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Abstract

In this dissertation, I present a two-stage optimization routine that schedules an Aggregated

Water Heater System (AWHS) to concurrently provide three utility ancillary services, namely,

frequency regulation, frequency response, and peak demand mitigation.

Water heaters can be controlled to manage their energy take, the amount of energy a

water heater can absorb upon command. The AWHS is a model aggregation of thousands of

water heaters, the energy take and power characteristics of which are based on U.S Census

household data and usage behavior patterns. The aggregate energy take available in the

AWHS may be dispatched en masse for participation in utility ancillary service markets,

while accommodating the unique characteristics of the AWHS resource.

The optimization routine is performed in two stages. In stage one, the optimization

routine anticipates future energy take, power, weather temperature, and market prices based

on historical data. Upon convergence, the optimization algorithm shifts to the next five

minute time interval and re-iterates the optimization with new projected allocations. This

process repeats continuously until a full day’s worth of projections are simulated. In stage

two, the AWHS considers how dispatches affect the AWHS resource, and re-optimizes to

maximize revenue for each ancillary service based on forecasted market prices.

The AWHS algorithm relies on forecasts in order to mitigate the effects of over-

dispatching, which can result in prolonged energy take recovery times. Over-dispatching
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can also lead to lost opportunity cost for the AWHS, and this is prevented by setting dispatch

and reserve capacity limits for the ancillary services based on system requirements.

The optimization routine addresses the challenge of dispatching this dynamic resource

by assessing how the system recovery can be managed in a way that adequately positions the

AWHS to participate in subsequent rounds of bidding. After every dispatch, the available

energy take decreases and a new energy curve, the resource recovery curve, is re-calculated.

Further, the energy dispatch constraints are dispatch-dependent and need to be recalculated

for every selection of dispatch vectors. We propose a solution for calculating the recovery

energy take available after a dispatch. This solution slides the entire 24-hour daily window

ahead in five minute increments, causing the optimization solution to constantly change as

new future data projections are considered.

The primary contribution to knowledge is a solution to the problems caused by Renew-

able Energy Resources (RER) that uses a novel two-stage method to optimally dispatch the

energy take available in the AWHS among the aforementioned three ancillary services in a

way that maximizes revenue while minimizing over-dispatching, system recovery time and

energy take forecasting errors.
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1 Introduction

1.1 Background

Until recently, electricity generation and supply were usually centralized. Street lights,

industrial machines and household electrical appliances were powered from a far away,

remote location. Since the invention of Thomas Edison’s Direct current (DC) light bulb in

the late 1880’s and the century that followed, electrical customers were content with the

status quo, and only thought of their utility provider once a month when they paid their

electric bills, or when service gets interrupted.

Towards the end of the twentieth century however, electricity consumers started generat-

ing a portion of the power they used locally. Advancements in manufacturing technology

and the relative ease of installation and deployment have enabled Photovoltaic (PV) systems

to become more economical. Backed by many governmental incentives in the form of tax

credits to homeowners and a plethora of rebates for both residential and industrial sectors

alike, acquisition of grid-connected PV systems have recently become easier to acquire.

The wind energy industry has experienced its own revolution. PV and wind are forms

of Renewable Energy Resources (RER) that provide energy to meet the utility industry’s

day-to-day energy demand.

RER are becoming less expensive and widely adopted. They help minimize dependence
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on fossil fuels. However, for all the benefits afforded the electric utility industry by RER,

they create unintended and adverse effects on the electric grid.

These adverse effects results largely from the stochastic nature of RER and the negative

impact of excessive RER generation on power system reliability and grid resiliency. Such

challenges cause distribution transformer overload, transmission congestion, excessive

curtailment and unfair energy pricing of Traditional Generation Resources (TGR). Some of

these problems can be addressed by the use of Energy Storage Systems (ESS), Dispatchable

Standby Generation (DSG), Demand Side Management (DSM), and Hybrid Energy Systems

(HES). Although the use of Battery Energy Storage Systems (BESS) is the most promising

of all, this technology is still in its infancy. In this work however, we focus our attention to

the use of an Aggregated Water Heater System (AWHS) as a new way to provide multiple

ancillary services for the purposes of relieving the grid of the adverse impacts of RER.

1.2 Research Objective

The primary objective of this work is to find a better way to reduce the negative impact of

RER on the electrical grid by using large aggregations of residential water heaters to provide

ancillary grid-support services.

1.3 Research Question

When aggregated, can electric resistive water heaters be used to alleviate the negative

impacts of RER on the electrical grid by economically providing ancillary grid-support
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services?

1.4 Problem Statement Summary

The problem that this dissertation is trying to solve is how to alleviate the negative impacts

of RER on the grid by optimally dispatching the AWHS for ancillary services in a manner

that maximizes revenues.

1.5 Problem Statement question

How should a water heater load resource be allocated between three ancillary services,

frequency regulation, frequency response, and peak demand mitigation, at any given time of

day based on the available energy among 10,000 water heaters in such a way that dispatch is

optimized to maximize revenue? Revenue is maximized by the determination of the optimal

ratio of ancillary services to provide based on market price signals.

1.6 Significance of the proposed solution

About 55% of homes in the Pacific Northwest had an Electric Water Heater (EWH) in 2017.

This equates to 3.3 million households, using 2017 U.S census numbers. According to

Bonneville Power Administration (BPA), by 2020, only about 4,000 water heaters in the

Pacific Northwest may become network enabled. [5]

The significance of this work is that our research can help justify the need for Original

Equipment Manufacturers (OEM) to ship traditional water heaters with network enabled
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communication protocols like CTA2045, or other industry-wide, universal open source

control platforms like OPENADR or IEEE 2030.5.

In addition, the evidence gathered from this research can be used to inform a future when

water heaters becomes revenue centers, by providing financial benefits to home owners for

acting as participants in the ancillary services energy market.

1.7 Details of the Problem

The proliferation of RER like PV and wind power is presenting economical, operational and

systemic challenges to electric utilities, energy balancing authorities, market dispatchers,

and to the aging electric grid at large.

PV and wind power are forms of RER that provide energy that can be used to meet the

utility industry’s day-to-day demand. RER are power generation resources that are becoming

less expensive and widely adopted. They also help minimize dependence on fossil fuels.

However, they can sometimes create unintended and adverse effects on the electric grid. We

detail the negative impacts of RER on the electric grid in the following sub-sections.

1.7.1 Stochastic nature of RER

RER are inherently weather dependent. They often produce rapid changes in power cor-

related with weather conditions, resulting in unscheduled ramping events within utility

balancing areas. These ramping events present scheduling challenges for utilities operating

within hourly or sub-hourly electricity trading markets [6–8]. For instance, uncertainty

regarding the forecast of wind ramping events, specifically the timing and ramp rates, affects
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energy dispatchers’ options for maintaining balance between electricity supply and demand,

which is measured using the Area Control Error (ACE). Utilities that allow their ACE to

deviate outside of the permitted defined limits may face significant fines from regulating

authorities. Consequently, the unpredictable nature of RER directly impacts most electricity

marketers’ ability to readily and easily satisfy their energy supply and delivery contracts

[9, 10].

1.7.2 RER depress overall energy prices

In an effort to boost adoption rates, RER have been heavily subsidized by local, state and

federal government agencies. In 1998, the federal subsidy for wind energy amounted to

about $5 million. However, by 2012, these subsidies had passed the $1 billion mark.1

According to a Congressional Research Service (CRS) study, between 2016 and 2020,

energy-related tax expenditure regarding wind production tax credits will cost the treasury

$25.7 billion.2 In the United States, PV and wind receive more than fifty times more

subsidies for each megawatt hour produced than TGR like fossil fuel generators. Some have

argued that the subsidy model of RER is depressing Locational Marginal Prices (LMP) of

energy on an hourly and monthly basis, causing lower overall revenue and revenues for

TGR.3

1‘Tax-Blowing Boondoggle Don’t Give Wind Energy More Credit Than It Deserves’,
www.forbes.com/sites/larrybell.html

2‘Wind Subsidies Should End’,https://www.instituteforenergyresearch.org/analysis.html
3‘Is renewable energy threatening power reliability?’,www.utilitydive.com/news/is-renewable-energy-

threatening-power-reliability/443701/
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1.7.3 Impact on the resiliency and reliability of the grid

According to a number of sources, the current growth rate of RER is unsustainable [11, 12].

If trends continue, grid reliability and resiliency will be put at risk [13]. Installation and

inter-connection need to be properly planned and strategically deployed [11].

The electric grid consists of the distribution system (4.12kV to 26kV) and transmission

system (26kV up to 765 kV). The voltage and connection points of RER differ based on

the technology, manufacturer, year installed, location on the grid, and distance from the

load served. These variations can make system integration very challenging. Wind farms

are located in rural areas where there are significant wind resources. These are are usually

connected to the transmission system. PV on the other hand, can either be connected to

the distribution or transmission system depending on if the PV system is residential or

utility-scale.

Further, production fluctuations make transmission and system planning difficult to

forecast, because it is impossible to accurately predict and model solar irradiance or wind

speed levels. More so, since the energy output of these RER can not be economical stored at

a large scale, system operators and grid dispatchers are often forced, around the clock, to

schedule and dispatch TGR and other resources around the highly variable production levels

of RER.
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1.7.4 Large scale adoption

There is also the problem of scalability. Residential PVs are sparsely distributed, injecting

power into the grid at different, usually unplanned tie-in points. Traditionally, system

planning is mostly engineered based on reliability factors like customer load, voltage drop

concerns, system protection and frequency regulation. Recently, with little control of where,

and how many RER are installed within a residential district or distribution loading center,

the rate of adoption of RER like residential PV has caused grid reliability and resiliency

concern for some system operators. For instance, with about 12% of its residential homes

mounted with PV solar panels, in 2016, the Hawaiian Electric Company (HECO) halted

thousands of application requests to connect customer-owned solar panels to its electric

distribution system, citing concerns of overwhelming the State’s island power grids. The

Solar Energy Industry Association (SEIA) estimates that in Hawaii alone, the number of

installed systems will exceed three million (more than double the State’s 2017 estimated

population of 1.43 million).4 States like Arizona and California, and Countries like Japan

and Germany have expressed similar concerns.5,6

1.7.5 Reduction in power system inertia

Most TGR have high inertia [14]. The electrical grid is comprised of many interconnected

TGR. Changing grid frequency is akin to changing the inertia of every synchronous generator
4‘Solar Power Battle Puts Hawaii at Forefront of Worldwide Changes’,

www.nytimes.com/2015/04/19/business/energy-env.html
5‘Clouds over Hawaii’s Rooftop Solar Growth Hint at U.S. Battle’,

www.scientificamerican.com/article/analysis-clouds.html
6‘Three Reasons Hawaii Put the Brakes on Solar–and Why the Same Won’t Happen in Your

State’,https://blogs.scientificamerican.com
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connected to the grid. This inertia helps slow down large impacts to the grid, and buys

system operators a few more seconds in response time. As more RER replace TGR, the

total system inertia in the grid is being replaced with power electronics-based frequency

regulators that are built into RER, which do not have mechanical inertia.

Per UL 1741-1999, PV inverters shall have a system frequency error of less than 2%, and

for frequency measurements at the inverter, the error shall be less than 0.1 Hz. According to

IEEE 1547, a stable frequency is required of all devices connected to the grid else the inverter

must disconnect from the grid if its frequency becomes unstable. In order to maintain a

constant frequency on the grid, the active power supply must be equal to the load at any

given time. TGR uses a generator governor to constantly match the load and generated

output power. With PV and wind largely dispersed geographically and very different from

system to system (depending on the technology type, manufacturer, location, model year

and entry voltage into the grid), the act of matching load to generation in order to regulate

the system frequency with less inertia in the grid has become more challenging for system

operators.

1.7.6 Transmission congestion

Transmission congestion occurs when least-cost generated power cannot reach a load due to

inadequacy of the transmission network to safely and reliably deliver power [15]. When

transmission capacity fails to track growth in peak electric load, the transmission system

experiences congestion [16].
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RER cause transmission congestion largely due to their unpredictable nature. For

instance, congestion can arise due to power ramp up at night when wind speed picks

up. Excessive production, especially when not needed by the grid, can be a burden on

transmission lines.

Most of the United States’ electrical transmission infrastructure was built in the 1950’s

and 1960’s. As these transmission lines age and loading increases (either due to population

growth or increased industrialization and urbanization), their thermal limits and maximum

allowable ampacities decreases. While many transmission lines can reach their peak load

ampacities at certain points in time, these peak ampacity requirements are not constant. The

result is that planning for new transmission lines that are more reliable is more challenging

than ever due to the stochastic nature and system requirements of RER, which can sometimes

be difficult to estimate with an acceptable degree of precision.

1.7.7 Curtailments

Until recently, RER have not been required to provide frequency support services. Wide

fluctuations and swings in the power produced by PV and wind power can cause severe

frequency stability problems to the electrical grid [17, 18]. In addition, because RER lack

inertia and are not mechanically synchronized like TGR, an increase in the penetration

of RER can cause frequency imbalance on the grid [19]. Hence during periods of high

power production, RER, especially wind, must be curtailed due to excess production or grid

stability concerns. Curtailments usually happen during periods of high RER production.

In other situations when RER unexpectedly stops production, TGR, usually peaker power
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plants, are quickly brought online to help stabilize the grid, putting further stress on existing

TGR and the electric grid at large.

1.8 Available Solutions to the Problem and Current Practices

A number of solutions to this problem already exists. The benefits of these solutions

have been demonstrated in both literature and practice by researchers and electric utility

companies globally. Five prominent solutions are described in this section, namely, Energy

Storage Systems (ESS), the use of TGR for providing ancillary services, Dispatchable

Standby Generation (DSG), Hybrid Energy Systems (HES), Demand Side Management

(DSM), and Asset Aggregation (AA).

1.8.1 Energy Storage Systems (ESS)

ESS store excess energy for use at a later time. ESS include Battery Energy Storage Systems

(BESS), Pumped Hydro Storage (PHS) and Compressed Air Energy Storage (CAES), all

of which are currently used by utilities and energy providers to store the excess energy

generated by RER, although with varying degrees of technological maturity.

BESS are electrochemical systems that manage energy storage through alteration of

battery cell chemistry. BESS are charged (energy is stored) during off peak periods, when

the price of electricity is cheap, and then discharged (the stored energy is released for use)

at a later time.
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PHS store energy in the form of the potential energy of water that has been pumped to a

higher elevation. Pumping occurs when electricity prices are low. Water is then released and

passed through the pumps, now acting as turbines, when energy costs are high.

CAES store energy as compressed air. This stored pressure-volume energy is then

released at a later time when called upon to generate electricity, such as when energy prices

have risen.

BESS are not yet very mature . According to Bloomberg, the total storage capacity of

all batteries in the United States as of 2018 is less than 1% and the total storage capacity is

estimated to increase to only 3% by 2040.7 However, a lot of research is being conducted in

the area of storage [20–23].

The Public Utility Research Center, based on a comprehensive data analysis and research,

outlined the impacts of lower natural gas prices, declining prices for renewable technologies,

regulatory policies, and laws that are influencing the increase in demand for utility-scale

energy storage [20]. Barbose presented a status update on the role of Renewable Portfolio

Standards (RPS) in the United States and the impact on the growth of Energy Storage is

presented [21]. This report was developed in collaboration with the Lawrence Berkley

National Lab and the U.S Department of Energy. Wang et al. evaluated the reliability benefit

of energy storage to systems consisting of multiple renewable sources considering their

operating strategy [22]. The reliability evaluation models of energy storage that can be

used in Monte Carlo simulations with other forms of RER are developed. The inherent
7Bloomberg, www.bloomberg.com/news/articles/2016-03-17/the-big-battery-boom-hits-another-

roadblock-fire-fearing.html/"
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characteristics that are deterministic to the chronological variation of power output are

incorporated when modeling, including storage factors like energy conversion performance

and charge/discharge constraints of energy storage.

An extensive literature review is presented by Diaz-Gonzalez et al., highlighting several

energy storage technologies, particularly for wind power applications. The review presents

the main operating principles, the characteristics of energy storage technologies suitable for

stationary applications. The definition and discussion of potential energy storage applications

was thoroughly covered in [23].

With over 150 GW globally, PHS represents around 99% of the world’s electrical energy

storage capacity. Currently, Japan is the worldwide leader in PHS, but China is expanding

quickly and was expected to surpass Japan by the end of 2018 [24, 25]. In early 2019, it

was reported that China had surpassed Japan and that China’s PHS installations accounted

for 78% of the world’s new PHS installations accounting for more than 2 GW of newly

commisioned units (in 2018 alone) and a cumulative 29 GW total.8 A major issue with PHS

is the limited number of viable sites, which must have both a water resource and sufficient

elevation gains [26]. Other problems include available storage volume, acceptable charge

and discharge rates, and environmental siting issues. The overall system efficiency may

decrease if the rates and storage volume requirements are not met [27, 28].

CAES also has its own drawbacks, such as energy loss due to excessive heat dissipation

during the compression of air and air leakage from CAES caverns. CAES sites are also
8Asian Power, www.asian-power.com/power-utility/news/china-accounted-78-worlds-new-pumped-

storage-hydropower-installations
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limited, as they must be located near caverns that can reliably contain compressed air, such

as salt domes [29, 30].

Storage can be cost prohibitive, and as a result, despite its prospects, storage in general,

regardless of its technology type, has not yet become main stream.

1.8.2 Use of Dedicated TGR for Ancillary Services

Another solution to the problems created by RER is the use of dedicated TGR to provide

ancillary services in order to accommodate the stochastic nature of RER. TGR include coal,

nuclear, hydro, and natural gas power plants.

Most TGR are designed to provide base load power, although they can be equipped

with enhanced technologies, and operated with improved operational practices that allow

for more flexible dispatch to provide additional grid support services. With the increased

penetration of RER in recent years, new TGR power plants are being built specifically for

grid support ancillary services rather than for base load generation. For example, because

some varieties of natural gas plants can be quickly ramped up and connected to the grid in a

mater of minutes, they are suitable for providing fast-response ancillary services, which are

often needed during peak hours when demand is very high and the sun is beginning to set

[31].

As the penetration of renewables continues to increase, cheaper RER continue to displace

conventional TGR, resulting in short dispatch durations and frequent cycling of TGR [32].

These factors can lead to higher TGR operation & maintenance costs. Consequently,

some utilities have assigned specific power plants for some ancillary services, as long as
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the subject plants can meet the minimum requirements for participation in that particular

ancillary services market. Building new TGR is a very expensive undertaking and can take

many years to complete. Furthermore, many approvals and revisions are required from

public utility commissions, public agencies, and regulatory authorities [33].

The problems caused by RER can not be fully comprehended without a proper under-

standing of what ancillary services are, and why they are important to electricity supply

and demand. In an effort to avoid confusion, in 1995, the Federal Energy Regulatory

Commission (FERC) issued a definition of ancillary services as those “necessary to support

the transmission of electric power from seller to purchaser given the obligations of control

areas and transmitting utilities within those control areas to maintain reliable operations

of the interconnected transmission system”. Simply put, ancillary services are services

necessary for continuous uninterrupted operation of the grid. These services ensure the

quality of energy delivered through the electrical grid [34]. These services include but are

not limited to:

1.8.2.1 Frequency Regulation

Often referred to as ‘regulation’, frequency regulation is a set of tools or actions executed

either automatically or manually by power system operators that ensures a steady frequency

(60 Hz) during situations or events that causes the system frequency to become too high or

too low. There are three types of frequency regulation responses; primary, secondary and

tertiary. Both primary and secondary regulation are triggered automatically within seconds

and tens of seconds respectively. Tertiary regulation is initiated by the operator within a few
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minutes if both primary and secondary regulation are not sufficient to restore the frequency

to 60 Hz.

1.8.2.2 Frequency Response

Frequency response is the measure of a system’s output to an input signal of varying

frequency. Frequency response is measured in decibel (dB), with the phase, measured

in radians9. For power systems however, we chose the definition provided by the North

American Electric Reliability Corporation (NERC). According to NERC, frequency response

is a balancing area’s ability to stabilize grid frequency immediately following the sudden

loss of generation or load.

The distinction between frequency regulation and frequency response is that frequency

regulation addresses slight and slower frequency deviations while frequency response

addresses large and fast deviations.

The ability of generation resources to respond to frequency deviation events is critical to

the reliability of the electric grid. Frequency response may be called upon for events such as

a sudden loss of generation, start-up of large industrial loads, or a power outage caused by

weather storms, substation fire, or electrical equipment failure. Simply stated, frequency

response is an immediate, and automatic response to changes in grid frequency caused by

grid events.

TGR and very large industrial motors and pumps supply inertia to the grid that helps

reduce the impact of frequency fluctuations on the grid. Due to the advent of variable
9http://www.digitizationguidelines.gov/term.php?term=frequencyresponseaudio
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frequency drives, RER like wind and solar, and the continuous retirement of synchronous

TGR, there has been a continued decline in the amount of resources available to support

frequency response. Though, recent technology has enabled solar and wind to have some

frequency response capability embedded.

Frequency response is not currently a compensated electricity market product. But,

system operators are required to respond to frequency deviations within their service territory.

Ideally, one would expect that all TGR in the system provide frequency response services,

but this requirement can be cost prohibitive, and large frequency deviations are not very

common. Frequency response events are very fast, requiring very quick power injection

into the grid to arrest the frequency deviation. In Figure 1.1, we show a frequency response

event that was captured at Portland State University (PSU) power lab in September of 2019.
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Figure 1.1: Frequency event captured at PSU’s Power Lab in September 2019.

Reserving TGR that could otherwise be used for capacity and other grid market services

for frequency response is not very economical. Further, because frequency deviations are

stochastic, it can be difficult to assess how much frequency response resource is needed.

RER like wind farms and PV solar plants are mostly operated at or near their maximum

capacity with no room for participation in frequency response.

In a 2017 docket, the Federal Energy Regulatory Commission (FERC) [35] noted a

decline in frequency responses in the North American grid due to the fact that between 2011

and 2014, 42 GW of synchronous generating plants were retired. According to an Energy

Information Administration (EIA) report, 14 GW of coal and 3 GW of natural gas-fired

plants were retired in 2015 [36]. For example, Portland General Electric plans to retire its
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550 MW Boardman Coal plant in 2020, the only coal plant in its generation portfolio.

In its response to FERC, the Energy Storage Association (ESA) highlighted that Elec-

tricity markets would be less efficient and system costs will be higher than necessary if

generation resource owners are required to provide frequency response service from genera-

tors more suited to provide energy and capacity [37]. Further, requiring generators to provide

frequency response could produce an expensive but costly oversupply of frequency response

headroom. Not all TGR resources are well positioned to provide frequency response, and

by responding to frequency response events, operational efficiency can be impacted. A

reduction in operational system efficiency will lead to higher system operational costs.

The AWHS is well suited to provide frequency response, because electric resistance

water heaters are fast responding and do not have any headroom reservation requirement.

Figure 1.2 illustrates the time intervals between the load and shed commands and the time

the water heater actually turns on as 2.5 seconds and 9.0 seconds respectively, both durations

fast enough to qualify for frequency response events [1].

18



Figure 1.2: Electric Water heater response times to Load and Shed commands [1].

1.8.2.3 Peak Demand Mitigation

Peak demand is a measure of how much power the grid must produce when called upon

during periods of high demand. Peak demand occurs when many high energy consuming

loads (like air conditioners, large motors, industrial pumps) are all running at the same time,

which occurs during peak hours.

Many utilities define peak demand hours as the period between 4:00pm and 8:00pm on

weekdays. Peak demand is a proxy measure of the amount of stress put on the grid. Fast

ramping, dedicated peaker TGR are usually dispatched to help curtail excess demand during

peak hours, as a means of ensuring system stability and reliability. Peak demand mitigation

is the process of reducing load (consumption) in the electricity distribution network, during

peak hours, thereby limiting the need for peaker TGR.
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Generation from RER like PV decreases as the sun goes down. Consequently, they are

unable to adequately contribute to the grid when demand increases during the peak demand

hours that occur following sunset. During this period, TGR must ramp their generation from

conventional generation plants to meet this surge in demand and compensate for the loss of

solar generation. The California Independent System Operator (CAISO) uses the duck curve,

shown in Figure 1.3, to illustrate the impact of PVs on the electric grid’s operations based

on CAISO’s real-time analysis and forecast of electricity net demand from 2012 to 2020.

The net demand load represents the amount of conventional generation plants (excluding

renewables) that will need to be on-line during different times of the day.

Figure 1.3: CAISO’s Duck Curve [2].

Zones (a) and (b) in the duck curve represents the morning and mid-day net demand loads,

respectively. Zone (b) has the least predictability because the increase in the generation from

PV will cause a reduction in conventional generation. There is an increased risk of over
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generation in this zone. Finally, towards the end of the day, zone (c) is where conventional

plants will see the most stress. The unpredictability of DG resources (particularly solar and

wind) means that utility companies may not be able to properly control and plan for the

variable system electricity demand.

Utilities bill for electricity charges by adding the actual energy consumption (kWh) to the

electricity demand charges (kW). Demand charges are based on the highest power provided

to customers, in any given fifteen minute period, over the monthly billing period. According

to CAISO, steep power ramps, over-generation and the resulting impact on frequency

response will need to be quickly addressed as more PV are installed, commissioned and

connected to the grid [38].

Figure 1.4: Average Daily Residential Load for Total Demand and Water Heating (Pacific Northwest) [3].

Figure 1.4 illustrates that in the Pacific Northwest, water heater usage duration overlaps

with the total average electricity peak demand, suggesting that water heaters could be used
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as a tool for peak demand mitigation [1].

1.8.2.4 Ramp Rate Control

Ramp rate control is defined as the ability to control the change in power output of a

generator as it is ramping up or down. According to NERC, all resources on the grid must

be able to reach their full capacity within 10 minutes of interconnection. Controlling ramp

rate is important for grid stability since generation must match load at all times.

1.8.2.5 Voltage/Reactive power (VAr) compensation

Loads like induction motors of household appliances, air conditioners, industrial equipment,

and power transformers all consume reactive power, which occupies ampacity within

transmission and distribution lines. As such, larger conductors and transformers are required

to handle the higher currents required to run these types of loads. VArs (Reactive power

or Volt-Amps Reactive) represent the resonant energy exchange between capacitive and

reactive loads on the grid. Loads that consume high amount of VArs, such as magnetically

excited loads like induction motors, power transformers, the inductance in power lines can

cause significant voltage drops at start-up. VAr compensation may be needed to boost the

voltage back up to acceptable limits. Volt/VAr optimization helps to preserve acceptable

voltage levels within transmission and distribution systems in response to changing loading

conditions. Volt/VAr regulation also enables some peak shaving, consequently reducing

transmission and distribution losses and allowing for a more efficient electricity delivery.

22



1.8.2.6 Reserves

As the name suggests, reserves are energy resources that can be activated and connected to

the grid at the request of the power system operator. There are two types of reserves, namely,

spinning reserves and non-spinning reserves. Up until recently, spinning reserves were

resources that were online, synchronized, spinning, ready to produce power or operating

below capacity, and upon request, their output power can be increased by the system operator.

Although the term spinning suggests that there is a mechanical part that is in motion, with

the popularity of ESS, the new definition of spinning now includes energy resources that

are not necessarily spinning so long as they can be synchronized to the grid within a few

cycles. An example of such would be BESS. In its August 2016 operating manual, NERC

updated their definition of spinning reserves as unloaded generation that is synchronized to

serve additional demand or load that can be shed [39]. Non-spin reserves are generation

capacities that are not connected to the grid but can be called online within a short period of

time, usually in less than 10 minutes.

Each of the ancillary services described in this section are very important to the contin-

uous operation of the electric grid because they help prevent disruptions, and they ensure

overall grid reliability despite the rising penetration of RER.

1.8.3 Dispatchable Standby Generation (DSG)

DSG systems are aggregations of large commercial and industrial generators. Customers

that agree to allow utility companies to upgrade, maintain, service and dispatch their on-site
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generators when the need arises are eligible to participate in a DSG program. DSG can be

called upon and synchronized with the grid by the system operator within 10 minutes. As

such, they provide non-spinning reserve. DSG are dispatched to provide relief to the grid

whether the impact is caused directly by RER or not. The problem with DSG is that they

only qualify as non-spinning reserves. DSG programs depend on the contracts between

the utility and customer, which significantly limit the number of annual run hours. For

example, the Portland General Electric (PGE) DSG system has all the necessary functions

to monitor and dispatch important power quality data of remotely sited generators. However,

PGE is only permitted to dispatch customer generators between 8 and 10 hours annually

due to air quality regulations [40]. As a result, most utility companies implementing DSG

usually have many participants, though dispatch frequency and duration are low. Although a

costly program, the value of the DSG program to utilities is that the assets in the program,

although not owned by the utility companies, count towards the utility’s non-spinning reserve

requirements at a cost that is significantly less than that of dedicated TGR.

The concept and practice of DSG have been researched in literature especially as it

relates to outages, brownouts and cascading blackouts [41–44]. For example, Al-Salim et al.

presented an agent-based distributed cyclic blackout mitigation and prevention scheme that

uses DSG to support customer loads [41]. They demonstrated that it is possible to effectively

manage all customer loads by aggregating the power from available DSG resources to power

basic loads first, and then after all loads have been sustained and power reduction is required

(i.e., during off peak hours), the higher consuming loads are replaced with lower consuming
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loads. Their simulation results proved the effectiveness of this approach in the power loss

prevention modes and blackout mitigation modes.

DSGs help address some of the challenges of RER by acting as an alternative energy

source that can be used as short term additions to the existing TGR capacity.

1.8.4 Hybrid Energy Systems (HES)

HES are a combinations of solar, wind, diesel generators, and sometimes battery energy

storage systems. When one source is not available, for example solar energy after sunset,

the other resource type can be brought online to continue to serve the load. Coupling

HES with BESS is becoming an increasingly more relevant solution. In remote areas, it is

not uncommon to have the HES include other forms of energy resources like small diesel

generators. HES have been shown to be useful in mitigating some of the problems caused

by RER, like their stochastic nature. HES are defined as having at least one RER combined

with either a BESS or other types of energy sources like dispatchable generators. HES

operate by partly or completely integrating RER in combination with other energy sources,

using the strengths of one source to overcome the weakness of the other. Distributed Energy

Resources (DER) like PV and wind turbines are combined with generators or BESS to form

HES. In remote locations, diesel powered generators may be combined with RER to form

HES, and to produce additional power, however, the downside of HES is that they are not

very efficient.
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1.8.5 Demand Side Management (DSM)

Demand Side Management (DSM) is defined as any means or technology by which a utility

can modify its customers’ energy consumption pattern in order to suit the utility’s need.

There are many ways in which participating customers’ energy profile and usage pattern can

be modified by a utility company. Some of these include, but are not limited to, time-of-use

tariffs, Demand Response (DR) programs, load shedding, and load balancing. Often this is

done by simply turning on or turning off customer-owned equipment. With proper planning

and forecasting, DSM can be used to relieve TGR during peak hours when traditional fossil

fuel peaker plants are run for just a few hours (one to four hours) to cover forecasting

shortfalls caused by the stochastic nature of RER.

DER can be used to provide DSM. DER include customer-owned assets like air condi-

tioning units, water heaters, commercial pumps, commercial refrigerators, and heat pumps,

that can be switched on or off for the purposes of absorbing or shedding power. DER also

include small storage assets like batteries with inverters, and electric vehicle chargers, which

can be used to both discharge power to the grid or absorb power from the grid.

1.8.6 Asset Aggregation (AA)

AA allows for the clustering or grouping of disparate DER to provide grid support services.

According to the National Renewable Energy Laboratory (NREL), DER aggregation plat-

forms enable real-time, two-way secure communications and inter-operability between the

aggregated assets (or loads), and utility systems [45]. Depending on the context, the term
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‘asset aggregation’ can be used to mean two different things.

In the first definition, asset aggregation is defined as the use of an application (software

or platform) to control a large number of loads. This definition is similar to the one used by

Mahmoudi et al., where aggregation is defined as a customer-based (load side) approach to

DR. Load shifting, load curtailment, and load recovery were stochastically modelled by the

authors through aggregation [46]. In essence, aggregation defined this way is a program or

energy platform that can actively participate in the energy market by controlling customer

owned loads.

In the second definition, aggregation is a service offered by a third-party entity for the

purpose of purchasing power. In this definition, ‘an aggregator is a company who acts as

inter-mediator between electricity end-users, who provides DERs, and those power system

participants who wish to exploit these services [47]. Aggregation, defined this way allows

for grouping neighboring electricity customers, small independent power producers or both

for the sole purpose of acting as a single entity on the customers’ behalf when engaging in

the energy markets, either in retail or in bulk [48].

EnerNOC, Comverge, CPower, EnergyConnect, Energy Curtailment Specialist (ECS),

Community Choice Aggregators (CCA), and North America Power Partners (NAPP) are

examples of aggregation companies that have established individual contracts with customers

in the United States. These customers, sometimes referred to in the industry as ‘prosumers’,

have behind-the-meter DERs that can be aggregated and optimized by aggregators and then

sold off in the energy market.
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Aggregation is expected to challenge the current operating model of electric utility

companies [49]. Due to changes in government oversight and regulations, some consumers

in some U.S. states may now choose their electricity supplier, thereby opening retail compe-

tition for electricity suppliers and aggregators. The delivery, transmission and distribution

of power remains the responsibility of the local power company however. Consumers in

deregulated States have the ability to choose or supply their own DER power back into the

grid [50].

1.9 Primary contribution to knowledge

The primary contribution to knowledge is a solution to the problem caused by RER that

uses a novel two-stage method to optimally dispatch the energy take available in the AWHS

among frequency regulation, frequency response and peak demand mitigation in a way that

maximizes revenue while minimizing over dispatching, system recovery time and energy

take forecasting errors.

The energy take of the AWHS is the amount of energy that the water heaters in the AWHS

can absorb upon command. The dynamic behavior of the AWHS energy take presents a

unique challenge, and in consideration of this unique behavior of the AWHS resource, the

developed two-stage optimization algorithm allows the AWHS to maximize revenue, while

determining the appropriate ratios to dispatch of each of the three ancillary services.
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1.10 Motivation

A market transformation report written by BPA and eight other utilities in the Pacific

Northwest in 2018 concluded that if water heaters were to be used as a regional peaking

resource, they would only cost 57% of the total cost of ownership of TGR [5]. In terms

of energy, the authors noted that if all resistance electric water heaters in the market as of

2018 are replaced with smart water heaters between 2024 and 2039, based on 2018 loading

profile, they will contribute between 340 to 800 MWh, depending on the time of day and

season, of which 700 MWh of energy can be flexed (shifted from a period of high electricity

demand to a period of low demand). This is estimated to provide an economic capacity

dispatch value of $4.9M. The actual costs (purchase, installation, outage costs to upgrade

the water heater, and end of life water heater recycling costs) to the utility customers in the

Pacific Northwest was reported to be somewhere between $0 and $25 per kW per year (or

between $0 and $112.50 per year per 4.5 KW water heater) assuming a fifteen year water

heater life [5].

A report by the Brattle group found that the benefits of using hot water heaters for

ancillary services to participating home owners, after accounting for the water heater costs,

could be higher than $200 per participant per year [51]. Based on the estimates used in

[51] and [5], the annual net benefits to participating customers could be about $87.50 per

customer.

The BPA report highlights the impact that flexible loads like water heaters can contribute

to creating a more reliable grid [5]. Like smart water heaters, there has been a lot of interest
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in batteries, due to their ability to provide fast and accurate responses and bi-directional

power. For example, in PJM, formerly Pennslyvania, New Jersey and Maryland ISO (PJM) ,

batteries are used to provide ancillary services like frequency regulation. The deployment

of batteries for regulation has increased in capacity from zero in 2005 to over 280 MW by

the end of 2017, consisting of 41% of PJM’s regulation capacity procurement [52]. Our

research demonstrates that likewise, resistive electric waters can be used to participate in

ancillary services markets.
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2 Literature Review

2.1 Literature Review of select current solutions

Literature reviews were conducted for HES, DSM, and AA, all current solutions used to

relieve the grid from the impact of over-generation from RER.

An in-depth literature review of HES is presented in section 2.1.1. The second solution

for which there exist an overwhelming amount of research work is DSM. In literature, a

lot of DMS research focus on peak demand shifting applications. DSM literature survey is

presented in section 2.1.2

The third approach, the focus of this dissertation, is AA. There are many publications

in the AA space because many disparate resources can be aggregated to provide relieve to

the grid, but findings from our review show that they are different from how the AWHS

operates and participates in the ancillary services market. None of this consider the impact

that dispatch of DER have on aggregate energy reserve, which is the principle focus of

this dissertation. A review summary for AA is examined in presented in section 2.1.3. In

2.1.4 and 2.1.5, we examine the aggregation of EWH, and the aggregation of other assets in

literature.
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2.1.1 Hybrid Energy Systems (HES)

Bakos et al. demonstrated that the use of different energy sources improves system efficiency

and the reliability of the grid, and can help reduce storage requirements when compared to

systems comprised of only one RER [53].

Deshmukh et al. presented the different models usually used for the components of

most HES systems [54]. In their model, the three performance evaluation factors considered

were the loss of load probability, loss of power supply probability, and cost analysis. In

their work, the maximum depth of discharge of the battery, temperature correction, rated

battery capacity, and battery life were evaluated when modelling the battery systems that

accompany the HES. The authors then provided a review of the latest developments and

configuration of several HES, including PV-battery, PV-diesel, wind-battery, wind-diesel,

PV-wind-battery, and PV-wind-diesel-battery, all of which were presented as commercially

viable solutions for addressing the stochastic problems of stand-alone RER.

As a solution to the challenges created by RER, Abdullah et al. discussed how to

effectively design and use decentralized power generation, micro-grids, smart grids and

stand-alone power systems [55]. While the definition of terms like “micro-grid” and “smart-

grid” can vary depending on the application type, the authors conclude that HES can be used

for sustainable power system planning in consideration of the economic, environmental,

uncertainty issues in power availability of RER. Because at the root of all solar and wind

energy resources lies their inherent stochastic nature, the authors recommended coupling

RER with BESS, creating a photovoltaic-wind-battery HES.
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Post et al. showed how HES can be used for both on-grid and off-grid applications [56].

Malinowski et al. demonstrated that HES can be used for both off-grid and grid-connected

loads with BESS, and a topology for a photovoltaic-wind-battery HES system was developed

[57]. The authors discussed the current trends, installation problems, and forecasting issues

affecting the global solar market and other PV sectors and their implications on future RER

technologies as they relate to HES. According to the authors, an increasing amount of HES

are being coupled with solar PV systems.

Yang et al. developed an optimization model for appropriately sizing a hybrid solar-wind

HES [58]. A battery bank was used to effectively match the different components of their

HES model. Examples of how to model the Levelized Cost of Electricity (LCOE) and Loss

of Power Supply Probability (LPSP).

A pilot program carried out in Greece used Monte Carlo simulations to determine the

economical benefits of hybrid solar-wind systems [53]. The life cycle costs and payback

were determined. A Monte Carlo-based simulation program was used to estimate the energy

of the HES. The system life cycle cost was estimated over a 20 year period and a payback

period of nine years was determined.

Since the mid 1990’s, HES applications have grown rapidly and have demonstrated

increasing competitiveness. Up until recently however, HES were used mostly for remote

and rural area applications [59, 60]. Although the cost and technological improvements of

HES in recent years have been encouraging, they remain an expensive source of power.

Comprehensive literature reviews of the current and future state of HES using solar
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energy and wind power have been presented by Nema et al. [61] and Zhou et al. [62]. The

former discussed the current research status and the future state of wind-solar HES, while

the latter addressed the current trends in optimization of HES systems. They both highlight

the usefulness of BESS in extending the practical applications of HES.

Further, pairing RER with gas generators reduces the capacity factor of the generator,

therefore reducing the return on investment of the HES. As stated earlier, from a sustainability

stand point, the environmental ramifications of coupling RER with fossil fuel generators is

counterproductive. In addition, optimizing two or three assets in the form of HES presents

fewer solutions than optimizing the dispatch of thousands of assets (i.e. like the AWHS

proposed for consideration in this dissertation). In addition, HES solutions to the problems

of RER is likely to be more expensive, if the controls and integration costs are accounted.

As discussed earlier, that BESS are expensive is one of the first indications that HES

cannot sufficiently tackle the challenges posed by RER. Coupling with gas generators is

also expensive and counter productive to what RER stands for (i.e., they are renewable).

2.1.2 Demand Side Management (DSM)

Applications of DSM in literature are examined in this section. As a note of caution to the

reader, the term DSM was found to be interchangeable with DR in literature, although DR

is one of the many ways of achieving DSM.

The AWHS has the ability to participate in energy markets either as a DSM application,

as a provider of ancillary services or both. Although the literature search revealed that

similarities to the AWHS exist in previous works, either for DSM or DER applications, none
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was found to be particularly similar to AWHS in its entirety. In other words, aspects of the

AWHS have been implemented by others but none is designed like the AWHS. A limited

amount of literature on aggregation of DERs was uncovered in literature, yet only for the

purposes of providing DSM.

Gustafson et al. presented a novel method to evaluate the effectiveness of a water heater

Direct Load Control (DLC) program for DSM [63]. The DLC programs were implemented

by three different utility companies in the Western United States. The findings include

methods to apply average customer electricity usage and instantaneous demand to evaluate

the potential effectiveness of a direct hot water heater load control program in a given region.

Developed through a comprehensive research program combined with engineering

insights into the energy use of house-hold hot water systems, this method resulted in

an algorithm for evaluating the potential for load control. Variables monitored through

the hot water systems load were presented, and a procedure was developed that allows a

dispatch system planner to determine if such a program will be cost-effective compared

to a program developed through a more traditional pilot or demonstration approach. This

paper also outlined how the same methodology can be used for determining a procedure for

the dispatchers to properly initiate and terminate a load control program without hot water

recovery problems.

Detroit Edison Electric summarized the effects of field operating conditions on large-

scale aggregations of electric water heaters in applications for load management systems [64].

Often load control is considered a peak shaving strategy or merely as DSM. Alternatively,
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it can be used by operators to optimize economic dispatch. Findings from this study

helped Detroit Edison conclude that load management strategies can be very useful for the

refinement of economic dispatch of generation units.

Florida Power and Light has developed a large-scale DLC program for DER customer

equipment, which included 50,000 water heaters, 45,000 central air-conditioners, 42,000 cen-

tral heating systems, 8,000 pool pumps, and 35,000 kW of commercial space-conditioning

equipment [65]. These units were cycled throughout the day based on permission levels

determined by customers. While the results obtained were ground breaking, it is worth not-

ing that the underlying goal was to help with load shifting or DSM. The authors concluded

that there are three extremely important factors that can help with the integration of DLC

programs to the operations of utility bulk power supply. These are customer acceptance, the

reliability of hardware, and aggregate load-shaping performance.

Omaha Public Power District and the U.S. Department of Energy conducted several

experiments on the application of demand-limiting equipment in all-electric homes [66].

Dual control of demand limiters allowed customers to select the desired peak demand level,

which was maintained by the logic of the demand controller. The utility could then reduce

the level proportionally by transmission of control signals. Here, no aggregation was applied

and this exercise was a DSM approach. Analysis of the results showed that both modes of

operation, the local mode and the direct utility control mode, were effective in reducing

peak demand.

Wisconsin Electric used a bi-directional power line carrier that enabled its system
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operator to manually control around 92,500 domestic water heater load control receivers at

preset times [67]. This was manually done by the system operators, as needed. However,

customers were allowed to choose an eight hour window during which their water heaters

could not be turned off. The load control receivers send a command to turn on the water

heater circuit in fifteen minutes intervals. The water heaters are then turned off for several

hours by sending a turn-off command every twelve minutes. This work concluded that DLC

strategies using hot water heaters can be used to minimize operating costs by shifting energy

usage. Specifically, this reduced the expense of start-up and excessive cycling of TGR that

occur when loads begin to ramp up at the beginning of the day.

The energy pattern of about 700,000 water heaters of small residential users were studied

by Rautenbach et al. [68]. Users were then grouped based on the switching times of their

appliances, water heater size, and house hold size. A multi-objective controller was used to

provide a new method of controlling like-kind residential domestic hot water loads with the

aims of reducing peak system demand, and minimizing discomfort to the end-user while

concurrently reducing their electricity bill. The controller responded to time-differentiated

tariffs. Results show that the system peak load was reduced per customer. The authors noted

that their control models may not be applicable to commercial, industrial, or other large

scale electricity customers.

Ninagawa et al. used Fast Automated Demand Response (FASTADR) to control office

building air-conditioning facilities. The authors experimented with 120 different models,

each with different stochastic disturbances [69]. Then, a neural network model was built
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using actual buildings facilities’ time-series data to test the behaviors and response time

of the office building air-conditioning facilities to determine if their step responses were

adequate for ancillary services. The authors noted that with FASTADR, some responses

received from the controllers tend to oscillate, depending on the communications timing,

the signal sampling time, or other stochastic disturbances on the network, and as such, may

not be suitable to support ancillary services like frequency response.

Mai and Chung developed a model to control Heating Ventilation and Air Conditioning

(HVAC) systems in commercial buildings by using preset time-varying electricity prices to

minimize electricity costs [70]. The authors asserted that their research work significantly

reduced peak demand and increased energy savings and efficiency, while respecting occupant

comfort level.

Of all the DSM literature surveys presented above, none considered the use of DSM for

participation in ancillary services markets. Few scholarly publications describe systems that

provide ancillary services via DR. Research using DR for ancillary services was published

in [71, 72], albeit [71] discusses using DR for frequency regulation alone with [72] being a

technical literature review on how to use demand side management of customer loads for

the purposes of providing ancillary services like frequency regulation. Rahimi and Ipakchi

considered important elements for reliable and economic operation of the transmission

system and the wholesale markets, and they reported that under the smart grid paradigm,

DR response can be used as a market resource [73].

Other DSM research has been written about extensively in literature [74–77], but they
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focus largely on DR strategies. As stated earlier, DR is a subset of DSM and is the only

subset of DSM that was found to use DER as a market resource in literature, suggesting that

the use of DSM applications for energy transactions in this way is still in its early stages,

and further justifying the need for an aggregator like the AWHS.

2.1.3 Asset Aggregation

Several manuscripts discuss aggregation of EWH, batteries, and other assets in an effort to

provide a solution to the problem of excess proliferation of RER on the electric grid. An

MIT Energy Initiative study from 2013 analyzed utility business models for deployment of

DERs including DR, Energy Management Systems (EMS), BESS and PV [78].

However, this study focused largely on the business and policy implications of Asset

Aggregation (AA). The MIT study used business operation data from 144 regionally-

diverse utilities whose business operations are associated with one or more DER. Technical

details of the composition of the aggregated assets were outside the scope of their study.

Instead, discussions of the revenue streams, customer segments, and electricity services

were presented. Because the utility business models were diverse (144 regions), policy

dependent, and heavily regulated, the research concluded that regulation and policy changes

need to be considered when developing business models for AA type applications.

Similarly, Zang et al. [79] and Funkhouser et al. [80] both explored the economic

benefits of deploying AA applications, but neither particularly addressed the technicalities

nor control strategies involved. More so, the aggregated assets were not dispatched to

ancillary services markets. Rather, the authors conducted a cost-benefit analysis for the
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customer when involved in certain local utility programs. They studied and analyzed data

gathered from utility companies and profiled the type of services, based on the business

model and customer outreach programs at the respective service territories.

Koliou et al. used DR to aggregate customer loads for DSM [81]. They investigated

how DSM of aggregated loads can be used as a resource for balancing the grid. Small

customer loads were bundled and aggregated for transactions in the German energy market.

The authors illustrated how aggregation companies can bundle up small customer loads

and use this as a market participation resource. The authors noted however that as a viable

market resource, aggregation of DR loads for DSM is still in its early stages of consideration.

Pruggler came to similar conclusions, demonstrating the economic potentials of DSM,

especially for spot market-oriented loads at house hold levels [82].

Calvillo et al. noted that the market share of aggregators in the energy market globally

was between 1% to 2% in 2016, and that proper planning and efficient operational strategies,

along with friendly government regulations, will likely help grow the role of aggregators

[83].

DERs that provide DR were referred to as flexible service providers by Eid et al. [84].

In their work, the authors argued that many barriers still exist that limit aggregators from

participating in balancing markets and that policy makers and regulatory commissions

should assist to lower those barriers and develop better compensation mechanisms between

aggregators, utility companies, and generation suppliers. They concluded that such flexibility

services are necessary for the reliability and sustainability of the grid.
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A review of other literature discussing AA and select pilot-projects was presented by

Neisten and Alkamade [85]. In their analysis, they reviewed the data from 434 European

and US smart grid projects. They noted that an aggregator is critical in making any market

participation of customer DERs in the energy market economically viable. The authors

further demonstrated that aggregation of assets (EV batteries in this case) and the role of

aggregators is necessary to further the business case for the wide adoption of a variety of

other smart grid services for market participation.

Motalleb et al. demonstrated how distributed DR scheduling can be used to provide

frequency regulation during contingency periods [86]. DERs like battery banks and electric

water heaters were used in aggregate as sources of ancillary services. The researchers

implemented a control system model and specialized algorithms that optimized the DERs

for DR. Two points worth noting are that this paper focused on DR alone, and secondly, the

algorithms presented were limited to when contingency events occurred on the grid.

Roos et al. developed an optimization framework for a load aggregator participating

in wholesale power and capacity regulation markets. They used actual data from a set of

Norwegian electricity consumers to test the model and estimate the value of aggregation to

the market [87]. This report concluded that the aggregator value largely depends on factors

such as daily price variations, the definition of market on-peak and off-peak periods, and

the price of storage, among other factors. The aggregator’s objective was to minimize the

total energy costs to the consumers. Select customers for this study included shopping

centers and food production sites with loads such as heating, air conditioning, and lighting.
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The technology to do this was developed by Enfo Consulting AS, a European smart grid

solutions company that enables communications and control for residential loads.

CAISO conducted a pilot study in collaboration with Lawrence Berkely National Lab

(LBNL) in 2009 that determined the feasibility of allowing commercial and industrial

DR-enabled DERs to participate in wholesale day-ahead non-spinning reserve ancillary

service markets [88]. The objective was to assess the technical and financial feasibility

of using retail loads to participate in day-ahead wholesale non-spinning reserve ancillary

service markets. Three facilities, a retail store, a local government office building, and a

bakery were used as DER resources and linked together using Open Automatic Demand

Response (OPENADR). OPENADR is a public (non-proprietary) standardized interface that

allows electricity providers to communicate DR signals directly to existing customers using

a common protocol. With OPENADR, communications can be easily exchanged between

many devices through a unified messaging system. Energy pricing and reliability signals can

be readily exchanged via OPENADR to utilities, independent power operators and system

operators. The results showed that assets controlled using OPENADR could be used for

some types of ancillary service markets. The CAISO and LBNL researchers also found

that DR strategies for HVAC and lighting can provide responses suitable for participation in

the non-spinning reserve ancillary services market. This research focused on optimizing

the communication and telemetry infrastructure needs, understanding the capabilities in

commercial and industrial facilities to automatically deliver load within the limitations

of the non-spinning reserves product, and testing the feedback controls to maintain the
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commitment of loads.

An aggregator was proposed for time-of-use applications by Rahnama et al. [89].

A supermarket refrigeration system and a chiller with ice storage were used in a case

study. Results obtained from the study were verified against actual supermarket energy

use to determine potential profitability. A centralized controller, whose responsibility is to

aggregate load flexibility in an optimal way based on preset market time-of-use prices, was

used for large commercial customers.

Ruiz et al. created a Virtual Power Plant (VPP) by aggregating several DER loads (air

conditioning units, water heaters, electric space heaters) [90]. This was accomplished by

aggregating the capacity of the DERs in order to make them more accessible and manageable

in the day-to-day energy markets. An algorithm to manage the VPP consisted of a large

number of customers with thermostatically controlled appliances. The algorithm, based on

Direct Load Control (DLC), similar to Diduch et al. [91], determines the optimal control

schedules that an aggregator should apply to the controllable devices of the VPP in order to

optimize load reduction over a predetermined duration. The results define the load reduction

bid that the aggregator can present in the electricity market, but the model used for the

bids are not flexible nor are they divisible. They were constrained by the parameters of the

models, which need to be reset every time a new customer is added.

The possibility of providing regulation services with small loads, such as water heaters,

electric heaters, or air conditioners was researched by Kondoh et al. [92]. Specifically,

DLC models were developed for aggregating water heater loads for the energy market. The
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models estimate the minimum amount of water heaters needed, the duration of regulation,

as well as the amount of regulation (MWh) needed. The researchers concluded that the

aggregated regulation service provided by water heater loads can become a major source of

revenue for load-serving entities. To guarantee customer comfort and provide regulation

service, however, the water heater thermostat control circuit was modified. Because each

thermostat control circuit was modified, scaling could be a challenge. One limitation of this

work is that from 00:00 hours to 06:00 hours, regulation is not available due to lower power

consumption of the water heaters.

A method was developed by Keep et al. that allows for the use of aggregated electric

loads to balance forecast shortfalls on the ACE [93]. The strategy is quite unique compared

to other literature surveyed thus far in that it relies only on load switches as the source of

local control actuation, yet it is capable of both decreasing and increasing the total aggregate

load while causing little to no disruption to the end users. Load switches were used for

controlling refrigerators. However, the application of aggregation to household refrigerators

alone limits the scope of this work. The authors presented a mathematical model for the

control algorithm, and they noted that other appliances like space heaters and water heaters

should be expected to provide similar results.

In summary, although the definition of aggregators varied widely between the different

literature examined, they were all consistent in their need for providing support to the electric

grid. Further, how the aggregated services were bundled was also different between authors.

The definition of ‘assets’ is particularly important because some authors describe assets as
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RER that produce power to the grid (one way output, i.e., PV) while others describe assets

as customer loads that have the ability to load up or shed energy (bi-directional). As Burger

et al. noted, the interpretation of aggregators can be expanded or restricted depending on

the roles and functions of the aggregators [78]. Most literature refers to AA in the first

context, suggesting that the later (bi-directional generation and/or absorption) is not yet

mature, albeit, both types of aggregation hold significant benefits to solving the problems

created by the ongoing proliferation of RER on the electrical grid.

2.1.4 Aggregation of EWH

Laurent and Malhame built a computer aggregation model to simulate aggregations of

water heaters [94]. They tested the influence of certain factors on power ratings including

insulation, element power rating, and variance in water demand. Their work was targeted

for modeling the behavior of water heater aggregations for forecasting loads, not controlling

or dispatching them for market participation. In another work, Laurent et al. created an

optimization method for load management with control of electric water heaters [95]. They

used a column generation method to optimize the water heaters for peak load reduction.

A Direct Load Control (DLC) algorithm was developed for aggregated control of

domestic electric water heaters by Diduch et al. [91]. Some of the challenges encountered

in this experiment were due to uncertainties in estimates of the water heater temperature

fluctuations, water extraction, and demand estimate, and forecast of reserve load. The

authors recommend using load modeling as a means of improving the accuracy of the

algorithms developed. In their aggregation of water heaters, the authors demonstrated that
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water heaters can be used as an energy storage buffer when peak-shifting power scheduling

schemes are in force.

Fitzgerald et al. modeled 100,000 EWH assets to improve efficiency of wind generation

[96]. They designed a control algorithm to improve the likelihood of water heaters being

able to take on extra load during an expected peak in wind generation. Their simulation

showed that applying their algorithm could result in electricity reduction of 25% and cost

reductions of 38% from scheduling power consumption at better times.

Kepplinger et al. tested demand side management control optimization schemes for

aggregated EWHs [97]. They tested three optimization methods: a price driven optimization,

an energy driven optimization, and an optimization method based on time of day. They

determined that a price optimized control scheme was most cost efficient with fewer service

errors.

Kapsalis and Hadellis created an optimal scheduling algorithm for EWHs [98]. They

used an objective function that weighed interests in keeping electrical costs low while

keeping customer discomfort minimal. Their algorithm minimized both costs and discomfort

based on relative weightings. Their algorithm worked on two levels, being able to adjust

customer set-points and having access to a direct on/off switch for the electrical coil. In a

related work, Kapsalis et al., presented a heuristic scheduling algorithm to balance decisions

between cost of power and comfort of consumer hot water consumption [99]. The authors

simulated their algorithm in a real-time market and found it performed as well as a standard

optimization model with considerably less computational overhead.
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Roux et al. developed a peak demand manager algorithm that focused on water heater

usage. Essentially, they had EWHs compete to use the electrical grid during peak hours, and

only water heaters with the most need turned on during peak hours. They tested their control

method against a traditional control method, and found their algorithm could shift controlled

amounts of electricity from peak times, with minimal events of user discomfort [100].

2.1.5 Aggregation of Other Assets

Li et al. created an aggregator service for large multi-tenant buildings [101]. They built

an aggregation of EWHs, solar panels, battery energy storage, and electric vehicles. They

examined control algorithms for the DER assets that would allow them to minimize power

costs through load shifting and energy trading of the DER units.

Faika et al. proposed an Internet of Things (IoT) architecture for aggregating multiple

batteries over a wide area network [102]. They tested their proposal on a five battery test

bed and found the latencies in the network were small enough to allow for massive scaling

over a cloud network.

Khalid and Savkin analyzed the aggregation of batteries to smooth wind power produc-

tion [103]. They used the aggregation to compensate for small dips and rises in wind power.

They found a semi-distributed system of batteries both near the wind turbines and away

from the wind turbines was most effective at smoothing wind power.

In the field of aggregations using DER, Asimakopoulou and Hatziargyriou modeled

the economics of DER aggregation through a bilevel programming problem using a DER

agregator’s bid decisions as the upper level problem and the market clearing decisions as the
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lower level problem [104]. They confirmed that the addition of DER assets had a stabilizing

effect on locational marginal prices (LMPs) in the bulk electricity market. They found that

when LMPs were high, DER aggregators performed best when exporting energy to the

power grid, and when LMPs were low, DER aggregators performed best when importing

energy from the power grid.

Calvillo et al. built an optimization model for a variety of DER assets including

photovoltaic systems, air-sourced heat pump systems, batteries, and demand response

assets [105]. They optimized a system using price-maker economics, assuming that the

DER aggregation was large enough to influence market clearing prices. They analyzed

aggregations of residential houses running from forty thousand to eight million houses.

Calvillo et al. found that aggregating these assets could be profitable for both aggregators

and prosumers.

We reviewed a few papers that discussed battery aggregations using Electric Vehicles

(EVs) in order to gain an insight into how much work has been done in this area. Wu et al.

determined the operation scheduling of an aggregated set of EVs from a cost minimization

perspectives. Ortega et al. discussed the changes necessary to allow for aggregated EV

dispatch in a day-ahead electricity market. Gonzalez and Andersson, Vagropoulos and

Bakirtzis, and Sarker et al. all investigated optimal bidding strategies of EV aggregations

[106–108].

48



2.2 Literature Survey of Select Optimization Techniques

With thousands of water heater energy profiles to to be aggregated by the AWHS, it is critical

that current optimization techniques discussed in literature be explored. In the following

paragraphs, several optimization techniques pertaining to DSM, HES, AA, and RER are

discussed. Optimization techniques were explored in literature because it can help inform

how the AWHS can better dispatch its resources to maximize revenues.

2.2.1 Particle Swarm Optimization

Maleki et al. used a Particle Swarm Optimization (PSO) algorithm and Monte Carlo methods

to optimize HES systems [109]. PSO is an heuristic searching technique that uses stochastic

optimization on a population that is initialized with a population of random solutions.

Then, an algorithm is used to search for the best results by updating the outputs. The

authors used Monte Carlo simulations to randomly generate stochastic demand and supply

profiles, including load profiles at households, residential solar generation profiles, and

micro wind-turbine generation profiles. A battery was used to store the generated energy.

Zhou and Sun proposed a type of PSO algorithm for HES, referred to as “simulated

annealing” PSO [110]. The new algorithm improves the diversity of PSO and improves the

ability to finding new optimum results. The authors concluded that the global searching

ability of this new method was improved. By optimizing the capacity of HES systems,

the authors found that the upfront economic investment, and the operation costs can be

significantly lowered on the basis of maximizing the renewable energy output and meeting
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variable demand loads.

PSO has been used with stand-alone RERs like solar and wind. Saad et al. used PSO to

optimize the maximum power point tracking capability of grid-connected solar PV systems.

Results presented by authors showed that PSO helped reduce excessive DC link voltage,

high AC currents and loss of grid-voltage synchronization [111].

Kayal and Chanda used a simple but efficient PSO approach for optimizing the siting

of solar PV panels and wind turbines within an electrical distribution territory. Factors

considered included electrical network power loss minimization, voltage stability and

network security requirements [112]. Weighted aggregation PSO was used to optimize

the RERs considering bus voltage limitations, maximum line loading capacity, capacity

limitations and penetration constraints of the RERs. Strategic weight selection techniques

were then applied to evaluate performance trade-offs for each type of RER relative to its

placement within the distribution network placement.

Chang demonstrated how PSO can be use to find the Weibull parameters of three wind

turbines located at different climates [113]. The Weibull distribution is an expression that

gives a good fit for the total mean power generated by a wind turbine relative to a range of

mean wind speeds. It provides a probalistic base model that can be used to optimize wind

energy harvesting. The authors concluded that PSO is feasible for wind energy applications

because of its rapid convergence in estimating Weibull parameters, regardless of the data

size or differences in wind patterns from one turbine to another.

Aghajani et al. proposed a multi-objective energy management system for the perfo-
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mance optimization of RERs [114]. The problems with operating RERs were then solved

considering the responsive loads as coverage for the uncertainties associated with wind

and solar power generation as an optimization function. Considering the complexity and

non-linearity of RERs, Multi-Objective Particle Swarm Optimization (MOPSO) was utilized.

Fuzzy-based mechanisms and non-linear sorting of the overall system were then applied

to determine the best compromise considering the set of solutions from Pareto-front space.

The numerical results obtained from the research represented the effect of the proposed

DSM scheduling model on reducing the uncertainty obtained from RERs. Albeit, their work

discussed using DSM without the specifics of the types of DSM and limited consideration

was given to aggregation of DERs.

2.2.2 Hybrid Big Bang-Big Crunch

Hybrid Big Bang-Big Crunch (HBB-BC) is a non-linear evolutionary computer algorithm

that can be used to solve large complex optimization problems with larger constraints, time

and memory requirements [115]. Some optimization problems can be solved using linear

programming and quadratic equations, but these tend to have reduced accuracy [116, 117].

For more complex algorithms and non-linear optimization problems requiring a lot of

iterations before convergence can be achieved, HBB-BC can be used. Ahmadi and Abdi used

a HBB-BC algorithm for optimal sizing of a stand-alone hybrid PV/wind/battery systems

[118]. They compared the performance of the HBB-BC algorithm to that of PSO and then

later, to that of a Discrete Harmony Search (DHS) algorithm. For applications with HES,

they found that the HBB-BC algorithm had the highest accuracy, best performance and
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could find the most optimal solution when compared with the other optimization techniques

examined in their study.

2.2.3 Time Series Regression Analysis

Time series regression analysis is the application of statistical methods to existing historical

data for the purposes of predicting future outcomes. For example, utilities can use prior

customers energy usage patterns over a prolonged period of time (at least one year) for

planning and system wide growth forecasts. Time series regression can help with forecasting

of economic, financial or energy usage behaviors.

Average hourly whole-house load data from 195 participant households and 268 non-

participant households were compared after the participant thermostats were remotely

controlled for four hours on five event days in a study conducted by Newsham et al. [119].

Complex time series regression analysis was applied to the two datasets. The authors reported

10% to 35% average peak load reductions per participant household when compared with

the non-participant households.

2.2.4 Other Optimization Techniques

Aslam et al. proposed an effective DSM management program developed using meta-

heuristic Genetic Algorithm (GA), Cuckoo Search Optimization Algorithm (CSOA), and

the Crow Search Algorithm (CSA), for electricity cost and peak load alleviation with the

least amount of customer waiting times with the integration of smart energy storage systems

[120]. Thirty smart homes, and real-time energy pricing and Critical Peak Pricing (CPP)
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signals were examined in terms of electricity cost estimation for both a single smart home

and a smart building. The simpler but equally optimal Approximate Dynamic Programming

(ADP) was used by Al-jabery et al. for energy management of domestic EWH [121].

Elhadidy and Shaahid, and Beyer and Langer used Multi-Objective Evolutionary Algo-

rithms (MOEA) to solve the problems with HES like system costs, system reliability, design

optimization and control [122, 123]. Augustin and Dufo-Lopez published a literature review

paper that covers the types of simulation and optimization techniques, as well as the tools

existing used to design stand-alone HES [124]. Design and optimization software tools like

HOMER, HYBRID2, HOGA and HYDROGEMS were discussed in their review.

2.2.5 Related Optimization Work

Due to the ongoing large scale integration of RER and the challenges they pose, there is a

need to optimize their operation in tandem with other distributed assets i.e., battery storage

systems, customer loads, so as to maximise their benefits to the grid-at-large, enhance system

wide reliability, and make a return back to rate payers or private investors. Some of the energy

optimization schemes uncovered in the literature includes Brunelli and Tamburini’s work on

developing residential load scheduling optimization schemes for energy cost minimization.

However, their work was limited to a single hybrid system comprised of electric household

appliances in tandem with PV and storage at a specific location (i.e., one household system

alone) [125]. In the work by Mangiatordi et al., an optimization scheduler was developed

for multiple households, but the energy price control was not factored in their optimization

[126]. Likewise, kardaras et al. developed a way to optimize demand response. However,
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their system did not include PV or storage [127]. An optimization system based on a

charge/discharge scheduling algorithm for battery storage systems operating in tandem with

PV was developed by Babacan et al. Their system helped minimize the monthly electricity

expenses of a customers by incorporating both a time-of-use volumetric tariff and a demand

charge tariff [128].

Others have performed scheduling for appliances, but they do not account for aggregation.

By far, the most comprehensive is the work by Passenberg et al. [129]. They developed an

optimal water heater control using a smart control system. Similar work has been performed

at the power lab at Portland State University in the research work by Emily Barrett [130].

In this case, a hot water heater was optimized. In Barrett’s work, differential evolution and

alpha prototype strategies were optimized in a two-stage heat pump system, which was

shown to achieve a 14% reduction (and about 20+% improvement during winter months

when price-based programs are most capable of performing peak-shaving) in the wholesale

electricity cost of operating a heating system with some storage (thermal storage) in a generic

single family residence. Also from Portland State University was Robert Rector’s work on

Generic Differential Calculus Optimization. Rector demonstrated how smart solar inverters

and battery storage systems can be used to maximize the revenue earned for providing real

and reactive power sales [131].
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2.3 Dispatch of Residential Water Heaters for Ancillary Service

Because of their fast response time, water heaters can participate in more than peak demand

mitigation. There are several utility programs where water heaters are used for peak demand

mitigation alone [65–67, 132]. To date, not many have tried to use hot water resources

for more than one ancillary service simultaneously. The financial gains in doing this, as

summarized by Hledik et al., is that a service that allows the use of water heaters for

frequency response can bring more benefits [51]. Hledik et al. demonstrated this both with

the PJM ISO and the Mid-Atlantic Independent System Operator (MISO) markets.

The reason why water heaters have not been used on a large scale to provide ancillary

services is due to the the unwillingness of water heater manufacturers to open up their pro-

prietary platforms to allow control access by non-Original Equipment Manufacturer (OEM)

vendors. BPA’s recent market transformation report showed that the costs of retrofitting

water heaters with communications and control modules that can allow a communication

protocol like CTA 2045 or OPENADR are negligible if rolled out and programmatically

implemented at utility-level scale [5].

Recently, there has been concrete efforts to standardize remote access control of water

heaters. The State of Washington in 2019 passed a bill that will mandate all new water

heaters sold within the state to be CTA 2045 compliant beginning in 2022 .10,11 When

enacted, this will establish a precedent for allowing control of customer owned water heaters
10Washington State Legislature,

http://lawfilesext.leg.wa.gov/biennium/2019-20/Pdf/Bills/House20Bills/1444-S.pdf
11Washington State Department of Commerce,https://www.commerce.wa.gov/growing-the-

economy/energy/appliances/

55



by 3rd-parties outside of water heaters OEMs’ proprietary platforms. This should encourage

more willingness from both customers and utilities to exploit the capabilities of water heaters

for providing utility services.
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3 Methodology

3.1 Introduction

We propose a two stage algorithm for optimizing the available energy in the AWHS by using

market price signals to maximize revenue. In stage 1, we begin by simulating and initially

optimizing all the units available in the AWHS as if they were all reserve resources. This

initial optimization relies on forecasts. The optimization routine anticipates future energy

take, weather temperature, and market prices based on historical data. Upon convergence,

the optimization algorithm shifts to the next time block and re-iterates the optimization with

new projected allocations. This process repeats continuously until a full day’s worth of

projections are simulated and optimized.

In stage 2, the AWHS considers how dispatches affect the AHWS resource. It re-

optimizes to maximize revenue for each ancillary service based on the effects that dispatches

have on the AWHS energy take resource. Over-dispatching is prevented by limiting dispatch

capacity of the ancillary services. If dispatches were not limited, the AWHS could run low

on energy take, which could limit its ability to earn revenue.

A summary of the method is presented in Figure 3.1.
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3.2 Justification for the proposed methodology used in this research

Of the six solutions described in section 1.8 for addressing the challenges of RER, AA

using residential electric water heaters was chosen. We chose to aggregate water heaters

because of their quick response time, the ease of scaling water heaters by the thousands

in our models, and because water heaters are ubiquitous. Electric water heaters are in

more than 50 million homes across the U.S, and they account for more than nine percent

of all electricity consumed by households nationally, with more than forty percent of U.S

households consisting of at least one electric water heater [51]. A number of sources have

demonstrated that customer loads can provide superior response in comparison to generators,

because the curtailment of load typically responds faster to control signals than larger and

more complex TGR [133–138]. The following subsections describe the steps involved in

the optimization method summary in Figure 3.1.

3.2.1 Stage 1 and Stage 2 Optimization

The optimization begins with the reservation phase in stage 1. This is because all services

are treated as reserve services at the beginning of the optimization. The reservation phase

advises the optimizer of when to schedule services, and how much to schedule.

By considering all services to be reserve services, the first stage optimization produces

a service schedule that does not impact the AWHS energy take. This schedule advises the

stage 2 optimization phase of when dispatch services may be optimally scheduled. In stage

2, the impact of dispatches on the AWHS energy take profile are considered.
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3.2.2 Time shifting

This research is novel in that we attempt to allocate a regenerating resource over multiple

time periods with two major limiting factors, namely, uncertainty and impact. There are

uncertainties present due to forecasting of future energy take, weather, and price data. The

impact is that every dispatch affects future dispatches due to the system recovery time. Such

an impact is not an issue at gas plants, for example, because there are reserve supplies of

gas with a steady supply to the generator, and barring any sudden or unplanned outages, the

generator control room operators know precisely how much energy capacity it can provide at

any time. To compensate for this impact, we optimize the resources available in the AWHS

in 5 minute step-intervals. We keep looking into the future so we can compensate for the

effects of over-dispatching, which can result in prolonged recovery times for the AWHS.

Prolonged recovery times can result in a high opportunity cost for the AWHS, as energy

take becomes unavailable for scheduling to reserve services.

The work done here addresses a challenge with dispatching a dynamic resource like the

AWHS, namely, how the system recovery can be managed in a way that adequately positions

the AWHS to participate optimally in the next round of bidding following the last dispatch

at t-1. The resource recovery curve represents the energy take left in the AWHS immediately

following a dispatch, and it shows the duration that it will take the AWHS to get back to

its pre-dispatch energy-take level. The resource recovery curve is recalculated after each

dispatch. Further, the energy dispatch constraints are dispatch-dependent and need to be

recalculated for every selection of dispatch vectors.

60



This method slides the entire 24 hour daily window (288 five minute time intervals)

ahead by 1 unit of time (5 minutes), i.e., from 1 to 288 to 2 to 289, etc. The outcome is that

the optimization schedule changes as new future data projections are added. After every

dispatch, the available energy take decreases and so a new energy curve is redrawn.

Following each dispatch, and in preparation for the next dispatch, our algorithm time-

shifts (slides ahead) to the next five-minute interval based on historical data. By time shifting,

we are able to optimize for future dispatches, in anticipation of the changing energy take

profile of the AWHS. In the following paragraphs, we explain how we used time series

forecasting to inform our two stage optimization algorithm.

3.2.3 Time Series Forecasting

Forecasting of time series data is not new. It has found several applications in both industry

and academia. In an effort to improve accuracy, several time series forecasting methods

and models have been postulated for a wide variety of applications. A survey of different

time series forecasting methods were presented by Mahalakshmi et. al [139]. The authors

discussed time series methods for forecasting electricity market clearing price and electricity

load forecasting data. Similarly, for our research, we elected to forecast future energy take

time series data, and future energy prices time series data. We selected Long Short Term

Memory (LSTM), a form of Recursive Neural Networks (RNN), for forecasting in this

dissertation.
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3.2.4 RNNs and LSTM

RNNs operate by processing inputs, and then predicting n+1 output. RNNs were used for

classification initially but now they are used for time series prediction. The problem with

RNNs is that when the hidden layers are fed back in, they can be very difficult to train right,

can be very difficult to use, and sometimes are not good at predicting long time series data

sets. LSTMs are an improvement to RNNs because of the way RNNs work. With RRNs,

older information has to travel through several steps before getting to the present processing

step, increasing the possibility of getting easily corrupted by being multiplied several times

by many small numbers. This problem is known as the vanishing gradient problem. In

simpler terms, the vanishing gradient problem is caused when using RNN for time series

forecasting because the output at a particular time depends on the input and the outputs

of previous steps. Because the output will change every time the input changes, for long

data sequences, the gradient gets smaller and smaller and is said to vanish. This quickly

becomes inefficient for longer data sets since the output changes every time there is a new

input, and with a longer duration of time.12, 13 LSTM on the other hand makes decisions by

considering current input and previous output, and it has an extra cell, a memory cell, it then

generates new output data and alters its memory [140]. LSTM is the optimal solution for

our forecasting needs because we have a large data set and we need to forecast over long

periods of time.

There are many scholarly works referencing the use of LSTM for time series forecasting.
12https://mc.ai/how-do-lstm-networks-solve-the-problem-of-vanishing-gradients/
13https://www.superdatascience.com/blogs/recurrent-neural-networks-rnn-the-vanishing-gradient-

problem
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However, due to similarity of their work to the topic of this dissertation, we reviewed the

works of Panapongpakorn et al [141], and De et al. [142]. Panapongpakorn et al. used Long

Short Term Mermory (LSTM), to propose 30 minutes load forecast based on time series

analysis and neural network methods in an Energy Management System . The performance

of their models was evaluated using Root Mean Square Error (RMSE) and mean absolute

percent errors. De et al. on the other hand forecasted photovoltaic power as a means for

anticipating and predicting shortages. Due to the stochastic nature of photovoltaic, the

authors developed a model for accurately forecasting photovoltaic power with high accuracy

by using LSTM.

3.2.5 Justification for using LSTM

LSTM is a type of RNN that can learn the order and sequence dependence of data in

events predictions and forecasting.14 LSTM is commonly used today in applications like

language modeling, speech recognition, and machine translation. There are several benefits

of LSTM over other time series forecasting methods like single or multiple regression

methods, exponential smoothing, single layered Support Vector Machines (SVM) or other

RNN methods like Gated Recurrent Unit (GRU). Perhaps the most advantageous is that

LSTM solves the vanishing gradient problem that occurs, particularly for predictions using

RNN, when there are long sequence time series data involved. According to Chung et al.,

most RNN solutions have a recurrent layer that provides memory for a given amount of
14Machine Learning Mastery, https://machinelearningmastery.com/gentle-introduction-long-short-term-

memory-networks-experts
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time. However, over longer time periods, the gradient of the memory decay causes reduced

information retention [143].

3.2.6 Forecasting using LSTM

The time period when forecasting occurs is for ti+1. Time shifting occurs before forecasting

is applied, and the entire dataset is shifted by one 5 minute time interval. This is done so as

to prepare, optimally, for the next dispatch. In our research, we apply LSTM on the time

shifted data to help inform future resource availability based on the following; past dispatch

data, a user pre-defined learning rate, number of iterations, and the root mean square errors

in between iterations to inform future projections. The obtained projections are then stored

in memory for future retrieval based upon the next dispatch time.

3.2.7 Testing and training the data

We use MATLAB’s LSTM functions for training and testing of our data sets. The following

process flow diagram shows the step by step approach used for the testing and training

process.
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Figure 3.2: LSTM test and training flow diagram.

3.2.8 Accuracy of forecast results and convergence test

The level of accuracy expected of the LSTM used in this work was chosen arbitrarily as 5%.

Most utilities, depending on their expected revenue targets will have internal accuracy targets.

These targets are expected to vary between utilities. We define convergence as when the

forecasted data are within five percent of historical data. Because we have historical energy

take data, we know what past AWHS load profiles look like, and we also have historical
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market price information from PJM. By applying our convergence test, a decision is made

if the forecasted data should be passed to the next phase. This is done by continuously

comparing the time shifted forecasted data from the previous latest forecast to the available

historical data. Forecast data that fail the convergence test are passed through additional

rounds of forecasting until convergence is achieved. Similar to the work of Panapongpakorn

in [141], the RMSE in our results were both found to have a less than 2% error as shown in

Figures 5.21 and 5.24 for energy take and LMP pricing respectively. Therefore, with LSTM,

we were able to exceed our 5% prediction accuracy target.

3.3 Proposed Solution to the AWHS Optimization Challenge

Of the three services under consideration, frequency response and peak demand are reserve

services while frequency regulation is a dispatch service. A dispatch service turns the AWHS

resource on at a scheduled time to consume specific amount of energy. A reserve service

withholds load from being dispatched. A summary of these services is presented in Table 3.1.

Ancillary Service Market type Dispatch requirement
Peak demand mitigation reserve market never dispatched
Frequency regulation dispatch market is dispatched whenever scheduled
Frequency response reserve market rare, stochastic dispatches

Table 3.1: Classification of the three services under consideration.

In the first stage of the optimisation algorithm, we optimized the AWHS as if the entire

resource is available by treating it as a fixed resource for the first iteration and then solving

the entire energy dispatch within the 24 hour window. This is the same as if there were no
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energy dispatches during this time period. The number of units available if we are to do no

dispatches is not going to be the same if we were to dispatch the AWHS. The challenge is

how to calculate the energy take available after a dispatch. In the second stage, a dispatch

will change the AWHS energy take and the number of units available for future scheduling.

The available energy take will change throughout the day as the number of units available

and the amount of energy take available changes, requiring recurring resource evaluation as

time advances.

In summary, we solve this challenge in two stages. In the first stage, we optimize

a dispatch schedule for the AWHS assuming all three services are reserve services. In

the second stage, we accommodate the impacts of the dispatch service. We execute the

first scheduled dispatch at time tx, re-draw the energy take curve of the AWHS, and then

re-optimize for tx+1 for tx+1 < t < 288. This is repeated until the last scheduled dispatch

within the window is evaluated.

3.4 Rational for the ancillary services under consideration

Due to the inherent nature of resistive water heaters, they are able to respond very quickly

to control signals. This feature of water heaters makes them well suited for some ancillary

services. Two of the services chosen in this work, namely, frequency regulation, and

frequency response both require quick response from the AWHS and were chosen for this

reason. Peak demand reservation, on the other hand, is an ancillary service that requires a

large amount of energy consumption to be time-shifted. Water heaters are suitable for peak
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demand mitigation and were chosen for this work because hot water usage can be decoupled

from energy consumption, and because water heaters store significant amount of energy.

The following paragraphs detail why the other three services, namely, ramp rate control,

Volt/VAr, and reserves were not chosen for this work.

Ramp rate control is the ability of an energy resource to change its output over a specified

time interval. By increasing or decreasing the energy output of a generator, the generator is

said to be ramping up or ramping down, respectively. A generator ramp up is equivalent to

a load ramp down, and vise versa. Because of how quickly the water heaters can turn on,

they can perform very well for decrement ramping events. In other words, if the system

needs generation to ramp down, the AWHS can alternatively ramp water heater loads up

to achieve the same objective. However, in order for ramp rate control to be included in

the optimization, it would need to be considered as a constraint of the optimization. Since

the ramp rate requirement vary throughout the day, based on the needs of the grid, such a

constraint would need to be modified constantly. In practise, the nature and the complexity

involved in dynamically modifying the ramp rate of the AWHS is why we have opted to

exclude this otherwise important service from our work. However, water heaters have very

high ramp rates, so they would likely be suitable for meeting most all decrementing ramp

requests.

Secondly, the Water heaters considered in this research cannot be used for Volt/VAr

because they are purely resistive in nature with no capacitance or inductance. Volt/VAr

control is achieved through addition of capacitive or inductive elements to the grid, or
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through the use of power electronics to adjust the phase angles of an inverter to either lead or

lag the voltage at the point of interconnection. Water heaters do not have these capabilities.

Thirdly, in terms of system reserves, reserves are resources that can be called upon when

needed to respond to stochastic events. Frequency response, also stochastic in nature, has

been modelled in our work. We found no additional benefit of studying another stochastic

event. More so, in some markets, non-spinning reserves are not compensated. Because the

AWHS is a non-spinning reserve, we found only little benefit in modelling the AWHS as a

reserve if it is not universally compensated for [144]. Revenue maximization, the objective

of this work, can not be achieved for non-compensated services.

3.5 Difference between this work and other existing utility programs

Although, many utilities have aggregation platforms and programs that aggregate water

heater resources, the body of work presented here is different from such platforms and

programs in the following ways:

• Many utility programs are limited to demand response only. They do not address

frequency regulation or frequency response fluctuations.

• Utility programs only participate in energy conservation strategies by disabling water

heaters temporarily. They do not participate in active energy take dispatches.

• In most cases, such programs are not automatic but rely on a program administrator to

send out a mass communication campaign to subscribed customers who may choose

to either opt in or opt out of participation at the time of the event. Our solution
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here however relies directly on market price signals with no middle-man or human

oversight-scheduler/program manager involvement.

• Utility programs do not account for impacts caused by the dynamic nature and

changing energy take in the AWHS, and

• Most importantly, utility programs do not perform optimization like our proposed

two-stage method.
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4 Description of Method

For our research, we modelled and simulated an AWHS comprised of 10,000 residential

EWH. The water draw profiles of the water heaters in the AWHS are defined using the

water draw scheduler developed by NREL [145] that develops water draw profiles based on

household size information gathered from U.S. Census data [146]. The data encompass 12

months in 288 five-minutes daily intervals.

4.1 Optimization Problem Statement

The problem this research is trying to address is as follows: How should a water heater

load resource be allocated between three ancillary services, frequency regulation, frequency

response and peak demand mitigation, at any given time of the day based on the available

energy take among 10,000 water heaters in such a way that scheduling is prioritized to

maximize revenue. Revenue is maximized by determining the optimal ratio of ancillary

services to provide during each five-minute interval based on market price signals.

4.2 Why 10,000 water heaters?

We chose 10,000 water heaters for resource allocation efficiency and speed, and to minimize

the computational requirements of the optimizer. While 10,000 is used in the current
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research work, we expect that we will increase the number of EWH in the AWHS as we

conduct further research.

An earlier work by Marnell used 100 water heaters in an aggregation system[4]. However,

most noticeable with the use of 100 water heaters was the reduction in the energy take of

the AWHS, and the granularity of the power in the AWHS. Consistent with the law of large

numbers, Marnell observed that the energy take curve of the AWHS got smoother as he

increased the number of water heater units. This observation is in line with our expectation.

We chose 10,000 water heaters because it is in the medium-size range, i.e., not too few, and

not too many.

4.3 Justification for the use of Linear Programming

Linear Programming (LP) was chosen because all the parameters used in the AWHS are

linear, i.e., the objective function, decision variables and system constraints are all linear.

Second, there are no non-linear functions or variables in our problem formulations. Most

important of all, linear problems are easier to compute, determine the solution, model, and

satisfy the constraints defined. Given the amount of computation involved in this research,

and the limitations on computational resources, LP was a reasonable choice for this work.

Although, in academia, there are several methods for optimizing non-linear problems,

in practice however, there are not very many inexpensive, non-linear methods available for

commercial use. To make matters worse, most of the non-linear solvers used in academia

are complex, requiring specific modelling and problem formulation techniques. In addition,
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non-linear programming generally produces different solutions based on the starting points,

making the optima very difficult to reproduce. The lack of a deterministic approach to

reproduction of this research made non-linear programming a non-viable path for this

research.

The only non-linearity observed in this work was the decay function derived from

the recovery curve of the AWHS, after each dispatch. This non-linearity was not used to

produce the solutions obtained in our optimization algorithm but rather was an outcome our

optimization.
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Nomenclature

Problem Variables

ai Peak demand price $/kWh

bi Frequency regulation price $/kWh

ci Frequency response price $/kWh

Ni Number of units online n

Pi System Power kW

Ei System Energy Take kWh

System Outputs

x1 Peak demand mitigation energy kWh

x2 Frequency regulation energy kWh

x3 Frequency response energy kWh

P1 Contracted Power for peak demand mitigation kW

P2 Frequency Regulation Power kW
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P3 Frequency Response Power kW

Gi Revenue $

Constants

Emax Maximum System Energy kWh

FRG Frequency Regulation Constant kWh/kW

FRS Frequency Response Constant kWh/kW

Other System Parameters

t0 optimization start time minutes

td duration of dispatch minutes

tmax maximum time minutes

i five minute time intervals n

n numeric value

75



4.4 Problem Variables

4.4.1 Time interval index, i

There are 288 five minute intervals in any given day. So the range for index i is from 1 at

time, t1 and 288 at time, tmax.

4.4.2 Service Prices

The AWHS earns revenue by participating in three ancillary service markets. The market

clearing price of each of these services vary in real-time. Future prices are therefore

forecasted for the upcoming 5 minute intervals using historical market prices. As time

increases, previously forecasted values are updated so that they reflect the most up-to-date

prices. The AWHS is a price taker, which means it is unable to influence market prices and

it accepts the market prices at the time of bid.

4.4.2.1 Peak Demand Price, ai

We use published Locational Marginal Pricing (LMP) data made available by PJM for

energy pricing. The LMP is the amount it costs to sell or purchase power at different nodes

(locations) within the regional electricity Independent System Operator (ISO). In most

markets, the LMP factors in line losses, congestion costs at the priced node and energy

prices.

We chose PJM due to the volume and duration of historical data made available to the

public, in most cases going back 60 months. In addition, unlike CAISO, PJM services span
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a larger service territory, and PJM readily provides a wide variety of operation data with its

user-friendly data miner that is available to its website visitors.15

To value peak demand mitigation, we use PJM’s Locational Marginal Pricing (LMP) data

and apply a multiplier to the LMP price data between 4:00pm and 8:00pm. This multiplier

serves to emphasize the importance of this service. For summer and winter months, peak

demand mitigation occurs when temperature exceeds 90°F or drops below 32°F respectively.

During the time window, the optimization routine determines when the AWHS should be

reserved for Peak Demand based on the LMP and ambient temperature.

The LMP is comprised of three components: the energy price, congestion costs, and

power line losses costs. We consider only the energy market in this work, therefore we have

elected to treat LMP prices as being equivalent to energy prices.

4.4.2.2 Frequency Regulation Price, bi

PJM provides five minute market data for frequency regulation. Frequency regulation is

comprised of two parts, regulation capability and regulation performance. Like Opathella

et al., we combine these two prices as one [147]. Our choice to combine these two

service prices as one is based on the quick response time of resistive water heaters; they are

sufficiently responsive to always meet the performance criteria.

FERC Order 755 allows frequency regulation to be adequately rewarded in the wholesale

power markets based on capacity payments that includes the marginal unit’s opportunity

cost and the quantity of frequency regulation service provided by a resource when the
15https://dataminer2.pjm.com
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resource is accurately following the dispatch signal [148]. Previously, frequency regulation

payments were only for capacity, whereas the performance for system frequency control

was not considered within the regulation market clearing and settlement. Earlier frequency

regulation compensation schemes led to operational grid inefficiencies [149]. Prior to FERC

order 755, resources with superior speed and accuracy were significantly more effective

at responding to system imbalances, but were paid the same as slower and less accurate

resources. ISO markets paid regulation providers a “capacity payment” to make some

capacity available in 5-15 minutes and not based on performance (how fast they responded).

Now resources are paid on $/MW provided for capacity and the “mileage” performance ,

where “mileage” is calculated as the absolute value of the sum of the frequency increments

or decrements caused by a resource’s ability to inject or absorb power.

We use the provided regulating performance prices furnished by PJM. Regulation

capability refers to whether a unit is able to respond to PJM’s frequency regulation signal

or not. Simply stated, regulation capability is the cost of reserving a fixed amount of MW

for regulation. The AWHS will allocate a percentage of the total energy take available for

frequency regulation, as determined by the optimization algorithm.

4.4.2.3 Frequency Response Price, ci

There is currently no market for frequency response in the U.S. Nevertheless, we structure its

pricing model as a constant, which signals a steady-state need for reserving this service. We

chose to model frequency response pricing as a constant because we found other literature

where frequency response has been similarly modelled. For example, O’Sullivan et al. used
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a fixed frequency reserve constraint in their economic dispatch models for smaller municapal

utilities [150]. For simplicity of their model, Ela et. al used a hypothetical optimization that

assumed frequency response bids are constant [151, 152].

12:00:00.00 AM

2:24:00.00 AM

4:48:00.00 AM

7:12:00.00 AM

9:36:00.00 AM

12:00:00.00 PM

2:24:00.00 PM

4:48:00.00 PM

7:12:00.00 PM

9:36:00.00 PM

12:00:00.00 AM

8/23/2019 9/12/2019 10/2/2019 10/22/2019 11/11/2019 12/1/2019 12/21/2019 1/10/2020 1/30/2020

TIME OF DAY VS. DATE OF FREQUENCY RESPONSE EVENT

Frequency Events

Figure 4.1: Frequency response events recorded at the Salem Smart Power Center from August 23, 2019 -
January 31, 2020, Source: PGE.

Frequency events recorded at PGE’s Salem Smart Power Center between August 2019

and January 2020 are presented in Figure 4.1. Frequency response events are not correlated

with any predictable phenomena like weather, transmission congestion, or distribution

system overloading. Therefore, the price is justified to be a constant. If system operators are
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not able to predict when a frequency response event will occur, price cannot be increased or

decreased in anticipation of bringing additional response resources online.

4.4.3 System Energy Take, Ei

The available energy take in the AWHS depends on the states that the individual water

heaters are in at any given time. The state diagram shown in Figure 4.2 is a variation of the

one that was developed by Marnell [4].

There are three states. In states 1 and 3, the AWHS controls how individual water

heaters in the system manage their energy take. In state 2, the AWHS relinquishes control to

the individual units for the purposes of improving occupancy comfort and prioritizing the

residents’ water heating needs. As shown in Figure 4.2, the temperature of the water in each

unit informs the three states and determines the total amount of energy take available in the

system at any particular time.
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Figure 4.2: State diagram for electric water heater model [4].

4.4.4 Power, Pi

The maximum power capacity of the system is derived from the available energy per time

step. Each water heater has a maximum rated power of 4.5 kW, therefore, the maximum

power available in the system can not exceed 45 MW, which would only occur if all 10,000
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units were available.

Figure 4.3: Maximum power available in the AWHS vs. the number of consecutive five-minute dispatches [4].

In Figure 4.3, we plot the maximum power available in the AWHS vs. the number

of consecutive five-minute dispatches. This figure answers the question of how many

dispatches can be made consecutively, at a fixed power level, without running out of energy

take capacity. As the bid interval length increases, the available maximum continuous power

from the AWHS decreases. For one bid in any given 24 hour period, the AWHS is power

limited and can only supply 43 MW per per five minute of energy, as shown on the far left

[4]. It is never the case that all the water heaters in the AWHS are available at any given

time. In our research, we have observed that the AWHS can successfully consume up to 2.0
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MW continuously without ever running out of energy. This is equivalent to 0.17 MWhr per

five minute interval.

4.4.5 Revenue Earned, Gi

The revenue earned by selling reserve capacity and dispatch bids at time interval i is

represented by Gi.

4.4.6 Number of units, Ni

Ni represents the number of units available at time interval i. Although there are 10,000

water heaters in the AWHS, depending on the particular dispatch requirements of the

aggregation system, the optimization algorithm, and the available energy take in the AWHS,

the number of units available to respond to a bid at any given time will vary.
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4.5 Decision Variables

The objective of this research is to optimally decide among three services what proportion

of each service should be deployed at any given time interval, ti, that will yield the most

revenue, within any given 24 hour window. Each of the three services are represented, by

the subscripts 1, 2, and 3 of the letter x, for peak demand mitigation, frequency regulation,

and frequency response, respectively. In other words, x1 = peak demand mitigation, x2 =

frequency regulation, and x3 = frequency response. Our optimization algorithm solves for

the value of x for each of the three services that maximizes the revenue of the AWHS.

4.5.1 Peak Demand Mitigation Energy, x1

x1 is the amount of peak demand energy scheduled as a reserve during peak demand hours.

This is the amount of energy that will be held back from being dispatched into the energy

market.

In general, electricity consumption reaches peak capacity less than 20 times a year and

for brief intervals that last about two to three hours. During these periods, demand response

programs such as peak demand mitigation are used to reduce peak consumption. These

periods are defined by time of day and ambient temperature, as described in 4.2.2.1. The

AWHS will not dispatch its load resources during peak demand mitigation periods. The

AWHS will be compensated by the amount of energy it is able to hold back in reserve during

peak demand mitigation.

PJM has two five minute reserve markets based on geographical locations, namely,
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the Mid-Atlantic Dominion (AD) reserve market and the Regional Transmission Operator

(RTO) reserve market. Further, PJM classifies reserves into two types, synchronized and

non-synchronized reserves. Synchronized reserves are from generators or certain demand

response loads that can provide relief to the grid within 10 minutes. Non-synchronized

reserves refers to resources (or loads) that can respond within 10 to 30 minutes. The water

heaters in the AWHS are considered online (connected to the grid) and can respond in

a matter of a few seconds, and as such, they meet PJM’s synchronized reserves market

participation requirements.

4.5.2 Frequency Regulation Energy, x2

x2 is the amount of dispatchable energy available in the AWHS for frequency regulation.

Frequency regulation services match generation to load so as to maintain the frequency of

the grid near 60 Hz at all times. The AWHS uses water heaters for participation of frequency

regulation services.

Regulating units correct for small changes in load or generation that cause the power

system to operate out of balance. PJM’s five minute market has two frequency regulation

price structures based on the performance and capability of the provider, namely, “RegA”

and “RegD”. The former is a lowpass signal for slower resources while the later is a high

pass signal for more dynamic, faster resources. Water heaters respond very quickly, so

they are well suited for responding to RegD signals. This was demonstrated by Slay, who
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showed that resistance water heaters can accurately follow PJM’s RegA and RegD frequency

regulation signals [153].

4.5.3 Frequency Response Energy, x3

x3 represents the energy reserved in the AWHS for frequency response. As RER continue to

displace traditional synchronous generators, the total inertia in the electric grid continues

to decrease owing to the decoupling of the mechanical rotor speed and system frequency.

RERs like wind and solar PV do not have sufficient inertia to help mitigate system frequency

fluctuations, which can lead to instability of the grid frequency and reduce the ability of the

power system to remain stable following a system disturbance.

The equation below describes the relationship between power and frequency [154]:

4f =
1

Ms +B
(4Pe −4Pimp) (4.1)

F =average frequency change

Ms = System inertia of the system

B = is the inverse of the frequency sensitivity

Pe = is the change in power exported

Pimp = is the change in power imported

β = Power-Frequency ratio

For a perfectly balance system, with zero system imbalance[154]:

β =
4Pe

4f
(MW/0.1Hz) (4.2)
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Traditionally, generation is used to maintain system frequency. For any reduction in

frequency, generation must be ramped up to restore system frequency, and likewise, if

the frequency rises, generation must be ramped down. Alternatively, this can achieved by

controlling loads. There exists a direct correlation between system frequency and available

loading. The loads available in the AWHS can be used to respond to system frequency calls.

Frequency response is called upon when there is a sudden unacceptable fluctuation in

grid frequency. For example, such events can occur during the unplanned loss of a large

TGR that causes the frequency to rapidly decrease. In order to restore the nominal frequency,

real power must be quickly provided to the grid. To maintain a constant frequency, the active

power supply must be equal to the load at any given time. Most TGR have active power

reserves that must be quickly brought on-line after seconds of imbalance so as to prevent the

system frequency from changing too much. The AWHS can only help with grid frequency

increases by bringing more water heater loads online. Therefore, the AWHS can be used as

a frequency response load resource for addressing sudden frequency increases.

4.6 Optimization Parameters Definitions

We construct the mathematical formulation for our optimization algorithm in the following

subsections:

4.6.1 Objective function

The objective function is a mathematical model that describes the ratio of services that

result in the maximization of revenues with respect to each of the three services under
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consideration.

The maximization problem for revenue G, over i then becomes;

max
x1,x2,x3

i=288∑
i=1

G(ai, bi, ci, x1i, x2i, x3i) (4.3)

x1i, x2i, and x3i, are the scheduled energy take for peak demand mitigation, frequency

regulation, and frequency response respectively.

Since,

x1i = P1i4ti (4.4)

and

x2i = P2i4ti (4.5)

and

x3i = P3i4ti (4.6)

the revenue, Gi from equation 4.3 can be written in terms of Pi as follows:

Revenue from peak demand mitigation is:

G1 =
i=288∑
n=i

(P1iai)4ti (4.7)

Revenue from frequency regulation;
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G2 =
i=288∑
n=i

(P2ibi)4ti (4.8)

and Revenue from frequency response is;

G3 =
i=288∑
n=i

(P3ici)4ti (4.9)

so the objective function, and maximum revenue becomes;

Gtotal =
i=288∑
i=1

(P1iai + P2ibi + P3ici)4ti (4.10)

4.6.2 Optimization Constraints

4.6.2.1 Available Power

We use LP to solve for the optimal Power P1, P2, and P3 for peak demand mitigation,

frequency regulation, and frequency response respectively. The maximum available power

capacity, with all units turned on can not exceed 45 MW if there are 10,000 units with each

heating element rated at 4.5 kW

Pi = P1i + P2i + P3i
(4.11)

Pmaxi
≤ Ni4.5kW (4.12)
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where Ni is the number of units available at interval i, and

Pmaxi
=
4Esystemi

ti
(4.13)

where4Esystemi
is the maximum change in the system energy take during time interval

i.

For the lower bound,

Pmini = 0MW (4.14)

and

Pmini ≤ Pi ≤ Pmaxi
(4.15)

Frequency response is constrained by the available power in the AWHS, and as such, the

system is power limited with regards to frequency response, therefore, Equation 4.12 can be

written in terms of frequency response as:

P3imax ≤ Ni4.5kW (4.16)

where,

P3imax4t ≤ Ei
(4.17)
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4.6.2.2 Available Energy

The energy scheduled for dispatch at any time interval ti shall not exceed Ei, the maximum

available dispatchable energy at any given time.

Where;

Ei =
i=N∑
i=1

En (4.18)

where N = 10,000 units.

From section 4.4.4, the upper bound of frequency regulation energy, x2, a dispatchable

service, is constrained as follows:

x2i ≤ 0.17MWhr (4.19)

so,

P2i ≤ 2.0MWhr (4.20)

We set the upper boundary of frequency regulation to 0.17 MWhr (or 2.0 MW per five

minute interval) because from Figure 4.3, at this limit, the AWHS energy regeneration

is high enough to sustain multiple consecutive energy takes throughout the day without

running down the system energy take.
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4.6.2.3 Peak Demand Mitigation

Peak demand mitigation is constrained to the hours between 4:00pm and 8:00pm during

summer and winter months when temperature exceeds 90°F or drops below 32°F respec-

tively.

4.6.3 Optimization Equation

The optimization problem, revenue earned by the AWHS during time interval i, can be

represented by the following equation:

Gi = (aiP1i + biP2i + ciP3i)4ti (4.21)

which then becomes;

G(a, b, c, x1, x2, x3) = aix1i + bix2i + cix3i (4.22)

The objective function formulation and optimization therefore becomes:

Maximize
i=n∑
i=1

G(ai, bi, ci, di, P1i, P2i, P3i, P4i) (4.23)

for n = 288, and i1, i2, ..., i288,

subject to,

Pmin ≤ 4Psystem ≤ Pmax
(4.24)

where,
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4Psystem =
4Esystem

4t
(4.25)

and,

P1i + P2i + P3i + P4i ≤ Pmax
(4.26)

4.6.4 Energy take decay solution

The resource recovery curve represents the energy take left in the AWHS immediately

following a dispatch, and it shows the duration that it will take the AWHS to get back to its

pre-dispatch energy-take level.

In terms of maximizing profits for the AWHS, there is an opportunity cost lost during

the recovery window, since the AWHS will not be able to participate in the energy market as

it recovers from its last dispatch.

The energy take due to a dispatch can be derived using:

xt+1 = xt − xte−K[(t+1)−(t)] (4.27)

We solve for K using the given equation below,

K = ln(
xt
x0

)t−1 (4.28)

where K is the time decay constant, x0 is the energy take of the AWHS at time 0 , the

AWHS dispatch time, and xt is the energy take of the AWHS at time t, the time when the

AWHS fully recovers.
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4.7 Optimization flow chart

Figure 4.4 is a summary of the optimization algorithm work flow. We start with the U.S

household water usage program developed by NREL. This program determines water heater

draws based on the house hold sizes. The water heaters are assigned states as discussed in

4.4. We simulate the energy take for 1 year. From this large repository of data, a subset

can be extracted for any month, day, hour or minute within the 1 year window. Due to the

large data set size, we only consider a small segment of the data at any given time, [X], four

weeks worth of data specifically. We then we proceed with stage 1 optimization, where

all services are treated as if there were all reserve services. [X] is then updated with data,

informed by stage 1 optimization, which is then re-sorted by the state of the water heaters.

This updated data are then used for the second stage optimization. The program terminates

when ti equals to 288.
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Figure 4.4: AWHS optimization process flow chart.
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5 Results & Analysis

In this chapter, we report the findings of our study based upon the methodology described in

chapter three. This chapter is divided as follows: In section 5.1, we provide results of our

research using a baseline AWHS resource with no dispatch. Our baseline simulations are the

starting point that will be used in our comparisons to the dispatch scenarios, and for further

analysis of our results. In section 5.2, we dispatch short fixed amounts of energy in order

to understand the operation and response of the AWHS. We do this to better understand

the limits of the AWHS resource. These dispatches are carried out in five-minute intervals,

one dispatch at a time as shown. In section 5.3, we perform multiple AWHS dispatches. In

section 5.4, we analyse the performance of the AWHS over prolonged dispatch periods. In

section 5.5, we discuss the use of LSTM for forecasting future data. An in-depth analysis of

the optimization is presented in sections 5.6 - 5.8. We compare the revenues generated by

out AWHS optimization algorithm to that of the AWHS without our optimization algorithm

in section 5.9. The remainder of this chapter is dedicated to discussing the value of including

other ancillary services, our choice of LP constraints, other research objectives, and finally,

we conclude with the shortcomings of this work in section 5.13.
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5.1 Baseline AWHS overview

This section discusses the observed behavior of the AWHS when it is not perturbed; we

examine how the AWHS behaves when it is not being dispatched. Figure 5.1 shows a typical

energy take profile over one day. The energy take present in the system is represented on the

vertical axis while the five-minute intervals are represented on the horizontal axis. There are

two peaks, with the earlier peak occurring in the AM hours, and the second peak occurring

in the PM hours. This is consistent with typical water heater usage profiles. These peaks

both correlate to expected energy draw times.
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A water heater unit turns on when the amount of hot water drawn out of the tank

causes the temperature of the water in the tank to fall below a threshold temperature, due to

additional cold water replacing the withdrawn hot water, and causing the heating element

to turn on. This threshold temperature is not standardized. It varies between water heater

manufacturers.

Figure 5.2 show a typical energy take profile over five days. These baseline simulations

represent the energy take of the AWHS on average days, with the AWHS not bidding into

any ancillary service markets.
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5.2 Single AWHS dispatches

In Figure 5.3, the AWHS makes a single, one time, five-minute, 5 MW bid, at 0200. The

Available energy in the AWHS dips to 3.75 MW-hr following this bid. It takes the AWHS

about six hours to recover. The dotted line between 0200 and 0800 shows the energy profile

of the AWHS if we had not dispatched the AWHS.
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If all units in the AWHS were operating at their highest temperature setpoint (e.g. all

units at 120° F), there will be no energy take available.

The yellow line in Figure 5.3 represents the upper bound of the system during the "shed

mode". This represents the minimum energy take ever available (e.g. all units at 117° F).

The upper bound represented by the red line results from the lower temperature band during

the shed mode. The red line represents the maximum energy take possible within the system

(e.g. all units at 114° F). In other words, the upper boundary, in red represents the energy

take of the AWHS if all units were at their lowest temperature setpoint. The purple line is

illustrative of the median energy take of the AWHS.

Figure 5.4 shows a sudden spike in the amount of units that are turned on in order to

accommodate the 5 MW bid at hour 0200. This sudden spike in the percentage of units

turned on is anticipated since we are interested in having the AWHS respond as quickly

as possible. In this case, 48% of all the water are turned on to respond to this 5 MW bid.

The system does not settle until around 0800, six hours after the 0200, five-minute 5 MW

dispatch. The dotted line in Figure 5.4 represents the behavior of the AWHS if we had not

performed the dispatch, while the solid line with the spike represents the percentage of water

heaters in the AWHS that were turned on to support the earlier dispatch in Figure 5.3.
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In Figure 5.5, we test the limits of the AWHS by simulating 20 MW of energy for 60

minutes from 0200 to 0300. In this instance, the system does not recover until 1100 (8

hours after the end of the dispatch). The underlying dotted line between 0200 hr and 1100

hr shows the energy profile of the AWHS if it had not been dispatched on this day. We

conducted these simulations to show what a failed dispatch looks like: the AWHS runs out

of energy during an unsuccessful 20 MW-hr bid. The system does not fully recover until

1000, when the dotted line merges with the solid line.
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Figure 5.6 shows that the AWHS turned on all units to respond to this 20 MW-hr bid

before running out of energy at 0300 hr.
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5.3 Multiple AWHS Dispatches

Next, we performed multiple single dispatches in order to further understand the behavior

of the AWHS. This is important for our purposes because the AWHS will be dispatched

multiple times during a day, based on the system’s ability to maximize revenue.

As shown in Figure 5.7, we placed three separate bids. The first bid is a five-minute bid

at 0100 for 12 MW. We then allow the system to recover for an hour. Then again at 0200

and 0300, we place two additional 12 MW, five-minute bids. As can be seen in Figure 5.8

the system tries to recover to its pre-bid state but does not have enough time to merge with

the dotted line before the next bid occurs at 0200 and 0300. Figure 5.8 shows the dynamic

nature of the AWHS energy take resource, and the need to account for a recovery time when

making multiple bids throughout the day, especially since each bid will be based on market

signals that sometimes may be very favorable and other times not.
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Figure 5.8 shows the percentage of water heaters that respond to the water heater bids.

The percentage of water heaters that are turned on in the system increases during each five

minute draw for the three 12 MW draw for 5 minutes each, starting at 0100, 0200 and 0300.

As expected, the percentage of the units in the AWHS drops at the end of each bid. The

dotted line represent the normal percentage of units that would have been turned on by the

AWHS for the day if we had not dispatched the AWHS. The percentage of units turned on

per draw is approximately 25% of the total 10,000 units within the AWHS.
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5.4 Prolonged AWHS dispatches

TGR are committed to providing energy for blocks of time at a fixed power output. For the

AWHS however, the available energy take resource within the AWHS is constantly changing.

The dynamic nature of the units that make up the AWHS causes the energy take available

for bidding to fluctuate at any given time. Further, as we have demonstrated in Figures 5.3

to 5.8, it is important that we re-evaluate the available energy left over in the AWHS after

each dispatch. The dispatch routine does the evaluation, and factors it into the next dispatch.

In Figure 5.9, we simulate a continuous 12 hour dispatch, from hour 0030 to 1330. The

system continues this re-evaluation and re-dispatching until the last dispatch call, in this

case, at 1330. The system does not recover back to its pre-dispatch state until 2000 hour.

Between 1330 and 2000, the system is not available to fully participate in the market while

it recovers to its full capacity.
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Figure 5.10 shows a continuous 24 hour, 1 MW bid. The dotted line represent the AWHS

if we had not bid into the AWHS. At the onset of the AWHS bidding into the market, the

available energy in the AWHS decreases up until about 0500 when the available energy in

the system flattens, for about an hour, and then the energy in the AWHS continues to rise,

from about 0600 until about 0900, when the energy available in the AWHS is at its peak for

the day. This is expected as many water heater users are taking showers during this time in

the morning as they get ready to go about their day. The available energy slowly levels off

until about 1600, when a second but lower peak is seen in the evening time, corresponding

to when customers return home from work or their respective activities of the day.

115



0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24

H
ou

r

012345678 Energy Take (MW-hr)

Fi
gu

re
5.

10
:1

M
W

co
nt

in
uo

us
ly

fo
r2

4
ho

ur
s,

i.e
,1

2
M

W
-h

rf
or

24
ho

ur
s.

116



In Figure 5.11, we simulate several separate hourly dispatches, from 0300 to 1200, in an

effort to understand the recovery times based on the time of dispatch. The recovery times

are observed to be shorter for dispatches that occurred earlier in the morning than for those

that occurred later in the morning. This observation is consistent with out expectations as

more units will be brought online as people prepare and get ready for their day.

We simulated a weekend to see if there are any noticeable shift in patterns and we

extend our hourly dispatches. Similarly, the later dispatches recover more quickly than

earlier dispatches, even though in this case we conducted our dispatches through noon of a

weekend.
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Distpatch
time

Recovery times
in hours

3:00:00 7.81
4:00:00 7.88
5:00:00 7.91
6:00:00 7.97
7:00:00 8.02
8:00:00 8.1
9:00:00 8.12
10:00:00 8.16
11:00:00 8.19
12:00:00 8.26

Table 5.1: Dispatch recovery times from 0300 hr to noon observed from figure 5.11.

The study of the recovery time of the AWHS is important when considering the oppor-

tunity costs of dispatching the AWHS. From Table 5.1, the conclusion of this study is that

later dispatches take longer to recover than earlier dispatches. Our method requires that we

continually anticipate future energy take data before the next dispatch takes place.

In Figure 5.12, we project the day-ahead’s energy profile. The next day’s forecast process

is used to inform the AWHS on when to dispatch for revenue maximization. We discuss the

forecasting process in the section that follows.
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5.5 Data Forecasting and Convergence

5.5.1 Energy Forecasting

The optimization we developed uses future projections of two data sets, namely, the energy

take of the AWHS and LMP market prices obtained from PJM. We do not forecast ambient

temperature in this work, but instead, we use the National Oceanic and Atmospheric

Administration (NOAA)’s publicly available forecast data.

We use LSTM to perform the forecasts in this work because traditional forecasting

and regression models do not perform very well with large datasets. In addition, LSTM is

capable of learning dependence of data based on what has been observed in the past, and

applying this new observation to future predictions.

Convergence is achieved when the forecasted data approach a pre-defined limit, L. To

evaluate the effectiveness of our forecasted data, we develop a convergence test algorithm

that compares projected data to historical data. We use historical data for our test because

testing on historical data would avoid over-training of our dataset. During the convergence

test, we check to ensure that the projected data are approaching or within our limit. We

arbitrarily chose a limit, L of 5% of the historical data. We test for convergence by updating

the number of features, the root mean square error boundaries, or the number of training

data after every iteration until the forecasted data is within L.

We begin by examining a full year’s worth of energy take data. In Figure 5.13, we

observe three breaks in the energy take of the AWHS. The first and third are towards the

end of the months of May and December, corresponding to Memorial day and Christmas
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day holidays respectively. We suspect the break in the middle of August to be a summer

vacation break.
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For our work, these two holidays were avoided when sampling our dataset. The vacation

break in the month of August was also avoided. These data were avoided because the energy

take on these days were significantly lower than on the other days of the year. In order

to enhance the computational efficiency of our optimization, we chose a reduced, 28-day

dataset in the month of July. We chose the month of July because there were no significant

day to day changes in the energy take of the AWHS in the month of July, and we want to be

able to simulate summer peak demand mitigation events that are typical of hot July days.

Figure 5.14 and Figure 5.15 shows the energy take for the first twenty eight days in July,

and the first ten days in the month of July,respectively. The energy take during Weekends are

not distinguished from week days. This may be because the AWHS is aggregating 10,000

water heaters, and at such a large scale, the difference in energy take between weekends and

weekdays is negligible. The horizontal axis represents 288-five minute intervals in each day.
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Because the shape of the energy take of the AWHS is similar for both weekdays and

weekends, as we see in Figures 5.14 and 5.15, we have decided to treat the energy take of

weekdays and weekends as the same in our optimization. In other words, no special scaling

factor was applied for weekdays in comparison to weekends.
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For energy take predictions, at first, we use two days, then four days, and then ten days

worth of training data. More data were added to increase training efficiency and accuracy.

Table 5.2 shows the summary of the statistics data for ten days and 28 days respectively.

statistics 10 day 28 day
min 5.112E+06 5.004E+06
max 6.564E+06 6.570E+06
mean 5.602E+06 5.582E+06
median 5.530E+06 5.515E+06
mode 5.112E+06 5.004E+06
std 3.253E+05 3.088E+05
range 1.452E+06 1.566E+06

Table 5.2: Summary statistics for ten days and 28 days Energy take (units in W-hr).

Upon close examination of both the ten days and 28 days Energy take values, the range

increases as the number of days increases, meaning that there is more variation in the energy

take over time. As expected, the standard deviation decreases, indicating that as we increase

the data, most of the energy take values are closer to the mean.

In Figure 5.16, we start with two days worth of data, from July 1 to July 2. In this case,

we attempt to forecast 12 hours worth of data (the second half of day 2) using only the prior

36 hours worth of learning data. A visual inspection of the forecasted data confirms that

convergence is not achieved. Either more data are needed, or additional iterations are needed

for the training model to achieve convergence. In other words, 25% of the time interval are

forecast(test) after training on 75% of the dataset over 36 hours.
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The plot in Figure 5.17 represents the same time period as the one in Figure 5.16, but

with twice the number of iterations. For each batch of training, the weighted averages

used in the LSTM algorithms are updated once. By doubling the amount of iterations, the

weighted averages get twice the amount of updates for each pass through, resulting in better

forecasted data, but requiring more computer memory and time.
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In Figure 5.18, we increase the number of training data. Here we have four days of

historical data. We increase the amount of training data because there is an upper threshold

after which, increasing the number of RNN iterations in the LSTM algorithm does not yield

any additional benefits in terms of convergence. Increasing the number of training data helps

us achieve convergence faster and avoids overtraining smaller datasets.
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In Fig 5.19, we use ten days of historical data. The result is that a form of convergence

begins to appear. We show only the 11th day date below, against the backdrop of day one’s

energy take data.
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Our method considers the energy take for a given day’s worth of data, which is then

time-shifted on a moving five-minute average. Long Short Time Memory (LSTM) is applied

to help with anticipating future data. Depending on the time of forecast, as we project further

out into the future, the forecasted data begins to diverge from the historical data. In Figure

5.20, we iterate the LSTM algorithm 200 times, using 10 days worth of data. As expected,

the closer we are to the time of simulation, time t0, the more accurate our future projections

will become.
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These results show that we can improve the accuracy of our forecast in one of two ways.

First, by either increasing the number of iterations, where an iteration is one loop through the

entire training data set, until a threshold is reached where increasing the number of iterations

has no impact on the training. Another way to improve accuracy is by increasing using more

training data sets. In Fig 5.19 and Figure 5.20, increasing the number of iterations from 100

to 200 help to quickly achieve convergence. These results were heuristically obtained and

can vary from dataset to dataset or time frame to time frame. In this case, we have only

observed datasets from the first few days of the month of August.

We culminate our forecasting exercise with Figure 5.21, which shows our convergence

test, where the Root Mean Square Error (RMSE) is calculated as 0.003 MW-hr or 2.993

KW-hr from Figure 5.21. Convergence is achieved and the RMSE is shown to be less than

five percent. Our minimum Energy take is three times an order of magnitude (MW-hr)

greater than the RMSE. In this instance the RNN observations passes the convergence test.
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5.5.2 Price Forecasting

LSTM is used to forecast energy prices. This is of particular importance because the

pricing structure used for peak demand mitigation is a variation of that of the energy price,

with a multiplier applied during peak demand hours. We pull our data from PJM’s LMP

repository. Figure 5.22 shows three weeks of LMP market price data. The vertical axis

represent the energy price in U.S dollars. There are two peaks in the daily energy prices,

corresponding to the AM and PM energy demand cycles.
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Table 5.3 is a summary of the LMP price data. We notice that the maximum LMP price

occurs in week three, while the minimum LMP price was observed in the second week. In

the former, prices had the highest swings with the highest rage of $59.44.

Statistics July 1- 7 July 8 14 July 15 - 21 July 22-28
min 18.19 17.91 21.35 21.52
max 38.77 46.14 80.79 62.66
mean 24.33 27.69 32.96 31.42
median 23.62 26.37 29.72 29.34
mode 21.45 22.99 25.48 25.47
std 4.213 5.54 10.42 7.529
range 20.58 28.23 59.44 41.14

Table 5.3: LMP prices in US $.

We forecast future energy prices in Figure 5.23. Similar to the forecast conducted for

energy take, only the first few hours of LMP price correlate with expected historicals. The

price begins to deviate from observed historical price data the further out we project.
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In Figure 5.24, we show that the RMSE for LMP is $0.172, less than 5% of the prices in

figure 5.23 when iterating at least 100 times,and therefore it passed our convergence test.

The RMSE gets larger as time increases.
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5.5.3 Weather Forecasting

Forecasted temperature data are required for peak demand mitigation. The weather data for

the Portland Metropolitan area are retrieved from the National Oceanic and Atmospheric

Administration (NOAA). NOAA has well-established means for forecasting temperatures,

so we do not attempt to do so our selves.

We use NOAA’s historical data from the year 2012 because it is one of the years with the

highest recorded peak demand events. Figure 5.25 shows that there were ten sub-freezing

days in 2012 for which peak demand mitigation was required. We examined the hottest days

of 2012.
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Figure 5.26 shows only seven days in 2012 with temperatures above 90 degrees Fahren-

heit. For our research, new weather data is not predicted. We use existing data already

provided by NOAA.
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In total, for the year 2012, there were only seventeen days for which peak demand

mitigation was requested. In fact, for the decade between 2010 and 2019, no year required

peak demand for more than 20 days.

5.6 Optimization of the AWHS

In the following sections, we focus our attention on the major contribution of this research;

the optimization of the AWHS for revenue maximization and the determination of the

appropriate ratios to dispatch the aforementioned ancillary services.

The revenue to be generated by the AWHS can be maximized by determining the

appropriate proportion of each of the three ancillary services to schedule. The constraints

defined earlier in 4.2.2 define the dependence between power and energy of the dispatch

service; frequency regulation, which in turn determines the number of units to dispatch.

Peak demand mitigation, a reserve service, is implemented based on weather temperature

forecast data, and on the applicable time periods. Frequency response, also a reserve service;

is unique in that dispatches are rare and stochastic in nature.

5.7 Stage 1 Optimization

Prior to the first stage optimization, historical data are used to generate forecasts. In stage 1,

the optimization routine anticipates future energy, ambient temperature, and market prices

based on historical data. The three ancillary services are scheduled as reserve services with

no dispatch whatsover. Upon convergence, the optimization algorithm shifts to the next
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five-minute block, repeats the optimization, and updates the projected allocations. This

process is repeated until a full day’s worth of projections (288 projections) are simulated.

The algorithm then allocates the ancillary services for revenue maximization using the

forecasted data, and assuming that all three services are reserve services.

In the following paragraphs, we explore the behavior of the AWHS in stage 1 by varying

the prices of all three services. The optimization algorithm uses the data available to forecast

an entire day’s worth of energy take data. The top plot in the figures that follow represents

the price of each service and the bottom plot represent the pre-dispatch optimized energy

take profile.

5.7.1 Case 1.1 - Limiting services

We explore a scenario where we may need to limit the amount of energy take reserved for

each service. In this case, we attempt to to verify our ability to set reserve limits in the

AWHS. In this case, optimization has not been applied yet. We expect that the services will

be capped at the upper limit specified.
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The results shown in Figure 5.27 is in line with our expectations, and they demonstrate

our ability to reserve any of the three services in stage 1; the pre-dispatch stage. In Figure

5.27, we manually limit the amount of services reserved for for peak demand mitigation,

frequency regulation and frequency response to 1 MW-hr.

When called upon, the optimization algorithm will only dispatch 1 MW-hr of each

service. As expected, the ratio allocated by the optimization is 33% for each service.

5.7.2 Case 1.2 - Stage 1 Optimization

We begin with an optimization in stage 1, when all services are treated as reserves, including

frequency regulation. All services are maximised up to the maximum available energy take

in the AWHS. We show the output of the stage 1 optimization in Figure 5.28 - 5.30. We

chose this case to demonstrate how the optimization algorithm will behave on a day with

no dispatches. As discussed earlier in section 5.5.3, peak demand is only required for a

handful of days in the year, while frequency response is stochastically requested. The price

of frequency response was found to be very sensitive. We tested the sensitivity by varying

the price between $20, $25 and $40 and we noted that the percentages allocated to frequency

response changed between 51%,67%, and 77% respectively.

153



0
50

10
0

15
0

20
0

25
0

5-
m

in
ut

e 
in

te
rv

al
s

05010
0

15
0

Energy Price in $

M
ar

ke
t 

P
ri

ce

F
re

qu
en

cy
 R

eg
ul

at
io

n 
$

F
re

qu
en

cy
 R

es
po

ns
e 

$
P

ea
k 

D
em

an
d 

M
iti

ga
tio

n 
$

0
50

10
0

15
0

20
0

25
0

5-
m

in
ut

e 
in

te
rv

al
s

01234567 Energy Take (W-hr)

10
6

C
o

st
 o

f 
F

re
q

u
en

cy
 R

es
p

o
n

se
: 

$2
0 

P
o

st
-O

p
t 

P
er

ce
n

ta
g

es
: 

P
D

M
 1

7%
  R

eg
 3

2 
%

  R
es

p
 5

1%

Fi
gu

re
5.

28
:S

ta
ge

1
op

tim
iz

at
io

n
of

al
ls

er
vi

ce
s.

154



0
50

10
0

15
0

20
0

25
0

5-
m

in
ut

e 
in

te
rv

al
s

05010
0

15
0

Energy Price in $

M
ar

ke
t 

P
ri

ce

F
re

qu
en

cy
 R

eg
ul

at
io

n 
$

F
re

qu
en

cy
 R

es
po

ns
e 

$
P

ea
k 

D
em

an
d 

M
iti

ga
tio

n 
$

0
50

10
0

15
0

20
0

25
0

5-
m

in
ut

e 
in

te
rv

al
s

01234567 Energy Take (W-hr)

10
6

C
o

st
 o

f 
F

re
q

u
en

cy
 R

es
p

o
n

se
: 

$2
5 

P
o

st
-O

p
t 

P
er

ce
n

ta
g

es
: 

P
D

M
 1

7%
  R

eg
 1

6 
%

  R
es

p
 6

7%

Fi
gu

re
5.

29
:S

ta
ge

1
op

tim
iz

at
io

n
of

al
ls

er
vi

ce
s.

155



0
50

10
0

15
0

20
0

25
0

5-
m

in
ut

e 
in

te
rv

al
s

05010
0

15
0

Energy Price in $

M
ar

ke
t 

P
ri

ce

F
re

qu
en

cy
 R

eg
ul

at
io

n 
$

F
re

qu
en

cy
 R

es
po

ns
e 

$
P

ea
k 

D
em

an
d 

M
iti

ga
tio

n 
$

0
50

10
0

15
0

20
0

25
0

5-
m

in
ut

e 
in

te
rv

al
s

01234567 Energy Take (W-hr)

10
6

C
o

st
 o

f 
F

re
q

u
en

cy
 R

es
p

o
n

se
: 

$4
0 

P
o

st
-O

p
t 

P
er

ce
n

ta
g

es
: 

P
D

M
 1

7%
  R

eg
 6

 %
  R

es
p

 7
7%

Fi
gu

re
5.

30
:S

ta
ge

1
op

tim
iz

at
io

n
of

al
ls

er
vi

ce
s.

156



5.7.3 Case 1.3 - Multi-service reservation

In the multi-service case presented here, we attempt to reserve more than one service

during the same time period. Multi-service reservation occurs due to the power and energy

constraints that are defined for each service. In Figure 5.31, the optimization algorithm

prioritizes dispatches based on the price of the services first, then it considers the boundaries

placed on the respective services. Because we have specified that frequency regulation be

limited to 1 MW-hr in this case, it will be dispatched for not more than 1 MW-hr. We do this

so as to make sure that we have enough reserves capacity for our reserve services, namely,

peak demand mitigation and frequency response.
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At the start of the optimization, at time interval 0, frequency response is optimized

but for only 1 MW-hr per five minute interval up until when regulation pays more than

frequency response. Becaause of the bounds we have specified as reserve limits for frequency

regulation, the optimization will not dispatch more than 1 MW per five minute interval to

frequency regulation, it then reserves the rest for frequency response.

We specify the maximum available energy take for each of the two reserve services but

limit that of frequency regulation to 1 MW per 5 minute interval or 12 MW-hr.

We observe that at the start of peak demand period, all services are reserved for peak

demand and no dispatches will happen during this period. Secondly, for the time periods

immediately following peak demand mitigation (around time interval 249), the optimization

algorithm limits the dispatches for peak demand mitigation to 1 MW per five-minute interval,

and at the same time interval 249, it allocates the remainder of the energy take to peak

demand mitigation. This is because peak demand was the next highest in price, slightly

above frequency regulation as shown on the top market price plot.

5.7.4 Case 1.4 - Bounding Frequency response price variations

In this case, we vary the price of frequency response and observe how the optimization

behavior changes based on the price of the different services and the reserve bounds set on

frequency response. Frequency regulation is limited to dispatch no more than 1 MW-hr per

five minute interval, while frequency response is reserved for no more than 2 MW-hr per

five minute interval.

In Figure 5.32, frequency response price is at $20.
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In Figure 5.33, the price of frequency response is doubled, going from $20 to $40. We

remove the reserve requirement on frequency regulation and peak demand mitigation but

we optimize all services based on market prices. Consistent with our expectations, because

of the reserve requirement of 2 MW per five minute interval placed on frequency response,

despite its dominance in price, the optimization algorithm only allocated 41 % of the daily

energy take to frequency response.
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5.7.5 Case 1.5 - Setting the upper boundary of frequency regulation

In Figure 5.34, we set the upper boundary of frequency regulation to 0.17 MW-hr. We see

that the optimization algorithm schedules for dispatches according to the upper boundary

limits specified for frequency regulation.
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5.7.6 Case 1.6 - Bounding Peak Demand Mitigation with variation in frequency

response prices

In Figure 5.35, Peak demand mitigation is manually reserved at 1 MW per five minute

interval. Because there is no dispatches in stage 1, Peak Demand Mitigation as a reserve

service is set aside according to be boundary condition defined in the optimization algorithm.

The price of peak frequency response is $20.
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We double the price of frequency response from $20 in Figure 5.35 to $40 in Figure

5.36. We observe that because peak demand was mostly compensated only during the peak

demand period only, as long as the price of peak demand is higher than that of frequency

response during the peak demand window, there is no difference between Figure 5.35 and

Figure 5.36. In both figures, only three percent of the energy take was allocated to peak

demand mitigation.
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5.8 Stage 2 Optimization

In stage two, the AWHS is optimized to schedule the three services based on forecasted

market prices, and the impact that the two dispatch services have on the AWHS energy

take. As noted from earlier, two of the three services are reserves, and the other, frequency

regulation, is a dispatchable services. Specifically, frequency response and peak demand

mitigation are reserve services while frequency regulation is a dispatch services.

5.8.1 Case 2.1 - 24 hour continuous dispatches with no upper limit boundary set

on frequency regulation

We test the limitations of the AWHS by continuously dispatching to the different services

under consideration through out the day. Due to the fact that the AWHS is a dynamically

changing resource, as it gets dispatched, the recovery curve is redrawn for each time interval

and then the optimization is repeated.

We started the optimization in stage 2 without any bounds on frequency regulation. In

Figure 5.37, the system is shown to quickly run out of energy take around time interval.
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5.8.2 Case 2.2 - 24 hour continuous dispatches with an upper limit boundary set

on frequency regulation

In this case, we set the upper boundary for frequency regulation dispatch. The upper

boundary limits on frequency regulation is 2 MW-hr or 0.17 MW per five minute interval,

we re-ran the stage 2 optimization with the expectation that the AWHS does not run out of

energy.

In Figures 5.38 we show that the AWHS dispatches for frequency regulation but then

reserves energy as it recharges in accordance with frequency response and peak demand

mitigation price signals.
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This is consistent with our observation from section 4.4.4 and Figure 4.3, that shows the

maximum power available in the AWHS vs. the number of consecutive 5-minute dispatches.

We have shown that there is a limit to the the continuous dispatch of the AWHS to 2.0

MW-hr, if the system is to not run out of energy take. Therefore, this case is intended

to demonstrate a successful optimization and dispatch over an entire day in Figure 5.38.

By setting the upper boundary of frequency regulation to 0.17 MW-hr, the optimization

algorithm successfully loops through out the day, dispatching both frequency regulation

without running out of energy.

5.8.3 Case 2.3 - Continuous dispatches over prolonged durations on a non-peak

demand day

In case 2.2, we noticed that both frequency response and peak demand mitigation were

reserved. We reserved peak demand and avoided dispatching because during the peak

demand period, there is a need to curtail all load and all load resources, including the AWHS.

Dispatching means turning on the water heaters in the AWHS on, adding more loads to the

grid can cause more stress on the already over-loaded system during this time.

In this case however, we explore the behavior of the AWHS on a non-peak demand

day, in light of the fact that peak demand events are not a daily occurrence. In Figure 5.39,

frequency regulation pricing is noticeably higher during the evening hours, around time

interval 200. This is expected because at this time most people are returning home from

work. This is the second peak described in the duck curve from Figure 1.1. Because of the
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upper boundary (0.17 MW-hr) we have placed on Frequency regulation, the AWHS never

runs out of energy.
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5.8.4 Case 2.4 - Dispatch for Frequency Response

Frequency response events are stochastic in nature and unpredictable. In Figures 5.40 and

5.41, we demonstrate that the optimizer is able to dispatch for frequency response events.

As a reserved service, frequency response is reserved throughout the day by the optimization

algorithm until a frequency response event occurs. In Figure 5.40, we show the AWHS

resource profile with no frequency response event.
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In Figure 5.41, we simulate a frequency response event around time interval 80. This

frequency response event lasted for only one time interval, this is indicated by the fast drop

in energy take value at time interval 80. This unexpected frequency response event changed

the energy take profile of the AWHS, thereby reducing the amount of revenue that could

have been earned by the AWHS during the recovery period.
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5.9 Analysis of Revenues

We conclude our research by comparing the revenues from the AWHS without the two-stage

optimization to that obtained with the two-stage optimization applied in Table 5.4.

The derivation of revenues has been already established in equation 4.21;

Gi = (aiP1i + biP2i + ciP3i)4ti

Frequency response,
market price in
$/ MW-hr

Frequency regulation,
no optimization,
revenues in $

Frequency response,
no optimization,
revenues in $

Peak demand,
no optimization,
revenues in $

two-stage
optimization,
revenues in $

10 3,162 1617 4,831 6,929
20 3,162 3227 4,831 7,083
30 3,162 5172 4,831 7,846
40 3,162 4849 4,831 12,946
50 3,162 6468 4,831 13,281
100 3,162 16165 4,831 16,165

Table 5.4: Comparison of the revenues earned by the AWHS without the two-stage optimization vs. the AWHS
with the two-stage optimization using the market prices from July 14, 2016.

Each row in Table 5.4 shows the results from an entire day’s worth of simulation. The

first column represents the market prices of frequency response which we have elected to

represent as a constant throughout the day, for each simulation. The market prices used for

frequency regulation and peak demand mitigation were obtained from PJM’s July 14, 2016

LMP data, and they are not shown in Table 5.4 because they fluctuate throughout the entire

day. Revenues earned by the AWHS are represented in the second, third, fourth and fifth

column.

As the market price of frequency response increased for each simulation, as we go down

Table 5.4, the revenues generated for both frequency regulation and peak demand mitigation

remained flat. The explanation for this is that these revenues both represent the performance
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of the AWHS without the two-stage optimization applied. However, revenues from frequency

response reservations without the two-stage optimization increased as the market prices for

frequency response increased. In other words, with no two-stage optimization applied, as

we artificially increased the market price of frequency response, the revenues generated by

reserving the AWHS for frequency response alone increased. This outcome is consistent

with our expectations.

The revenues earned by the AWHS with the two-stage optimization is represented in the

rightmost column of Table 5.4. For the two-stage optimization, the AWHS is allowed to

automatically select the most optimal of the three ancillary services based on market price

signals. As shown in Table 5.4, the AWHS generates the most revenue via the two-stage

optimization, up until when the price of frequency is the highest among all three services.

When this occurs, as expected, the two-stage optimization will select the service with the

highest price. This is what happens when the market price for frequency regulation is at

$100 in the last row of Table 5.4, at which point, frequency response revenues was at par

with the revenues obtained from the two-stage optimization revenues because the two-stage

optimization algorithm only selected frequency response throughout the entire day’s worth

of simulation.

Most utilities bid into the energy market using forecasts or based on actual real time

loading demands, without our novel two-stage optimization algorithm. In contrast, our

two-stage optimization uses time shifting and re-optimizes dynamically, for each five minute

time interval, allowing the AWHS resource to account for market price signal fluctuations,
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while only selecting the service that will earn the most revenue, at all times. The former

however, may not always yield the most revenue.

In summary, the limitation of the two-stage optimization is reached when any particular

service has the highest market price, at all times, throughout the day. In the scenario when

the frequency response market price becomes $100 per MW-hr in Table 5.4, dedicated

resources providing services to frequency alone will benefit as much as our two-stage

optimization algorithm, as long as the market price of frequency response remains the

highest in comparison to the other two services throughout the day, as was the the case on

July 14, 2016. In practise however, market prices always fluctuate throughout the entire day

because weather (wind speed and solar irradiation), system loading and market conditions

are never constant.

5.10 What would the value be of including other ancillary services?

The value of including a service such as ramp rate and reserves would be the potential for

increased revenues for the AWHS through greater market participation. Another benefit

would have been an increase in penetration of the AWHS to more service areas. Not

including these services limits the energy markets that the AWHS can participate in, along

with the learning that comes with such engagements.

Through this work, we have been able to observe the behavior of the AWHS for frequency

regulation, frequency response and peak demand mitigation in terms of how revenue can be

maximized between these services. With ramp rate and reserves however, we anticipate that
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there will be more value streams to the AWHS in addition to revenue maximization, like

grid stability and improvements to system wide reliability, both of which can be improved

were ramp rate and reserves to be included as part of the services offered by the AWHS.

5.11 Choice of Linear Programming constraints

The constraints modeled in our LP solution were added to prevent over-dispatching, and

over-dispatching can lead to increased opportunity costs for the AWHS. Both of these will

reduce the AWHS revenue. There are a few other constraints that could have been included

however.

For example, limiting peak demand mitigation to a certain four-hour period, although

not very efficient, was added as a constraint because this is the current industry practice.

Other constraints that could have been added were locational benefits or distribution system

capacity limits. In the former, depending on the location of the customer and distance from

generators, the optimization algorithm can be modelled to behave differently. For the later,

the AWHS can be modelled to split its resources, dedicating a higher portion to regions

near or at their distribution system capacity limits. Both of these were omitted because they

would require more complex modelling and a sophisticated algorithm.

5.12 What would other objectives have been?

The objective of this work is to alleviate the negative impacts of RER on the grid by optimally

dispatching the AWHS to provide ancillary services in a manner that maximizes revenues.
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Other objectives could have been to do this work in a way that maximises profit and

not revenue. We chose revenue over profit because in order to calculate profit, we need to

know costs. Costs not only vary between customers, but costs can vary significantly across

different water heater OEMs, water heater efficiencies, age of units, States, and Regions.

We chose not to include costs as an objective because including costs will not make the

optimization very complex, but it might require constant modification depending on the

manufacturer, water heater efficiency, age, State or Regional application, thereby limiting

the broad application of our two-stage optimization.

5.13 Shortcomings of this work

The AWHS simulates the behavior of 10,000 water heaters, and as such, may not accurately

replicate the exact representation of 10,000 physically networked water heaters. This can be

addressed by using real water heaters.

Another shortcoming of this work is that ambient losses were neglected. With 10,000

water heaters in the AWHS, external losses will vary amongst all units based on the disparate

locations of all the water heaters, geographically and within each home. This shortcoming

can be overcome by including a normalized loss function that can be applied to the AWHS

model.
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6 Conclusion

In this work, we propose a means of solving the problems caused due to the excessive

proliferation of Renewable Energy Resources (RER) by using an Aggregated Water Heater

System (AWHS), a regenerating and dynamic resource, while optimizing the AWHS for

revenue based on market price signals by providing three ancillary services.

Our motivation is based on the growing need to relieve the electric grid of the negative

impacts of RER. We chose to embark on this work as a means of using residential water

heaters to provide ancillary services to the electric grid. We have shown that the stochastic

nature of RER have several negative impacts on system reliability and stability of the electric

grid. The means of mitigating these impacts must be developed if we are to continue the

rapid deployment of RER and global decarbonization efforts.

We began our research by exploring existing solutions to this problem, some of which

include Energy Storage Systems (ESS), the current practice of using dedicated Traditional

Generation Resources (TGR) for ancillary services support, Dispatchable Standby Gen-

eration (DSG), Hybrid Energy Systems (HES), Demand Side Management (DSM), and

Asset Aggregation (AA). We focused our attention on AA, specifically, the aggregation of

thousands of residential resistance Electric Water Heaters (EWH). Resistance EWH were

chosen because they are ubiquitous, and they have been shown to be quick to respond to

grid control signals.
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With AA using EWH identified as our path to tackling the challenges caused by RER,

we formulated our primary research question as follows: How should a water heater load

resource be allocated between three ancillary services markets, frequency regulation, fre-

quency response and peak demand mitigation, at any given time of day based on the available

energy take among 10,000 water heaters in such a way that dispatch is prioritized to maxi-

mize revenue? Revenue is maximized by determining the optimal ratio of ancillary services

to provide during each five-minute interval based on market price signals.

The primary contribution to knowledge is a solution to the problem caused by RER that

uses a novel two-stage method to optimally dispatch the energy take available in the AWHS

among three ancillary services in a way that maximizes revenue while minimizing over

dispatching, system recovery time and energy take forecasting errors.

Our results show that water heaters can be used to participate in decremental dispatches

into the frequency regulation market in an optimal fashion. We have also shown that placing

reserves and limiting the amount of energy to dispatch can be useful on days with higher than

usual dispatches of the AWHS. The optimization algorithm has been shown to maximise

revenue by selecting the optimal of the three services to dispatch or reserve based on market

price signals.
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7 Future Work

A major challenge encountered in this work was that of computer processing speed limi-

tations. Due to the large computation involved, we found that our optimization algorithm

took an average of about 4 to 5 hours to complete. This was because our method required

that we constantly update the operational vectors for each time shift, and that we generate

new vectors using forecasted prices for each iteration. In addition, for every dispatch, the

AWHS was updated with new energy take values, and the resource recovery curve was

redrawn, requiring a large amount of computer memory allocation. Given that this work is

still at an early stage, this challenge should be addressed in order for further development to

continue, however, with adequate resources and a dedicated data center, as is the case with

most utilities and Independent System Operators (ISO), we suspect that this may not be an

issue.

Second, because we used MATLAB ® for all our simulations, we found that the stacked

bar plot function used for displaying our results was not able to correctly allocate the AWHS

resources when multiple services were reserved during the same time interval. Further, for

the Gigabyte order of data that we worked with, the latency in polling and retrieving large

datasets was not optimal. We suggest using Python or R for future work, as these are both

more suitable for handling large computations, they both have more optimization functions

and can support forecasting and large data analysis more efficiently.
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Another area that could be explored further is the addition of other services like ramp

rate, reserves and energy as a service to the optimization routine. We discussed the benefits

of including ramp rate and reserves in section 5.10. For adding energy as a fourth service,

Locational Marginal Pricing (LMP) data can be fed into the optimization algorithm devel-

oped in this work. This can be very profitable for load resources like the AWHS during

periods of negative energy prices. Negative energy prices are caused by a combination of

wind or hydro over-generation and low demand on the wholesale exchange energy market,

and is common in regions with high penetration of wind or hydro like Texas, the Pacific

Northwest and in Countries like Germany.

The minimum dispatch amount that will prevent over-dispatching of the AWHS, and the

convergence percentage of choice can be explored in future work, in this research however,

we chose 2.0 MW-hr and 5% respectively. In addition, the energy take decay solution

discussed in section 4.6.4 can be further explored in the future.

We currently use Locational Marginal Pricing (LMP) to provide a market signal for Peak

Demand Mitigation (PDM), which is a reserve service. High LMP during designated PDM

time periods signal to the AWHS that water heaters should not be turned on. In addition to

PDM though, we could also use LMP for several other services, which we propose in the

following paragraphs.

At times, particularly during Spring in the Pacific Northwest, LMP prices can become

negative, for instance due to high wind and hydro generation. This is a signal to generation

that there is surplus power being provided to the system, so the negative price disincentives
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generation. Concurrently, negative prices incentivize loads to consume energy; essentially,

loads are paid to turn on. System equilibrium is achieved with generation and loads respond

to these negative prices. As such, we can position the AWHS to use this phenomena as

a revenue opportunity by programming the AWHS to turn on water heaters as a dispatch

service when LMP become negative.

In this case though, the revenue from dispatch must be weighed against the opportunity

costs in the near term due to reduced AHWS energy take. If dispatch removes energy take

that could be used in subsequent hours to earn revenue through scheduling a reserve service,

then the dispatch should not be scheduled if the revenue from dispatch is less than the

revenue that could be earned through scheduling a reserve service.

Another opportunity for using LMP to signal scheduling of the AWHS could come

from a service we call Solar Valley Filling (SVF). Consider Figure 1.3, which shows solar

resources lowering the demand curve during midday and a subsequent peak in the evening,

featuring a high ramp rate in the interim. To provide SVF, we could use LMP to signal

the AWHS to dispatch water heaters during midday if we anticipate LMP to be high in

the evening. Effectively, water heaters would preheat in anticipation of the upcoming

evening ramp. A forward-looking vector of forecast evening prices could be compared to

an immediate vector of forecast midday prices to establish a difference price vector that

would serve as the price signal. As such, SVF would provide another revenue stream for the

AWHS.

Contrary to the negative pricing case discussed above wherein opportunity costs must
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be considered against the value of LMP, SVF would not have to be considered against

scheduling alternative services. SVF would dispatch during midday and reserve an equal

amount of energy take during the evening ramp period. In other words, a bid for SVF

would schedule two time periods: a dispatch period during midday to mitigate excess solar

generation and a reserve period during the evening to mitigate excess loading.

Lastly, we recommend that a multi-objective optimization be developed for the AWHS.

This can be viable in scenarios that along with optimizing revenue, one or all of the ancillary

services can also be concurrently optimized, based on whether the service is to be dispatched

or reserved at the offered market price. This will help better understand the opportunity

costs involved when one service is either being dispatched or reserved with the knowledge

of the dynamic market prices for such services and the overall impact to the AWHS energy

take recovery times.
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Appendix A: MATLAB ® Implementation of AWHS Optimization, stage 1

1 % THIS CODE RUNS THE AWHS INITIAL OPTIMIZATION

2 % Step 1 : R e t r i e v e PJM P r i c e d a t a

3 % Step 2 : Run o p t i m i z a t i o n wi th i n i t i a l PJM d a t a

4 % Step 3 : P l o t o p t i m i z a t i o n r e s u l t s

5

6 %%% Step 1 S t a r t R e t r i e v e PJM P r i c e d a t a %%%

7 d a t a 1 = ( r e a d t a b l e ( ' PJM_MAD_121919 . x l s x ' ) ) ; %use READTABLE TO READ DDMMSS DATA

8 d a t a 2 = ( r e a d t a b l e ( ' PJM_CAP_121919 . x l s x ' ) ) ; %use READTABLE TO READ DDMMSS DATA

9 d a t a 3 = ( r e a d t a b l e ( ' PJM_PERF_121919 . x l s x ' ) ) ; %use READTABLE TO READ DDMMSS DATA

10 d a t a 4 _ 1 = ( r e a d t a b l e ( ' PJM_LMP_Final . x l s x ' ) ) ; %use READTABLE TO READ DDMMSS DATA

11 d a t a 4 = t a b l e 2 a r r a y ( d a t a 4 _ 1 ( : , 5 ) ) ; % LMP d a t a f o r peak demand m i t i g a t i o n

12 data1_MAD = d a t a 1 ( : , 4 ) ; %

13 data1_CAP = d a t a 2 ( : , 4 ) ;

14 data1_PERF_pre = d a t a 3 ( : , 4 ) ;

15 c l a s s ( data1_PERF_pre ) ; % c l a s s check b e f o r e o p e r a t i o n

16 data1_PERF_pre = data1_PERF_pre { : , : } ;% c o n v e r t t a b l e t o do ub l e / a r r a y / Ma t r i x

17 % LET K = 5

18 c l a s s ( data1_PERF_pre ) ; % c l a s s check a f t e r o p e r a t i o n

19 k =1;

20 data1_PERF= data1_PERF_pre . * k ; % PJM Per fo rmance d a t a

21 day1 = ETAKE_H ( : , [ 1 : 2 8 8 ] ) ; % ETAKE i s Energy t a k e d a t a from AWHS

22 day1 = E1 ;

23 day7_pr ime = day1 ' ;

24 apr ime = data1_MAD ; % Rese rve d a t a on ly

25 a_pr ime = apr ime ( [ 5 7 6 : 8 6 3 ] , : ) ; % 576:864

26 bpr ime = data1_CAP ; % R e g u l a t i o n c a p a c i t y
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27 b_pr ime = bpr ime ( [ 5 7 6 : 8 6 3 ] , : ) ;

28 cpr ime = data1_PERF ; % R e g u l a t i o n p e r f o r m a n c e

29 c_pr ime = cpr ime ( [ 5 7 6 : 8 6 3 ] , : ) ;

30 z= day7_pr ime ; % Energy t a k e d a t a

31 apr ime = a_pr ime { : , : } ;% c o n v e r t t o do ub l e

32 bpr ime = b_pr ime { : , : } ; % c o n v e r t t o do ub l e

33 cpr ime = c_pr ime ;%{ : , : } ; % c o n v e r t t o do ub l e

34 r e g u l a t i o n = bpr ime + cpr ime ; % R e g u l a t i o n p r i c e s

35 PDMprice = d a t a 4 ( [ 1 : 2 8 8 ] , : ) ;% peak demand m i t i g a t i o n p r i c e s

36 F_Resp_cost_USD = 3 2 ; % Frequency r e s p o n c e p r i c e i s s e t a s a c o n s t a n t

37 RR = F_Resp_cost_USD ( ones ( 2 8 8 , 1 ) ) ;%Frequency r e s p o n s e

38 %%% END r e t r i e v e PJM P r i c e d a t a %%%

39

40

41 %%% Step 2 : S t a r t O p t i m i z a t i o n %%%

42 f o r i = 1 : 1 : 2 8 8 % f o r 288 − f i v e minu te i n t e r v a l s

43 f = [ − r e g u l a t i o n ( i , 1 ) −RR( i , 1 ) −PDMprice ( i , 1 ) ] ; % use p r i c e s from above

44 A = [1 1 1 ] ; % ax1 + bx2 + cx3

45 z= day7_pr ime ;

46 b = z ( i , 1 ) ;

47 Aeq = [ ] ;

48 beq = [ ] ;

49 l b = [000000 000000 0 0 0 0 0 0 ] ; % lower boundary c o n s t r a i n t s

50 up = [ z ( i , 1 ) z ( i , 1 ) 0 .17*10^6 ] ; % upper boundary c o n s t r a i n t s

51 [ x z ] = l i n p r o g ( f , A, b , Aeq , beq , lb , up ) ;

52

53 % w r i t e o p t i m i z a t i o n s o l u t i o n t o e x c e l f i l e

54 n i =10 % number f i t e r a t i o n s

55 i f r e g u l a t i o n ( i , 1 ) > RR( i , 1 ) % && PDMprice ( i , 1 ) > RR( i , 1 )

56 i n t e r v a l = i ;

57 e l s e i f PDMprice ( i , 1 ) > RR( i , 1 ) % && r e g u l a t i o n ( i , 1 ) < RR( i , 1 )

58 %e l s e i f PDMprice ( i , 1 ) > RR( i , 1 ) && r e g u l a t i o n ( i , 1 ) > RR( i , 1 )
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59 i n t e r v a l = i ;

60 end

61

62 f o r k =1: i

63 c a l c u l a t e x

64 o u t ( : , i ) =x . ' ; % s t o r e a column x i n a m a t r i x o u t

65 o u t e r = o u t . ' ;

66 w r i t e m a t r i x ( o u t e r , ' l i n p r o g _ c o l s . x l s x ' ) ;

67 %end

68 end

69

70 o u t e r % p r i n t , r e v i e w o p t i m i z a t i o n s o l u t i o n r e s u l t s

71

72 summer1 = sum ( o u t e r ) ;

73 pd1 =summer1 ( 1 , 1 ) ;

74 reg1 =summer1 ( 1 , 2 ) ;

75 r e s p 1 =summer1 ( 1 , 3 ) ;

76 ad de r1 = sum ( summer1 ) ;

77 pdpcn t1 = round ( ( pd1 / ad de r 1 ) *100) ;

78 r e g c n t 1 = round ( ( r eg1 / ad de r 1 ) *100) ;

79 r e s p c n t 1 = round ( ( r e s p 1 / ad de r 1 ) *100) ;

80 o u t e r ( : , 1 ) % a l l rows b u t f i r s t c o l

81 o u t e r ( : , 2 )

82 o u t e r ( : , 3 )

83 o u t e r ( 1 : , )% f i r s t row b u t a l l columns

84 p l o t ( o u t e r )

85 p l o t ( o u t e r ( : , 1 ) , o u t e r ( : , 2 ) , o u t e r ( : , 3 ) )

86 l e g e n d ( o u t e r , { ' o u t e r ( : , 1 ) ' , ' o u t e r ( : , 2 ) ' , ' o u t e r ( : , 3 ) ' } )

87 end

88 %%% End O p t i m i z a t i o n S o l u t i o n%%%

89

90 %%% Step 3 : I n i t i a l P l o t o f O p t i m i z a t i o n %%%
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91

92 t i l e d l a y o u t ( 2 , 1 ) % R e q u i r e s R2019b or l a t e r

93

94 % P l o t t o p c h a r t

95 n e x t t i l e

96 p l o t ( PDMprice )

97 ho ld on

98 p l o t ( r e g u l a t i o n )

99 ho ld on

100 p l o t (RR)

101 ho ld o f f

102 t i t l e ( ' P r i c i n g P l o t ' )

103 l g d = l e g e n d ( { ' Energy $ ' , ' F requency R e g u l a t i o n $ ' , ' F requency Response $ ' , ' Peak Demand

M i t i g a t i o n $ ' } , ' F o n t S i z e ' , 1 4 , ' T e x t C o l o r ' , ' b l a c k ' )

104 x l a b e l ( '5−minu te i n t e r v a l s ' , ' F o n t S i z e ' , 2 2 )

105 y l a b e l ( ' Energy P r i c e i n $ ' , ' F o n t S i z e ' , 2 2 )

106 xl im ( [ 0 2 8 8 ] )

107 g r i d on

108 ax = gca ;

109 ax . F o n t S i z e = 1 6 ;

110 s e t ( f i n d a l l ( gca , ' Type ' , ' L ine ' ) , ' L ineWidth ' , 4 ) ;

111 h . XAxis . MinorTick = ' on ' ;

112

113 %p l o t bot tom t i l e

114 n e x t t i l e

115 p l o t ( o u t e r ) ;

116 %b a r ( o u t e r , ' s t a c k e d ' )

117 ho ld on

118 x l a b e l ( '5−minu te i n t e r v a l s ' , ' F o n t S i z e ' , 2 2 )

119 y l a b e l ( ' Energy Take (MW−hr ) ' , ' F o n t S i z e ' , 2 2 )

120 g r i d on

121 ax = gca ;
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122 ax . F o n t S i z e = 1 6 ;

123 s e t ( f i n d a l l ( gca , ' Type ' , ' L ine ' ) , ' L ineWidth ' , 4 ) ;

124 h . XAxis . MinorTick = ' on ' ;

125 t i t l e ( [ ' Cos t o f Frequency Response : $ ' num2s t r ( F_Resp_cost_USD ) ' Pos t−Opt P e r c e n t a g e s :

Energy ' num2s t r ( pdpcn t1 ) '% ' ' Reg ' num2s t r ( r e g c n t 1 ) '% Resp ' num2s t r (

r e s p c n t 1 ) ' % R e s e r v e s i n MW−hr ' num2s t r ( l b / 1 0 0 0 0 0 0 ) ] )% ' $ ' ] )

126 xl im ( [ 0 2 8 8 ] ) % s p e c i f y l i m i t s i n ma t l a b

127 cy R e g u l a t i o n ' , ' F requency Response ' , ' F requency Response1 ' , ' F requency Response2 ' } , '

F o n t S i z e ' , 1 2 , ' T e x t C o l o r ' , ' b l a c k ' )

128 p l o t ( Energy , ' k : ' )

129 p l o t ( x . * ( 1 / 1 2 ) , Energy . * ( 1 / 1 0 0 0 0 0 0 ) , ' k : ' )

130 l g d = l e g e n d ( { ' Energy ' , ' F requency R e g u l a t i o n ' , ' F requency Response ' , ' D a i l y Max ' , } , '

F o n t S i z e ' , 1 5 , ' T e x t C o l o r ' , ' b l a c k ' )

131 l g d = l e g e n d ( { ' D a i l y Max ' } )% , ' Fon tS i ze ' , 1 5 , ' Tex tColor ' , ' b l ack ' )

132 ho ld on

133 p l o t ( day7_pr ime )

134 %l g d = l e g e n d ( { ' Energy ' , ' F requency R e g u l a t i o n ' , ' F requency Response ' , ' D a i l y Max ' , } , '

Fon tS i ze ' , 1 5 , ' Tex tColor ' , ' b l ack ' )

135 %l g d = l e g e n d ( { ' D a i l y Max ' } ) % , ' Fon tS i ze ' , 1 5 , ' Tex tColor ' , ' b l ack ' )

136 ho ld o f f

137 % End p l o t
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Appendix B: MATLAB ® Implementation of Test and Training using LSTM

1 %T e s t i n g and T r a i n i n g two days wor th o f Energy t a k e d a t a

2 % Using on Long Shor t−Term Memory (LSTM)

3 day1 = ETAKE_H ( : , [ 1 : 8 0 6 4 ] ) ; %Grab 28 days wor th o f d a t a ;

4 c l a s s ( day1 ) ;

5 %d e t e r m i n e c l a s s o f d a t a [ t y p e ]

6 %day1 = { day1 ( : ) } % change from row v e c t o r t o a r r a y

7 days = c a l l 2 m a t ( day1 ( : ) ) % f i x d a t e by c o n v e r t i n g t o m a t r i x

8 d a t a = day1 ; % Get d a t a t o t r a i n

9 f i g u r e

10 p l o t ( d a t a ) % P l o t d a t a h e r e t o check f o r any a n o m a l i e s

11 x l a b e l ( '5−minu te i n t e r v a l s ' , ' F o n t S i z e ' , 2 2 )

12 y l a b e l ( ' Energy Take (MW−hr ) ' , ' F o n t S i z e ' , 2 2 )

13 ho ld on ;

14 t i t l e ( 'MW of en e r g y draw ' , ' F o n t S i z e ' , 2 2 )

15 t i t l e ( [ num2s t r ( amount ) ' MW of Power draw a t hour ' num2s t r ( h r ) ' f o r ' num2s t r (

d u r a t i o n / 6 0 ) ' h o u r s ' ] )

16 % Add draw i n f o on graph / p l o t

17

18 %SPLIT DATA INTO TRAIN ( f i r s t 90%)

19 % and T e s t ( r e m a i n i n g 10%)

20 n u m _ s t e p s _ t r a i n = f l o o r ( 0 . 9 0 * numel ( d a t a ) ) ; % s p l i t 90% of d a t a

21 t r a i n = d a t a ( 1 : n u m _ s t e p s _ t r a i n +1) ; %t r a i n d a t a

22 t e s t = d a t a ( n u m _ s t e p s _ t r a i n +1: end ) %t e s t d a t a

23 mu = mean ( t r a i n ) ; % s t a n d a r d i z e d a t a f o r z e r o mean and u n i t v a r i a n c e

24 sigma = s t d ( t r a i n ) ;% s t a n d a r d d e v i a t i o n

25 s t d _ t r a i n _ d a t a = ( t r a i n −mu) / s igma ;
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26 XTrain= s t d _ t r a i n _ d a t a ( 1 : end−1) ;%

27 YTrain = s t d _ t r a i n _ d a t a ( 2 : end ) ;

28 % p u l l c o o r d i n a t e s from t r a i n i n g d a t a

29 n u m _ f e a t u r e s = 1 ;

30 num_responses = 1 ;

31 n u m _ h i d d e n _ u n i t s = 200 ; % s p e c i f y # of LSTM hi dde n u n i t s

32 l a y e r s = [ s e q u e n c e I n p u t L a y e r ( n u m _ f e a t u r e s ) , l s t m L a y e r ( n u m _ h i d d e n _ u n i t s ) ,

f u l l y C o n n e c t e d L a y e r ( num_responses ) , r e g r e s s i o n L a y e r ] ;

33 l a y e r s ;% check l a y e r s

34 % An epoch i s a s i n g l e p a s s t h r o u g h t h e e n t i r e d a t a s e t f o r t h e number o f t i m e s a l l

v e c t o r s b e i n g t r a i n e d a r e used t o u p d a t e t h e w e i g h t s . We va ry epoch 100 or 250

or 500 f o r a c c u r a c y of p r e d i c t i o n s . I n i t i a l l e a r n r a t e and l e a r n r a t e drop

p e r i o d h e l p s improve t h e speed o f t r a i n i n g .

35 o p t i o n s = t r a i n i n g O p t i o n s ( ' adam ' , ' MaxEpochs ' , 100 , ' G r a d i e n t T h r e s h o l d ' , 1 , '

I n i t i a l L e a r n R a t e ' , 0 . 0 0 5 , ' L e a r n R a t e S c h e d u l e ' , ' p i e c e w i s e ' , ' L e a r n R a t e D r o p P e r i o d '

, 125 , ' L e a r n R a t e D r o p F a c t o r ' , 0 . 2 , ' Verbose ' , 0 , ' p l o t s ' , ' t r a i n i n g −p r o g r e s s ' )

36 n e t = t r a i n N e t w o r k ( XTrain , YTrain , l a y e r s , o p t i o n s )% p l o t s MSE and Loss e r r o r s

37 s t d _ t e s t _ d a t a = ( t e s t −mu) / s igma ;

38 XTest = s t d _ t e s t _ d a t a ( 1 : end−1) ;

39 n e t = p r e d i c t A n d U p d a t e S t a t e ( ne t , XTrain ) ;

40 [ ne t , YPred ] = p r e d i c t A n d U p d a t e S t a t e ( ne t , YTrain ( end ) ) ;

41 %n u m _ s t e p s _ t e s t = nume1 ( XTest ) ;

42 n u m _ s t e p s _ t e s t =numel ( XTest ) ; % number o f e l e m e n t s i n an a r r a y . . .

43 f o r i = 2 : n u m _ s t e p s _ t e s t

44 % Use p r e v i o u s p r e d i c t i o n as an i n p u t f o r t h e loop

45 [ ne t , YPred ( : , i ) ] = p r e d i c t A n d U p d a t e S t a t e ( ne t , YPred ( : , i −1) ) ;

46 end

47 YPred = YPred* sigma + mu ;% X 12

48 YTest = t e s t ( 2 : end ) ; % Tes d a t a

49 rmse = s q r t ( mean ( ( YPred−YTest ) . ^ 2 ) )% RMSE i n X 12

50 %p l o t t h e t r a i n i n g d a t a wi th t h e f o r e c a s t e d v a l u e s

51 f i g u r e
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52 p l o t ( t r a i n ( 1 : end−1) ) % PLOT T r a i n e d d a t a h e r e − f i r s t h a l f

53 ho ld on

54 i d x = n u m _ s t e p s _ t r a i n : ( n u m _ s t e p s _ t r a i n + n u m _ s t e p s _ t e s t ) ; % S e l e c t p o i n t s 259 − 2 8 7 . .

g i v e s 29

55 p l o t ( idx , [ d a t a ( n u m _ s t e p s _ t r a i n ) , YPred ] , ' .− ' )

56 ho ld on

57 d a y _ f i l l = z e r o s ( 1 , 5 4 7 2 ) ; % Add back p l o t XXXXXXXX

58 b a c k d a t a = [ d a y _ f i l l , day4 ] ;

59 p l o t ( b a c k d a t a )

60 xl im ( [ 5 1 8 4 5 7 6 0 ] )

61 %yl im ([ −0.4 0 . 8 ] ) END BACK PLOT − XXXXXXXXXXXXXX

62 ho ld o f f

63 l e g e n d ( [ " o b s e r v e d " " F o r e c a s t " ] )

64 x l a b e l ( '5−minu te i n t e r v a l s ' , ' F o n t S i z e ' , 2 2 )

65 y l a b e l ( ' Energy Take (MW−hr ) ' , ' F o n t S i z e ' , 2 2 )

66 % End f i r s t p l o t

67 % second p l o t : Compare f o r e c a s t e d v a l u e s wi th t h e t e s t d a t a

68 f i g u r e

69 s u b p l o t ( 2 , 1 , 1 )

70 p l o t ( YTest )

71 x l a b e l ( '5−minu te i n t e r v a l s ' , ' F o n t S i z e ' , 2 2 )

72 y l a b e l ( ' Energy Take (MW−hr ) ' , ' F o n t S i z e ' , 2 2 )

73 ho ld on

74 % p l o t ( day1 ) % added

75 % x l a b e l ( '5− minu te i n t e r v a l s ' , ' Fon tS i ze ' , 2 2 )

76 % y l a b e l ( ' Energy Take (MW−hr ) ' , ' Fon tS i ze ' , 2 2 )

77 % ho ld on

78 p l o t ( YPred , ' .− ' )

79 x l a b e l ( '5−minu te i n t e r v a l s ' , ' F o n t S i z e ' , 2 2 )

80 y l a b e l ( ' Energy Take (MW−hr ) ' , ' F o n t S i z e ' , 2 2 )

81 ho ld o f f

82 l e g e n d ( [ " o b s e r v e d " " F o r e c a s t " ] ) % T r a i n e d vs pre−t r a i n e d d a t a
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83 s u b p l o t ( 2 , 1 , 2 )

84 stem ( YPred−YTest )

85 y l a b e l ( " E r r o r " )

86 t i t l e ( "RMSE="+ rmse )

87 n e t = r e s e t S t a t e ( n e t ) ;

88 n e t = p r e d i c t A n d U p d a t e S t a t e ( ne t , XTrain ) ;

89 YPred = [ ] ;

90 f o r i = 1 : n u m _ s t e p s _ t e s t

91 [ ne t , YPred ( : , i ) ] = p r e d i c t A n d U p d a t e S t a t e ( ne t , XTest ( : , i ) )

92 end

93 YPred = sigma *YPred+mu

94 rmse = s q r t ( mean ( YPred − YTest ) . * 2 )

95 % check f o r i n c r e a s e i n RMSE

96 rmse = s q r t ( mean ( YPred − YTest ) . ^ 2 )

97 f i g u r e % Thi s f i g u r e p l o t s bo th t h e t r a i n e d and t h e t e s t e d d a t a

98 % compares t r a i n e d vs . t e s t d a t a .

99 s u b p l o t ( 2 , 1 , 1 )

100 p l o t ( YTest )

101 x l a b e l ( '5−minu te i n t e r v a l s ' , ' F o n t S i z e ' , 2 2 )

102 y l a b e l ( ' Energy Take (MW−hr ) ' , ' F o n t S i z e ' , 2 2 )

103 ho ld on

104 p l o t ( YPred , ' .− ' ) % p l o t p r e d i c t e d d a t a

105 x l a b e l ( ' I n t e r v a l s ' , ' F o n t S i z e ' , 2 2 )

106 y l a b e l ( ' Energy Take (MW−hr ) ' , ' F o n t S i z e ' , 2 2 )

107 ho ld o f f

108 l e g e n d ( [ " Observedex " " F o r e c a s t e x " ] )

109 %y l a b e l ( " c a s e s " )

110 %x l a b e l ( " Months " ) _

111 t i t l e ( " F o r e c a s t w i th u p d a t e s " )

112 s u b p l o t ( 2 , 1 , 2 )

113 stem ( YPred−YTest )

114 y l a b e l ( " E r r o r " )
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115 x l a b e l ("5−minu te i n t e r v a l s " )

116 t i t l e ( "RMSE ="+ rmse ) % P l o t RMSE r e s u l t s a f t e r t e s t i n g
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Appendix C: MATLAB ® Implementation of AWHS Optimization, stage 2

1 % We b e g i n s t a g e 2 o p t i m i z a t i o n by r u n n i n g a p r i m e r f u n c t i o n . Th i s f u n c t i o n

f i r s t t e l l s t h e AWHS when t o d i s p a t c h by s e t t i n g b i t s i n a c o u n t e r t h a t

examines t h e number o f t i m e s e i t h e r o f t h e 3 s e r v i c e s change magni tudes , i

. e , t h e g r e a t e s t o f t h e 3 s e r v i c e s i n d i c a t e s t h a t i t i s t ime t o d i s p a t c h o r

r e s e r v e f o r t h a t s e r v i c e u s e s ( Ou te r v e c t o r i s from Appendix A)

2

3 f u n c t i o n [ kma t r ix , s e l l m a t r i x ] = s e l l ( o u t e r )

4 %F u n c t i o n o u t e r i s i n p u t , k m a t r i x and s e l l m a t r i x i s o u t p u t

5 c t r = 0 ;

6 l i v e b i t = 0 ;

7 l i v e i n t = 0 ;

8 l i v e c t r = 0 ;

9 SIZE = s i z e ( o u t e r ) ;

10 k m a t r i x = z e r o s ( SIZE ( 1 ) , 5 ) ;

11 f o r n = 1 : SIZE ( 1 )

12 c t r = c t r +1 ;

13 k m a t r i x ( n , 1 ) = c t r ; % I n t e r v a l be tween d i s p a t c h e s goes h e r e

14 i f ( ( o u t e r ( n , 2 ) > o u t e r ( n , 3 ) ) | | ( o u t e r ( n , 2 ) > o u t e r ( n , 1 ) ) | | ( o u t e r ( n , 3 ) >

o u t e r ( n , 1 ) ) | | ( o u t e r ( n , 3 ) > o u t e r ( n , 2 ) ) ) % R e g u l a t i o n on ly

15 %f i n d g r e a t e s t o f t h e 3 s e r v i c e s

16 k m a t r i x ( n , 2 ) = 1 ; % S e l l = 1 , Don ' t S e l l = 0 ;

17 end

18 i f ( l i v e b i t == 0 && k m a t r i x ( n , 2 ) == 1)

19 l i v e b i t = 1 ;

20 l i v e i n t = n ;

21 l i v e c t r = 1 ;
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22 k m a t r i x ( n , 3 ) = 1 ;

23 end

24 i f ( l i v e b i t == 1 && k m a t r i x ( n , 2 ) == 1)

25 l i v e c t r = l i v e c t r + 1 ;

26 end

27 i f ( l i v e b i t == 1 && k m a t r i x ( n , 2 ) == 0)

28 l i v e b i t = 0 ;

29 k m a t r i x ( l i v e i n t , 4 ) = l i v e c t r − 1 ;

30 l i v e i n t = 0 ;

31 l i v e c t r = 0 ;

32 end

33 k m a t r i x ( n , 5 ) = max ( o u t e r ( n , : ) ) ;

34 end

35 k m a t r i x = [ kmat r ix , o u t e r ] ;

36 % End d i s p a t c h e r f u n c t i o n h e r e

37

38 % BEGIN STAGE 2 OPTIMIZATION

39 % The code below r u n s s t a g e 2 o p t i m i z a t i o n f o r i = 1 t o i = 288

40 % I n i t i a l i z e p a r a m e t e r s and s e t AWHS s t a t e s

41 SIZE = s i z e (X) ;

42 E1 = z e r o s ( 1 , 2 8 8 ) ;

43 E2 = z e r o s ( 1 , 2 8 8 ) ;

44 %E3 = z e r o s ( 1 , 2 8 8 ) ;

45 STAT11 = z e r o s ( 1 , 2 8 8 ) ;

46 STAT21 = z e r o s ( 1 , 2 8 8 ) ;

47 STAT31 = z e r o s ( 1 , 2 8 8 ) ;

48 STAT12 = z e r o s ( 1 , 2 8 8 ) ;

49 STAT22 = z e r o s ( 1 , 2 8 8 ) ;

50 STAT32 = z e r o s ( 1 , 2 8 8 ) ;

51 ON1 = z e r o s ( 1 , 2 8 8 ) ;

52 ON2 = z e r o s ( 1 , 2 8 8 ) ;

53 Max = z e r o s ( 1 , 2 8 8 ) ;
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54 Min = z e r o s ( 1 , 2 8 8 ) ;

55 %%%% START INITIAL GRAB

56 mo = ; % JULY

57 day = 1 ;

58 i n t e r v a l = 288

59 % Double check and e n s u r e i n t e r v a l i s 288 b e f o r e p r o c e e d i n g

60 s tage2_dday_deckE_1 % Toggle h e r e f o r f r e q . r e s p o n s e f i x

61 s t a g e 2 _ l e a p y e a r _ o p t o b o x % g i v e s us o u t e r from s t a g e 1

62 o u t e r ; % t h i s o u t e r i s from s t a g e 1

63 % % % hr = 1 0 . 5 %2.5; % 0 t h r o u g h 23

64 % % % m i n I n t = 0*5 ; % ( m i n u t e s i n t e r v a l : m u l t i p l e s o f 5 ) 0 t h r o u g h 1 1 .

65 % % % d u r a t i o n = 1*5 ; %HOW LONG STRIKE IS ? must be m u l t i p l e s o f 5 .

66 % % % amount = 5 . 5 ; % MegaWatts

67 % % % t w e n t y h i t s _ d e c k _ E % P r o d u c e s E a f t e r Deck t o be f e d i n t o O p t i m i z a t i o n box

68 %E1 =E1_1 ;

69 %%%%% END INITIAL GRAB

70 %%%%%%

71 %%%o p t i m i z a t i o n _ b o x _ 4 s e r v i c e s _ 0 2 2 6 _ o r

72 %%%t w e n t y h i t s _ p l o t t e r _ 4 s e r v i c e s _ 0 2 2 4

73 f o r i = 1 : 2 8 8 ;

74 k m a t r i x = s e l l ( o u t e r , RR) ; % c a l l s f u n c t i o n s e l l t o t e l l when t o d i s p a t c h

75 SIZE1 = s i z e ( k m a t r i x ) ;

76 kend = 0 ;

77

78 f o r n = 1 : SIZE1 ( 1 )

79 i f k m a t r i x ( n , 3 ) == 1

80 kend = kend +1;

81 end

82 end

83

84 k = z e r o s ( kend , 3 ) ;

85 SIZE2 = s i z e ( k ) ;
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86 % C r e a t e Kmatr ix t a b l e ( new ! ) t h a t w i l l c o n s t a n t l y be u p d a t e d a f t e r each d i s p a t c h

, c a l c u l a t e new i n t e r v a l , new d u r a t i o n o f d i s p a t c h and amount o f e ne rg y t a k e

by which t o d i s p a t c h a f t e r p r i o r o p t i m i z a t i o n i s c o m p l e t e

87 c t r k = 1 ; % i n i n t i a l i z e c o u n t e r

88 f o r n = 1 : SIZE1 ( 1 )

89 i f k m a t r i x ( n , 3 ) == 1

90 k ( c t r k , 1 ) = k m a t r i x ( n , 1 ) % Reads n e x t I n t e r v a l .

91 k ( c t r k , 2 ) = k m a t r i x ( n , 4 ) % Reads n e x t D u r a t i o n / l e n g t h o f n e x t d i s p a t c h

92 k ( c t r k , 3 ) = k m a t r i x ( n , 5 ) % Reads e x a c t amount t o s e l l / d i s p a t c h n e x t

93 c t r k = c t r k +1

94 end

95 end

96 k_yo = k ; % re−a s s i g n t o new v a r i a b l e t o p r e v e n t over−w r i t t i n g w i t h i n loop

97 c t r = 0 ; % c r e a t e new c o u n t e r f o r w r i t i n g i n t o t a b l e

98 % % % Ee1 = z e r o s ( 1 , 2 8 8 ) ;

99 % % % Ef = z e r o s ( 1 , 2 8 8 ) ;

100 % % % v = 1 ;

101 % E1 = Ee1 ( [ 1 ] , : ) ; % E x t r a c t f i r s t row ;

102 % E1 = Ee1 ( : , [ 1 : 2 8 8 ] ) ;% Now e x t r a c t a l l columns ;

103 f o r p = 1 : kend ;

104 c t r = c t r +1

105 i n t e r v a l = k_yo ( p , 1 ) +1

106 d u r a t i o n = k_yo ( p , 2 )

107 d u r a t i o n = d u r a t i o n * 5 ;

108 %amount = k_yo ( p , 3 )

109 amount = 5

110 % t h i s f u n c t i o n c o n v e r t s i n t e r v a l s i n t o days & m i n u t e s

111 [ d a y i n c r e m e n t e r , hr , m i n I n t ] = t i m i z e r ( i n t e r v a l )

112 %% Begin f u n c t i o n t i m i z e r

113 f u n c t i o n [ d a y i n c r e m e n t e r , hr , min ] = t i m i z e r ( i n t e r v a l )

114 %Do n o t use f o r i n t e r v a l s g r e a t e r t h a n 2 8 8 .

115 % Thi s code g i v e s DD,MM i n m u l t i p l e s o f 5
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116 hr = 0 ;

117 w h i l e i n t e r v a l >= 12

118 i n t e r v a l = i n t e r v a l − 1 2 ;

119 hr = hr + 1 ;

120 end

121

122 min = ( i n t e r v a l ) * 5 ;

123

124 i f min == 0

125 hr = hr − 1 ;

126 min = 5 5 ;

127 e l s e

128 min = min − 5 ;

129 end

130

131 d a y i n c r e m e n t e r = 0 ;

132 i f h r > 23

133 w h i l e h r >= 24

134 hr = hr − 2 4 ;

135 d a y i n c r e m e n t e r = d a y i n c r e m e n t e r + 1 ;

136 end

137

138 end

139 % End f u n c t i o n t i m i z e r

140

141

142 o p t i m i z e r % C a l l o p t i m i z e r ( a p p e n d i x 1 code , t h i s g i v e s us new e t a k e

143 Y t e s t % I n p u t t e s t d a t a from a p p e n d i x 2 , and loop back

144 %s w i t c h o u t o l d e t a k e d a t a wi th f o r c a s t from LSTM t r a i n i n g

145 z ( i , 1 ) = Y t e s t { i , 1}

146 z ( i , 2 ) = Y t e s t { i , 2}

147 z ( i , 3 ) = Y t e s t { i , 3}
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148 % o u t e d ( : , i ) =E1 . ' ; % s t o r e a column x i n a m a t r i x o u t

149 o u t e d ( : , p ) =E1

150 end

151 % r e p e a t o p t i m i z a t i o n from a p p e n d i x 1

152 % and u p d a t e v a l u e s wi th newly t r a i n e d d a t a s e t s

153 %%%%% Re−o p t i m i z e

154 f = [ − r e g u l a t i o n ( i , 1 ) −RR( i , 1 ) −PDMprice ( i , 1 ) ] ; % use p r i c e s from above

155 A = [1 1 1 ] ; % ax1 + bx2 + cx3

156 z= day7_pr ime ;

157 b = z ( i , 1 ) ;

158 Aeq = [ ] ;

159 beq = [ ] ;

160 l b = [000000 000000 0 0 0 0 0 0 ] ; % lower boundary c o n s t r a i n t s

161 up = [ z ( i , 1 ) z ( i , 1 ) 0 .17*10^6 ] ; % upper boundary c o n s t r a i n t s

162 [ x z ] = l i n p r o g ( f , A, b , Aeq , beq , lb , up ) ;

163

164 % w r i t e o p t i m i z a t i o n s o l u t i o n t o e x c e l f i l e

165 n i =10 % number f i t e r a t i o n s

166 i f r e g u l a t i o n ( i , 1 ) > RR( i , 1 ) % && PDMprice ( i , 1 ) > RR( i , 1 )

167 i n t e r v a l = i ;

168 e l s e i f PDMprice ( i , 1 ) > RR( i , 1 ) % && r e g u l a t i o n ( i , 1 ) < RR( i , 1 )

169 %e l s e i f PDMprice ( i , 1 ) > RR( i , 1 ) && r e g u l a t i o n ( i , 1 ) > RR( i , 1 )

170 i n t e r v a l = i ;

171 end

172

173 % w r i t e s r e s u l t s from o p t i m i z a t i o n e q u a t i o n i n t o a t a b l e f o r each i l oop from 1

t o 288

174 f o r k =1: i

175 c a l c u l a t e x

176 o u t ( : , i ) =x . ' ; % s t o r e a column x i n a m a t r i x o u t

177 o u t e r = o u t . ' ;

178 w r i t e m a t r i x ( o u t e r , ' l i n p r o g _ c o l s . x l s x ' ) ;
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179 %end

180 end

181

182 o u t e r % p r i n t , r e v i e w o p t i m i z a t i o n s o l u t i o n r e s u l t s

183 %%%% End re−o p t i m i z e

184

185 % Loop from i = 1 t o i = 288 , d i s p a t c h , o p t i m i z e , s h i f t and r e p e a t

186 end
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