

example, using the Euclidean distance as our matrix distance, the problem can be

stated as

minimize ||AG −XAHXT ||2 =

√√√√ n∑
i=1

n∑
j=1

(gij − h′ij)2

subject to
n∑
i=1

Xij = 1, 1 ≤ j ≤ n

n∑
j=1

Xij = 1, 1 ≤ i ≤ n

Xij ∈ {0, 1}, 1 ≤ i, j ≤ n.

The WGM problem is in NP. There exist many algorithms for efficiently finding

approximate solutions, including an influential 1988 paper by Umeyama [59] that

uses eigendecomposition of the adjacency matrices to find a nearly-optimal solution

in O(n3) time. Umeyama’s algorithm works especially well when the two input graphs

are nearly perfectly isomorphic. The PATH algorithm [64] is more robust, using an

adaptive path-following strategy; it also runs in O(n3) time, but with a larger constant

factor than Umeyama’s algorithm. A powerful linear programming (LP) technique

from Almohamad and Duffuua [1] has complexity O(n7), so we do not consider it for

use in practical inference attacks.

Labeled Graph Matching. Labeled graph matching (LGM) is a further gener-

alization of WGM. Whereas in WGM the similarity of two graphs is computed as

a function of their edge weights, in LGM the nodes may also have weights. The

best matching is the one that simultaneously minimizes the difference in edge weights

while maximizing the similarity of the node weights. For example, if Cij gives the

similarity of node i’s weight in G with node j’s weight in H, and P is the set of
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all permutation matrices, then the permutation that maximizes the similarity of the

node weights is

max
X∈P

tr(CTX) = max
X∈P

n∑
i=1

n∑
j=1

CijXij.

A natural way to include both the edge weights and the node weights in a single

objective function is with a simple linear combination where the parameter α desig-

nates the weight given to the terms of the linear combination. The full optimization

problem can then be stated as

minimize (1− α) ||AG− XAHX
T ||2 − α tr(CTX)

subject to
n∑
i=1

Xij = 1, 1 ≤ j ≤ n

n∑
j=1

Xij = 1, 1 ≤ i ≤ n

Xij ∈ {0, 1}, 1 ≤ i, j ≤ n.

Both the Umeyama algorithm and PATH can be easily adapted to solve the labeled

graph matching problem. The GraphM software package [64] includes efficient im-

plementations of these and other algorithms.

3.2 Attacks on ShadowCrypt

The idea of using word co-occurrence frequencies for inference attacks against sym-

metric searchable encryption was first proposed by Islam, Kuzu, and Kantarcioglu

[38]. Here we improve on this attack strategy for EDESE and formalize it as an

instance of the graph matching problems described above. We also compare our

attack to previous inference attacks, including classical frequency analysis and the

`p-optimization technique from outlined in Chapter 2.8 from Naveed et al. [49].
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3.2.1 Graph Matching Attacks

We now give the polynomial-time reduction of the inference attack on EDESE to the

graph matching problems, WGM and LGM. Given a plaintext corpus for use as the

adversary’s auxiliary information and an EDESE-encrypted corpus as his target, the

attacker first removes the most common “stop” words (e.g. a, the, and, of, ...) from

the auxiliary data, because the victim system almost certainly stripped them from

the target data before generating the tags. Then the adversary selects the top n most

common remaining keywords w = {w1, ...,wn} from the auxiliary data and the top n

most common tags t = {t1, ..., tn} from the target data. They create two graphs, G

and H, to represent the auxiliary and target data, respectively, as follows. For each

i, j ∈ [1..n], they set the weight of the edge gij in G to be the probability, over the

auxiliary corpus, that keywords wi and wj occur in the same document. Similarly,

they set the weights hij in H to be the probability, over the target data, that tags ti

and tj are attached to the same encrypted document. This technique is sufficient to

reduce the attack to the WGM problem.

To yield an instance of the LGM problem, the adversary must create a similarity

matrix C for the nodes. Intuitively, each cell Cij in the matrix should give the

similarity of the frequency of word wi compared to the frequency of tag tj. There are

many ways to capture this similarity. For example, we might set the node weights

similar to Naveed et al. [49] to minimize the overall difference in frequencies. Here,

we opt instead for a slightly different approach based on the method of maximum

likelihood. Let gi be the fraction of auxiliary documents that contain word wi and hj

be the frequency of tag tj in the target data. Let D be the number of documents in

the target. Let kj = hj ·D. Then the adversary sets the similarity Cij as the likelihood

that word wi appears in kj out of D documents. The permutation matrix X that
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maximizes the objective function is therefore the maximum likelihood solution.

D = Number of Documents

gi = Frequency of Word wi

hj = Frequency of Tag tj

kj = hj ·D

Cij = Binom(kj, D, gi)

Cij =

(
D

kj

)
(gi)

kj(1− gi)D−kj

The adversary solves the graph matching problem to find the optimal permutation

matrix X ′ that most closely maps H to G. They then apply the same permutation to

the list of tags to obtain the permuted list t′ = X ′t. Finally, the adversary concludes

that each tag t′j in the encrypted corpus represents keyword wj from the auxiliary

data, for all j ∈ [1, n].

3.3 Empirical Evaluation

ShadowCrypt and Mimesis aim to support email and other messaging applications,

including Gmail, Twitter, WhatsApp, and others. To evaluate the practical impact

of our attacks, we use two data sets of real email and chat messages. The Enron

email corpus [44] includes real emails from the mailboxes of 150 employees of Enron

Corporation, received between 2000 and 2002. It was originally made public as part

of the federal government’s investigation into the company’s collapse, and it has since

been used in several studies on the practicality of searchable encryption schemes [40]

and the effectiveness of inference attacks [14, 38]. The Ubuntu Chat Corpus [60] is

composed of archived chat logs from Ubuntu’s Internet Relay Chat technical support
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channels. This corpus comes from the logs between July 2004 and October 2012.

Table 3.1 summarizes the data sets that we use to evaluate our attacks on real data.

Corpus Type Date Messages Mean Keywords per Message
Enron Email 2000–2002 517446 101
Ubuntu IRC chat 2004–2012 26360715 6.57

Table 3.1: Email and Chat Corpora

3.3.1 Initial Experiments

For a direct comparison with prior work that tests and trains on the same data [38]

or that gives the adversary access to the plaintext corpus [14], we performed a small

initial experiment with the Enron corpus. We note that normally, testing and training

on the same data is considered exceptionally bad practice. However, for tools such as

ShadowCrypt and Mimesis Aegis, there is one real scenario where this might give an

appropriate model for the adversary’s capabilities. Suppose a user has a large corpus

of messages stored on a service such as Gmail, and they decide to encrypt all of their

old messages using EDESE. At the moment when they finish uploading the encrypted

messages, the server has perfect knowledge of both the old plaintext corpus and its

new EDESE tags. Since the server already has the old plaintext corpus, the point

of performing the attack at this stage is to learn information about the tags. If the

server can match tags to keywords at that point in time, it can recover the keywords

in each new encrypted message almost for free.

In this initial experiment, we divide each Enron user’s mails randomly into a training

set and a testing set. Here we ignore the testing set, and we use the training set as

both the adversary’s auxiliary information and the target data. We use the training

set to construct an adjacency matrix as described in Chapter 3.2.1 and we use this
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matrix as both AG and AH . We use the open source graphm tool with the Umeyama

and PATH algorithms to find the permutation that most closely matches AG to AH .

In this easy attack scenario, the weighted graph matching attack performs extremely

well. The Umeyama WGM algorithm achieves perfect 100% accuracy for every user

in the corpus, as does simple frequency analysis. This is to be expected, as both

algorithms are optimized for the case where the auxiliary and target data have very

few differences. The Umeyama algorithm matches each pair of graphs in under 40

seconds. The PATH algorithm is designed to handle greater variation in the graphs,

so it runs roughly two orders of magnitude slower than Umeyama. Its accuracy on

this experiment is also somewhat reduced compared to the naive algorithms. Figure

3.1 shows the complementary cumulative distribution function (CCDF) of the PATH

WGM algorithm’s accuracy across all 150 users in the Enron data set.

A point at position (x, y) on the graph means that the attack correctly matched at

least x% of the keywords for y% of the users in the corpus. The attack recovers about

95% of the keywords for more than 90% of the users, with some slight degradation in

accuracy, as we expand the attack to target a larger number of keywords.

Previous attacks on standard SSE require a priori knowledge of both target corpus

and some number of the queries. Islam, Kuzu, and Kantarcioglu report that their

simulated annealing attack could analyze up to 150 queries and 2500 keywords in

under 14 hours, and it could recover more than 80% of the queries. That is, the IKK

attack can recover between 120 and 150 of the top keywords, as long as they are used

in a query by some user. Given a similar experimental setup with 10% of queries

known a priori, Cash et al.’s count attack recovers 100% of the queries. The accuracy

of our attack is similar to the related work, even when we have no known queries.

But because EDESE gives us access to the tags for all the keywords, the practical
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Figure 3.1: Accuracy of weighted graph matching attack (PATH algorithm) against
ShadowCrypt for users in the Enron email corpus, using perfect auxiliary information

impact is greater. Whereas a 95%-accurate attack on SSE might retrieve more than

140 keywords, our attack on EDESE recovers more than 950.

On the other hand, these results may give an overly pessimistic estimate of the security

of SSE and EDESE. When given access to only 50% of the target data, both of the

attacks from prior work achieve accuracy very near to zero (c.f. Fig. 6 in Grubs et

al. [14]). Next we look at what happens when we run our attack with no access to

the target data.
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3.3.2 Experiments with Imperfect Auxiliary Info

Here we consider a more realistic scenario, where the adversary does not have any

specific knowledge of the messages in the encrypted corpus, but they still have very

good estimates for the keyword frequencies. We conducted experiments in this model

using data from the Enron email corpus and the Ubuntu chat corpus.

For each user in the Enron corpus, we randomly divided the user’s emails into two

non-overlapping sets. We took one half of the user’s emails as the training set and used

them to construct the adjacency matrix AG for the adversary’s auxiliary information.

We took the other half of the user’s emails as the test set and used them to construct

the adjacency matrix AH for the target data. We did this for several values of n

between 100 and 1000.

To match the top n keywords, we first ran the attack using Frequency Analysis and the

Weighted Graph Matching attack with the Umeyama algorithm [59]. Figure 3.2 shows

the complementary cumulative distribution function (CCDF) of the accuracy for the

Frequency Analysis attack and the Weighted Graph Matching with the Umeyama

algorithm. For the top 500 words, the accuracy for these two attacks is less than 10%

for almost all users.

We then performed the Weighted Graph Matching attack with the PATH algorithm

[64]. Figure 3.3 shows the (CCDF) of the attack’s accuracy across the 150 users in

the Enron corpus. Over all, the accuracy of the attack decreases as we increase the

number of keywords targeted. But even when attempting to match the top 1000

words, the adversary still achieves over 90% accuracy for about 10% of the users. To

reiterate—for these 15 unlucky users, the adversary recovers more than 900 of the top

1000 words in their email. If the adversary is only interested in the top 200 words,

they achieve greater than 80% accuracy for half the users in the corpus. Note that,
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Figure 3.2: Accuracy of Frequency Analysis and Weighted Graph Matching
(Umeyama) attacks for Enron data, with imperfect auxiliary information

unlike previous work [14, 38], this attack succeeds given no access to the target data,

zero known keywords, and zero known documents.

Further work will be required to understand why the attack’s effectiveness varies so

much from user to user. Our working hypothesis is that the variation stems from dif-

ferences in the users’ topic model. Like the earlier IKK attack, our adversary assumes

that the probability of seeing each word—or each pair of words—in a document is

constant across the entire corpus. For natural language text, this assumption does

not really hold. Instead, in more accurate models of text, such as latent Dirichlet

allocation [7], the distribution of words is fixed for each of several topics, and the mix

of topics can vary greatly from document to document. We suspect that users for
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Figure 3.3: Accuracy of Weighted Graph Matching attack (PATH Algorithm) against
ShadowCrypt for Enron data, with imperfect auxiliary information

whom the attack is very successful have a more stable distribution of topics in their

email. It might be possible for a future attack to learn both the topic model and the

word frequencies at the same time.

Following a similar procedure, we ran the experiment for each month of IRC chat

logs from the Ubuntu corpus. We randomly assigned each day in the month to either

the adversary’s auxiliary information (i.e., the training set) or the target data (i.e.,

the test set). For each value of n, we created the adjacency matrices AG and AH as

above, and we ran the graphm experiment for each month of the Ubuntu corpus.

Figure 3.4 shows the results for the Ubuntu experiment. Compared to the email data,

overall the adversary’s accuracy degrades more quickly as we increase the number of
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Figure 3.4: Accuracy of Weighted Graph Matching attack (PATH Algorithm) for
Ubuntu data

keywords targeted, but the attack is still many times more accurate than random

guessing. For 10 percent of the months, the adversary correctly recovers almost 400

of the top 500 keywords. They recover more than half of the top 500 keywords for

nearly 90% of the corpus.

3.3.3 Runtime Performance

We ran all experiments on a cluster of HP Proliant servers with Intel Xeon L5520

processors at 2.26GHz, running CentOS Linux 6 and version 0.52 of the graphm

software. The Umeyama algorithm required less than 40 seconds to run each attack

in Chapter 3.3.1 with perfect 100% accuracy. However, its accuracy was substantially
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reduced when testing and training on different data.

Figure 3.5: Runtime performance of the Weighted Graph Matching attack (PATH
Algorithm) for the Enron email corpus

Figure 3.5 shows the average runtime for matching the top 100, 200, ..., 1000 key-

words for each Enron user with the PATH algorithm. Matching the top few hundred

keywords is very fast; even our older 2009-era CPUs can match the top 500 words

for a user in under one hour. The Umeyama and PATH algorithms are O(n3) in

the number of keywords to be matched, so attacking thousands of keywords becomes

increasingly expensive. However, matching several thousand keywords would not be

beyond the capacity of a large corporation or a nation state. It is also possible that

a much faster solver could be implemented using graphics processing units or other

specialized hardware. Memory does not appear to be a limiting factor: even when
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matching the top 1000 keywords, the graphm process uses less than 250MB of memory.

Figure 3.6: Accuracy of Weighted Graph Matching attack (PATH Algorithm) for
Ubuntu data; 1 month delay between auxiliary and target

3.3.4 Experiments with Time Delay

Figure 3.6 shows the accuracy of our attack when the adversary’s auxiliary informa-

tion is from the previous month before the target data. Comparing this graph to

Figure 3.4, the attack performance is considerably lower. The cause for this degra-

dation is likely due to the differences in topics, and thus words from one month to

the next. The result is our auxiliary training data is not as close to the actual data

compared to the attack on messages within the same month.
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3.4 Attacks on Mimesis

Mimesis is a more difficult target than ShadowCrypt. We cannot apply our graph

matching attack directly, because Mimesis does not reveal a one-to-one correspon-

dence between keywords and tags. Where ShadowCrypt uses a single PRF to gen-

erate a single search tag for a given keyword, Mimesis uses a family of h PRFs and

generates up to h distinct tags for each keyword. If the Bloom filter is sufficiently

small, there may be some collisions in the PRFs, so some tags may correspond to

more than one keyword.

As we will show in Chapter 3.5, the Mimesis construction provides the opportunity

to make inference attacks much more difficult by carefully tuning the parameters of

the Bloom filter. On the other hand, a naive choice of Bloom filter parameters such

as those proposed by Lau et al. [48] allows the adversary to mount the same graph

matching attack with only a small amount of additional work and a variable decrease

in accuracy.

Our inference attack on Mimesis proceeds in two steps. First, we analyze the Bloom

filters to identify sets of bits that likely represent plaintext keywords. Then we use

the graph matching attack to match each set of bits to the best-fitting keyword.

3.4.1 Recovering tags from Bloom filters

Our general strategy to discover the groups of bits that represent keywords in the

Bloom filters begins with a simple frequency-based analysis. If the Bloom filters use

h hash functions, then for each keyword we expect to see a group of h bits that (1)

have the same bit counts where the bit count is the number of documents that the

bit is set to one and (2) appear together in the same set of documents. For example,

if a keyword w sets the bits 10, 20, 30 and 40, we expect each of these bits to have
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similar counts and appear together in the same documents. To find these bits for

each keyword, we begin by counting the number of documents in which each bit is

set, and we group together all the bits that have the same count.

For example, suppose we have a collection of Bloom filters with the parameters used

in Mimesis Aegis: m = 224 bits and k = 10 hash functions. Figure 3.7 gives some

example counts that arise for one Enron user with these parameters. Each row repre-

sents a set of bits that all occur in the same number of documents. The first column

gives the count of the documents where these bits appeared, and the 2nd column

gives the number of bits with that count.

Doc Count Set Size
238 10
226 10
219 11
212 9
211 10
206 10
186 10
173 10
169 10
143 10
129 1

Doc Count Set Size
113 10
101 10
99 9
98 10
89 10
87 10
84 20
82 10
81 10
80 20
79 40

Figure 3.7: Example Bloom filter counts

Exact Matching. Sometimes it is easy to identify the bits for many keywords.

In our example, there are exactly 10 bits that appear in 238 documents, another 10

bits that appear in 226 documents, and other sets of 10 that occur in 211, 206, 186

documents, respectively. It is very likely that these five sets of 10 bits correspond to

five keywords that appear 238, 226, 211, 206, and 186 times in the plaintext corpus.

Similarly, the other sets of 10 bits probably represent one plaintext keyword each.

Each of these sets of 10 bits are equivalent to the tags from Chapter 3.2.
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Algorithm 3.1 Bloom Filter Tag Extraction

1: Let S be the set of sets of bits
2: Let D be the set of encrypted documents
3: Let B be the set of Bloom filters B = {Bd : d ∈ D}
4: Let k be the number hash functions in each bloom filter
5:

6: function FindTags(S, D, B, k)
7: Let T ← ∅ . T will be the set of extracted tags
8: for b ∈ S do
9: if |b| == k then

10: T ← T ∪ b
11: else
12: T ← T ∪ Split(b)

return T
13:

14: function Split(b)
15: for d ∈ D do
16: Let s1 ← b ∩Bd

17: Let s2 ← b \ s1

18: if |s1| == k then return {s1} ∪ Split(s2)
19: else if |s2| == k then return {s2} ∪ Split(s1)
20: else if k < |s1| < |b| − k then return Split(s1) ∪ Split(s2)
21: else
22: Continue
23: return b

Other sets of bits likely include multiple plaintext keywords. For example in Figure

3.7, there are 20 bits that appear in 84 documents and 40 bits that appear in 79 doc-

uments. These sets probably represent two keywords that each appear 84 times and

four keywords that each appear 79 times. We can identify the 10 bits that correspond

to each distinct keyword if we can find an encrypted document that contains the given

keyword but none of the other keywords that have the same count. Algorithm 3.1

gives a more formal specification of our technique for finding such a document.

In some cases there is no such document in the encrypted corpus, and so our algorithm

fails to split a larger set of bits into individual keywords. This pattern means that the

words in that set always appear together in the same documents, and therefore they
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will be indistinguishable under the graph matching attack anyway. The important

thing is that we have identified a set of keywords that always appear together; this

is sufficient for setting up the graph matching attack.

Inexact Matching. Finally, there are some sets whose sizes are not nice multiples

of h. Some sets have extra bits, and some sets appear to be missing bits. In our

example, there is only one bit with a count of 129, and the set with count 99 has

only 9 bits in it. It is likely that we are seeing the results of a collision in one of

the PRFs. The bit with count 129 probably belongs with the bits in the set with

count 99, representing a plaintext keyword that appears in 99 documents. This same

bit must also go with one or more other keywords that collectively occur in 30 other

documents to bring its total count up to 129.

In cases like this example, it is tempting to treat the set of 9 bits as a “good enough”

match for a plaintext keyword. Then we can ignore the left-over singleton bits such

as the one above. But how likely is it that those 9 bits are a real word and not a

false positive? To evaluate this likelihood, recall formula 2.1, the probability that a

specific bit is set to one after all elements are entered into the Bloom filter:

PR[biti = 1] = 1− (1− 1

s
)ht ≈ 1− e

−ht
s

Also recall formula 2.2, the false positive rate for Bloom filters:

ph where p = PR[biti = 1]

We can modify this formula to calculate the false positive rate when we only require

a match on ` ≤ h bits:

(1− e
−ht
s )`
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Mimesis uses a Bloom filter with s = 224, h = 10. The Enron emails contain on

average t = 101 unique keywords. The false positive rate with these parameters when

matching on 10 bits = 6.25×10−43. The false positive rate with 9 bits = 1.04×10−38

and 8 bits = 1.72× 10−34.

It appears that we can safely create a node in our graph matching step whenever we

find a group of ` bits that tend to appear together, even if ` is smaller than h. We

present experimental results for 8 and 10 bits in Chapter 3.4.2.

Graph Matching on Extracted Tags. After finding the sets of bits that we

believe correspond to each of the top keywords in the corpus, we again use the graph

matching attack to match each set of Bloom filter bits to its best-fitting plaintext

keyword.

3.4.2 Empirical Evaluation

We evaluate our attacks on Mimesis in two parts. First, we measure the ability of

the tag recovery algorithm to extract the correct set of bits from the Bloom filter for

each keyword. Then, we measure the accuracy of the graph matching attack when

its list of tags comes not from ground truth, but from the (possibly incorrect) set of

tags extracted by the attack on Mimesis.

We created a Bloom filter for each email in the Enron corpus. The Bloom filter

parameters we used are the same parameters from [48], s = 224 bits and h = 10

hashes. HMAC-SHA-256 is the PRF, with each hash in h receiving a unique key.

3.4.3 Bloom Filter Attack

An attack on the Bloom filter is successful when a set of h bits is successfully identified

as a tag for the corresponding keyword. Figure 3.8 shows the average accuracy of
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our attack across all users in the Enron corpus changes as we increase the number of

words targeted. With the majority of users, we were able to recover over 80% of the

tags up to the top 1000 words used.

In addition to our experiments that required us to identify all 10 bits for each tag,

we also ran experiments relaxing this restriction. The loosened restriction means if

we can identify as few as 8 bits that have similar counts and belong to the same set

of documents, those 8 bits are considered a tag. Figure 3.8 compares the tag finding

accuracy on the Enron corpus matching 10 bits for each tag compared to the less

restrictive matching on 8 bits. The dashed lines show the accuracy of the top 10% of

the attack results against Enron accounts from the test. The dotted lines reflect the

bottom 10% of the attack results.
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Figure 3.8: Tag Finding accuracy on Enron corpus Bloom filters with parameters:
h=10 and Bloom filter size = 224, matching on 8 and 10 bits

3.4.4 Graph Matching Attacks

The real evidence regarding whether matching on less than k bits is effective, is to

compare the results from graph matching. Figure 3.9 shows the graphm accuracy of

the ShadowCrypt tags compared to the accuracy of the Mimesis tags matching on

all 10 bits versus matching on 8 bits. As with the previous graph, the dashed lines

show the accuracy of the top 10% of the attack performances from the test. The

dotted lines reflect the bottom 10% of the attack performances.
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Figure 3.9: Accuracy of Weighted Graph Matching attack (PATH Algorithm) for
Mimesis and ShadowCrypt on Enron Data

The accuracy on these graphm attacks for the Bloom filters appears to degrade quickly

between the 100 and 300 word count. Discovering an improved tag finding attack

would certainly help improve the attack accuracy. We believe it also makes a signifi-

cant difference which tags are not found from the tag finding attack. A tag that has

a high rate of occurrence will have a larger effect on the graphm algorithm than a tag

with a lower rate. Missing the tag with the highest occurrence would certainly have

an increased adverse effect compared to missing the tag with the 100th highest count.

Future work might involve analyzing the relationship among the occurrence counts

of the tags that are not found from the graph matching and working on algorithms
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to maximize the attack on discovering those specific tags.

The success rate of the graphm attack with the tags recovered from the Bloom filter

is fairly low with a vocabulary size of 1000. However, even an attack that has only a

10% success rate is still much better than random guessing and reveals much to an

adversary.

3.5 Mitigation

The obvious effective defense against our attacks is to use an encrypted search con-

struction that reveals much less information to the adversary, e.g. SSE [15]. However,

for many real use cases the operational requirements only admit efficiently searchable

schemes [32]. Here we describe a novel strategy for defending EDESE schemes against

inference attacks by carefully tuning the Bloom filter parameters.

When deciding which Bloom filter parameters to use for encrypted search, many

previous works [29, 48, 54] discuss how the parameters affect the false positive rate.

Until now, little or no attention has been paid to how the choice of parameters

may affect security. Our experiments in the previous section demonstrate that the

parameters used in Mimesis Aegis are susceptible to attack. Our analysis in this

section reveals that the attacks are possible because the Bloom filter used in Mimesis

is much larger than necessary. With careful tuning of the parameters, we can make

inference attacks much more difficult.

Broder and Mitzenmacher [13] describe a technique for picking the optimal number

of hash functions in a Bloom filter to minimize its false positive rate. Given a Bloom

filter with s bits and a document length of t keywords, the FP rate is minimized at

h = ln(2 ∗ (s/t))
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As a side effect of this parameter choice, it happens that each bit in the Bloom filter

will be set with probability 50% in each document. Intuitively, this will make it more

difficult for the adversary to extract information about which keywords appear in

which documents.

After removing stop words, the Enron corpus has an average of 101 unique keywords

per document. Applying this formula with s = 224 and t = 101 results in an optimal

value of h = 115, 139. Clearly, using more than 100,000 hash functions is not practical.

So instead we looked at modifying s, the size of the bloom filter. Applying the same

formula, but instead using h = 10, t = 101 and solving for s, we get a value in between

211 and 212.

To test this approach, we re-ran our tag finding attack against the Enron corpus,

using a constant value of h = 10 hash functions, but varying the size of the Bloom

filter from 210 to 222. For each configuration, we computed the average accuracy of

the tag finding attack and the expected false-positive rate offered by the Bloom filter.

The results of this experiment are shown in Figure 3.10. Setting the size of the Bloom

filter close to the value derived from the formula above is very effective in reducing

the accuracy of the attack. For s = 212, the attacker is unable to find the tags for

even the top 100 most common keywords. Without tags, the attacker cannot even

attempt the graph matching attack. Moreover, with these parameters, the Bloom

filter still offers a very low false positive rate of 2.5 × 10−5. A side benefit of this

approach is that it is also more space efficient. With a Bloom filter of only 212 bits,

each tag can be much smaller than in the default Mimesis configuration.

But as s grows large relative to h = 10, the success of our attack grows very quickly.

With 222 bits, we can find tags for more than 60% of the top 1000 keywords. At the

same time, the tags must also grow to encode more bits.
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Figure 3.10: Tag finding accuracy on Enron corpus with variable sized Bloom filters
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Analysis. With the naive choice of Bloom parameters, there is nearly a 1:1 corre-

spondence between the bits in the Bloom filters and the keywords that generated

those bits. The modified Bloom filter parameters weaken this relationship, and as a

result, the attack is much less successful.

To make this more precise, let q be the “baseline” probability that any given bit, b,

is set in any given Bloom filter. Using the equations from Broder et al. [13], we can

compute q from the number of words per document, t, the number of hash functions,

h, and the size of the Bloom filter, s:

q = 1− (1− 1

s
)−ht ≈ 1− e

−ht
s .

Using the default parameters from Mimesis Aegis [48], we obtain our original q value

q0 = 6.01x10−5.

On the other hand, if some keyword w sets bit b = 1, and w occurs in fraction p of

the documents, then we should expect to see bit b set in about p · 1 + (1 − p) · q of

the encrypted corpus. If the resulting frequency differs significantly from q, then the

adversary can easily tell which bits go together. Table 3.2 illustrates this effect. With

q = q0, we expect the bits for each keyword to have a unique frequency very close

to the frequency, p, of the keyword itself. For example, bits for the most common

keyword should appear in about 54% of the encrypted corpus, and bits for the 100th

most common keyword should appear in about 9.4% of the documents.

By increasing q, we can make the attack more difficult. The optimized parameters

from Broder et al. [13] set q at about 0.5, but it is also possible to drive q even higher

while maintaining a low false positive rate. For example, with s = 211 and h = 25, we

get q = 0.709, and the probability of a false positive is less than 10−3. Table 3.2 shows

how the bit frequencies change as we increase q. With q = 0.7, the frequencies for
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all bits belonging to the top 300–1000 words will be roughly similar. These similar

frequencies makes it increasingly likely that large numbers of bits will be grouped

together in the first phase of our attack, and increasingly likely that Algorithm 3.1

will fail to find the unique documents it needs in order to identify the groups of bits

for individual keywords.

Word
p

Pr[bit b = 1]
Rank q = q0 q = 0.5 q = 0.7 q = 0.9

1 0.540 0.540 0.770 0.862 0.954
10 0.311 0.311 0.656 0.793 0.931
50 0.135 0.135 0.568 0.741 0.914
100 0.094 0.094 0.547 0.728 0.909
200 0.062 0.062 0.531 0.719 0.906
300 0.048 0.048 0.524 0.714 0.905
400 0.039 0.039 0.520 0.712 0.904
500 0.034 0.034 0.517 0.710 0.903
600 0.029 0.029 0.515 0.709 0.903
700 0.026 0.026 0.513 0.708 0.903
800 0.023 0.023 0.512 0.707 0.902
900 0.021 0.021 0.511 0.706 0.902
1000 0.019 0.019 0.510 0.706 0.902

Table 3.2: Impact of Bloom filter parameters on bit frequency; Parameters from [48]
give q0 = 6.01x10−5

We caution the reader that these results do not in any way constitute a proof of

security, and it is possible that new attacks might still be devised against the improved

Bloom filter parameters. Also, the analysis above depends on a few critical simplifying

assumptions that do not necessarily hold in practice. First, the equations from Broder

et al. [13] assume that the words in the documents are uniformly random; this uniform

property is certainly not true for natural language texts. Second, our simplified

analysis here assumes that all documents contain the same number of words; this is

also untrue for any non-trivial text corpus.

Review. We presented new inference attacks on two recent schemes for efficiently de-

ployable, efficiently searchable encryption. Unlike earlier attacks, ours do not require

special knowledge of the documents in the target encrypted corpus. Our analysis of
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Bloom filters in Mimesis Aegis illustrates the importance of Bloom filter parameters

on the security of the system. We believe our attack would also be effective against

other searchable encryption schemes that rely on Bloom filters, such as the SADS

anonymous encrypted database [54]. These attacks validate the SADS author’s deci-

sion to use different hash functions for each document in a later version of the system

[51]. Similarly, Goh [29] briefly discusses the possibility of using Mimesis-style tags

for efficient searchability. Our results also validate his decision to apply a second layer

of protection to his Bloom filters before uploading them to the untrusted server.

Although we have shown that careful tuning of the BF parameters breaks the attacks

presented here, we do not have a proof that this defense will be effective against all

such attacks. The leakage analysis (5.4) of the construction from Chapter 5 shows

that this defense is likely not adequate against more sophisticated attacks.
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4 Weakly Randomized Encryption

The goal for the Weakly Randomized Encryption construction is maximizing security

in operational scenarios where deployability is a strict requirement. As a consequence

of this deployability requirement, the security of our schemes will necessarily be some-

what less compared to other approaches where easy real-world deployment is of no

concern.

Still, we aim to provide provable security against the most common adversaries, for

applications that otherwise could afford no security at all.

We present a new, efficiently searchable, easily deployable database encryption scheme

that is provably secure against inference attacks even when used with low-entropy data

from the real world.

The security of our schemes is tunable with a single parameter, allowing database

owners to choose the most appropriate balance of security versus runtime performance

and space overhead for the demands of their individual applications. We also achieve

even stronger levels of security by bucketizing a small portion of the data.

Weakly Randomized Encryption. Our core technique is a generalization of a

“folklore” encryption technique that we call weakly randomized encryption (WRE).

WRE is a middle ground between deterministic encryption (DET) and conventional,

strongly randomized encryption. With deterministic encryption, each time a plaintext

is encrypted, it yields the same ciphertext. DET enables efficient, logarithmic-time

search because it allows a legacy server to create an index from only ciphertexts, but

it provides very little security for real data [49]. Conventional (strongly) randomized

encryption prevents the adversary from learning even a single bit about the plaintext

[31], but in doing so, it also precludes the possibility of efficient search.
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In weakly randomized encryption, only a few bits of randomness sampled from a

low-entropy distribution are used in each encryption. Our analysis shows that this

weak randomness is sufficient to protect against inference attacks if we choose the

distribution carefully. In order to perform our WRE schemes, one must know the

probability distribution of the plaintexts. We believe it is not unreasonable to ask

that the data owner must know his data at least as well as the attacker does. The

distribution can also be calculated during database initialization.

Deployability. Our constructions are compatible with standard SQL relational

databases. They can be deployed immediately on popular cloud service platforms

including Google Cloud SQL1 and Amazon Relational Database Service2. They are

efficiently scalable up to databases containing millions of records. We performed

queries returning up to 10,000,000 records. Our encrypted database, including its

server-generated indexes, requires less than twice the space required for the plaintext

DB. Query response time with our Poisson Random Frequency construction achieves

response times within 27% of those of the plaintext database.

Security. We show that our construction is secure against a passive “snapshot” at-

tacker. We give the adversary access to only the encrypted data and a source of aux-

iliary information. We assume he does not have access to the encrypted queries, the

access patterns or return results. This model includes important real-world threats,

including attackers who can obtain offline access to the encrypted database by SQL

injection or by stealing a backup hard drive. In contrast, previous easily deployable,

efficiently searchable schemes fail to achieve even this modest level of security [49].

We acknowledge that the adversary in this model is weaker than the more powerful

adversaries that are typically considered for SSE or oblivious RAM. For new applica-

1https://cloud.google.com/sql/
2https://aws.amazon.com/rds/
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tions that do not require deployability on legacy infrastructure, we recommend that

system builders use those stronger but less-deployable constructions.

Outline. In the remainder of this chapter, we introduce our notion of security for

Weakly Randomized Encryption (WRE) against inference attacks in Chapter 4.1 and

in Chapter 4.2 we present the generic template for a Weakly Randomized Encryption.

Then, in Chapter 4.3 we give sequentially stronger variations on this idea, leading up

to our most secure construction, WRE with bucketized Poisson salt allocation. We

evaluate the performance of our new constructions experimentally with real databases

in Chapter 4.4.

4.1 Security Definitions

Our security definitions are closely modeled after the standard notion of security

against a chosen plaintext attack. Like all previous efficiently searchable construc-

tions, our scheme does not meet the standard definition of Indistinguishable Under

Chosen Plaintext Attack (IND-CPA) security, as we must reveal the equality of some

plaintexts in order to allow efficient searching. We extend the standard IND-CPA

definition as follows:

Where the CPA adversary submits pairs of plaintext messages to its challenger, our

adversary submits pairs of lists of messages. In the real world, a snapshot adversary

does not know the order in which plaintext messages were added to the database. To

capture this limitation on the adversary, in our game after the challenger randomly

selects one list of messages, they randomly shuffle the selected list to prevent the

adversary from using any information about the original order. Finally, the challenger

encrypts all messages in the shuffled list and provides the encrypted list back to the

adversary. The adversary’s task is then to determine which list was selected. This
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security definition is very similar to the Indistinguishable Multiple Encryptions in

Presence of an Eavesdropper [41] definition. The primary difference is the shuffled

list.

The two lists of messages are required to contain the same number of messages, and

the messages (across both lists) must all be of the same size. Otherwise the adversary

could use the size of the ciphertexts to distinguish between the lists of messages.

We call our security game Indistinguishable Shuffled Multiple Encryptions (IND-

SME).

Definition 4.1 (The IND-SME Indistinguishability Experiment). Let Π = (Gen,

Enc, Dec) be a WRE searchable encryption scheme with message space M and key

space K. Let X be the security parameter for Π. Let A be an probabilistic polynomial

time adversary.

IND-SMEΠ,A(n,X ):

• (k0, k1)← Gen(1n).

• Adversary A is given (1n,X ) and chooses a pair of lists of messages M0,M1

where |M0| = |M1| and for all mi ∈M0,mk ∈M1, |mi| = |mj|

• A uniform bit b ∈ 0, 1 is chosen.

• A is given edb← Enc((k0, k1,X ), PRS(Mb)).

• A outputs a bit, b′

• If b = b′, then the output is 1 and A succeeds. A zero is output otherwise.

Definition 4.2 (IND-SME Indistinguishability). We say that the encryption scheme

Π with security parameters λ and n has IND-SME security if, for all probabilistic

polynomial time adversaries A,
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Pr[IND-SMEA(n,X ) = 1] ≤ 1

2
+ negl(X , n)

where (X , n) are the security parameters of our scheme.

In Chapter 4.3, we introduce our constructions and in Chapter 4.3.4 we use our

security definitions to evaluate the single-column security of one of our construc-

tions (which uses a Poisson distribution). Our schemes are tuneable to trade off

performance for security, and have acceptable performance and security for sizable

databases, as shown in Chapter 5.11.

4.2 Weakly Randomized Encryption

In this section we formalize and extend a “folklore” technique that we call weakly

randomized encryption (WRE) in text and in Figure 4.1. This technique is the basis

for all variants described in Section 4.3.
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Weakly Randomized Encryption
Let F be a pseudorandom function with key length n1. Let Π′ =
(Gen′,Enc′,Dec′) be an IND-CPA secure private key encryption scheme with
message space m ∈ {0, 1}∗ and key length n0. Let getSalts be a function that
on input message m ∈ {0, 1}∗ and message probability distribution function Pm
and a security parameter X , outputs S, a list of integers representing the salts
and PS, a probability distribution over the salts. Define a private-key weakly
randomized encryption scheme Π as follows:

• Gen: On input 1n0 , 1n1 run Gen′(1n0) receiving key k0 and choose uniform
k1 ∈ {0, 1}n1 . Choose security parameter X .

• Enc: On input keys k0, k1, security parameter X , and a message m, choose
a random salt:

– (S, PS)← getSalts(m,Pm,X )

– s← sample(S, PS)

– Output the (search tag, ciphertext):

(t, c)←
(
Fk1(s||m), Enc′k0(m)

)
• Dec: On input key k0, and ciphertext (t, c) output plaintext message:

m← Dec′k0(c)

• Search: On input keys k0, k1, parameter X , and a message m:

– (S, PS)← getSalts(m,Pm,X )

– Output query (query) on table (T ) containing search tag column (Tt)
as shown below:

query ←
(
Tt = Fk1(s1||m)

)
∨(

Tt = Fk1(s2||m)
)
∨ ...∨(

Tt = Fk1(s|s|||m)
)

Figure 4.1: Weakly Randomized Encryption, Decryption and Search

Previous efficiently searchable encryption constructions either have specific require-

ments on the plaintext data, such as high min-entropy [5], or place limitations on the

adversary, such as limiting oracle queries to distinct plaintexts [2].
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We can reduce the vulnerability of deterministic encryption due to frequency analysis

and other leakage inference attacks by adding a small amount of randomness to the

encryption.

We show how a weakly randomized encryption scheme can be constructed as the com-

position of (i) any efficiently-searchable encryption scheme that satisfies the security

definitions from Amanatidis et al. [2] and (ii) a weak randomization, or “salting,”

function. In this work, we construct our schemes using a variation of the Amanatidis,

Boldyreva, and O’Neill [2] ESE, which is itself composed of a randomized encryption

scheme (RE) that leaks nothing about the plaintext and a pseudo-random function

(PRF ) that leaks nothing except equality.

Encryption. The WRE encryption takes as input symmetric keys k0, k1; a plaintext

m; and the probability distribution PM of the plaintexts. The encryption algorithm

begins by calling the getSalts subroutine to pseudorandomly generate a probability

distribution PS over a set S of salts for the message m. The getSalts subroutine

uses the plaintext distribution PM to choose a distribution for the salts that makes

the frequencies of the ciphertexts (nearly) independent of the plaintext. We give

a handful of candidate algorithms for getSalts, and evaluate their security, in the

following sections. A salt s ∈ S is chosen at random according to PS and is pre-

pended to the message. The encoding of the pre-pended salts must ensure that no

pairs of salts and messages of different lengths results in the same search tag. Finally,

the salt and plaintext are input into the PRF to create the search tag and the plaintext

is encrypted with the randomized encryption algorithm.

Search. To search the encrypted database for all records with plaintext equal to m,

the client first computes all possible search tags t1, t2, . . . , tn for m and then requests

all records having tags equal to t1 or t2 ... or tn. Because the number of unique
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search tags for each plaintext is small, WRE allows the server to build useful indexes

on the encrypted data, just as with DET. To perform the search for each ti, the

server can use built-in indexing techniques to return the list of matching records on

columns added by our scheme. Because no custom indexing scheme needs be used, it

is deployable on unmodified DBMS services.

Decryption. Given a search tag and a randomized ciphertext, the WRE decryption

routine discards the tag and uses the randomized encryption scheme’s decryption

function on the ciphertext to obtain the plaintext.

Updates. One advantage of WRE versus stronger searchable encryption schemes

such as SSE, is that updates are simple with WRE. To insert a new record in the

encrypted database, we use the encryption function to obtain its weakly randomized

search tag and its (strongly randomized) ciphertext. Then we simply append the tag

and ciphertext to the database. If we assume new records inserted are drawn from

the same plaintext distribution, then adding new records will not affect the WRE tag

frequencies. Thus it is secure under the snapshot adversary model. The challenge

with SSE updates comes from a different security model that allows the adversary to

query the database while providing forward security. Because of the security model

and the encrypted indexes used by SSE, SSE typically performs updates in batches

using new keys, resulting in multiple indexes.

Future work will address security when the distribution changes from updates or if

the adversary has specific knowledge of the updated records.

The improvement in security, if any, of WRE over deterministic encryption is not

immediately clear. Surprisingly, our analysis also shows that, with a carefully chosen

getSalts algorithm, we can construct a weakly randomized encryption that leaks

virtually no information about the plaintext to a snapshot adversary who knows the
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distribution PM .

4.3 WRE Schemes

In this section, we present our variants that each complete the WRE construction

described in Chapter 4.2. We first present simpler, weaker constructions to give

the reader an understanding of our motivations for our later, more secure schemes

in Chapters 4.3.4 and 4.3.5. We do not fully analyze the security of these weaker

schemes because we believe they are inferior to later schemes.

4.3.1 Fixed Salts Method

We refer to the “folklore” version of weakly randomized encryption as the “fixed

salts” method, because it always uses a constant number of salts for every plaintext,

regardless of the frequency of the plaintext. We label the security parameter of this

scheme as N , the number of unique salts per plaintext.

Notion of Security. If a plaintext m occurs in the unencrypted database with

frequency p, then with fixed salts, each of m’s N ciphertexts will occur in the EDB

with frequency p
N

. Intuitively, the fixed salt method improves on the security of

deterministic encryption because it reduces the differences in the plaintext frequencies.

Limitations. First, the overall improvement to security is small. For large databases,

the adversary can still guess the plaintext with very high accuracy. Second, the fixed

salt WRE is not very efficient. In order to achieve any security for a database of mod-

erate size, it needs a large number of salts, making query processing unnecessarily

intensive, especially for low-frequency plaintexts. We could potentially improve both

of these aspects if we modified the chance of picking each salt with the frequency of

its respective plaintext. We formalize this idea in the next section.

64



4.3.2 Proportional Salts Method

The fixed salts method can be improved by taking into account the frequencies of

the plaintexts in the database. Intuitively, we would like each search tag to occur

with roughly the same frequency, regardless of the plaintext. In the proportional salts

method, we allocate a different number of salts to each plaintext, in proportion to

its frequency in the plaintext data. Let the security parameter be the total number

of unique ciphertexts be NT . Then for a plaintext m with frequency PM(m), we use

Nm ≈ PM(m) ·NT salts. Therefore, for any two plaintexts m0,m1 ∈M, their search

tags will appear in the EDB with approximately the same frequency.

Limitations. Unlike the fixed salts method, proportional salt allocation requires

that the data owner must know the plaintext distribution PM in order to encrypt a

message.

Another limitation of proportional salts stems from the fact that we must allocate

an integer number of salts for each plaintext. This limitation gives rise to an aliasing

problem, where in certain situations using more salts can actually reduce the secu-

rity. For example, consider an example database column with PM(m1) = 0.7 and

PM(m2) = 0.3. For NT = 10, this works out nicely, but if we encrypt this database

with NT = 12, then we will round our number of search tags to 8 for plaintext m1,

each with frequency 0.0875, and 4 for plaintext m2, each with frequency 0.075. Given

sufficiently many encrypted records, the adversary will be able to distinguish the

plaintexts using this frequency disparity.

4.3.3 Remainder Salts

Scaling the number of salts with the frequency of the plaintext is effective, but these

frequencies will still have discrepancies, allowing for analysis. With only proportional
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salt scaling, we must choose a discrete number of salts, which means we cannot cre-

ate groups of unique ciphertexts with arbitrary frequencies from each plaintext. The

granularity is inversely proportional to the max salt count. With a high enough salt

count, we have more granularity for ciphertext frequencies, allowing their frequencies

to be very close together, hindering analysis. But requiring more salts means requir-

ing more complicated queries, slowing down query time and causing other efficiency

problems.

With the Remainder Salts method, we try encrypt as much of the database as possible

with ciphertexts that have statistically identical frequencies.

This extension biases our random number generator while choosing a salt, to choose

one salt less often than the rest, allowing these other salts to be chosen with any

frequency.

Algorithm 4.1 Remainder Salt Method

1: function GetSalts-Remainder(PM , m, k)
2: I ← PM(m) ·NT

3: Nr ← bIc
4: Nm ← Nr + 1
5: S ← [1, Nm]
6: for each s in S do
7: if s < Nm then
8: PS(s) = 1/NT

9: else
10: PS(s) = (1/NT ) ∗ (I −Nr)

11: return S, PS

Notion of Security. This technique allows us to set these “non-remainder salt”

ciphertext frequencies to exactly the same value, removing all frequency analysis.

Ciphertexts that are encrypted with a remainder salt are much easier to distinguish,

but this ciphertext is only a single ciphertext for each plaintext, so it should be a small

portion of the database. Because we can set the average frequency of non-remainder
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salt ciphertexts to any value, we set them all to the same value. This shared frequency

will be equal to 1/NT , where NT is the total number of non-remainder salts. Thus

we are intentionally leaking these remainder frequencies in exchange for improved

security for the rest of the data with identical frequencies and the efficiencies afforded

by using fewer salts.

4.3.4 Poisson Random Frequencies

A Poisson process is a simple stochastic process often used to model the arrival of

events in a system, for example the occurrence of earthquakes in a geographical region,

or the arrival of buses at a bus stop. In a Poisson process with rate parameter λ,

the times between arrival events, called the “interarrival times,” are independent and

identically distributed, and they follow an Exponential distribution with parameter

λ. The number of arrivals in an interval of length t is independent of the events in

all intervals before and after, and it is Poisson distributed with expected value λt.

In the Poisson variant of WRE, the security parameter is the Poisson rate parameter

λ. On expectation, this method will generate about λ + |M| search tags in total

across all plaintexts. To allocate salts for plaintext m ∈ M and to assign their

relative weights, we sample arrivals in the interval [0, PM(m)] from a Poisson process

with rate λ. Let the number of arrival events in the interval be N , and let their

times be denoted a1, . . . , aN . Additionally, we define a0 = 0 and aN+1 = PM(m). The

interarrival times are xi = ai − ai−1 for i ∈ 1, . . . , N + 1.

Based on the outcome of this experiment, we allocate N + 1 salts to plaintext m, and

when we encrypt m, we choose salt i with probability xi
PM (m)

. The resulting search

tag will then have frequency equal to xi in the encrypted database. Also note that

N has a Poisson distribution, thus on average we will allocate about λ · PM(m) + 1
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salts to plaintext m.

The pseudocode for our Poisson method’s algorithm is shown below in Algorithm 4.2.

Algorithm 4.2 Poisson Salt Distributions

1: function GetSalts-Poisson(PM , m, k, λ)
2: s = 0
3: E = Exponential(λ)
4: total = 0
5: while total < PM(m) do
6: s = s+ 1
7: weight[s]← Sample(E)
8: total = total + weight[s]

9: weight[s]← PM(m)− (total − weight[s])
10: S = [1, s]
11: for s ∈ S do
12: PS(s)← weight[s]

PM (m)

13: return S, PS

Security. Our analysis shows how the unique properties of the Poisson process make

it ideally suited for use in weakly randomized encryption. Most critically, the Poisson

process guarantees that, subject to one constraint on λ, all search tag frequencies for

all plaintexts are pseudorandom samples from indistinguishable Exponential distri-

butions. Therefore a computationally bounded adversary learns nothing about the

plaintext from the frequencies of the ciphertexts.

Proof sketch. In the Poisson approach, the frequency of the first salt for each

plaintext is not drawn from the same Exponential distribution as the others. To see

why this is so, notice that the Poisson process may generate zero arrival events in the

interval [0, PM(m)]. Zero arrival events happens whenever the first arrival time from

the Poisson process occurs after the end of the interval; in other words, when the first

interarrival time is greater than PM(m).

Then we have only a single salt, and hence a single ciphertext that appears in the
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encrypted database with the same probability as the plaintext, PM(m). Therefore

the distribution of the first search tag frequency is not in fact an Exponential; all the

probability mass that the Exponential would assign to values greater than PM(m) is

instead lumped onto the point PM(m). We call this distribution a “capped Exponen-

tial” with parameters λ and τ = PM(m). Figure 4.2 illustrates the difference between

the capped and regular Exponential distributions.

Figure 4.2: Complementary cumulative distribution for capped versus standard ex-
ponentials

The adversary could attempt to exploit this difference to their advantage in the IND-

SME game. In the extreme case, the adversary would choose M0 with all unique

plaintexts, and choose M1 where all m ∈ M1 are the same plaintext. With a low

value of λ, the messages from M0 in this example would all be drawn from the

capped exponential while all of the messages from M1 would not. However, with a

high enough λ in relation to the number of messages in M0, all of the messages from

M0 would be drawn from the non-capped exponential with very high probability. The
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important point is to choose an appropriate λ parameter based on the distribution

being encrypted.

The statistical distance between the standard Exponential(λ) and the capped Expo-

nential with λ and τ is defined in Definition 2.5 as one half of the total variation

distance between the two distributions. Notice that the two distributions are iden-

tical to the left of τ . Therefore all of the difference in distribution comes from the

upper tail of the standard Exponential, where the capped Exponential assigns zero

probability. From the definition of the Exponential distribution, this quantity is

∆(Exp(λ), CappedExp(λ, τ))

=Pr(X > τ |X ∼ Exp(λ))

=e−λτ

Thus the probability of the adversary distinquishing between the capped exponential

and exponential distributions is negligible in λ, which is the goal of our security

definition.

If we let τ = maxm PM(m) be the smallest plaintext frequency, then by increasing

λ relative to τ , we can make this probability arbitrarily small. Furthermore, we can

calculate the Poisson rate parameter λ that is required to achieve a desired security

parameter ω, where ω ≤ Pr(X > τ)):

λ ≥ logω

τ

Limitations. When the adversary has the frequencies of all search tags and knows

PM , Lacharite and Paterson [52] pointed out another possible attack, wherein the

adversary finds a set of search tags whose counts sum up to the expected count for

70



a (set of) target plaintext(s). The adversary might then reasonably conclude that

those search tags all represent encryptions of the given plaintext(s).

When the adversary targets a single plaintext, it must solve an instance of the subset

sum problem (SSP). When targeting multiple plaintexts simultaneously, the adversary

must solve an instance of the multiple knapsack problem (MKP). While both problems

are NP, there exist efficient approximation algorithms, for example Chekuri et al. [19].

Even if the adversary can find a solution to the computational problem, there is no

guarantee that the matching it finds will be correct. To see that this is true, consider

the case where each search tag occurs exactly once. Then all possible plaintext-to-

search-tag matchings give equally valid solutions to the problem, and the adversary

can do no better than random guessing. We leave a more detailed exploration of the

efficacy of such attacks for future work. Instead, in the following section, we present

an improved WRE construction using bucketization to eliminate the attack entirely.

4.3.5 Bucketized Poisson Random Frequencies

The Poisson WRE approach above generated randomized search tags for each plain-

text. Doing so makes any one search tag equally likely under all possible plaintexts,

so the adversary learns nothing by examining a single tag. Unfortunately, that does

not guarantee security against an adversary who considers the combined frequencies

of several tags at once. In this section, we show how a simple extension of the Pois-

son WRE approach, using bucketization, can protect against the matching attacks

described in the previous section.

Figure 4.3 illustrates the difference in the two schemes. In the (non-bucketized)

Poisson WRE, we sample a set of points from a Poisson process for each plaintext

m, over the interval [0, PM(m)]. We then use the inter-arrivals between the points to
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determine the frequencies of the search tags for m. This technique is equivalent to

starting with the set of points {FM(m) : m ∈ M} and then sampling more points

from the Poisson process over the interval [0, 1].

In the Bucketized Poisson approach, we omit the points from FM(m), and we simply

sample from the Poisson process, independent of the plaintext frequencies. As a

result, some inter-arrival intervals will overlap with the intervals for more than one

plaintext. Notice that in Figure 4.3 with the bucketized construction, the tag t3 can

represent either plaintext m1 or m2.

The Bucketized Poisson also makes a slight modification to the encryption and search

algorithms from Figure 4.1. Instead of inputting the plaintext appended to a salt to

the PRF, just the salt is given.

• Enc: on input keys k0, k1, security parameter X , plaintext distribution PM and

a message m, choose a uniform salt

(S, SM)← getSalts(PM ,X )

s← sample(S(m), SM(m))

Output the (search tag, ciphertext):

(t, c)←
(
Fk1(s), Enc

′
k0

(m)
)

• Search: on input keys k0, k1, parameter X , and a message m, let (S, SM) ←

getSalts(PM ,X )} s = S(m). Output search query:

q ← Tt = Fk1(s1) ∨ Tt = Fk1(s2) ∨ ... ∨ Tt = Fk1(s|s|)

This additional ambiguity completely removes the small advantage that an adversary

might obtain from the imperfection of the capped exponential distribution. It also
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Figure 4.3: Poisson Search Tag Frequency Example

negates any kind of frequency-based matching attack, because the tag frequencies

and the plaintext frequencies are independent. The downside is that with the buck-

etized WRE, query results will contain a small number of false positives. The false

positive rate is controlled by parameter λ: increasing λ (thus decreasing the expected

frequency of each tag) decreases the expected number of false positives.

Theorem 4.1 (Single-Column Security for Bucketized Poisson WRE). A Bucketized

Poisson WRE scheme with parameters (λ, n0, n1), is IND-SME secure.

Proof sketch. Assuming the adversary cannot attack the PRF or Π′, then this

construction only leaks frequency and ordering. With the Bucketized Poisson algo-

rithm, the actual ciphertext search tags will have exactly the same values and the

same frequency, no matter which M0 or M1 is encrypted. The only difference will

be the ordering of these search tags. Since the ordering is determined by the output

of a pseudo-random shuffle, the adversary cannot learn anything from this ordering

either. The security of this construction also does not depend on λ like the first

Poisson approach as λ only affects the false positive rate and performance.
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Algorithm 4.3 Bucketized Poisson

1: function GetSalts-Poisson(PM ,M ,m, k, λ)
2: s = 0
3: wordFr = [], salts = []
4: E = Exponential(λ)
5: total = 0
6: while total < 1.0 do
7: s = s+ 1
8: weight[s]

$← Sample(E)
9: total = total + weight[s]

10: weight[s]← 1.0− (total − weight[s])
11: M ′ ← PRS(M)
12: fr = PM(m′1) + ...PM(m′x−1) where m = m′x
13: i = 0, cdf = 0
14: while cdf < fr do
15: cdf = cdf + weights[i]
16: i = i+ 1

17: weights[i] = cdf − fr
18: cdf = fr
19: while cdf < (fr + PM(m)) do

20: wordFr.append
(
weights[i]

fr

)
21: salts.append(i)
22: i = i+ 1
23: cdf ← cdf + weights[i]

24: if cdf > (fr + PM(m)) then
25: dif ← (fr + PM(m))− cdf
26: wordFr.append

(
weights[i]−dif

fr

)
27: salts.append(i)

return (salts, wordFr)
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4.4 Performance Evaluation

We implemented several flavors of weakly randomized encryption, including the fixed

salts method and Poisson salt allocation, in the Haskell programming language. To

evaluate the performance of our prototype on realistic data and queries at a variety

of scales, we used the SPARTA [61] framework from MIT-LL.

The SPARTA test framework includes a data generator and a query generator. The

data generator builds artificial data sets with realistic statistics based on real data

from the US Census and Project Gutenberg. Table 4.1 illustrates the table schema

used in our tests. The query generator creates queries for this test database based on

the desired query types and number of return results.

4.4.1 Experimental Setup

We used the database generator to generate databases with 100,000 records, 1 million

records and 10 million records. We generated over 1,000 queries for each database,

consisting of a mix of queries that returned result sizes between 1 and 10,000 records.

We encrypted the columns fname, lname, ssn, city, and zip with WRE. The rest of

the SPARTA columns were inserted into the test database in plaintext.

Each encrypted column is expanded into two columns: one 64 bit Integer column for

the WRE search tag and another column to hold the (strongly randomized) AES-

encrypted data. The plaintext table contains 23 columns. Therefore the cipher-

text table contains the 23 encrypted data columns, plus the 5 additional search tag

columns. Each search tag column is indexed.

We tested the performance of the fixed salt method with 100 and 1,000 salts, and we

tested Poisson salt allocation using λ of 100, 1,000, and 10,000.
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Column Name Column Type

id BIGINT
fname CHAR 11
lname CHAR 15

ssn CHAR 9
dob DATE
age INT

address CHAR 100
city CHAR 35
state ENUM
zip CHAR 5
sex ENUM
race ENUM

marital status ENUM
school enrolled ENUM

citizenship ENUM
income INT

military service ENUM
language ENUM

hours worked per week SMALLINT
weeks worked last year TINYINT

last updated INT
foo BIGINT
xml VARCHAR 10,000

Table 4.1: Table Schema
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We performed the tests with the client and the database server located on the same

local network via a 1 Gbps Ethernet switch. The server has 12 CPU cores (dual Xeon

E5645), 64GB of RAM, and an array of 10k RPM hard drives. It runs the Ubuntu

Server 14.04 operating system and Postgres 9.6 as the DBMS.

4.4.2 Experimental Results

Ciphertext Expansion. Table 4.2 shows the overall ciphertext expansion, including

the ciphertext expansion from the AES encrypted data, the additional search tag

columns and the additional indexes on the search columns. Note that the number of

salts used and whether a fixed salt or a Poisson Salt Distribution do not affect the

database size. The database ciphertext expansion is directly related to the number

and type of columns encrypted.

Encryption Type DB Size DB + Indexes Size
100k Plaintext 112 MB 136 MB
100k Encrypted 156 MB 244 MB

1M Plaintext 1116 MB 1365 MB
1M Encrypted 1558 MB 2447 MB
10M Plaintext 11 GB 13 GB
10M Encrypted 15 GB 24 GB

Table 4.2: Ciphertext Expansion

Database Creation. Inserting 10 million plaintext records took a total 6,356

seconds on average. Inserting 10 million ciphertext records took 58,604 seconds on

average. Because the database must only be initialized once, the practical impact of

this 9x slowdown is not especially significant for most applications. Also, we believe

that with a little effort, the performance of our un-optimized implementation could

be improved substantially.
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Query Runtime. We performed two variations of each SPARTA-generated query.

The first variation takes the form SELECT ID from main where column = value.

Since column ID is the primary key, these queries only require that the DBMS scan

the indexes to find the list of matching records. The second variation takes the form

SELECT * from main where column = value. This selects the entire record, and

thus requires retrieving the encrypted records from storage and transferring them

across the network. The time shown for each query includes the time to compute the

encrypted query.

Since caching can have a big impact on database performance, we ran each set of

queries under two scenarios. In the first scenario we cleared the caches in the OS and

in the Postgres database before running each query. To clear the Postgres cache, we

restarted Postgres. To clear the OS cache, we ran the following:

echo 3 > /proc/sys/vm/drop caches

In the other scenario, the cache was left alone.

Figures 4.4 and 4.5 display tests run with a cold cache. Figures 4.6 and 4.7 have the

results of the warm cache tests.

The results of these experiments show that the WRE schemes achieve query response

times with our Poisson Random Frequency construction within 27% of plaintext

database response times on equality queries. As expected, as the number of unique

search tags increases, so does the query response time. Across all of our experimental

configurations, the Fixed Salt scheme with 1000 salts is slower than the Poisson con-

struction with λ = 1000, and similarly, the Poisson with λ = 1000 performs slightly

slower than Poisson with λ = 100. This result is not surprising, since the Fixed Salt

technique generates 1000 tags for each plaintext, while the λ = 1000 results in λ+|M |

tags for the entire column.
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Reset Cache Before Each Query

Figure 4.4: “SELECT ID” Equality Query Runtime

Figure 4.5: “SELECT *” Equality Query Runtime
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Warm Cache No Cache Reset

Figure 4.6: “SELECT ID” Equality Query Runtime

Figure 4.7: “SELECT *” Equality Query Runtime
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Figure 4.8: Bucketized Poisson False Positive (λ = 1000)

Figure 4.9: Bucketized Poisson False Positive (λ = 10, 000)
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Bucketized Poisson False Positives. In Chapter 4.3.5, we mentioned that the

Bucketized Poisson algorithm may result in false positives in the search result. Figures

4.8 and 4.9 show the false positives introduced on the SPARTA queries used in our

performance evaluation. The X axis shows the number of records returned for each

query with Poisson salt allocation, which does not introduce false positives. The Y

axis shows the number of records returned for the same queries with the bucketized

version of the algorithm.

With lower values of λ, the Bucketized Poisson algorithm appears to mask the true

number of return results. In Figure 4.9, with λ = 10, 000, we see some correlation

between the number of matching records in the database and the number of ciphertext

records that match the bucketized query. However, in Figure 4.8 with λ = 1000, the

relationship is much weaker. In the future, this masking might be leveraged to prevent

reconstruction attacks [42, 47], where an adversary uses access pattern leakage to

recover the contents of the database.
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5 Easily Deployable Database Encrypted Search (EDDiES)

This chapter describes an easily deployable searchable encryption construction that

provides security against inference attacks, even using the SSE security model where

the adversary can issue queries.

Bloom Filter Index. Our technique uses Bloom filters as indexes, with one Bloom

filter per database record. Our variation of inserting words into the Bloom filter

indexes ensures that the bit address frequencies set to one in these indexes are uniform.

Postgres does not come with an efficient indexing solution for a Bloom filter, so we

built a custom Postgres index, allowing faster sub-linear search of these indexes.

Deployability. This construction is compatible with standard SQL relational

databases and can be deployed immediately on popular cloud service platforms includ-

ing Google Cloud SQL3 and Amazon Relational Database Service4. It is efficiently

scalable up to databases containing millions of records.

Performance. We tested our construction on databases of 1,000,000 records with

queries returning up to 10,000 records. Performances varied between 5 and 40 time

slowdown, depending on the security parameters used. However this slowdown ap-

pears as a constant factor. The performance mimics plaintext performance based on

the size of the return results, with a constant factor added to traverse the custom

index.

Security. We show that our construction meets the SSE non-adaptive security

definition. Informally, this definition means we define the leakage of our system and

show that we do not leak anything else. In addition, we take the necessary extra step

of analyzing the leakage to show what an adversary can learn from it, depending on

3https://cloud.google.com/sql/
4https://aws.amazon.com/rds/
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the security parameters used.

5.1 Background

5.1.1 Probability Background

Probability of the union of two events.

Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B] (5.1)

Probability of the union of three or more events.

Pr[A ∪B ∪ ... ∪ Z] = 1.0− Pr[¬A ∩ ¬B ∩ ... ∩ ¬Z] (5.2)

Independent Events. Two events are independent if the probability that one event

occurs has no effect on the probability of the other. If A, B are independent, then

Pr[A ∩B] = Pr[A] · Pr[B] (5.3)

If Equation 5.3 does not hold, then the events are dependent. If If A, B are dependent

then

Pr[A ∩B] = Pr[B|A] · Pr[A] (5.4)

Binomial Probability. If a binomial experiment consists of n trials and results in

x successes with the success of an individual trial is P . Then the binomial probability

b(x;n, P ) is:

b(x;n, P ) =
n!

x! · (n− x)!
· P x · (1− P )(n−x)
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5.1.2 Bloom Filter Background

Bloom filters [8] are probabilistic data structures that represent sets and support

membership queries. For applications that can tolerate a small false positive rate,

Bloom filters offer a space-efficient alternative to a full inverted index. Conceptually,

the Bloom filter is an array or bit vector of m bits, all initially set to zero.

The typical use of Bloom filters in searchable encryption uses one Bloom filter per

document or database record. Each keyword in the document or row is inserted into

the Bloom filter. Searching for a keyword involves simply checking each Bloom filter,

or searching a structure such as a tree of Bloom filters.

Recall from chapter 2.1.2, formula 2.1 provides the probability of any bit being set

to one in a Bloom filter:

PR[biti = 1] = 1− (1− 1

s
)ht ≈ 1− e

−ht
s

Where

s is the size of the Bloom filter

t is the number of words inserted into the Bloom filter

h is the number of hash functions

And formula 2.2 states the false positive rate:

ph where p = PR[biti = 1]
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However, these formulas assume the input to the Bloom filter is uniform. When the

input is not uniform, some bits will have a higher probability of being set to one than

others. In most database applications in the real world, the data is not uniform. The

probability of each bit set to one varies with non-uniform data. Using a Bloom filter

with a classical construction will not hide the frequencies of non-uniform data.

Hiding the frequencies is the key to our construction. We modify the classic Bloom

filter insertion technique to ensure that the bit frequencies are uniform, even when

non-uniform data is inserted.

5.2 Security Definitions

We define the security of our construction using the SSE framework from Curtmola et

al. [21]. Their framework requires a formal definition of the leakage. It then provides

an ideal-v-real game used to prove that a SSE adversary does not learn anything more

than the leakage. We use their framework with two modifications. Our encryption

algorithm has supplemental security parameter inputs. In addition to an encryption

key, we have Bloom filter parameters as input. Our leakage function also differs by

necessity, since our construction has a distinctive profile compared to a typical SSE

scheme.

5.2.1 SSE Definitions

SSE definitions focus on document collections. In a structured database application,

a table row is very similar to a document and we will use a table row in the same

setting as a document and treat them equivalently.

A table in a relational database contains one or more data categories in columns. Each

row, also called a record or tuple, contains a unique instance of data, for the categories
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defined by the columns. Each table has a unique primary key, which identifies the

information in a table. We will call this primary key the record ID, which is analogous

to a document ID.

Definition 5.1 (History). Let ∆ be a dictionary and D ⊆ 2∆ be a document collection

over ∆. A q-query history over D is a tuple H = (D,w) that includes the document

collection D and a vector of q keywords w = (w1, ..., wq).

Definition 5.2 (Access Pattern). Let ∆ be a dictionary and D ⊆ 2∆ be a document

collection over ∆. The access pattern induced by a q-query history H = (D,w), is

the tuple α(H) = (D(w1), ..., D(wq)) where D(wi) is the set of documents accesses

from query of keyword i.

Definition 5.3 (Search Pattern). Let ∆ be a dictionary and D ⊆ 2∆ be a document

collection over ∆. The search pattern induced by a q-query history H = (D,w), is a

symmetric binary matrix σ(H) such that for 1 ≤ i, j ≤ q, the element in the ith row

and jth column is 1 if wi = wj, and 0 otherwise.

The original leakage definition from [21] (trace) is below:

Definition 5.4 (Trace). Let ∆ be a dictionary and D ⊆ 2∆ be a document collection

over ∆. The trace induced by a q-query history H = (D,w), is a sequence τ(H) =

(|D1|, ..., |Dn|, α(H), σ(H)), comprised of the lengths of the documents in D, and the

access and search patterns induced by H.

Since our construction has additional leakage, we replaced Definition 5.4 with Defini-

tion 5.5, which we call leakage. Our additional leakage comes from our unencrypted

indexes. For now, we simply label this leakage L(I). In section 5.4, we will go into

detail about this leakage.
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Definition 5.5 (Leakage). Let ∆ be a dictionary and D ⊆ 2∆ be a document col-

lection over ∆. The leakage induced by a q-query history H = (D,w), is a sequence

τ(H) = (L(I), α(H), σ(H)), comprised of the index leakage L and the access and

search patterns induced by H.

Definition 5.6 (Non-adaptive semantic security). Let SSE = (Gen,Enc,Trpdr,Search,Dec)

be an index-based SSE scheme, pm be the security parameters, A be an adversary, S

be a simulator and consider the following probabilistic experiments:

RealSSE,A(pm)

K ← Gen(1k)

(stA, H)← A(pm)

parse H as (D,w)

(I, c)← EncK(D)

for 1 ≤ i ≤ q,

ti ← TrpdrK(wi)

let t = (t1, ..., tq)

output v = (I, c, t) and stA.

SimSSE,A,S(pm)

v ← (S(τ(H)))

output v = (I, c, t) and stA.

We say that SSE is semantically secure if for all polynomial-size adversaries A, there

exists a polynomial-size simulator S such that for all polynomial-size distinguishers

D:

∣∣∣Pr[D(v, stA) = 1 : (v, stA)← RealSSE,A(pm)]−

Pr[D(v, stA) = 1 : (v, stA)← SimSSE,A,S(pm)]
∣∣∣ ≤ negl(pm)

To prove security, the output of a simulator that receives only the leakage of the
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construction must be indistinguishable from the output of the construction.

5.3 Searchable Encryption Construction with Bloom Filters

Our index construction has much in common with other searchable encryption con-

structions that use Bloom filters. There is one Bloom filter index per database table

row, and each keyword from the each column is inserted into the Bloom filter index.

The column name or identifier is prepended to the keyword before insertion.

Our search index looks and acts like a Bloom filter in many ways. It is represented

by an array of bits that are set to zero or one. Each word inserted sets h bits of

this array to one. However, unlike Bloom filters, we do not use hash functions to

determine which bits are set to one.

We strayed away from hash functions due to our goal of having uniform bit frequen-

cies. When using deterministic keyed hash functions (where each row uses the same

keys), the frequencies of the bits in the Bloom filter indexes are correlated with the

frequencies of the words inserted.

Our way of preventing this correlation is to use a construction where each word that

is inserted into the Bloom filter can set every possible bit in the index with uniform

probability.

This property has an adverse effect on the false-positive rates. Our construction has

techniques to counter these false-positives. The parameters to our construction have

trade offs with security, performance and false-positive rates.
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5.3.1 Easily Deployable Database Encrypted Search (EDDiES) Construc-

tion

For each word inserted, we permute an array of numbers [1..s] where s is the index

size in bits. This deterministic permutation function takes in a secret key, the search

term and the array as inputs. This permutation represents the possible combinations

of bit addresses that this word can set to one in the Bloom filter.

Parameter Description
IS Size of inner lists
OS Number of outer lists
h Number of bits set by each search term
s Size of index, s = IS · OS · h
t Search terms per index
x Fake terms per index
λ Distribution(s) of fake terms
n The size of the keys

Table 5.1: Index Parameters

This permuted list is divided into OS smaller lists of equal size. One of these is

selected at random. This smaller list is then divided into h lists of IS size. One

number from each of these lists is chosen randomly. These are the index values that

are set to one for this word in this Bloom filter.

There are OS ·ISh unique combinations of bits each word can set in the bloom filter.

Searching involves the same permutation and dividing techniques, but the query looks

for all the possible combinations of bits that this word can set. See Figure 5.1 for a

formal definition of the encryption and search functions and Figure 5.2 for a simple

example. The size or number of conjunctions and disjunctions in the queries grow

with the security parameters:
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((IS − 1) ∗ h) + h− 1) ∗ OS +OS − 1 (5.5)

5.3.2 False-Positive Rate

Because the search term of our construction contains many conjunctions and disjunc-

tions of possible bit addresses set to one, the false positive rate for our construction

is different from that of a typical Bloom filter. Let p be the base probability of a bit

set to one in our index. Then the false positive rate for our construction is:

(1− (1− (1− p)IS)h)OS (5.6)

The false-positive rate is derived from Formula (5.2). First we calculate probability

that any one of the bits in one IS set is set to one. This probability is (1− (1−p)IS).

Then for a false positive to occur, this event has to happen in h of these sets. Thus

we have (1− (1− p)IS)h. But we have OS outer sets, so a false positive could occur

in any of these. Applying (5.2), we arrive at (1− (1− (1− p)IS)h)OS .

5.3.3 Parameters – Effects on Security and False Positive Rates

Below is a list of the Bloom filter parameters and the effects they have on security

and false positive rates:

• t - number of items inserted into the Bloom filter. Increasing this number

provides better security, while also increases the false-positive rate.

• x - number of fake tags inserted into the Bloom filter. Increasing x improves

security. Increasing x also increases the false positive rate.
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• IS - The size of the inner sets. Increasing IS improves security. With IS = 1,

and auxiliary data, this construction’s security becomes similar to deterministic

encryption security.

• OS - The number of outer sets. OS affects false-positive rates. Increasing this

parameter decreases the false-positive rate. If OS = 1, the false-positive rate

will approach 1.

• h - This parameter affects false-positive rates. Increasing h decreases false-

positive rates.

Increasing any of the IS,OS, h parameters increases the size s of the Bloom filter

indexes, which affects performance.
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EDDiES Construction. Let PRS be a Pseudo Random Shuffle algorithm with key length n1. Let Π′

be an IND-CPA secure private key encryption scheme with message space m ∈ {0, 1}∗ and key length n0.
Define a private-key searchable encryption scheme Π:

• Gen: on input (1n0 , 1n1) run Gen′(1n0) receiving key k0 and choose key k1 ∈ {0, 1}n1 uniformly.

• Enc: on input keys k0, k1, index parameters (IS,OS, h, x, λ), and records D:
For each di ∈ D:

1. Initialize the Bloom filter BF .

2. Randomly select x fake search words (ft), with each ftj is drawn from probability distribution
λj .

3. Let m1,m2, ...,mt be the keywords in di

4. For each m ∈ m1,m2, ...,mt, ft1, ..., ftx

(a) Let bits← Trpdr(k1, (IS · OS · h),m)

(b) Divide bits evenly into OS sublists, where each list has size IS · h and bits =
(bits1||bits2||...||bitsOS)

(c) Choose one of the lists randomly: bitz ← {bits1, bits2, , ..., bitsOS}
(d) Divide bitz evenly into h lists, where each list has size IS and where bitz =

(bitz1||bitz2||...||bitzh)

(e) From each list bitzi, randomly select one element:
y1 ← bitz1, y2 ← bitz2, ..., yh ← bitzh

(f) Set bits bfy1 , bfy2 , ..., bfyh to 1.

5. Output (Index, Ciphertexts): (I, c1, c2, ..., ct) :=
(
BF, Enc′k0(m1), ...,Enc′k0(mt)

)
• Trpdr: on input key k1, Bloom filter size s and message m, return PRS(k1,m, {1..s})

• Dec: on input key k0, ciphertext (I, c) output message m1,m2, ...,mt :=
Dec′k0(c1),Dec′k0(c2), ...,Dec′k0(ct)

• Search: on input keys (k0, k1), index parameters (IS,OS, h) and a message m:

– Let bits← Trpdr(k1, (IS · OS · h),m)

– Divide bits evenly into OS sublists, where each list has size IS · h and bitz =
(bits1||bits2||...||bitsOS)

– Divide each bitzi ∈ bitz evenly into h lists, where each list has size IS and where each
bitzi = (bitzi1 ||bitzi2 ||...||bitzih

– Output search query:((
bfbitz111

= 1 ∨ bfbitz112 = 1 ∨ ... ∨ bfbitz11IS
= 1

)
∧ ... ∧(

bfbitz1h1
= 1 ∨ bfbitz1h2

= 1 ∨ ... ∨ bfbitz1hIS
= 1

))
OR ... OR((

bfbitzOS11
= 1 ∨ bfbitzOS12

= 1 ∨ ... ∨ bfbitzOS1IS
= 1

)
∧ ... ∧(

bfbitzOSh1
= 1 ∨ bfbitzOSh2

= 1 ∨ ... ∨ bfbitzOShIS
= 1

))

Figure 5.1: Easily Deployable Database Encrypted Search, Decryption and Search
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EDDiES Insertions

Bloom filter bit array addresses
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Bloom filter bit array addresses - Shuffled PRSkey(word, [1..24])
17 24 9 7 1 12 18 21 13 15 16 19 11 2 20 4 14 3 22 8 6 5 10 23

Divide into sets, outer and inner

17 24 9 7 1 12 18 21 13 15 16 19 11 2 20 4 14 3 22 8 6 5 10 23{ }{ }
3 8

Randomly select one outer set
Ranomly select one address from each inner set

Set those addresses to 1 in the Bloom filter
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 5.2: Insertion, OS = 2, IS = 6, h = 2

EDDiES Search

Bloom filter bit array addresses
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Bloom filter bit array addresses - Shuffled PRSk(w, [1..s])
17 24 9 7 1 12 18 21 13 15 16 19 11 2 20 4 14 3 22 8 6 5 10 23

Divide into sets, outer and inner

17 24 9 7 1 12 18 21 13 15 16 19 11 2 20 4 14 3 22 8 6 5 10 23{ }{ }
Query: Select ... where

( (bit17 = 1 OR bit24 = 1 OR bit9 = 1 OR bit7 = 1 OR bit1 = 1 OR bit12 = 1 )
AND

(bit18 = 1 OR bit21 = 1 OR bit13 = 1 OR bit15 = 1 OR bit16 = 1 OR bit19 = 1 ) )
OR

( (bit11 = 1 OR bit2 = 1 OR bit20 = 1 OR bit4 = 1 OR bit14 = 1 OR bit3 = 1)
AND

(bit22 = 1 OR bit8 = 1 OR bit6 = 1 OR bit5 = 1 OR bit10 = 1 OR bit23 = 1) )

Figure 5.3: Search, OS = 2, IS = 6, h = 2
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5.4 Leakage

In order to show our construction meets the SSE security definition, we first must

define its leakage. Our construction has the same access pattern leakage that all

SSE constructions share. The primary difference in the leakage profiles is the index

leakage. Unlike tradition SSE constructions, we do not encrypt our indexes.

First, since our system is designed for a database table, we can assume the size of the

records or documents are all the same. If one of the columns has variable size, such

as varchar, we will assume the ciphertexts will be padded to equal lengths. With SSE

designed for document collections, the size of the encrypted document is part of the

leakage.

Our construction sets each bit in the index to one with equal probability. Thus

frequencies of individual bits set to one in the Bloom filter do not leak anything.

5.4.1 L0(I) Leakage

The first part of the leakage comes from the co-occurrence frequencies. These consist

of multi-occurrences of two bits up to (t+x) ·h bits, since that is the highest number

of bits that will be set to one in any index.

Definition 5.7 (Bloom Filter Multi-occurrence Frequency F(·)).

• Let BF be a list of Bloom filters.

• Let S be the set of Bloom filter addresses {bf1, bf2, ..., bfs}

• Let γ be a subset of S where |γ| ≤ (t+ x) · h

Then the Bloom filter multi-occurrence frequency F(γ) is the frequency that the bit

addresses in γ are set to one in the same Bloom filter in BF .
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Our construction does not set these sets of bits to one with the same frequency because

each word has some sets of bits that it cannot set to one. The construction randomly

selects one bit address from each IS set equal to one. Thus it is impossible for word

w to assign one to more than one bit address from each of these sets. Likewise, it is

not possible for a word to set bit addresses together that appear in different OS sets.

If word w can set {bfi, bfx, ...} to one in the same Bloom filter, then the frequency

of those bits occurring together should be slightly higher than if word w does not

set those bits to one. Thus one part of the leakage L0(I) is the multi-occurrence

frequencies of bits set to one.

Definition 5.8 (Index Leakage, L0(I)). Each Bloom filter will have at most (t+fk)·h

bits set. The L0(I) leakage is the multi-occurrence frequencies for all subsets of bit

addresses from size 2 up to (t+ x) · h.

{Y ⊂ {bit1...bits} : |Y | ≥ 2, |Y | ≤ h · (t+ x)}

L0(I) = ∀γ ∈ Y,F(γ)

5.4.2 L1(I) Leakage

Since the adversary can choose the list of records that are encrypted in the security

model, they will see the individual Bloom filter indexes corresponding with each

record. They will then know the lists of words that each index is associated with.

Definition 5.9 (Index Leakage, L1(I)). The L1(I) leakage is a list of tuples, one

tuple for each document that consists of the the list of words in that document and
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the Bloom filter index for that document.

L1(I) =(w(1,1), w(1,2), ..., w(1,i), BF1),

(w(2,1), w(2,2), ..., w(2,i), BF2),

...,

(w(n,1), w(n,2), ..., w(n,i), BFn)

Where n is the number of records and i is the number of columns.

5.4.3 Trapdoor Combinations and Probabilities

An understanding of these trapdoor combinations and probabilities is essential for

analyzing the leakage and security of this construction.

Number of Possible Trapdoors. Even though there are s! different permutations

of a set of size s, many of them are equivalent. For example, if OS = 1, IS = 2, h = 2,

then the permutation [2, 4, 3, 1] is equivalent to [4, 2, 3, 1] for our construction and

[2, 4, 3, 1] is also equivalent to [3, 1, 2, 4], since they result in the same bits being set.

So while there are 4! = 24 different permutations, the number of unique trapdoors

for a given set of parameters is:

(OS·h)−1∏
i=0

(
S − (i · IS)

IS

)
(5.7)

The reason the formula is not simply S! is because each set of IS bits is unordered.

We arrive at Formula (5.7) by first selecting the first set of bits, which there are
(
S
IS

)
possible ways to do so. Then we select the 2nd set with

(
(S−IS)
IS

)
possibilities and so

on.
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Number of Possible Trapdoors for a given Index. We know that for a given

Bloom filter index, each trapdoor sets h bits in that index. Assuming that h · t are

set in each Bloom filter, Formula (5.8) shows the number of possible sets of size h.

(
(h · t)
h

)
(5.8)

Given h bits that are part of a trapdoor in the same OS set, the number of possible

combinations for the rest of the bit addresses in the OS set is:

h−1∏
i=0

(
(s− h− ((IS − 1) · i))

(IS − 1)

)
(5.9)

Then in the other remaining OS sets the number of possible bit address combinations

is:

(OS·h)−1∏
i=h

(
s− (i · IS)

IS

)
(5.10)

Thus, given h · t bits set in a BF, combining equations (5.8),(5.9), and (5.10) gives us

the total number of possible trapdoors could have set those h · t bits:

(
(h · t)
h

)
·
h−1∏
i=0

(
(s− h− ((IS − 1) · i))

(IS − 1)

)
·

(OS·h)−1∏
i=h

(
s− (i · IS)

IS

)
(5.11)

The percentage of possible trapdoors that can set h · t bits in a Bloom filter is:
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(
(h·t)
h

)
·
∏h−1

i=0

(
(s−h−((IS−1)·i))

(IS−1)

)
·
∏(OS·h)−1

i=h

(
s−(i·IS)
IS

)
∏(OS·h)−1

i=0

(
s−(i·IS)
IS

)
=

(
(h·t)
h

)
·
∏h−1

i=0

(
(s−h−((IS−1)·i))

(IS−1)

)∏h−1
i=0

(
s−(i·IS)
IS

) (5.12)

Asymptotic Behavior. As the parameters other than t grow, this ratio gets very

small. For example, this ratio with parameters of OS = 10, IS = 100, h = 30, t =

12 ≈ 1.68× 10−62. As t increases, (assuming the rest of the parameters are fixed and

that h · t ≤ s since you cannot set more than s bits in the Bloom filter), this ratio

approaches 1.0, but the false positive rate approaches 1.0 as well. With values of t

that produce practical false positive rates, this ratio will always approach zero as the

other parameters are increased.

The conclusion here is as the parameters other than t grow, there will be a very large

number of trapdoors that match any given index, but the ratio of trapdoors that

match the index to total trapdoors will be small.

5.4.4 SSE Security

To prove the EDDiES construction meets SSE security, we will create a simulator

that when given the leakage as input, creates an output that is indistinguishable from

the output of the construction. The output is defined in Definition 5.6 as a tuple of

indexes, ciphertexts, and trapdoors, v = (I, c, t).

Theorem 5.1 (SSE Security). If PRS is a pseudo-random permutation and Enc is

CPA secure, then EDDiES is non-adaptively SSE secure.
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Proof. Let S be a simulator that when given the leakage τ(H), generates the tuple

(I∗, c∗, t∗).

• Simulating c: Set c∗i to an l-bit string chosen uniformly random.

• Simulating I: Set I∗i according to the value in the L1(I) leakage.

• Simulating t: If |q| > 1 then mark each bit address in each index as unused. For

each qi ∈ q in random order, choose a trapdoor:

1. Start with an empty Trapdoor T D, i.e. all OS and IS sets are empty.

2. Choose each index I∗j , in random order, that is in the access pattern of qi. For

each I∗j :

(a) Let U represent the set of unselected bit addresses in I∗j that are set to 1.

Mark all of the bit addresses in this set as unselected. Let U ′ equal the

subset of unselected bit addresses.

(b) Randomly select an OS set from T D.

(c) For each IS set in the OS set chosen above:

i. Mark all bit addresses bfj from U that are not in the OS set as temp

selected. Mark all bit addresses in the OS set, but not in the IS set

as temp selected.

ii. If the IS set is full, randomly select from the set of addresses in the

IS set that is also in the unselected bits from U , bfl ← (IS ∩ U ′). If

this set is empty, start over with step 1. Otherwise place this address

in the IS set and remove it from U .

iii. If the IS set is not full, randomly select a bit address from the set

of addresses in U ′, bitl ← U ′. Place this address in the IS set and

remove it from U .
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iv. Set all temp selected bit addresses in U to unselected.

3. For each IS set that is not full, randomly select from the set of bit addresses

not in T D and add them until full.

4. For each I∗l not in access pattern of qi, if T D matches I∗l , that is if a query

produced from T D would result in I∗l being included in the access pattern,

then start over with step 1.

Let v be the outcome of a RealSSE,A(k) vs SimSSE,A(k) experiment. We will show

that each part of v, (I, c, t) is indistinguishable to any polynomial distinguisher D

that receives v and v∗.

• (ti, t
∗
i ) ti is the evaluation of PRSK(wi) and t∗i is a random selection of a trapdoor

that has the same access pattern as ti. The definition of PRS assures that an

adversary cannot distinguish between the outcome of a PRS and a random

permutation. Our algorithm randomly selects a T D from the set of T D’s that

match the access pattern.

While the algorithm S does select a random T D that matches the access pat-

tern, there is some probability that it will fail. There are three scenario in the

algorithm for potential failure:

– In step 2(c)ii, the IS set is full. In the worst case scenario, the probability

of the algorithm succeeding then is:

Pr[|IS ∩ U| ≥ 1]

There are
(
s−IS
|U|

)
ways of choosing the values in the set U where the size of

the intersection is zero out of
(
s
|U|

)
possible. Thus the probability the size

of the intersection is at least 1:
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1.0−

(
s−IS
|U|

)(
s
|U|

)
As IS and |U| increase, the probability that the size of the intersection is

greater than 1 grows very close to 1.0. The adversary can limit |U| in the

SSE game by issuing queries for each keyword in each record. However we

can counter the adversary’s attempts to reduce |U| with fake tags. If we

have x fake tags, then |U| ≥ x · h. Thus, increasing the parameters that

have the highest effect on security – IS, t, x – also greatly increases the

probability that the algorithm succeeds to find a T D.

– The second scenario is in step 2(c)iii where all but two of the IS sets

are full (if all but one are full, then by default the last is full, because(IS
IS

)
= 1), which will minimize the size of U ′. Here, the probability of the

algorithm succeeding is:

Pr[|U ′| ≥ 1] = 1.0−

(
s−(IS+1)
|U|

)(
s
|U|

)
This probability is almost the same as the first scenario, but will always

have a lower probability of failure.

– There is also a possibility of failure in Step 4. However, Formula (5.12)

shows that this likelihood is low.

• (ci, c
∗
i ): The CPA security of Π′ ensures that ci and , c∗i are indistinguishable.

• (I, I∗): Since I∗ is created from the L1 leakage, I and I∗ are identical.
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5.5 Leakage Implications

We have shown that our construction meets the SSE security definitions; that is,

we have quantified its leakage and shown that it leaks nothing else. For the more

tradition SSE constructions, this is often enough.

Traditional SSE leaks the document sizes, access and search patterns and nothing

else. The additional leakage from our indexes needs analysis. Depending on the data

and the index parameters, this leakage could allow near perfect success rates with

inference attacks, or it might prove highly resistant to these attacks.

In the SSE security model, the adversary is not given power to use the leakage.

However in the real world, they will do so. Thus, our leakage analysis looks at what

if an adversary is able to use the L0 and L1 leakage in the SSE game. Removing

these leakage restrictions, it is very likely that they win the SSE game with greater

than negligible probability. That does not mean they can learn anything useful. The

adversary may or may not be able to exploit the leakage. Our leakage analysis will

focus on the adversary’s concrete probability to learn an unknown trapdoor or partial

trapdoor from the leakage.

Definition 5.10 (Partial Trapdoor). Let w be a word in document set D and let γ

be a subset of Bloom filter addresses {bf1, bf2, ..., bfs} for Construction 5.1. Let T D

be the trapdoor for w. We say γ is a partial trapdoor for word w if each address in γ

is in the same OS outer set of T D, and each address in γ are in different inner IS

sets of T D. This partial trapdoor is denoted γ ∈ T D(w).

We look at the leakage assuming the adversary plays the SSE game, but is allowed

to use the L0,L1 leakage to attempt to learn a partial trapdoor of a word w.
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5.6 L0(I) Leakage, Multi-Occurrence Frequencies

When an adversary observes a multi-occurrence frequency of γ, they can attempt to

use this to figure out which plaintext words can set these bit addresses to one, which

provides partial information about the trapdoor for that word.

• Let µ = |γ|

• Let b(w) = 1
scµ1 ·sc2

if word w sets the multi-occurrence, zero otherwise. 1
scµ1 ·sc2

is

the frequency that w will set this multi-occurrence.

• Let z equal the number of unique words in the database. Note this is not t, the

number of words inserted into the Bloom filter.

• Let f(·) be a function that returns the frequency of a word in the document

collection and F(·) be a function that returns the multi-occurrence frequency

of bit addresses in the Bloom filter index. Then

F(γ) = pµ ∪
⋃
w∈z

f(w) · b(w) (5.13)

The adversary needs to find the correct assignment of b(wi) values to decipher

which words set these bits. This formula is not as straightforward as it seems.

Some of the events are mutually exclusive and some are not.

• To make this problem even harder, we can insert fake words into each Bloom

filter. If frequency of these fake words is chosen randomly, then the adversary

will also not have knowledge of some of the f(wi) frequencies.

With z words in the database, there are 2z possible assignments of b(w1), b(w2), ..., b(wz)

because each b(wi) is one of two values, zero or 1
scµ1 ·sc2

. However, not all of the solutions
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have the same probability.

There are
(
h
u

)
different ways to choose the IS sets. After choosing the IS sets, there

are ISu unique combinations of bit addresses. Combined with OS outer sets, the

number of possible multi-occurrences of size µ that a word can set is
(
h
u

)
· ISu · OS.

With
(
s
µ

)
total multi-occurrences, the number of b(wi) set to non-zero values follows

a binomial distribution b(x;n, P ) with

P =

(
h
u

)
· ISu · OS(

s
u

) , and n = z (5.14)

For example, assume a database with a corpus of three words wa, wb, wc. For each

multi-occurrence γ, there are 23 = 8 possible assignments of b(wa), b(wb), b(wc) as

seen in figure 5.4. If we let α equal the number of b(wi) set to nonzero, then the

attacker can calculate the probability of each assignment equaling F(γ).

Pr
[
F(γ) =p2

]
· Pr[α = 0]

Pr
[
F(γ) =(f(wa) · b(wa) ∪ p2)

]
· Pr[α = 1]

Pr
[
F(γ) =(f(wb) · b(wb) ∪ p2)

]
· Pr[α = 1]

Pr
[
F(γ) =(f(wc) · b(wc) ∪ p2)

]
· Pr[α = 1]

Pr
[
F(γ) =(f(wa) · b(wa) ∪ f(wb) · b(wb) ∪ p2)

]
· Pr[α = 2]

Pr
[
F(γ) =(f(wa) · b(wa) ∪ f(wc) · b(wc) ∪ p2)

]
· Pr[α = 2]

Pr
[
F(γ) =(f(wb) · b(wb) ∪ f(wc) · b(wc) ∪ p2)

]
· Pr[α = 2]

Pr
[
F(γ) =(f(wa) · b(wa) ∪ f(wb) · b(wb) ∪ f(wc) · b(wc) ∪ p2)

]
· Pr[α = 3]

Figure 5.4: wa, wb, wc L0 Example

Using the L0 leakage along with auxiliary f(wi) data, they can attempt to find an

assignment for b(wi) of the above equations that maximizes the probability.

This assignment is a complex instance of a subset-sum problem. The subset sum is an

NP-complete problem. However there are some polynomial-time approximations and

105



small instances are easily solvable as well. Thus if there were only one subset-sum so-

lution to each of these frequencies, the adversary would likely break this construction

if they had quality auxiliary data for inference attacks.

This type of attack is one reason why we add fake words with a distribution unknown

to the adversary to each Bloom filter. With fake words of unknown frequency, finding

an assignment of b(wi) becomes a subset-sum problem with numerous solutions as

any set of known words that is less than the desired frequency is a solution when

one or more unknown frequencies are included. Also note it is important that the

expected value of α is greater than one. Otherwise the attacker’s problem becomes

much easier, similar to the best case scenario below. It is simple to ensure α > 1 by

tweaking the parameters or simply adding more fake words.

The best case scenario for the adversary is with f(wa) = 1.0 and the rest of the f(wi)

are negligible or the adversary knows the b(wi) values. Now the adversary only has

determine which is most likely:

Pr[F(γ) =
1

scu1 · sc2

∪ pu] (5.15)

Pr[F(γ) = pu] (5.16)

Where p is the overall probability of a bit being set to one.

The probability of an adversary distinguishing between the worst case scenario of

1
ISu·OS ∪ p

u and pu is bounded by the statistical distance between these two binomial

probabilities. The IS,OS parameters are the primary difference maker in minimizing

the statistical distance: as they grow, the probabilities grow closer together. Our goal

with setting the parameters is to minimize 1
ISu·OS while ensuring that pu � 1

ISu·OS ,

minimizing the distance. Ideally this statistical distance would be negligible, but that
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is not the case here. As our parameters grow, the statistical distance grows smaller,

but as the size of the database grows, this distance grows larger.

However, non-negligible, but small distance is still useful to the defender. For ex-

ample, assume the probability of the adversary correctly distinguishing Probabilities

(5.15) and (5.16) is 0.034. This probability is well short of typical cryptographic

standards. Table 5.2 shows an example of these probabilities with varrying sizes of

n and u However, this lone multi-occurrence is not very useful to an attacker. As

Chapter 5.8 shows, the false-positive rate for a partial match of a trapdoor is likely

to be too high to be of any use to an adversary. Even getting a multi-occurrence of

size 15 still likely means a false positive rate of over 60%. Also, one multi-occurrence

is only one small part of a trapdoor. The number of multi-occurrences of size u is:

(
h

u

)
· ISu · OS

To get the complete trapdoor, the adversary must learn most of the multi-occurrences.

u = 2 u = 6 u = 10

n = 1, 000, 000 0.11 2.6x10−10 7.8x10−20

n = 100, 000 0.034 2.6x10−11 7.6x10−21

Table 5.2: Worst Case Statistical Distance Example, IS = 240,OS = 10, h = 20

Multiple Multi-Occurrences. A multi-occurrence of size u = 2 is easiest for

an adversary to distinguish, but also the least useful. Larger multi-occurrences

can be constructed from many smaller. For example, if the adversary learns that

word w sets multi-occurrence (bfi, bfj), (bfj, bfk), (bfi, bfk), then it learns that w sets

(bfi, bfj, bfk). The probability of distinguishing multiple multi-occurrences is not
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quite independent because some combinations are not possible. For example, let

IS = 2, h = 2,OS = 1. There are
(

4
2

)
= 6 possible size 2 multi-occurrences. Then

the PR[(bf1, bf2), (bf1, bf3), (bf1, bf4) ∈ T D(w)] = 0 because it is not possible for any

word to set those multi-occurrences with the chosen parameters.

Specifically, a set of multi-occurrences cannot share an index location bfi more than

IS · (h− 1) times. While this extra information helps the adversary, it only helps if

they have already identified IS · (h− 1) multi-occurrences.

It seems natural to think that if (bfi, bfj) ∈ T D(w) and F(bfi, bfj) ≈ F(bfk, bfl)

then it is likely that (bfk, bfl) ∈ T D(w). Since the adversary controls the document

collection D in the SSE game, they can ensure this is the case. Fake tags come to

the rescue again.

5.6.1 Fake Tag Distribution

Let z be the number of fake tags in our corpus. Each fake tag is assigned a random

frequency drawn from a distribution. In our case, this distribution is the exponential

distribution with parameter λ.

Each of these tags can cause the event E of setting u bits in a multi-occurrence in

the Bloom filter index. Thus the probability of this event happening is the sum of

these frequencies, which is an Erlang distribution. An Erlang distribution has two

parameters, a positive integer k, called the shape, and a positive real number λ, the

rate. It is the sum of k independent exponential variables with parameter λ.

Each fake tag has the same probability of producing this event. So the number

of fake tags that produces event E follows a binomial distribution with probability

q. The overall probability of event E is a sum of independent random exponential
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variables, where the number of terms in the summation is itself random with binomial

probability q. This is the hyper-Erlang distribution.

The hyper-Erlang distribution takes an Erlang distribution Ei with probability qi.

The probability density function for the hyper-Erlang distribution with binomial

probability q is:

f(x) =
z∑
i=1

qi · Eli(x) (5.17)

=
z∑
i=1

qi ·
λix(i−1)e−λx

(i− 1)!
(5.18)

=
z∑
i=1

(
z

i

)
qi(1− q)z−i · λ

ix(i−1)e−λx

(i− 1)!
(5.19)

where q =
OS ·

(
h
u

)
· ISu(

s
u

)
with each qi > 0 and

∑n
i=1 qi = 1. Each Eli(x) is an Erlang distribution with li shape

and rate λi. For our specific case, li = i and all of the λ variables are the same,

λi = λi+1.

The multi-occurrence frequencies are now changed by a random frequency from

Formula (5.19). If we let FK be the likelihood that any fake tag sets this multi-

occurrence, then the worst case scenario is now:

Pr[F(γ) =
1

scu1 · sc2

∪ pu ∪ FK] (5.20)

Pr[F(γ) = pu ∪ FK] (5.21)
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Using the statistical distance upper bound on the likelihood of distinguishing between

two probabilities, distinguishing between Probabilities (5.20) and (5.21) is the same

as (5.15) and (5.16), because both sets of distributions vary by the same 1
scu1 ·sc2

.

5.6.2 Number of Solutions for All Frequencies

Using all of the frequencies gives the adversary a little more leverage. They know

that b(wi) is set exactly
(
h
u

)
· ISu · OS times. Thus there are:

( (
s
u

)(
h
u

)
· ISu · OS

)

different possible assignments of b(wi).

Also note that any word w sets
(
h
u

)
multi-occurrences in each Bloom filter. Thus it

sets n ·
(
h
u

)
multi-occurrences, not necessarily distinct. It is easy to set the parameters

so that given a database size n, a word will not set all possible multi-occurrences.

Thus, while a word might set a multi-occurrence, it might not in a specific database.

One could intentionally set the parameters so that the expected number of times any

word sets a multi-occurrence is less than or equal to one. If it were a lot less than one,

then the multi-occurrence frequencies would depend more on the randomness of which

multi-occurrences were actually set by the word insertions than by the actual word

frequencies. To achieve this property, we simply need to set the IS,OS parameters

such that:

n ·
(
h
u

)(
h
u

)
· ISu · OS

=
n

ISu · OS
< 1
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5.6.3 Known Trapdoor Effect

When an adversary makes a query and is given a trapdoor, they are given one of the

b(wi) solutions, so it makes that problem a little smaller. The worst-case scenario

already assumes the attacker either has knowledge of all of the b(wi) except for the

word for which they are attempting to distinguish a partial trapdoor or the frequencies

are tiny. Thus knowledge of trapdoors helps the adversary in the general case, such

as Example 5.4, but it does not change the worst case scenario.

5.6.4 L0(I) Conclusion

While the general case of the L0 leakage analysis involves complex probabilities, the

worst case security is a relatively simple calculation of the statistical distance between

Probabilities 5.15 and 5.16. This worst case formula also has the advantage that it is

not affected by other trapdoors known by the adversary.

5.7 L1 Leakage – Chosen Plaintexts

The SSE security game allows the adversary to mount a “chosen plaintext attack”.

The adversary chooses the plaintexts for encryption, with some restrictions. In our

case, with a structured database, the number and type of words must match the

database schema.

The game does not allow multiple accesses to an encryption oracle: the adversary

cannot encrypt one row, see the results, then craft another. They must choose the

entire list of plaintexts at once.

This attack is still powerful. It is simple to demonstrate that with poorly chosen

parameters, an adversary can win the 5.6 game. For example, with t = 1, z =
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0, IS = 1 parameter settings, each plaintext will only set one of OS sets of h bits with

each encryption. The construction with these parameters is similar to deterministic

encryption and its insecurity is easy to see.

It seems natural that as t, z, IS grow, it is harder for the adversary to distinguish

between two encrypted data sets or it will take much larger data sets to distinguish.

5.7.1 Number of Possible Trapdoors for a Given Bloom Filter Index

In the SSE security game, the adversary chooses the list of plaintext documents that

the challenger will encrypt. Thus for a given plaintext, they will know which records

the plaintext appears in and which it does not. If they can find a trapdoor that

matches, then they have narrowed down the possible trapdoors that could match

that plaintext.

However, just enumerating the number of trapdoors that match one Bloom filter

index can take too long for a computationally bound adversary.

As an example, with IS = 20,OS = 10, h = 30, t = 5, given one Bloom filter index

where h · t bits are set to one, there are 1.88x101622 possible trapdoors that could have

set those bits.

However, we are concerned about preventing the adversary from learning a partial

trapdoor. Given an index I, one word w sets
(
h
u

)
multi-occurrences in that index.

The ability of an adversary to properly guess which multi-occurrences were set by

word w depends on t, how many words were inserted into the index. With t = 1,

word w is the only word inserted and thus it set all of the multi-occurrences in I. As

t grows, the percent of multi-occurrences in I set by w shrinks.
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(
h
u

)(
h·t
u

) (5.22)

Figure 5.5 illustrates an example of the effect of increasing t with other parameters

of h = 40, u = 2.
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Figure 5.5: Co-occurrence Frequency Example, h = 40, u = 2

With such a low probability of the partial T D belonging to a keyword, the adversary

now is reduced to looking at patterns: how often a partial T D occurs in multiple

indexes, which is the L0 leakage.

Known Trapdoors. In the SSE security Definition 5.6, the adversary can choose

words to query and thus receive the trapdoors of those words. They could choose

these queries such that in an index, they have the trapdoors for all but one word,
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thus making the effective value of t one. This adversarial power is another reason for

the fake tags. The challenger can setup their system with x fake tags inserted into

each index such that the value from Formula (5.22) where x + 1 is substituted for t

is within their comfort level.

5.8 Partial Learning

What if an adversary learns some of the multi-occurrences for a word, thus a partial

trapdoor? As shown in Table 5.2, it is easy to make this probability small, but not

necessarily possible to make it small by typical cryptographic standards.

The false-positive rate comes into play to limit the usefulness of this partial trapdoor

to an attacker. In the example shown in Figure 5.6, if an adversary learns one partial

trapdoor of size 15 for a word, this partial trapdoor produces in a false positive rate

of over 60% of the database.

Also, learning one multi-occurrence is only a fraction of the total trapdoor for a given

word. The number of multi-occurrences of size u for a given word is:

(
h

u

)
· ISu · OS
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5.9 Updates – Forward Privacy

Updates for SSE are challenging because the index structures are encrypted. Also

recall that the client is solely responsible for creating and updating indexes. An

update that modifies part of the index will leak. This update leakage is why new

trapdoors and batch updating is a common technique for forward secrecy with SSE

constructions.

When a batch update occurs, an additional index is created with a new key. Searching

provides trapdoors for the search term for all of the indexes. Periodically the indexes

are combined into one new index.

Our construction can provide forward security using these same techniques. We do

not require that updates are performed in batches. We simply need to start using a

different key for inserting new records to achieve forward privacy.

5.10 Range Queries

There are many solutions created by the searchable encryption community that take

an equality-searchable encryption solution and use it to create a searchable encryption

construction with range queries [22]. These techniques convert a range query into a

multi-keyword equality query.

Most of these techniques will work with our construction. We implemented Constant-

BRC [22] and ran performance tests on these techniques with our system.

5.11 Performance

We implemented a client in the Haskell programming language. To evaluate the

performance of our prototype on realistic data and queries at a variety of scales, we

116



used the SPARTA [61] framework from MIT-LL.

The SPARTA test framework includes a data generator and a query generator. The

data generator builds artificial data sets with realistic statistics based on real data

from the US Census and Project Gutenberg. The query generator creates queries for

this test database based on the desired query types and number of return results.

5.11.1 Custom Index

The standard indexes offered by Postgres were not suitable to our needs in terms of

performance and index size. Thus we created a custom Postgres index. Our index

uses the GiST framework [37]. The GiST framework utilizes a tree structure to store

its data types. We utilized the Postgres bit-string data type to store our indexes.

Our custom index is a GiST index for bit strings.

GiST is a height balanced tree where the leave contain pairs (key, recordID). Internal

nodes contain pairs (p, ptr), where p is a predicate (used as a search key) that is

executed for all descendant nodes, and ptr is a pointer to another node in the tree.

The number of pairs in each node of the tree is determined by the size of a Postgres

page (8K default) and the size of the pairs. This 8K default page size created problems

for larger Bloom filter indexes. Exceeding this size caused the index creation to fail.

Testing was performed with 32K page sizes.

The GiST framework requires implementation of the following methods:

• Consistent(E, q): given an entry E = (p, ptr), and a query predicate q, returns

false if p ∧ q can be guaranteed unsatisfiable, and true otherwise.

– EDDiES’s Consistent function implements a custom query type for Post-

gres that checks for all the appropriate conjunctions and disjunctions of

117



bits set in a Bloom filter index.

• Union(P ): given a set P of entries (p1, ptr1), ...(pn, ptrn), returns some predicate

r that holds for all tuples stored below ptr1 through ptrn.

– EDDiES’s Union is a simple bitwise OR of all the entries p1, ..., pn.

• Compress(E): given an entry E = (p, ptr), returns an entry (pp, ptr) where pp

is a compressed representation of p.

– EDDiES’s Compress is the shortest of the following:

∗ Uncompressed Bloom filter

∗ List of integers that represent all of the addresses set to 1

∗ List of integers that represent all of the addresses set to 0

∗ Runlength encoding of the Bloom filter

• Decompress(E): given a compressed representation E = (pp, ptr), returns an

entry (r, ptr) where r is a decompressed representation of pp.

• Penalty(E1, E2): given two entries E1 = (p1, ptr1), E2 = (p2, ptr2), returns a

domain specific penalty for inserting E2 into the subtree rooted at E1, which is

used to aid the splitting process of the insertion operation.

– EDDiES’s Penalty calculates the number of Bloom filter addresses that

differ in p1, p2.

• PickSplit(P ): given a set P of M + 1 entries (p, ptr), splits P into two sets of

entries P1 and P2, each of size at least kM , where k is the minimum fill factor.

– EDDiES’s PickSplit finds the two entries with the highest penalty. Then

it assigns the rest of the entries to one of these two according to their

penalty scores.
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5.11.2 Experimental Setup

We used the database generator to generate databases with 1 million records. We

generated over 1,000 queries for each database, consisting of a mix of equality and

range queries that returned result sizes between 1 and 10,000 records.

We encrypted the columns fname, lname, ssn, city, and zip. The rest of the

SPARTA columns were inserted into the test database in plaintext.

We performed the tests with the client and the database server located on the same

local network via a 1 Gbps Ethernet switch. The server has 12 CPU cores (dual Xeon

E5645), 64GB of RAM, and an array of 10k RPM hard drives. It runs the Ubuntu

Server 18.04 operating system and Postgres 9.6 as the DBMS.

5.11.3 Experimental Results

Ciphertext Expansion. Table 5.3 shows the overall ciphertext expansion, including

the ciphertext expansion from the AES encrypted data and the index column. The

database ciphertext expansion is directly related to the number and type of columns

encrypted and the index parameters.

Bloom Filter Size DB Size DB + Indexes Size
Plaintext 1116 MB 1296 MB

6,000 4363 MB 6350 MB
15,000 5210 MB 11 GB

300,000 7813 MB 13 GB

Table 5.3: Ciphertext Expansion

Database Creation.
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Index Size Insertion Time (minutes)
Plaintext 13.25

6,000 242.31
15,000 544.50
300,000 1,089.25
600,000 2,422.50

Table 5.4: Insertion Times

There are a few factors affecting the time in database creation and insertion times.

One is the time to create the ciphertexts and Bloom filter indexes. The other is the

time on the server end to create the server indexes.

Query Runtime. We measured query runtime as the time it takes to create the

query, send it over the network, receive the data, decrypt, and then filter out the false

positive results. Figure 5.7 shows the performance of equality queries and Figure 5.8

shows the performance of equality queries run in parallel. Figure 5.9 shows the

performance of range queries.

The slowdown from our system compared to plaintexts comes primarily from two

sources. One is traversing the index and checking for matches in the complex query.

The other is from the false positives. Obviously the more false positive records re-

turned, the slower the query will be due to transmission of the extra data and decrypt-

ing and filtering out the false positives by the client. For example, we ran one test with

parameters IS = 10,OS = 10, h = 20 and other with IS = 10,OS = 10, h = 40.

The test with h = 40 has a much larger index size, and thus the index operations

will take longer. However it has a much smaller false positive rate. With h = 20,

each query returned about 59,000 false positive records and with h = 40, each query

returned fewer than 1,000 false positive records. Because of the lower false positive

rate, its average time was three times faster than the test with h = 20.
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Figure 5.7: Equality Queries

Figure 5.8: Equality Queries - Parallel
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Figure 5.9: Range Queries

The structure of the query lends itself to easily running the query in parallel. Using

10 cores, we averaged a 2-3× speedup on equality queries run in parallel. Part of the

reason for the less than linear speedup is our naive implementation of the parallel

query traverses many parts of the top of the index tree multiple times.

The range query performance as seen on Figure 5.9 does not follow as tight of a patten

as the equality queries. This is because the nature of the range query implementa-

tion means the query length and complexity is longer for some queries than others,

independent of the size of the return results.

5.12 Review

We showed that it is possible to get the best of both worlds, security similar to SSE,

and ease of deployment similar to PPE. Our construction is not as secure as SSE,

because we do not meet their adaptive-security definition and our construction leaks
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more. However, our construction offers another option that provides ease of use with

existing DMBS in trade for this leakage while providing superior security to other

“easily deployable” constructions.

There are still issues that are not addressed by our construction (or SSE), such as

access-pattern leakage attacks [33, 42, 45].

Future work also involves improving the performance of our system. This performance

improvement would likely be in the form of a more efficient custom index for Postgres

or other DMBS.
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6 Conclusions

In this dissertation, we explore the trade-offs necessitated by the leakage inherent

with efficient searchable encryption. In particular we reviewed the challenges that

come with the constraints from legacy systems and database management systems.

The first major contribution of this dissertation is an attack against property preserv-

ing encryption. Prior to this work, property preserving encryption (PPE) had been

employed in several systems. It was known that this type of encryption leaked some

information. What was not fully known was the consequences of this leakage. This

work is not the first attack against PPE, but prior attacks were against low entropy

data such as database columns with small domains. This attack showed even against

unstructured text with higher entropy, attackers can abuse the leakage from PPE

with high success rates.

The second major contribution is a new PPE construction, weakly randomized en-

cryption (WRE). WRE provides superior security compared to other efficient PPE

constructions with performance rivaling plaintext. Like all efficient searchable en-

cryption schemes, it has its shortcomings. It is secure only against passive or offline

adversaries. It requires knowledge of the plaintext data distributions upfront. It is

not clear what the security ramifications are if this distribution later changes.

The third major contribution is another new construction EDDiES. It addresses

the weaknesses from WRE. It is secure in the persistent adversarial model. It has

no plaintext distribution knowledge requirements. However it suffers a performance

drop compared to WRE.

There are many situations with legacy systems where PPE is the only practical option

for encryption. With the numerous attacks published in recent years against PPE

systems, it appeared that PPE was too vulnerable for deployment. The work in this
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dissertation reflects that it is possible to create PPE systems more resistant to these

attacks and that it is also possible to achieve security against the persistent adversary.

Future work could involve further research into techniques using partial randomiza-

tion, attempting to improve the performance and security above the constructions

presented here. Potential solutions to the deployability and security problems could

come from different research areas. For example, it is possible that hardware improve-

ments and distributed databases could enable linear search techniques to perform well

enough for practical purposes. The field of encrypted search will likely continue to

involve trade-offs with security, performance and utility for a lengthy period of time.
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