
Portland State University Portland State University

PDXScholar PDXScholar

Dissertations and Theses Dissertations and Theses

3-24-2020

Extensible Performance-Aware Runtime Integrity Extensible Performance-Aware Runtime Integrity

Measurement Measurement

Brian G. Delgado
Portland State University

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Delgado, Brian G., "Extensible Performance-Aware Runtime Integrity Measurement" (2020). Dissertations
and Theses. Paper 5425.
https://doi.org/10.15760/etd.7298

This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations
and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more
accessible: pdxscholar@pdx.edu.

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5425&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5425&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5425
https://doi.org/10.15760/etd.7298
mailto:pdxscholar@pdx.edu

Extensible Performance-Aware Runtime Integrity Measurement

by

Brian G. Delgado

A dissertation submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Dissertation Commitee:
Karen L. Karavanic, Chair

Charles V. Wright
Wu-chang Feng

Bruce Irvin
Wayne Wakeland

Portland State University
2020

http://www.pdx.edu

©2020 Brian G. Delgado

i

Abstract

Today’s interconnected world consists of a broad set of online activities in-

cluding banking, shopping, managing health records, and social media while

relying heavily on servers to manage extensive sets of data. However, stealthy

rootkit attacks on this infrastructure have placed these servers at risk. Security

researchers have proposed using an existing x86 CPU mode called System

Management Mode (SMM) to search for rootkits from a hardware-protected,

isolated, and privileged location. SMM has broad visibility into operating

system resources including memory regions and CPU registers. However, the

use of SMM for runtime integrity measurement mechanisms (SMM-RIMMs)

would significantly expand the amount of CPU time spent away from oper-

ating system and hypervisor (host software) control, resulting in potentially

serious system impacts. To be a candidate for production use, SMM RIMMs

would need to be resilient, performant and extensible. We developed the

EPA-RIMM architecture guided by the principles of extensibility, performance

awareness, and effectiveness. EPA-RIMM incorporates a security check de-

scription mechanism that allows dynamic changes to the set of resources to

be monitored. It minimizes system performance impacts by decomposing

security checks into shorter tasks that can be independently scheduled over

time. We present a performance methodology for SMM to quantify system

impacts, as well as a simulator that allows for the evaluation of different

methods of scheduling security inspections. Our SMM-based EPA-RIMM

prototype leverages insights from the performance methodology to detect

host software rootkits at reduced system impacts. EPA-RIMM demonstrates

that SMM-based rootkit detection can be made performance-efficient and

effective, providing a new tool for defense.

ii

Acknowledgements

This dissertation would not have been possible without the support of many

people. Professor Karavanic greatly helped encourage the work forward and

navigate the complex intersection of performance and computer security.

I began this academic journey due to the encouragement of my former

Intel manager, Jeff Demain, who encouraged me to pursue graduate studies. I

also had the fortune to learn about performance measurement while working

with Raed Kanjo at Intel who taught me techniques that were invaluable in

this analysis. Dave Riss, Dion Rogers, and Chris Kachigian were instrumental

in navigate my academic path at Intel in recent years.

The patience of my family has been helpful along the way in dealing with

the long hours. My uncle, David, encouraged me on to complete the work

and also gave me inspiration due to his own academic path.

I gratefully acknowledge the help of the entire EPA-RIMM team: Te-

jaswini Vibhute for many helpful discussions on EPA-RIMM and STM, John

Fastabend for diving into multicore and coreboot, Cody Shepherd for sig-

nificantly refining the software stack and many helpful questions, Dylan

Abraham for leading the release process for EPA-RIMM and getting the code

ready, Payal Joshi for discussions on measurement triggers and the Oracle,

Alex Freed for his inputs and jumping in to test the release code, and our

intern crew for finding interesting corners of this project to explore.

Grant Information:

"This material is based upon work supported by the National Science Foundation

under Grant No. 1528185.

iii

Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of the

National Science Foundation."

iv

Table of Contents

Abstract i

Acknowledgements ii

List of Tables ix

List of Figures x

List of Abbreviations xiii

List of Symbols xvi

1 Introduction 1
1.1 In-Scope Attacks . 9

1.1.1 Sample Rootkit Techniques 10
1.1.1.1 IDT Hooking 10
1.1.1.2 SMEP Disable 10
1.1.1.3 Kernel Rootkit Code Injection 11
1.1.1.4 System Call Hooking 11
1.1.1.5 Xen Venom Rootkit VM Escape 11
1.1.1.6 Xen Exception Handler 12

1.2 Key Challenges for SMM-RIMMs 13
1.2.1 C1 - SMM-RIMM Security 13
1.2.2 C2 - SMM and OS Semantic Gap 17
1.2.3 C3 - SMM-RIMM Performance 17
1.2.4 C4 - Measurement Variability 18
1.2.5 C5 - SMM-RIMM Code Availability 19

1.3 Contributions . 20
1.3.1 First Linkage of SMI Latency Guidelines and Perfor-

mance Impacts to SMM-RIMMs 20
1.3.2 First performance-aware SMM-RIMM design incorpo-

rating measurement decomposition 22
1.3.3 First application of measurement triggers to SMM-RIMM 23
1.3.4 First SMM-RIMM Benchmark: EPA-RIMM Bench . . . 23
1.3.5 First Publicly-Available SMM-RIMM Prototype 24

1.4 Document Organization . 24

2 Background 26
2.1 Threat Landscape . 26
2.2 Varied Approaches for Securing Systems 27
2.3 Urgent Need for Runtime Checking 29
2.4 System Impact of SMM . 32
2.5 Triggers . 34

v

3 Related Work 36
3.1 Race to the Bottom . 36
3.2 Software-based Approaches . 37
3.3 Hardware-based Approaches 38

3.3.1 Discrete Devices . 38
3.3.2 CPU Virtualization . 41
3.3.3 CPU Performance Counters 42
3.3.4 TPM . 43
3.3.5 Late Launch . 44
3.3.6 ARM TrustZone . 46
3.3.7 SMM-RIMMs . 47

3.4 Timeline of Approaches . 51
3.5 Application Noise . 52

4 Creation of Methodology for SMI Performance Measurement 54
4.1 SMM-RIMM Performance Methodology Requirements 55

4.1.1 Ability to quantify time spent in SMM - Rquantify . . . 56
4.1.2 Ability to control time spent in SMM - Rcontrol 59
4.1.3 Ability to validate SMI load - Rvalidate 60

4.2 Related Work . 60
4.3 Measurement Methodology Creation 61
4.4 Technique 1: Chipset SMIs . 62
4.5 Technique 2: Blackbox SMI Generation 65
4.6 Technique 3: Modified BIOS . 67
4.7 Technique 4: EPA-RIMM . 67
4.8 Technique Comparison . 68
4.9 Validating the SMI Load . 71
4.10 SMI Generation . 72
4.11 Task Provisioning . 72

4.11.1 Cache and Prefetcher Impact Measurement Study . . . 73
4.11.1.1 Measurement Design 73
4.11.1.2 Identical Addresses 74
4.11.1.3 Sequential Addresses 75
4.11.1.4 Random Addresses 77
4.11.1.5 Analysis . 78

4.12 Conclusion . 79

5 SMI Preemption Performance Study 81
5.1 System-level Effects . 81

5.1.1 Timing Expectations in Code 81
5.1.2 Symptoms of Excessive Time Spent in SMM 82
5.1.3 Timer Interrupt Effects 84

5.1.3.1 Timer Interrupt Background 84
5.1.3.2 Kernel Instrumentation 85
5.1.3.3 Timer Interrupt Results: Non-virtualized Linux 86

vi

5.1.3.4 Timer Interrupt Results: Xen Virtualization . 89
5.1.3.5 Timer Interrupt and Turbostat Results: Tick-

less Linux Kernel 89
5.1.3.6 Timer Tick Conclusions 92

5.1.4 Process Accounting . 93
5.1.5 System-Level Effects Summary 96

5.2 Application Effects . 98
5.2.1 Kernel Compilation . 98
5.2.2 Microbenchmarks . 99
5.2.3 Latency-sensitive Application 101
5.2.4 Application Conclusions 102

5.3 Conclusions . 103

6 EPA-RIMM Design Requirements 105
6.1 Requirement 1 - Stealthy Invocation 106
6.2 Requirement 2 - Verifiable Behavior 106
6.3 Requirement 3 - Deterministic Execution 107
6.4 Requirement 4 - In-Context Privileged Measurement 108
6.5 Requirement 5 - Attestable Output 110
6.6 New Requirement 6 - Extensible Measurements 111
6.7 New Requirement 7 - Performance-aware 111
6.8 New Requirement 8 - Constrained Measurement Agent 112
6.9 Conclusions . 112

7 Architecture 114
7.1 EPA-RIMM Checks . 114

7.1.1 Check Definition . 115
7.1.2 Measurement Commands 116

7.1.2.1 Command: Measure Memory Range 116
7.1.2.2 Command: Sample Memory Range 116
7.1.2.3 Command: Measure Control Registers 117
7.1.2.4 Command: Measure Model-Specific Registers

(MSRs) . 117
7.2 Tasks . 118
7.3 Bins . 118
7.4 Diagnosis Manager . 119

7.4.1 DM Provisioning . 119
7.4.2 DM Runtime . 119
7.4.3 Measurement Triggers 120

7.4.3.1 Specifying Measurement Triggers 120
7.4.3.2 Example Measurement Trigger: Kernel Code

Sections Unchanged - Persistent CR0 and ker-
nel code changes 121

7.4.3.3 Interrupt Descriptor Table Unchanged 122
7.5 Backend Manager . 123

vii

7.5.1 BEM Provisioning . 124
7.5.2 BEM Runtime . 125

7.6 Oracle . 125
7.7 Host Communications Manager 126
7.8 Inspector . 126

7.8.1 Inspector Provisioning 127
7.8.2 Inspector Runtime . 127
7.8.3 Complete Architecture Flow 127

7.9 Security Analysis . 128
7.9.1 Assumptions . 129
7.9.2 Inspector . 129
7.9.3 Initial Measurements and EPA-RIMM launch 130
7.9.4 Infrastructure Compromise and Denial of Service . . . 130
7.9.5 Transient Evasion Techniques 132
7.9.6 Stealth . 132
7.9.7 Host-side Memory Visibility 133
7.9.8 KASLR . 134
7.9.9 Spectre/Meltdown . 134
7.9.10 Attacks on Measurement Agent Communications . . . 135
7.9.11 Use of EPA-RIMM as a side channel 138

7.10 Conclusions . 139

8 EPA-RIMM Prototype 142
8.1 Prototype Overview . 142

8.1.1 Hardware . 142
8.1.2 Firmware . 143

8.2 Prototype Modules . 143
8.2.1 BEM . 143
8.2.2 HCM . 144
8.2.3 Inspector . 145

8.3 Attack Detection Using the Prototype 146
8.3.1 Transient Attack Detection 147

8.4 Impacts on Application Performance 149
8.5 Discussion . 151

9 Task Scheduling in EPA-RIMM 153
9.1 Scheduling Approaches . 154

9.1.1 Knapsack Problem . 154
9.1.2 First Come First Serve 155
9.1.3 Priority Queue . 157
9.1.4 Priority Queue with Backfilling 158
9.1.5 Priority Queue with Aging 159

9.2 Experiments . 160
9.2.1 Simulation Parameters 160

9.2.1.1 Check Arrival Rates, Sizes, and Priorities . . . 160

viii

9.2.1.2 Inputs . 161
9.2.1.3 Outputs . 162
9.2.1.4 Simulator Internal Details 163
9.2.1.5 Evaluation of EPA-RIMM Scenarios 164
9.2.1.6 Bin Processing Rate vs Task Arrival Rate . . . 165
9.2.1.7 Task Size Distributions 166

9.2.2 First Come First Serve 166
9.2.2.1 Measurement Design 166
9.2.2.2 FCFS Results 167

9.2.3 Priority Queue . 169
9.2.3.1 Measurement Design 170
9.2.3.2 Results for PQ, PQB, PQA, PQBA configurations170
9.2.3.3 Discussion . 175

9.2.4 Bin Size Scaling . 176
9.2.4.1 Measurement Design 176
9.2.4.2 Bin Size Scaling Results - Config 1: Max Task

Size = Bin Size 177
9.2.4.3 Bin Size Scaling Results - Config 2: Max Task

Size = 100µs 178
9.2.5 Bin Frequency Scaling 180

9.2.5.1 Measurement Design 180
9.2.5.2 Bin Frequency Results 181

9.2.6 Check Arrival Rate . 183
9.2.6.1 Measurement Design 183
9.2.6.2 Check Arrival Rate Results 184

9.3 Discussion . 185

10 EPA-RIMM Bench 188
10.1 Introduction . 188
10.2 Performance Modeling . 189

10.2.1 EPA-RIMM Performance Model 190
10.3 Benchmark Design . 191

10.3.1 Generating a workload 191
10.3.2 Measuring Times . 191

10.4 Benchmark Results . 192
10.4.1 Hash Input Size Scaling 193
10.4.2 Bin Cost Breakdown . 194

10.5 Discussion . 196

11 Conclusions 198
11.1 Summary . 199
11.2 Future Work . 202
11.3 Conclusions . 204

Bibliography 205

ix

List of Tables

1.1 In-scope Attacks Detectable with EPA-RIMM Checks 12

2.1 SMI Time Comparison of SMM-based RIMM approaches . . . 34

3.1 Comparison of Selected Runtime Integrity Monitor Approaches 52

4.1 Chipset SMI Generation . 63
4.2 SMI Generation Technique Comparison 69
4.3 SMI Generation Techniques Testing 70
4.4 Sample Bin . 74
4.5 Identical Hash Scenario Cost Analysis 75
4.6 Sequential Hash Scenario Cost Analysis 76
4.7 Random Hash Scenario Cost Analysis 78
4.8 Cost analysis . 79

5.1 USB Audio Sensitivity to Prolonged SMI Delays 83
5.2 SMI Occurrences and Timer Interrupts 88
5.3 Tickless Kernel and 500 SMIs/second 92
5.4 do_Timer Ticks Mechanism, the trace after the ellipsis begins

to recover from the batch of SMis 93
5.5 User Time Scaling In Scale_utime 3.7.6 kernel 97
5.6 Unreal Tournament 3 Frame Rate Binning 102

7.1 Check and Task Descriptions 116
7.2 Decomposition and Bin Size Parameters 124
7.3 Results Description . 127

8.1 Transient Attack Detection . 149

9.1 Simulator Inputs . 162
9.2 Simulator Outputs . 163
9.3 First Come First Serve Config 167
9.4 FCFS Results - Truncated Uniform Distribution 168
9.5 FCFS Results - Truncated Normal Distribution 169
9.6 Priority Queue Configs . 170
9.7 Backfill and Aging Results, Truncated Uniform Distributions . 171
9.8 Backfill and Aging Results, Truncated Normal Distributions . 172
9.9 Bin Size Scaling Config . 177
9.10 Bin Frequency Scaling Config 180
9.11 Check Arrival Config . 184

x

List of Figures

1.1 Survey of CVE Database for Privilege Escalations and Arbitrary
Code Execution for Xen and Linux (Years 2011-2019) 3

1.2 Usage of System Layers Over Time 7

3.1 Timeline of RIMM Approaches from 2001-2019 52

4.1 Timestamp method . 57
4.2 Long SMIs on Dell PowerEdge R410 66
4.3 SMI Measurement Technique Considerations 69
4.4 Chipset SMI Evaluation . 70
4.5 Blackbox SMI Evaluation . 70
4.6 Identical Address 100 Bins . 75
4.7 Identical Address 8 Bins . 75
4.8 Sequential Address 100 Bins . 76
4.9 Sequential Address 8 Bins . 77
4.10 Random Address 100 Bins . 77
4.11 Random Address 8 Bins . 78
4.12 Combined 4K Hash Input Size Data, 8 Bins 79

5.1 Timer Interrupt Code Flow . 85
5.2 SMI Preemption of Timer Interrupt Handling 87
5.3 Native OS measurements with regular timer ticks and idle

CPU (a) (top left) Baseline (No SMIs) (b) (top right) 0.11 ms
SMI (500/sec) (c) (bottom left) 5 ms SMI (8/sec) (d) (bottom
right) 104 ms SMI (1/sec) . 88

5.4 Virtualized measurements with regular timer ticks (a) (top
left) Baseline (No SMIs), Idle CPU (b) (top right) 0.11 ms SMI
(16/sec), Busy CPU (c) (bottom left) 5 ms SMI (3/sec), Busy
CPU (d) (bottom right) 5 ms SMI (8/sec), Busy CPU 90

5.5 Virtualized measurements with tickless kernel, idle CPU (a)
(left) Baseline (No SMIs) (b) (right) 0.11 ms SMI (500/sec) . . . 91

5.6 500x0.11ms SMIs/second . 92
5.7 8x5ms SMIs/second . 92
5.8 Throughput Scaling . 96
5.9 Billed Seconds . 96
5.10 Kernel Compilation Performance for Linux/Xen 99
5.11 Xen Dom0, Long SMIs . 100
5.12 Xen VT Guest I/O, Long SMIs 100
5.13 Xen VT Guest Short SMIs . 101
5.14 SMI Performance Impact Summary 104

6.1 x86 Privilege Levels . 108

xi

7.1 Checks . 115
7.2 Tasks . 118
7.3 Bin . 118
7.4 Persistent Kernel Code Section and CR0 Trigger. Purple boxes

are dependent actions. 122
7.5 Interrupt Descriptor Table Trigger. Green boxes are indepen-

dent actions. 123
7.6 A complete example of EPA-RIMM’s active monitoring phase.

In this example, the same Bin is provided to all monitored
nodes, but in a heterogeneous environment the Bins and the
hash costs could differ between nodes. We show the BEM and
the Inspector as residing on separate machines, but there is no
requirement for this separation. 128

7.7 Hash samples . 139

8.1 0.5s compromise placement (HPlace) 1 measurement per 10
secs (MFreq) . 149

8.2 0.1s compromise placement (HPlace) 1 measurement per 10
secs (MFreq) . 149

8.3 0.1s compromise placement (HPlace) 1 measurement per 30
secs (MFreq) . 149

8.4 0.1s compromise placement (HPlace) 1 measurement per 1 to
10 secs (randomized) (MFreq) 149

8.5 Application Impacts Linux . 150
8.6 Application Impacts Xen . 151

9.1 Bin formation with First Come First Serve 156
9.2 Problematic Case - First Come First Serve 157
9.3 Priority Queue . 158
9.4 Applying Backfilling for fuller Bin Capacities 159
9.5 Priority Queue with Aging . 160
9.6 Bin Size Detail - Truncated Uniform Distribution, FCFS 168
9.7 Bin Size Detail - Truncated Normal Distribution, FCFS 169
9.8 Comparison normalized to "Backfill Disabled, Aging Disabled"

configuration - Truncated Uniform Distribution 172
9.9 Comparison normalized to "Backfill Disabled, Aging Disabled"

configuration - Truncated Normal Distribution 172
9.10 Bin Size Detail - Priority Queue with Backfilling - Truncated

Uniform Distribution . 173
9.11 Bin Size Detail - Priority Queue with Backfilling - Normal

Distribution . 173
9.12 Priority Queue with Backfilling vs FCFS - Truncated Uniform

Distribution . 174
9.13 Priority Queue with Backfilling vs FCFS - Truncated Normal

Distribution . 174

xii

9.14 Impact of Bin size scaling, normalized to 100µs configuration,
Uniform Distribution . 178

9.15 Impact of Bin size scaling, normalized to 100µs configuration,
Normal Distribution . 178

9.16 Impact of Bin size scaling, normalized to 100µs configuration,
Uniform Distribution, Max Task Size 100µs 179

9.17 Impact of Bin size scaling, normalized to 100µs configuration,
Normal Distribution„ Max Task Size 100µs 180

9.18 Bin Frequency Scaling Comparison normalized to "12 Bins/sec"
configuration . 182

9.19 Bin Frequency Scaling Comparison normalized to "12 Bins/sec"
configuration . 183

9.20 Check Arrival Rate impact on Task Age and Number of Wait-
ing Tasks, [200,400, and 800 Checks/sec], Truncated Uniform
Distribution . 185

9.21 Check Arrival Rate impact on Task Age and Number of Wait-
ing Tasks, [200,400, and 800 Checks/sec], Truncated Normal
Distribution . 185

10.1 EPA-RIMM Round Trip Time Components. 190
10.2 EPA-RIMM Bench - Bin Costs 193
10.3 0x200 Hash Input Size - Bin Cost Breakdown (a) (Top left) 1

Core UP2 @2.5GHz (b) (Top right) 4 Core UP2 @1.66 GHz (c)
(Bottom) 2 Core Turbot @1.46 GHz 194

10.4 0x1000 Hash Input Size - Bin Cost Breakdown (a) (Top left) 1
Core UP2 @2.5GHz (b) (Top right) 4 Core UP2 @1.66 GHz (c)
(Bottom) 2 Core Turbot @1.46 GHz 195

10.5 0x10000 Hash Input Size - Bin Cost Breakdown (a) (Top left) 1
Core UP2 @2.5GHz (b) (Top right) 4 Core UP2 @1.66 GHz (c)
(Bottom) 2 Core Turbot @1.46 GHz 196

xiii

List of Abbreviations

Abbreviation Definition Description
API Application Protocol Interface Software interface

BEM Back End Manager Decomposes EPA-RIMM
Checks into Tasks

BIOS Basic Input Output System Firmware code that
initializes the system

BMC Baseboard Management
Controller

Out-of-band server
management interface

CR0 Control Register 0 Controls write protection
of memory pages and paging

CR3 Control Register 3 Specifies page table address

CR4 Control Register 4
Enables for Supervisor Mode
protections and other
security/functional features

CVE Common Vulnerabilities
Exposures

Database of known
vulnerabilities

DKOM Direct Kernel Object
Manipulation

Rootkit technique to
hide traces from
system components

DM Diagnosis Manager Selects EPA-RIMM Checks
for processing

DMA Direct Memory Access Method of accessing memory
without CPU involvement

EPA-RIMM

Extensible Performance Aware -
Runtime Integrity
Measurement
Mechanism

A rootkit detector that limits
time spent in a SMM session
and supports extensible
measurements

FCFS First Come First Served Process items in order
FDC Floppy Drive Controller Controls floppy drive

FEM Front End Manager
Interfaces between Ring
0 Manager
and Backend Manager

GDT Global Descriptor Table Provides global segment
descriptors

GDTR Global Descriptor Table
Register

Provides address of table
of global segment descriptors

HCM Host Communication
Manager

Generates SMI to
trigger measurement

xiv

HMAC Hash-based Message
Authentication Code

Verifies data integrity
and authenticity of a message

IDT Interrupt Descriptor Table Provides addresses of
interrupt service routines

IDTR Interrupt Descriptor Table
Register

Provides address of table
of interrupt service
routines

IOMMU I/O Memory Management
Unit

Provides memory
virtualization for devices

KASLR Kernel Address Space Layer
Randomization

Technique to randomize
kernel code addresses

KPCR Kernel Processor Control
Region

Maintains processor state

LDT Local Descriptor Table Provides local memory
segment descriptors

MAC Message Authentication Code Authenticates a message

MSR Model Specific Register
CPU register that controls
processor behavior or
reports statistics

OS Operating System
Privileged software that
supports fundamental
system control operations

PCI Peripheral Component
Interconnect

A type of bus that
connects peripherals

PCR Platform Configuration
Register

A protected storage
location on the TPM

OUTB OUT Byte Write a byte to an IO port
QEMU Quick Emulator Machine emulator

QOS Quality Of Service
A performance
measurement over
a service

RIMM Runtime Integrity
Measurement Mechanism

Performs inspections at
runtime to detect
deviations

SMAP Supervisor Mode Access
Protection

Prevents Ring 0 code from
accessing Ring 3 memory

SMEP Supervisor Mode Execution
Protection

Prevents Ring 0 code from
executing Ring 3 memory

SMI System Management Interrupt Trigger to enter SMM

SMM System Management Mode Privileged x86 execution
mode

xv

SMM-
RIMM

System Management Mode -
Runtime Integrity
Measurement Mechanism

SMM-based runtime
integrity checking method

SMRR System Management Range
Register

Protects SMM memory
from external access

SPI Serial Peripheral Interconnect Connects BIOS flash to
system

SMRAM
System Management Random
Access
Memory

SMM memory

SSD Solid State Disk Solid state disk

SSDT System Services Descriptor
Table

Provides addresses for
Windows system services

STM SMI Transfer Monitor
SMM-based hypervisor
that applies policy over
SMI handler accesses

SWSMI SoftWare SMI Chipset SMI generation
source

TSC Time Stamp Counter Counts CPU clocks

TPM Trusted Platform Module

Discrete security chip that
stores keys and
performs integrity
measurements

TZ-RKP TrustZone-based Real-time
Kernel Protection

Runtime integrity
mechanism for
TrustZone

UEFI Unified Extensible Firmware
Interface

Standards-based firmware
interface

VM Virtual Machine
Method of running an
operating system over an
abstracted layer

VMM Virtual Machine Monitor
Abstraction layer that
virtualizes operating
systems

xvi

List of Symbols

µs microseconds

1

1
Introduction

Today’s interconnected world presents significant opportunities for digital

interactions. A broad set of online activities including banking, shopping,

managing health records, and social media rely heavily on servers to store

and transmit rapidly growing sets of personal information. Both the hardware

and software stack for typical servers have grown in complexity over the

past decade: Virtualization has added a layer of system software between the

hardware and operating systems; and multicore processors have led to a focus

on multithreading and unprecedented levels of resource sharing. Firmware

has taken a prominent role in system configuration and providing runtime

services to operating systems.

While researchers have made advances in improving the security features

of computing platforms, attackers have achieved extensive success with sys-

tem compromises and ability to persist undetected. The varied and dramatic

attacker exploits have caused a new realization: "Companies are beginning

to accept that they will be compromised, so the demand is growing to know

just how often and how deep. . . [98]" The trend towards increased focus on

intrusion detection is also reflected in corporate spending: "Enterprises are

transforming their security spending strategy in 2017, moving away from

prevention-only approaches to focus more on detection and response, accord-

ing to Gartner, Inc. [33]."

However, while increased focus is being spent on detection, there are

a variety of examples where current detection capabilities are lacking. In

December 2016, attackers calling themselves "TheDarkOverlord" contacted

the president of Larson Studios to tell them that their servers had been com-

promised and unless ransom was paid, the attackers would leak all of their

Chapter 1. Introduction 2

data which included upcoming new episodes of the popular Netflix series,

"Orange is the New Black". The attackers also deleted the episodes from the

compromised servers. The company sent $50K to the attackers in an unsuc-

cessful effort to prevent the online release [98]. In a more concerning attack,

the same group compromised the Cancer Services of East Central Indiana –

Little Red Door, retrieved data, and encrypted the original data, demanding a

ransom for restoration. The agency declined to pay noting that they "will not

pay a ransom when all funds raised must instead go to serving families, all

stage cancer clients, late stage care/hospice support and preventative screen-

ings. . . [22]" These compromises are representative of inadequate computer

defenses and detection capabilities. The compromised organizations did not

detect the attack themselves, but rather from the hackers.

Attacks can appear in a variety of forms including computer viruses, ran-

somware, and rootkits. Rootkits present a special concern as they are designed

to evade detection and provide attackers with a direct channel into the sys-

tem to return undetected. Security researchers focusing on rootkit detection

have endeavored to provide new detection mechanisms at lower levels in the

platform to better observe malicious code while remaining protected from

it. These mechanisms can reside within the operating system, hypervisor, or

at an even more privileged level, system firmware (also commonly referred

to as BIOS). Recent years have also seen a growth in ransomware including

instances that leverage kernel vulnerabilities such as WannaCry, Sage, Locky,

and Bad Rabbit [87, 9, 63, 105]. These ransomware also modify privileged

operating system resources to gain control of the system and provide a place

for their malware to reside.

A key challenge with securing computer systems is that vulnerabilities

such as buffer overflows, integer overflows, improper input checking, and

Chapter 1. Introduction 3

inadequate testing can allow an attacker to gain privileges such that they

can overwrite host software code with malicious code. This ongoing issue

facilitates rootkits as attackers can simply select a suitable code vulnerability

and extend it to facilitate greater control over the system or hide their traces.

These insecurities in host software design may never be completely resolved

as they are inherent in complex software. As details on kernel and hypervisor

rootkit prevalence are not readily available, we focus on survey data from the

Common Vulnerabilities and Exposure (CVE) database [19] to gather counts

of privilege escalation and arbitrary code execution vulnerabilities in Xen

and Linux from the years 2011 to 2019. This analysis provides the basis for

examining the scale of the software vulnerabilities that can breed kernel and

hypervisor rootkits. The data, as shown in Figure 1.1, clearly shows that the

scale of the problem has increased since 2011.

FIGURE 1.1: Survey of CVE Database for Privilege Escalations
and Arbitrary Code Execution for Xen and Linux (Years 2011-

2019)

These vulnerabilities are initial vectors that an attacker can weaponize by

inserting modified code into the host to gain persistence and stealth. With a

vulnerable system and rootkit techniques, the attacker has the two necessary

Chapter 1. Introduction 4

requirements to obtain persistent control over host software. Attackers seek

out privileged data structures such as the System Services Descriptor Table

(SSDT) which contains a table of privileged handlers for Windows system

services similar to the syscall table in Linux. Compromising this data structure

would allow installation of malicious handlers to replace the original versions.

A similar attack can be made for the Interrupt Descriptor Table (IDT) which

registers handlers for exceptions and interrupt routines. Patching the kernel is

another method of injecting attacker code so that when a given kernel function

is executed, the attacker code is also triggered. Filter drivers establish a chain

between several layers of device driver functionality and rootkits can insert

themselves between two of the layers to intercept traffic [40].

On x86 platforms, a special CPU operating mode called System Man-

agement Mode (SMM) typically handles important runtime platform man-

agement tasks including managing CPU power states, controlling low-level

hardware such as the CPU fans, handling thermal throttling, performing BIOS

flash updates, and handling memory errors, among other tasks [70]. Intel

introduced SMM with the 386 SL microprocessor [45]. SMM code operates

in a supervisory mode in which the CPU register state and memory are ac-

cessible to it. SMM also benefits from hardware protections over its memory

region that, when properly configured, prevent other code from viewing or

modifying it.

In recent years, some researchers propose a more active role for SMM, in-

corporating rootkit detection capabilities below the hypervisor and operating

systems. SMM’s desirable properties such as broad visibility and protected ex-

ecution present an intriguing approach to better detect host software rootkits.

SMM would represent a new layer in the system hierarchy with the ability to

perform this detection (Figure 1.2). The SMM-based rootkit detectors, which

Chapter 1. Introduction 5

we term SMM Runtime Integrity Measurement Mechanisms (SMM-RIMMs),

monitor operating system or virtualized environments for rootkits. They

accomplish this by preempting execution periodically and inspecting the

interrupted state, looking for unexpected changes compared to a previously-

gathered baseline. The baseline is established based on initial measurements

of presumed static resources which are gathered at a time where the system is

considered to be in an uncompromised state.

When rootkits compromise the lowest level of host software, e.g., the

kernel or hypervisor code that controls the system, they become very difficult

to identify as the detection code is at risk. Security compromises at this level

would have significant repercussions as this privileged layer as well as all

software layers above it are vulnerable. SMM-RIMMs benefit from operat-

ing from within an isolated and hardware-protected SMM memory region

(SMRAM). They also are privileged to look into host software’s memory and

register state which presents a very useful property for a rootkit detector

as these resources are typically changed by rootkits. Beyond this, once an

SMM-RIMM is triggered via an SMI, all host-side execution is paused for

the duration of the inspection which presents the opportunity to interrupt

malicious code or detect traces of its past operation. As x86 platforms broadly

support SMM, there is no additional hardware required or significant modifi-

cations needed for host software to take advantage of an SMM-RIMM. For

these reasons, SMM-RIMMs present intriguing possibilities for adding new

detection capabilities to combat host software rootkits.

However, there are challenges. The entry into SMM is accomplished by a

System Management Interrupt (SMI) which typically takes all CPU threads

out of the operating system environment and into the BIOS’s SMI handler.

This can be a disruptive asynchronous operation from the perspective of any

Chapter 1. Introduction 6

code executing outside of SMM as it would be unexpectedly preempted for

the duration of the SMI. Neither the hypervisor nor the operating system

layer is aware of time spent in SMM. The disruption of an SMI is further

magnified in a multicore platform, since all of the cores are preempted from

the time an SMI occurs to the SMI’s completion.

Proponents of SMM-RIMMs have provided limited measurements of

performance impacts on applications [7, 113] or provided a brief treatment

on system calls [119] but did not extend this analysis further or establish an

upper bound on SMM time.

These approaches [7, 119, 113] would spend up to 233x the amount of

time in SMM compared to the SMI latency guideline [23]. Our investiga-

tions [23] found significant negative impacts of this amount of time spent

in SMM including performance degradations, subtle correctness issues, and

problematic impacts on device drivers. Improperly scheduled SMM activity

has the potential of creating highly perceptible degradation as well as subtle

but negative effects.

As the proposals for utilizing SMM for runtime integrity measurement

may result in fundamental changes over the utilization of SMM, devising

methods of scheduling potentially long security inspections has become

necessary. These scheduling methods bring order to what would otherwise

add uncertainty over platform performance and correctness.

Chapter 1. Introduction 7

FIGURE 1.2: Usage of System Layers Over Time

A second key limitation in the current SMM-RIMM state of the art is

that there are no architected methods for adding new inspections at runtime

to SMM-RIMMs. This capability becomes critical as attackers develop new

rootkits and the detection mechanism needs to be able to detect these new

attacks. Additionally, rootkit malware may seek to hide from RIMMs and a

non-extensible set of measurements would not provide adequate detections.

The ability to dynamically vary the set of monitored resources helps keep

malware unaware about what is being inspected and would raise malware’s

difficulty in avoiding evasion. Operating systems are also more dynamic

today as techniques such as kernel space address layer randomization vary

the locations of kernel code sections further challenging static approaches.

Our reformulation of the SMM-RIMM concept requires a new method of

Chapter 1. Introduction 8

guiding the SMM-based inspections without building in specific operating-

system or hypervisor details into SMM. Updating hard-coded values in SMM

at runtime is not possible as SMM is flashed onto a hardware chip that

requires a system reboot in order to update and supports a finite amount

of write cycles. Compounding the challenge of providing a usable SMM-

RIMM, no SMM-RIMMs have been publicly released which significantly

limits research into the SMM-RIMM concept. Beyond these challenges, the

increased potential for SMM as an interesting attack surface also presents

challenges for SMM-RIMMs.

To address these limitations, we developed a new approach, EPA-RIMM

(Extensible Performance-Aware Runtime Integrity Measurement Mechanism).

EPA-RIMM targets these key challenges for SMM-RIMMs. Using the results

of our research into these new capabilities, we show that it is possible to

implement an SMM-RIMM for servers that is extensible, performance-aware,

and effective. We also demonstrate methods of addressing the security of

the SMM-RIMM with our architectural design that enforces encrypted and

signed communications for our SMM-RIMM and leverages the principle of

least privilege.

For the extensibility requirement, we provide a flexible mechanism to

dynamically vary the integrity measurements and provide developers with

the necessary access to design their own measurements. To ensure that the

SMM-RIMM is performance-aware, we provide a method of bounding exe-

cution times in SMM. The approach is in sync with the unique performance

properties of SMM and decomposes large security checks into shorter tasks

that fit within the timing constraint. These tasks can be scheduled indepen-

dently without severe system performance degradation. The performance

foundation for our approach is informed by our extensive characterization of

Chapter 1. Introduction 9

SMM impacts. The amount of security checking can be increased in times of

attack or decreased to reduce system impacts, providing a balance between

performance and needs for security inspections. By removing impediments to

real-world deployments of SMM-RIMMs, we enable a powerful new tool for

identifying the presence of malicious persistent rootkit software in sensitive

environments. Providing rootkit detection allows discovery of malicious code

that facilitates data leaks and lateral movement in the network.

Section 1.1 provides details on scope of attacks we address. We describe the

key challenges for SMM-RIMMs and how we address them in Section 1.2, our

contributions to advance the state of the art in SMM-based runtime integrity

measurement in Section 1.3, and provide an orientation to the remainder of

the document in Section 1.4.

1.1 In-Scope Attacks

We focus on persistent in-memory rootkit and ransomware attacks that com-

promise presumed-static operating system and hypervisor resources. Rootkits

are malicious software that hides their traces and also provides an attacker

with the ability to control the system. Rootkits often include one or more

of the following techniques: interrupt hooking, changes in low level CPU

registers that control paging and permissions (e.g. CR0, CR3, CR4 CPU regis-

ters), changes in the operating system kernel or hypervisor code, exception

handlers, and other similar resources. While there may be some applicability

of our mechanism to detect malicious application code, we consider this out of

scope. We also focus on monitoring resources with contents that are accessible

at provisioning time. Our priority is to first ensure adequate inspection of

the host software resources in an effort to strengthen the lowest levels of the

platform. Without a strong foundation, securing the upper layers of software

Chapter 1. Introduction 10

becomes infeasible.

Ransomware attacks can leverage similar rootkit techniques such as kernel

code compromise to gain control and then begin to encrypt the user’s data,

requiring payment before a decryption key is provided. These attacks are also

in-scope as the kernel resources they compromise can also be detected with

EPA-RIMM.

1.1.1 Sample Rootkit Techniques

1.1.1.1 IDT Hooking

One technique that allows the attacker to hide traces of their presence on

the system is to modify the Interrupt Delivery Table (IDT) mechanism [52].

The IDT is a data structure that links interrupts on the system with the code

that handles each of these interrupts when they are triggered. Several attack

variants are possible. One attack changes the value of the IDTR which is a

CPU register that provides the address of the IDT table. An attacker could set

up a fake IDT in memory with malicious code in it and then adjust the IDTR

to point to this fake IDT. Once a system interrupt would be triggered, for

example, after a page fault, malicious code would automatically be executed

in place of the original code. Another possible attack would be to keep

the original IDTR but insert malicious code into one of the handlers in the

IDT. When this compromise interrupt handler would fire, malicious code

would transparently execute. SMM-RIMMs can readily detect these attacks by

watching for changes in the IDTR register or hashing the IDT table memory.

1.1.1.2 SMEP Disable

One important CPU-based security feature is Supervisor Mode Execution

Protection (SMEP). This prevents supervisor (Ring 0) code from being able

to execute instructions from user-mode (Ring 3) pages. The SMEP feature is

Chapter 1. Introduction 11

enabled by setting bit 20 in the CR4 control register. The Sage ransomware

utilized a Windows vulnerability (CVE-2015-0057) to transition from Ring 3

to higher Ring 0 privileges, disable SMEP, and modify the LDT.

1.1.1.3 Kernel Rootkit Code Injection

The Snakso rootkit appeared in 2012 and targeted 64-bit Linux kernels. The

WannaCry ransomware leveraged leaked versions of the NSA exploit, Eter-

nalBlue, to attack other networked computers with a kernel-code exploit. The

Locky ransomware compromised Windows kernels with vulnerabilities to

CVE-2015-1701 to execute payload code with kernel privileges. In a write-up

of Bad Rabbit, security researchers are fairly confident that this ransomware

used the EternalRomance exploit to do arbitrary reads and writes to kernel

memory space. These attacks rely upon modification of kernel code which

could be accomplished by kernel vulnerabilities such as CVE-2013-2850, CVE-

2017-12188, or CVE-2016-8633 [19].

1.1.1.4 System Call Hooking

This attack searches for the location of the system call table in the System.map

file, clears the write-protect bit in CR0, modifies the system call table to insert

a new attacker-provided function, then re-enables the write-protect bit [29].

1.1.1.5 Xen Venom Rootkit VM Escape

The Venom vulnerability in QEMU’s virtual floppy disk controller (FDC)

was discovered in 2015 and affected multiple hypervisors including Xen,

VirtualBox, KVM. It enables a VmEscape attack in which an attacker could

escape the constrained environment of the virtual machine and gain execute

permissions on the hypervisor [21].

Chapter 1. Introduction 12

1.1.1.6 Xen Exception Handler

Examining one in-scope rootkit attack in detail, we refer to a Xen hypervisor

compromise from Invisible Things Lab [40]. This attack leverages any avail-

able buffer overflow or logic error that resulted in Ring 0 privileges. Once

this access was gained, the hypervisor attack begins with the installation of a

stealth backdoor by replacing the hypervisor code for one of the privileged

interfaces for a virtualized guest to communicate with the hypervisor (Xen

hypercall) with malicious code. When the hypercall is triggered, the attacker’s

code will execute in place of the original code. The attack also alters the debug

exception handler to detect and executes code contained in malicious packets

instead of handling the debug exceptions. The attack takes advantage of a

higher priority for debug exceptions than firewall rules as the code is executed

prior to the firewall inspecting the packet [40]. This attack would be difficult

to detect from a compromised hypervisor but could be detected by measuring

Xen’s hypercall handling code and debug registers.

Table 1.1 summarizes these attack techniques.

TABLE 1.1: In-scope Attacks Detectable with EPA-RIMM Checks

Attack Example Cmd Operands

IDT Hooking Phrack IDT Reg
VM

IDTR
IDT

CR4.SMEP Disable Sage Reg CR4

Kernel Code Injection

Snakso,
WannaCry,
Locky,
Bad Rabbit

VM Kernel Code

System Call Hooking sys_call_hijack VM
Reg

Kernel RO Data
CR0

Xen Code Injection
Xen Exception Handler

Venom
Xen Exception Hooking VM Hypervisor Code

Chapter 1. Introduction 13

1.2 Key Challenges for SMM-RIMMs

Despite the promise of SMM-RIMMs, five significant challenges remain. In

this section, we describe these fundamental challenges (C1-C5) that greatly

reduce the effectiveness of SMM-RIMMs.

C1 : SMM-RIMM Security: SMM-RIMMs operate with high privileges.

Mechanisms are necessary to ensure that they are not compromised.

C2 : SMM-RIMM/OS Semantic Gap: The SMM-RIMM is not aware of

which resources should be inspected and where they reside.

C3 : SMM-RIMM Performance: Existing SMM-RIMMs greatly exceed SMI

latency guidelines which would result in significant performance degra-

dations and performance impacts.

C4 : SMM-RIMM Measurement Variability: SMM-RIMMs lack measure-

ment variability. They do not vary the sets of measurements over time

or adjust measurement frequency dynamically.

C5 : SMM-RIMM Code Availability: No SMM-RIMM implementations

have been published which significantly limits researcher access to this

technology.

1.2.1 C1 - SMM-RIMM Security

Research Question 1: How to design a more secure measurement agent?

While SMM has promise for host software rootkit detection [7, 113, 119], other

researchers have raised concerns over the privilege granted to SMM by high-

lighting security issues [99, 53, 78]. Security researchers have leveraged SMM

vulnerabilities to implement SMM rootkits and other compromises [59, 15, 67,

Chapter 1. Introduction 14

53, 14, 20]. Some compromises have resulted from improper platform config-

urations. Others resulted from SMM coding errors. One promising path for

reconciling the need for a privileged SMM layer for security monitoring with

the concern of the broad reach of SMM is shown by STM PE [84] (indepen-

dent concurrent work) and EPA-RIMM-V [110] (concurrent work within the

EPA-RIMM research group). These approaches use the SMI Transfer Monitor

(STM), an SMM-based hypervisor that virtualizes SMI handler code, to apply

a protection policy over the handler execution. This policy prevents arbitrary

accesses to system resources, instead confining an SMM-based measurement

agent to a permitted set of resources. The STM’s protection capabilities go

significantly beyond a related UEFI effort that implements SMM page table

isolation to constrain SMI handlers accesses to host memory [117], by allowing

restrictions over other resource types such as CPU Model-Specific Registers

(MSRs), IO Ports, among others. The power of SMM also has the potential

to be misused. Therefore EPA-RIMM can be used with the STM to limit the

access of the measurement agent to a minimal set of resources [110, 84].

Securing the EPA-RIMM measurement agent presents special challenges

as there is a need to balance limited amount of available time in SMM and the

overheads of the STM as well as security features such as encryption, checking

message authenticity, and signature checks. The STM helps solve one security

issue, however, others remain. Attackers could attempt to mount several

types of compromises on the EPA-RIMM measurement agent as enumerated

below.

1. Attacks on measurement agent communications: There are several

key attacks on EPA-RIMM’s measurement agent possible:

(a) Communications spoofing: Attackers may try to construct measure-

ment requests to send to the measurement agent. This could cause

Chapter 1. Introduction 15

it to spend time monitoring unimportant resources instead of re-

sources that could indicate signs of an attack. This attack could

also, optionally, manifest as a denial of service attack as described

below.

(b) Communications tampering: Attackers may try to intercept and mod-

ify messages while in transit. Examples of these tampered messages

would be changing the memory address to be measured or another

measurement guidance parameter to cause it to differ from the

intentions. The goal of such an attack would be to divert the mea-

surement agent’s attention from the intended measurement target.

Similarly, the attack would also be possible on the return of results.

The attacker could attempt to replace an alert with a message that

indicated that there was no detected issue. A successful attack of

this nature would obscure an attacker’s compromise of a monitored

resource, neutralizing EPA-RIMM’s detection capabilities.

(c) Denial of service: Attackers may attempt to cause a denial of service

by overwhelming the measurement agent with requests causing

the system to spend too long in SMM, preventing other meaningful

work. There are two denial of service scenarios:

i. An attacker is able to trigger measurement SMIs but is only

able to provide spoofed Bins.

ii. An attacker succeeds in compromising the signing and encryp-

tion keys.

For the first scenario, processing time for each of these Bins will be

minimal. Once the measurement agent identifies a problem with

Chapter 1. Introduction 16

Bin correctness (e.g. problems decrypting the Bin or with HMAC in-

tegrity), it ceases processing of the Bin. For the second scenario, the

attacker would specify very large hash operations to be performed

to cause extensive time to spent in SMM. This attack attempts to

exploit a design consideration for EPA-RIMM, namely that the

primary method of decomposing large measurement operations is

done outside of SMM.

(d) Replay attacks: This attack "replays" a previous measurement re-

sult by first intercepting a valid measurement and saving a copy

of it. The attacker may block future measurements but pass off

previously-collected measurements in their stead.

(e) Breaking measurement and result confidentiality: An attacker may try

to observe the measurement requests and returned results while

they are in transit. This would allow the attacker to determine

what resources were being measured and whether the attack was

detected. This information could aid an attacker in determining

which system resources to compromise and also gauge the stealthi-

ness of their attack.

2. Use of EPA-RIMM as a side channel: Since the measurement agent

has deep visibility into the running operating system or hypervisor,

attackers could attempt to exploit this visibility into leaking information

about the running system. For example, attackers may wish to view the

contents of memory or register values to aid in later compromising the

system.

Chapter 1. Introduction 17

1.2.2 C2 - SMM and OS Semantic Gap

Research Question 2: How can an SMM-based measurement agent

comprehend the host-side software layout without hard-coded layout

information?

An additional challenge results from a semantic gap between SMM and

the host software due to their disjoint operating environments. SMM does

not have a native understanding of the host software layout or what should

be measured. Building in host-software specific information to SMM as done

in SPECTRE [119] is not a feasible solution as it is brittle. Host software

layouts can change over time, updating SMM code at runtime is not possible,

and kernel address space layer randomization thwarts the scheme. Thus,

resolving this challenge requires a flexible mechanism to specify the set of

resources to be measured as well as where these resources reside.

1.2.3 C3 - SMM-RIMM Performance

Research Question 3: How can the performance impact of SMIs be

measured and analyzed?

Research Question 4: How can an SMM-RIMM be designed to minimize

time spent in a single session to meet SMI latency guidelines?

Research Question 5: What performance optimizations can reduce the

overall overhead of integrity measurements?

Performance is a major challenge for SMM-RIMMs. All SMM-RIMMs that

we are currently aware of exceed the published SMM guidelines by orders of

magnitude [7, 113, 119, 84]. As SMIs preempt all CPU threads, this can result

in significant performance degradations and correctness issues if too much

time is spent in a single SMM session. Our research demonstrated that major

Chapter 1. Introduction 18

system impacts can occur such as significant perturbation of the kernel and

device drivers as well as clear performance impacts such as severe application

slowdowns [23]. Interrupt handling is delayed until the CPUs return from

SMM and latency-sensitive applications can be affected. System software

assumptions regarding scheduling regularity as well as task durations are

challenged by prolonged periods of time in SMM. SMM’s strong isolation

from host software also results in a lack of overall scheduling mechanism

between the two environments. While process scheduling is a key operating

system feature, the operating system’s scheduling mechanism is not aware of

SMM and there are no established methods of efficiently scheduling security

measurement events that span these two contexts. The operating system has

no mechanism to preempt an SMI during its execution. It is also not aware

that time was spent in SMM which impacts the accuracy of scheduling and

process time accounting. Additionally, CPU intensive workloads have no

mechanism to avoid the throughput loss as time has passed but no workload

computations were performed.

1.2.4 C4 - Measurement Variability

Research Question 6: How can variable integrity measurements be sup-

ported in SMM?

The fourth key challenge pertains to measurement variability both for

measurement type as well as frequency and durations of checking. Currently-

proposed SMM-RIMMs utilize pre-configured inspections that do not dynami-

cally alter the set of monitored resources, measurement frequency, or duration.

one approach hard-codes particular kernel addresses to measure [119].

Chapter 1. Introduction 19

A key complication for variable integrity measurements is that the SMM

code is infeasible to modify at system runtime since they reside within a pro-

tected memory range and updating SMM code would require re-programming

the BIOS flash and a system reboot, thus incurring downtime. A lack of vari-

ability provides a significant complication for an effective SMM-RIMM for

three key reasons: 1. Kernel address space layer randomization (KASLR)

varies the addresses of kernel functions upon boot. Thus, statically hard-

coding addresses in SMM of particular kernel functions is infeasible in mod-

ern systems. 2. Continued malware evolution and response to SMM-RIMMs

implies that an unchanging set of measurements will not remain effective

indefinitely. Compounding this issue, a simplistic scheduling mechanism

would cause them to be increasingly vulnerable to the "scrubbing attack" [81,

112] that compromises the system but then cleans up traces of the attack before

an inspection would occur. An example of this would be a rootkit that loads

malicious code into a virtual memory page but then unmaps the page prior

to an integrity measurement. If malware were able to derive the inspection

times, it could readily remove its traces before the next inspection, avoiding

detection. 3. New operating system and hypervisor software updates may

change internal layouts which could invalidate previous assumptions over

locations and structure of kernel objects and functions.

1.2.5 C5 - SMM-RIMM Code Availability

The final key challenge is that no SMM-RIMM implementations have been

published. Previous approaches were closed-source and researchers could

not examine, evaluate, or extend them. This limits the feasibility of the entire

approach, preventing adoption of this protective mechanism.

Chapter 1. Introduction 20

1.3 Contributions

EPA-RIMM constitutes an effective inspection capability that targets stealthy

host software rootkits. With an extensible, performance aware, and effective

SMM-RIMM, rootkit developers can not count on a lack of detection. Provid-

ing a usable scheduling mechanism for measurement SMIs also presents a

method to bring order to the scheduling of an important class of platform man-

agement tasks. As we advanced the SMM-RIMM concept, there were some

established system techniques that we were able to draw from, such as the

knapsack problem and real-time operating system schedulers, however, other

aspects required original thinking. As the prevalent approach of unbounded

time in SMM for rootkit detection was infeasible, we researched and identi-

fied methods of decomposing large measurements into smaller portions to

fit within an SMI time quantum. We demonstrate the merits of measurement

decomposition, priority-based scheduling, and aging to prevent measurement

task starvation. As entries and exits from SMM consume time that would

otherwise be used for processing, there is a risk of the overheads from transi-

tioning into and out of SMM becoming the dominating cost. Therefore, we

maximize the amount of work spent in an SMM session up to the specified

limit. With this approach, negative system impacts due to prolonged periods

of SMM execution can be avoided and effective rootkit detection performed

with minimal impact. We further optimize EPA-RIMM’s performance by

implementing an SMM-RIMM variant of Paradyn’s performance hypothesis,

instead focused on identifying rootkits.

1.3.1 First Linkage of SMI Latency Guidelines and Performance Impacts
to SMM-RIMMs

At the outset of this work, the state of the art for SMM-based runtime in-

tegrity measurement mechanisms consisted of: 1. SMI durations that greatly

Chapter 1. Introduction 21

exceeded the Intel BIOS Test Suite (BITS) SMI latency guideline of 150µs,

and 2: Unbounded SMI time. This Intel-designed tool generates alerts if

detected SMI durations exceeded 150µs, however, SMM-RIMM developers

did not limit SMI time in their design and the consequences of exceeding

the threshold were not clearly demonstrated. In our paper, "Performance

Implications of System Management Mode", we tied the SMI latency guide-

line (LimitSMIBITS) for the first time to SMM-RIMMs and based on detailed

measurements, demonstrated a wide-range of negative impacts when the

guideline was exceeded which included kernel correctness issues, perfor-

mance degradations, and increased power usage [23].

Our performance analysis impacted the design of an HP Labs and Centrale-

Supelac SMM attack detection mechanism as they targeted their mechanism

to support the 150µs SMI latency guideline that we proposed adherence to,

noting "The Intel BIOS Test Suite (BITS) defined the acceptable latency of an

SMI to 150µs. Delgado and Karavanic showed that, if the latency exceeds

this threshold, it causes a degradation of performance (I/O throughput or

CPU time) or user experience (e.g., severe drop in frame rates in game en-

gines) [18]." Our SMI performance characterization also provided insights

for researchers from UCLA and Microsoft who referred to our performance

analysis of SMM [23], noting that "Delgado et al. . . . were the first to experi-

mentally expose the performance implications of Intel’s System Management

Mode (SMM), which is often used for memory error reporting (and which we

discuss in this work). They observed inconsistent Linux kernel performance

and reduced quality-of-service (QOS) from SMM on latency-sensitive user

applications [35]."

These citations reflect the new awareness of SMM performance impacts

that our measurements and analysis has contributed. The design of the HP

Chapter 1. Introduction 22

Labs and CentraleSupelac SMM attack detection which adhered to the 150µs

SMI latency guideline demonstrates the impact of our SMM performance

measurement methodology and our linkage of the SMI latency guideline to

SMM-RIMM performance.

1.3.2 First performance-aware SMM-RIMM design incorporating measure-
ment decomposition

EPA-RIMM’s ability to flexibly schedule integrity measurements with sensi-

tivity to the current threat levels provides the ability to dynamically increase

the amount of security inspection during times where systems in an enterprise

are experiencing heightened attack activity. This allows system impacts to

be tuned to acceptable tolerances in the general case as well as providing a

new ability to increase the amount of inspections when needed. Our method

demonstrates that it is possible to take longer-running measurements and de-

compose them into smaller components that can be scheduled in accordance

with SMI latency bounds. To allow us to evaluate differing approaches in

RIMM scheduling, we created a scheduler simulator that allows the evalua-

tion of changing key scheduler parameters to investigate their impacts.

Our SMI latency system impact measurements establish guardrails that

help keep maximum SMM-RIMM preemptions at desired levels while also

allowing for additional headroom for enhanced detection when it is needed.

To accomplish this performance analysis, we created an SMM performance

measurement methodology and utilized it to conduct a detailed performance

characterization of SMM. Our analysis was the first in-depth study of the

impacts of SMM on hypervisors, operating systems, device drivers, and

applications. This performance analysis provided the necessary empirical

results to allow us to re-design SMM-RIMM scheduling and demonstrate

a mechanism of scheduling platform tasks in an orderly manner. Loutfi, I.,

Chapter 1. Introduction 23

notes that EPA-RIMM is a "novel" way of using SMM for non-traditional

purposes [69].

1.3.3 First application of measurement triggers to SMM-RIMM

SMM-RIMMs have traditionally featured measurements that were timer-

based. EPA-RIMM’s approach allows for reducing the amount of measure-

ments required to evaluate hypothesis regarding the system state. This ap-

proach leverages measurement triggers that schedule less-intensive measure-

ments first to determine if more intensive measurements need to be run to

further evaluate the hypothesis. EPA-RIMM supports this capability using

the Diagnosis Manager and flexible Check descriptions. This new capability

is a first for SMM-RIMMs and can significantly reduce the amount of SMM

measurement time required to evaluate a hypothesis.

1.3.4 First SMM-RIMM Benchmark: EPA-RIMM Bench

Runtime security inspections have the essential property that performance

efficiency is a key concern. With a virtually unlimited set of resources to

measure and re-measure over time, the amount of security inspections that

can be performed without degrading the user experience beyond acceptable

tolerances requires quantification. As processor performance and degree of

parallelism increases, the achievable measurement increases resulting in a

reduced time to discover attacks. Additionally, EPA-RIMM could support a

variety of hashing, encryption, and message authentication code algorithms,

each of which has their own performance and security characteristics. EPA-

RIMM Bench provides the ability to directly quantify achievable SMM in-

tegrity measurement performance which would allow careful performance

analysis to support important design and implementation decisions.

Chapter 1. Introduction 24

1.3.5 First Publicly-Available SMM-RIMM Prototype

Before our work, there have been no public release of an SMM-RIMM. We

constructed a functional EPA-RIMM prototype that allows research into SMM-

based runtime integrity measurement and accompanying performance mea-

surements. With this prototype, we have demonstrated its ability to detect

rootkit attacks and also quantified the impact of the RIMM’s fundamental

operations of register accesses and memory hashes. We provide our pro-

totype to allow researchers to build upon the framework. Taken together

these improvements remove key limitations that reduce the practicality and

effectiveness of SMM-RIMMs and show that the approach can be an imple-

mentable and useful mechanism for detecting host software rootkits. The

ideal outcome of this work would be the availability of the EPA-RIMM frame-

work that provides this new capability to aid in the detection of rootkits and

a community of security researchers who would develop and share checks

for the architecture.

1.4 Document Organization

The remainder of this document is organized as follows: Chapter 2 provides

background on the current security threat landscape, treatment of varied

approaches for securing computer systems and data, describes the urgent

need for runtime measurements, identifies EPA-RIMM’s scope, and provides

details about the system impact of SMM. Chapter 3 examines related work

covering a variety of approaches in performing runtime integrity measure-

ment including software, discrete hardware devices, and firmware among

other approaches, allowing an understanding of how EPA-RIMM compares

to existing techniques. Chapter 4 describes our SMM performance measure-

ment methodology that we used to perform performance sensitivity testing of

Chapter 1. Introduction 25

varying degrees of SMIs which provides the performance underpinnings of

EPA-RIMM. In Chapter 5, we provide a detailed performance study into the

system and application effects of varying degrees of SMM activity, as would

be incurred with EPA-RIMM. Chapter 6 presents the design requirements of

EPA-RIMM including two new requirements we propose. Chapter 7 presents

the EPA-RIMM architecture. Chapter 8 describes our EPA-RIMM prototype

including the design, examples of rootkit detection, and performance mea-

surements. In Chapter 9, we describe our SMM-RIMM scheduler simulator

which provides the ability to simulate the results of a variety of important

scheduler-related parameters that would improve the performance efficiency

of EPA-RIMM. Chapter 10 describes RIMM-Bench which provides a mecha-

nism for comparing SMM-RIMM performance between systems. Chapter 11

summarizes our research.

26

2
Background

The attention to the need for runtime integrity measurement is driven by

current trends in which rootkits remain undetected for prolonged periods of

time. We discuss the contemporary threat landscape in Section 2.1, various ap-

proaches to preventing or detecting malicious activity in Section 2.2, describe

the urgent need for runtime checking in Section 2.3, and show performance

limitations of current approaches in Section 2.4. We describe information on

measurement triggers which fine-tune the of the approach in Section 2.5.

2.1 Threat Landscape

In recent years, the potential damage for system compromises has grown sig-

nificantly. Attacks have taken on financial and geo-political angles. Executive

assistant director of the FBI’s Criminal Cyber Response and Services Branch,

Robert Anderson, noted that "We’re in a day when a person can commit

about 15,000 bank robberies sitting in their basement [54]." Cyber-espionage

is also increasing with the majority of the attacks by state-affiliated attackers

(87%) and organized crime (11%). Of the attack methods employed by cyber-

espionage actors, 37% exploited software vulnerabilities and 24% leveraged

rootkits. Compounding these issues, a recent study by Verizon noted that

only around 20% of attacks in organizations were detected internally with the

majority of attacks detected by law enforcement and third parties [109]. This

low percentage of attack detection within an organization demonstrates that

timely detection of attacks continues to be an issue. Efforts to utilize external

telemetry information from third parties could also bring targeted expertise

to organizations that are less prepared to detect attacks.

Chapter 2. Background 27

The retail sector in 2014 also experienced large-scale attacks with both

Target and Home Depot suffering broad compromises in their point of sale

systems. A survey by the Ponemon Institute showed that "the average cost of

cyber crime for U.S. retail stores more than doubled from 2013 to an annual

average of $8.6 million per company in 2014. The annual average cost per

company of successful cyber attacks increased to $20.8 million in financial

services, $14.5 million in the technology sector, and $12.7 million in communi-

cations industries [42]." The study also notes that "cyber attacks can get costly

if not resolved quickly" and the average time to resolve a cyber attack was 45

days. An examination of today’s threat landscape shows that there are large

financial consequences to compromises and quick detection and remediation

become determining key factors in the overall cost of the attack.

Attacks may arrive by a number of means. These can include: malicious

code that targets the application layer, denial of service, web-based attacks,

phishing and social engineering, malicious insiders, stolen devices, malicious

code that has entered a network, viruses, worms, and trojans that reside

on endpoint systems, and botnets [42]. Different attacks require different

detection mechanisms. Application-level attacks are very prevalent as these

are easier targets while lower-level attacks can have a broader impact on the

system and are harder to remediate.

2.2 Varied Approaches for Securing Systems

Efforts to secure computer systems and data fall into a number of categories.

One key approach focuses on improving the design of computer systems to

strengthen security in one aspect. For example, the Address Space Layout

Randomization (ASLR) feature helps prevent malicious code from being able

Chapter 2. Background 28

to rely upon a consistent user-space memory layout across a number of ma-

chines by randomizing the locations of the "stack, mmap region, heap, and

the program text itself" [27]. This feature is also present in the Linux kernel

to randomize where the kernel’s code is placed at run-time. Kernel ASLR

(KASLR) could complicate the effort of certain runtime integrity approaches

that rely upon kernel functions being located at certain known addresses.

Secure Boot protects against an operating system being compromised early

in the boot process from a malicious boot loader [114]. Microsoft has added

integrity checks over the Windows heap and added Data Execution Preven-

tion (DEP) that prevents certain programs and services from executing from

memory regions set aside for Windows [79].

Formal Verification is a technique of logically checking whether a design

meets a set of given requirements, under a set of assumptions [56, 16, 111].

One of the most prominent approaches in this area is the seL4 microkernel that

has undergone a complete functional correctness proof for its code [56]. While

Formal Verification presents the ability to make strong claims over security

properties, the approach has scalability limitations due to limits in the amount

of code that can be reasonably formally verified. It also requires making

assumptions over system design and configurations that may not broadly

hold. For example, the formal verification of the seL4 microkernel assumes

that the widely-used Direct Memory Access (DMA) feature is not being

used, leaving users to formally verify their own DMA-capable device drivers.

Additionally, SMM presents serious complications to formal verification on

x86 platforms as it operates completely out of band of the formally verified

environment and has the privilege of modifying arbitrary resources. Azab,

et al. note that the impacts of SMM and firmware "could negate all seL4

guarantees" [6].

Chapter 2. Background 29

Another approach attempts to construct strongly isolated computation

environments on systems that may be less trusted [75, 6]. For example, Flicker

can provide strong isolation of running code even when the "BIOS, OS, and

DMA-enabled devices are all malicious" [75]. SICE leverages SMM protections

to protect running code from other code running on the system. Additionally,

when SICE-protected workloads are not running, their data is stored in a

hardware-protected SMRAM region. One new method of providing isolated

execution is Intel’s Software Guard Extensions (SGX) which leverages new

CPU instructions to construct protected environments for user code to execute

in. These protected applications ("enclaves") have hardware-based protection

against access from malicious software running at higher privilege levels

such as hypervisors, BIOS, or operating systems. SGX also protects the

confidentiality and integrity for the protected application’s code and data [76,

39].

A separate approach acknowledges that despite the efforts to construct

host software with improved security, computer systems will likely be com-

promised and that vigilant observation is necessary. This runtime integrity

monitoring approach mitigates the risk of successful compromises by peri-

odically checking the status of key resources in host software to determine if

they have been unexpectedly changed. This leverages the observation that

certain kernel data structures and code regions are generally static once con-

figured [50]. Runtime integrity monitors can quickly alert administrators to

alert them that a potential attack is in progress [7, 90, 119, 113].

2.3 Urgent Need for Runtime Checking

Currently, servers that host sensitive data for thousands of users typically run

without any checking of the low-level fundamental resources that control the

Chapter 2. Background 30

system. Unlike antivirus programs which regularly scan user programs and

data, there are often no checks over a number of important security-sensitive

hypervisor and low-level operating system resources. Once attackers are

able to gain a foothold, they can often persist for extended periods of time

undetected. For example, the security analysis of the highly publicized attack

of Sony in 2014 suggests that attackers remained in Sony’s network for months

before unleashing a devastating ten minute attack [1].

Despite improvements in operating system and hypervisor security, rootk-

its continue to compromise crucial host software environments. Rootkits

provide attackers with the ability to hide all traces of their activity on the

system from host software, allowing for stealthy operation. Host software

rootkits compromise sensitive software and hardware resources that control

fundamental operations such as interrupt handling, memory access, and event

handlers. If a system is compromised at the lowest level, all code running

above it is at risk. Quick runtime detection of attacks becomes increasingly

critical to alert administrators so that they can prevent attacks from spreading

or information leaking. Currently there is little host software runtime integrity

measurement software actually deployed and the topic is largely limited to

the research arena.

SMM-based runtime security measurement mechanisms can reside out-

side of potentially compromised host software regions and provide ongoing

host software rootkit detection. However, the proposed runtime integrity

measurement mechanisms of today are not likely to be deployed. The current

simplistic scheduling of security checks, inflexible specification mechanism

for new checks, fairly predictable checking, lack of telemetry information,

and performance impacts reduce the attractiveness of the potential solution.

With a number of host software resources to check, the performance impacts

Chapter 2. Background 31

of the design become crucial. The authors of one runtime security checker

note that they could trigger a security check on "every CPU instruction by

using performance counters in the CPU, thus guaranteeing that every state is

introspected [119]." Could this improve security? Probably so, if the mecha-

nism were sound. However, no user would accept this system due to severe

performance degradation, regardless of the additional security it provided.

Tolerances for security delays fall upon a spectrum. Some environments

such as stock trading are very sensitive to latency. A TABB Group study

"estimated that if a broker’s electronic trading platform is 5 milliseconds

behind the competition, it could lose at least 1% of its flow. That equated

to $4 million in revenues per millisecond. Up to 10 milliseconds of latency

could result in 10% drop in revenues. Today, latency is often measured in

microseconds (µs), with the current impact per µs commonly accepted by

many traders to be $100,000 per year [32]." Similarly, a Blackhat security

presentation explained why firewalls, routers with access permission lists,

and intrusion detection systems do not exist in stock trading environments:

"In the vast majority of interconnection scenarios, a few milliseconds is not

that much of a problem. In the case of low latency trading, it’s about 100,000

times too slow [104]."

However, not all environments are this sensitive to latency. The require-

ments for credit card processors (PCI DSS) prescribe the use of a firewall,

encryption of the transmission of cardholder data across public networks, the

use of antivirus programs, and monitoring of access to network resources and

cardholder data. Each of these requirements can improve the security, if prop-

erly implemented, however would come at the cost of system performance [3].

With a varied set of industry requirements and tolerances for security delays,

enterprises would benefit from the ability to dynamically vary the amount

Chapter 2. Background 32

of security checking performed on their systems. Scheduling fewer security

checks may improve performance but could result in a less-secure system.

Likewise, performing extensive checks may uncover well-hidden malicious

code but could degrade the user experience significantly. An effective runtime

security checking mechanism should be designed to operate within the target

environment. To provide strong coverage, environments utilizing runtime

integrity measurement mechanisms should support increasing the amount of

checks as needed to respond to rapidly spreading attacks.

Current research on RIMMs is largely limited to the security of the mech-

anism itself and a canned set of attacks that can be detected. For these

mechanisms to become practically implementable in real computing environ-

ments, the mechanisms must be generalized to be made adaptable to newly

emerging threats and feature performance tuning knobs that encourage the

server administrator to not disable the mechanism and its protections.

2.4 System Impact of SMM

The key challenge with SMM-RIMMs is that their system impact may be

significantly disruptive to other processing on the system, depending on how

it is scheduled. When an SMI occurs, all CPU threads transition into SMM,

saving their interrupted state in an SMM memory region called the SMRAM

Save State Map. When SMM processing has completed, the interrupted

context of the CPU threads is restored and the threads return back to where

they were executing when the SMI was received. Thus, from the perspective

of the code, time has passed but the code was transparently interrupted. In

more recent Intel processors, an SMI counter will increment upon each SMI

but other than this mechanism, there is not a direct method of determining

that the SMI occurred.

Chapter 2. Background 33

Given these unexpected preemptions, the time spent in SMM should be

short in order to not unduly preempt executing code for too long which

could result in performance degradations or correctness issues. Intel has

released a tool called the "Intel BIOS Implementation Test Suite" (BITS) [106]

that counts and measures SMIs occurring on a system and checks that their

latencies are within "acceptable" limits (currently defined as 150µs). This

rule of thumb has been the only available guideline for latency tolerance. At

present, none of the SMM-RIMM approaches that we are aware of has limited

their time spent in SMM according to SMI latency guidelines. Each of the

SMM-RIMM approaches dramatically exceed current SMI latency guidelines.

These mechanisms take between 27 and 267 times the current SMI latency

guidelines which presents concerns over their system impact. Table 2.1 shows

the stated time requirements for several prominent SMM-RIMMs.

Our previous work in understanding system sensitivities to prolonged

SMI delays shows a variety of impacts that result when SMI latencies are

increased well beyond the guidelines. The range of effects includes correctness

issues in process time accounting, jitter in interrupt processing, loss of timer

ticks, and significant performance degradations [23]. Balancing the tension

between SMM-RIMMs and other processing is a key focus of this work as we

investigate methods of enabling SMM-RIMMs without drastic system impacts.

We present our measurement results on the impact of varying degrees of SMIs

in Chapter 5.

Chapter 2. Background 34

TABLE 2.1: SMI Time Comparison of SMM-based RIMM ap-
proaches

Approach SMI ms Frequency
HyperCheck 40 1 per sec
HyperSentry 35 1 per 8|16 sec
SPECTRE 5 to 32 16 per sec to 1 per sec
Delgado et al 1.5 Not specified
EPA-RIMM-Linux 0.26+ Dynamic
EPA-RIMM-Xen 0.28+ Dynamic
Intel BIOSBits 0.15 Not specified

2.5 Triggers

The Paradyn automated performance analysis tool implements a W3 search

model (Why, Where, When) that seeks to answer why an application is per-

forming poorly, where the performance problem resides, and when the prob-

lem occurs [80]. To reduce the performance overhead of this instrumentation,

Paradyn does not apply all available performance instrumentation at once.

Instead, it explores several hypothesis candidates to determine why a per-

formance problem occurs. It selectively refines the hypothesis by means of

Boolean functions. When one light-weight test indicates a potential perfor-

mance problem in a particular module, a heavier-weight test can be triggered.

By only invoking the heavier-weight test if the light-weight test indicated a

problem, Paradyn effectively explores the performance problem search space

with minimized system impact.

In Paradyn, transient performance overheads do not merit analysis as they

consist of a small fraction of total execution time which is not worth tuning.

However, SMM-RIMMs should detect attacks as soon as possible after they

occur to limit potential damage. Short-lived attacks that hide their traces can

possibly evade detection. Thus, this constitutes one key difference between

Paradyn’s approach and the requirements of SMM-RIMMs. However, by

Chapter 2. Background 35

relaxing this constraint, the trigger mechanism presents a potential method to

reduce the overall overhead of SMM-RIMM measurements.

36

3
Related Work

This section describes related work that most closely relates to our focus of

providing mechanisms to determine when an operating system or hypervisor

has signs of an attack. With this knowledge, a system administrator could take

various actions to reduce the ability of malware to spread further within the

environment. A key difference in these varied approaches is the location of

the measurement agent. Pure software-based approaches can more easily be

deployed than mechanisms that require special hardware or custom firmware,

however, attaining effective protection for the software-based measurement

mechanism is challenging due to running the mechanism in the same context

as potentially malicious code. Hardware-based mechanisms can achieve a

greater isolation from malicious code due to lower-level hardware protections

over their agent, however, due to their isolated contexts, gaining full access to

the necessary CPU and memory state can be challenging. Firmware presents

intriguing possibilities due to its leveraging of hardware-based protections

and also ability to gain access to a wide amount of system context. Open

challenges with this approach are how to provide the ability to properly

understand the host software environment and how to resolve potentially

significant performance issues.

3.1 Race to the Bottom

Researchers have proposed a number of runtime integrity measurement

modules. In the years 2000 and 2001, two kernel module-based rootkit de-

tectors called rkscan [4] and St. Michael were released [101]. Kernel-based

approaches benefit from native visibility into the kernel. However, there is

no protection from potentially malicious code operating in the kernel. If the

Chapter 3. Related Work 37

kernel were to be compromised, a kernel-based security checker is also clearly

at risk due to running in the same context.

A more privileged layer became necessary in order to check the kernel

without being put at risk from other code running at that privilege level.

Hypervisors [102, 5, 73] and hardware [100, 65] provided a means to get

deeper observation capabilities. System firmware approaches leveraged the

powerful, widely available, but lesser-known System Management Mode

on x86 CPUs [7, 113, 119]. The choice of placement of the runtime monitor

presented a number of trade-offs, namely the degree of protection of the run-

time monitor itself, degree of visibility into host state, performance impacts,

extra cost required for additional hardware, and ease of monitor updates. At-

tackers are motivated to entrench their mechanisms deeper into the platform,

for example, into the hypervisor itself [31]. This correspondingly drives the

need for security checkers to obtain visibility from an even more privileged

location.

3.2 Software-based Approaches

One current example of a software module that performs runtime integrity

for the Windows operating system is Microsoft PatchGuard. This mechanism

was introduced in Windows Vista [77] and monitors operating system mod-

ules, the System Services Dispatch Table (SSDT), the Global Descriptor Table

(GDT), and the Interrupt Descriptor Table (IDT). However, as a pure software

mechanism, it is hampered by operating at the same privilege level as the code

that it is trying to monitor. This requires PatchGuard to modify the operating

system to protect itself against various attacks. One example is the setting

up of a new IDT to avoid a debug exception-based attack. PatchGuard also

employs a variety of advanced coding techniques such as "self-modified code,

Chapter 3. Related Work 38

code obfuscation, self-integrity checking, and randomization" [82]. These

types of operating system modifications and advanced coding techniques

add complexity to host software and also work against the efforts of lower-

level runtime integrity checkers designed to identify unexpected changes in

the IDT. Providing a runtime integrity measurement solution that operates

outside of the operating system avoids the additional complexity of advanced

coding techniques and modifying the very resources the runtime integrity

monitor is designed to watch.

3.3 Hardware-based Approaches

Hardware devices generally improve the isolation of the measurement mech-

anism from the monitored code making them harder for an attacker to tamper

with. Additionally, they can offload security measurements from the host

CPU which could be a way to improve performance. The main challenges

with discrete hardware devices are that they do not have access to important

CPU registers that control the platform. Some discrete hardware devices may

also have their memory accesses to host memory blocked by an IOMMU

mechanism such as Intel VT-D. Besides these drawbacks, there is a financial

cost for another hardware component as well as a lack of generality since the

mechanism only works when the specialized hardware are present.

3.3.1 Discrete Devices

Researchers have proposed RIMMs rooted in devices on the PCI bus [90],

memory modules (MGUARD) [65], SOC [81], and the chipset [13]. The PCI

device approach, Copilot, utilized a PCI card with DMA (Direct Memory Ac-

cess) access to inspect the host’s memory in order to locate rootkits. While this

approach offloaded the inspection from the host CPU, it was unable to access

CPU register state causing its visibility to be limited. Today, IOMMUs (such

Chapter 3. Related Work 39

as Intel’s VT-D) are prevalent on modern x86 CPUs which can shield host

memory from PCI devices (including Copilot) which renders this approach

less useful. Copilot also relies upon a System.map file built when the kernel

was originally compiled to locate kernel functions in memory.

MGUARD has the unique capability to detect SMM rootkits due to its

integration into the memory module itself. MGUARD receives direction on

what memory pages to monitor via a serial link. This allows customization for

different operating systems. MGUARD monitors activity on the memory mod-

ule itself to determine whether accesses fall into regions that it was directed

to monitor. Upon identifying accesses in the monitored area, MGUARD saves

copies of these pages to a private DRAM for later analysis. Key benefits of this

approach are the strong isolation from host software, continuous monitoring

(as opposed to snapshot-based approaches common among SMM-RIMMs),

and negligible performance overheads. The drawbacks include a lack of visi-

bility into CPU registers which hampers visibility into the current state of the

system. Additionally, new memory module hardware would be required for

each system to use this mechanism increasing the financial cost significantly.

The SOC approach, Vigilare, works by snooping memory bus traffic on the

system. One clear benefit from this approach is its ability to catch transient

attacks which compromise the system, but then hide traces of their presence

in order to avoid detection. However, as Vigilare lacks access to the CPU

registers, it is vulnerable to relocation attacks in which inspected code is

moved to a new location out of the view of the measurement agent. Without

CPU register access, Vigilare must also rely upon the System.map file that

is generated upon compilation of the Linux kernel to locate the address in

memory of the items that it should measure. Additionally, the performance

of the SOC may not be sufficient to keep up with high bandwidth memory

Chapter 3. Related Work 40

busses.

DeepWatch can detect and remediate low-level virtualization-based rootk-

its by using chipset hardware out of band of the host CPU, for example, Intel

Active Management Technology (AMT). DeepWatch uniquely enables the

removal of rootkits while other approaches focus on detection. This approach

utilizes DMA to access system memory from an embedded CPU in the chipset.

The benefits include offloading inspections from the host CPU which would

reduce performance overheads, can scan host memory and the SSD while the

system is in a sleep state, and can identify SMM rootkits. A key drawback is

the necessity for chipset-specific implementations due to different hardware.

Nighthawk [120] is an updated approach that uses DMA from the Intel Man-

ageability Engine (ME) to detect rootkits in the operating system, hypervisor,

or in SMRAM. However, the ME lacks SMM’s ability to have direct access to

the CPU register state.

A recent study shows that these discrete hardware devices are vulnerable

to the Address Translation Redirection Attack (ATRA) [50]. Note: Nighthawk

has special handling for this attack by leveraging SMM’s ability to observe the

page table address. In one implementation of this attack, an attacker makes a

copy of page table data structures and configures the system to refer to this

non-legitimate version. External hardware-based monitors that lack access to

the CPU registers are typically unable to detect that this switch has happened

and continue to monitor the old location. However, at this point, the attacker

is in control of the host software memory and the runtime integrity code is

unable to detect the attack. This approach to runtime integrity measurement

would need to improve its resilience to the ATRA attack in order to remain a

viable approach.

Chapter 3. Related Work 41

3.3.2 CPU Virtualization

Hardware-based CPU virtualization can also aid rootkit detection. Given

the wide availability of this CPU feature, there is no additional hardware

to purchase in contrast to the dedicated hardware approaches. However,

the performance cost of virtualizing the host software becomes a key factor.

One prominent example is McAfee Deep Defender which was introduced in

2011 [62]. Deep Defender utilizes a security hypervisor to monitor several

key Windows resources in a virtualized Windows guest. These resources

include the IDT, SSDT, DKOM list, kernel code sections, certain device drivers,

among others. When a change is attempted in one of the guest’s monitored

resources, the CPU’s hardware virtualization triggers a transfer of control

("VMEXIT") from the virtualized Windows guest environment to the security

hypervisor for remediation. This approach benefits from strong isolation

between the monitored environment and the security hypervisor and can

also provide quick detection of improper accesses as they occur. However,

DeepWatch requires placing a security monitoring hypervisor below the

user’s operating system which comes at a significant performance cost over a

variety of operations beyond the security inspection required [74]. It would

also require nested virtualization to secure a hypervisor which can incur a

heavy performance impact.

Hypervisors have also been used to build more secure operating envi-

ronments as opposed to being used for rootkit detection as in the case of

Deep Defender. Security Visor [102] places a small hypervisor below the

operating system to prevent unauthorized kernel code from executing. A key

mechanism of Security Visor is its virtualization of the operating system’s

memory in order to intercept potentially malicious changes. The mechanism

is rooted in the hypervisor as this has isolation from the kernel and would

Chapter 3. Related Work 42

not be compromised even upon a successful kernel attack. This mechanism

is best suited for operating systems as placing a hypervisor under another

hypervisor can introduce an additional performance impact onto the system.

The performance overheads of Security Visor can be significant. Linux kernel

builds and unzipping the kernel source took 219% and 140% longer, respec-

tively, than when performed on a native Linux installation. The PostMark

mail server benchmark showed an 86% performance decrease compared to

native Linux. The authors note that application performance will be impacted

based on the frequency of kernel calls and the amount of change in the appli-

cation’s working set. These overheads are driven by overheads in shadowing

the CPU’s GDT, LDT, and IDT registers along with the shadow page table.

Advances in virtualization performance such as Enhanced Page Tables may

have beneficial impacts on these overheads.

3.3.3 CPU Performance Counters

One of the challenges of identifying rootkits and other malware is that their

authors can easily create a large number of variants that accomplish the same

results but with variations in the implementation to avoid detection. Tradi-

tional software checkers that look for signatures to identify malicious code

can be fooled by code that is implemented slightly differently. For this reason,

researchers are investigating new methods that do not rely upon static soft-

ware signatures but incorporate behavioral aspects. One promising approach

that incorporates behavioral aspects is work done by Demme, Maycock et

al. which leverages CPU performance counters to detect anomalous rootkit

behavior [25]. CPU performance counters can record a variety of detailed

processor metrics including number of instructions retired per second and

a variety of cache statistics. These counters can be combined with machine

learning techniques to identify anomalous behavior as running an application

Chapter 3. Related Work 43

that is infected can have a different performance counter profile than running

the application without malicious code added in. The results show some

promise in detecting malicious threads of execution based on this approach.

An important challenge with this approach is that some infected applica-

tions can differ only slightly from the uninfected application which raises the

possibilities of false positives.

3.3.4 TPM

The Trusted Computing Group (TCG) is an international standards group

that develops specifications for technologies that "enable a safer computing

environment across platforms and geographies [107]." One technology the

TCG has developed is the Trusted Platform Module (TPM) which is a small

hardware device that can perform hashing, encryption, and store secrets away

from malicious code running on the host CPU. In 2004, Sailer, Zhang, et al,

proposed a TPM-based mechanism that dynamically measured executable

content such as applications, the kernel, and kernel modules on a running

Linux system before they were invoked or used [100]. This allowed detection

of unauthorized changes done by operating system rootkits. The mechanism

supported three methods for invoking measurements: the file_mmap Linux

Security Module hook to trigger a SHA1 measurement of the file, the addition

of a measure function call in the kernel code path that relocates kernel modules

in memory, and an addition to the /etc/security/measure interface to trigger

a measurement on a given file descriptor.

As many files can be in use on a system at a given time, the mechanism

reduced some of the overheads by avoiding the need to use the TPM on

each file measurement, using a kernel cache of known measurements. The

mechanism only extended the measurement to the TPM if it was not in the

kernel cache (e.g. it had not been measured before.) A TPM extend operation

Chapter 3. Related Work 44

writes a hash to a special register (PCR/Platform Control Register) on the

TPM device. Each hash is the result of a hash of a new value and the existing

PCR value. The heaviest latencies in this approach result from the use of

the TPM which is a relatively slow device. While a SHA1 hash could be

accomplished in 4.21µs, the TPM extend operation increased latencies to

5430µs. The authors note, however, that TPM extend operations are relatively

rare due to their optimizations so the ultimate performance impact from the

TPM operations in this approach should be minimal.

3.3.5 Late Launch

Both Intel and AMD have developed security mechanisms in their CPUs that

build upon the TPM, namely Intel TXT (Trusted Execution Technology) and

AMD SVM (Secure Virtual Machine). A key feature of Intel TXT is that it

can perform a measured launch of the operating system or hypervisor. This

capability allows inspections of the boot loader as well as key system files

and drivers before launching the operating system or hypervisor. If these files

have changed, one of the options available to set in the launch policy is to reset

the system, preventing further progress into a compromised environment.

This provides protection at boot time; however, it is still possible for the

system to become compromised after the system has been running for an

extended period of time.

In 2008, McCune, Perrig et al. proposed Flicker which represented a novel

usage of SVM and the TPM to execute a variety of applications in a context

that was isolated from the host CPU. One supported application was a rootkit

detector [75]. A primary benefit of CPU-based security mechanisms such as

TXT and SVM is that they support a functionality called "Late Launch". This

allows a secure launch at any time of a Virtual Machine Monitor or "Security

Kernel at an arbitrary time with built-in protection against software-based

Chapter 3. Related Work 45

attacks." Thus upon the CPU issuing the instruction to launch the secure

environment, DMA is disabled to the memory pages to be used by the secure

environment, interrupts are disabled, and debugging access is disabled as

well. In order to demonstrate that the secure environment was properly

invoked, a measurement (hash) of the launched secure code is stored in a

TPM register (PCR). With this mechanism, Flicker facilitates a secure launch

of application code and can demonstrate that the code that was launched

was the code that the administrator expected to run. Flicker’s design limits

the securely-launched code to ring 3 (user-mode) applications to prevent

them from modifying the underlying operating system. While this provides

protection against an errant or malicious application, it also reduces the

visibility of a rootkit detector application running on Flicker.

The assurances that Flicker provides over the securely launched code do

come at fairly high system impacts. The cost of the rootkit detector’s hash of

the OS kernel (22 ms) is dwarfed by the time required by the TPM to securely

write the measurement ("quote") of the executed code and its arguments. The

latter took between 331 and 972 ms depending on the TPM manufacturer.

Beyond these impacts, Flicker also runs with the operating system "suspended

and interrupts disabled" [75]. For this reason, the authors note that the user

"will perceive a hang on the machine. Keyboard and mouse input during

the Flicker session may be lost. . . The most significant risk to a system during

a Flicker session is lost data in a transfer involving a block device, such as

a hard-drive, CD-ROM drive, or USB flash drive" [75]. While Flicker does

provide strong isolation from rootkits, there are several significant drawbacks:

large performance impacts and an unsupported ability to run rootkit detectors

at privilege levels greater than the operating system.

Chapter 3. Related Work 46

3.3.6 ARM TrustZone

The ARM processor commonly used in cell phones and tablets does not

feature SMM, however, its TrustZone architecture has some similarities to

SMM. TrustZone is a set of extensions to the ARM CPU that provide for

a normal world and a secure world. Code running in the normal world is

unable to access resources that are limited to code running in the secure world.

The mechanism to transitioning between the normal and secure world is the

Secure Mode Call instruction. Similar to SMM, the secure world has full access

to host memory (normal world memory). The challenges of the TrustZone

mechanism are that compromises in the normal world may be undetected if

the secure world does not intercept malicious changes in system state. For

example, the secure world is unable to intercept page fault exceptions and

certain control instructions [8].

One enhancement to TrustZone is the TrustZone-based Real-time Kernel

Protection (TZ-RKP) mechanism. TZ-RKP routes certain security-sensitive

functions through the secure world for "inspection and approval before being

executed" [8]. This has similarities and differences to common SMM usage.

SMM can perform platform management tasks on behalf of less privileged

operating system code, however, it is not tightly integrated into the operat-

ing system in the manner done by TZ-RKP. TZ-RKP inserts hooks into the

operating system to call into the secure world to perform sensitive security op-

erations (e.g. specifying location of memory translation tables and exception

handlers) on behalf of the operating system in a more trust-worthy environ-

ment. TZ-RKP is presently deployed on Samsung Galaxy smartphones and

tablets, including the Samsung Galaxy Note 3 and S5 phones.

A class of attacks that TZ-RKP can not detect are those in which the

attacker tricks the kernel into modifying important data fields in its own

Chapter 3. Related Work 47

memory. These attacks could compromise control flow integrity in which the

intended sequencing of kernel operations is changed. However, this would

not result in compromise of the secure world as this remains in a separate

non-compromised context and also state changes that require a call into the

secure world still would not be possible. TZ-RKP assumes that the kernel

can support a design in which pages are mapped exclusively as executable

pages or write pages. From the performance perspective, TZ-RKP incurs

overheads from 0.19% to 7.65% on a set of benchmarks surveyed by the

designers. These degradations are influenced by frequent transitions to and

from the secure world at the cost of 2,000 cycles for each transition. While

2,000 cycles on a 2.3 GHz CPU is not that large, there is additional work to be

performed in the secure mode which would add to this cost, and with frequent

occurrences, this has the potential to impose a noticeable performance impact.

The designers "recommend that TZ-RKP’s performance overhead should be

carefully examined before it is implemented in a production environment" [8].

3.3.7 SMM-RIMMs

Firmware-based mechanisms leverage a special execution mode on the x86

CPU called System Management Mode. This mode provides "an alternate

operating environment that can be used to monitor and manage various

system resources for more efficient energy usage, to control system hardware,

and/or to run proprietary code" [45]. AMD x86 CPUs also feature SMM [2]

and Intel’s Itanium CPU features a PMI that is similar in concept to an SMI [46].

SMM is designed such that neither privileged software nor applications can

inspect its memory (SMRAM) or directly detect time spent in this mode. SMIs

can occur for a variety of reasons including: reporting of hardware errors,

thermal throttling, power capping, and system health checks [70]. SMIs can be

synchronous via a CPU instruction or asynchronous from the chipset [26]. The

Chapter 3. Related Work 48

potential exists for an SMI to preempt time-sensitive code (e.g. code holding

a global lock on one node in a cluster), resulting in delays well beyond what

the software developer may have expected. The x86 architecture features a

variety of different types of exceptions and interrupts. SMIs are unique in that

they are a higher priority interrupt than Non-Maskable Interrupts (NMIs) and

device interrupts. SMM has the benefit that other interrupts will not preempt

it, but has the side effect that other device interrupts will only be handled

after it has finished its work [7]. As SMM is broadly available on x86 CPUs,

there is not additional hardware to be deployed to take advantage of it and

developers can leverage it for new uses by modifying the BIOS.

From the perspective of RIMMs, SMM has several useful properties. SMM

has the ability to preempt running host-side code and any malware in that

region. Thus, even if host software is fully under the control of malware, one

SMI can cause all of the CPUs to exit SMM into an alternate context. Thus, any

malicious processing on any CPU thread is preempted for the duration that

the CPU threads are in SMM. Once there, SMM has the necessary privilege

to inspect and even modify host software, thus SMM has a high degree of

privilege. SMM has broad visibility as once an SMI occurs, each interrupted

CPU thread’s context is saved in SMRAM where SMM can inspect it. In

this way, it has straight-forward access to a very useful set of CPU registers

that control host software execution including the CR3 register that controls

paging, the IDTR that controls interrupt-handling, and the GDT that controls

memory segmentation. SMM-RIMMs also benefit from strong isolation from

host software. Even if an operating system or hypervisor is under full control

of the adversary, SMM is still intact. Transitions into SMM are quicker than

performing a TXT launch which can allow for more frequent transitions than

could be accomplished with TXT-based mechanisms.

Chapter 3. Related Work 49

Several examples of SMM-RIMMs are HyperSentry [7], HyperCheck [113],

and SPECTRE [119]. HyperSentry’s developers created a mechanism to allow

for "stealthy in-context integrity measurement of a running hypervisor (or any

other highest privileged software)" [7]. HyperSentry relies upon a modified

SMI handler that works in conjunction with a measurement agent that runs

in the hypervisor. Each integrity measurement is triggered by an SMI that is

generated by a server management device (BMC). Upon receiving an SMI,

the CPU threads enter the SMI handler and the source of the SMIs determines

whether processing will be handled by the HyperSentry SMI code or the

standard SMI code. When the HyperSentry SMI code receives control, it

measures the content of the measurement agent to ensure that it has not been

compromised. Assuming the measurement agent is unmodified, HyperSentry

sends one CPU thread to the measurement agent to perform the hypervisor

measurement. While this measurement is in progress, the other CPU threads

wait.

By leveraging a hypervisor-based measurement agent, HyperSentry avoids

the semantic gap that results from trying to look in to the operating system

or hypervisor from outside of that context. While SMM has the privileges to

perform this examination, it does not have the knowledge to comprehend

most of the data structures in use by the host software. This presents a

quandary as RIMMs benefit from strong isolation from host software, yet, also

need the ability to comprehend their key data structures. While developers

could choose to make SMM aware of the set of data structures in use, this

dramatically increases the amount of code that must be brought into the SMM-

RIMM and would also necessitate updates when host-side data structures

were revised. At the same time, simply placing a measurement agent in host

software without a mechanism to check its integrity before usage, puts the

Chapter 3. Related Work 50

RIMM mechanism at risk although it solves the immediate problem of the

semantic gap. For this reason, HyperSentry provides a very useful example

of a solution that achieves the benefits of SMM protections and also bridges

the semantic gap between SMM and host software.

HyperCheck is another SMM-RIMM that "aims to detect the in-memory,

Ring-0 level (hypervisor or general OS) rootkits and rootkits in privileged

domains of hypervisors" [7]. Unlike HyperSentry, HyperCheck places its

measurement agent entirely in SMM and also relies upon a PCI-based network

device. The SMM code performs measurements on CPU registers and the

network card gathers the contents of memory for analysis. Like HyperSentry,

HyperCheck is invoked with an SMI that gives control to the SMM-RIMM

and begins the measurement process. Because HyperCheck does not have

a measurement agent in the hypervisor, it relies upon statically compiled

locations of code in the hypervisor symbol table for IDT table, hypercall table,

and exception table locations. This makes it less dynamic but avoids the

need to measure a hypervisor agent, instead relying upon SMM memory

protections.

SPECTRE is a SMM-RIMM that examines hypervisors, operating systems,

and user processes for certain attacks such as heap spray, heap overflow, and

rootkit detection. One key feature of SPECTRE is that is resides solely in

SMM and bridges the semantic gap by rebuilding the necessary semantic

information for the operating system. For example, in order to comprehend

the Kernel Processor Control Region (KPCR) in Windows, it relies upon the

data to be present at a hard-coded virtual address (0xffddff000). The SMM

code can use the CR3 register to walk the page tables to determine where

in physical memory the hard-coded virtual address resides. Once the KPCR

is located, the SMM code relies upon a pointer at offset 0x34 that points to

Chapter 3. Related Work 51

the KdVersionBlock. The code then checks offset 0x78 of this data structure

to get to the start of linked lists of pointers to executive process structures.

While this does avoid the need for an in-context measurement agent, it does

present challenges of closely relying upon the current definitions of data

structures. Future software changes could make changes that would break

the assumptions built into this SMM-RIMM.

STM/PE [83] is a new approach that utilizes Intel’s SMI Transfer Monitor

(STM) to virtualize a measurement agent running in SMM. The STM is an

SMM-based hypervisor that runs the SMI handler in a virtual machine with

the goal of constraining its platform accesses to what is allowed by adminis-

trator policy [48]. STM/PE uses the Xen Hypervisor Integrity Monitor (XHIM)

for its integrity measurements. This module is based off of the Linux Kernel

Integrity Monitor (LKIM) [88]. As STM/PE utilizes the STM, it is also able

to resolve SMM-RIMM Challenge 1 (C1-SMM-RIMM Privilege) similar to

Vibhute’s independent work [110] although with a different implementation.

3.4 Timeline of Approaches

Researchers have developed a variety of RIMMs using different software and

hardware devices over the years. While the implementations are varied, there

is a clear trend to leveraging hardware instead of earlier approaches that were

purely software-based. Additionally, alternate approaches that endeavor to

improve the security of operating systems and hypervisors represent alter-

nate approaches to improving system security. Figure 3.1 depicts selected

RIMMs and system security developments over time. One of the earliest

hardware-based RIMMs, CoPilot helped begin the transition from pure soft-

ware approaches to leveraging hardware for runtime integrity. This trend has

continued with the chipset, TXT, SMM, CPU virtualization, memory modules,

Chapter 3. Related Work 52

System on a Chip, and TrustZone approaches. Table 3.1 compares selected

approaches based on where they place their measurement agent, whether they

have direct registers and memory access, their primary source of performance

overhead and whether they occur periodically or are event-driven.

FIGURE 3.1: Timeline of RIMM Approaches from 2001-2019

TABLE 3.1: Comparison of Selected Runtime Integrity Monitor
Approaches

Mechanism Location Register
Access

Memory
Access

Performance
Overhead

Periodic or
Event-Driven

PatchGuard OS Code Y Y OS Checking Periodic
CoPilot HW Device N Partial Memory/PCI Periodic

HyperSentry SMM
VMM Y Y SMM

transition Periodic

HyperCheck SMM Y Partial SMM
transition Periodic

Deep Defender VMM + OS Y Y VMM
transition Event-Driven

Flicker TPM N Y TPM Periodic

STM/PE STM Guest Y Y SMM
transition

Periodic
On-demand

3.5 Application Noise

The impact of SMIs relates to previous workload perturbation studies that ex-

amined the effect of noise from software heartbeats and system daemons [89],

Chapter 3. Related Work 53

hardware interrupts [10], and network interrupts [108]. This is relevant to

our study since SMIs are the highest priority interrupt and take precedence

over other interrupt sources. This is an extension to the form of noise called

a detour that Beckman et al. describe that occurs when "an application is

temporarily suspended to process an OS-interrupt" [10]. In the case of SMIs,

however, the entire operating system or hypervisor and any running applica-

tions are temporarily suspended during SMI processing.

Ferreira et al. [30] found that noise’s effect on an application may be

reduced by absorption; but, the impact of noise can be amplified when it

occurs at a performance-sensitive time. While noise can be a significant factor,

its effect on the application may be reduced by absorption in which the full

impact of noise is not reflected in the workload as it is hidden by other factors.

An example of this is when MPI processes are in MPI_WAIT state, the full

impact of noise is reduced since the processes are in a waiting state. The

impact of noise can be amplified when it occurs at a performance-sensitive

time such as MPI_Allreduce, MPI_Bcast, and MPI_Barrier [89]. These factors

are relevant to SMIs as they could occur at performance-sensitive times which

would amplify their effect or at times when their impact would not be noticed,

e.g. while the application is blocked while waiting for the disk controller to

fetch data.

54

4
Creation of Methodology for SMI Performance Measurement

At the outset of this work, there were no available SMM-RIMM implementa-

tions. This resulted in challenges in building a performance-efficient RIMM

leveraging SMIs. SMIs are unlike other types of interrupts as they occur

transparently to the operating system. This results in the operating system

scheduler not being aware of their occurrence and analyzing their impacts is

not trivial.

To better understand design trade-offs and design a performance-efficient

SMM-RIMM, we needed a methodology to characterize the system impacts

due to varying frequencies and durations of SMIs. The methodology would

need to evaluate scenarios that represented the current state of the art with

SMIs of 25-40ms duration similar to HyperCheck and HyperSentry along with

shorter durations that corresponded to a time-sliced integrity measurement

method. The methodology builds upon the observation that the time spent in

SMM would be equivalent to the impact of an SMM-RIMM as both take time

away from the running system. We needed a way to address potential chal-

lenges to this assumption, for example, CPU cache perturbation introduced

by activities in SMM.

In Section 4.1, we describe the SMM-RIMM performance methodology

requirements. As no existing performance methodology existed, we needed

to define one. In Section 4.2, we describe related work on SMI detection which

was the only related work pertaining to the performance methodology. In

Section 4.3, we present an overview of the development of these methods.

Section 4.4 describes our chipset-based method of generating a predictable

SMI load. Section 4.5 describes our method of leveraging the existing SMIs

on a platform to accomplish deterministic SMI loads. Section 4.6 presents

Chapter 4. Creation of Methodology for SMI Performance Measurement 55

our modified BIOS methodology in which we added a mechanism to delay

all CPUs inside SMM for a user-specified duration. Section 4.7 describes

our use of EPA-RIMM as a method of providing insights into SMM-RIMM

scheduling and system impacts. Section 4.8 summarizes our analysis of

these different methods. Section 4.9 demonstrates how we validate that

the generated SMIs take the expected amount of CPU cycles by analyzing

impacts on predictable workloads. Section 4.10 shows how we generate the

SMIs used by our various methods. In Section 4.11, we present our CPU

cache and prefetching studies that give additional insights into the degree

of determinism in measurement costs. Section 4.12 provides our conclusions

over our performance measurement methodology and its implications for

EPA-RIMM.

4.1 SMM-RIMM Performance Methodology Requirements

As the performance aspects of SMM-RIMMs have not yet been given a de-

tailed study, a methodology to understand their performance impacts had

not yet been created. This methodology would allow understanding the

performance impact on applications running while inspections are occurring.

It would also allow characterization of the operating system impacts resulting

from the inspections. These understandings would help guide the creation of

an SMM-RIMM without significant impacts on system performance, correct-

ness, or stability.

In creating the SMM-RIMM performance methodology, we identified

three key requirements. The first requirement, Rquantify, is the ability to

quantify time spent in SMM (Section 4.1.1). If the amount of time spent in

SMM cannot be measured, it is not possible to create a performance efficient

SMM-RIMM. The second requirement, Rcontrol, is that the methodology

Chapter 4. Creation of Methodology for SMI Performance Measurement 56

needs to be able to control the amount of time spent in SMM. If the time

spent in SMM is uncontrollable, there is no ability to bound execution times

(Section 4.1.2). The third requirement, Rvalidate, is that the performance

methodology must be able to validate that the time spent in SMM matches

expectations (Section 4.1.3). This provides assurance that SMI times are

repeatable and deterministic.

4.1.1 Ability to quantify time spent in SMM - Rquantify

Time spent in SMM has a different property than in the operating system

environment. In the latter, the operating system scheduler is able to schedule

CPU threads for specific durations and preempt them to allow another process

to run. With SMIs, the operating system is unaware that SMIs are occurring

and not able to preempt their execution. It also does not feature a mechanism

to quantify the time spent in SMM. In this section, we describe our method to

quantify the time spent in SMM.

Step 1: Calculate CPU cycles spent in SMM. To allow quantification of time

spent in SMM, we placed a starting CPU timestamp using the RDTSC

(Read Timestamp Counter) just before the SMI was generated with

an OUTB instruction. After the timestamp, the OUTB instruction is

executed and the CPU threads will transition to SMM ("Transition to

SMM"). While there, the work of the SMI is accomplished ("Process

SMI") and the CPUs will return back to the operating system or VMM

context ("Transition to OS/VMM"). When the CPUs return from

the SMI, they OUTB instruction is complete and they will log the

ending timestamp. Figure 4.1 depicts the flow. Next, we subtract the

beginning timestamp value (StartClock) from the ending timestamp

Chapter 4. Creation of Methodology for SMI Performance Measurement 57

value (EndClock) to obtain SmiDelta (the total number of CPU cycles

spent in the SMI flow.) Equation 4.1 shows this calculation.

SmiDelta = EndClock − StartClock (4.1)

FIGURE 4.1: Timestamp method

Step 2: Convert CPU cycles to a time measurement. Counting time on mod-

ern CPUs has become more complicated with CPU frequency scaling

features that vary the clock speed of the CPU to save power in times

of reduced load. However, Intel has added a constant TSC feature [45]

which keeps the rate at which the timestamp counter increments

constant independent of the CPU clock frequency.

To calculate the SMI duration in µs (SmiMicroseconds), we take SmiDelta

and divide by the CPU clock frequency (ClockFreq). We then multi-

ply this by the number of µs in a second (NumUsecsInSec) which is

1,000,000. Equation 4.2 shows this calculation.

SmiMicroseconds = (SmiDelta/ClockFreq) ∗ NumUsecsInSec (4.2)

Chapter 4. Creation of Methodology for SMI Performance Measurement 58

Step 3: Calculate SMIs per second. Beyond the time spent in a single SMI,

the other key aspect that impacts performance is the number of SMIs

per second. The total number of SMIs (TotalSmis) over a time interval

(SmisPerSec) can be calculated by a script taking a starting reading

of MSR_SMI_COUNT (SmiCountStart), sleeping for the desired du-

ration, e.g. 300 seconds, TimeDelta), taking an ending reading of

MSR_SMI_COUNT (SmiCountEnd), and subtracting SmiCountStart

from SmiCountEnd, then dividing by TimeDelta. Equations 4.3 and 4.5

shows this calculation.

TotalSmis = (SmiCountEnd − SmiCountStart) (4.3)

SmisPerSec = (TotalSmis)/TimeDelta (4.4)

SmisPerSec = (TotalSmis)/Time (4.5)

Once we have determined the number of SMIs per second and the

cost per SMI, we can calculate the total number of microseconds spent

in SMM in a given second. Equation 4.6 shows this calculation.

SmiCyclesPerSec = SmiMicroseconds ∗ SmisPerSec (4.6)

We can also calculate the percentage of CPU cycles spent in SMM

(PercentageSmiCycles) by taking the SmiCyclesPerSec and divide it by

Chapter 4. Creation of Methodology for SMI Performance Measurement 59

the number of CPU cycles per second (ClockFreq) as shown in Equa-

tion 4.7. This equation is useful for comparing the percentage of

workload degradation to the percentage of time spent in SMM.

PercentageSmiCycles = SmiCyclesPerSec/ClockFreq (4.7)

4.1.2 Ability to control time spent in SMM - Rcontrol

The performance methodology needs to address SMI duration and frequency

scenarios that allow: 1. Understanding the performance impacts of the cur-

rently proposed approaches such as HyperSentry and 2. Supporting scenarios

that would allow workload decomposition approaches to reduce the negative

impacts of prolonged time in SMM.

We describe these scheduling approaches:

1. Non-Decomposed scheduling (Long duration and Infrequent SMI schedul-

ing). This approach does not bound SMI processing times and can con-

sume times in the order of 35-40ms for HyperSentry and HyperCheck

2. Decomposed scheduling (Shorter duration and Frequent SMI). This is

our approach that decomposes large measurements into tasks that are

designed to allow meeting the SMI latency guidelines.

Beyond scheduling, there are impacts that impact how much time is spent

in SMM. These include factors such as CPU caching, CPU prefetchers, and

power-savings methods. CPU caching can impact SMM performance and thus

reduce or prolong time spent in SMM. CPU prefetchers can predictively fetch

data into SMM to reduce memory access times. Power savings mechanisms

can disable portions of the CPU to reduce power usage during idle times. As

it takes time to transition out of these lower power states, the time required to

enter SMM could be increased.

Chapter 4. Creation of Methodology for SMI Performance Measurement 60

4.1.3 Ability to validate SMI load - Rvalidate

As time spent in SMM is not directly observable by the operating system

and its tools, producing a methodology of properly accounting for the time

becomes necessary. Validating that the expected SMM duration and frequency

produced by the SMI scheduling approach accurately matches the expecta-

tions is required. Without a mechanism of validating these two factors, it is

not possible to determine the impacts on applications or operating system.

Additionally, one concern that we wanted to address with our methodology

was whether the SMI activities performed by the chosen SMI would perturb

the system beyond the amount of CPU cycles taken away.

4.2 Related Work

The two primary existing tools that can detect the time taken by a single SMI

(SmiDelta) and the number of SMIs over a time period (SmisPerSec) are Jon

Masters’ "simple SMI detector [71]" and "BIOSBITS [106]". The former work

detects loss of operating system control by hogging all of the CPU(s) for con-

figurable time intervals, looking to see if something stole time. . . ". BIOSBITS

has similar functionality and can "detect system management interrupts by

watching for large gaps in time between successive values of the time-stamp

counter." These approaches can be helpful to determine SMI costs but they

rely upon monopolizing the CPU in order to detect when control is lost, which

makes them unsuitable for performance measurement as this technique does

not allow also running an application benchmark. One additional capability

is an SMI counter on recent Intel CPUs called MSR_SMI_COUNT and it incre-

ments with every SMI that has occurred [45]. This counter can be sampled

over time to determine if SMIs are occurring and their frequency.

Chapter 4. Creation of Methodology for SMI Performance Measurement 61

For SMI generation, an SMI can typically be generated from a device

driver by writing a value to IO port 0xB2. However, this does not provide

a large amount of measurement flexibility as the SMI duration depends on

the BIOS codebase and system particulars. While the capability of generating

different SMIs existed via writes of different values to IO port 0XB2, it had

not been used for SMI generation to be equivalent to the durations of SMM

RIMMs.

4.3 Measurement Methodology Creation

At the outset of this work, we did not have any existing SMM-RIMMs to

examine. We did also not have access to BIOS code that would enable us to

build our own SMM-RIMM and measure its impacts on the system. For this

reason, we settled upon an approach that would inject SMIs that were already

enabled by the BIOS manufacturer but not turned on at runtime. Our steps

were as follows:

1. We examined the Intel chipset documentation [44] to identify potential

sources of SMIs that we could enable. We determined that there were a

number of SMIs that could be triggered by writing to different chipset

registers. This approach would allow us to generate a high rate of short

SMIs, which would accurately model a decomposed SMI scheduling

method. However, it did not allow us to inject SMIs that would be

equivalent to a Non-Decomposed scheduling method.

2. To address the limitation of the chipset SMI methodology, we inves-

tigated trying to trigger other SMIs that were enabled on the system

that were accessible via a device driver that would write a value to IO

Port 0xB2. Depending on the value written to the port, a different SMI

would fire. As each SMI had a pre-defined purpose, they each took a

Chapter 4. Creation of Methodology for SMI Performance Measurement 62

unique amount of time. At this stage, we were able to generate SMIs

of long durations and schedule them to repeat periodically, just as an

SMM-RIMM would do. However, we were concerned about side-effects

of running unknown SMIs. This uncertainty encouraged us to develop

our SMI validation approach to examine whether the SMI duration

directly correlated to its impact on predictable CPU-bound applications.

3. At this stage, we had a breakthrough as we got access and approval to

use a development system and add our own SMIs with specific dura-

tions. We implemented a busy-wait capability in SMM to consume the

desired amount of time. At this stage, we had a high degree of control

over SMI times and could generate them according to the frequencies we

needed. The only lacking element was that a busy-wait driver was not

performing the types of actions an SMM-RIMM would perform. A key

limitation of this approach was that the firmware was not open-source

and we could not share or publish detailed information about it.

4. In 2014, Intel released the Minnowboard single-board computer with

open-source UEFI firmware. This provided everything that we needed

to develop our own SMM-RIMM, measure its performance, and release

our prototype as open-source for the research community.

4.4 Technique 1: Chipset SMIs

Examining the various SMI generation sources in the chipset documenta-

tion, we identified two potential SMI generators: PERIODIC_SMI and the

SWSMI_TMR (Software SMI timer) and created a Linux device driver to en-

able these options. The periodic SMI hardware supported generation of one

SMI every [8, 16, 32, 64] seconds which we determined was too light an SMI

Chapter 4. Creation of Methodology for SMI Performance Measurement 63

load for our purposes given its infrequent triggering and short duration that

was within SMI latency guidelines. The SWSMI_TMR approach supported a

high frequency of SMIs per second. While these were shorter SMIs that were

within SMI latency guidelines, they well-represented a time-sliced approach

of SMM-RIMM scheduling.

TABLE 4.1: Chipset SMI Generation

Mechanism Chipset Register 1 Chipset Register 2 Measured Results

Periodic SMI SMI_EN,
Periodic SMI Enable=1

GEN_PMCON_1
bits 1:0:
00 = 64 seconds
01 = 32 seconds
10 = 16 seconds
11 = 8 seconds

One SMI every
8,16,32,64
seconds

SW SMI Timer SMI_EN,
SW SMI Timer Enable=1

GEN_PMCON_3
bits 7:6:
00 = 1.5ms ± 0.6ms
01 = 16 ms ± 4ms
10 = 32 ms ± 4ms
11 = 64 ms ± 4ms

One SMI every
2,16,32,62 ms

Table 4.1 provides additional detail on the chipset register bits set to enable

these SMIs. We selected the SWSMI_TMR feature and planned experiments

to characterize the amount of time spent in SMM at the varying frequen-

cies that the SWSMI_TMR mechanism supported (SmiCyclesPerSec). As the

mechanism has a little variability in the amount of SMIs generated (e.g. "1.5

ms ± 0.6 ms"), we first performed an experiment to determine the SMI rate

(SmisPerSec). We created a Linux shell script to count the number of SMIs

over a 300 second interval (SmisPerSec) with TimeDelta set to 300 seconds.

We set the SWSMI_TMR SMI generation frequency by adjusting bits 7:6 in

the GEN_PMCON_3 register, choosing the ‘00’ value that selected the "1.5

ms ± 0.6 ms" duration and then turned on SWSMI_TMR SMI generation

by setting bit 6 in SMI_EN. With SMI generation enabled, we ran our shell

script that took an initial sample of the MSR_SMI_COUNT (SmiCountStart)

Chapter 4. Creation of Methodology for SMI Performance Measurement 64

to determine the starting number of SMIs, slept for 300 seconds, and then

took an ending sample of MSR_SMI_COUNT (SmiCountEnd). We determined

that the mechanism was resulting in 500 SMIs/second (SmisPerSec= 500). We

repeated this process for the other three supported frequencies several times

to ensure that the achieved results were stable over time.

Now knowing the SMI frequency, we needed to determine the total

amount of CPU time taken away by the SMIs which would represent the time

spent in an SMM-RIMM (SmiCyclesPerSec). To determine this, we applied the

techniques of BIOSBITS [106] and the "Simple SMI Detector [71].” We added

functionality to our device driver to calculate this by doing the following

steps:

Step 1: Turn on the SWSMI_TMR with the chosen SMI generation frequency.

Step 2: Allow the user to write a value to our driver’s supported proc file

system interface to trigger the logic below in Step 3.

Step 3: Upon receiving the trigger, set the driver to busy wait in a tight

loop, storing CPU time-stamp counter results and the value of the

MSR_SMI_COUNT in a memory buffer.

Step 4: Allow the user to stop the busy waiting and print out the buffer’s

contents.

Step 5: Looks for large gaps between successive CPU time-stamp counter

results (e.g. > 100000 CPU cycles) that could represent SMIs and cross-

check with the MSR_SMI_COUNT value to verify that it showed the

counter increasing.

Step 6: Average the durations for each SMI and determine the number of

CPU cycles spent per SMI.

Chapter 4. Creation of Methodology for SMI Performance Measurement 65

With knowledge of the number of SMIs per second (SmisPerSec), the cost

per SMI (SmiMicroseconds), and the CPU frequency (ClockFreq), we had the

necessary information to calculate the percentage of CPU cycles spent in SMM

PercentageSmiCycles).

One benefit of the chipset approach is that SMI generation occurs com-

pletely out-of-band of the operating system which removes one source of

potential variability. Additionally, for an SMM-RIMM, hardware generation

of SMIs is preferable to software-based mechanisms as the latter have a de-

pendency on the (untrusted) operating system scheduler and kernel code.

The SWSMI_TMR approach is quite representative of the Decomposed SMI

scheduling approach in which longer-running operations are split into a

larger number of shorter-running tasks. The drawback with the SWSMI_TMR

approach was that it did not provide an ability to specify arbitrary SMI fre-

quencies (could not vary SmisPerSec) or generate longer SMIs than 0.11ms

(SmiMicroseconds) on our system. Also, the feature is not supported by all

motherboard BIOS implementations as it triggered a hang on some systems.

4.5 Technique 2: Blackbox SMI Generation

The primary drawback with the chipset-based SMI generation approach was

that it did not allow long SMIs (e.g. SmiMicroseconds ≥ 35-40 ms) that would

more closely match the system preemptions of HyperSentry and other SMM-

RIMMs. As we also needed to measure the impact of longer SMI preemptions,

we needed to complement the SWSMI_TMR technique with an approach that

would allow for longer time to be spent in SMM. As were still unable at this

time to modify the BIOS source, we began looking for ways to generate longer

SMIs.

Besides hardware SMI generation, there is another way to generate SMIs

Chapter 4. Creation of Methodology for SMI Performance Measurement 66

by writing values to a special IO Port called APM_CNT on Intel [45] and

"SMI Command Port” on AMD [2]. The port number is typically 0xB2. We

added functionality to our device driver to generate write arbitrary values

to the APM_CNT port and take a timestamp before the IO write instruction

(StartClock) and after it (EndClock) to determine the SMI duration, SmiDelta).

With this technique, we measured values from 0 to 0xFF. While some values

hung the system, other values reliably generated longer times in SMM ranging

from 1 to 1,061 ms on the Dell PowerEdge R410 server. The 35 ms duration,

in particular, was closely in the range of the durations that HyperCheck and

HyperSentry consumed. Figure 4.2 shows the Blackbox SMI results.

However, our key concern with this approach is that without knowing

more about what the SMI was actually doing, we could not rule out the possi-

bility of performance side effects. For example, if the SMI were to adjust the

CPU frequency, we would be introducing a side effect into our measurements.

For this reason, we utilized the technique discussed in Section 4.9 to provide

assurance that the Blackbox SMIs were not impacting performance in a way

beyond taking away the expected amount of time in SMM.

FIGURE 4.2: Long SMIs on Dell PowerEdge R410

Chapter 4. Creation of Methodology for SMI Performance Measurement 67

4.6 Technique 3: Modified BIOS

While techniques 1 and 2 allowed us to measure time-sliced and longer SMI

approaches, we still did not have precise control over our SMI durations.

Both approaches limited us to the existing SMI interfaces on the system.

For this reason, we obtained access to a development system in which we

could recompile the BIOS and add in our own SMI delays. This option is

generally not available to end-users on most systems. For the Modified BIOS

methodology, we modified our SMI handler to allow a user-configurable

amount of delay. In this approach we added twelve values that could be

written to the APM_CNT port to generate varying levels of SMI delays: (in

ms) 1.43, 5, 10, 20, 50, 99, 495, 990, 5k, 10k, 20k, 64k. When the SMI handler

received control, it would delay in a loop for the specified amount of CPU

cycles before returning control to the host software. In this way, all CPU

threads left the host software and stayed in SMM for the specified amount of

time.

The benefits of this approach were that it allowed us to precise calibrate

the amount of time to be spent in SMM in a way that was not possible with

the chipset and Black Box SMI scenarios. The primary drawback is that that

this approach simply busy-waited in SMM without performing any of the

actual SMM-RIMM operations. Additionally, at the time, this approach was

limited to those with ability to modify the BIOS source code which makes it

harder for the researchers without BIOS source to reproduce the results.

4.7 Technique 4: EPA-RIMM

With the release of the Minnowboard Max, a researcher with this platform

could replicate our Modified BIOS technique. To improve upon our Modified

BIOS technique, we created our own SMM-RIMM allowing precise controls

Chapter 4. Creation of Methodology for SMI Performance Measurement 68

over SMI durations, frequencies, and measurement operations. Unlike the

previous approaches which took time away in SMM to behave like an SMM-

RIMM, this approach actually performed actual SMM RIMM operations such

as hashing of host-side resources and accessing the saved register state from

the SMRAM Save State Map. With this approach, we enabled the SMI han-

dler to handle a new value written to the APM_CNT port that triggered a

measurement request. Along with this value, our device driver (Ring 0 Man-

ager) provided the address of a command structure that EPA-RIMM should

operate on. As we did with the black box and modified BIOS techniques,

we measured the amount of time required to process various measurement

operations trigger by SMIs. With the EPA-RIMM test system, we achieved

our strongest measurement technique as we were able to generate actual mea-

surement requests involving hashing and registers, along with characterizing

their behavior.

4.8 Technique Comparison

With four SMI generation techniques to draw upon, it is possible to test SMI

impacts on a variety of hardware. However, not every technique is testable

on every given platform. For example, the ability to recompile or modify the

BIOS is not possible on many production systems. Or a given system tested

with a Blackbox SMI technique may not have SMIs of the desired duration. In

Table 4.2, we summarize and compare the four techniques to show whether

they support time-sliced RIMM operation, longer SMIs, whether BIOS source

is required, compatibility issues, benefits, drawbacks, and when the technique

would be useful. Table 4.3 shows the systems we used for the development

of these techniques. Ultimately, for RIMM developers, EPA-RIMM surpasses

the capabilities of the other approaches as it performs actual SMM-RIMM

Chapter 4. Creation of Methodology for SMI Performance Measurement 69

operations with fine-grain controls. The SMI generation methodologies could

also be applied for other purposes including evaluating impacts of latency on

network devices. Figure 4.3 provides a flow chart that allows selecting the

appropriate SMI measurement technique.

TABLE 4.2: SMI Generation Technique Comparison

Technique Time-
sliced?

SMIs
>1ms?

BIOS
Source
Req?

Benefits Drawbacks When to use

1. Chipset
SWSMI
_TMR

Y N N

Out of
band,
no BIOS
source,
time-sliced

Availability,
limited SMI
durations/
frequencies

Time-sliced

2. Blackbox
SMI Y Y N

Long
SMIs,
broadly
available

Could impact
performance,
limited SMI
durations

Long SMIs
w/o BIOS
source

3. Modified
BIOS Y Y Y Arbitrary

duration

Requires
BIOS
source

When BIOS
source is
avail-able

4. EPA
RIMM Y Y Y SMM-

RIMM

Requires
BIOS
source

When BIOS
source is
avail-able

FIGURE 4.3: SMI Measurement Technique Considerations

Chapter 4. Creation of Methodology for SMI Performance Measurement 70

TABLE 4.3: SMI Generation Techniques Testing

Technique Tested on Out of Band?
Chipset Intel DQ67SW Y
Blackbox SMI Intel DQ67SW/Dell PowerEdge R410 N
Modified BIOS Intel Nehalem Dev system N
EPA-RIMM Minnowboard Max Possible

FIGURE 4.4: Chipset SMI Evaluation

FIGURE 4.5: Blackbox SMI Evaluation

Chapter 4. Creation of Methodology for SMI Performance Measurement 71

4.9 Validating the SMI Load

For each approach, it was necessary to quantify the SMI impact. As described

in Sections 4.4, 4.5, 4.6, 4.7, we were able to determine the duration of the

SMIs we generated. As we controlled the amount of SMIs generated per

second and knew the CPU frequency, we knew how many CPU cycles we

were consuming in SMM and the percentage of CPU cycles remaining to the

applications (100% - PercentageSmiCycles). At this point, we could perform

performance validation to ensure that our calculations were correct. For this

purpose, we selected two CPU-intensive microbenchmarks: OpenSSL [86]

and Distributed.net’s RC5-72 [95]. OpenSSL provides a built-in benchmark

utility to measure how many SHA hashing operations can be performed in

an interval of time. RC5-72 is a compute-intensive workload that brute-forces

cryptographic keys.

We established performance baselines by running the workloads without

our injected SMIs. We then injected our SMIs and measured the resulting

throughput. We compared the baseline throughput versus the throughput

with injected SMIs and determined how closely it matched (100% - Percent-

ageSmiCycles) impact. As we expected, for these heavy computational work-

loads, the time spent in SMM came directly out of the application’s throughput

as shown in Figures 4.4 and 4.5. The nature of these computational workloads

showed that they were unable to maintain their baseline throughput when

the CPU cycles they needed for computation were taken away. This presented

a useful property for validating the amount of time taken by our various SMI

generation techniques. Note that not all workloads have this property as

we show in Section 5.2.2 that some workloads are able to hide a portion of

the SMI overheads when SMIs occur during portions where the workload is

waiting.

Chapter 4. Creation of Methodology for SMI Performance Measurement 72

4.10 SMI Generation

To turn on or generate each of these SMIs, we needed to develop device

drivers for each tested operating system or hypervisor. The Blackbox SMI,

Modified BIOS SMIs, and EPA RIMM measurement requests used an OUT

CPU instruction executed from Ring 0. The chipset SWSMI_TMR methodol-

ogy also required Ring 0 privileges as we needed to adjust chipset registers.

We developed device drivers for: Xen 4.1.2, Linux (Ubuntu 12/Centos 6), and

Windows Server 2012, to trigger SMI delays. For Linux/Xen we used the ker-

nel work queues to schedule our software SMI once a second and also adjust

the necessary chipset bits for the SWSMI_TMR method. For Windows Server

2012, we used the kernel function IoStartTimer to schedule one SMI/second.

Our test setup additionally allows us to generate a single SMI on demand.

4.11 Task Provisioning

To meet EPA-RIMM’s bound on maximum time spent in a single SMI session,

accurate estimates over Task costs are essential. SMM’s lack of preemption

removes one source of non-determinism over Task cost. However, preemption

is not the only source of performance nondeterminism. To examine these two

impacts on Task cost estimates, we devised targeted experiments analyzing

the cache impacts. These experiments help establish an accurate upper bound

for Task cost.

The measurement setup used a Minnowboard Turbot with 1.46 GHz CPUs,

2 GB RAM, Ubuntu 14.04.5, Linux kernel 4.11.0.

Chapter 4. Creation of Methodology for SMI Performance Measurement 73

4.11.1 Cache and Prefetcher Impact Measurement Study

4.11.1.1 Measurement Design

We devised an experiment to examine Task cost variations due to CPU caching

mechanisms. The experiment consisted of three scenarios designed to gauge

the impact of CPU caching and prefetching performance optimizations.

For each scenario, we crafted a sequence of Bins containing fourteen 4K

hash input-sized Tasks. (Fourteen Tasks is the largest number of Tasks that

EPA-RIMM currently supports in a Bin.) We disabled CPU power-saving

mechanisms which would add another variable to this experiment.

Three measurement scenarios:

1. Identical virtual address: This scenario consists of repeated hash oper-

ations to the same virtual address. It is designed to evaluate the ideal

measurement case where the memory to be hashed is present in the

cache.

2. Sequential virtual address: This scenario consists of a sequence of in-

crementing virtual addresses to measure. It is designed to evaluate

whether the CPU prefetcher feature is able to result in increased hashing

performance due to speculatively reading in memory pages before they

are needed.

3. Random virtual address: This scenario consists of potentially a worst-

case measurement in which data is neither cached or potentially benefit-

ting from prefetching.

Table 4.4 provides the first Bin of the sequence. Subsequent Bins continue

the pattern.

Chapter 4. Creation of Methodology for SMI Performance Measurement 74

TABLE 4.4: Sample Bin

Task # Identical Sequential Random
1 ffffffff8100a000 ffffffff81000000 ffffffff81559000
2 ffffffff8100a000 ffffffff81001000 ffffffff8162f000
3 ffffffff8100a000 ffffffff81002000 ffffffff81531000
4 ffffffff8100a000 ffffffff81003000 ffffffff814d9000
5 ffffffff8100a000 ffffffff81004000 ffffffff814e6000
6 ffffffff8100a000 ffffffff81005000 ffffffff817a1000
7 ffffffff8100a000 ffffffff81006000 ffffffff813ba000
8 ffffffff8100a000 ffffffff81007000 ffffffff816eb000
9 ffffffff8100a000 ffffffff81008000 ffffffff81314000
10 ffffffff8100a000 ffffffff81009000 ffffffff81767000
11 ffffffff8100a000 ffffffff8100a000 ffffffff81295000
12 ffffffff8100a000 ffffffff8100b000 ffffffff81380000
13 ffffffff8100a000 ffffffff8100c000 ffffffff817b2000
14 ffffffff8100a000 ffffffff8100d000 ffffffff81763000

4.11.1.2 Identical Addresses

Examining the variation between 100 Bins in the identical memory address

hashing scenario shows that the hash costs appear quite regular with minimal

variation. Figure 4.6 shows the measurement results. Table 4.5 shows the

statistical summary. We observe that the average cost (0.1352ms) is quite close

to the minimum cost (0.1351ms) with only a standard deviation of 0.000098ms.

Figure 4.7 provides data showing the first eight Bins. The data shows

a pattern in which the first Task in the Bin experiences a higher cost than

subsequent Tasks in the Bin. This indicates that the first Task in the Bin

experiences a cache miss. Once the data is cached for the subsequent Tasks in

the Bin, they achieve lower measurement costs.

Chapter 4. Creation of Methodology for SMI Performance Measurement 75

TABLE 4.5: Identical Hash Scenario Cost Analysis

Identical
ms

Average 0.1352
Min 0.1351
Max 0.1360

Median 0.1352
StdDev 0.000098

FIGURE 4.6: Identical Address 100 Bins

FIGURE 4.7: Identical Address 8 Bins

4.11.1.3 Sequential Addresses

The sequential address scenario measurement results as shown in Figure 4.8

show that the scenario has costs that do not significantly vary from measure-

ment to measurement. However, examining a smaller section of data (first

Chapter 4. Creation of Methodology for SMI Performance Measurement 76

100 Bins) as shown in Figure 4.9 shows that the costs do not have the same

pattern as the identical measurement scenario. The first Task in the Bin is not

necessarily the most costly Task. Table 4.6 shows the statistical summary.

TABLE 4.6: Sequential Hash Scenario Cost Analysis

Sequential
ms

Average 0.1353
Min 0.1352
Max 0.1361

Median 0.1353
StdDev 0.000088

FIGURE 4.8: Sequential Address 100 Bins

Chapter 4. Creation of Methodology for SMI Performance Measurement 77

FIGURE 4.9: Sequential Address 8 Bins

4.11.1.4 Random Addresses

The random address scenario does not have obvious variation when viewing

100 Bins of data as shown in Figure 4.10. However, when examining a smaller

sub-section of the first eight Bins as shown in Figure 4.11, we observe that

the Task costs vary without a clear pattern. Thus, the caching effects do not

benefit these measurements and also the prefetcher is not able to measurably

improve the results. Table 4.7 shows the statistical summary.

FIGURE 4.10: Random Address 100 Bins

Chapter 4. Creation of Methodology for SMI Performance Measurement 78

FIGURE 4.11: Random Address 8 Bins

TABLE 4.7: Random Hash Scenario Cost Analysis

Random
ms

Average 0.1353
Min 0.1352
Max 0.1361

Median 0.1353
StdDev 0.000100

4.11.1.5 Analysis

Figure 4.12 shows the aggregate results of the Identical, Sequential, and

Random measurements. We observe that the identical measurements had the

lowest costs compared to the other scenarios. We also see that this scenario

has predictable cost spikes on the first Task of every Bin which indicates that

the address does not fall into the CPU cache. However, the identical scenario

is not a likely EPA-RIMM measurement scenario as EPA-RIMM would not be

frequently measuring a single address repeatedly. The Sequential scenario

does not benefit from CPU caching as the measured addresses vary. The

prefetcher does also not appear to help as the average, min, max, and median

times are equivalent to the random measurement cost, as shown in Table 4.8.

In a typical EPA-RIMM measurement scenario, the most likely scenarios

Chapter 4. Creation of Methodology for SMI Performance Measurement 79

are sequential or random, depending on the Backend Manager scheduling

logic. This study quantifies the expected performance of these two scheduling

approaches for memory measurements, showing that ultimately the amount

of deviation is not significant for EPA-RIMM performance.

FIGURE 4.12: Combined 4K Hash Input Size Data, 8 Bins

TABLE 4.8: Cost analysis

Identical Sequential Random
Average 0.1352 0.1353 0.1353

Min 0.1351 0.1352 0.1352
Max 0.1360 0.1361 0.1361

Median 0.1352 0.1353 0.1353
StdDev 0.000098 0.000088 0.000100

4.12 Conclusion

At the outset of this research, we identified a clear disconnect between the

prolonged duration of SMI-based measurements from proposed SMM-RIMMs

and the SMI latency guidelines. We believed that it may be possible to reduce

the amount of time spent in SMM by applying decomposition to SMM-RIMM

measurements to process them in fine-grained portions over a larger number

of measurements. These smaller measurements could be scheduled at an

Chapter 4. Creation of Methodology for SMI Performance Measurement 80

increased frequency. However, it was unclear what system impact that this

shorter but more frequent measurement approach would have.

Moreover, there were no established methodologies to compare this al-

ternate scheduling approach to the current state of the art. To resolve this

challenge, we developed methodologies for generating SMIs of varying dura-

tions and frequencies to analyze their resulting impact. Our methodology is

built upon three requirements: Rquantify, Rcontrol, and Rvalidate. Once able to

quantify the time spent in SMM, we demonstrated controlling the amount of

time spent in SMM (Rcontrol) by four SMI scheduling techniques. We then

validated the time spent in SMM (Rvalidate) by comparing the quantified time

in SMM against the expected degradation for two CPU-intensive workloads.

81

5
SMI Preemption Performance Study

In this chapter, we characterize the impacts of SMIs on the system by using

our SMI measurement methodology. In our performance study, we varied

the durations and frequencies of SMIs to show the resulting impacts from

different SMI scheduling approaches. In Section 5.1, we examine the system

impacts of this time spent in SMM and we cover the resulting impacts on

applications in Section 5.2. We summarize the SMI latency study in Section 5.3.

5.1 System-level Effects

We begin in Section 5.1.1 by examining timing assumptions in the kernel and

device drivers. We show the symptoms of spending an excessive amount of

time in SMM in Section 5.1.2. We then examine the impacts of SMIs on timer

interrupts and the impact on CPU power C-states in Section 5.1.3. We cover

the impacts of SMIs on process accounting in Section 5.1.4. We summarize

the system-level effects in Section 5.1.5.

5.1.1 Timing Expectations in Code

The Linux kernel source code contains assumptions about SMI durations

in several places. For example, the function that calibrates the CPU’s TSC

during boot native_calibrate_tsc, uses the tsc_read_refs function which has

special handling of SMI disturbances. tsc_read_refs checks two close reads of

the CPU’s timestamp counter to ensure that they are less than the declared

SMI_THRESHOLD=50000 (CPU clocks) to avoid a scenario where an SMI

occurs between the two reads. If the system cannot obtain two close reads of

the TSC of a duration less than the SMI_THRESHOLD, it will try up to five

times before returning [55]. Prolonged or inopportune SMIs could result in a

situation where the TSC could not be used as the clocksource for timing due

Chapter 5. SMI Preemption Performance Study 82

to an inability to properly calibrate it. Other clocksource calibration sections

of the Linux kernel feature similar concerns over the impact of an SMI hitting

during calibration including functions pit_calibrate_tsc and hpet_next_event.

USB audio relies upon careful synchronization to keep the audio playback

in sync. To better establish an upper bound for SMI durations, we developed a

measurement to study the impact of prolonged SMIs on a USB audio speaker

device. For this experiment, we used a pair of Logitech S-150 USB speakers

and a system running Centos 6.0 with a Linux 3.7.1 kernel. We booted into the

GUI and began playing a streaming audio file from YouTube. While playing

the audio file, we generated progressively longer SMIs using our modified

BIOS mechanism while checking the system log via the ‘dmesg’ command

after each SMI completed.

We observed a number of warnings with SMIs up to the 1000 ms (1 second)

range. At a SMI duration of 1000 ms, the audio completely stopped and the

driver reported an error in the system log. Table 5.1 shows these results. The

warnings we saw resulted from the snd_pcm_delay function which defines

the playback delay as "the overall latency from the write call to the final

DAC [94]." The code provides a warning when the delay estimate is off by

more than 2 ms. In this measurement, we find another example of software

with built-in timing assumptions that could be significantly altered by longer

SMM-RIMM measurements. We also note that the SMI durations described in

the HyperSentry and HyperCheck papers are in the range to cause warnings

from the ALSA sound sub-system.

5.1.2 Symptoms of Excessive Time Spent in SMM

During development of our SMM-RIMM development system, we encoun-

tered situations where we spent too long in a single SMI session. For example,

Chapter 5. SMI Preemption Performance Study 83

TABLE 5.1: USB Audio Sensitivity to Prolonged SMI Delays

SMM time (ms) Warning

1.43 ALSA sound/usb/pcm.c:1213 delay:
estimated 144, actual 0

5-999 ALSA sound/usb/pcm.c:1213 delay:
estimated [336 to 384], actual 0

1000 ALSA sound/usb/endpoint.c:391
cannot submit urb (err = -27)

with extensive serial output and a large hash operation, one of our preemp-

tions inadvertently lasted 247 seconds. The Linux operating system appeared

frozen during this duration, however, at the completion of the SMI, the sys-

tem continued operating, albeit with several warnings and errors. These

included: warnings from the Read Copy Update mechanism, warnings about

an unstable clocksource, a hardware interrupt timeout, and a disk I/O error.

Clearly this is far too long to spend in SMM, however, it is indicative of the

types of errors that can occur if excessive time is spent in a single SMI session.

It also demonstrates that even if a user is not using the system, exhaustive

checking within a single SMI can easily overwhelm timeout expectations in

the kernel and device drivers.

INFO: rcu_sched self-detected stall on CPU {

INFO: rcu_sched self-detected stall on CPU { 1}

0} (t=61790 jiffies g=545203 c=545202 q=0)

(t=61790 jiffies g=545203 c=545202 q=0)

. . .

Clocksource tsc unstable (delta = 243722605708 ns)

mmc2: Timeout waiting for hardware interrupt.

. . .

mmcblk0: timed out sending r/w cmd command, card status 0x900

Chapter 5. SMI Preemption Performance Study 84

end_request: I/O error, dev mmcblk0, sector 90111920

EXT4-fs warning (device mmcblk0p2): ext4_end_bio:317:

I/O error -5 writing to inode 3019625 (offset 0

size 0 starting block 11263991)

Buffer I/O error on device mmcblk0p2, logical block 11132662

Switched to clocksource acpi_pm

5.1.3 Timer Interrupt Effects

We originally began our investigation of the system effects of SMIs by focusing

on the Linux timer interrupt. Our rationale was that this interrupt effectively

drove a wide variety of system tasks ranging from process accounting to

setting timers. We were very interested to examine the effects of SMIs on this

critical kernel functionality as SMIs would take precedence over the timer

interrupts.

5.1.3.1 Timer Interrupt Background

Traditionally many important scheduling and statistical operations in the

Linux kernel happened on a regular timer tick interval, e.g. [100, 250, 300,

1000] times a second. For power savings reasons and reduced virtualization

overheads, the "tickless kernel" option has been added, allowing the kernel to

remain idle longer by avoiding unnecessary wake-ups. If the next scheduled

timer event would occur after the next periodic timer tick, the kernel would

reprogram "the per-CPU clock event device to this future event" allowing the

CPU to remain idle longer [34]. In both traditional and tickless operation,

our inspection of the Linux 3.1.4 kernel showed that once the kernel wakes,

it runs several key functions in do_timer which update the kernel’s internal

clock count (jiffy) and wall clock time, and calculate the load on the system.

(Refer to Figure 5.1.) Then it calls update_process_times which charges time

Chapter 5. SMI Preemption Performance Study 85

to executing processes, runs high resolution timers and raises SoftIRQs for

local timers, checks if the system is in a quiet state for RCU callbacks, does

printk statements, runs IRQ work, calls scheduler_tick and then runs timers

that are due [72]. The scheduler_tick function performs several important

tasks including updating scheduler timestamp data, updating timestamps for

processes on the run queue, updating CPU load statistics based on the run

queue, invoking the scheduler, updating performance events for the Linux

Performance Event subsystem, determining if a CPU is idle at the clock tick,

and load balancing tasks between CPU run queues. Intel technical documen-

tation notes "All interrupts normally handled by the operating system are

disabled upon entry into SMM [45]." This presents the possibility for an SMI

to perturb timer interrupts and consequently impact the important scheduling

operations in scheduler_tick as a side effect.

FIGURE 5.1: Timer Interrupt Code Flow

5.1.3.2 Kernel Instrumentation

To investigate the degree to which SMIs preempted timer interrupts, we

instrumented the Linux kernel do_timer and scheduler_tick functions. For

do_timer, we logged a trace point just after the timer interrupt occurs, record-

ing the total number of SMIs processed ("SMI count" obtained via a CPU MSR

read of MSR_SMI_COUNT) and the time of the entrance to the function from

RDTSC. For scheduler_tick, we logged the CPU number, the SMI count, and

Chapter 5. SMI Preemption Performance Study 86

the timestamp from RDTSC. We extracted our traces from the kernel with the

SystemTap utility [93]. In post-processing, we calculated the deltas between

successive handlings of the timer ticks. Our regular timer tick scenario has a

timer tick every millisecond. We generated SMIs using the chipset timer for

the short but frequent scenarios and the Blackbox SMI method for the hybrid

and long SMI scenarios. Our test system was an Intel DQ67SW board running

native Centos and the 3.1.4 Linux kernel. Because the timer interrupt takes

precedence over executing code, whether the CPU is idle or busy does not

impact the regularity of the regular timer ticks. For this reason, we depict only

the idle CPU data in this section. After establishing a baseline with no regular

SMIs, we measure the effect of short but frequent SMIs using the Chipset-

based SMI generation. Following this, we utilize a Blackbox SMI scenario of a

batch of eight 5ms SMIs, once a second to represent an SMM-RIMM that takes

40ms per second to do integrity measurements using a time-sliced approach.

5.1.3.3 Timer Interrupt Results: Non-virtualized Linux

To analyze the data, we narrow our focus to the deltas between successive in-

vocations of scheduler_tick to highlight SMI-caused delays. Numerous short

SMIs cause jitter in the timer interrupt handling. Since SMIs take precedence

over timer interrupts, the deltas between successive timer interrupts depart

from the expected 1ms. Deltas greater than 1ms occur due to an SMI firing

when a timer interrupt would have taken place. The delay in timer interrupt

handling results in the greater than 1 ms delta, that in turn results in the next

timer interrupt occurring after less than 1ms.

Table 5.2 shows a small sample of the jitter in the handling of timer inter-

rupts. This effect eventually dissipates, but occurs again as the timer interrupt

and SMI occurrences coincide. Even when regular SMIs are short, they can

happen to occur at precisely when the timer interrupt fires, resulting in a

Chapter 5. SMI Preemption Performance Study 87

period of irregular timer interrupts for the short but frequent SMI scenario.

Figure 5.2 depicts this effect.

For the Blackbox SMI scenario of a batch of eight 5ms SMIs a second,

when the batch concludes, execution returns back to the operating system

until another SMI occurs. In this scenario and a longer Blackbox SMI scenario

with a 104ms SMI, the privileged software suffers significant portions of time

where no forward progress can be made. These results (as shown in Figure 5.3)

show that both long and short SMIs can preempt the timer interrupt with

different patterns. The short but frequent scenario caused periods of jitter

in timer interrupt handling. The long SMI scenarios showed that user and

kernel tasks are completely frozen for extended periods of time and a number

of timer ticks were missed.

FIGURE 5.2: SMI Preemption of Timer Interrupt Handling

Chapter 5. SMI Preemption Performance Study 88

FIGURE 5.3: Native OS measurements with regular timer ticks
and idle CPU

(a) (top left) Baseline (No SMIs)
(b) (top right) 0.11 ms SMI (500/sec)

(c) (bottom left) 5 ms SMI (8/sec)
(d) (bottom right) 104 ms SMI (1/sec)

TABLE 5.2: SMI Occurrences and Timer Interrupts

CPU# SMI Count Delta (ms) Location Notes
39,089 0.00 do_timer

0 39,090 0.08 scheduler_tick
1 39,090 0.00 scheduler_tick

39,090 0.92 do_timer <1ms
2 39,090 0.00 scheduler_tick
0 39,090 0.00 scheduler_tick
5 39,090 0.00 scheduler_tick
7 39,090 0.00 scheduler_tick

39,091 1.07 do_timer >1ms
6 39,091 0.00 scheduler_tick
0 39,091 0.00 scheduler_tick
7 39,091 0.00 scheduler_tick

39,091 0.92 do_timer <1ms

Chapter 5. SMI Preemption Performance Study 89

5.1.3.4 Timer Interrupt Results: Xen Virtualization

To examine the effects of SMIs on timer interrupts in a virtualized environ-

ment, we repeated the measurements with a Xen HVM ("Hardware Virtual-

ized Machine") Linux guest running under Xen 4.1.2. The results show that

running a virtualized guest introduces a small degree of jitter in the regularity

of the handling of timer interrupts (Figure 5.4(a), and adding SMIs perturbs

the regularity further as shown in Figure 5.4(b)). For groups of long SMIs

(e.g. groups of eight 5 ms SMIs), the guest can experience a significantly

longer loss of control which coalesces multiple preemptions into one longer

one (Figure 5.4(c) and 5.4(d)). For example, the Xen HVM guest experiences

prolonged losses of control that exceed the 5 ms SMI in the range of 10 and 26

ms. We suspect that these increased delays are the effect of SMIs acting upon

the virtual machine manager’s scheduler which is resulting in the virtual

machine not handling the interrupt for a longer period of time and amplifying

the impact of longer SMIs in virtual environments.

5.1.3.5 Timer Interrupt and Turbostat Results: Tickless Linux Kernel

When the CPU is busy, the tickless kernel behaves like the regular timer tick,

since no ticks are "skipped." During idle periods, however, the tickless kernel

can experience large gaps between successive entries into the scheduler_tick

function (e.g. up to around 200ms based on our measurements). Therefore,

we focus here on the idle CPU case. We expect regular SMI activity to subvert

the tickless kernel’s energy savings, by waking up the CPU to enter SMM.

To test this, we gathered data on the processor C-state utilizations using

Turbostat [12]. Turbostat produces a log of what percentage of time the

processor threads were in a given C-state. We started Turbostat, let the system

Chapter 5. SMI Preemption Performance Study 90

FIGURE 5.4: Virtualized measurements with regular timer ticks
(a) (top left) Baseline (No SMIs), Idle CPU

(b) (top right) 0.11 ms SMI (16/sec), Busy CPU
(c) (bottom left) 5 ms SMI (3/sec), Busy CPU

(d) (bottom right) 5 ms SMI (8/sec), Busy CPU

idle for several seconds, then enabled SMIs, waited a few seconds, disabled

SMIs, and ended Turbostat.

In Figure 5.5(a), we show the baseline case for the tickless kernel without

SMIs. The timing of the scheduler_tick entries varies widely as the kernel

avoids unnecessary wake-ups to achieve power savings. Figure 5.5(b) shows

the results for 500 SMIs/second. It is not readily apparent from the graph if

a timer interrupt has been delayed or the kernel was simply idle for a long

period of time. To look more closely, we must examine the raw trace data

(see Table 5.3.) This shows that the kernel sleeps through the SMI activity as

indicated by the increasing SMI count during long periods of kernel idleness.

The tickless kernel adaptive timer mechanism is unaware of SMIs and while

the kernel is idle, the CPUs transition in and out of SMM processing SMIs.

Fortunately, the Linux kernel (since version 2.6.19) has a mechanism to

avoid missing jiffy updates due to lost timer ticks by determining how many

Chapter 5. SMI Preemption Performance Study 91

timer ticks were missed (ticks) and incrementing the jiffy count accordingly

in do_timer. Without such a mechanism, jiffy updates would be lost. The

results of our instrumentation (Table 5.4) show that the do_timer function

increments the ticks value after receiving control following an SMI. When an

SMI preempts the kernel for five ms, the kernel determines that five timer ticks

were missed and sets the ticks value accordingly and adds that value to the

jiffies count. When our group of eight SMIs concludes, our instrumentation

shows the SMI count staying steady and the ticks value returning to one as

the SMIs subside. The kernel remained idle through the SMIs, however the

CPU was actively processing SMIs. If we limited our analysis to our kernel

instrumentation, we would miss a large amount of activity on the system.

The kernel instrumentation correctly indicates that there were long periods

of idle in the kernel which traditionally would correlate to the CPUs ability

to transition into deeper sleep states. However, with SMM-RIMMs, regular

SMIs are also occurring which would keep the CPU active. Figures 5.6 and 5.7

show that SMIs bring the CPU out of the lowest power C6 state and into the

higher power-consuming C0 and C1 states. The short but frequent scenario

results in more time spent in higher power C-states than the hybrid scenario

that has longer SMIs.

FIGURE 5.5: Virtualized measurements with tickless kernel, idle
CPU

(a) (left) Baseline (No SMIs)
(b) (right) 0.11 ms SMI (500/sec)

Chapter 5. SMI Preemption Performance Study 92

FIGURE 5.6: 500x0.11ms SMIs/second

FIGURE 5.7: 8x5ms SMIs/second

TABLE 5.3: Tickless Kernel and 500 SMIs/second

Trace Point# SMI Count scheduler_tick delta (ms)
0 23,351 40
1 23,382 62
2 23,433 102

5.1.3.6 Timer Tick Conclusions

Our examination of disruptions to the regularity of the scheduler_tick shows

several important effects. In some cases with short but frequent scheduling,

SMIs can resonate with the timer interrupt resulting in extended periods of

time where the timer interrupt handling may occur late relative to a regular

time tick. This may result in timer interrupt handlers closer together or

Chapter 5. SMI Preemption Performance Study 93

TABLE 5.4: do_Timer Ticks Mechanism, the trace after the ellip-
sis begins to recover from the batch of SMis

Trace Point# SMI Count Ticks Delta (ms)
0 19,082 1 1.00
1 19,083 5 5.21
2 19,084 5 5.15
...
3 19,090 1 0.63
4 19,090 1 1.00

further apart than traditionally done. Additionally, with the longer SMI

scheduling option, SMIs that exceed the length of the timer interrupt will

cause timer interrupts to be missed. However, the kernel can keep its internal

jiffy count accurate. With long SMIs, there can be long periods of time between

entries into the process scheduling function. Virtualized environments may

experience longer delays as multiple shorter delays coalesce into longer delays.

Applications may experience longer wait times since the OS scheduler cannot

run.

In the case of an idle tickless kernel, determining if a timer interrupt was

delayed or lost due to an SMI is not as straightforward. Our results show

that the kernel remained idle while SMIs were occurring which is expected

since the kernel is unaware of the loss of control due to SMIs. The C-state

analysis showed that while the kernel was idle, the CPU’s power utilization

was affected by the SMI activity. The short but frequent SMI scheduling

scenario resulted in the CPU running in higher power C-states due to frequent

wakeups from SMIs that circumvent the power-saving processor modes.

5.1.4 Process Accounting

In the course of our OpenSSL measurements on a system using the 2.6.32

Linux kernel, we noticed an unexpected phenomenon: When we increased

the duration of the SMIs using our modified BIOS, the reported throughput

Chapter 5. SMI Preemption Performance Study 94

did not decrease correspondingly but instead remained constant as shown

in Figure 5.8. Achieving the same performance regardless of whether SMIs

were occurring was not a reasonable result. We also noticed that OpenSSL’s

reported computation time decreased as we generated longer SMIs. Ana-

lyzing the method of calculating the workload throughput showed that it

reported throughput in bytes processed per second by determining the num-

ber of computations performed and the length of time required. The OpenSSL

benchmark set up a signal (SIGALRM) for three seconds in the future and

performed computations until the signal arrived. When we ran the workload

with a 2.6.32 kernel and 100 ms SMIs, the kernel reported that the compu-

tations took 2.74 seconds. When no SMIs occurred, the kernel reported the

time as 3 seconds, although the reported throughput paradoxically remained

constant to the non-SMI case.

Our measurements using a more recent kernel (3.7.6) showed different

behavior that closely matched our calculations over the amount of expected

throughput decline. This configuration reported that the OpenSSL benchmark

was computing for approximately the full 3 seconds both when 100 ms SMIs

were enabled and when they were disabled and showed degraded throughput

with SMIs. Figure 5.9 depicts the scaling of times billed to the application for

varying durations of SMIs for the two kernel versions.

To root cause the discrepancy, we instrumented the two Linux kernels

to log the flow of time-keeping data used by the times and accompanying

functions. We also added a trace point in the OpenSSL application to capture

the time when the signal handler function was called in the application and

two trace points before and after the computations began in the benchmark.

Our examination of OpenSSL showed that it used the Linux kernel’s times

function which reports the amount of user time, system time, child user time,

Chapter 5. SMI Preemption Performance Study 95

child system time used by a process.

We started SystemTap [93] to monitor key variables in the kernel functions

responsible for the reported process time statistics:

1. do_sys_times

2. thread_group_times

3. thread_group_cputime

4. task_sched_runtime

5. do_task_delta_exec

6. scale_utime

We then started an OpenSSL benchmark run using "openssl speed sha512",

with SystemTap. This test allowed us to compare the reported amount of time

billed to the process with the trace points gathered in the application using

the CPU’s TSC.

The results show that the SIGALRM signal was received after three sec-

onds in both kernel versions. For the 2.6.32 kernel, this highlighted the

discrepancy between the amount of application time as measured by the TSC

and the kernel. One kernel function explained the discrepancy: scale_utime.

This is used to reduce over or under-counting of user or system time due to

the point in time when the user or system task was actually interrupted. The

code scales the operating system timer tick-based values against the sched-

uler’s record of total runtime. With a 100 ms SMI per second, this function

increased the billed user time by 10% which compensated for the loss of time

spent in SMM, while for the no SMI scenario, the user time was not scaled

accordingly. Table 5.5 shows the scaling calculation for the first three second

OpenSSL measurement. As the 2.6.32 kernel did not call this function in the

Chapter 5. SMI Preemption Performance Study 96

do_sys_times code path, the user time was not adjusted to include the 10% of

time spent in SMM leaving the billed process times lower in the 2.6.32 kernel.

FIGURE 5.8: Throughput Scaling

FIGURE 5.9: Billed Seconds

5.1.5 System-Level Effects Summary

Our results raise the question of how the operating system should account for

process times when there is prolonged SMI activity on the system: include

any SMI times with the billed process time using the times mechanism, or

leave this time out of the billed amount? There are benefits and drawbacks

to both approaches. Reporting time inclusive of SMI times has the drawback

of charging applications for time spent outside of their process which could

Chapter 5. SMI Preemption Performance Study 97

TABLE 5.5: User Time Scaling In Scale_utime 3.7.6 kernel

Variable Notes Scaling
No SMIs

Scaling
100 ms
SMI
1 per sec

utime Unscaled User Time 3,003 2,708
rtime Scheduler’s sum_exec_time 3,008 3,002
total User + System 3,009 2,709
[Scaled user time] (rtime * utime) / total 3,002 3,000

penalize some applications more than others depending on when the SMIs

happened to occur. In our study, this resulted in all three seconds being

attributed via the times mechanism to a process without discarding the por-

tion of the time spent in SMM. The exclusion of SMI times in process time

accounting can lead to discrepancies as well. In the case of OpenSSL running

on the 2.6.32 kernel, the workload concluded after three seconds based on the

CPU’s TSC, however the process only believed that it had used 2.74 seconds

when 100 ms SMIs were active. When SMIs were infrequent and had short

durations, their effect on process accounting could essentially be overlooked.

For environments that are sensitive to accurate billing of time to users such as

cloud providers, new mechanisms are required to more accurately account

for the amount of time consumed by long SMIs. However, resolving the

fundamental issues in process time accounting will require kernel changes

and possible SMM-RIMM involvement.

Our analysis of system level SMM effects shows several negative impacts

from prolonged SMM time. While certain sections of the Linux kernel have

special handling for SMI occurrences, other sections could have differing

behavior upon experiencing prolonged SMI durations. Software advances

such as tickless kernels, while implemented for other reasons, increase the

Chapter 5. SMI Preemption Performance Study 98

tolerance of SMM preemptions. Our detailed results demonstrate that sys-

tems can spend longer in SMM than current guidelines, however, there are

problems that arise at durations below those contemplated for SMM-RIMMs.

We showed that SMIs cause periods of timer interrupt jitter in the short but

frequent scenario and extended periods of delays for the longer SMI scenarios.

These impacts delay handling of timer interrupts and postpone work on all

cores until the SMI completes. Additionally, in an environment where power

savings are of increasing importance, SMM-RIMMs would bring a reduction

in the amount of time CPUs can remain in low power states. In an extreme

SMI preemption, we showed a device driver that failed because it interpreted

the delay as unresponsive hardware.

5.2 Application Effects

Because even slight delays can have a perceptible impact on applications,

we designed a study to investigate the impact of prolonged SMIs on several

types of workloads. The correlation of application and noise granularity [10]

is quite relevant to the SMI-based perturbation investigation as SMIs could

be long or short, frequent or infrequent, occur regularly or irregularly.

5.2.1 Kernel Compilation

Linux kernel compilation involves several key aspects of platform perfor-

mance including CPU operations, disk I/O, and memory accesses. We used

Xen 4.2.1 with a Centos 6.3 Domain 0 and a Centos 6.3 HVM guest with one

virtual CPU and two GB of RAM. The results in Figure 5.10 show increases

in total compilation time that very closely match the level of SMM preemp-

tion. For example, taking 10% of the CPU cycles away (100 ms SMI scenario)

resulted in a 10.8% increase in the duration of the kernel compilation.

Chapter 5. SMI Preemption Performance Study 99

FIGURE 5.10: Kernel Compilation Performance for Linux/Xen

5.2.2 Microbenchmarks

To examine system performance impacts on a broader set of system activities,

we ran two sets of benchmarks, one for Xen’s Domain 0 (Xen 4.1.2) and one

for a Centos 6.0 hardware-virtualized guest. We compared how throughput

scaled against the baseline for varying levels of SMIs using our modified BIOS

technique. For our workloads, we used RC5-72 [95], a compute-intensive

workload that brute-forces cryptographic keys (tested on Domain 0 only);

Netperf 2.5 for TCP transmit [85] using a gigabit Ethernet device; and XDD

for 128KB sequential disk reads using an Intel X25-M SSD [115].

The left-most bar in Figure 5.11, Figure 5.12, and Figure 5.13 shows the

percentage of CPU time available to the system after subtracting the amount

of time spent in SMM per second. The individual benchmarks all experienced

throughput degradations that closely match the amount of CPU cycles taken

away for SMIs. With these workloads and long SMIs, SMM latency cannot be

hidden by the application as it comes at the cost of performing I/O operations

or computations.

By comparison, short but frequent SMI scheduling can maintain baseline

throughput for some workloads even as the amount of available CPU time

Chapter 5. SMI Preemption Performance Study 100

decreases. SMI usages that are able to interleave SMIs with I/O processing

may be able to avoid the full penalty of the SMI by processing their SMM

work in multiple smaller units. These results indicate that a time-sliced SMM-

RIMM can allow workloads that do not exclusively perform computations to

avoid a portion of the performance degradation that would otherwise occur

for (non-heavy compute) applications.

FIGURE 5.11: Xen Dom0, Long SMIs

FIGURE 5.12: Xen VT Guest I/O, Long SMIs

Chapter 5. SMI Preemption Performance Study 101

FIGURE 5.13: Xen VT Guest Short SMIs

5.2.3 Latency-sensitive Application

As the USB testing indicated, latency-sensitive applications can be problematic

for SMM-RIMMs. To investigate this further we used Windows Server 2012

and the Unreal Tournament 3 benchmark utility (UTBench) to measure game

frame rates. We used our modified BIOS technique for these tests and show

the results in Table 5.6.

Although the average frame rates were above 50 fps for all durations but

the 495 ms SMI, at SMI durations of 20 ms and higher the frame rates dipped

below 30 frames per second, which is in the range of the user’s perception. The

finer-grained analysis shows that 20 ms delays only dropped below 30 frames

per second 0.92% of the time which we did not notice subjectively however at

50ms delays, the system achieved below 30 frames per second 5.99% of the

time which was visually apparent. This latency-sensitive application showed

clear sensitivities between the 20 and 50 ms SMI durations.

Chapter 5. SMI Preemption Performance Study 102

TABLE 5.6: Unreal Tournament 3 Frame Rate Binning

MS
SMI 0-5 5-10

10
-
15

15
-
20

20
-
25

25
-
30

30
-
35

35
-
40

40
-
45

45
-
50

50
-
55

55
-
60

60+

0 0 0 0 0 0 0 0 0 0 0 0 0 100
1.43 0 0 0 0 0 0 0 0 0.01 0 0 0.08 99.91
5 0 0 0 0 0 0 0 0 0 0.09 0.16 0.15 99.60
10 0 0 0 0 0 0 0 0.07 0.87 0.12 0.14 0.02 98.79
20 0 0 0 0 0 0.92 1.59 0.37 0.17 0.05 0 0 96.90
50 0 0 0 5.99 0 0 0 0 0 0 0.01 0.01 94.00
100 0 10.83 0 0 0 0 0 0 0 0 0 0 89.17
495 50.24 0 0.04 0.03 0.02 0.02 0 0 0 0 0.01 0 49.64

5.2.4 Application Conclusions

Our results show that application level impacts from SMM time vary based

on the characteristics of the application as well as SMI scheduling. Some

usages (e.g. compilation) experience degraded throughput while others such

as Unreal Tournament and audio playback, are particularly sensitive to long

duration SMIs as the user experience is severely degraded. Some applications

(like TCP transmit in Figure 5.13) are able to hide a portion of the SMI delays

as these applications would still need to wait for other operations to complete.

We note that the latency sensitive applications we examined suffered user-

perceptible impacts at some of the SMI durations proposed for SMM-RIMMs.

The measurement study provided insights into whether available head-

room exists to allow increasing the SMI delays slightly above the latency

guideline. The ability to support modest increases in SMI duration over the

guideline forms a useful tuning knob to allow additional measurement or

longer measurements to be performed under time of attack. This approach

is analogous to the turbo feature on modern x86 CPUs that allows one or

more CPU cores to briefly run at a higher CPU frequency to accomplish more

work while available thermal budget exists [66]. This analysis provides a

measurement-baseline for an empirical bound on SMI latency, that provides

Chapter 5. SMI Preemption Performance Study 103

a practical upper bound on SMI latency in which no significant issues have

been observed. We term this bound, LimitSmiEmpirical in contrast to the BITS

guideline [106] which we term LimitSMIBITS.

5.3 Conclusions

This measurement study gave us the initial performance feasibility analysis to

better understand the tradeoffs between single long SMI preemptions utilized

by contemporary SMM-RIMMs and the time-sliced approach that we propose.

Figure 5.14 summarizes the results. The use of SMM-RIMMs causes host

software and applications to experience unexpected preemptions, however,

our performance measurements show that keeping these preemptions to

a shorter degree can greatly reduce negative impacts. For example, this

can avoid breaking timing assumptions in the operating system that impact

correctness and reduce the impact on latency-sensitive applications.

There are also signs that operating systems can be more tolerant to lost

timer ticks than in previous years as the Linux kernel can recover from the ef-

fects of lost ticks. Our results suggest that RIMM developers should carefully

consider how system preemptions should be accounted for, particularly in

cloud environments where users pay a financial cost for CPU time used.

Impacts on power utilization will depend on the level of CPU activity. If

the CPUs are idle, measurement SMIs would bring the CPUs out of more idle

states. However, on active servers, the CPUs will likely already be in less idle

modes which should not significantly impact the consumption.

Chapter 5. SMI Preemption Performance Study 104

FIGURE 5.14: SMI Performance Impact Summary

105

6
EPA-RIMM Design Requirements

As we research building a performance-aware and extensible SMM-RIMM,

we constrain our approach based on eight design requirements. An early

SMM-RIMM, HyperSentry, provided five key design requirements for their

approach addressing protection of the measurement agent and its results.

These requirements [7] (Stealthy Invocation, Verifiable Behavior, Determin-

istic Execution, In-context Privileged Measurement, and Attestable Output)

represent a useful starting foundation for SMM-RIMMs, however, we iden-

tify three key gaps: Extensible measurements, performance efficiency, and

the need to constrain the measurement agent. The lack of extensible mea-

surements reduces the overall effectiveness of the SMM-RIMM approach

as attackers could readily shift their tactics to compromising unmonitored

resources. It also could result in the SMM-RIMM being unable to respond to

new attacks which significantly reduces the value of the approach. For the

performance efficiency gap, there are several implications of a lack of focus

on the amount of work to be taken in SMM. First, dramatically exceeding

expectations over time spent in SMM can result in system stability and cor-

rectness issues based on our performance studies [23], rendering the approach

ill-suited for practical use. Second, the set of integrity measurements to be

performed may grow over time in response to new threats and accomplishing

all measurements in a single SMM session quickly becomes infeasible. In

recent years, concerns over the power of SMM have grown and efforts arisen

to constrain its resource access. Thus, an SMM-RIMM should now be con-

structed with the principle of least privilege. This new requirement prescribes

providing the measurement agent with the minimum access to perform its

inspections without growing the agent’s access unnecessarily.

Chapter 6. EPA-RIMM Design Requirements 106

EPA-RIMM supports the five original design requirements with modifica-

tions due to architectural differences (Sections 6.1 through Section 6.5) and

contributes three new requirements addressing extensibility, performance,

and a constrained measurement agent in Section 6.6, Section 6.7, and Sec-

tion 6.8. We provide our design requirement conclusions in Section 6.9.

6.1 Requirement 1 - Stealthy Invocation

SMM-RIMMs endeavor to catch malicious code by surprise. Thus, a key

design requirement is that an attacker in the monitored operating system

or hypervisor should not be able to detect that a measurement is about to

take place. If the measurements of an SMM-RIMM were to be detected by

a compromised hypervisor, it could be possible for malicious code in the

hypervisor to hide attack traces before an integrity measurement occurred.

HyperSentry implements a "Stealthy Invocation" mechanism to cover this

requirement [7]. Utilizing an SMI to trigger a measurement can aid the

element of surprise, particularly if the SMI generation is done from hardware

(e.g. chipset or out-of-band controller) without awareness of host software.

However, care still must be taken that malicious software is not able to derive

when a measurement is scheduled to occur or observe indications that an SMI

is pending, as discussed in Section 3.3.7. In general, SMM aids the stealthy

invocation requirement as control transfers to SMM can be accomplished via

asynchronous methods (e.g. hardware-generated SMIs) that do not require

the host CPU to trigger the measurement.

6.2 Requirement 2 - Verifiable Behavior

The verifiable behavior requirement prescribes that the "code base of the

measurement agent, along with its input data, should be measured and

verified before it is invoked [7]." As HyperSentry utilizes a measurement agent

Chapter 6. EPA-RIMM Design Requirements 107

in the hypervisor to gain the benefit of deeper insight into the hypervisor

state, the measurement agent is at a significant degree of risk as it resides in

the same privilege level as the code that it is monitoring. Thus, HyperSentry’s

agent integrity must be verified before it is invoked to ensure that it has not

been compromised. Here, HyperSentry and EPA-RIMM differ in their trust

assumptions. HyperSentry places their measurement agent in an untrusted

location, e.g. a potentially malicious hypervisor to simplify the task of getting

insights into the currently operating hypervisor state. EPA-RIMM places the

measurement agent within a hardware-protected region, SMRAM, to better

armor the measurement agent and uses a provisioning phase to direct the

runtime measurements. While SMRAM has been compromised before [53,

14, 15, 20], it has a higher bar to compromise than hypervisor code due to

additional hardware protections and higher attack complexity.

6.3 Requirement 3 - Deterministic Execution

HyperSentry defines a "Deterministic Execution" requirement in which the

measurement agent should not be "changeable nor interruptible" after it is

invoked [7]. This property is supported by the use of SMM as its processing

is not interruptible and hardware protections such as BIOS flash protections

and SMM Range Registers (SMRR) protect SMM code from being changed.

HyperSentry measurements have a two-step process in which entry into

trusted SMM code first occurs, the measurement agent in the hypervisor is

measured (e.g. as described in Section 3.3.7) and then control transfers to

the measurement agent in an uninterruptible manner. Contemporary com-

puter systems support varying degrees of privilege as previously shown in

Figure 6.1 with SMM as the most privileged level compared to hypervisors,

Chapter 6. EPA-RIMM Design Requirements 108

operating system kernels, and applications. This provides a "strong isola-

tion [5]" between the RIMM and the monitored environment which prevents

changing or interrupting the measurement agent. Having strong isolation is

beneficial from the security perspective but poses challenges for the ability of

the RIMM to understand the internal workings of the less-privileged layer

that it is monitoring.

FIGURE 6.1: x86 Privilege Levels

6.4 Requirement 4 - In-Context Privileged Measurement

HyperSentry notes that for In-Context Privileged Measurement that the mea-

surement agent should be privileged "and in the right context to access the

hypervisor’s code and data, and to gain full access to the CPU’s state [7]."

While an SMM-RIMM has the privilege to look deeply within the monitored

Chapter 6. EPA-RIMM Design Requirements 109

environment, the challenge becomes how to interpret what it observes, as

SMM does not natively understand internal operating system or hypervisor

data structures. SMM would not know whether the host software is Windows

8, Windows 10, Linux, or Xen. Compounding the challenge, operating sys-

tems or hypervisors utilize internal data structures that differ from each other

and vary between revisions. For example, Xen features a "Grant Table" data

structure that controls which memory pages a virtual machine is allowed to

map. As this data structure is Xen-specific, SMM is not aware of its existence.

SMM is also not aware that Xen supports two different versions of the Grant

Table data structure [97] but would need to understand the layout of the

appropriate version in order to properly measure it.

Previous SMM-RIMMs have dealt with this challenge in several different

ways. SPECTRE built in operating system-specific knowledge into their SMM

measurement agent [119]. To identify physical memory addresses for SMM

to measure, SPECTRE utilized an observation that in Linux and Windows,

virtual addresses above addresses 0xC0000000 and 0x80000000, respectively

are considered kernel space. To find the physical memory address, an offset

is subtracted from the virtual address. SPECTRE employs a similar method

to find the location of the Kernel Processor Control Region (KPCR) which

controls a sequence of data structures that control processes and threads in

order to measure it. The authors note that this data structure resides at virtual

address 0xFFDFF000 and rely upon known memory offsets to parse the data

structure.

The issue with this approach is that it assumes a kernel data structure

layout that can vary depending on version. Also kernel address space ran-

domization (KASLR) breaks these assumptions as code can be located at

different addresses each boot. Thus, this method of hard-coding addresses

Chapter 6. EPA-RIMM Design Requirements 110

and offsets is brittle and would require BIOS updates to update SPECTRE’s

assumptions. HyperSentry resolved this tension by placing their measure-

ment agent within the hypervisor. This allows the agent to directly leverage

hypervisor data structures and layouts in its measurements. EPA-RIMM

keeps the measurement agent within SMM and utilizes information gleaned

from a provisioning phase to direct the measurements. Changes in layout

and offsets can be accounted for in the data structures that the EPA-RIMM

measurement agent receives.

6.5 Requirement 5 - Attestable Output

It is important that the output of an SMM-RIMM be trustable. If the SMM-

RIMM were to output a result but host software were to tamper with the

output, attacks would go unnoticed. For this reason, it is essential for an SMM-

RIMM to output its results such that they can be verified at the receiving end.

This includes using signing, encryption, and message authentication checks.

These mechanisms would provide the ability to detect malicious tampering

with in-transit results. Similarly, if malicious host software were to prevent

the SMM-RIMM from outputting any data at all, this could be detectable by

the RIMM recipient not receiving any of the expected reports.

HyperSentry builds trust into the RIMM’s output by leveraging a public

and private key pair to be used in verifying that the output was not forged.

This mechanism places the private key in SMM’s protected SMRAM region

and extends the public key to a PCR (register) on the system’s TPM. Before

transmitting its results, the SMM-RIMM signs the measurements with its

private key. A remote user can choose whether to accept the results based

on whether the data was signed by HyperSentry’s private key. Additionally,

the use of a nonce can guarantee freshness of results to avoid replay attacks

Chapter 6. EPA-RIMM Design Requirements 111

in which a previous valid but stale measurement is provided. With this

mechanism, assurance over the integrity of the data can be provided by the

RIMM.

6.6 New Requirement 6 - Extensible Measurements

Current SMM-RIMMs lack the ability to vary the amount of runtime checking

based on performance needs or changes in the current threat environment

which reduces effectiveness. Thus, we propose a new requirement for SMM-

RIMMs prescribing the need for extensible measurements. Providing a pro-

grammatic API allows a new set of measurements to be pushed out to the

SMM-RIMMs as new checks are designed. This capability allows the RIMM’s

checks to be updated as often as desired without needing to replace firmware

code, allowing for a more adaptive and effective mechanism. The benefit

of SMM-RIMMs can be greatly enhanced with communication between the

SMM-RIMM instances. When attacks are detected on one SMM-RIMM in-

stance, this information can be shared with other participating SMM-RIMMs

to help prevent attacks from spreading. It can also enable more targeted

inspections by focusing SMM-RIMMs on platform resources that have been

compromised on one of the instances.

6.7 New Requirement 7 - Performance-aware

An ideal RIMM design would provide quick detection of attacks at a perfor-

mance overhead that is imperceptible to the user. The more quickly an attack

is detected, the more useful the RIMM mechanism is. The intensity of RIMM

inspections has two key variables: measurement frequency and duration.

A very frequent scheduling of a RIMM could have a low or a high system

impact depending on measurement duration. Similarly, an inspection with a

longer duration may be less impactful to the user if it were to only run once a

Chapter 6. EPA-RIMM Design Requirements 112

day. Thus, these two parameters provide tuning knobs that can be calibrated

based on differing tolerances. There are practical upper limits, though, to how

long the CPU threads can remain in SMM in a single session as some software

has specific timing expectations which can impact correctness. Significant

performance impacts can occur with prolonged check durations. Therefore,

it becomes infeasible to consider approaches that conduct extensive checks

within one atomic measurement session and greatly exceed the established

SMI latency guidelines.

Given this limitation, it is necessary to consider time-slicing RIMM oper-

ations such that they can occur more frequently and consume less time in a

single RIMM measurement session. This time-sliced approach is the most

promising mechanism that can accomplish complex integrity measurements

over a longer period of time with fewer negative impacts.

6.8 New Requirement 8 - Constrained Measurement Agent

SMM code has traditionally been granted access to all of memory and registers.

SMM-RIMMs have adopted this design model and had access to all system

state to perform their measurements. However, in response to growing

concerns over attacks on SMM, efforts have arisen to reduce the accesses of

SMM code on contemporary platforms. The Intel STM provides one such

mechanism that allows policies to be created to remove a set of accesses from

the SMI handler. Given current industry trends, we propose the use of a

constrained measurement agent as a requirement for SMM-RIMMs.

6.9 Conclusions

SMM-RIMMs were originally formulated in a time when awareness of the

performance impacts of SMM were not understood and granting SMM full

access to the system’s resources was common-place. Additionally, the concept

Chapter 6. EPA-RIMM Design Requirements 113

of extending the set of measured resources was not conceived. Our design

requirements address these key limitations to enable SMM-RIMMs in the

contemporary environments, while supporting the previously formulated

requirements of stealthy invocations, verifiable behavior, deterministic exe-

cution, In-Content privileged measurement, and attestable output. We add

three new requirements: 1. Extensible measurements to better vary the set of

monitored resources during inspections, 2. Performance-awareness to balance

the need for checking with system performance constraints, 3. Constrained

measurement agent to reduce the risk of an SMM-based measurement agent

compromising the system.

114

7
Architecture

In this section, we provide an overview of EPA-RIMM’s architecture. There

are three key abstractions in EPA-RIMM: Checks, Tasks, and Bins. A Check

(Section 7.1) is a description of an integrity measurement with parameters to

guide its execution. If a Check detects an unacceptable result (e.g. a changed

result in a presumed static resource), EPA-RIMM generates an alert. At

runtime, Checks are decomposed into partial resource measurements called

Tasks (Section 7.2), to meet expectations for SMI latency. Tasks are scheduled

in Bins (Section 7.3) to bound the work performed in one SMI session. Bin

size is defined as the sum of the execution times of the Tasks it contains.

The EPA-RIMM software architecture comprises the Diagnosis Manager

(Section 7.4), the Backend Manager (Section 7.5), the Oracle (Section 7.6), the

Host Communications Manager (Section 7.7) and the Inspector (Section 7.8).

Section 7.9 provides our security analysis of the EPA-RIMM architecture. We

provide conclusions on the EPA-RIMM architecture in Section 7.10.

7.1 EPA-RIMM Checks

EPA-RIMM’s Checks consist of measurements over resource types including

memory and registers. EPA-RIMM’s architecture envisions the ability to add

a variety of new Checks in response to emerging attacks.

Each Check contains a command along with its arguments and a priority.

Checks allow the Administrator to specify particular measurements over sets

of memory regions, Control Registers, and Model-Specific Registers (MSRs).

Sample Checks include the: "Kernel Code Section Range", "Hypervisor Code

Section Range" Check that measures the host software kernel code sections to

identify code injections, the "Interrupt Descriptor Table" Check that measures

Chapter 7. Architecture 115

the contents of the Interrupt Descriptor Table (IDT), the "Interrupt Descriptor

Table Register" (IDTR) Check that verifies that the IDTR register value has

not changed, the "Global Descriptor Table" (GDT) Check that measures the

Global Descriptor Table to determine if it has changed. Other Checks measure

specific MSRs or CPU control registers, for example, to determine if the Write

Protect bit on CR0 was cleared or the Supervisor Mode Execution Protection

(SMEP) on CR4 were disabled by a rootkit. Figure 7.1 shows several sample

Checks.

FIGURE 7.1: Checks

7.1.1 Check Definition

The EPA-RIMM Administrator specifies Checks from the Check definition

template. Table 7.1 shows the fields supported by Checks and their decom-

posed expression, Tasks. Each Check and Task have an ID# for reference.

The Command is an instruction to the Inspector that specifies the category

of measurement to perform, e.g. Measure Virtual Memory, Measure Physi-

cal Memory, Measure Register, or Measure MSR. The Operand field allows

specifying which Register or MSR should be measured (for Register or MSR

measurements.) The Memory Address field directs the SMM Inspector to begin

a memory measurement at the specified Memory Address and the Length

fields specifies the length of the measurement. The Priority field provides guid-

ance over when the measurement should be scheduled, with higher-priority

measurements performed before lower-priority measurements. The Hash

field provides the hash result for the measurement based on provisioning.

Chapter 7. Architecture 116

TABLE 7.1: Check and Task Descriptions

Check Task Description
Id# Unique Id
Command Measurement
Operand Command Arg
Memory Address Starting Address
Length Measurement Size
Priority

Hash Value to Compare

7.1.2 Measurement Commands

EPA-RIMM supports several measurement commands to identify the pres-

ence of rootkits including: Measure Memory Range, Sample Memory Range,

Measure Control Registers, Measure Model-Specific Registers.

7.1.2.1 Command: Measure Memory Range

The Measure Memory Range command allows the Administrator to completely

measure the specified memory range. The goal of this check is to detect

unexpected changes in presumed static memory regions, for example: kernel

or hypervisor code sections, read-only data structures, or any memory region

which is not expected to change.

This command supports the following options:

1. Virtual or physical memory range: Start address

2. Measurement size (number of bytes)

7.1.2.2 Command: Sample Memory Range

The Sample Memory Range command measures a statistical portion of a mem-

ory range. This allows leveraging spatial locality for measurements. In

Chapter 7. Architecture 117

contrast to the Memory Range command, the Memory Range Sampling com-

mand performs sampling over a memory range. The command supports

measurement densities from 1% to 100% of the full range. This Check has the

potential of reducing the overall number of EPA-RIMM measurements. We

gratefully acknowledge the contributions of Bruce Irvin who provided the

initial vision for this Check.

This command supports the following options:

1. Virtual or physical memory range: Start address

2. Measurement size (number of bytes)

3. Measurement Density (range from 1% to 100%)

4. Sampling algorithm (random)

7.1.2.3 Command: Measure Control Registers

The Measure Control Register command is designed to detect changes that

rootkits may make to these privileged registers, for example, turning off write

protection for kernel code. This command supports the following options

over the supported set of CPU Control Registers:

1. Control Register: CR0, CR3, CR4

2. Measurement size (4 or 8 bytes)

7.1.2.4 Command: Measure Model-Specific Registers (MSRs)

This command supports the following options over supported MSRs:

1. MSR Index

2. Measurement size (4 or 8 bytes)

Chapter 7. Architecture 118

7.2 Tasks

EPA-RIMM Tasks are a key component for limiting the amount of time spent

in a single SMM session. Checks are decomposed into Tasks with the goal of

accomplishing them over a period of time. This approach performs less work

in a single SMI session, however, allows completing the entire measurement

over a sequence of measurements. Each Task contains a priority that is

inherited from the Check and also a cost. Figure 7.2 shows the decomposition

of several Checks into Tasks.

FIGURE 7.2: Tasks

7.3 Bins

Bins are collections of one or more Tasks for processing in a single SMI session.

In Figure 7.3, the Bin cost is set to a maximum of 100µs which allows three

Tasks.

FIGURE 7.3: Bin

Chapter 7. Architecture 119

7.4 Diagnosis Manager

The Diagnosis Manager (DM) orchestrates the runtime integrity measure-

ments on a separate node from the monitored node. It initiates the Checks,

and interprets the measurement results. A single DM may be responsible

for one or more monitored nodes. The DM sends and receives information

about attack discoveries from across the EPA-RIMM framework to help guide

detection on other monitored nodes. This allows dynamically adjusting the

priority of Checks to search for detected issues on other nodes.

7.4.1 DM Provisioning

The DM is initialized with a set of specific Checks. The currently supported

EPA-RIMM commands and their parameters are: Register (CR0, CR31, CR4,

IDTR, GDTR), Mem (Address, Length), and MSR (MSR Number). Checks

that measure large memory regions could exceed desired SMI session times

and need decomposition. To determine a suitable granularity, EPA-RIMM

measures the cost per byte of various hash sizes during the provisioning

phase, then uses this data with the Check’s Decomposition Target to fine-tune

the amount of work performed in a task. Checks involving Control Registers

or MSRs cannot be decomposed and thus consist of a single Task.

7.4.2 DM Runtime

The DM sends Checks to the Backend Manager. Each Check returns a result

of unchanged or changed, indicating whether the measurement matches

the comparison value. Changed results cause the DM to raise an alert.

EPA-RIMM’s provisioning phase and Check data structures provided the

fundamental basis of directing the measurement operations. By basing the

1CR3 is dynamic and can change.

Chapter 7. Architecture 120

measurements on provisioned data from the monitored node and allowing

measurement specification from the DM, we remove the requirement to put

this logic into SMM code itself. This also guides the Inspector’s comprehen-

sion of host software which resolves the semantic gap between SMM and host

software.

7.4.3 Measurement Triggers

EPA-RIMM measurement triggers provide a means of reducing the amount

of measurements required to determine if a given security hypothesis is true

or false. We provide a description over how to specify measurement triggers

in Section 7.4.3.1 and describe two measurement triggers in Section 7.4.3.2

and Section 7.4.3.3.

7.4.3.1 Specifying Measurement Triggers

Measurement triggers evaluate security hypothesis in a procedural manner

to reduce the number of measurements required to evaluate the hypothesis,

for example, performing lighter-weight measurements before heavier ones.

This allows detecting compromises with reduced SMM overheads. A trigger

may have two types of actions:

1. Independent Action: This action does not have a dependency on the

previous action.

2. Dependent Action: This action is only run if the previous action returns

a changed result.

A trigger with only independent actions is indicative of security inspec-

tions that require checking all avenues of compromise for a given resource.

For example, an IDT rootkit could be accomplished by either a change of the

IDTR or one of the IDT entries. As one change is not dependent on the other,

Chapter 7. Architecture 121

both resources must be checked. However, to allow for earliest detection at

minimal measurement cost, the IDTR register measurement is performed first

as a detection of a change would provide an alert at minimal cost.

Triggers with only dependent actions imply a logical ordering of succes-

sive measurements that lead to an advanced security diagnosis. For example,

with a kernel code compromise with completely persistent changes, the CR0

write-protect bit must be disabled before the kernel code can be modified.

However, a detection of a changed CR0 register does not guarantee that the

code sections were modified and thus, the code sections must be measured to

complete the diagnosis.

7.4.3.2 Example Measurement Trigger: Kernel Code Sections Unchanged
- Persistent CR0 and kernel code changes

HypKernelFunctionsTampering hypothesizes that signs of kernel code tamper-

ing are evident. Evaluation of the hypothesis begins with a light-weight mea-

surement. If this measurement indicates a changed result, then the hypothesis

has been verified without involving additional measurements. However, if

the measurement does not indicate a changed measurement, then further mea-

surements must be done. As an example, the following steps allow evaluation

of this hypothesis:

1. Control Register 0 Write Protect bit changed.

If True, signs of tampering are present and no further measurements are

required to evaluate this hypothesis.

If False, proceed to next measurement.

2. Kernel code sections are changed. This measurement requires hashing

all of the kernel code sections in smaller Task sizes which is a more

Chapter 7. Architecture 122

expensive operation than the Control Register measurement.

If True, signs of tampering are present and no further measurements are

required to evaluate the hypothesis.

If False, there are no additional enabled measurements and the hypoth-

esis is evaluated as False.

Figure 7.4 shows the flow.

FIGURE 7.4: Persistent Kernel Code Section and CR0 Trigger.
Purple boxes are dependent actions.

7.4.3.3 Interrupt Descriptor Table Unchanged

Figure 7.5 provides the flow for the IDT trigger. This trigger begins with a

light-weight measurement of the IDT register (IDTR). If this measurement

indicates a change, the Trigger completes without incurring the cost of the

IDT measurement.

Chapter 7. Architecture 123

However, if the IDTR check indicates no change, it is still possible that

the attacker has modified the IDT itself. As the IDT can be modified without

changing the IDTR, this action is independent of the previous action. If

the IDT table has changed, the trigger completes with a change detected,

otherwise, it completes with no change detected.

FIGURE 7.5: Interrupt Descriptor Table Trigger. Green boxes are
independent actions.

7.5 Backend Manager

The Backend Manager (BEM) manages the performance aspects of EPA-RIMM

and provides measurement requests to the monitored systems. It resides on

a separate node from the monitored node. It receives Checks from the Diag-

nosis Manager and decomposes them into smaller Tasks to avoid prolonged

SMM session times. The granularity of the decomposition is specified by the

Decomposition Target parameter. (See Table 7.2.) The BEM schedules Tasks

Chapter 7. Architecture 124

by filling Bins based on a target Bin size. It signs, creates a MAC (Message

Authentication Code), encrypts each Bin, and then provides it to the Host

Communications Manager which interfaces with the SMM-based Inspector.

The BEM waits to receive the Inspector’s Results back. It decrypts the Results

and checks the signature and MAC to ensure that they came from the proper

Inspector and were not tampered with in-transit. The BEM merges results of

all the Tasks for each Check into a single Result and sends it to the DM.

Check decomposition reduces system impacts, allowing larger, more fre-

quent, and less predictable measurements. This approach trades atomic

measurements for partial results over time. Scrubbing attacks are challenges

for SMM-based runtime integrity mechanisms [7], and frequent measure-

ments may reduce transient malware’s time window to operate. Malware

that installed itself and later tried to remove itself could be detected via EPA-

RIMM re-measurements. Check decomposition involves an overall efficiency

and space trade-off as smaller amounts of work processed per SMI result in

more SMIs in total. Additionally, a larger number of Tasks requires more

storage space on the BEM. Thus, there is a trade-off between SMM latency

and overall measurement efficiency.

TABLE 7.2: Decomposition and Bin Size Parameters

Value Configured at Applies to...
Target Bin Size Runtime Current Bin Size
Max Bin Size Provisioning Bin Size Limit
Decomp. Target Provisioning Task Granularity

7.5.1 BEM Provisioning

The BEM is provisioned with the appropriate keys for signing and encryption.

The BEM’s Task performance estimations are set based on an initial perfor-

mance measurement so that the EPA-RIMM can begin runtime operation

Chapter 7. Architecture 125

with an appropriately sized amount of work in a Bin. Since there is no pre-

emption of SMM code, platform-specific performance prediction is accurate.

Initial measurements that will be re-checked over time can be gathered in the

provisioning phase in an offline environment (preferred) or upon the first

measurement of a resource. Storing the measurement hashes in the BEM

avoids scalability issues related to limited SMRAM.

7.5.2 BEM Runtime

Because the system experiences an overhead transitioning to SMM and back,

minimizing the number of SMIs is a consideration. Since each SMI transfers

one Bin, efficiently filling the Bin reduces the number of SMIs and conse-

quently the amount of time spent transitioning to and from SMM. We use a

priority queue for Bin packing, so Tasks are not scheduled in strict priority

order; a lower priority Task might be selected to "fill" a Bin in place of larger

higher priority Tasks. Priorities are adaptive; Tasks are assigned an initial

priority based on their parent Check, but priorities change at runtime, for

example, with aging. The BEM may increase or decrease the Bin size within

set bounds. The BEM may also increase or decrease the SMI frequency upon

direction from the DM.

7.6 Oracle

The Oracle is responsible for maintaining the provisioned hashes. It resides

on a separate node from the monitored node. This allows abstracting the

machine-specific parameters from the BEM. At runtime, the BEM will request

the provisioned hashes from the Oracle to provide to the Inspector to allow

comparing the current measurement against the provisioned hash.

Chapter 7. Architecture 126

7.7 Host Communications Manager

The Host Communications Manager (HCM) resides within the monitored

system and provides an interface between the Inspector and the BEM. As

SMM does not feature a dedicated network stack, an interface needs to be

enabled for communication with it. The HCM mechanism should be out-of-

band of the OS, such as the BMC (Baseboard Management Controller) [7].

In-band mechanisms (e.g. Ring 3 application and kernel module) should not

be used as they are vulnerable to malware. For example, if a HCM process

were to be killed by malware, the measurement would stop. While the BEM

could detect a lack of response and trigger an alert, there is a subtler attack

that is possible. Malicious code could recognize that a measurement request

is imminent, clean its traces, and then let the measurement proceed. The

HCM receives Bins from the BEM and provides them to the Inspector when

it triggers its operation via an SMI. The HCM also receives Results from the

Inspector which it returns to the BEM.

7.8 Inspector

The Inspector performs the measurements from SMM, noting differences

compared to the comparison measurement. The Inspector is compiled into

the BIOS and is initiated via an SMI. It has the ability to view the interrupted

host-side CPU register state, MSR values, and allowable regions of the host-

side memory space. The Inspector also monitors the measurement cost in

terms of time and returns the cost to the BEM so that it can adaptively tune the

Bin size. The Inspector checks the Bin’s Message Authentication Code (MAC)

creates a new MAC for the outgoing Results to ensure in-transit integrity.

Chapter 7. Architecture 127

7.8.1 Inspector Provisioning

The Inspector must be provisioned with encryption and signing keys for its

communications with the BEM. EPA-RIMM does not prescribe a particular

key provisioning method and leaves the implementation up to the imple-

menter. EPA-RIMM is compatible with TPM-based key provisioning or a

Diffie-Hellman key exchange using public keys embedded in the firmware.

7.8.2 Inspector Runtime

The Inspector will be invoked by an SMI that specifies the Bin for the Inspector.

The Inspector returns the Results as shown in Table 7.3.

TABLE 7.3: Results Description

Results Entry Source
Check ID# BEM
Task ID# BEM
Result Inspector
Measured Hash Inspector
Measurement Cost Inspector
Inspector Signature Inspector
Results Integrity Measurement Inspector

7.8.3 Complete Architecture Flow

Figure 7.6 provides a complete example of the EPA-RIMM architecture. In this

example, we show three Checks: A, B, and C with different costs and priorities.

The Diagnosis Manager sends these Checks to the Backend Manager which

decomposes them into Tasks using a Task Decomposition Target of 75µs and

places them into a priority queue. The Backend Manager then forms Bins

with no more than 100µs. The Backend Manager then signs and encrypts the

Bins and provides to the Host Communications Manager which passes the

Bin to the Inspector via an SMI. The Inspector processes the Tasks in the Bin

and observes a difference in Check A - Task 0 which it returns back through

Chapter 7. Architecture 128

FIGURE 7.6: A complete example of EPA-RIMM’s active mon-
itoring phase. In this example, the same Bin is provided to all
monitored nodes, but in a heterogeneous environment the Bins
and the hash costs could differ between nodes. We show the
BEM and the Inspector as residing on separate machines, but

there is no requirement for this separation.

the Host Communications Manager to the Backend Manager. The Backend

Manager consolidates the results and provides to the Diagnosis Manager.

7.9 Security Analysis

In this section, we describe our assumptions and analyze potential threats

against EPA-RIMM. We consider attacks against SMM and EPA-RIMM com-

ponents and on requests and results, side channels, initial measurements,

infrastructure compromise and denial of service, crypto/signing attacks, and

transient evasion attacks.

Research Question 1: How to design a more secure measurement agent?

Chapter 7. Architecture 129

7.9.1 Assumptions

We assume that initial measurements can be gathered during a provision-

ing process and that OS updates that change monitored resources trigger a

re-provisioning. We also assume that SMRAM is well-protected and lever-

ages available hardware protections including SPI protections over the BIOS

chip and proper SMRR configuration. The CHIPSEC tool can be used to

verify proper platform SMM configuration [68]. EPA-RIMM also assumes

the presence of an out-of-band network interface to allow communication

of measurements requests and results. We assume the out-of-band interface

is not malicious. EPA-RIMM targets scenarios where an attacker has gained

control over the operating system or hypervisor at runtime. This can include

code injection into these privileged layers.

7.9.2 Inspector

The Inspector, residing within SMM, may be targeted by the attacker. One

potential attack is a confused deputy attack in which the attacker attempts

to trick the Inspector into overwriting SMRAM memory or other privileged

memory. The Inspector should check input buffers to ensure that they do

not reside within the SMRR. The Inspector should also communicate directly

with the BEM and not write data into OS-controlled memory. Attacks on

EPA-RIMM’s Inspector could attempt to forge a measurement request from

a malicious BEM in order to gain additional insights into operation of the

system. For this reason, it is important that the Inspector and BEM properly

authenticate with each other. The Inspector and BEM also use encryption for

their communications to prevent eavesdropping or tampering. The nonce

prevents replay attacks in which previous measurements are passed off as

current measurements. The Inspector should not return more information

Chapter 7. Architecture 130

than is required to determine an unwanted change has occurred. By returning

hashes instead of actual measurement values, the Inspector helps limit its

potential usefulness as a side channel.

7.9.3 Initial Measurements and EPA-RIMM launch

Initial measurements should be provisioned in an offline environment to

avoid compromised values appearing as pristine values. In homogeneous

environments with identical kernel and OS versions, it may be possible to

gather an initial measurement on a representative node for comparison other

identically-configured nodes. New kernel versions that come with an op-

erating system update would require re-provisioning due to new memory

layouts. Once the host software launches with a trusted boot, EPA-RIMM can

begin servicing measurement requests over the out-of-band HCM interface.

7.9.4 Infrastructure Compromise and Denial of Service

If a Denial of Service were to affect the DM or BEM, the flow of measurement

requests would slow or cease. Monitoring of the flow of EPA-RIMM measure-

ments would be necessary to identify this type of attack. If the DM were to

be compromised, it would be possible to misdirect EPA-RIMM to monitor

an unrelated set of resources while an attack executes or share false reports

of attack detection. For this reason, the EPA-RIMM Administrator should

monitor and investigate the threat intelligence exchanged by EPA-RIMM and

also audit the Checks that are being performed for unexpected changes. A

compromise of the BEM could expose the hash database. However, this is of

limited use as it contains hashes instead of memory contents.

Chapter 7. Architecture 131

A denial of service attack against the measurement agent cannot be com-

pletely avoided. For scenarios where improper Bins are provided, process-

ing time can be minimized by aborting processing of the Bin once a prob-

lem with decryption or signature is identified. Administrators or supervi-

sor software could monitor the number of SMIs processed by reading the

MSR_SMI_COUNT or an STM-based SMI counter periodically to determine

if a high rate of SMIs is occurring. For the scenario in which the attacker can

construct valid Bins, the Inspector is provisioned with a maximum limit for

memory measurements to avoid spending excessive time in an SMI session.

The EPA-RIMM administrator specifies the limit based on benchmarks for

the system that produce a hash cost per byte metric. This will not completely

thwart a denial of service attack but will reduce a degree of its effects. The

measurement agent could also consult the MSR_SMI_COUNT and if it detects

a higher rate of SMIs than allowed by provisioning, could abort further Bin

processing, returning errors to the Backend Manager which would trigger an

alert.

There are two key aspects to address for minimizing SMM-based denial

of service attacks: 1. Duration of SMI, 2. Frequency of SMIs. For EPA-RIMM,

SMI duration is primarily determined by the measurement size. An attacker

who succeeds in requesting an overly large measurement could consume

large amounts of time in SMM, preventing the system from performing other

work. Likewise, an attacker who specifies a flood of measurements could also

cause the system to spend significant amounts of time in SMM. Note: while

EPA-RIMM can take safeguards against being used as a denial of service

mechanism, SMM-based denial of service attacks are always present as any

attacker with Ring 0 privileges can generate an arbitrary SMI.

Chapter 7. Architecture 132

To address the duration issue, the EPA-RIMM provisioning phase per-

forms hash measurements starting from powers of 210 until the measurement

results exceed LimitSmiEmpirical . The measurement agent records the maxi-

mum hash size that was below

LimitSmiEmpirical and rejects measurements with lengths that exceed this.

EPA-RIMM addressed the SMI flood attack by allowing a maximum num-

ber of inspections per minute. The measurement agent increments a counter

with each measurement request and checks the counter value against the

maximum-allowed value specified during provisioning. Measurement re-

quest frequencies that exceed the allowable maximum value are rejected.

Attackers who try to invoke false positives by changing resources on

a monitored node to trigger a flood of alerts, would succeed in triggering

these alerts but would not evade notice that monitored resources had been

successfully changed.

7.9.5 Transient Evasion Techniques

All snapshot-based periodic inspections have the potential to miss attack

detection if signs of the attack were not present at the measurement inter-

val. EPA-RIMM, unlike other SMM RIMMs, can be used to measure more

frequently, in smaller portions to reduce the amount of time between periodic

measurements. Additionally, varying the set of measured items dynamically

at runtime leads to less predictable measurements which complicates the

attacker’s task.

7.9.6 Stealth

It is difficult for SMM RIMMs to be completely stealthy and EPA-RIMM is

no exception. A motivated attacker could leverage timing information to

ascertain losses of control. The developers of a stealthy SMM-based debugger,

Chapter 7. Architecture 133

MALT, note that while they were able to adjust various system timers in

SMM to hide their operation, a dedicated attacker could send an encrypted

message to a remote timing server to get accurate sense of time [118]. For

these reasons, while SMM-RIMMs operate independently from host software,

complete stealth appears infeasible.

7.9.7 Host-side Memory Visibility

Most SMM-RIMMs grant privileges beyond what is absolutely required by

their measurement agent. By utilizing the SMI Transfer Monitor (STM), the

principle of least privilege could be applied to the measurement agent [110,

84]. The STM is a thin SMM-based hypervisor that virtualizes SMI handlers

in their own virtual machine and applies a protection policy over this virtual

machine to constrain their accesses to platform resources.

We implemented a set of STM policies to restrict the measurement agent’s

access to the allowed set of resources. As the measurement agent does not

need to modify host memory but only read the memory for the purpose

of hashing, host memory writes are prohibited to the measurement agent.

To allow the measurement agent to return results via a memory write, the

EPA-RIMM architecture can leverage the UEFI Communications Buffer which

provides a BIOS-reserved memory region for communications [116]. EPA-

RIMM does not need to modify MSRs or IO Ports and can thus read-only

access to measured resources allows the measurement agent to have a suitable

level of access. EPA-RIMM requires host memory read access where it would

otherwise not be required. Thus, there is a necessary trade-off in the goals of:

1. Restricting SMI handler access to host resources and 2. Providing SMM-

based runtime integrity measurement. SMM policies that provide increased

rootkit detection at minimal impact to SMM security represent an overall

improvement in system security.

Chapter 7. Architecture 134

7.9.8 KASLR

The kernel address space layout randomization (KASLR) feature would re-

quire special handling with EPA-RIMM measurements as the kernel addresses

would be randomized. One option for supporting KASLR would be to gen-

erate new provisioned values upon initial boot. This allows KASLR to be

enabled in a method that is compatible with EPA-RIMM. At present, the

future of KASLR is unclear [36]. There have been several recent attacks on

the KASLR feature using page faults, prefetch, Intel TSX, and Branch Target

Buffers and several mitigations proposed [41, 37, 51, 28].

7.9.9 Spectre/Meltdown

In recent months, the Spectre and Meltdown attacks [64, 57] have received

significant coverage. Some of these attacks are applicable to SMM. Intel

has provided guidance about software remediations for the attacks [43] and

also has released CPUs with upgraded hardware-based fixes. The Bounds

Check Bypass (CVE-2017-5753) uses speculative execution following branch

instructions. For this vulnerability, adding LFENCE instructions before a

bounds check can mitigate the attack. Intel notes that "Overapplication of

LFENCE can compromise performance [43]. As a goal of EPA-RIMM is to

bound the time spent in SMM, this mitigation reduces the available amount of

SMM time for EPA-RIMM processing. Thus, a careful consideration of where

LFENCE operations may be required would be necessary to mitigate the side-

channel attack and maintain acceptable EPA-RIMM performance. Another

attack, Branch Target Injection, leverages indirect branch predictors to control

which instructions are speculatively executed after a near indirect branch

predictor. Intel has announced two remediations, the first of which provides

control over which indirect branch speculations are allowed. The second

Chapter 7. Architecture 135

creates a "retpoline" which substitutes near jump and call instructions with an

alternate code sequence that invokes a direct call. This approach may result in

a reduced performance overhead for the mitigation. EPA-RIMM developers

should analyze the impact of these two remediations on the Inspector to

determine the appropriate balance between side-channel protections and

Inspector performance.

7.9.10 Attacks on Measurement Agent Communications

EPA-RIMM achieved protections for confidentiality, authenticity, and integrity

by means of encrypted, signed, and authenticated communications. Encryp-

tion over the communications protects against malicious inspection of the

contents as each message is not able to be parsed by an attacker without the

proper key.

Falsified communications can be remedied by signing measurements and

results to ensure they originated from the proper entities. While EPA-RIMM

does not prescribe a particular signature mechanism, RSA provides a compat-

ible implementation. RSA cryptography leverages public and private keys

to encrypt messages for a specific target. During provisioning, the measure-

ment agent conveys its public key to the Backend Manager and receives the

Backend Manager’s public key. Each entity is responsible for maintaining

the secrecy of their private keys. The measurement agent stores its private

key in SMRAM which is unavailable to code in the operating system or hy-

pervisor. The Backend Manager may store its key in the Trusted Platform

Module (TPM), a hardware-protected chip that is commonly used to store

keys. The Backend Manager uses its private key to encrypt messages for a

particular measurement agent and the measurement agent utilizes its private

key to decrypt the message from the Backend Manager. The reverse flow of

measurement results uses the same mechanism.

Chapter 7. Architecture 136

EPA-RIMM addressed the possibility of spoofed messages using a signa-

ture check. Messages that are received without a proper signature can be

rejected by either the measurement agent or the Backend Manager. Listing 7.1

shows detection by the measurement agent of a spoofed sender.

LISTING 7.1: Signature example

Correct s ignature : 4 d414e4147455231323334 . . .

Spoofed s ignature : 55444333221100AABBCCDD . . .

ERROR: BEM signature mismatch !

To protect against a communications tampering attack, EPA-RIMM lever-

ages an HMAC over measurement requests and results to obtain confidence

over message integrity [58, 11]. HMAC uses an encryption key and hash

algorithm to verify the data integrity and authentication of a message. The

data integrity check can detect a change in the measurement request or results

after initial transmission of the message.

While encryption provides protection against an attacker being able to

discover the contents of a measurement request or result, it does not provide

full protection against an attacker that modifies a portion of the data, e.g.

the message integrity. For this reason, an HMAC provides the ability to

detect message tampering. Listing 7.2 shows an example of an HMAC being

constructed over the contents of an unmodified communication and then

rechecked after an attacker modifies part of the message. The tampering

results in a different HMAC which the measurement agent can then be aware

of.

LISTING 7.2: HMAC example

HMAC over unmodified message :

Chapter 7. Architecture 137

7 b8dd1535678ce49728292a6c582e702

07 e4844bcf954b7685fbe48771837486

HMAC over modified message :

83368892920 c4148cbc7281b35b8c24b

24 a87185c957ffb513401463fd004f8d

"ERROR: HMAC d i f f e r s ! "

To address replay attacks where an attacker tries to replay copies of previ-

ous measurement requests or results, a nonce provides the ability to sequence

communications such that each message has a unique sequence number and

attempts to pass off old messages as new messages can be detected. EPA-

RIMM’s communications include a nonce to ensure measurement liveness.

For each Bin that the Backend Manager creates, it generates a unique

nonce and a unique identifier for the Bin. It associates the nonce with the Bin

identifier in its internal memory. If the Backend Manager were to receive a

Result for a given Bin with an improper nonce, it would discard the Result

and would raise an alert that it received an incorrect nonce value, which may

be indicative of an attack on EPA-RIMM.

EPA-RIMM leverages encryption over measurement requests and results

to protect against an adversary who endeavors to view the contents of these

messages. Applying cryptography incurs performance costs within a limited

time budget in SMM, which necessitates selecting performance-efficient cryp-

tography mechanisms. EPA-RIMM does not prescribe a specific cryptography

implementation, however, there are implications based on which method

is selected. One approach is to use public and private key cryptography to

establish a secure channel in which an AES symmetric key can be exchanged.

Chapter 7. Architecture 138

Encryption provides a critical capability in hiding the contents of EPA-

RIMM measurements from an attacker. Listing 7.3 shows the contents of

an intercepted measurement result from the measurement agent. The fields

are not useful to the attacker as the attacker cannot derive the results of the

EPA-RIMM measurement.

LISTING 7.3: Encrypted measurement result

IV 0 x1672d3b32e7 0 x1672d3b3342

Command 027 fe03e3445e1be9

Operand 0 x82fc469e9d38c16a

V i r t u a l Address 0 x9d3a395f7820d12e

Phys Address 0 x39355208988e5bf9

Length 0 x9e2d8af570319ead

Resul t 0 x 3 a f 9 3 0 f b f 4 0 7 5 f 0 f

Nonce 0 xe3222c1fdb601ca0

Cost 5 d133a485c3e5cca

Task UUID 3 b245fa1173c6740

Reserved1 46094808 c2bc3445

Hash : 3b4da65d 8bdc39ed 220 d60fa . . .

Manager Signature : f f01ccd7c82a64a37e3ef9ca672 . . .

I n s p e c t o r Signature : f f9e49af fc8468859e78abbced2 . . .

HMAC 6 fdb27f61196ec55a931589a645 . . .

7.9.11 Use of EPA-RIMM as a side channel

EPA-RIMM limits the amount of useful data to an attacker by reporting hashes

instead of raw values from the system. This prevents attackers from observing

Chapter 7. Architecture 139

register values, memory contents, and MSR values that might increase an

attacker’s understanding of the actual system state.

EPA-RIMM measurements consist of a flow of hash values for resources

measured. An attacker who succeeds in compromising the Backend Manager

and endeavors to learn useful measurement details from the system being

monitored would only have access to hash values from the system, as shown

in Figure 7.7. As hashes consist of a mathematical one-way operation that

does not allow reconstructing the initial values, attackers will not gain useful

information from the data.

FIGURE 7.7: Hash samples

7.10 Conclusions

The EPA-RIMM architecture provides a means of meeting the design require-

ments described in Section 6. EPA-RIMM allows the specification of Checks

which the Backend Manager decomposes into Tasks to bound the amount of

work performed in a single SMI session. Bins represent the complete set of

work to be performed by a CPU thread in a single SMI session.

To resolve the SMM-RIMM semantic gap and remove the need to store

context in SMM, we identified a set of measurement primitives to detect a

variety of known rootkit and ransomware techniques, namely: virtual and

physical memory ranges, CPU control registers, and MSRs. These fundamen-

tal building blocks for integrity measurements are able to detect a variety of

Chapter 7. Architecture 140

contemporary host software rootkits and ransomwares. For future extensi-

bility, the API can support new primitives by specifying the new parameters

and adding the corresponding measurement code in the Inspector. This can

all be accomplished without requiring broader changes in the EPA-RIMM

architecture.

Measurement Triggers provide the means to perform advanced security

diagnosis in a logical method by performing light-weight measurements prior

to heavier measurements. Dependent trigger actions provide a means of

avoiding heavier measurements until lighter-weight measurements demon-

strate the need for this additional work. By applying the use of measurement

triggers, we employed a targeted approach towards analyzing potential at-

tack scenarios which reduced the amount of checking required. This allowed

evaluation of security hypothesis with reduced measurement cost.

Beyond limiting the time spent in a single SMI session, we needed to

address the overall performance impacts of repeated SMM-RIMM measure-

ments to lessen the system impact. We investigated whether a hypotheses

model developed in the performance analysis field (Paradyn) can be applied

to EPA-RIMM’s security inspections [80]. In this model, lighter-weight mea-

surements are performed first to evaluate whether a potential hypothesis can

explain performance problems. If lighter-weight measurements indicate a po-

tential performance problem, then more invasive and costlier measurements

are performed. This technique had not yet been applied to SMM-RIMMs.

SMM-RIMMs need to balance the amount of inspections they perform with

their impact on the system. In the ideal case, each security-sensitive resource

could be checked at every CPU clock tick, presenting no opportunity for an

attacker to escape detection. However, this would result in a system that was

unusable for practical purposes. Thus, the SMM-RIMM needs to provide

Chapter 7. Architecture 141

effective detection at a reasonable performance trade-off. We investigated

whether this approach can also be used in EPA-RIMM to provide effective

rootkit detection at reduced performance cost.

The security of the EPA-RIMM architecture is very important as vulner-

abilities in its SMM code would present significant concern. A key method

for dealing with this concern is to run the Inspector inside a virtual machine

to constrain its accesses [110]. This allows applying the principle of least

privilege to the measurement agent. By storing hashes instead of raw values,

EPA-RIMM reduces the amount of actionable information an attacker can

glean from the measurements. The EPA-RIMM architecture provides a usable

example of an SMM-based RIMM that balances performance, the principle of

least privilege, and effectiveness which is unique among other SMM-RIMMs.

142

8
EPA-RIMM Prototype

In this section, we describe our EPA-RIMM prototype including its various

software modules. We leverage open-hardware platforms with open-source

UEFI implementations for this prototype. We cover attack detection with the

prototype and its impact on application performance.

8.1 Prototype Overview

To test our design, we developed a prototype which implements the necessary

portion of the EPA-RIMM architecture. Our prototype systems do not have

an out-of-band communication mechanism, therefore we demonstrate the

functionality using an in-band mechanism. This is sufficient for the research

prototype since it does not share the security requirements of a production

system. We implemented four separate modules: the BEM, an in-band HCM

(consisting of the "Frontend Manager" (FEM) and "Ring 0 Manager" (R0M)

modules), and the Inspector. The BEM runs on a network server while the

other components reside on the monitored system. The initial prototype

does not implement the Diagnosis Manager although an updated software

stack adds a basic version of this component. The prototype is available at:

https://github.com/PPerfLab/EPARIMM-Release.1

8.1.1 Hardware

We enabled our prototype on two open-hardware systems: The Minnowboard

Turbot and the UP Squared ("UP2") board. Both boards leverage the x86

CPU architecture, feature open-source UEFI firmware, and provide support

flashing modified firmware. Both boards have less computational resources

1The BEM used in this dissertation is available for internal testing and benchmarking,
however, is not released in this github. An updated BEM has been released.

Chapter 8. EPA-RIMM Prototype 143

than a typical server platform that EPA-RIMM would be running on. The

Turbot features a dual core Intel Atom e3826 processor with a base clock of

1.46 GHz and 2 GB RAM [49]. The UP2 board has a more recent Intel Pentium

N4200 CPU with a base clock of 1.1 GHz and 8 GB of RAM. Both boards

feature onboard Ethernet and support an attached solid-state disk (SSD). We

use Ubuntu 14.04 64bit with a 4.11 kernel on these systems.

8.1.2 Firmware

We modified the SMI handler in the respective UEFI source for the Turbot

and UP2 boards by creating a DXE_SMM_DRIVER which registers a new

software SMI using the EFI_SMM_SW_DISPATCH_PROTOCOL. We inte-

grated OpenSSL 1.1.0e support into the Inspector for SHA256 hashing for

measurements, AES256-CBC for encryption, and HMAC SHA256 for integrity.

We configure the SMM page tables to allow the necessary access to host mem-

ory to allow memory measurements, receiving measurement requests, and

sending measurement results.

8.2 Prototype Modules

8.2.1 BEM

Our BEM is the primary interface to running EPA-RIMM measurements on

the prototype. We created a script to identify relevant sections of the kernel

code to measure, e.g. code sections and read-only data sections and create

fixed-size Tasks for the BEM. We also provide an interface for the user to

configure which control registers and which MSRs to measure.

Once the Tasks are entered into the BEM, it establishes a priority queue

for the measurement Tasks and groups them into Bins based on a first-fit

algorithm. The BEM sets up a network socket connection with a set of FEMs

(one per monitored system). As each monitored system may process Tasks

Chapter 8. EPA-RIMM Prototype 144

at different rates, the number of Tasks that fit in a given Bin size may vary

across systems.

The BEM supports a wide variety of testing options:

1. Run Duration Options: Run forever, run for X Bins, run for X priority

queue refills, re-run previously measurements tasks (yes or no), send

Bins for a timed duration.

2. Bin transmission parameters: Random delay between Bins (yes or no),

maximum random delay between Bins, duration of delay between Bins.

3. Bin Encryption enabled (yes or no), Result decryption enabled (yes or

no)

4. HMAC creation enabled (yes or no), HMAC comparison enabled (yes

or no)

5. Measurement targets: Measure [Memory, Control Registers, MSRs]

(yes or no), Measure IDTR and IDT (yes or no), sample memory range

enabled (yes or no), sample granularity (bytes), sample density (percent-

age)

6. Maximum Bin size

8.2.2 HCM

We implemented the HCM prototype with a FEM and Ring 0 Manager. The

FEM receives the signed and encrypted Bin from the BEM and writes it to a

/proc interface that is registered by the Ring 0 Manager. After each Bin has

been processed, the FEM retrieves the Results from the /proc interface and

send them to the BEM. The Ring 0 Manager (Linux kernel module) receives

the Bin from the FEM via the write to the /proc interface. The Ring 0 Manager

Chapter 8. EPA-RIMM Prototype 145

then records the virtual memory location of the Bin in a CPU register. After

this, it triggers the measurement SMI by writing a pre-arranged value to port

0xB2.

8.2.3 Inspector

The Inspector registers an SMI that will receive measurement requests. Upon

receiving the SMI, the Inspector will locate the Bin in memory, converting the

virtual memory address of the Bin to physical. The Inspector checks to ensure

that the Bin is not within SMRAM memory to avoid overwriting SMRAM

memory. The Inspector decrypts the Bin, checks the signature, verifies the

provided HMAC, and performs the specified measurements. To prepare

the results, the Inspector generates an HMAC over their contents, and then

encrypts and signs the Results data. It then copies the Results out to the Ring

0 Manager.

For the provisioning phase, the Inspector computes hash values for the

specified operation (MSR, CPU register, or memory region) and writes the

hash value back into the Results data structure. For subsequent measurements,

the Inspector receives the initial hash value from the BEM for comparison.

The Inspector gathers performance metrics on each measurement to deter-

mine the cost of hash, encryption, HMAC, among its other operations. This

allows the BEM to refine its cost estimates over time with a rolling average to

more precisely bound the amount of time spent in SMM.

The Inspector also incorporates an automatically-generated MSR whitelist

which lists the acceptable set of MSRs to monitor. This whitelist prevents the

specification of non-supported MSRs on the CPU which would trigger an

exception.

Chapter 8. EPA-RIMM Prototype 146

8.3 Attack Detection Using the Prototype

In this section, we show the Checks that can detect the rootkit and ransomware

techniques described in Table 1.1. As we do not have access to the actual

rootkits and ransomwares, we implemented compromises of the types of

resources that they changed.

1. IDT Hooking:

IDTR: Check command = Measure Register

Operand = IDTR.

IDT: Check command = Measure Virtual Memory

Address = IDT address (obtained from provisioned IDTR)

2. CR4.SMEP Disable: Check command = Measure Register

Operand = CR4

3. Kernel Code Injection: We first determine the kernel code sections from

/proc/kallsyms.

ffffffff81000000 T _stext

...

ffffffff81c031d1 T _etext

The resulting Check is:

Command = Measure Virtual Memory

Address = 0xffffffff81000000

Chapter 8. EPA-RIMM Prototype 147

Length = 0xc031d1.

4. System Call Hooking: We determine the location of the System Call

Table from the /proc/kallsyms:

ffffffff81e00220 R sys_call_table

ffffffff81e01340 r

Check command = Measure Virtual Memory

Address = 0xffffffff81e00220

Length = 0x1220

5. Xen Code Injection and Xen Malicious Exception Handler: Similar to

Linux, Xen produces a file (xen-syms) that maps kernel symbols to

virtual addresses. The range can be determined from the beginning

(_stext) to the end, e.g. _einittext.

ffff82d080200000 T _stext

...

ffff82d08063b64d T _einittext

Check command = Measure Virtual Memory

Address = 0xffff82d080200000

Length = 0x43B64D

8.3.1 Transient Attack Detection

In this section, we analyze EPA-RIMM’s ability to detect transient attacks in

Section 8.3.1. While transient attacks are not the target of EPA-RIMM, we

examine EPA-RIMM’s ability to detect transient attacks.

A common attack on SMM-RIMMs is called a scrubbing (or evasion)

attack [81, 112]. If attackers can predict when a measurement is about to be

Chapter 8. EPA-RIMM Prototype 148

performed, the attackers can clean up traces of their attack such that when

the measurement later occurs, the traces of the attack are no longer present.

After the measurement, the attackers can again place their attack hooks.

We considered the following scenario in which an attacker places their

IDTR attack for a short sub-second duration (either 0.1 or 0.5 secs) before

removing it. The attacker waits a randomized duration (between 0 and

30 seconds) between transient attacks and attempts them repeatedly over

an extended period of time. EPA-RIMM is loaded with an IDTR Check

that it will schedule according to varying frequencies described in Table 8.1.

Figures 8.1, 8.2, 8.3, and 8.4 show the detailed inspection reports for scenarios

1-4, respectively, with green depicting a measurement with no change detected

and red indicating a successful detection of compromise.

The results show successful detection of all attack scenarios, although in

Scenario 3, only four of 1610 attacks were detected. However, even one

successful detection would raise an administrator alert. In practice, there

would likely be additional EPA-RIMM measurements on the queue which

would reduce the frequency of the IDTR measurement which would reduce

the detection percentage. An attacker, though, could not guarantee a complete

lack of detection as they cannot rule out a measurement occurring while the

attack was placed.

As EPA-RIMM focuses on persistent rootkits, it does not completely ad-

dress the transient attack detection issue common to all SMM-RIMMs that

perform periodic measurements. However, it can address a variety of tran-

sient attack scenarios. The chance of transient attack detection is determined

by the frequency of measurements, whether the changed resource is present

in the set of enabled measurements, and measurement processing rate. Our

results show that EPA-RIMM can detect some instances of transient attacks.

Chapter 8. EPA-RIMM Prototype 149

TABLE 8.1: Transient Attack Detection

Scenario AWait(s) HPlace(s) MFreq(1 per Ns) TAttacks TAttackD
1 0..30 0.5 10 1127 51
2 0..30 0.1 10 3398 37
3 0..30 0.1 30 1610 4
4 0..30 0.1 1..10 (Random) 1693 52

Legend
AWait: Attacker wait randomized threshold (secs)

HPlace: Hack placement duration (secs)
MFreq: EPA-RIMM Measurement Frequency (1 per N secs)

TAttacks: Number of transient attacks placed
TAttackD: Number of transient attacks detected

FIGURE 8.1: 0.5s compromise placement (HPlace)
1 measurement per 10 secs (MFreq)

FIGURE 8.2: 0.1s compromise placement (HPlace)
1 measurement per 10 secs (MFreq)

FIGURE 8.3: 0.1s compromise placement (HPlace)
1 measurement per 30 secs (MFreq)

FIGURE 8.4: 0.1s compromise placement (HPlace)
1 measurement per 1 to 10 secs (randomized) (MFreq)

8.4 Impacts on Application Performance

To measure EPA-RIMM’s impact on application performance, we compared

benchmark performance on the Minnowboard Turbot for four scenarios:

Chapter 8. EPA-RIMM Prototype 150

Baseline (no SMIs); Light with two 0.5KB memory hashes per second, Medium

with four 0.5KB memory hashes per second; and eight 0.5KB memory hashes

per second. We ran the Phoronix Cachebench, pybench, C-Ray, and ffmpeg

benchmarks [91] and compared the throughput achieved against the no-

measurement baseline. (See Figures 8.5 and 8.6.) Cachebench exercises the

memory and cache - we selected the read operation; Pybench shows the

system’s python performance; C-Ray performs multi-threaded CPU floating

point operations; and ffmpeg performs multi-threaded audio/video encoding.

We observed performance degradation roughly proportional to the amount of

CPU cycles spent in SMM for the single-threaded Cachebench and pybench

workloads. The multi-threaded workloads, C-Ray and ffmpeg, show greater

performance degradation which indicates the cumulative impact of loss of

CPU cycles across a larger number of CPUs.

FIGURE 8.5: Application Impacts Linux

Chapter 8. EPA-RIMM Prototype 151

FIGURE 8.6: Application Impacts Xen

8.5 Discussion

The EPA-RIMM prototype demonstrates a functional UEFI-based EPA-RIMM

measurement on two commodity open-hardware platforms: Minnowboard

Turbot and UP2 boards. EPA-RIMM has also been ported by John Fastabend to

use coreboot firmware [24]. With new open-hardware platforms that support

coreboot [60, 96], this presents additional deployment options. Our open-

source release of the EPA-RIMM software stack represents the first publicly-

available SMM-RIMM prototype. Our prototype demonstrates detection of

attacks involving changes to CPU control registers, kernel and hypervisor

code injection, as well as the possibility of detecting some transient malware.

To evaluate EPA-RIMM’s ability to provide the SMM measurement agent

with enough context to detect rootkit and ransomware techniques, we de-

veloped simulated attacks that performed the same resource compromises

as done in recent examples of these types of malware. EPA-RIMM detected

these compromises by leveraging its provisioning phase and measurement

API.

Chapter 8. EPA-RIMM Prototype 152

The BEM provides a wide variety of test options that enabled a wide vari-

ety of test scenarios, including measurements over the cost of cryptography

operations, SMI processing costs, and varying Bin and Task sizes. The In-

spector supports the flexible measurement description API and allows rootkit

detection without building state into SMRAM. The HCM provides an example

of the necessary communications between the Inspector and the BEM, serving

as a pass-through for encrypted data flowing between these two endpoints.

The resulting application impacts of EPA-RIMM demonstrate that the

resulting performance is dependent on the size and frequency of the EPA-

RIMM measurements, representing a useful tuning knob. If EPA-RIMM

administrators want to minimize the impact on a latency-sensitive system,

system impacts can be greatly reduced by adjusting these knobs. However, if

the infrastructure is under attack, these knobs present the means to perform

deeper inspections to identify issues sooner.

153

9
Task Scheduling in EPA-RIMM

Each EPA-RIMM measurement incurs an SMI entry and exit cost. This mo-

tivates a need to make effective use of the time spent in SMM as these fixed

costs are incurred for any measurement. Additionally, with a large measure-

ment queue, maintaining a high measurement throughput is important to

ensure that the Checks that the Diagnosis Manager added are processed in a

timely manner.

EPA-RIMM’s Backend Manager plays a key role in effectively allocating

sets of work to be performed in each SMM session. As new Checks can

arrive at any point in time, the precise set of Tasks to form Bins over is not

known at the outset of the simulator operation. Thus, the Backend Manager

must perform an online Bin formation without knowledge of what Tasks may

may arrive in the future. If available Bin capacity is not effectively used, the

overheads of entering and exiting SMM will be incurred but fewer measure-

ments will be performed, hurting efficiency. This results in increased system

performance degradation and slower progress through the measurement

queue.

Bin size and Bin frequency also play a key role in the effectiveness of pro-

cessing a large set of measurements. Increasing both of these results in faster

processing of the measurement queue, however, this results in additional

system overhead. The question of how to prevent starvation of older Tasks

on the queue when new Tasks arrive also merits investigation. To facilitate

an understanding of these questions, we developed a simulator, RIMM-SIM.

This simulator allows varying key adjustable parameters to explore schedul-

ing efficiency, speed of measurement processing, and prevention of Task

starvation.

Chapter 9. Task Scheduling in EPA-RIMM 154

As different EPA-RIMM deployments could measure different resources,

it is possible that the incoming Checks arriving at the Backend Manager

may fall into various sizes. For example, memory hashes of small data

structures might take minimal time whereas measurements over the entire

Linux kernel could be decomposed into larger Task sizes where one Task

consumes all of the available Bin capacity. For this reason, we evaluate two

scenarios for Checks arriving at the Backend Manager: Uniform distribution

and a normal distribution. The uniform distribution option allows examining

the impacts of a wide variety of incoming Tasks where their costs do not

cluster around a median value. We envision that there may also be scenarios

where measurement sizes may cluster around a mean value and thus we also

evaluate a normal distribution.

In Section 9.1, we provide background information for the Knapsack Prob-

lem, First Come First Serve, and a Priority queue with optional backfilling and

aging features. In Section 9.2, we provide the results of our experiments that

investigate the performance of the First Come First Serve and Priority Queue

with backfilling and aging options. We discuss our results in Section 9.3.

9.1 Scheduling Approaches

We begin with the the Knapsack Problem, the cover the First Come First Serve

algorithm, the Priority queue, and priority queues with backfilling and aging.

9.1.1 Knapsack Problem

The classic "0/1" Knapsack Problem [92] consists of a knapsack that can hold

a capacity of W (weight), a set of items from 1 to N with weights wi to wN

and values vi to vN. The goal is to choose an optimal subset of items with

a weight no greater than W and the highest-possible value. The classic 0/1

Knapsack Problem is NP-Complete [17]. Applying this to EPA-RIMM Bin

Chapter 9. Task Scheduling in EPA-RIMM 155

formation, the maximum weight, W, can be set to maximum Bin size. The

weights are the measurement costs and the values are the Task priorities.

In contrast, the fractional Knapsack Problem allows dividing items into

fractions which could allow better utilization of the available capacity. How-

ever, this variant is not applicable to EPA-RIMM as a finite set of hash values

is gathered during EPA-RIMM’s provisioning phase and measuring reduced

sizes in an attempt to better fill a Bin would result in different hash values

that cannot be evaluated.

9.1.2 First Come First Serve

The First Come First Serve ("FCFS") algorithm is a basic algorithm that selects

processes based on their order of arrival. Applied to to EPA-RIMM’s Backend

Manager, the Backend Manager would add Tasks from newly arrived Checks

to the end of the queue and fill the Bins with Tasks from the front of the queue.

This approach does not select tasks deeper in the queue to fill a Bin, even if

there would be space for them.

For an example, Figure 9.1 begins in Step 1 with five Tasks on the queue,

each with a cost of 33µs. In Step 2, Bin 0 is formed with four 33µs Tasks that

together consist of 132µs. As the maximum Bin cost is 150µs, this does not

allow the remaining 33µs Task to be included in this Bin. In Step 3, a new set

of Tasks (cost is 91µs for each Task) arrives on the queue and is placed at the

end. In Step 4, Bin 1 is formed with a 33µs and a 91µs Task. Step 5 shows the

resulting priority queue after this Bin formation.

The benefits of this approach are that the method is simple to implement

and is not prone to starvation due to processing tasks in order of arrival. A

key drawback of the approach is that it can result in less optimally-filled Bins

due to an inability to consider Tasks after the head of the queue for inclusion

in the Bin.

Chapter 9. Task Scheduling in EPA-RIMM 156

FIGURE 9.1: Bin formation with First Come First Serve

Figure 9.2 shows an example of a problematic scenario for FCFS. In Step

1, there are four Tasks on the queue with costs of 130, 50, 20, and 20µs,

respectively. In Step 2, Bin 0 is formed with one Task of cost 130. We observe

that the third or fourth Task in the queue with a cost of 20 would completely

consume the remaining Bin capacity, however, the algorithm is not able to

select either of these Tasks, thus leaving 20µs of Bin capacity unused. In Step

3, new Tasks arrive on the queue with costs of 100 and 80, respectively. In

Step 4, the first two Tasks are selected for the Bin, collectively consuming 70µs

of Bin capacity. The fourth Task of cost 80 in the queue would completely

consume the remaining Bin capacity. However, it is not able to be selected.

Thus Bin 1 is unable to use 80µs of the Bin capacity. These limitations in the

First Come First Serve algorithm present clear limitations for EPA-RIMM as it

can result in significant amounts of Bin capacity being unused.

Chapter 9. Task Scheduling in EPA-RIMM 157

FIGURE 9.2: Problematic Case - First Come First Serve

9.1.3 Priority Queue

In contrast to the FCFS, the Priority Queue adds a priority mechanism to

order tasks in the queue. The Priority Queue maintains a sorted list of Tasks

in priority order and chooses the first N highest priority Tasks that will fit

in the Bin. However, just as with FCFS, this method does not allow looking

deeper into the queue to identify lower-priority Tasks that would help fill the

Bin.

Figure 9.3 shows a priority queue. In this example, in Step 1, five Tasks of

cost 33µs are added to the queue with a priority of 10. In Step 1, the first four

Tasks are selected to form a Bin as they are the highest-priority Tasks that fit

within the Bin. In Step 3, a new Check arrives with priority 11 and its Tasks

are added to the head of the queue as they are now the highest priority Tasks.

In Step 4, a new Bin is formed with a single 91µs Task at priority 11. While

the 33µs Task at priority 10 would fit in the Bin, it is not considered. Step 5

shows the resulting queue.

Chapter 9. Task Scheduling in EPA-RIMM 158

FIGURE 9.3: Priority Queue

9.1.4 Priority Queue with Backfilling

Backfilling is a method to allow looking deeper into the queue to select lower-

priority Tasks to make better use of available scheduler capacity [61]. Applied

to a priority queue, backfilling would provide the ability to consider a lower

priority Task to better fill the Bin. This has the potential to resolve a key

limitation in a Priority Queue without backfilling.

In Figure 9.4, we revisit the example previously shown in Figure 9.2,

however, this time with backfilling enabled. This time, in Step 2, the Backend

Manager is able to select the third task in the queue with a cost of 20µs to fill

the Bin. We observe in Step 3 that the length of the queue is smaller due to

processing the 20µs Task in Step 2. In Step 4, the Backend Manager is able

to fill Bin 1 with an 80µs Task. Step 5 also has a smaller queue size due to

making fuller use of the available Bin capacity.

While backfilling provides an additional opportunity to fill Bins to a higher

capacity, it requires more Task cost comparisons to be made in the Backend

Manager than if backfilling were disabled. Additionally, it does not address

starvation of Tasks on the queue.

Chapter 9. Task Scheduling in EPA-RIMM 159

FIGURE 9.4: Applying Backfilling for fuller Bin Capacities

9.1.5 Priority Queue with Aging

While the backfilling helps produce fuller Bins, it can be experience Task

starvation. Starvation can occur when newly arrived higher priority Tasks

take precedence over older Tasks. To address this issue, aging provides a

method of increasing the priority of older Tasks on the queue so that their

priority eventually rises to a level where they will be prioritized [103].

Figure 9.5 shows an example of how aging helps avoid Task starvation.

In Step 1, the priority queue consists of three Tasks with a 150µs cost and a

priority of 10. In Step 2, the first Task is selected which completely fills the

Bin. In Step 3, aging is first applied to existing Tasks on the queue. Then two

new Tasks arrive with a cost of 100 and 50µs and a priority of 10. In Step 4, a

new Bin is formed with the highest priority Task from the first set of Tasks

added to the queue. In Step 5, aging is again applied to existing Tasks on the

queue and the last remaining Task from the initial set of Tasks has the highest

priority (12) of any Task on the queue.

Chapter 9. Task Scheduling in EPA-RIMM 160

FIGURE 9.5: Priority Queue with Aging

9.2 Experiments

9.2.1 Simulation Parameters

9.2.1.1 Check Arrival Rates, Sizes, and Priorities

The arrival rate of Checks on the Backend Manager depends on the Diagnosis

Manager’s decisions to enqueue Checks based on a schedule or trigger mech-

anism. Additionally, the sizes and priorities will vary based on the resources

being measured and the Diagnosis Manager’s priority to accomplish the

Checks. While the Backend Manager can support arbitrary Task durations,

for the purpose of RIMM-SIM, we analyze two key Task distributions:

1. Uniform distribution of random-sized Tasks: This represents a scenario

with a wide variety of Tasks in which any Task size is as likely to occur

as any other Task size. Practical scenarios in which this could result

could include monitoring a variety of read-only data structures that

could each be of arbitrary sizes.

2. Normal distribution of random-sized Tasks: This represents a scenario

where the majority of Task sizes will cluster around an average value

with a selected standard deviation. Practical scenarios in which this

Chapter 9. Task Scheduling in EPA-RIMM 161

could occur would include scenarios where the size of monitored re-

sources tends to fall within a particular range although deviations from

this range are possible. For example, the Diagnosis Manager has se-

lected a set of large fixed sized resources to monitor (e.g. fixed-sized

kernel code sections along with a smaller assortment of resources that

are smaller and larger in size.)

For each of these scenarios, we bound the Tasks sizes to meet practical

EPA-RIMM constraints, for example, the Tasks must be greater than zero

as there is no scenario in which a Task would have a cost of zero. We also

constrain the Task sizes to be no greater than the Bin size, otherwise, they

would require decomposition which does not add a meaningful benefit to

this simulation. Thus, we examine truncated distributions that meet these

practical constraints.

9.2.1.2 Inputs

RIMM-SIM supports a variety of simulation parameters to allow precise

control over the desired scenario. Table 9.1 provides the parameters along

with a description.

Chapter 9. Task Scheduling in EPA-RIMM 162

TABLE 9.1: Simulator Inputs

Input Description
Simulation Duration How many seconds to simulate
BEM CPU Frequency CPU cycles per second
Number of Tasks in Check How many Tasks in a newly arrived Check
Check Arrivals per second Number of new Checks, per second
Bins per second Bins formed/processed per second
Set of Tasks with total cost of Check Specific checks each with a total cost in µs
Maximum Bin size Maximum number of µs worth of work in Bin
Task decomposition target (“TDT”) Default Task cost (in µs)
Max Tasks per Bin Limit for how many Tasks can be in a Bin
Default Task priority The default priority of a new Task

Random Task Priority enable
If enabled, assign a random priority to new
Tasks

Random Task Priority max With random Task priority, the max Task priority
Aging enable A knob to enable aging
Random simulation seed enabled A knob to randomize the simulation

Seed number
If simulation seed is not random, the random
seed

Backfill enable A knob to enable backfill
New Tasks lowest priority enable Set new Tasks at lowest priority

9.2.1.3 Outputs

RIMM-SIM outputs a variety of useful statistics at the conclusion of the

simulation. These metrics are shown in Table 9.2.

Chapter 9. Task Scheduling in EPA-RIMM 163

TABLE 9.2: Simulator Outputs

Output Description
Total number of Tasks processed The amount of processed Tasks
Total number of Bins processed The amount of processed Bins
Number of Check arrivals Number of Checks added to queue
Check completion duration Simulation cycles to complete all Tasks in a Check
Avg. queue time per Task Avg. cycles in the queue for all processed Tasks
Max Task queue time The max time a processed Task was on the queue
Avg., Max, Min Bin Size The amount of µs of work packed into the Bin
Avg. Tasks in Bin The Avg. number of Tasks across all Bins
Cumulative Task Age Total age of all Tasks on the queue
Oldest Task Age The age of the oldest Task on the queue
Number of waiting Tasks The total number of Tasks waiting on queue
Per-Bin history report List of all Bins and their Tasks
Average % of Bin capacity filled Percentage of Bin capacity used across all Bins

9.2.1.4 Simulator Internal Details

Before beginning RIMM-SIM, the user specifies the appropriate input settings

as described in Section 9.2.1.2. The main simulation loop calculates two key

events: Bin Formation and Task Arrivals. The timing of these depends on the

number of Check Arrivals per second and Bins per second.

A new set of Tasks is added to the queue when the simulation cycles

reaches the calculated time for Task Arrival. Depending on the simulation

scenario, this is accomplished in the following ways:

1. First Come First Serve: This scenario places new Tasks at the end of

the queue, all Tasks have identical priorities, and there is no backfill or

aging capability enabled.

2. Priority Queue: This scenario places new Tasks in a priority order, Tasks

can have different priorities. Backfill and aging can be independently

enabled.

When the simulation cycles reaches the time scheduled for new Bin for-

mation, a new Bin is created. Depending on the Bin formation algorithm:

Chapter 9. Task Scheduling in EPA-RIMM 164

1. First Come First Serve: The Backend Manager selects the first N Tasks

that will fit within the Bin, disregarding later Tasks in the queue that

might be used to more fully fill the Bin. The method will consider the

Bin filled when the next Task under consideration does not fit in the Bin.

2. Priority Queue without backfilling: This method will proceed through

the queue in priority order and select Tasks that fit within the Bin. Once

a Task is found that does not fit within the Bin, the Bin is considered

closed.

3. Priority Queue with backfilling: This method will scan through the

ordered list of waiting Tasks, choosing the highest priority Tasks that fit

in the Bin. The algorithm has the ability to select a lower priority Task if

it helps fill the remaining Bin capacity.

Once the Bin is formed, the Bin is sent and marked as completed. Then

the next simulation event is calculated, e.g. Task Arrival or Bin Formation.

If aging is enabled, the priority of each Task on the queue is incremented

by one. The simulator then jumps to the next event and begins back in the

main simulation loop. Statistics are gathered during execution to record the

necessary outputs.

9.2.1.5 Evaluation of EPA-RIMM Scenarios

A variety of EPA-RIMM measurement scenarios are possible to occur in a real

deployment. These could include:

1. Light-weight Checking: This scenario performs a comparatively small

number of Checks on a less-frequent basis. Examples of this consist of:

A portion of the Linux kernel code section measurements, once every 24

Chapter 9. Task Scheduling in EPA-RIMM 165

hours. In this scenario, no Task has a higher priority than another and

the Check arrival rate is roughly one Check arriving per day.

2. Heavy Checking: This scenario performs rigorous checking including

DM-selected subsets of Linux kernel code sections and read-only data

sections, the IDT/IDTR, the GDT/GDTR, Control Registers, 30 MSRs,

and reschedules these Checks as they are completed.

9.2.1.6 Bin Processing Rate vs Task Arrival Rate

RIMM-SIM allows a detailed analysis of the Bin processing rate compared

to the Task arrival rate. It provides the ability to control the Bin size, Bin

formation frequency, and the Task arrival rate to evaluate this important

factor that controls the length of the measurement queue. The length of the

EPA-RIMM measurement queue will vary based on three factors:

1. The rate that new Checks arrive at the Backend Manager. This is con-

trolled by the Diagnosis Manager as it selects which Checks to send to

the Backend Manager. In the light measurement scenario, the queue

length could drain to zero as the Bin processing outpaces the Check

arrival rate. However, in the heavy measurement scenario, the queue

will receive an infusion of new Checks regularly which introduces the

need to ensure that certain resource measurements are not starved for

processing as new Checks arrive.

2. The rate that the Backend Manager sends Bins for processing: The

Backend Manager will form Bins at the chosen rate. More Bins formed

and transmitted per second results in additional measurements being

performed, however, each Bin also incurs a cost in SMM and too many

Bins per second hampers application performance so the Bin formation

frequency cannot grow beyond a specified limit. The light measurement

Chapter 9. Task Scheduling in EPA-RIMM 166

scenario does not require frequent Bins to accomplish its measurements

whereas a heavy scenario may need to schedule Bins more frequently to

effectively handle the incoming rate of Checks.

3. The amount of work that the Backend Manager packs into the Bins:

Adding additional Tasks to a Bin allows more work to be accomplished,

however, this prolongs the amount of time in SMM, thus the size of

the Bins cannot grow beyond a specified threshold. A light scenario

does not need to increase the Bin size to accommodate the measurement

load while the heavy scenario may need to increase the Bin size to make

adequate progress through the measurement load.

9.2.1.7 Task Size Distributions

For the truncated uniform distributions in this section, we take random

numbers in the range of 1 to 100 for 100µs Bin Size scenarios, 1 to 700 for

700µs Bin Size scenarios, and 1 to 1400 for 1400µs scenarios.

For the truncated normal distributions in this section, we take random

numbers from a normal distribution with a statistical mean of 50µs and a

standard deviation of 28.856 for the 100 Bin Size scenario. As we do not have

empirical data over Task sizes from actual deployments, we approximate by

calculating the mean and standard deviation from a set of random numbers

from 1 to 100 (Bin Size). For the 700µs Bin Size scenario, we utilize a mean of

350 with a standard deviation of 201.67. For the 1400µs Bin Size scenario, we

use a mean of 701 and standard deviation of 405 using the same method.

9.2.2 First Come First Serve

9.2.2.1 Measurement Design

In this simulation, we set the parameters according as shown in Table 9.3

to evaluate the FCFS approach in terms of scheduling, Task ages, and the

Chapter 9. Task Scheduling in EPA-RIMM 167

number of waiting Tasks.

TABLE 9.3: First Come First Serve Config

Parameter Setting
Simulation Seconds 60
BEM CPU Frequency 3,000,000,000
Bins/sec 12
Check Arrivals/sec 10
Number of Tasks in Check 5
Max Task Size 100µs
Bin Size 100µs
Backfill Enabled No
Aging Enable No
Random Priority New Checks No
Random Size New Checks Yes
New Tasks Lowest Priority Yes
Random Priority for New Tasks No

9.2.2.2 FCFS Results

To introduce this simulation, we begin by examining the Bin Size results

of one random simulation, before examining larger sets of simulation runs.

We first gathered the results of the Bin sizes with the FCFS approach with

truncated uniform and normal distributions in the range of 1 to 100µs.

1. Truncated Uniform Task Distribution: Figure 9.6 shows the Bin sizes.

We observe that the amount of work in the Bins averages 76.7µs with a

minimum of 22µs and a standard deviation of 15.4µs.

Chapter 9. Task Scheduling in EPA-RIMM 168

FIGURE 9.6: Bin Size Detail - Truncated Uniform Distribution,
FCFS

TABLE 9.4: FCFS Results - Truncated Uniform Distribution

Result Value
Avg. Tasks/Bin 1.51 Tasks
Oldest Task Age 114,660,000,000 cycles
Cumulative Task Age 109,724,400,000,000 cycles
Num. Waiting Tasks 1909.8 Tasks
Avg. Work / Bin 77.8µs

2. Truncated Normal distribution: In this simulation, we observe that the

amount of work in the Bins averages 73.6µs with a minimum of 35µs.

Chapter 9. Task Scheduling in EPA-RIMM 169

FIGURE 9.7: Bin Size Detail - Truncated Normal Distribution,
FCFS

TABLE 9.5: FCFS Results - Truncated Normal Distribution

Result Value
Avg. Tasks/Bin 1.51 Tasks
Oldest Task Age 114,660,000,000 cycles
Cumulative Task Age 109,653,360,000,000 cycles
Num. Waiting Tasks 1,909 Tasks
Avg. Work / Bin 73.4µs

For the light scenario, maximizing the usage of available Bin capacity is

less critical and a simpler Backend Manager algorithm such as FCFS would

be adequate. However, in the heavy scenario, the achieved Bin usage around

77µs out of 100µs is not ideal, which motives the need to investigate alternate

approaches.

9.2.3 Priority Queue

In this set of simulation measurements, we analyze a priority queue with

several options: Priority Queue ("PQ", with no backfilling or aging), Priority

Queue with backfilling ("PQB"), Priority Queue with aging ("PQA"), and a

Priority Queue with backfilling and aging ("PQBA"). We compare our results

in two key areas to FCFS: Bin capacity and Task aging.

Chapter 9. Task Scheduling in EPA-RIMM 170

9.2.3.1 Measurement Design

In this simulation, we set the parameters as shown in Table 9.6.

TABLE 9.6: Priority Queue Configs

Parameter PQ PQB PQA PQBA
Simulation Seconds 60
BEM CPU Frequency 3,000,000,000
Bins/sec 12
Check Arrivals/sec 10
Number of Tasks in Check 5
Max Task Size 100µs
Bin Size 100µs
Backfill Enabled No Yes No Yes
Aging Enable No No Yes Yes
Random Priority New Checks Yes
Random Size New Checks Yes
New Tasks Lowest Priority No
Random Priority for New Tasks Yes

9.2.3.2 Results for PQ, PQB, PQA, PQBA configurations

Figure 9.8 provides the uniform distribution results and Figure 9.9 provides

the normal distribution results. These figures are normalized to the Backfill

off, Aging off scenario. Table 9.7 and Table 9.8 provide the raw values.

Examining the average Tasks per Bin and average Work per Bin metrics,

we observe that the backfill-enabled configurations have significantly higher

average Tasks per Bin and Work per Bin. Aging does not help in this regard.

Examining the Oldest Task Age metric, we see that aging is the mechanism

that is responsible for improving this metric and the combined backfill and

aging scenario leverages the aging priority mechanism and the fuller Bins

to work through the measurement queue more rapidly. This allows the

oldest Task’s age to drop. Similarly, the Cumulative Task Age metric shows

the best performance in the combined backfilling and aging scenario as the

Chapter 9. Task Scheduling in EPA-RIMM 171

combinations of aging and backfill allow prioritizing older Tasks and working

through these Tasks more rapidly.

One metric that at first appears to be an outlier is that the combined backfill

and aging-enabled scenario does not outperform the "Backfill Enabled, Aging

Disabled" scenario in the Number of Waiting Tasks and Average Tasks per

Bin metrics. However, as the Average Work per Bin metric is higher for the

combined backfill and aging enabled scenario, this signifies that larger Tasks

have been selected in the combined scenario.

For the heavy scenario, the results of backfilling and aging are encouraging.

The backfilling capability helps utilize between 93µs and 96.7µs of the 100µs

Bin capacity compared to between 73.1µs and 77.5µs when backfilling was

disabled. It also reduces the amount of waiting Tasks. Adding an aging

capability reduces the age of the oldest Task. For the light measurement

scenario, these improvements may not be required, however, for the heavy

scenario, the improvements are significant.

TABLE 9.7: Backfill and Aging Results, Truncated Uniform Dis-
tributions

Backfill Aging
Avg.
Tasks
/Bin

Oldest
Task
Age

Cumul.
Task
Age

Num.
Waiting
Tasks

Avg.
µs
Work/Bin

Off Off 1.52 1.792E+11 1.655E+14 1909 75.8
Off On 1.55 1.135E+11 1.067E+14 1883 77.5
On Off 2.38 1.789E+11 1.078E+14 1287 94.3
On On 2.20 1.013E+11 6.703E+13 1416 96.7

Chapter 9. Task Scheduling in EPA-RIMM 172

TABLE 9.8: Backfill and Aging Results, Truncated Normal Dis-
tributions

Backfill Aging
Avg.
Tasks
/Bin

Oldest
Task
Age

Cumul.
Task
Age

Num.
Waiting
Tasks

Avg.
µs
Work/Bin

Off Off 1.50 1.798E+11 1.673E+14 1919 73.1
Off On 1.49 1.163E+11 1.118E+14 1928 73.7
On Off 2.30 1.795E+11 1.140E+14 1343 93.5
On On 2.15 1.002E+11 6.797E+13 1449 96.0

FIGURE 9.8: Comparison normalized to "Backfill Disabled, Ag-
ing Disabled" configuration - Truncated Uniform Distribution

FIGURE 9.9: Comparison normalized to "Backfill Disabled, Ag-
ing Disabled" configuration - Truncated Normal Distribution

Chapter 9. Task Scheduling in EPA-RIMM 173

To examine Bin size in more detail for the PQB configuration, Figure 9.10

and Figure 9.11 show the truncated uniform and normal distributions, respec-

tively. We observe that in contrast to the FCFS results, the average Bin sizes

have increased (94.6µs (truncated uniform) and 94.9µs (truncated normal)

for these two priority queue-based simulations) in contrast to the 77.8µs and

73.4µs results from the FCFS approach.

Figure 9.12 and Figure 9.13 compare PQB to FCFS. We observe that the

average Tasks per Bin and average work per Bin have increased significantly

with the PQB. This increased measurement throughput, however, does not

address the age of the oldest Task.

FIGURE 9.10: Bin Size Detail - Priority Queue with Backfilling -
Truncated Uniform Distribution

FIGURE 9.11: Bin Size Detail - Priority Queue with Backfilling -
Normal Distribution

Chapter 9. Task Scheduling in EPA-RIMM 174

FIGURE 9.12: Priority Queue with Backfilling vs FCFS - Trun-
cated Uniform Distribution

FIGURE 9.13: Priority Queue with Backfilling vs FCFS - Trun-
cated Normal Distribution

Chapter 9. Task Scheduling in EPA-RIMM 175

9.2.3.3 Discussion

Comparing the results of FCFS and the Priority Queue with backfilling, we

conclude that the latter fills the Bins closer to the target Bin size and provides

faster processing of the measurement queue by reducing the number of wait-

ing Tasks. The Priority Queue effectiveness was close to the maximum (e.g.

filling 95µs out of 100µs). This indicates that moving to a Knapsack solv-

ing approach may not provide meaningful results that merit the additional

complexity.

The Priority Queue with aging showed the ability to reduce the age of

Tasks on the queue which helps avoid starvation. It is important to note

that aging does not significantly impact the throughput-related metrics such

as average work per Bin, number of waiting Tasks, or average number of

Tasks/Bin as it is designed to facilitate the choice of older Tasks as opposed

to filling Bins more fully. In the light measurement scenario, aging is not

necessarily required as the lower Check arrival rate is not likely to result in

Task starvation. In the heavy measurement scenario, the aging capability

would help reduce the risk of older Tasks experiencing starvation as new

Checks arrive.

The simulator shows that combining aging and backfilling improves both

the Bin size as well as reduces the age of Tasks on the queue. This method

resulted in fuller Bin sizes and avoiding starvation on the queue. While

backfilling and aging can incur additional overheads on the BEM, excessive

performance impacts can be mitigated by enforcing a limit on the maximum

queue length or increasing the measurement throughput.

Chapter 9. Task Scheduling in EPA-RIMM 176

9.2.4 Bin Size Scaling

The Bin size (amount of µs of work in the Bin) is a key performance factor for

EPA-RIMM. In this RIMM-SIM scenario, we analyze the impact of scaling the

size of the Bin using 100, 700, and 1400µs Bin sizes with:

1. The maximum Task size equal to the Bin size which represents a scenario

in which the measurements are allowed to scale upwards with the Bin

size, allowing more checking in a single Task.

2. The maximum Task size set to 100µs which represents the scenario when

smaller measurements were provisioned and in a time of threat, more

of these smaller measurements can be readily run.

For each configuration, we examine the resulting impact on the number of

Tasks/Bin, the oldest Task’s age, the cumulative age of all Tasks on the queue,

the number of waiting Tasks, and the average work per Bin.

9.2.4.1 Measurement Design

We list the simulator parameters used in Table 9.9 and the Bin Size distribu-

tions described in Section 9.2.1.7.

Chapter 9. Task Scheduling in EPA-RIMM 177

TABLE 9.9: Bin Size Scaling Config

Parameter Setting
Simulation Seconds 60
BEM CPU Frequency 3,000,000,000
Bins/sec 12
Check Arrivals/sec 70
Number of Tasks in Check 5

Max Task Size Config 1: Bin size
Config 2: 100µs

Bin Size 100, 700, 1400µs
Backfill Enabled Yes
Aging Enable Yes
Random Size New Checks Yes
New Tasks Lowest Priority No
Random Priority New Checks Yes

9.2.4.2 Bin Size Scaling Results - Config 1: Max Task Size = Bin Size

Figure 9.14 and Figure 9.15 provide the results, normalized to the 100µs

configuration. In these results, we see the average Tasks per Bin, oldest Task

age, cumulative Task age, and number of waiting Tasks hold constant as the

Bin holds larger Tasks. The average work per Bin increases significantly as

larger Tasks are processed.

The results show that Bin size is a useful knob to perform larger Tasks

which incorporate more checking. However, it is a knob that needs to be used

carefully to not preempt the system for a prolonged amount of time which

would result in negative system impacts.

Chapter 9. Task Scheduling in EPA-RIMM 178

FIGURE 9.14: Impact of Bin size scaling, normalized to 100µs
configuration, Uniform Distribution

FIGURE 9.15: Impact of Bin size scaling, normalized to 100µs
configuration, Normal Distribution

9.2.4.3 Bin Size Scaling Results - Config 2: Max Task Size = 100µs

In this scenario, smaller (≤100µs) hashes are performed and the larger Bin

sizes allow incorporating more of them in a Bin. The practical benefit of this

scenario is that a single SHA hash value for each Task needs to be gathered as

opposed to requiring new SHA hashes to support up to 700 or 1400µs worth

of work.

The results, as shown in Figure 9.16 and Figure 9.17 show that the average

number of Tasks/Bin and average work/Bin increase with the Bin size as this

scenario allows running more Tasks in the Bin. Additionally, the age of the

Chapter 9. Task Scheduling in EPA-RIMM 179

oldest Task drops as does the cumulative Task age. The number of waiting

Tasks also drops as more Bin capacity is available to process them.

This scenario shows its value in the heavy measurement case. To ac-

commodate the high rate of Checks arriving, the ability to increase the Bin

size allows faster progress through the measurement queue. The choice of

whether to utilize Config 1 (Task max size scales with Bin Size) or Config 2

(Task max sizes set to the lowest Bin size) depends on the tolerance to create

and maintain provisioned values over larger resources that can be used when

required. If the expectation is that increasing the Bin size is a rare occurrence,

Config 2 is adequate and avoids the need to generate and maintain a separate

set of provisioned values. Config 1 provides the ability to perform larger

measurements as required to get results more readily.

FIGURE 9.16: Impact of Bin size scaling, normalized to 100µs
configuration, Uniform Distribution, Max Task Size 100µs

Chapter 9. Task Scheduling in EPA-RIMM 180

FIGURE 9.17: Impact of Bin size scaling, normalized to 100µs
configuration, Normal Distribution„ Max Task Size 100µs

9.2.5 Bin Frequency Scaling

Bin frequency (e.g. Bins per second) represents another important knob for

accomplish more measurements in less wall-clock time, besides increasing

the Bin size. In this simulation run, we examine the impact of Bin frequencies

of 12, 48, 96 a second while holding Bin size and Check arrival rate constant.

9.2.5.1 Measurement Design

Table 9.10 provides the simulation parameters.

TABLE 9.10: Bin Frequency Scaling Config

Parameter Setting
Simulation Seconds 60
BEM CPU Frequency 3,000,000,000
Bins/sec 12,48,96
Check Arrivals/sec 70
Number of Tasks in Check 5
Max Task Size 100µs
Bin Size 100µs
Backfill Enabled Yes
Aging Enable Yes
Random Size New Checks Yes
New Tasks Lowest Priority No
Random Priority New Checks Yes

Chapter 9. Task Scheduling in EPA-RIMM 181

9.2.5.2 Bin Frequency Results

The results in Figure 9.18 and Figure 9.19 show that the increased Bin fre-

quencies successfully drop the age of the oldest Task on the queue and the

total age of all of the Tasks on the queue at the end of the simulation. The

number of waiting Tasks also drops as the increased Bin frequency allows

faster progression through Tasks on the queue. The results also show a drop in

the number of Tasks per Bin however Work per Bin remains roughly constant.

This indicates that the increased Bins are taking larger Tasks in the measure-

ment queue. The Tasks per Bin and Work per Bin results are dependent on

the makeup of the items in the measurement queue. Each Bin incurs a set

cost as the CPU cores are completely consumed by the SMI processing, thus

12, 48, 96 Bins with a cost of 150µs each (accounting for SMI entry and exit

costs) would consume 0.18%, 0.72%, and 1.44% of the available CPU cycles.

Workloads that perform high computation would benefit from less frequent

Bin/second rates.

The choice of how to set the Bin frequency and size depends on a few

considerations:

1. The cost of SMI entry and exit. If these factors are high, then larger

Bins would be more efficient than increasing Bin frequency as the SMI

entry/exit costs are incurred on a per-Bin basis.

2. Tolerance to provision hashes of different sizes, e.g. if gathering a set of

hashes that fit within 100, 700, and 1400µs Bins is acceptable, then these

larger sizes can allow more checking to occur in a single measurement.

However, if only one set of provisioned values is needed, utilizing the

smallest common denominator of Task size (e.g up to 100µs Task size)

Chapter 9. Task Scheduling in EPA-RIMM 182

would be preferable and performing more of these measurements in a

single Bin would allow more checking to occur in the Bin.

3. Sensitivity to SMI latency: If the software on the monitored system is

more sensitive to prolonged SMI latencies, more frequent Bins would be

preferable to larger Bins as the more frequent (but shorter) disruptions

would delay latency-sensitive code for a shorter duration.

The heavy measurement scenario would benefit from the Bin frequency

scaling to allow faster progression through the measurement queue. However,

this knob needs to be balanced against the above considerations.

FIGURE 9.18: Bin Frequency Scaling Comparison normalized to
"12 Bins/sec" configuration

Chapter 9. Task Scheduling in EPA-RIMM 183

FIGURE 9.19: Bin Frequency Scaling Comparison normalized to
"12 Bins/sec" configuration

9.2.6 Check Arrival Rate

The Check Arrival Rate represents how quickly Tasks from newly-arrived

Checks are added to the queue. This factor has queue management impli-

cations. If the Check Arrival Rate is lower than the Bin processing rate, the

measurement queue drains over time and when it is empty, no new Bins

would be formed. If the Check Arrival Rate exceeds the Bin processing rate,

then the queue length grows. A larger measurement queue requires more

work on the Backend Manager to implement backfilling and aging as there

are more Tasks to consider for inclusion and also update aging for.

9.2.6.1 Measurement Design

In this simulation run, we vary the arrival rate of new Checks using rates of

200, 400, 800 Checks a second. We fix the Bin size at 100µs and Bin frequency

at 96 Bins/second. The number of Tasks in a Check is fixed at five. Table 9.11

provides the configuration settings for this run.

Chapter 9. Task Scheduling in EPA-RIMM 184

TABLE 9.11: Check Arrival Config

Parameter Setting
Simulation Seconds 60
BEM CPU Frequency 3,000,000,000
Bins/sec 96
Check Arrivals/sec 200, 400, 800
Number of Tasks in Check 5
Max Task Size 100µs
Bin Size 100µs
Backfill Enabled Yes
Aging Enable Yes
Random Priority New Checks Yes
Random Size New Checks Yes

9.2.6.2 Check Arrival Rate Results

In Figure 9.20 and Figure 9.21, we observe that the fixed rate of Bin processing

is insufficient to prevent increases in the age of Tasks on the queue as both

the age of the oldest Task on the queue and the cumulative age of Tasks on

the queue increase significantly. Similarly the number of waiting Tasks also

increases as Bins cannot be formed quickly enough or large enough to process

them given the configuration constraints.

One mitigation technique for this scenario of frequent Check arrivals that

outpace Bin processing rates, is to increase the Bin size and/or frequency.

However, due to system impact concerns, there are limits to how much these

knobs can be adjusted upwards. The BEM could also be enhanced to monitor

the Check Arrival Rate and the Bin processing rate to provide feedback to the

DM to reduce the Check Arrival Rate.

The light scenario will not be affected by the rate of Check arrivals as

they are relatively infrequent. However, the heavy scenario will result in a

high Check arrival rate. To the degree possible, the BEM can increase the Bin

size and frequency to handle the incoming rate of Checks, however, a rate

Chapter 9. Task Scheduling in EPA-RIMM 185

that is too large to be feasibly support will need to be throttled otherwise the

monitored system is not able to perform its required work.

FIGURE 9.20: Check Arrival Rate impact on Task Age and Num-
ber of Waiting Tasks, [200,400, and 800 Checks/sec], Truncated

Uniform Distribution

FIGURE 9.21: Check Arrival Rate impact on Task Age and Num-
ber of Waiting Tasks, [200,400, and 800 Checks/sec], Truncated

Normal Distribution

9.3 Discussion

RIMM-SIM provides a controlled simulation environment to allow examining

the impact of different Scheduling mechanisms such as First Come First Serve,

Chapter 9. Task Scheduling in EPA-RIMM 186

a Priority Queue, a Priority Queue with backfilling, a Priority Queue with

aging, and a Priority Queue with aging and backfilling.

For our analysis, we looked at two Task distributions: uniform and normal.

Ultimately, the results of the two distributions did not differ significantly.

However, the analysis from each distribution provides finer-grained data for

scenarios where: 1. There is little ability to predict the size of incoming Tasks,

as is the case with the uniform distribution, and 2: The Tasks cluster around a

statistical mean.

We observed that the FCFS and Priority Queue without backfilling resulted

in smaller Bin sizes than the Priority Queue with backfilling. However, a

Priority Queue with backfilling approach alone did not address the Task

starvation problem. For that, we enabled aging which provided measurable

impacts in reducing the cumulative age of Tasks on the queue and the age of

the oldest Task. In both the light and heavy scenarios, the Priority Queue with

backfilling and aging achieved high Bin utilization without starvation. This

less-complex solution, compared to knapsack, helps reduce the computational

requirements on the Backend Manager.

Even with this scheduling approach, varying the knobs of Bin Frequency

and Bin size may be required. These parameters when adjusted upwards

allow more work to be accomplished, however, at the cost of increased system

performance. The choice of larger Bins vs more frequent Bins depends on

SMI entry and exit, ability to tolerate prolonged SMIs, and desire to provision

and maintain larger provisioned measurements. The goal of making faster

progress through the measurement queue must be tempered with the goal to

maintain adequate system performance. The rate of Check arrivals also needs

to be balanced against the Bin processing rate as the measurement queue can

grow if Check arrivals outpace Bin processing and drain completely if Bin

Chapter 9. Task Scheduling in EPA-RIMM 187

processing outpaces Check arrivals over time.

188

10
EPA-RIMM Bench

The performance of EPA-RIMM implementations will differ on various sys-

tems. Without a tool to measure and compare performance across systems,

it is difficult to determine their system impact and potential benefits from

improving aspects of their overheads.

This section describes the creation of the first benchmark for an SMM-

RIMM, EPA-RIMM Bench. This benchmark provides the ability to compare

the performance on different systems for actions that are representative of

EPA-RIMM. The performance achieved can very significantly due to impor-

tant variables including SMI entry and exit costs, CPU hashing performance,

CPU support for acceleration of cryptographic operations, and the crypto-

graphic library used. In Section 10.1, we provide an introduction to EPA-

RIMM Bench. We provide a description of our performance model that guides

EPA-RIMM Bench in Section 10.2. In Section 10.3, we describe the design of

the benchmark and we share benchmark results in Section 10.4. We discuss

our benchmark results in Section 10.5.

10.1 Introduction

Runtime integrity measurement performance may differ significantly on vari-

ous systems due to a variety of factors. These factors can include hardware

differences, firmware, the measurement agent, and the set of measured re-

sources.

Hardware can play a significant role in EPA-RIMM performance. Server

systems with higher CPU thread counts can extract additional measurement

performance by leveraging parallelism [24]. Architectural improvements in

CPUs, for example, crypto acceleration such as AES-NI [38], can improve

Chapter 10. EPA-RIMM Bench 189

encryption. Similarly, Intel’s SHA extensions can also improve hashing perfor-

mance [47]. Firmware is another important factor that impacts performance.

The SMI entry and exit costs can very due to firmware revision or codebase.

UEFI’s CPU rendezvous for threads entering SMM could incur greater over-

heads on CPUs with a high number of CPU threads. The size of the hash

operation also impacts the time spent in SMM.

The measurement implementation also influences performance. Imple-

mentations that reduce measurement agent costs can likewise reduce the

amount of time spent in SMM. These reductions could come from stream-

lining the measurement agent’s code itself or by switching to more efficient

hashing or encryption algorithms. The measurement scheduling also presents

an important performance knob. As each SMI transition incurs a performance

cost, this factor can result in additional CPU load.

Ultimately, EPA-RIMM developers benefit from a detailed understanding

of the performance overheads of their hardware, firmware, measurement

scheduling mechanism, and Inspector. EPA-RIMM Bench quantifies the entire

time required for measurements along with detailed breakdowns over the

factors that contribute to the performance achieved.

10.2 Performance Modeling

To allow understanding the overheads of the EPA-RIMM measurements, we

created a performance model methodology that allows expressing the various

SMM-based measurement overheads from the point of SMI interruption to

the return from SMM to the operating system. Itemizing the costs of SMI

processing by category allows the ability to substitute parameters based

on different system particulars or a hypothetical CPU and comprehend the

impact on measurements.

Chapter 10. EPA-RIMM Bench 190

10.2.1 EPA-RIMM Performance Model

Tm is the total measurement time consisting of transition times into and out

of SMM as well as the time spent in the Inspector as shown in Equation 10.1.

Figure 10.1 provides a graphical representation of the flow.

Tm = Tentry + Twork + Texit (10.1)

FIGURE 10.1: EPA-RIMM Round Trip Time Components.

Tentry is the context switch time to enter the SMI Inspector. Texit is the time

to transition out of SMM. Tentry and Texit are influenced from the platform

and firmware.

Twork is the total time to accomplish the measurement which consists

of Bin decryption (Tdecrypt), a measurement hash (Thash), Results encryption

(Tencrypt), HMAC comparison (THMAC_compare), HMAC creation (THMAC_create),

verifying the Bin signature (Tsignature_verify), creating the Results signature

(Tsignature_create) and other overheads (Tother) consisting of all other Inspector

overheads such as data copies, memory comparisons, and security checks

over Bin placement.) Equation 10.2 shows these components.

(10.2)Twork = Tdecrypt + Tencrypt + Thash + THMAC_compare
+ THMAC_Create + Tsignature_veri f y + Tother

Chapter 10. EPA-RIMM Bench 191

Given a threshold Tmax for total time in SMM, our upper bound for Twork

is shown in Equation 10.3:

UpperBoundO f Twork = Tmax − Tentry − Texit (10.3)

10.3 Benchmark Design

This section describes the implementation of EPA-RIMM Bench and how it

obtains the necessary metrics to report.

10.3.1 Generating a workload

EPA-RIMM Bench performs memory hashes of varying sizes e.g. 0x100,

0x1000, 0x10000 bytes. The user is able to specify larger hash measurements

if desired. The benchmark gathers and averages the costs of the EPA-RIMM

performance model and reports their values for the given CPU and hash size.

10.3.2 Measuring Times

EPA-RIMM Bench leverages timestamps before and after SMI generation to

calculate Tm which contains the entire cost of the SMI measurement.

We calculate Tentry by measuring the time from the SMI generation to

the CPU arrival in the Inspector. We calculate Texit as the minimum of the

time from the Inspector’s exit to returning to the HCM. For additional ac-

curacy over Texit, we expose an optional knob to disable interrupts around

the SMI generation to avoid including any interrupt processing in the time

measurement. As interrupts can be processed directly after exiting from

SMM, their processing can result in the ending timestamp for the measure-

ment being delayed. In some scenarios, this knob can result in some system

instabilities, therefore, it may not be usable on all configurations. EPA-RIMM

Chapter 10. EPA-RIMM Bench 192

Bench reports whether interrupts were disabled during the run for proper

comparison.

EPA-RIMM Bench leverages time stamp counters in the Inspector placed

at the beginning of the encryption, decryption, and hashing operations and at

the end of the operations. The time to perform these operations is calculated

by subtracting the starting timestamp from the ending timestamp. The times-

tamps are returned in the Results data structure. As encryption is used, there

is one complication that needed to be resolved: two of the timestamps occur

after the Results data structure is encrypted by the Inspector and writing the

data to the encrypted data structure would corrupt the data. To resolve this

complication, we store the cost of the encryption and the ending timestamp

of the Inspector in the global memory of the Inspector. We then return these

two values in the Result data structure in the subsequent EPA-RIMM mea-

surement session. We take advantage of being able to write into the Results

data structure before it is encrypted. EPA-RIMM Bench’s post-processing

scripts sort all collected timestamp which properly places the timestamps in

the proper chronological order.

10.4 Benchmark Results

In this section, we provide the results from two systems on EPA-RIMM Bench.

The first system is the dual-core Minnowboard Turbot and the second system

is the UP2 board.

For the UP2 board, we examine both one and four core-enabled scenarios.

Running one core on the UP2 board allows for a higher frequency core (2.5

GHz) as the available processor power and thermal budget can be entirely

used by a single core. It also incurs less cache contention due to a single CPU

having access to the cache. Running four cores on the UP2 board limits the

Chapter 10. EPA-RIMM Bench 193

CPU frequency to 1.66 GHz and incurs cache sharing. As the EPA-RIMM

Inspector is single-threaded, having additional CPU cores does not benefit

the Inspector’s measurement times and can incur SMM rendezvous times as

all CPUs are collected in SMM before invoking the Inspector.

10.4.1 Hash Input Size Scaling

We begin by analyzing the impact of scaling the hash input size for three sizes:

0x200, 0x1000, and 0x10000 bytes for each configuration. Figure 10.2 shows

the results. The UP2 1 core measurement takes the least amount of time. As

the UP2 board features a more powerful CPU using Intel’s Goldmont CPU

architecture compared to an older Intel Silvermont architecture used on the

Turbot, the results indicate the potential benefit from higher performance

CPUs. None of the configurations achieve the (LimitSMIBITS). All configu-

rations meet the more relaxed (LimitSMIEmpirical) bound for the 0x200 and

0x1000 measurements. But, as the hash input size grows to 0x1000 bytes, only

the UP2 1 core configuration meets this bound.

FIGURE 10.2: EPA-RIMM Bench - Bin Costs

Chapter 10. EPA-RIMM Bench 194

10.4.2 Bin Cost Breakdown

From EPA-RIMM Bench’s tracing capability, we observe in Figure 10.3 that

the 1CPU UP2 config has a reduced HMAC, encrypt and decrypt, and hash-

ing costs which suggests that the additional frequency and lack of cache

contention provide measurement improvements for EPA-RIMM. The slower

Minnowboard Turbot has higher costs across all trace points except Tentry.

FIGURE 10.3: 0x200 Hash Input Size - Bin Cost Breakdown
(a) (Top left) 1 Core UP2 @2.5GHz

(b) (Top right) 4 Core UP2 @1.66 GHz
(c) (Bottom) 2 Core Turbot @1.46 GHz

For the 0x1000 hash input size as shown in Figure 10.4, while the hash

costs grew, the other overheads remain constant compared to the 0x200 byte

measurement. As the encrypt, decrypt, and HMAC operations are over the

Bin, the sizes do not grow with the size of the measurement. The Tentry and

Texit costs also do not vary with the size of the measurement.

Chapter 10. EPA-RIMM Bench 195

FIGURE 10.4: 0x1000 Hash Input Size - Bin Cost Breakdown
(a) (Top left) 1 Core UP2 @2.5GHz

(b) (Top right) 4 Core UP2 @1.66 GHz
(c) (Bottom) 2 Core Turbot @1.46 GHz

For the 0x10000 hash input size as shown in Figure 10.5, this measurement

continues the trend of hash costs overwhelming all other components. As

hash costs are the only cost that scales with hash input sizes, the other portions

of the Bin cost remain fixed.

Chapter 10. EPA-RIMM Bench 196

FIGURE 10.5: 0x10000 Hash Input Size - Bin Cost Breakdown
(a) (Top left) 1 Core UP2 @2.5GHz

(b) (Top right) 4 Core UP2 @1.66 GHz
(c) (Bottom) 2 Core Turbot @1.46 GHz

10.5 Discussion

EPA-RIMM Bench provides the ability to compare important performance

characteristics of EPA-RIMM operations across different systems. This allows

determining if a given configuration can support a hash size within the chosen

SMI latency bounds. It also provides a detailed cost breakdown for the time

spent in SMM and transitions to and from SMM. We extend the underlying

data into a performance model for SMM-RIMMs providing the ability to

examine key parameters and results.

The results show that while generational improvements among CPU ver-

sions increase the performance, none of the tested EPA-RIMM configurations

hit the more stringent LimitSMIBITS limit. All of the tested configurations

could hit the less stringent LimitSMIEmpirical for the 0x200 and 0x1000 hash

input sizes. As hash input sizes grow, they consume the majority of EPA-

RIMM’s SMM overhead as the other costs are fixed. The performance model

Chapter 10. EPA-RIMM Bench 197

that underpins EPA-RIMM Bench allows quantification of the various over-

heads and can serve as the basis of estimations for the potential impact in

improvements or degradations in any of the listed categories.

198

11
Conclusions

At the outset of this work, there was no awareness of concerns over SMI

latency and SMM-RIMMs or published studies of system impact when SMI

latency. To address this limitation, we devised four methods of generating

suitable SMI loads and created methods of quantifying the resulting system

impacts. This work has resulted in: 1. Recognition that our work was "the

first to experimentally expose the performance implications of Intel’s System

Management Mode (SMM) [35]", leading to a broader awareness of concerns

over SMI latency and 2. SMI latency concerns addressed by HP for their

SureStart SMM monitoring software, citing our work [18].

We had the early observation that the SMI latency guideline (LimitSMIBITS

did not leave a large amount of time for system inspections. This motivated

us to determine where the breaking point was for our test systems. With

this study, we found that there was additional headroom (LimitSmiEmpirical)

above the guideline to perform measurements as long as we did not ex-

ceed this upper limit. While raising awareness of SMI latency concerns for

SMM-RIMMs was impactful, we were encouraged by reviewer feedback to

build upon these insights to actually address the SMI latency concerns for

SMM-RIMMs.

This feedback encouraged us to build upon the insights and methodologies

we had created to address the performance issue for SMM-RIMMs. Another

factor proved motivational for our work: the SMM landscape had changed

since the outset of this work. With growing concerns over broad SMM access

to the system, previously-developed SMM-RIMMs were not in sync with

current trends. This encouraged us to take a fresh look at several other

persistent limitations for SMM-RIMMs that worked against our ultimate goal

Chapter 11. Conclusions 199

of demonstrating a usable SMM-RIMM with capabilities to address security,

extensibility, and performance concerns.

11.1 Summary

Constructing an effective and performance aware SMM-based RIMM requires

careful consideration of many aspects including privilege of the measurement

agent, handling a semantic gap, addressing SMI latency, scheduling a poten-

tially large queue of measurements, and enabling extensible measurements.

Providing a publicly-available implementation helps researchers build upon

this framework.

Addressing the requirements required careful analysis and design to avoid

conflicts. For example, the quickest way to proceed through the measure-

ment queue would be to run all measurements immediately as they arrive.

However, this would incur unacceptable SMI latencies and system impacts.

Enabling extensible measurements must be done without reducing the secu-

rity of the measurement agent as a new interface is opened.

Leveraging more rigorous cryptography and hash algorithms could result

in enhanced resilience to certain attacks, however, this would also increase

the time required to operate in SMM. The use of an STM also constrains the

SMM measurement agent to prevent it from operating with higher privileges

than neccessary. Improving the security design was necessary to satisfy "C1:

SMM-RIMM Security".

Proposed SMM-RIMMs did not feature ways to vary the specific mea-

surements to be performed at each inspection. EPA-RIMM’s measurement

API allows dynamically varying the set of monitored resources to reduce the

ability of rootkits to adapt to static measurements. We added support for

Chapter 11. Conclusions 200

fundamental runtime integrity measurement commands that provide build-

ing blocks to effectively detect rootkits. By allowing specification of one or

more of these measurement commands in a single measurement session and

varying the operand, varied sets of measurements can be accomplished. EPA-

RIMM’s provisioning phase provides guidance to the SMM measurement

agent and does not require building details of system state in to SMM which

addresses the semantic gap ("C2: SMM and OS Semantic Gap") between SMM

and its lack of knowledge about an operating system’s internal layout.

With our EPA-RIMM architecture, we were able to demonstrate successful

detection of classes of operating system and hypervisor-based rootkits at

reasonable performance impacts. Additionally, the mechanism we developed

to decompose large measurements into smaller measurements to achieve

performance targets also facilitated a useful tuning knob where the amount of

measurements could be increased or decreased dynamically based on policy

or preference. Check decomposition is key to addressing "C3: SMM-RIMM

Performance".

We did not expect that our method of decomposing large measurements

would also naturally lead to facilitate extensible measurements. By allow-

ing Tasks to precisely specify the measurement to be performed, their data

structure could be readily extended with new commands and operands to per-

form new measurements with minimal effort across the EPA-RIMM software

stack. The Check description API resolves "C4: SMM-RIMM Measurement

Variability".

To verify that our design and approach works on actual systems, we

constructed the EPA-RIMM prototype on two open hardware platforms where

we have the ability to modify the firmware source code. On this prototype,

we demonstrated successful detection of kernel and Xen hypervisor code

Chapter 11. Conclusions 201

injection, interrupt descriptor table hooking, supervisor mode execution

prevention disabling, and system call hooking. To provide a reference example

of a functional SMM-RIMM software stack, we released our prototype as

open source source, constituting the first publicly available SMM-RIMM. This

resolves "C5: SMM-RIMM Code Availability".

The ability to run actual rootkit detections from our prototype demon-

strated the detection effectiveness as well as provided a configurable testbed

to evaluate the performance of the approach. This showed us that our modest

hardware, we were able to perform these detections within LimitSmiEmpirical.

Faster processors, optimized firmware implementations, and increased en-

cryption performance may give the ability to read the more stringent limit

(LimitSMIBITS).

To provide a mechanism for understanding the impacts of performance-

sensitive EPA-RIMM flows, we developed EPA-RIMM Bench which incor-

porates a performance model and benchmarking capability. With the per-

formance model, we can determine the precise impact of improvements or

degradations in portions of these flows. The EPA-RIMM Bench tool provides

the ability to quantify these portions of the flow on different hardware to

allow empirical measurements over the entire EPA-RIMM flow.

A large set of measurements on the queue requires effective scheduling.

Our simulation results show that adding aging to entries on the queue re-

duces the age of Tasks on the queue, helping prioritize older Tasks before

newer Tasks. In circumstances where dependent actions can be identified (e.g.

responses to changes in the CR0 register). Triggers can reduce the amount of

checking needed by performing operations that could otherwise be avoided.

Chapter 11. Conclusions 202

Making fuller use of available Bin capacity avoids unnecessary SMM tran-

sitions. Our simulation results examining the impact of backfilling demon-

strate that backfilling significantly increased Bin utilization. We found that

the Priority Queue with backfilling and aging results in additive benefits

that results in fuller Bins and reduced Task age on the queue. While lighter

measurement scenarios may not need these capabilities, they provide major

improvements for heavy measurement scenarios.

11.2 Future Work

There are several key areas for future work pertaining to EPA-RIMM. The

first of these is exploring methods to parallelize the SMM-based measure-

ments. UEFI SMM code does not yet support multi-threading. This results in

measurements only being processed on a single CPU while other CPUs wait

for it to complete. This significantly constrains the measurement throughput.

While multi-threading does not directly help with SMI latency of a single

measurement, it would multiply the performance of the measurement agent’s

processing of the measurement queue.

A second area for future work is making EPA-RIMM compatible with

moving target defenses. The moving target defense approach attempts to

complicate the work of an attacker by changing the system configuration

at runtime. It can, for example, move kernel code in memory, change IP

addresses periodically, in an effort to complicate the work of an attacker.

EPA-RIMM currently assumes a static environment in which the system

resources are not constantly shifting. Enabling EPA-RIMM for this class of

systems could be accomplished by employing behavioral rootkit detections,

e.g. leveraging performance counters. These methods that characterize how

code operates as opposed to where it operates from would help respond to

Chapter 11. Conclusions 203

this new mechanism.

The third area for future work is fully integrating telemetry into EPA-

RIMM. EPA-RIMM’s Diagnosis Manager is well situated to direct flows of

measurements across an infrastructure. Detections of issues on one or more

nodes could help drive detections of these issues on other nodes. This capa-

bility would reduce the ability of an attacker to spread an attack. Telemetry

could also be used to enable new Checks based on emerging threat indicators.

This could result in more effective checking and increase the responsiveness

of the framework as successful detections of attacks on some nodes could

guide checking on other nodes.

There are also three potential developments that could significantly im-

prove EPA-RIMM’s effectiveness. First, one of the largest portions of EPA-

RIMM processing are the SMI entry and exit times. CPU optimizations that

allow entry and exit into SMM to occur in reduced time would make it more

feasible to use SMM as a protected execution environment. This could po-

tentially enable innovative new usages that could readily be enabled via

firmware updates.

Second, current chipsets support SMI timers that can trigger SMIs on a

regular cadence. Such a timer could trigger measurements, however, there are

two key limitations. First, the predictable nature of these triggers would allow

rootkits to conduct a transient evasion. Thus, a randomized timer would

be necessary to counter-act this attack. Second, current chipset SMI triggers

can be disabled by non-SMM Ring 0 code. Improvements to lock this SMI

generation source would provide a more resilient measurement trigger.

Third, communication methods that pass through the operating system

present challenges for stealthy communication with a measurement agent.

Chapter 11. Conclusions 204

While some SMM-RIMMs have leveraged out-of-band communication mech-

anisms to retrieve results and trigger measurements, these mechanisms have

not been entirely stealthy or required porting network drivers to run in SMM

which increases the attack surface. An improved mechanism that natively

provides cryptographic support would streamline communications with the

Inspector and reduce the overheads for security-related SMM usages.

11.3 Conclusions

From our measurements and analysis, we conclude that constructing a perform-

ance-aware, effective, and extensible SMM-RIMM is possible. Our initial

SMM performance measurements provided confidence that decomposing

large measurements would allow SMM-based integrity measurements to

be accomplished over an interval of time within SMI latency bounds. This

enables deeper inspections over an interval than could be performed in a

single SMI session. The extensible framework also allows new inspections to

be created that respond to future rootkits. The framework could incorporate

a broad variety of inspections that extend beyond hashes to new detection

techniques. Broader deployments of EPA-RIMM would provide an effective

new detection mechanism that can detect stealthy rootkits. Enabling this

new class of detection mechanisms provides a new capability to defenders

to reduce the time to detect malicious code and reduce its ability to operate

unnoticed.

205

Bibliography

[1] P. Alpeyev and G. Huang.
“Sony Hackers Seen Having Snooped for Months, Planted Bomb”.
In: Bloomberg (2014).

[2] AMD. AMD64 Architecture Programmer’s Manual, Volume 2: System
Programming.

[3] T. Arnold. Implementing PCI: A Guide for Network Engineers. URL:
http://www.juniper.net/us/en/local/pdf/whitepapers/2000268-

en.pdf.

[4] S. Aubert. “Announce: rkscan, a kernel-based rootkit scanner.” 2000.
URL: http://seclists.org/incidents/2000/Oct/165.

[5] A. M. Azab et al.
“HIMA: A Hypervisor-Based Integrity Measurement Agent”.
In: 2009 Annual Computer Security Applications Conference. 2009,
pp. 461–470. DOI: 10.1109/ACSAC.2009.50.

[6] Ahmed M. Azab, Peng Ning, and Xiaolan Zhang.
“SICE: A Hardware-level Strongly Isolated Computing Environment
for x86 Multi-core Platforms”. In: Proceedings of the 18th ACM
Conference on Computer and Communications Security. CCS ’11.
Chicago, Illinois, USA: ACM, 2011, pp. 375–388.
ISBN: 978-1-4503-0948-6. DOI: 10.1145/2046707.2046752.
URL: http://doi.acm.org/10.1145/2046707.2046752.

[7] Ahmed M. Azab et al. “HyperSentry: Enabling Stealthy In-context
Measurement of Hypervisor Integrity”. In: Proceedings of the 17th ACM
Conference on Computer and Communications Security. CCS ’10.
Chicago, Illinois, USA: ACM, 2010, pp. 38–49. ISBN: 978-1-4503-0245-6.
DOI: 10.1145/1866307.1866313.
URL: http://doi.acm.org/10.1145/1866307.1866313.

[8] Hypervision Across Worlds: Real-time Kernel Protection from the ARM
TrustZone Secure World. CCS ’14. Scottsdale, Arizona, USA: ACM, 2014,
pp. 90–102. ISBN: 978-1-4503-2957-6. DOI: 10.1145/2660267.2660350.
URL: http://doi.acm.org/10.1145/2660267.2660350.

[9] F. Bacurio, W. Low, and J. Manuel.
“Evasive Sage 2.2 Ransomware Variant Targets More Countries”.
In: (2017).
URL: https://www.fortinet.com/blog/threat-research/evasive-
sage-2-2-ransomware-variant-targets-more-countries.html.

http://www.juniper.net/us/en/local/pdf/whitepapers/2000268-en.pdf
http://www.juniper.net/us/en/local/pdf/whitepapers/2000268-en.pdf
http://seclists.org/incidents/2000/Oct/165
https://doi.org/10.1109/ACSAC.2009.50
https://doi.org/10.1145/2046707.2046752
http://doi.acm.org/10.1145/2046707.2046752
https://doi.org/10.1145/1866307.1866313
http://doi.acm.org/10.1145/1866307.1866313
https://doi.org/10.1145/2660267.2660350
http://doi.acm.org/10.1145/2660267.2660350
https://www.fortinet.com/blog/threat-research/evasive-sage-2-2-ransomware-variant-targets-more-countries.html
https://www.fortinet.com/blog/threat-research/evasive-sage-2-2-ransomware-variant-targets-more-countries.html

Bibliography 206

[10] Pete Beckman et al. “Benchmarking the Effects of Operating System
Interference on Extreme-scale Parallel Machines”.
In: Cluster Computing 11.1 (Mar. 2008), pp. 3–16. ISSN: 1386-7857.
DOI: 10.1007/s10586-007-0047-2.
URL: http://dx.doi.org/10.1007/s10586-007-0047-2.

[11] Mihir Bellare, Ran Canetti, and Hugo Krawczyk.
“Keying hash functions for message authentication”.
In: Annual International Cryptology Conference. Springer. 1996, pp. 1–15.

[12] L. Brown. “Linux Idle Power Checkup”. LinuxCon. 2010.

[13] Y. Bulygin and D Samyde. “Chipset-based approach to detect
virtualization malware a.k.a. DeepWatch”. BlackHat 2008. 2008.

[14] CERT. BIOS implementations permit unsafe SMM function calls to memory
locations outside of SMRAM. 2015.
URL: https://www.kb.cert.org/vuls/id/631788.

[15] CERT. Dell BIOS in some Latitude laptops and Precision Mobile
Workstations vulnerable to buffer overflow. 2013.
URL: https://www.kb.cert.org/vuls/id/912156.

[16] S. Chaki, A. Vasudevan, and et al. Design, Development, and Automated
Verification of an Integrity-Protected Hypervisor. Tech. rep. 2012.

[17] Deeparnab Chakrabarty, Yunhong Zhou, and Rajan Lukose.
“Online knapsack problems”.
In: Workshop on internet and network economics (WINE). 2008.

[18] Ronny Chevalier et al.
“Co-processor-based Behavior Monitoring: Application to the
Detection of Attacks Against the System Management Mode”. In:
Proceedings of the 33rd Annual Computer Security Applications Conference.
ACSAC 2017. Orlando, FL, USA: ACM, 2017, pp. 399–411.
ISBN: 978-1-4503-5345-8. DOI: 10.1145/3134600.3134622.
URL: http://doi.acm.org/10.1145/3134600.3134622.

[19] Common Vulnerabilities and Exposures, https://cve.mitre.org. 2018.
URL: https://cve.mitre.org/.

[20] Cr4sh. “Thinkpwn”. URL: https://github.com/Cr4sh/ThinkPwn.

[21] crowdstrike.com.
"VENOM. Virtualized Environment Neglected Operations Manipulation".
URL: cve.mitre.org.

[22] J. Davis. “Indiana Cancer Agency hacked by TheDarkOverlord”.
In: Healthcare IT News (2017).
URL: http://www.healthcareitnews.com/news/indiana-cancer-
agency-hacked-thedarkoverlord.

https://doi.org/10.1007/s10586-007-0047-2
http://dx.doi.org/10.1007/s10586-007-0047-2
https://www.kb.cert.org/vuls/id/631788
https://www.kb.cert.org/vuls/id/912156
https://doi.org/10.1145/3134600.3134622
http://doi.acm.org/10.1145/3134600.3134622
https://cve.mitre.org/
https://github.com/Cr4sh/ThinkPwn
cve.mitre.org
http://www.healthcareitnews.com/news/indiana-cancer-agency-hacked-thedarkoverlord
http://www.healthcareitnews.com/news/indiana-cancer-agency-hacked-thedarkoverlord

Bibliography 207

[23] B. Delgado and K. L. Karavanic.
“Performance implications of System Management Mode”. In: 2013
IEEE International Symposium on Workload Characterization (IISWC).
2013, pp. 163–173. DOI: 10.1109/IISWC.2013.6704682.

[24] Brian Delgado et al.
“EPA-RIMM: An Efficient, Performance-Aware Runtime Integrity
Measurement Mechanism for Modern Server Platforms”.
In: 2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE. 2019, pp. 422–434.

[25] John Demme et al. “On the Feasibility of Online Malware Detection
with Performance Counters”. In: Proceedings of the 40th Annual
International Symposium on Computer Architecture. ISCA ’13.
Tel-Aviv, Israel: ACM, 2013, pp. 559–570. ISBN: 978-1-4503-2079-5.
DOI: 10.1145/2485922.2485970.
URL: http://doi.acm.org/10.1145/2485922.2485970.

[26] L. Duflot, O. Levillian, and et al. Getting into SMRAM: SMM reloaded.
CanSecWest. 2009.

[27] J. Edge. “Kernel address space layout randomization”.
URL: http://lwn.net/Articles/569635/.

[28] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
“Jump over ASLR: Attacking Branch Predictors to Bypass ASLR”.
In: The 49th Annual IEEE/ACM International Symposium on
Microarchitecture. MICRO-49. Taipei, Taiwan: IEEE Press, 2016,
40:1–40:13.
URL: http://dl.acm.org/citation.cfm?id=3195638.3195686.

[29] f0rb1dd3n. Linux Rootkit Desmonstration Codes. URL: https://github.
com/f0rb1dd3n/papers/tree/master/rootkit_demonstration.

[30] Kurt B. Ferreira, Patrick Bridges, and Ron Brightwell.
“Characterizing Application Sensitivity to OS Interference Using
Kernel-level Noise Injection”.
In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing.
SC ’08. Austin, Texas: IEEE Press, 2008, 19:1–19:12.
ISBN: 978-1-4244-2835-9.
URL: http://dl.acm.org/citation.cfm?id=1413370.1413390.

[31] P. Ferrie and N. et al Lawson.
Don’t Tell Joanna - The Virtualized Rootkit is Dead. Black Hat. 2007.

[32] Fortinet. “CIO Tips for Beating Security Latency”.
URL: http://latonetworks.com/media/3845/cio-tips-for-
beating-security-latency.pdf.

[33] Gartner. “Gartner says Detection and Response is Top Security
Priority for Organizations in 2017”. In: (2017).
URL: https://www.gartner.com/newsroom/id/3638017.

https://doi.org/10.1109/IISWC.2013.6704682
https://doi.org/10.1145/2485922.2485970
http://doi.acm.org/10.1145/2485922.2485970
http://lwn.net/Articles/569635/
http://dl.acm.org/citation.cfm?id=3195638.3195686
https://github.com/f0rb1dd3n/papers/tree/master/rootkit_demonstration
https://github.com/f0rb1dd3n/papers/tree/master/rootkit_demonstration
http://dl.acm.org/citation.cfm?id=1413370.1413390
http://latonetworks.com/media/3845/cio-tips-for-beating-security-latency.pdf
http://latonetworks.com/media/3845/cio-tips-for-beating-security-latency.pdf
https://www.gartner.com/newsroom/id/3638017

Bibliography 208

[34] Getting maximum mileage out of tickless.
Vol. Proceedings of the Ottawa Linux symposium.
Ottawa, Canada, 2007.

[35] M. Gottscho et al. “Measuring the Impact of Memory Errors on
Application Performance”.
In: IEEE Computer Architecture Letters 16.1 (2017), pp. 51–55.
ISSN: 1556-6056. DOI: 10.1109/LCA.2016.2599513.

[36] Daniel Gruss et al. “KASLR is Dead: Long Live KASLR”.
In: Engineering Secure Software and Systems.
Ed. by Eric Bodden, Mathias Payer, and Elias Athanasopoulos.
Cham: Springer International Publishing, 2017, pp. 161–176.
ISBN: 978-3-319-62105-0.

[37] Daniel Gruss et al.
“Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR”.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’16. Vienna, Austria: ACM, 2016,
pp. 368–379. ISBN: 978-1-4503-4139-4. DOI: 10.1145/2976749.2978356.
URL: http://doi.acm.org/10.1145/2976749.2978356.

[38] Shay Gueron.
“Intel® Advanced Encryption Standard (AES) New Instructions Set”.
URL:
https://www.intel.com/content/dam/doc/white-paper/advanced-

encryption-standard-new-instructions-set-paper.pdf.

[39] M. Hoekstra. Intel SGX for Dummies (Intel SGX Design Objectives). 2013.
URL: https://software.intel.com/en-
us/blogs/2013/09/26/protecting-application-secrets-with-

intel-sgx.

[40] G. Hoglund and J. Butler. Rootkits: Subverting the Windows Kernel.
Addison-Wesley Professional, 2005.

[41] Ralf Hund, Carsten Willems, and Thorsten Holz.
“Practical Timing Side Channel Attacks Against Kernel Space ASLR”.
In: Proceedings of the 2013 IEEE Symposium on Security and Privacy.
SP ’13. Washington, DC, USA: IEEE Computer Society, 2013,
pp. 191–205. ISBN: 978-0-7695-4977-4. DOI: 10.1109/SP.2013.23.
URL: http://dx.doi.org/10.1109/SP.2013.23.

[42] Ponemon Institute. “2014 Cost of Cyber Crime Study: United States”.
In: (Oct. 2014). URL:
https://ssl.www8.hp.com/ww/en/secure/pdf/4aa5-5208enw.pdf.

https://doi.org/10.1109/LCA.2016.2599513
https://doi.org/10.1145/2976749.2978356
http://doi.acm.org/10.1145/2976749.2978356
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://doi.org/10.1109/SP.2013.23
http://dx.doi.org/10.1109/SP.2013.23
https://ssl.www8.hp.com/ww/en/secure/pdf/4aa5-5208enw.pdf

Bibliography 209

[43] Intel.
“Host Firmware Speculative Execution Side Channel Mitigation”.
URL: https://software.intel.com/security-software-
guidance/insights/host-firmware-speculative-execution-side-

channel-mitigation.

[44] Intel. Intel 6 Series Chipset and Intel C200 Series Chipset, Data Sheet. 2011.

[45] Intel.
Intel® 64 and IA-32 Architectures Software Developer’s Manual (Vol. 3).

[46] Intel. Intel Itanium Architecture Software Developer’s Manual, Revision
2.3. Volume 2: System Architecture.

[47] Intel. “New Instructions Supporting the Secure Hash Algorithm on
Intel® Architecture Processors”. URL: https:
//software.intel.com/en-us/articles/intel-sha-extensions.

[48] Intel. SMI Transfer Monitor (STM) User Guide.

[49] Intel Atom® Processor E3826, Intel ARK. 2018.

[50] Daehee Jang et al. “ATRA: Address Translation Redirection Attack
Against Hardware-based External Monitors”.
In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’14.
Scottsdale, Arizona, USA: ACM, 2014, pp. 167–178.
ISBN: 978-1-4503-2957-6. DOI: 10.1145/2660267.2660303.
URL: http://doi.acm.org/10.1145/2660267.2660303.

[51] Yeongjin Jang, Sangho Lee, and Taesoo Kim. “Breaking Kernel
Address Space Layout Randomization with Intel TSX”.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’16. Vienna, Austria: ACM, 2016,
pp. 380–392. ISBN: 978-1-4503-4139-4. DOI: 10.1145/2976749.2978321.
URL: http://doi.acm.org/10.1145/2976749.2978321.

[52] kad. Handling Interrupt Descriptor Table for fun and profit. 2002.
URL: http://phrack.org/issues/59/4.html.

[53] C. Kallenberg and X. Kovah.
“How Many Million BIOSes Would you Like to Infect?” In:
Vancouver, Canada: CanSecWest, 2015.

[54] Erin Kelly. “Officials warn 500 million financial records hacked”.
In: USA Today (2014). URL: https:
//www.usatoday.com/story/news/politics/2014/10/20/secret-

service-fbi-hack-cybersecuurity/17615029/.

[55] Linux Kernel. “TSC”. URL: http://lxr.free-
electrons.com/source/arch/x86/kernel/tsc.c#L646.

https://software.intel.com/security-software-guidance/insights/host-firmware-speculative-execution-side-channel-mitigation
https://software.intel.com/security-software-guidance/insights/host-firmware-speculative-execution-side-channel-mitigation
https://software.intel.com/security-software-guidance/insights/host-firmware-speculative-execution-side-channel-mitigation
https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-sha-extensions
https://doi.org/10.1145/2660267.2660303
http://doi.acm.org/10.1145/2660267.2660303
https://doi.org/10.1145/2976749.2978321
http://doi.acm.org/10.1145/2976749.2978321
http://phrack.org/issues/59/4.html
https://www.usatoday.com/story/news/politics/2014/10/20/secret-service-fbi-hack-cybersecuurity/17615029/
https://www.usatoday.com/story/news/politics/2014/10/20/secret-service-fbi-hack-cybersecuurity/17615029/
https://www.usatoday.com/story/news/politics/2014/10/20/secret-service-fbi-hack-cybersecuurity/17615029/
http://lxr.free-electrons.com/source/arch/x86/kernel/tsc.c#L646
http://lxr.free-electrons.com/source/arch/x86/kernel/tsc.c#L646

Bibliography 210

[56] Gerwin Klein et al. “seL4: Formal Verification of an OS Kernel”.
In: Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles. SOSP ’09. Big Sky, Montana, USA: ACM, 2009,
pp. 207–220. ISBN: 978-1-60558-752-3. DOI: 10.1145/1629575.1629596.
URL: http://doi.acm.org/10.1145/1629575.1629596.

[57] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”.
In: CoRR abs/1801.01203 (2018). arXiv: 1801.01203.
URL: http://arxiv.org/abs/1801.01203.

[58] Hugo Krawczyk, Mihir Bellare, and Ran Canetti.
HMAC: Keyed-hashing for message authentication. Tech. rep. 1997.

[59] Invisible Things Lab. Invisible Things Lab presents the "Press Cheat
Sheet" for the Attacking Intel® Trusted Execution Technology presentation
at the Black Hat DC conference. 2009.
URL: https://web.archive.org/web/20170202053751/http:
//invisiblethingslab.com/press/itl-press-2009-02.pdf.

[60] Michael. Larabel. “System76 Launches Two Intel Laptops With
"Open-Source Firmware" Coreboot”. Oct. 2019. URL: https:
//www.phoronix.com/scan.php?page=news_item&px=System76-Two-

Laptops-Coreboot.

[61] Barry G Lawson and Evgenia Smirni. “Multiple-queue backfilling
scheduling with priorities and reservations for parallel systems”.
In: Workshop on Job Scheduling Strategies for Parallel Processing.
Springer. 2002, pp. 72–87.

[62] M. Lennon. “McAfee "Deep Defender" Endpoint Security Targets
Kernel-Mode Malware”. Oct. 2011.
URL: https://www.securityweek.com/mcafee-deep-defender-
endpoint-security-targets-kernel-mode-malware.

[63] M. Li and H. Cao. “Locky Ransomware Spreads via Flash and
Windows Kernel Exploits”. In: (2016).
URL: https://web.archive.org/web/20170420170059/https:
//blog.trendmicro.com/trendlabs-security-

intelligence/locky-ransomware-spreads-flash-windows-kernel-

exploits/.

[64] Moritz Lipp et al. “Meltdown”. In: CoRR abs/1801.01207 (2018).
arXiv: 1801.01207. URL: http://arxiv.org/abs/1801.01207.

[65] Ziyi Liu et al. “CPU Transparent Protection of OS Kernel and
Hypervisor Integrity with Programmable DRAM”. In: Proceedings of
the 40th Annual International Symposium on Computer Architecture.
ISCA ’13. Tel-Aviv, Israel: ACM, 2013, pp. 392–403.
ISBN: 978-1-4503-2079-5. DOI: 10.1145/2485922.2485956.
URL: http://doi.acm.org/10.1145/2485922.2485956.

https://doi.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
https://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://web.archive.org/web/20170202053751/http://invisiblethingslab.com/press/itl-press-2009-02.pdf
https://web.archive.org/web/20170202053751/http://invisiblethingslab.com/press/itl-press-2009-02.pdf
https://www.phoronix.com/scan.php?page=news_item&px=System76-Two-Laptops-Coreboot
https://www.phoronix.com/scan.php?page=news_item&px=System76-Two-Laptops-Coreboot
https://www.phoronix.com/scan.php?page=news_item&px=System76-Two-Laptops-Coreboot
https://www.securityweek.com/mcafee-deep-defender-endpoint-security-targets-kernel-mode-malware
https://www.securityweek.com/mcafee-deep-defender-endpoint-security-targets-kernel-mode-malware
https://web.archive.org/web/20170420170059/https://blog.trendmicro.com/trendlabs-security-intelligence/locky-ransomware-spreads-flash-windows-kernel-exploits/
https://web.archive.org/web/20170420170059/https://blog.trendmicro.com/trendlabs-security-intelligence/locky-ransomware-spreads-flash-windows-kernel-exploits/
https://web.archive.org/web/20170420170059/https://blog.trendmicro.com/trendlabs-security-intelligence/locky-ransomware-spreads-flash-windows-kernel-exploits/
https://web.archive.org/web/20170420170059/https://blog.trendmicro.com/trendlabs-security-intelligence/locky-ransomware-spreads-flash-windows-kernel-exploits/
https://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
https://doi.org/10.1145/2485922.2485956
http://doi.acm.org/10.1145/2485922.2485956

Bibliography 211

[66] D. Lo and C. Kozyrakis.
“Dynamic Management of TurboMode in Modern Multi-core Chips”.
In: 2013. URL: http://csl.stanford.edu/~christos/publications/
2014.autoturbo.hpca.pdf.

[67] J. Loucaides. “BIOS and Secure Boot Attacks Uncovered”.
URL: http://www.c7zero.info/stuff/DEFCON22-BIOSAttacks.pdf.

[68] J. Loucaides and Y. Bulygin.
Platform Security Assessment with CHIPSEC.
https://cansecwest.com/slides/2014/Platform. 2014.

[69] Ijlal Loutfi. “SMMDecoy: Detecting GPU Keyloggers using Security
by Deception Techniques”.
In: Proceedings of the 5th International Conference on Information Systems
Security and Privacy - Volume 1: ICISSP, INSTICC. SciTePress, 2019,
pp. 580–587. ISBN: 978-989-758-359-9.
DOI: 10.5220/0007578505800587.

[70] K Mannthey. “System Management Interrupt Free Hardware”. 2009.
URL: http://linuxplumbersconf.org/2009/slides/Keith-
Mannthey-SMIplumers-2009.pdf.

[71] J. Masters. [RFC] simple SMI detector. Jan. 2009.
URL: https://lwn.net/Articles/316622/.

[72] W Mauerer. Professional Linux Kernel Architecture. Wrox, 2008.

[73] Mcafee. McAfee Deep Defender Data Sheet.
urlhttp://www.mcafee.com/us/resources/data-sheets/ds-deep-
defender.pdf.

[74] Mcafee. McAfee Deep Defender Technical Evaluation and Best Practices
Guide, Version 1.0. https://kc.mcafee.com/resources/sites/
MCAFEE/content/live/PRODUCT_DOCUMENTATION/23000/PD23874/en_

US/Deep_Defender_Best_Practices_Guide_Aug_2012.pdf. 2012.

[75] Jonathan M. McCune et al.
“Flicker: An Execution Infrastructure for Tcb Minimization”.
In: Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008. Eurosys ’08.
Glasgow, Scotland UK: ACM, 2008, pp. 315–328.
ISBN: 978-1-60558-013-5. DOI: 10.1145/1352592.1352625.
URL: http://doi.acm.org/10.1145/1352592.1352625.

[76] Frank McKeen et al.
“Innovative Instructions and Software Model for Isolated Execution”.
In: Proceedings of the 2Nd International Workshop on Hardware and
Architectural Support for Security and Privacy. HASP ’13.
Tel-Aviv, Israel: ACM, 2013, 10:1–10:1. ISBN: 978-1-4503-2118-1.
DOI: 10.1145/2487726.2488368.
URL: http://doi.acm.org/10.1145/2487726.2488368.

http://csl.stanford.edu/~christos/publications/2014.autoturbo.hpca.pdf
http://csl.stanford.edu/~christos/publications/2014.autoturbo.hpca.pdf
http://www.c7zero.info/stuff/DEFCON22-BIOSAttacks.pdf
https://cansecwest.com/slides/2014/Platform
https://doi.org/10.5220/0007578505800587
http://linuxplumbersconf.org/2009/slides/Keith-Mannthey-SMIplumers-2009.pdf
http://linuxplumbersconf.org/2009/slides/Keith-Mannthey-SMIplumers-2009.pdf
https://lwn.net/Articles/316622/
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/23000/PD23874/en_US/Deep_Defender_Best_Practices_Guide_Aug_2012.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/23000/PD23874/en_US/Deep_Defender_Best_Practices_Guide_Aug_2012.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/PRODUCT_DOCUMENTATION/23000/PD23874/en_US/Deep_Defender_Best_Practices_Guide_Aug_2012.pdf
https://doi.org/10.1145/1352592.1352625
http://doi.acm.org/10.1145/1352592.1352625
https://doi.org/10.1145/2487726.2488368
http://doi.acm.org/10.1145/2487726.2488368

Bibliography 212

[77] Microsoft. Microsoft Launches Windows Vista and Microsoft Office 2007 to
Consumers Worldwide. Jan. 2007. URL: http:
//news.microsoft.com/2007/01/29/microsoft-launches-windows-

vista-and-microsoft-office-2007-to-consumers-worldwide/.

[78] Microsoft.
Understanding the Windows SMM Security Mitigation Table (WSMT).
Mar. 2018. URL: https://docs.microsoft.com/en-us/windows-
hardware/design/device-experiences/oem-uefi-wsmt.

[79] Microsoft. Windows 8.1 security improvements.
URL: https://web.archive.org/web/20160402042352/https:
//technet.microsoft.com/en-us/windows/jj983723.aspx.

[80] Barton P. Miller et al.
“The Paradyn Parallel Performance Measurement Tool”.
In: Computer 28.11 (Nov. 1995), pp. 37–46. ISSN: 0018-9162.
DOI: 10.1109/2.471178.
URL: http://dx.doi.org/10.1109/2.471178.

[81] Hyungon Moon et al.
“Vigilare: Toward Snoop-based Kernel Integrity Monitor”.
In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security. CCS ’12.
Raleigh, North Carolina, USA: ACM, 2012, pp. 28–37.
ISBN: 978-1-4503-1651-4. DOI: 10.1145/2382196.2382202.
URL: http://doi.acm.org/10.1145/2382196.2382202.

[82] X. Mupta D. Li. “Defeating patchguard”. In: Whitepaper (2012).

[83] E.D. Myers. STM/PE and XHIM. Poster.
USENIX Security Symposium Poster. Aug. 2017.

[84] Eugene D. Myers. Using the Intel STM for Protected Execution. 2018.
URL: http://www.platformsecuritysummit.com/2018/speaker/
myers/STMPE2Intelv84a.pdf.

[85] “Netperf”. URL: http://www.netperf.org.

[86] OpenSSL. URL: https://www.openssl.org/.

[87] panda. “WannaCry Report”. In: (2017).
URL: https://www.pandasecurity.com/mediacenter/src/uploads/
2017/05/WannaCry_Report-en.pdf.

[88] J. Aaron Pendergrass and Kathleen. McGill.
“LKIM: The LInux Kernel Integrity Monitor”. 2013.
URL: http://www.jhuapl.edu/techdigest/TD/td3202/32_02-
Pendergrass-McGill.pdf.

http://news.microsoft.com/2007/01/29/microsoft-launches-windows-vista-and-microsoft-office-2007-to-consumers-worldwide/
http://news.microsoft.com/2007/01/29/microsoft-launches-windows-vista-and-microsoft-office-2007-to-consumers-worldwide/
http://news.microsoft.com/2007/01/29/microsoft-launches-windows-vista-and-microsoft-office-2007-to-consumers-worldwide/
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-uefi-wsmt
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-uefi-wsmt
https://web.archive.org/web/20160402042352/https://technet.microsoft.com/en-us/windows/jj983723.aspx
https://web.archive.org/web/20160402042352/https://technet.microsoft.com/en-us/windows/jj983723.aspx
https://doi.org/10.1109/2.471178
http://dx.doi.org/10.1109/2.471178
https://doi.org/10.1145/2382196.2382202
http://doi.acm.org/10.1145/2382196.2382202
http://www.platformsecuritysummit.com/2018/speaker/myers/STMPE2Intelv84a.pdf
http://www.platformsecuritysummit.com/2018/speaker/myers/STMPE2Intelv84a.pdf
http://www.netperf.org
https://www.openssl.org/
https://www.pandasecurity.com/mediacenter/src/uploads/2017/05/WannaCry_Report-en.pdf
https://www.pandasecurity.com/mediacenter/src/uploads/2017/05/WannaCry_Report-en.pdf
http://www.jhuapl.edu/techdigest/TD/td3202/32_02-Pendergrass-McGill.pdf
http://www.jhuapl.edu/techdigest/TD/td3202/32_02-Pendergrass-McGill.pdf

Bibliography 213

[89] Fabrizio Petrini, Darren J. Kerbyson, and Scott Pakin.
“The Case of the Missing Supercomputer Performance: Achieving
Optimal Performance on the 8,192 Processors of ASCI Q”.
In: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing.
SC ’03. Phoenix, AZ, USA: ACM, 2003, pp. 55–. ISBN: 1-58113-695-1.
DOI: 10.1145/1048935.1050204.
URL: http://doi.acm.org/10.1145/1048935.1050204.

[90] Nick L. Petroni Jr. et al.
“Copilot - a Coprocessor-based Kernel Runtime Integrity Monitor”.
In: Proceedings of the 13th Conference on USENIX Security Symposium -
Volume 13. SSYM’04. San Diego, CA: USENIX Association, 2004,
pp. 13–13.
URL: http://dl.acm.org/citation.cfm?id=1251375.1251388.

[91] Phoronix, http://www.phoronix.com. 2018.
URL: http://www.phoronix.com.

[92] David Pisinger. Algorithms for Knapsack Problems. 1995.

[93] V. Prasad, W. Cohen, and et al.
“Locating System Problems Using Dynamic Instrumentation”.
URL: https://sourceware.org/systemtap/systemtap-ols.pdf.

[94] Alsa project. “PCM Interface”. URL: https://www.alsa-
project.org/alsa-doc/alsa-lib/group___p_c_m.html.

[95] Project RC5. URL: https://www.distributed.net/RC5.

[96] Purism. “coreboot Firmware on Purism Librem devices”.
URL: https://puri.sm/coreboot/.

[97] K. Ram, J. Santos, and et al.
Redesigning Xen Memory Sharing (Grant) Mechanism. Xen Summit.
2011.

[98] J. Roetters. “How Hollywood Got Hacked: Studio at Center of Netflix
Leak Breaks Silence”. In: Variety (2017). URL: http:
//variety.com/2017/digital/features/netflix-orange-is-the-

new-black-leak-dark-overlord-larson-studios-1202471400/.

[99] Joana Rutkowska. “Intel x86 considered harmful”. Oct. 2015.
URL: https:
//blog.invisiblethings.org/papers/2015/x86_harmful.pdf.

[100] Reiner Sailer et al. “Design and Implementation of a TCG-based
Integrity Measurement Architecture”. In: Proceedings of the 13th
Conference on USENIX Security Symposium - Volume 13. SSYM’04.
San Diego, CA: USENIX Association, 2004, pp. 16–16.
URL: http://dl.acm.org/citation.cfm?id=1251375.1251391.

[101] Saint Michael Linux LKM. 2014.
URL: https://github.com/tomasz-janiczek/stmichael-lkm.

https://doi.org/10.1145/1048935.1050204
http://doi.acm.org/10.1145/1048935.1050204
http://dl.acm.org/citation.cfm?id=1251375.1251388
http://www.phoronix.com
https://sourceware.org/systemtap/systemtap-ols.pdf
https://www.alsa-project.org/alsa-doc/alsa-lib/group___p_c_m.html
https://www.alsa-project.org/alsa-doc/alsa-lib/group___p_c_m.html
https://www.distributed.net/RC5
https://puri.sm/coreboot/
http://variety.com/2017/digital/features/netflix-orange-is-the-new-black-leak-dark-overlord-larson-studios-1202471400/
http://variety.com/2017/digital/features/netflix-orange-is-the-new-black-leak-dark-overlord-larson-studios-1202471400/
http://variety.com/2017/digital/features/netflix-orange-is-the-new-black-leak-dark-overlord-larson-studios-1202471400/
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
https://blog.invisiblethings.org/papers/2015/x86_harmful.pdf
http://dl.acm.org/citation.cfm?id=1251375.1251391
https://github.com/tomasz-janiczek/stmichael-lkm

Bibliography 214

[102] Arvind Seshadri et al. “SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes”. In: Proceedings
of Twenty-first ACM SIGOPS Symposium on Operating Systems Principles.
SOSP ’07. Stevenson, Washington, USA: ACM, 2007, pp. 335–350.
ISBN: 978-1-59593-591-5. DOI: 10.1145/1294261.1294294.
URL: http://doi.acm.org/10.1145/1294261.1294294.

[103] Galvin Silberchatz. “Gagne, 2003”. In: Operating systems concepts ().

[104] Push the Stack Consulting. Security when Nanoseconds Count.
BlackHat Conference. 2011. URL: http://media.blackhat.com/bh-
us-11/Arlen/BH_US_11_Arlen-HFT_WP.pdf.

[105] Talos. “Threat Spotlight: Follow the Bad Rabbit”. In: (2017). URL:
https://blog.talosintelligence.com/2017/10/bad-rabbit.html.

[106] J. Triplett and B. Tripplet. BITS: BIOS Implementation Test Suite.
http://www.linuxplumbersconf.org/2011/ocw/system/

presentations/867/original/bits.pdf.

[107] Trusted Computing Group’s Trusted Network Connect Technology Stan-
dards Development for Network Security Interoperability.
URL: https://www.nist.gov/sites/default/files/documents/
standardsgov/TCG.pdf.

[108] Dan Tsafrir et al. “System Noise, OS Clock Ticks, and Fine-grained
Parallel Applications”. In: Proceedings of the 19th Annual International
Conference on Supercomputing. ICS ’05.
Cambridge, Massachusetts: ACM, 2005, pp. 303–312.
ISBN: 1-59593-167-8. DOI: 10.1145/1088149.1088190.
URL: http://doi.acm.org/10.1145/1088149.1088190.

[109] Verizon. “2014 Data Breach Investigations Report”. In: (2014). URL:
http://www.secretservice.gov/Verizon_Data_Breach_2014.pdf.

[110] T. Vibhute. “EPA-RIMM-V: Efficient Rootkit Detection for Virtualized
Environment”. MA thesis. Portland State University, 2018.

[111] T. Villa, S. Gitanjali, and et al. VIS User’s Manual.
URL: https://embedded.eecs.berkeley.edu/research/vis/doc/
VisUser/vis_user/node4.html.

[112] J. Wang, Sun K., and et al. An Analysis of System Management Mode
(SMM)-based Integrity Checking Systems and Evasion Attacks.
Tech. rep. GMU-CS-TR-2011-8. George Mason University, 2011.

[113] J. Wang, A. Stavrou, and et al.
“HyperCheck: A Hardware-assisted Integrity Monitor”.
In: Proceedings of the 13th International Conference on Recent Advances in
Intrusion Detection. RAID’10.
Ottawa, Ontario, Canada: Springer-Verlag, 2010, pp. 158–177.

https://doi.org/10.1145/1294261.1294294
http://doi.acm.org/10.1145/1294261.1294294
http://media.blackhat.com/bh-us-11/Arlen/BH_US_11_Arlen-HFT_WP.pdf
http://media.blackhat.com/bh-us-11/Arlen/BH_US_11_Arlen-HFT_WP.pdf
https://blog.talosintelligence.com/2017/10/bad-rabbit.html
http://www.linuxplumbersconf.org/2011/ocw/system/presentations/867/original/bits.pdf
http://www.linuxplumbersconf.org/2011/ocw/system/presentations/867/original/bits.pdf
https://www.nist.gov/sites/default/files/documents/standardsgov/TCG.pdf
https://www.nist.gov/sites/default/files/documents/standardsgov/TCG.pdf
https://doi.org/10.1145/1088149.1088190
http://doi.acm.org/10.1145/1088149.1088190
http://www.secretservice.gov/Verizon_Data_Breach_2014.pdf
https://embedded.eecs.berkeley.edu/research/vis/doc/VisUser/vis_user/node4.html
https://embedded.eecs.berkeley.edu/research/vis/doc/VisUser/vis_user/node4.html

Bibliography 215

ISBN: 3-642-15511-1, 978-3-642-15511-6.
URL: http://dl.acm.org/citation.cfm?id=1894166.1894178.

[114] D. Wilkins and B. Richardson. UEFI SECURE BOOT IN MODERN
COMPUTER SECURITY SOLUTIONS. Sept. 2013. URL:
http://www.uefi.org/sites/default/files/resources/UEFI_

Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf.

[115] “XDD”. URL: http://sourceforge.net/projects/xdd.

[116] J. Yao, V. Zimmer, and S. Zeng. A Tour Beyond BIOS Secure SMM
Communication in the EFI Developer Kit II. Tech. rep. Intel, 2016.

[117] Jiewen Yao. [edk2] [PATCH V2 0/6] Enable SMM page level protection..
Nov. 2016. URL: https://lists.01.org/pipermail/edk2-
devel/2016-November/004185.html.

[118] F. Zhang et al.
“Using Hardware Features for Increased Debugging Transparency”.
In: 2015 IEEE Symposium on Security and Privacy. 2015, pp. 55–69.
DOI: 10.1109/SP.2015.11.

[119] Fengwei Zhang et al. “SPECTRE: A Dependable Introspection
Framework via System Management Mode”.
In: Proceedings of the 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). DSN ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 1–12.
ISBN: 978-1-4673-6471-3. DOI: 10.1109/DSN.2013.6575343.
URL: http://dx.doi.org/10.1109/DSN.2013.6575343.

[120] Lei Zhou et al.
“Nighthawk: Transparent System Introspection from Ring-3”.
In: European Symposium on Research in Computer Security.
Springer. 2019, pp. 217–238.

http://dl.acm.org/citation.cfm?id=1894166.1894178
http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
http://sourceforge.net/projects/xdd
https://lists.01.org/pipermail/edk2-devel/2016-November/004185.html
https://lists.01.org/pipermail/edk2-devel/2016-November/004185.html
https://doi.org/10.1109/SP.2015.11
https://doi.org/10.1109/DSN.2013.6575343
http://dx.doi.org/10.1109/DSN.2013.6575343

	Extensible Performance-Aware Runtime Integrity Measurement
	Let us know how access to this document benefits you.
	Recommended Citation

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	In-Scope Attacks
	Sample Rootkit Techniques
	IDT Hooking
	SMEP Disable
	Kernel Rootkit Code Injection
	System Call Hooking
	Xen Venom Rootkit VM Escape
	Xen Exception Handler

	Key Challenges for SMM-RIMMs
	C1 - SMM-RIMM Security
	C2 - SMM and OS Semantic Gap
	C3 - SMM-RIMM Performance
	C4 - Measurement Variability
	C5 - SMM-RIMM Code Availability

	Contributions
	First Linkage of SMI Latency Guidelines and Performance Impacts to SMM-RIMMs
	First performance-aware SMM-RIMM design incorporating measurement decomposition
	First application of measurement triggers to SMM-RIMM
	First SMM-RIMM Benchmark: EPA-RIMM Bench
	First Publicly-Available SMM-RIMM Prototype

	Document Organization

	Background
	Threat Landscape
	Varied Approaches for Securing Systems
	Urgent Need for Runtime Checking
	System Impact of SMM
	Triggers

	Related Work
	Race to the Bottom
	Software-based Approaches
	Hardware-based Approaches
	Discrete Devices
	CPU Virtualization
	CPU Performance Counters
	TPM
	Late Launch
	ARM TrustZone
	SMM-RIMMs

	Timeline of Approaches
	Application Noise

	Creation of Methodology for SMI Performance Measurement
	SMM-RIMM Performance Methodology Requirements
	Ability to quantify time spent in SMM - Rquantify
	Ability to control time spent in SMM - Rcontrol
	Ability to validate SMI load - Rvalidate

	Related Work
	Measurement Methodology Creation
	Technique 1: Chipset SMIs
	Technique 2: Blackbox SMI Generation
	Technique 3: Modified BIOS
	Technique 4: EPA-RIMM
	Technique Comparison
	Validating the SMI Load
	SMI Generation
	Task Provisioning
	Cache and Prefetcher Impact Measurement Study
	Measurement Design
	Identical Addresses
	Sequential Addresses
	Random Addresses
	Analysis

	Conclusion

	SMI Preemption Performance Study
	System-level Effects
	Timing Expectations in Code
	Symptoms of Excessive Time Spent in SMM
	Timer Interrupt Effects
	Timer Interrupt Background
	Kernel Instrumentation
	Timer Interrupt Results: Non-virtualized Linux
	Timer Interrupt Results: Xen Virtualization
	Timer Interrupt and Turbostat Results: Tickless Linux Kernel
	Timer Tick Conclusions

	Process Accounting
	System-Level Effects Summary

	Application Effects
	Kernel Compilation
	Microbenchmarks
	Latency-sensitive Application
	Application Conclusions

	Conclusions

	EPA-RIMM Design Requirements
	Requirement 1 - Stealthy Invocation
	Requirement 2 - Verifiable Behavior
	Requirement 3 - Deterministic Execution
	Requirement 4 - In-Context Privileged Measurement
	Requirement 5 - Attestable Output
	New Requirement 6 - Extensible Measurements
	New Requirement 7 - Performance-aware
	New Requirement 8 - Constrained Measurement Agent
	Conclusions

	Architecture
	EPA-RIMM Checks
	Check Definition
	Measurement Commands
	Command: Measure Memory Range
	Command: Sample Memory Range
	Command: Measure Control Registers
	Command: Measure Model-Specific Registers (MSRs)

	Tasks
	Bins
	Diagnosis Manager
	DM Provisioning
	DM Runtime
	Measurement Triggers
	Specifying Measurement Triggers
	Example Measurement Trigger: Kernel Code Sections Unchanged - Persistent CR0 and kernel code changes
	Interrupt Descriptor Table Unchanged

	Backend Manager
	BEM Provisioning
	BEM Runtime

	Oracle
	Host Communications Manager
	Inspector
	Inspector Provisioning
	Inspector Runtime
	Complete Architecture Flow

	Security Analysis
	Assumptions
	Inspector
	Initial Measurements and EPA-RIMM launch
	Infrastructure Compromise and Denial of Service
	Transient Evasion Techniques
	Stealth
	Host-side Memory Visibility
	KASLR
	Spectre/Meltdown
	Attacks on Measurement Agent Communications
	Use of EPA-RIMM as a side channel

	Conclusions

	EPA-RIMM Prototype
	Prototype Overview
	Hardware
	Firmware

	Prototype Modules
	BEM
	HCM
	Inspector

	Attack Detection Using the Prototype
	Transient Attack Detection

	Impacts on Application Performance
	Discussion

	Task Scheduling in EPA-RIMM
	Scheduling Approaches
	Knapsack Problem
	First Come First Serve
	Priority Queue
	Priority Queue with Backfilling
	Priority Queue with Aging

	Experiments
	Simulation Parameters
	Check Arrival Rates, Sizes, and Priorities
	Inputs
	Outputs
	Simulator Internal Details
	Evaluation of EPA-RIMM Scenarios
	Bin Processing Rate vs Task Arrival Rate
	Task Size Distributions

	First Come First Serve
	Measurement Design
	FCFS Results

	Priority Queue
	Measurement Design
	Results for PQ, PQB, PQA, PQBA configurations
	Discussion

	Bin Size Scaling
	Measurement Design
	Bin Size Scaling Results - Config 1: Max Task Size = Bin Size
	Bin Size Scaling Results - Config 2: Max Task Size = 100s

	Bin Frequency Scaling
	Measurement Design
	Bin Frequency Results

	Check Arrival Rate
	Measurement Design
	Check Arrival Rate Results

	Discussion

	EPA-RIMM Bench
	Introduction
	Performance Modeling
	EPA-RIMM Performance Model

	Benchmark Design
	Generating a workload
	Measuring Times

	Benchmark Results
	Hash Input Size Scaling
	Bin Cost Breakdown

	Discussion

	Conclusions
	Summary
	Future Work
	Conclusions

	Bibliography

