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Abstract 

There is a growing interest in anthropology towards identifying and documenting 

the ways in which people have modified landscapes and ecosystems through time. 

Previous research has focused predominantly on terrestrial modification, whereas 

recently, research has turned towards aquatic environments. Examples range from the 

tidal fish pens of Hawai’i to fish weir complexes and clam gardens on the Northwest 

Coast. Scholars are beginning to apply the term human ecosystem engineering to the 

practices linked to wetland landscape modifications. Evidence of these practices can 

contribute to understanding optimization, cultivation, and modification of aquatic 

environments on a landscape level. However, some regions have received more 

consideration than others; the backwater wetlands of the Lower Columbia are minimally 

studied. 

Lower Columbia archaeological and ethnohistoric records highlight the 

importance of aquatic plants and mammals that inhabit wetland environments; freshwater 

fish remains from families Catostomidae and Cyprinidae are prominent in regional 

archaeological site assemblages. This raises questions as to how wetland resources in the 

region were used and potentially optimized in the broader context of the backwater 

ecosystem, and how this ecosystem has been modified by humans. A wood stake 

alignment located on Sauvie Island in Virginia Lake, a seasonally flooded backwater, 

offered a starting place to examine these questions. 

 I conducted archival research, pedestrian survey, site mapping, subsurface 

testing, and laboratory analysis to evaluate hypotheses related to the feature’s age 
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(precontact, historic, and multicomponent), cultural affiliation (Indigenous, Euro-

American, or both), and function (fish weir, causeway/pier, hunting platform or blind, 

post and line structure for straightening/storing cedar planks, boundary line/fence, or 

multi-use). Results from Virginia Lake were compared to four sites containing wood 

stake/post alignments in Lower Columbia River wetlands. Niche Construction Theory 

and Historical Ecology informed my analyses. 

Fieldwork and site documentation were conducted at two scales; landscape-level 

and site-specific, and included pedestrian survey, metal detector survey, and excavation 

of 11 subsurface shovel probes, and two 1 x .5 m test units. Six wood samples and one 

sediment sample were submitted for AMS dating and macrobotanical identification. 

Toolmarks were analyzed to determine if the stakes were shaped using metal or stone 

tools. 

The alignment (northeast/southwest orientation) consists of a total of 23 wooden 

stakes that extend approximately 60 m from the lake edge. Stakes average 5.9 cm in 

diameter, and 25.6 cm height above ground surface, but stakes are not uniform in size or 

condition. Stakes are spaced an average of 2.5 m apart. The five sampled stakes are from 

western red cedar (Thuja plicata). Except for two small metal fragments found within 

two stakes, additional artifacts were not observed in association with the alignment. One 

of the removed stakes with an intact distal end appears to have been shaped with a metal 

tool, likely a chisel or axe. Calibrated median AMS dates fall within a tight range, 

between 1847 and 1854 CE. AMS dating of humin fraction of a peat sample obtained 

during excavations returned a calibrated date of between 969 and 1035 CE (925-981 BP). 
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This date suggests that Virginia Lake has been separate from the main Multnomah 

Channel for at least the last approximately 1000 years. 

Though the AMS ages indicate an historic era construction, the feature could 

reflect Euro-American or Indigenous affiliation, or links to both, given that archival 

records document a complex and ongoing relationship between Indigenous people and 

Euro-American settlers in the region through the 19th century. Research eliminated four 

hypotheses related to function, leaving the possibility that the alignment was a fish weir 

or a pier. The Virginia Lake feature is distinct from other wood stake and post alignments 

documented on the Lower Columbia River making it difficult to place it in a larger 

system of ecosystem engineering and wetland modification. 

My thesis contributes to the understanding of the history of Virginia Lake and its 

formation, and facilitates future work on wood stake features in backwater systems, 

which have been under-studied in the Pacific Northwest. Researchers cannot adequately 

test for specific site types, if there is little precedent for them to exist in a given 

environment. My thesis provides a methodological template for evaluating wetland 

landscape modifications, and more specifically stake sites, increasing replicability and a 

richer understanding of their role in human-modified landscapes. 
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Chapter 1: Introduction  

There is a growing interest in anthropology towards identifying and documenting 

the ways in which people have modified landscapes and ecosystems through time (Deur 

and Turner 2005; Lepofsky and Caldwell 2013; Lightfoot et al. 2013; McKey et al. 2010; 

Thornton et al. 2015; Vale 2002). Previous research has focused predominantly on 

terrestrial anthropogenic modification (Anderson et al. 1997; Smith 2007; Turner et al. 

2013; Vale 2002; Walsh 2008), whereas recently, research has turned towards both 

marine and freshwater aquatic environments (e.g. Campbell and Butler 2010b; Deur et al. 

2015; Hoffmann et al. 2016; Thornton et al. 2015; Tushingham and Christiansen 2015). 

Examples range from freshwater taro/eel ponds of south-central Polynesia, to tidal fish 

pens of Hawai’i (Costa-Pierce 1987; Kirch 2017), and wetland agriculture and fisheries 

of Amazonia ((Erickson 2000; Fraser 2010; McKey et al. 2010). Scholars are beginning 

to apply the term human ecosystem engineering to the practices linked to wetland 

landscape modifications, highlighting the agency, scale, and intent of the people who 

engage in them. 

These practices also extend to the Pacific Northwest, where anthropologists have 

identified archaeological, ethnographic, and ethnohistoric evidence of landscape 

modifications such as “clam gardens,” “wapato gardens,” and specialized behaviors and 

technologies relating to the cultivation and optimization of salmon and herring harvest 

(Butler and Campbell 2004; Campbell and Butler 2010b; Deur et al. 2015; Harper et al. 

1995; Hoffmann et al. 2016; Thornton et al. 2015). Evidence of these practices can 

contribute to understanding optimization, cultivation, and modification of aquatic 
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environments on a landscape level. However, some regions have received more 

consideration than others; the backwater wetlands of the Lower Columbia are minimally 

studied. This neglect is pertinent, as intentional modifications to the landscape that 

optimize resources, such as the construction of fish traps, clam gardens, and even 

agricultural terraces or levees, affect how the landscape is interpreted. Land use can have 

a cascading effect on the ecosystem, creating an interconnected anthropogenic 

environment that is best understood as a system, rather than individual components. 

The lower reaches of the Columbia River offer an opportunity to examine inland 

practices of aquatic resource optimization, cultivation, and landscape modification and 

the ways in which they influence our understanding of local subsistence, economy, diet, 

and technologies of inland backwater ecosystems. The Lower Columbia is particularly 

useful in this research, with its extensive aquatic landscape, complex ecosystem, and long 

history of use, both Indigenous and Euro-American (Ames and Maschner 1999; Butler 

and Martin 2013; Boyd et al. 2013; Darby 1996; Pettigrew 1977; Saleeby 1983; Trieu 

Gahr 2013).  

Archaeological and ethnohistoric records highlight the importance of aquatic 

plants like wapato (Sagittaria latifolia), and mammals that inhabit wetland environments, 

such as beaver (Castor canadensis) and muskrat (Ondatra zibethicus) (Ames et al. 1999; 

Darby 1996; Lyman 1994). Ichthyofaunal remains of freshwater fish (e.g. Catostomidae 

and Cyprinidae) are also prominent in regional archaeological site assemblages, often 

outnumbering anadromous salmonid remains (Butler and Martin 2013; Saleeby 1983). 

This abundance is interesting, as very few mass capture structures have been identified in 
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association with backwater environments, creating questions as to how these fish were 

harvested. Historically, the waterways of the Lower Columbia have also played a pivotal 

role in the development of Euro-American agriculture and commercial fisheries of the 

region. This raises questions as to how wetland resources in the region were used and 

potentially optimized in the broader context of the backwater ecosystem, and how this 

ecosystem has been modified by humans, both in the precontact Indigenous northwest 

and the early historic and contact era.  

An anthropogenic stake alignment feature located on Sauvie Island in a backwater 

lake offers a starting place to examine these questions (Figure 1, Figure 2). The feature 

was first identified by local landowner and avocational archaeologist Dennis Torresdal in 

2012. Mr. Torresdal contacted Portland State University archaeologist Virginia Butler to 

report a possible archaeological site in Virginia Lake within the Oregon State Parks 

Wapato Access Greenway on Sauvie Island. Dr. Butler, accompanied by archaeologists 

Sarah Campbell, Ken Ames, and Madonna Moss, inspected the site and determined the 

feature was anthropogenic in nature (Virginia Butler and Dennis Torresdal, pers. comm. 

2016). However, no formal testing or survey was conducted during this visit, and the site 

was not officially recorded. The feature consists of a paired alignment of wooden stakes 

that extends approximately 60 m from the lake edge into the wetland. Prior to 20th 

century levee construction for agricultural purposes, the lake was part of a frequently 

flooded landscape and interconnected productive wetland on the island (GLO 1854; 

USGS 1915). The site is inundated with water most of the year and is only accessible in 

the late summer/early fall.  
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Figure 1. Project Location Map. Insert displays the Willamette River and the Lower 
Columbia River from The Dalles to the Pacific Ocean. 
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Figure 2. Virginia Lake feature during a rare winter exposure, view east. Image courtesy 
of Dennis Torresdal. 

The stake alignment, especially in a backwater context, is an uncommon 

archaeological feature in the regional record and presents many questions, and 

possibilities in age, function, and cultural affiliation. It is possible that the alignment 

represents an Indigenous system for storage or resource acquisition, such as a fish weir, 

akin to the one in Vancouver Lake (Wessen 1983) (see section 4.4 below for discussion 

of the Vancouver Lake weir). It could also represent a Euro-American feature or 

boundary line relating to ranching, hunting, or transportation.  

The goal of my study is to investigate the stake alignment in order to address the 

questions about its age and origins. I defined my study area as the Virginia Lake basin. 

My work documents the stake alignment feature and creates a methodological template 
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for evaluating other anthropogenic stake sites in the future. I evaluate hypotheses related 

to its age, function, and cultural affiliation, and place it within a broader context of 

wetland use, and human ecosystem engineering. To accomplish this I conducted historic 

research, and performed fieldwork, including detailed mapping, survey, subsurface 

testing, and stake sampling. I then created a protocol to analyze tool marks on the wood 

stakes collected during subsurface test excavations. I analyzed the lake and channel 

formation history to better understand the function of the feature and the lake’s 

environmental history. I submitted samples from the feature for Accelerator Mass 

Spectrometry (AMS) dating and macrobotanical identification. I conducted regional 

comparative analysis, comparing my results to previously published data from three 

wetland archaeological sites that contain anthropogenic stakes in the Lower Columbia, 

and used Niche Construction Theory and Historical Ecology to inform broader 

relationships between people, wetland use and modification through time. As well as a 

better understanding of the Virginia Lake feature, my project also generated a template 

for any study that seeks to assess features of this kind, especially in lieu of known 

ethnohistoric or ethnographic links, as is the case here. Such a methodological system 

could facilitate future identification and analysis of similar features. 

This thesis is organized into five chapters. In Chapter 2, I discuss the background 

that informs my study, and situate the feature within the physical, historical, and 

archaeological landscape. I also outline the theory that guided my project. This 

background explicates what is previously known about the landscape and archaeology of 

Sauvie Island, as well as the culture of the Indigenous Chinookan people and early Euro-

American settlers in the region. I also explore previous research on human landscape 
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modification, and the current theoretical underpinnings used to study such modification, 

which will serve as the theoretical framework for my thesis. At the end of Chapter 2, I 

outline the questions and hypotheses that guide my methodology and the tasks I propose 

for addressing them. In Chapter 3, I explain my methods, materials, and research design 

in detail. In Chapter 4, I present the results of my archival research, fieldwork, lab 

analysis, and inter-site comparison. Finally, in Chapter 5, I review my initial hypotheses 

related to the feature, consider the values of my study, highlight the limitations of the 

project.
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Chapter 2: Background 

In this chapter I discuss current knowledge of the history of the Lower Columbia. 

I address research relating to the formation of the region and its environment, the peoples 

who inhabit the Lower Columbia both Indigenous and settler, and how they are known to 

have utilized the wetland environments. I also discuss the theoretical framework I use to 

inform my hypotheses and evaluate my research, and I outline my research questions and 

associated hypotheses. 

2.1 Lower Columbia Environmental History  

The study area is located on Sauvie Island (Figure 1), within the Portland Basin of 

the Lower Columbia. The Lower Columbia is generally described as including the 

Columbia River’s final approximately 314 km (195 miles) stretch between the western 

edge of the Columbia Plateau at The Dalles and where it meets the Pacific Ocean. The 

Lower Columbia is considered a subregion of the Northwest Coast culture region (Ames 

and Shepard 2019; Cannon 2015; Newman 1991; Sobel et al. 2013). After running 

through the Columbia Gorge, the river turns north through the Portland Basin, eventually 

flowing westward through the Coast Range toward its final outlet (Sobel et al. 2013). 

After the last glacial maximum, a series of floods inundated the Columbia Plateau and 

travelled down the Columbia River and into the Willamette Valley, between 

approximately 19,015 ±165 14C yr B.P. and 13,695 ± 95 14C yr B.P. (Benito and 

O’Connor 2003; O’Connor et al. 2001). These floods transformed the landscape, burying 

much of the lowland areas in fine-grained alluvial sediment, as well as depositing a 

number of glacial erratics (O’Connor et al. 2001).  
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Sauvie Island is located approximately 140 km (86 miles) upriver from the mouth 

of the Columbia, at the river’s confluence with the Willamette (Figure 1). The island is 

bounded by the Multnomah Channel and Columbia River on the western and eastern 

shores, respectively (Figure 1). It was formed approximately 2,500 years ago when 

sediment deposition and natural channel migration of the Columbia built out the landform 

(O’Connor 2012). Around this same period, sea level rise likely diverted the Willamette 

River, cutting Sauvie Island off from the mainland at its southern end (O’Connor 2012).  

The flow and levels of water in this portion of the river are also influenced by 

tidal patterns, which can affect the Columbia all the way to the Bonneville Dam in times 

of low flow (Cannon 2015; Jay et al. 2015). During higher flows, the river is less 

susceptible to tidal influence. Near the U.S. Geological Service (USGS) monitoring 

station at Vancouver, Washington, across the Columbia River from Sauvie Island, the 

river level can vary up to 1 m in height as a direct result of measured tidal fluctuations 

(Cannon 2015).  

Historically, spring floods, often referred to as “freshets,” were the primary 

catalyst for geomorphic change and heavily influenced how and when the Lower 

Columbian landscape was utilized, especially Sauvie Island (Cannon 2015; Spencer 

1950). Prior to extensive 20th century development, which altered the flood intensity and 

regime, regional wetlands were seasonally flooded, productive environments. Estimates 

drawn from figures published from the U.S. Army Corps of Engineers (USACE) indicate 

that prior to levee construction, the island lowlands flooded upwards of 43 times between 

1858 and 1930 (Saleeby 1983). However, this watery, often flooded landscape did not fit 
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with Euro-American agricultural practices and cattle ranching. As a result, these wetlands 

were drained, levees were built around the island, and dams were constructed along the 

Columbia River, reducing the seasonal flood height (Cannon 2015; Spencer 1950). 

“Virgin” pre-dam flow estimates of the Columbia indicate that a combination of 

extensive infrastructure, such as dam and levee construction, and increasing aridity due to 

climate change, have reduced the average amount of water entering the Lower River 

estuary from the interior by approximately 15% (Cannon 2015; Naik and Jay 2005). 

Additionally, the infrastructure, much of which has been built for irrigation and flood 

control, changed the timing and intensity of runoff, lessening the variation in highs and 

lows, and reducing the intensity of the seasonal freshets (Cannon 2015; Naik and Jay 

2005).  

The first major dam built on the lower reaches of the Columbia River was the 

Bonneville Dam. The dam was constructed by the USACE between 1933 and 1938 to 

generate hydroelectric power, and was the first of many steps towards increasing the 

navigability of the Columbia and controlling its seasonal floods (Willingham 2018). 

Following the Bonneville Dam, the USACE began construction on The Dalles Dam in 

1952 (Binus 2005). By 1957 the dam was completed, raising the level of Columbia River 

and drowning several stretches of rapids, including “Celilo Falls,” the location of some of 

the most productive salmon fisheries in the Pacific Northwest (Binus 2005).  

The dams did more than radically change the landscape of fishing on the 

Columbia; they also changed the river’s natural flow and flood patterns. The dams 

increased navigability by submerging rapids (Willingham 2018). As mentioned above, 
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the installation of the dams also radically decreased the seasonal flooding of the 

Columbia. The reduction in seasonal flood height and duration impacted the dynamism of 

the Columbia floodplain, decreasing sediment deposition and contributing to a reduction 

in wetlands. 

Wetlands 

A wetland is defined by Cole (1984:1) as “any area of land covered by water for 

part of each year, or of each day, or which has been drowned by water at any time in its 

existence.” As Cole’s expansive definition implies, wetland ecosystems are common and 

abundant around the world, encompassing estuaries, swamps, and floodplains, among 

many other environments. Wetlands are also highly productive, producing between 8,800 

and 9,600 kilocalories of energy per square meter per year (Ames et al. 2017; Miller and 

Spoolman 2009) and supporting innumerable resources. These environments are 

intrinsically connected to human history through time, providing resources and spurring 

adaptations and cultural change (Bernick 1998; Coles 1984).  

Wetlands are common within the Lower Columbia due in part to the river’s 

extensive floodplain. Prior to changes linked to Euro-American agriculture and dam 

construction, these wetlands were even more prevalent. Located in the Lower Columbia, 

Sauvie Island, the location of this study, is a 15-mile-long island made up of a mosaic of 

land and lakes (Spencer 1950). Before the damming of the Columbia and building of 

levees around the Island, Sauvie boasted more than 79 named lakes (Darby 1996). In 

Cannon’s (2015) study of anthropogenic historic and modern influences on landforms 

along the Lower Columbia, Sauvie Island was included in one of the areas where 
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wetlands have been most heavily modified, specifically by infilling or draining for 

agricultural purposes. One of the remaining wetlands on Sauvie Island is Virginia Lake, 

located on the southwestern side of the Island close to Multnomah Channel. The lake is a 

relatively flat riparian area within the floodplain of the Willamette and Columbia Rivers. 

2.2 Cultural Context 

The Lower Columbia in Ethnography and Ethnohistory  

The Indigenous people who lived along the shores of the Lower Columbia, are 

often referred to as Chinookan peoples, named for the most prominent language family 

spoken in the region. While Chinookan-speaking peoples primarily occupied the lower 

river year-round, the region was an epicenter of trade and abundance, attracting many 

other groups who came to the region for trade, cultural gatherings, and to acquire 

resources seasonally (Ellis 2013; Hajda 2013). Chinookan peoples shared many traits and 

patterns with other cultural groups of the Northwest Coast culture area, such as the 

practice of social stratification, complex seasonal mobility patterns, and systems of 

ownership and prestige, while still maintaining differences in specific cultura l practices 

such as art and house construction (Ames and Maschner 1999; Ames 1994; Boyd et al. 

2013). Chinookan people, like many Northwest Coast Indigenous peoples, were adapted 

to and heavily used, the intricate system of waterways, creating and using boating 

technologies, acquiring aquatic resources, and engaging in complex systems of long-

distance trade (Ames 1992, 1994, 2002; Butler and Martin 2013; Darby 1996; Hajda and 

Sobel 2013). These technologies and adaptations factored heavily into resource use in the 

region. 
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There were numerous villages in the Lower Columbia at and prior to Euro-

American contact, many of which were on Sauvie Island (Figure 3). It is thought that 

Sauvie Island served as an epicenter for trade in the Lower Columbia prior to Euro-

American contact, and the area supported dense population levels that would likely have 

put a premium on landscape modification and resource optimization in the region (Boyd 

et al. 2013; Boyd and Hajda 1987; Moulton 1991). This abundance of resources and 

dense population likely permitted the growth of the complex socio-political systems and 

organizations for which the region is known (Hajda 2013).  

Ethnographic evidence suggests that the largest social unit in the Lower Columbia 

was generally the village, which comprised one or more households, and  maintained 

links to other villages and households through kinship ties (Hajda 2013; Ray 1938). 

There was marked social and economic stratification within Chinookan villages as a 

whole; the division of labor between men and women, and between free people and 

slaves is documented (Ames 1994; Hajda 2013). The Chinook occupied permanent 

villages in the colder months, which were often located near important resources, such as 

those documented on Sauvie Island (Ames 1994; Boyd and Hajda 1987). Villages could 

include a single house, or several large plankhouse style dwellings. In spring and warmer 

months, some family groups would leave the villages to move closer to seasonally 

available resources, living a more nomadic existence. However, it is likely that some 

groups remained in permanent villages year-round (Hajda 2013; Hajda and Sobel 2013; 

Saleeby 1983).  
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Figure 3: Sauvie Island and other village locations based on early 19th century accounts, 
see Zenk et al. 2016 for corresponding village names. Map by Jesse Nett, originally 

published in Henry Zenk, Yvonne Hajda, and Robert Boyd, “Chinookan Peoples of the 
Lower Columbia,” Oregon Historical Quarterly, 117:1 (Spring 2016): 6–37, used here by 

permission. 

Far reaching trade networks were woven into the fabric of life within the Lower 

Columbia. These networks, enabled by the waterways that traverse every corner of the 

region, extended to the coast and east past the Columbia Plateau (Hajda and Sobel 2013). 

By the contact era, ethnohistoric accounts suggest that control of these trade networks 

had become a source of prestige, integrating new sources of trade items and a changing 

world into existing systems of ownership and social division (Hajda and Sobel 2013). 

The first documented face to face contact between Indigenous peoples of the 

Lower Columbia and Euro-Americans occurred in 1792, when Captain Robert Gray 

entered the mouth of the Columbia (Lang 2013). This year also marked the first time 
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Euro-Americans set foot on Sauvie Island. William R. Broughton, who sailed up the 

Columbia River with Captain Vancouver’s exploring expedition under the orders of the 

British Royal Navy, recorded approaching a point of land at the confluence of the 

Columbia River and what is now called Multnomah Channel, likely the southern end of 

Sauvie Island (Lang 2013; Spencer 1950). Broughton camped along the east side of the 

island one night on the expedition. He noted in his log that he was met on the shore by 

approximately 150 Chinookan people (Spencer 1950). Thirteen years later, Americans 

Meriwether Lewis and William Clark visited Sauvie Island during their exploration west 

(Moulton 1991; Spencer 1950). Lewis and Clark, having heard of the island from Native 

American informants, called it “Wappato Island”, named for wapato, the edible aquatic 

tuber that grew in abundance there (Moulton 1991; Spencer 1950). 

After Euro-American contact, Indigenous people were affected by violence, land 

theft, and most prominently, a range of exotic diseases that swept through Chinookan 

communities (Boyd 2013). A malaria epidemic devastated Indigenous people of the 

region in the 1830s, inducing a population decline estimated at upwards of 90% (Boyd 

2013; Spencer 1950; Taylor and Hoaglin 1962). As a result of this, and earlier epidemics, 

ethnohistoric accounts of Lower Columbian Indigenous people are scarcer after 1830. 

Later ethnographic accounts describe lifeways and land use practices that are likely much 

changed from those of precontact conditions (Ray 1938). 

Postcontact History of Sauvie Island 

The first Euro-American colonist to settle on Sauvie Island was a fur trader by the 

name of Nathaniel Wyeth. Wyeth had started a small fur and fish trading business and 
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was quietly competing with the nearby British owned Hudson Bay Company (HBC) 

(Spencer 1950). In 1834 Wyeth constructed Fort William on the land that is located less 

than 1.6 km (1 mile) north of Virginia Lake. However, Wyeth was plagued by bad luck 

and intense competition with the HBC. By the fall of 1835, Fort William had failed 

(Eaton 1935; Spencer 1950).  

In 1838 the HBC started a dairy at the same location as Wyeth’s fort (Spencer 

1950). HBC assigned French Canadian Laurent Sauvé, for whom the island would 

eventually be named, to run the daily operations (Spencer 1950). The dairy was to supply 

butter to the Russians in exchange for furs for the HBC, however, supply rarely met 

demand (Spencer 1950). Sauvé retired in 1844 and was replaced by James and Isabelle 

Logie. Isabelle had received some medical training before coming to Sauvie Island and 

was known to minister to the sick, including Indigenous people on the island, with which 

the Logies appear to have had an ongoing relationship (Spencer 1950). This is indicative 

of the complicated and ongoing interaction between settlers and the Indigenous people 

who continued to reside in the Lower Columbia, after Euro-American colonization. In 

addition to individual relationships, Indigenous communities were interacting regularly 

with the HBC, providing much needed labor, and engaging in and facilitating complex 

systems trade (Deur 2012). 

In 1846 all land south of the 49th parallel became American territory, and by 

1849, the HBC had withdrawn to Canada (Cannif 1981; Spencer 1950). After the 

withdrawal of the HBC, Euro-American settlement on Sauvie Island was spurred on by 

the passing of the Donation Land Law, which permitted Euro-American settlers to claim 
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acreage on unsurveyed lands until its expiration in 1855 (Robbins 1997; Spencer 1950). 

The land which borders Virginia Lake to the north eventually became part of the Logie 

Donation Land Claim (DLC 49), the Logie’s having stayed on the Island after the 

withdrawal of the HBC. Theirs was the second claim filed on the Island (Spencer 1950). 

The land to the east of the lake was claimed by Jacob Cline in 1845 (DLC 48), who was 

granted the first land claim on the island (Spencer 1950; GLO 1862). However, neither 

claim encompasses the lake itself. 

Despite an increase in Euro-American settlement following the DLC era, the 

island was still isolated. Without roads, access to the mainland was limited to boat, and 

seasonal floods inundated most of the island every spring. Most residents raised cattle, 

either for dairy or beef, grazing their animals on the island’s many meadows and housing 

them in raised barns or ferrying them off the island during the seasonal floods (Spencer 

1950).  

Following the Flood Control Act of 1936, The USACE began building “Big 

Dike” on Sauvie Island in 1938 and by 1941 construction had finished, radically 

changing the landscape. With much of the seasonal flooding abated, roads were graded 

and rocked, and agriculture expanded. In 1949 a bridge was constructed spanning the 

Multnomah Channel, connecting the island community to the mainland, and ending the 

tradition of isolation (Spencer 1950).  

Since the DLC era, the land surrounding Virginia Lake has passed through several 

owners. It was used for a variety of mixed agricultural, logging, and residential purposes 

until 1973 when the Lake and surrounding land was purchased by Oregon State Parks 
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from individual private owners and the Kerry Log and Rafting Company (Oregon State 

Archive 1973:WD 47952, 47710,47709,47703,47933). Oregon State Parks later designated 

the land as a public greenway. 

Lower Columbia Archaeology  

Most professional archaeological work that has taken place in the Lower 

Columbia region, and more specifically, Sauvie Island occurred between the 1970’s and 

present and focused on the precontact era (Croes et al. 2009c; Pettigrew 1977; Pettigrew 

and Lebow 1987; Saleeby 1983). The earliest professional archaeological work on Sauvie 

Island was led by Richard Pettigrew (1977), whose goal was to develop a culture history 

of the region. Pettigrew worked with amateur collectors and local land owners to test a 

series of sites that spanned 2600 years of Indigenous land use on the island and greater 

Lower Columbia (Pettigrew 1981, 1977). Focused on distinct, temporally diagnostic 

artifact types, Pettigrew built a cultural chronology for the region (Pettigrew 1977). 

Thanks in large part to the work of Pettigrew, there is a well-defined chronological 

framework of the last 2500 years on Sauvie Island, and more broadly, the Portland Basin. 

The scarcity of older sites is the result of geomorphic processes, as the island itself is 

thought to have formed roughly 2500 years ago (O’Connor 2012). 

 Saleeby (1983) was the first archaeologist to document the prominence of 

wetland animal use in the region, through the study of faunal remains recovered by 

Pettigrew’s excavations. More recent work by Dale Croes and colleagues on the Sunken 

Village site (35MU4) documented acorn use and perishable artifacts. This extensive wet 

site is known as an acorn leaching and processing site. It is characterized by a series of 
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baskets partially buried in the intertidal zone on the southwest edge of Sauvie Island. 

Large scale excavations conducted by Dr. Kenneth Ames and colleagues at the Meier 

(35C05) and Cathlapotle (45CL1) village sites, located near Scappoose, Oregon on the 

mainland adjacent to Sauvie Island, and across the Columbia near Ridgefield, 

Washington respectively, have explored a range of questions about social complexity, 

trade, and resource use (Ames et al. 1999; Butler and Martin 2013; Croes et al. 2009c; 

Lyman 2003; Saleeby 1983). However, none of these previous investigations have fully 

considered the ways in which people modified backwater landscapes. Work outside of 

these large-scale academic excavations has been almost entirely contract work (e.g. 

Hibbs and Ellis 1988; Pettigrew et al. 2005; Wessen 1983). 

Wet Sites 

As previously discussed, wetlands are highly productive landscapes, connected to 

human activity and occupation through time, providing abundant resources and spurring 

adaptation and development of novel technologies and techniques. Sometimes, these 

resources, technologies, and cultural materials preserve in the anaerobic environments 

afforded by wetlands, creating what is known as “wet sites” (Bernick 1998; Cole 1984). 

This preservation, promoted by lack of oxygen and perennial water saturation preserves 

otherwise perishable material such as wood, basketry, and bone, and provides a unique 

glimpse into human history (Bernick 1998). These sites also present unique challenges to 

identification, excavation, and preservation (Bernick 1998; Byram 2002; Croes 1976, 

2001; Kaye et al. 2000). Because waterlogged artifacts often change shape or disintegrate 
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as they are exposed to air, they require immediate conservation steps and have unique 

storage requirements (Bernick 1998; Coles 1984; Werz and Seemann 1993).  

Due in part to its alluvial depositional environment and frequent flooding, Sauvie 

Island can potentially support wet sites, an example of which is the aforementioned 

“Sunken Village” (35MU4). This wet site was first recorded in 1973, and subsequently 

re-assessed in 2006-2007 (Croes et al. 2009c, 2009a; Pettigrew 1973; Pettigrew and 

Lebow 1987). Virginia Lake provides a similar capacity for wet sites, but a different 

environment from Sunken Village. While frequently inundated with water, in the late 

summer and early fall the water level in the lake drops, drying and exposing potentially 

perishable material to air for several weeks at a time (Dennis Torresdal personal 

communication 2017). 

Wetland Cultural Constructions  

Wet sites such as Sunken Village are just one example of what I will refer to here 

as “wetland cultural constructions”. These constructions are intentional anthropogenic 

modifications to wetland landscapes that optimize resources or engineer the environment 

for human use. They span continents and are observed in both archaeological sites and 

historical documents. These constructions elucidate intentional, active processes, 

dispelling the notion that people, especially Indigenous people, passively utilized natural 

abundance (Caldwell et al. 2012; Campbell and Butler 2010b; Grier 2014). 

Understanding these modifications as cultural constructions also emphasizes the 

environments and humans interactions therein as not just an ecological, but also social 

phenomena (Grier 2014). 
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Examples include complex wetland agricultural systems (Costa-Pierce 1987; 

Cannon 2015; Hoffmann et al. 2016; Kirch 1982; McKey et al. 2010, 2016), extensive 

inter-tidal systems for fisheries procurement (Caldwell et al. 2012; Deur et al. 2015), and 

alterations of the landform itself, such as the expansion and creation of islands and spits 

(Grier 2014; Sampson et al. 1985). These systems use small and large scale modifications 

that have cascading effects that increase resource abundance, optimize access, and 

transform landscapes and ecosystems, potentially increasing habitability (Grier 2014; 

Sampson 1985).  

Constructions need not be of massive scale. Single features, such as the Virginia 

Lake stake alignment also fall into this concept of cultural construction. An example of 

this are fish weirs, such as those documented by Byram (2002), Caldwell (2012), Losey 

(2010), Schalk and Burtchard (2001), and Tveskov and Erlandson (2004) and others. 

Weirs are stationary structures constructed in water that act as a funnel or barrier to direct 

or trap fish for harvesting. These structures are wetland cultural constructions, having 

both modified the estuaries they occupy, optimized aquatic resource harvest, and fulfilled 

a cultural role. Specifically, weirs are both physical, and cultural constructs, having 

implications for ownership, spiritual practice, and the complex, structured, social 

networks required to build and maintain them (Caldwell et al. 2012; Grier 2014; Losey 

2010). 

Cultural constructions like weirs are not just recorded in intertidal estuaries. These 

structures have been observed in more inland environments both riverine (e.g. Connaway 

2007) and pluvial (e.g. Wessen 1983). Connaway (2007) places weirs into three distinct 
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categories based on these environments and how they function: flowing stream weirs, 

tidal weirs, and longshore weirs. Within these categories there exists variation in 

construction and design.  

2.3 Theoretical Framework  

To inform my analysis in this project, I use Niche Construction Theory (NCT) 

and Historical Ecology (HE), which are increasingly being used to examine 

human/landscape relationships. In particular I study how features, such as the Virginia 

Lake feature, can be understood as components in larger patterns of human ecosystem 

modification as human constructions that optimize resources and alter the environment to 

more efficiently meet human needs. As archaeology has moved toward a landscape 

approach, the connections between past peoples and intentional environmental 

optimization have become more pronounced. These modifications, while initially 

appearing as localized, are now being recognized as components in larger anthropogenic 

ecosystems (Deur and Turner 2005; Lepofsky and Caldwell 2013; Lightfoot et al. 2013; 

McKey et al. 2016; Thornton et al. 2015). 

NCT formed as an offshoot of Human Behavioral Ecology, which is concerned 

with understanding how different human behaviors are adaptive within particular 

environmental and social contexts (Bird and O’Connell 2006; Kelly 2013). Human 

Behavioral Ecology is used in archaeology to study and predict human behaviors, such as 

prey selection and technological use and investment. These predictions rest upon the 

Darwinian assumption that foragers will make decisions that optimize resource 
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procurement as it relates to overall evolutionary fitness (Bird and O’Connell 2006; Kelly 

1996, 2013; Lindstrom 1996). 

NCT suggests that humans (and other organisms) can alter their environments to 

enhance their selective fitness, in effect, constructing their own niche. Beaver dams are 

one example of niche creation. Dam construction modifies the riparian ecosystem by 

creating a lake-like environment, thereby altering the transportation of water, debris, and 

nutrients downstream, which effects other plant and animal communities within that 

ecosystem. Humans also modify their environments to create niches, which in turn affects 

evolutionary fitness, and the entire web of life in the modified ecosystem. An example of 

human optimization and niche creation in the context of NCT is anthropogenic burning of 

oak groves. By using fire to make acorn harvest easier, Indigenous people also altered the 

landscape to provide better grazing habitat for deer and elk, by suppressing the density of 

the understory. This increases the predictability of prey location. Burning also has 

broader impacts by suppressing the growth of some plants, while simultaneously 

increasing the yield of others. In this way, human modification through burning altered 

not only the selective pressure surrounding acorn harvest to the advantage of Indigenous 

people, but multiple other plant and animal resources within the ecosystem (Mohlenhoff 

and Codding 2017).  

Using the NCT framework, archaeologists attempt to track how people 

manipulate their environments to intentionally transform selective pressures, such as 

resource location or productivity, creating cascading impacts on entire ecosystems, with 

humans as catalysts (Erickson 2000; McKey et al. 2016; Mohlenhoff and Codding 2017; 
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Smith 2007). In this context, some archaeologists view NCT as acknowledging human 

agency and intent in an otherwise Darwinian optimization model. Concepts of agency 

and intent can be further explored by applying HE to studies of NCT. It should be noted 

that for the purposes of this thesis, human ecosystem engineering is not considered a 

synonym for NCT, nor is it a theory. As it is used here, it is a phrase used to describe a 

system (see Comberti et al. 2015; McKey et al. 2010). 

HE is a research program that uses a dialectic, holistic approach to explore 

human-environment interactions through time using landscapes as a unit of analysis 

(Armstrong et al. 2017; Balee 2006; Crumley 2007; Fitzhugh et al. 2019; Lepofsky et al. 

2017). HE focuses on decision making and human agency in environmental interactio n 

over time (Balee 2006).  It can be used with an NCT framework, adding to how we 

understand the ways in which humans alter environments and selective pressures, by 

considering the variables of agency and historical contingency.  

In the context of this project, I use HE to explore how human ecosystem 

engineering, through resource management and anthropogenic modification, shapes 

landscapes. HE assists with this by encouraging looking at the feature and its context 

across temporal scales, and using multiple methods and cross-discipline techniques in an 

effort to “tease out the intentional from the incidental, thus assuring that human agency is 

not a forgotten piece of the landscape’s history” (Lepofsky et al. 2017:449). In the spirit 

of an historical ecological approach, I use multiple methods to piece together the history 

of the feature, and the landscape of which it is a part. 
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2.4 Questions and Hypotheses 

The four main questions my thesis addresses are: (1) How old is the Virginia Lake 

feature? (2) What is the cultural affiliation of the feature? (3) What is the probable 

function? (4) How does this feature relate to human ecosystem engineering in the broader 

wetland landscape of the Lower Columbia?  

To address the first three questions, I developed multiple working hypotheses and 

outlined a series of tasks to evaluate them (Table 1). For example, addressing the 

question of age helps assess the cultural affiliation. I sought to address both questions by 

obtaining AMS radiocarbon dates. AMS dates provide a limiting age of the feature’s 

construction. Understandably, knowing the age of the building materials aids in making 

inferences about the feature's age and cultural affiliation. A limiting age that pre-dates 

Euro-American contact (~1792 AD) indicates initial Indigenous construction and could 

suggest continued Indigenous affiliation with the site, although later repurposing by 

Euro-Americans is still possible. Obtaining ages that post-date contact does not 

necessarily indicate Euro-American affiliation, given that Indigenous people continued to 

occupy the region. Determining function requires many tasks, including surveying to 

identify all components of the feature and accurately map them. The fourth question, 

concerning the relationship between the feature and a larger system of human ecosystem 

engineering and aquaculture is evaluated in the context of the answers to the first three 

questions, and through broader regional inter-site comparison.  
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Table 1:List of main research questions, associated hypotheses, and outline of tasks 
required for evaluation. 

Question 1: What is the age of the Virginia Lake feature? 

Hypotheses           Tasks  
H1: Precontact era AMS Dating 

Metal detector survey 
Modification Analysis  
Subsurface testing  
 

H2: Historic era 
H3: Multi-component- spanning the 
precontact and historic era. 

Question 2: What is the cultural affiliation of the Virginia Lake feature? 
Hypotheses               Tasks  
H1: The feature is Indigenous AMS Dating 

Metal detector survey 
Modification analysis  
Macrobotanical ID 
Pedestrian survey (ID associated features) 
Subsurface testing (ID associated             
              components or artifacts) 

H2: The feature is Euro-American  
H3: The feature is multi-component 
and/or repurposed 

Question 3: What is the function of the Virginia Lake feature? 

Hypotheses               Tasks  
H1: Fish weir  Stratigraphic analysis 

Pedestrian Survey 
Metal detector survey 
Subsurface testing  
Inter-site comparisons  
Collect surface elevation data 
Accurate map/spatial data 

H2: Causeway or pier 
H3: Hunting platform/blind: 
(waterfowl, muskrat, beaver, etc.) 
H4: Post and line structure for 
straightening/storing cedar planks 
H5: Boundary line or fence 
H6: Multi-use 

Question 4: How does the feature relate to human ecosystem in the wetlands of the Lower 

Columbia? 
              Tasks  
 Inter-site comparison  

Synthesize results of first three questions  
and place in broader regional context 
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Chapter 3: Methods and Materials  

My research involved three main stages of work: (1) archival research, (2) 

fieldwork, and (3) lab analysis. Within these stages of work, I use multiple methodologies 

and techniques, which are described in detail below. 

3.1 Archival Research and Map Review 

To evaluate the history of the study area, assess the possible historic functions of 

the feature, and research site-specific land use, I conducted archival research, searched 

the literature for stake use, and reviewed historic maps and LiDAR imaging. Archival 

research involved contacting the USACE and Oregon State Parks to access historic 

aerials, photographs, and other records.  

Additionally, I reviewed documents on file at the Portland City Archives, the 

Oregon Historical Society, and the Multnomah Public Library, including the online 

archive of the historical Oregonian newspaper (1861-1987). Search terms used when 

searching the Oregonian included “Virginia Lake,” “Wapato Access greenway,” “State 

Parks Sauvie,” “Jacob Cline Sauvie Island,” and “Moar Farm.” Primary records from the 

HBC were not consulted. The Bureau of Land Management (BLM) and USGS provided 

online access to historic General Land Office (GLO) and topographic maps. LiDAR 

imagery was provided by the Oregon Department of Geology and Mineral Industries 

(DOGAMI). 
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3.2 Field Work 

Fieldwork was completed over seven days between September 21 and October 1, 

2018. Myself and Dr. Virginia Butler directed the work. The field crew consisted of 

between two and six volunteers, and included Naomi Brandenfels, Nick Guest, Anthony 

Hofkamp, Kaitlyn Hosken, Patrick Reed, Patrick Rennaker, Trent Skinner, Katherine 

Tipton, and Dennis Torresdal.  

To document the feature and address my research questions, it was important to 

place the feature in the broader context of the landscape. As such, site documentation was 

conducted at two scales: landscape-level and site-specific documentation. This was 

important because the feature does not exist separate from its environment, and 

ecosystem engineering implies the modification of an ecosystem, not a single location or 

feature.  

The feature is located in a seasonally dry lake. Because of this, the site is subject 

to seasonal inundation and is only accessible during a short period of time (approximately 

mid-September to mid-October). Dr. Butler and I submitted a research design (Butler and 

North 2018) to the State Historic Preservation Office, and obtained an excavation permit 

(NO. AP-2538) in July of 2018 (Appendix A). We also applied for and received a 

scientific research permit for conducting research on State Parks land (#30-18) 

(Appendix B). Fieldwork included detailed site documentation and mapping, pedestrian 

survey, subsurface testing, and sample collection. 

Mapping was conducted using a Trimble Geo7x global positioning system (GPS) 

capable of sub-meter accuracy and a Trimble M3 DR series total station. During 
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pedestrian survey, I utilized the GPS to record the location of features and survey 

transects. Subsurface test locations were also mapped using the GPS. To obtain the most 

precise site map possible, at the feature itself I used a Trimble M3 DR series total station 

to record the individual stakes and collect additional elevation points. 

Pedestrian Survey  

To address the need for landscape-scale documentation, we conducted a 

pedestrian survey of the entire lake bed (~65 acres), which had never been surveyed in its 

entirety (Figure 4). The systematic pedestrian survey of the project area was conducted 

with 15 m transect intervals. All encountered features were documented, photographed, 

and mapped.  

At the stake alignment itself, a goal was to identify as many stakes as possible, 

including those concealed by vegetation or obscured beneath the surface. To accomplish 

this, we carried out intensive pedestrian survey within the feature and 10 m on either side 

(roughly north/south) of the visible stakes and approximately 30 m beyond the feature’s 

western extent to a rise in the landform. This intensive survey was done shoulder to 

shoulder, and ground vegetation was removed as necessary to increase visibility. 

Documentation at this scale was also necessary to identify all possible temporally, 

culturally, or functionally diagnostic artifacts or components. The intensive pedestrian 

survey was supplemented with a Minelab Explorer SE metal detector, used to identify 

metal artifacts that would indicate historic affiliation.  
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Figure 4. Survey area location map. 
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Feature Specific Testing and Documentation  

I used subsurface testing to collect samples for AMS dating and macrobotanical 

identification, evaluate the extent of the site, identify buried stakes and other artifacts, 

explore sediment stratigraphy for use in reconstructing the landform and lake history, and 

to collect stakes for analysis. Two forms of subsurface testing were implemented; 

excavation of shovel probes (SP) and test units (TU).  

In total we excavated 11 round SPs (~0.5 m in diameter) and two 1 m x 0.5 m 

TUs (Figure 5). TUs were excavated using arbitrary 10 cm levels, measured below 

datum. All excavated material was screened through 1/8” (3.2 mm) hardware mesh. 

When sediment plasticity and moisture content interfered with the ability to push 

sediment through 1/8” mesh, as much material as possible was passed through the mesh 

and the remaining sediments were carefully troweled through by hand in the screen.  

Subsurface tests were generally terminated when the water table was encountered, 

which precluded further excavation with a shovel or trowel. However, a long handle 

auger was used to facilitate deep excavation of sediments below the water table at the 

bottom of both TUs and two of the SPs (SP2, SP3). This excavation extended the depth 

of sediment visibility between 1.40 and 1.65 m below water table, providing additional 

stratigraphic information used in reconstructing landform and lake history. Four sediment 

samples were collected from the auger. 

In addition to sediment samples collected during deep auguring, a one-quart 

column sample was removed from one wall of each TU. Collected sediment samples not 

submitted for dating were water screened through nested 1/4”, 1/8” and 1/16” mesh. All 
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tests were photographed, and soil descriptions and measurements recorded. Two walls of 

each TU were profiled. All tests were backfilled upon completion.  

To characterize the feature’s construction, I documented all stakes individually on 

a standard form. All stakes were assigned an identifying number (Figure 6). 

Documentation consisted of measuring the length (i.e. height) of the stake above surface, 

the maximum diameter at base and top, and recording the spatial location, as well as 

describing the general shape and condition. These measurements helped to determine the 

construction material (e.g. milled lumber, tree branches), layout of the feature, and degree 

of preservation. All stakes were documented on a standard form for consistency 

(Appendix E), photographed, and their spatial position mapped. 
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Figure 5. Subsurface testing map. 
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 Collection of Stake Samples  

To address my research questions, I needed to collect wood and soil samples from 

the site (Table 1). I removed two entire wooden stakes (Stake 2 and 13) and three in-situ 

samples from stakes left in place (Stake 7, 12, 21) (Figure 6). In total I submitted six 

wood samples from five stakes for AMS dating and macrobotanical analysis. I wanted to 

submit as many AMS dates as possible because some features, such as weirs, are known 

to have been rebuilt and maintained over time; it is possible the feature was re-purposed 

(Byram 2002; Schalk and Burtchard 2001; Losey 2010).  

I chose Stakes 12, 21, and 7 for in-situ sampling. These stakes were selected from 

disparate areas of the feature, in varying states of preservation. This was done to ensure 

that I sampled as much of the feature as possible to test for variations in age or wood 

type, which may evidence repair or repurposing. 

I removed Stakes 13 and 2 in entirety from the feature to assess the distal ends for 

modification. Stakes were chosen based on location and state of preservation, and 

removed during the controlled excavation of the TUs. Stake 13 was situated towards the 

middle of the feature and Stake 2 was situated toward the northeastern extent of the 

feature. All sampled stakes were photographed before, during, and after removal or in 

situ sampling, and labeled with provenience information. 

3.3 Laboratory Analysis  

Two stakes, three in-situ wood samples, and six soil samples were collected in the 

field and transported to Dr. Virginia Butler’s Archaeology Lab at Portland State 

University. Laboratory analysis of the stakes consisted of toolmark modification analysis, 
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AMS dating, and macrobotanical identification. Once stake samples were in the lab, they 

were immediately placed in a freezer. Termites were observed on the stakes during 

excavation, and freezing was used to prevent contaminating the lab and to stop further 

insect damage to the samples (Canadian Conservation Institute 1997) 

The wood samples, as components of a seasonal wet site, required special care 

and storage. Drying needed to take place in a controlled environment. Prior to developing 

my protocol I conducted a literature review and consulted Susanne Rawson, professional 

conservator and principal at Global Artifact Preservation Services, LLC. Controlled 

drying was selected over long-term freeze drying or polyethylene glycol (PEG) treatment 

partly due to constraints of time, facilities, and funding, and because I suspected that the 

cyclical nature of the inundation may have left the samples less susceptible to damage 

while drying, having gone through cycles of wet and dry on a yearly basis. 

A controlled environment was necessary to slow the rate of drying and prevent 

unnecessary warping and damage to the waterlogged wood. To accomplish this, I created 

a humidity chamber using a hard-plastic frame and plastic sheeting. A Gaylord digital 

thermohygrometer was placed in the chamber to monitor humidity, and distilled water 

was used to mist the chamber if the humidity dropped below approximately 75%. The 

humidity was lowered approximately 10 % a week for about four weeks until it reached 

stasis (approx. 35%).  

Despite advantages in time and cost, I encountered some issues with this drying 

method. The Portland State Archaeology Lab is temperature controlled but not fully 

climate controlled. The ambient humidity of Portland, Oregon in the winter exceeded the 
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humidity required for the stakes after I began to lower the humidity in the chamber. This 

led to mold growth. I removed mold by gently scrubbing with a clean soft bristle brush 

and spraying the samples with a 90% isopropyl alcohol solution to inhibit future growth 

(DirectAMS personal communication 2019; Rawson personal communication 2019). To 

reduce humidity, I also created airflow within the chamber by partially opening it. This 

succeeded in lowering the humidity. However, this action lowered the humidity too 

quickly for manual adjustment, leading to some warping of the outer bark on the stake 

samples. 

Toolmark Modification Analysis  

I conducted toolmark modification analysis to assess whether the stakes were 

modified using metal or stone tools, a key line of evidence for assessing cultural 

affiliation and age. The analysis protocol used in my study is adapted from the protocol 

detailed in the Arcas Associates (1986) Meares Island study, which was originally 

designed for use on culturally modified trees (CMT). The Arcas (1986) study provides a 

detailed examination of previously recorded toolmarks on CMTs, identifies variables that 

can be measured, and presents a replicative experiment designed to test if specific 

toolmarks can be matched to traditional Nuu-chah-nulth stone, shell, or bone tools, or 

European metal tools based on these variables. Arcas Associates (1986) found that 

toolmarks on CMTs could frequently be matched to toolmarks replicated in the 

experiment.  

I modified the protocol created by Arcas Associates (1986) by reducing the 

number of measurable variables from eight to seven (removing puncture marks), and 
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added a new eighth variable “overall scar morphology” (Table 2). The new variable is a 

subjective summary of the overall morphology of the tool mark, based on images and 

descriptions of known toolmarks. To increase replicability, I also re-created the 

measurement diagrams to more accurately reflect how these variables would be measured 

on a stake rather than a CMT stump (Figure 7).  

The toolmark modification analysis involved first identifying toolmarks on the 

stake, then numbering, marking, and photographing the marks, and finally applying the 

protocol. A given stake could have multiple tool marks. Each toolmark was recorded 

separately. Toolmarks were numbered only if they could be definitively given measurable 

boundaries, and at least two of the variables were present. My protocol (Table 2 and 

Figure 7) required evaluating the eight possible variables present in the mark, and then 

applying the results to the Arcas (1986) experimental classes (Table 5). All variables that 

required measurement were measured using a Mitutoyo absolute digimatic digital caliper 

accurate to .01 millimeters (mm). Depth measurements were gathered using a Mitutoyo 

.00005 113735 digimatic micrometer. All measurements were taken three times and 

averaged. The process was repeated by a separate researcher (Dr. Virginia Butler) to test 

the replicability of the process.   
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 Table 2. Toolmark analysis variables, adapted from Arcas Associates (1986). 

I. Curvature 

of cutting 

edge (cm) 

II. Shape of 

cross section 
Depth 

III. Length of 

cutting edge 
(cm) max width 

IV. Max 

penetration 
(cm) max 

length 

V. 

Neatness 

of cut 

VI. Angle 

of attack  

VII. Edge 

angle (in 

degrees) 

VIII. Overall scar 

morphology  

Straight Flat <3 <2 Clean Horizontal None  Stepped-angular 

<2 Concave ≥ 3 <5 ≥ 2 <3 Ragged/ 

sheared 

Vertical <35 Stepped- short, scooped 

≥ 2 <5 Deeply 

concave 

≥ 5 <7 ≥ 3 <5 Unknown  Oblique  ≥ 35 <45 Undulating surface 

≥ 5 <10 Very deeply 

concave 

≥ 7 ≥ 5  Unknown  ≥ 45 <50 Sharp close ridges at 

divergent angles 

≥ 10 Unknown  Unknown  Unknown   ≥ 50 Irregular depressions in a // 

sequence 

Unknown*       Unknown  narrow cut w/o wood 

removal  

        

*Unknown is used when the landmark either wasn’t present or could not be measured  

 

 



 

40 

 

Figure 7. Toolmark modification analysis measurements diagram, image based on Arcas 

Associates (1986). 

AMS Dating  

Radiocarbon dating is used to establish a limiting age in material containing 

residual carbon. In 1977 Accelerator Mass Spectrometry (AMS) dating was first used 

(Muller 1977). This new technique differs from conventional radiocarbon dating in that it 

directly measures the remaining amount of 14C in a sample, comparing the ratio directly 

to the stable isotopes present, thereby decreasing the amount of material needed for 

dating, and increasing precision (BetaAnalytic 2019; Harris et al. 1987). 
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I sent six wood samples from five stakes, and one sediment sample, to 

DirectAMS Labs in Bothell, Washington for dating. I used AMS dating to establish a 

limiting age for the feature, because it requires smaller samples, and thus is less 

destructive than conventional radiocarbon dating. The procedure DirectAMS uses for 

preparing and dating all AMS samples is available on their website (DirectAMS 2018) 

Initial results from DirectAMS labs were expressed in radiocarbon years, which 

were calibrated into calendar years using the OxCal online calibration program version 

4.3. Calibration is necessary to place AMS dates on a timeline, as uncalibrated 

radiocarbon age is directly based on the proportion of 14C isotope found in the sample 

(Bronk Ramsey 2001, 2009), and the assumption that the atmospheric radiocarbon 

concentration has been stable through time, which is untrue. Calibration of radiocarbon 

dates accounts for fluctuating levels of radiocarbon in the atmosphere through time, 

giving us a true age before present.  

Initial attempts at calibration produced errors. These errors are the result of the 

relatively young age of the samples. Samples less than 500 years old can be difficult to 

calibrate with certainty due to the extreme volatility of the calibration curve, which can 

create misleading or inaccurate calibrations (Ames and Brown 2018; Brown et al. 2019) 

Additional steps to increase the accuracy of the calibration consisted of taking multiple 

samples from the same stake (13) and using the R-combine feature, and applying a 

Bayesian model created by Thomas J. Brown. The R-combine feature can be used in 

OxCal if it is known that two samples should be statistically similar (e.g. two samples 

from the same object). R-combine assesses the probability distribution of both samples 
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and eliminates the parts that do not overlap, creating a narrower statistical range for a 

calibrated date.  

The model used to calibrate AMS dates in this study assumes that all samples 

from a single feature (in this case the stakes) are temporally related but not the same. In 

essence, the model favors calibrated ages that are statistically related and “cluster,” and 

that do not produce large gaps among dated samples. This allows for more precise 

estimates of age range. However, the model does not force a relationship, and will 

display an error if there is no statistical relationship between the samples (Brown et al. 

2019). 

AMS Dating Using Humin Fraction  

Funding was available to date a sediment (peat) sample collected during deep 

auguring, though this task was not part of the original research design. Dating a sediment 

sample offered the possibility of constraining the age of Virginia Lake, and determining 

when it separated from the main channel. Determining lake formation history was 

secondary to the main goals of my thesis, but was an interesting and useful addition. 

At its most basic, humin is a form of datable carbon present in sediment. AMS 

dating of humin fraction is often used when dating macrofossils (e.g. charcoal) is either 

not possible or inadvisable due to contamination (DirectAMS 2019). Pretreatment prior 

to this type of dating involves a procedure to remove carbonates as well as absorbed 

organics. The remaining alkali-insoluble humin fraction is dated. 

 After consultation with DirectAMS Labs I determined humin fraction dating was 

the best course of action for my sediment sample, as highly organic samples like peat can 
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act as a filter, frequently containing contaminants of younger macrofossils unassociated 

with the deposit’s formation. I submitted one peat sediment sample collected during deep 

auguring in TU2 for AMS dating using humin fraction. Peat deposits generally form in 

slow moving water (such as a lake), where the rate of organic accumulation exceeds the 

rate of decomposition, and is not enacted on by alluvial or fluvial processes that would 

remove them (Ming et al. 2011). Their development can indicate separation of the lake 

from the river channel, and formation of a more confined water body. 

Macrobotanical Identification  

As applied in archaeology, macrobotanical identification can provide 

understanding of cultural affiliation and function, as different wood species are often 

utilized for different purposes and can be compared across sites. For example, 

archaeological investigations of 13 stakes from 10 intertidal fish weir sites recorded on 

the Oregon Coast (Byram 2002) indicated that most were constructed of western hemlock 

(Tsuga heterophylla). Analyses of the Hoko River (45TN240) and Sunken Village 

(35MU4) artifact assemblages indicate that most basketry at both sites was made of 

western red cedar (Thuja plicata) (Croes et al. 2005, 2009, 2008; Byram 2002). 

 Six wood samples collected from five modified wooden stakes from the Virginia 

Lake site were submitted to Paleoscapes Archaeobotanical Services Team (PAST) for 

macrobotanical Identification. PAST broke wood fragments to expose fresh tangential, 

radial, and cross-sections. The samples were then examined under a Bausch and Lomb 

Stereozoom microscope at a magnification of 70x and a Nikon Optiphot 66 microscope at 

magnifications of 100-600x (Appendix D).  
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3.4 Regional Comparisons 

I conducted regional comparisons to further investigate cultural affiliation and 

possible functions of the feature, against the broader landscape of human modification in 

wetlands of the Lower Columbia, in both precontact and historic contexts.  

The comparative sample is idiosyncratic; selection was based on the location, age, 

presence of like-features (e.g. wood stakes or similar structures), and availability of data 

on methodology, and high-quality images. Because of limitations present in searching the 

Oregon State Historic Preservation Office (SHPO) site database, sites containing wooden 

stakes or like structures in the Lower Columbia were difficult to locate. The database is 

searchable by site designation or report title. This excludes searches by key words present 

in site form or report, or by specific feature or site type. The sites used in my analysis 

were predominantly identified based on prior knowledge, and information provided by 

local researchers and archaeologists. This sample is by no means a definitive comparison 

of wood stake sites in the region.  

I took the data obtained from the Virginia Lake site and compared it to four sites 

(45CL31, 35MU4, 35CO87, and 35CO88) containing wooden stakes, or stake-like 

features, previously recorded in wetlands of the Lower Columbia. Specifically, I 

compared stake diameter, length, spacing, number, approximate size of features, 

associated artifacts, age of the site, cultural affiliation, and macrobotanical identification. 

When available dates were reported as uncalibrated, I used OxCal version 4.3 to calibrate 

radiometric dates for this project. 
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Chapter 4: Results 

In this chapter I summarize the results of my archival research, fieldwork, lab 

analysis, and regional comparison. Specifically, I discuss the results of the survey and 

feature specific testing, toolmark modification analysis, AMS dating, and macrobotanical 

analysis. I also compare my results to four sites with stake features previously recorded in 

wetlands of the Lower Columbia. 

4.1 Archival Research and Map Review  

 Results of archival research, which provided property ownership history, are 

primarily summarized in the postcontact history section of this document (Section 2.2). 

Archival research did not uncover information related to the origin of the stake 

alignment. 

Of particular importance to my project is determining the history of Virginia 

Lake, specifically its chronology as a water body separated from the Multnomah 

Channel, and the impacts of levee construction. Historic maps and aerial imagery indicate 

that Virginia Lake was separate from the main Multnomah Channel at the time of Euro-

American settlement (USACE 1929; GLO 1854). Maps created after the passage of the 

Flood Control Act in 1936, which stimulated large scale levee construction, indicate that 

the lake persisted in a similar form after the levees were installed, although it may have 

become more prone to seasonal drying (GLO 1854; USGS 1915, 1940, 1954). Further 

information about the history of lake formation is discussed in Section 4.3 under AMS 

dating results.  
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Review of historic maps included GLO maps (1862, 1854), associated surveyor’s 

notes, and USGS Topographic maps (1915, 1940, 1956). Historic maps indicate that 

Virginia Lake, and the stake feature in particular, is located directly south of the 640 acre 

DLC belonging to Isabelle Logie (DLC 49), and west of the 638.9 acre DLC belonging to 

Jacob Cline (DLC 48) (Figure 8). The Cline claim was the first land claim filed on Sauvie 

Island, and the Logie claim the second, placing the feature proximal to the earliest 

documented U.S. controlled Euro-American settlements (GLO 1862; Spencer 1950).  

 

Figure 8. 1862 GLO map of Sauvie Island in the vicinity of Virginia Lake.  
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There are no structures shown within Virginia Lake, or adjacent the feature, and 

the lake was not mapped as part of a DLC as of 1862 (Figure 8, Figure 9). The project 

area is located west of an area described on the 1854 GLO as a “Fir and Oak Timbered 

Ridge” with the labeled claims located on higher ground above the ridge. The surveyor of 

the Cline claim specifically noted a “pond” to the west of the claim in his notes, which 

likely refers to Virginia Lake (Ives and Hunt 1853).  

 

Figure 9. 1854 GLO map of Sauvie Island and the Virginia Lake vicinity. 
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4.2 Field Work Results 

Fieldwork consisted of pedestrian survey, subsurface testing, and collection of 

both wood and sediment samples. During fieldwork the feature was also recorded in 

detail, and its spatial location mapped. The following section summarizes the results of 

this work 

Pedestrian Survey  

Pedestrian survey was conducted across the vegetated surface of Virginia Lake to 

place the stake alignment in a wider context (Figure 10, Figure 11). In total we surveyed 

approximately 65 acres. Ground visibility was severely limited due to an abundance of 

vegetation on the dry lake bottom, most commonly invasive reed canary grass (Phalaris 

arundinacea). The culturally important plant species wapato was also observed in a few 

small patches of the lakebed. 

 

Figure 10. Overview of Virginia Lake survey area with abundant vegetation, view south. 
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During pedestrian survey the crew gave particular attention to the few areas of 

sediment exposure, such as exposed banks, and recent disturbance. No definitively 

precontact sites or isolates, represented by lithic artifacts or fire cracked rock, for 

example, were observed during pedestrian survey. However, twelve features were 

identified at isolated locations (Figure 12, Table 3). Specifically, we recorded a series of 

round and split wood posts, a ditch, two metal pipes, a metal gauge, and two pilings and 

an associated concrete paver (Table 3). In addition, we observed the remains of what is 

most likely the footprint of a duck blind/hunting platform (Figure 13).  

Hunting platforms/blinds allow the hunter to wait for game above the water on a 

platform, sometimes visually obscured behind a screen, wood panel, netting, or brush. 

These structures are usually square or rectangular, large enough for a person to wait 

comfortably, and can be temporary mobile structures, stationary fixtures, or floating. The 

possible hunting platform/blind observed during survey is constructed of four, 

dimensional lumber posts, arranged in a square. The posts likely supported a platform.  

All the features appear to be modern or from the late 19th and 20th century based 

on the presence of dimensional lumber and metal nails. Archival research did not uncover 

further information relating to their function or age. The ditch recorded on the 

northwestern side of the lake is visible on LiDAR (Figure 11), and may represent an 

attempt to drain the lake for agricultural reasons (Oregon Parks and Recreation 

Department 2013). 
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Figure 11. LiDAR image depicting area surveyed. 
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Table 3. Features identified during pedestrian survey. 

Feature Number of Elements 

Wood post 1 

Wood post 4 

Split cedar post 1 

Wood post 1 

Wood post 1 

Piling (2) Concrete paver (1) 3 

Hunting platform/blind (dimensional lumber) 4 

Metal pipe 1 

Metal pipe 1 

Split cedar post 2 

PVC and metal gauge 1 

Ditch 1 

The features recorded during the lake basin survey are some distance from the 

stake alignment, the focus of my project. The nearest feature, a ditch, is approximately 

140 m west of the stake alignment (Figure 12). None of the other stake features 

documented during survey are similar to the Virginia Lake stake alignment (e.g. form 

double linear alignments, or containing more than four stakes). 
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Figure 12. Locational map of features identified during pedestrian survey. 
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Figure 13. View northeast, possible hunting platform/blind made of dimensional lumber 
identified during pedestrian survey. 

Overview of the Stake Alignment Feature 

During fieldwork, the crew recorded a total of 23 wooden stakes both above and 

below the surface as part of the Virginia Lake feature (Figure 2, Figure 6, and Figure 14). 

The alignment extends approximately 60 m (196 ft) into the lake, but does not fully cross 

it, originating near a rise in elevation signifying the shore, travelling along the lake 

bottom, and ending before the elevation rises again on the opposite shore (Figure 15). 

The lakebed is approximately 3 meters lower in elevation than the adjoining bank, 

indicating that with the lake’s current configuration, the water level can rise up  to 

approximately three meters before overbank flooding occurs at the location of the feature.  
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To estimate stake size, I measured the maximum diameter at the top and base of 

each stake (Table 4). Individual stakes measured an average of 5.9 cm (SD=1.9) in 

diameter at the base, and 25.6 cm (SD=20.4) in height above surface (Table 4). The two 

stakes I removed measured 123 cm and 95 cm long. Stakes are generally roughly round 

in cross section, and spaced approximately 2.5 m apart in a linear alignment, oriented 

northeast by southwest (Figure 6). However, gaps exist within this alignment, creating 

occasional spaces greater than 2.5 m (Figure 6).  

In six cases, the stakes appeared to occur in a pair (Figure 6, Figure 14). As 

discussed above, the alignment generally runs northeast by southwest. When a stake was 

positioned to the north of this alignment, roughly perpendicular to another stake, it was 

considered a pair. These paired stakes create a partial parallel alignment. Distance 

between paired stakes varies between 50 and 77 cm. Paired stakes 13 and 14, excavated 

in TU2, were not vertical. Both stakes tilted slightly away from each other, with the distal 

ends closer together than the proximal.  

Intensive pedestrian survey and subsurface testing within and immediately 

adjacent to the feature identified six stakes that were not previously documented. Two of 

these stakes, numbered 21 and 23, were not visible at the surface and identified solely as 

a result of subsurface testing (Table 4). These subsurface stakes are paired with Stakes 19 

and 2 respectively. Subsurface tests SP1, SP4, SP5, and TU1 were judgmentally placed 

with the intention of determining if stakes may be present below the surface because the 

above ground portion had eroded away (Figure 5). This placement was based on 

measured distance between visible pairs, and tests were excavated where gaps existed. 
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Possibly due to the variation in spacing, additional pairs were only identified in two of 

these tests. However, it is possible that at one time some or perhaps all stakes within the 

alignment were paired, and the current inconsistency in pairing is a result of differential 

preservation, not an indication of the feature’s original construction.  

 

Figure 14. Virginia Lake stake alignment (note pairing towards top of photograph). View 
northeast, image courtesy of Dennis Torresdal. 

The metal detector survey identified three stakes that possibly contain metal. 

Metal was visible embedded in two of the stakes (Stakes 10 and 12). The metal objects 

were left in place so as not to damage the stake, but were recorded. In both cases, the 

metal resembled nails. However, if nails, the heads were not intact, and both were heavily 

corroded. 
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Height and diameter of the stakes is not uniform throughout the feature. The tops 

of the stakes, which are subject to more frequent exposure, exhibit notably poorer 

preservation than the bases. Specifically, the stake bases on average measured 1.7 cm 

larger than the tops and were more robust (Table 4). This information is relevant, as it 

confirms that the base diameter of the stakes is a more accurate measure of original size. 

This information also indicates that exposure to air contributes to degradation of stakes, 

and that the oscillating cycles of inundation the feature has endured have likely 

contributed to its current state of preservation.  

Not only did the stake diameter vary from top to base of stake, but the height of 

the stakes from the ground surface also displays substantial differences (Figure 16). Stake 

height varied from 0 to 60 cm above surface. If the feature was built all at once, then it 

should be more uniform, unless the original feature was built without concern for 

standardization, or there are post depositional processes such as air exposure, weathering, 

or insect damage, that have had an uneven effect.  

Due to effects of air exposure on the diameter of the stakes, I investigated if 

distance of the stakes from shore might impact the frequency of their inundation, which 

may have contributed to the variation in size. However, measuring the height of the stake 

from the surface and comparing it to the stake’s position relative to shore did not indicate 

any patterning (Figure 17). This implies that due to the relatively level topography, 

inundation is likely even, ensuring that stakes are not subject to differential exposure to 

air. This indicates that original construction, or other post depositional processes have 

contributed to the seemingly irregular condition of the stakes. 
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Ten stakes had visible bark. Stakes without visible bark are likely the result of 

decay, not intentional modification. However, poor preservation makes it difficult to 

accurately discern more subtle forms of intentional modification, especially to the stake’s 

exterior surface. 

 

Figure 15. Virginia Lake stake alignment during 2018 fieldwork (blue flags mark stakes). 

View north. 
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Figure 16. Stake 7 (left), view west and Stake 3 (right), view southeast. Note difference 
in height. 

 

Figure 17. Bar graph depicting relationship between stake height (measured from the 
ground surface) and position relative to the lake shore, with Stake 20 closest to shore, 

Stake 18 mid-lake.    



 

 

Table 4. Overview of stakes in the Virginia Lake feature.   

Stake # 
Height from 

Ground (cm) 

Max 

Diameter 

at Base 

(cm) 

Max 

Diameter at 

Top (cm) 

Difference in 

Max Diameter 

(cm) 

Comments 

1 4 5.5 N/A N/A Very stable to touch, but eroded at top. 

2*,+ 48 5 6 -1 

Wood is dry to the touch, moderately robust and firm, some 

longitudinal cracks but overall good integrity; removed. Roughly 

round. After removal max diameter is 6.86cm. 

3 45.5 5.5 4.5 1 
Split down center, very stable to touch, moss growth. Round. Visible 

bark. 

4 12 7 N/A N/A Eroded, likely broken off at top 

5 49 6 3.5 2.5 
Highly eroded, black surface near top, split partially through, some 

moss at surface, previously removed and replaced. Round, visible bark. 

6 13 2.5 1.75 0.75 Extremely poor condition, round, visible bark. 

7* 29.75 5 4.5 0.5 
Robust at base. Top has open structure. Round, no bark (knot visible 

1/5 way up, flush with stake). In situ sample. 

8 10.5 4.75 3 1.75 Very eroded, visible bark. 

9 41.5 4 2 2 Round at base, at least 2 knots, visible bark. 

10M 60 5 3.5 1.5 

Excellent condition, round. Possible metal exposed at 25cm from base 

E / 26 cm from base, visible bark. 
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Stake # 
Height from 

Ground (cm) 

Max 

Diameter 

at Base 

(cm) 

Max 

Diameter at 

Top (cm) 

Difference in 

Max Diameter 

(cm) 

Comments 

11 

4.5 5.25 5.25 0 
Oblong, original shape difficult to discern given erosion. Outer surface 

eroded. 

12*,M 60 8.25 10.25 -2 
Metal in NW side at 45.25 cm from base. In situ sample. Noticeably 

better condition than most other stakes , round. 

13*,+ 12.3 8.5 2.5 6 

Longitudinal crack. Degraded to point, friable at top. Paired with S14 , 

77 cm between stakes. Removed from TU2. Round, visible bark. After 

removal max diameter is 11.2cm. 

14 7 8.5 N/A N/A 

~30 deg tilt. Very little above surface. In wall of TU2, not fully 

excavated so diameter measurement not possible. Left in place. Round. 

Paired with 13. 

15 18 7 4.5 2.5 ~5 deg tilt, Round, visible bark. 

16 8 4 1.75 2.25 

Rectangular in cross section with obvious erosion. Towards base 

seeing outer growth suggesting stake is a remnant core, not original 

shape of wood 

17 16.5 7.25 6 1.25 Unevenly eroded, splits open at top and around main body, rounded. 

18 8 7 N/A N/A Extremely eroded. Very decomposed, round. 

19 5.5 4.5 N/A N/A Unevenly eroded, round. 

20 31 7 6 1 Moss covered, eroded, but stable, round. Visible bark.  

6
0
 



 

Stake # 
Height from 

Ground (cm) 

Max 

Diameter 

at Base 

(cm) 

Max 

Diameter at 

Top (cm) 

Difference in 

Max Diameter 

(cm) 

Comments 

21* Subsurface 5 4 

1 

 

 

Waterlogged, soft, condition improves with depth. Found in N wall of 

ST1, paired with Stake 19. In situ sample. Completely subsurface. 

Extends 56cm below surface. 

22 4 3 N/A N/A Rectangular 

23 Subsurface N/A N/A N/A 

Located in SW wall TU1, completely subsurface. ~15-degree tilt, 

visible, ~27cm below surface. Not fully excavated so diameter 

measurement not possible. 

2ᵲ  6.86 6 0.86 Stake is 123cm long, see above for pre-removal measures. 

13ᵲ  11.2 2.5 8.7 Stake is 95cm long, see above for pre-removal measures. 

Average Difference: 1.7 cm  

Mean   25.6                            5.9                      4.3               

SD        20.4                            1.9                      2.1               
  

+Stake removed for analysis  

* Sampled for AMS dating 

ᵲ Description after removal  
M Stake contains metal 

 

   

 

  

6
1
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Subsurface Shovel Probing and Feature Specific Testing  

During subsurface testing, we excavated a total of 11 shovel probes (SP1 to 11) 

and two 1 x 0.5 m test units (TU1, TU2), and processed a total of 1.585 m3 of sediment. 

Shovel probes were excavated in and adjacent to the feature. As previously discussed, 

because stake pairing was visible at the surface in select places in the alignment, three 

SPs were placed to determine if paired stakes may be present below the surface, their 

above ground portion having eroded away. Test units were excavated directly adjacent to 

stakes that we intended to remove (Figure 5, Figure 18, Figure 19). The only artifacts or 

features identified during subsurface testing were the stakes themselves. No artifacts, 

fauna, lattice, or other cultural materials (e.g. buckshot or ammunition) were observed 

during subsurface testing, or subsequent screening of collected bulk samples. 

Shovel probes averaged 57.5 cm below surface in depth, generally terminating at 

the water table. In SP2 and SP3 a long handle auger was used to extend the depth of 

excavation to 165 cm, and 155 cm., respectively.  

The crew excavated TU1 to 67.5 cm below datum (~59 cm below surface). TU2 

excavations terminated at 67 cm below datum (~58 cm below surface). As with the SP, 

we used a long handle auger to extend the depth of excavation in both TU. TU1 was 

augured to 140 cm below surface, and TU2 was terminated at 165 cm below surface 

before auger recovery ceased due to wet and loose sediments. 

Sediments in both the SPs and TUs primarily comprised a 10YR 3/2 very dark 

greyish brown to GLEY1 4/1 dark grey silty clay loam with high organic content and no 

gravels. This matrix and its variants are identified as local hydric soil, indicative of 
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wetland environments with slow to little water movement, such as in a lake or slow 

perennial slough. Redoximorphic concentrations, caused by the oxidization and reduction 

of iron and/or manganese in soil, and indicative of water saturation, were common lower 

in the profile as we approached the water table. Sediment at the base of both TUs broke 

in polygonal patterns, likely the result of water action and repeated cycles of inundation 

and drying. Deeper auguring encountered a fine to medium grained sandy matrix, 

indicating a higher energy depositional environment such flood events, or a river channel, 

and a highly organic, fibrous, peat-like matrix. The peat-like matrix is indicative of lower 

energy depositional environment, such as a lake. 

 

Figure 18.TU2 level 6, base of unit, prior to removal of Stake 13 (left). Note Stake 14 

oriented horizontally from the sidewall at right.   
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Figure 19. TU1 southwest wall profile, prior to removal of Stake 2. 

4.3 Lab Analysis Results  

Toolmark Modification Analysis Results 

I carefully inspected both collected stakes for modification. Stake 2 did not show 

any evidence of cutmarks or shaping, even after cleaning and inspection under 

magnification. However, the distal end of Stake 2 was ragged and heavily degraded, 

indicating that any modification, if present, had broken off. Stake 13 had clear distal 

modification and was analyzed using the toolmark modification analysis protocol 

outlined in Chapter 3. I identified five separate tool marks on Stake 13 (Figure 20 and 

Figure 21). 
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When I compared the results to the tool classes developed by Arcas Associates 

(1986), all five tool marks most closely resembled the criteria for an iron axe (class 1), or 

iron chisel and maul technology (class 2 and 3) (Table 5-Table 7). However, none of the 

five marks perfectly aligned with criteria for either iron axes or iron chisels and mauls. 

Pertaining to Stake 13 toolmarks, Variable I most closely aligned with class 1 (Table 5), 

whereas Variables II through V most closely resembled measurements from classes 2 and 

3. Variable V was indicative of class 1, 2 and 3 (Table 5-Table 7). Interestingly, one stake 

(Stake 5) which was removed, photographed, and replaced by a local landowner prior to 

this project, appears to also have been modified by metal tools (Figure 22). The 

landowner graciously provided photographs for study. However, this stake was not 

available for toolmark modification analysis, as it was not excavated, and remains in 

place.  

I experienced difficulties measuring toolmark variables. This is predominantly 

due to the lack of definitive “landmarks” within toolmark morphology. While the 

measurements and variables were defined prior to work (Table 2), unlike with other 

analyses dependent on the measurement of landmarks (e.g. fauna), the landmarks 

measured here are highly subjective, and depending on the tool, and state of wood 

preservation, may vary both in clarity and presence on individual marks, leading to 

increased ambiguity. This reflects what is likely a larger issue of replicability in toolmark 

analysis conducted on wood. However, these issues factored more into the identification 

of the toolmarks and their boundaries, and less in replicability of the measures 

themselves, once the toolmark boundaries were defined.  
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Table 5. Arcas Associates (1986) tool mark classes and the tools used to produce them. 

Class Associated Tool Material 

1 Axe Metal 

2 Hand maul and chisel Metal 

3 Hand maul and chisel Metal 

4 Hand maul and chisel Bone 

5 Unknown Unknown 

6 Unknown/ Poss. Chisel Shell/Bone/Stone 

7 Cross cut saw Metal 

8 Chainsaw Metal 

9 Wedge Wood/Bone 

10 Knives/Machete Metal 

Table 6. Table created with information from Arcas Associates (1986) tool classes 1-4. 

Class I. 

Curvature 

of cutting 

edge (cm) 

II. Shape of 

X section 
Depth 

III. Length 

of cutting 

edge (cm) 
max width 

IV. Max 

penetration (cm) 
max length 

V. 

Neatnes

s of cut 

VI. Angle of 

attack  

1. Steel 

Axe 

10-15 Flat to 

slightly 

concave 

7-12 6-7 Clean Horizontal or 

oblique 

2. Iron 

chisel 

2-5 Flat 3-5 2-3 Clean Horizontal 

3. Iron 

chisel 

2-5 Flat 3-5 2-3 Clean Oblique to 

vertical  

4. Bone 

chisel 

1.5 Deeply 

concave 

3 3-5 Ragged/

shearing 

Oblique 
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Table 7. Results of Virginia Lake Stake 13 toolmark analysis measurements. 

Mark 

# 

I. Curvature 

of cutting 

edge (cm) 

II. Shape 

of x- 

section 

(cm) 

III. Average 

length of 

cutting edge 

(cm) 

IV. 

Average 

max 

penetrati

on (cm) 

V. 

Neatness 

of cut* 

VI. 

Angle 

of 

attack 

VII. Edge 

angle 

1 16.33 Concave 3.84 3.59 Clean Oblique Unknown 

2 Unknown 

Slightly 

concave 4.13 1.66 Clean Oblique Unknown 

3 Unknown Unknown 7.6 4.69 Unknown  Oblique Unknown 

4 Unknown Flat 5.89 3 Unknown  Oblique Unknown 

5 Unknown Concave 6.56 5.06 Unknown  Oblique Unknown  

Total 

average: 16.3 

Concave to 

flat 5.6 3.6 Clean Oblique Unknown 

*Neatness difficult to discern-degradation has created soft or ragged look to three 

of the marks that may have not been present at original creation  

 

 

Figure 20. Stake 13, distal end. 
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Figure 21. Stake 13, toolmarks 1 and 2 flagged. 

 

Figure 22. Distal end of Stake 5, image courtesy of local landowner. 
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AMS Dating Results 

In total I submitted six wood samples from five stakes and one sediment sample 

for AMS dating (Table 8).  Results are reported in text as calibrated dates. Calibrated 

AMS results are discussed using the median reported dates, as opposed to expressing the 

full range (Bronk Ramsey 2001). For example, the sample from Stake 21, which was 

reported as 72 ± 27 uncalibrated radiocarbon years (Table 8), has a 75.8% probability of 

falling between 1812 and 1919 CE after calibration, with a median calibrated age of 1854 

CE (Table 9).  

Samples that originally returned as “modern” were not calibrated. Despite being 

reported as “modern” by DirectAMS Labs, these samples cannot be assumed to be 

modern in age because of the shortfalls of the calibration curve on dates less than 500 

years old. For example, an uncalibrated radiocarbon date from the historically well 

documented and stratified Cathlapotle (45CL1) archaeological site returned an age more 

than 700 years in the future, an impossibility (Ames and Brown 2018). 

Using these methods of calibration, three stakes provide a median age between 

1847 and 1854, falling reliably within the mid-19th century (Table 9). In addition to 

establishing the median calibrated age for each stake, the model used for this study also 

produced a range of probability for all dates. The aggregated probability of all modeled 

calibrated dates suggests that the feature may have dated from between 1760 and 1905. 

However, given that the dates all closely align, and the other evidence presented in this 

document, the median age of mid-19th century is most likely. Two samples (Stakes 12 
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and 2), one of which comprises a stake that contains metal (Stake 12), returned “modern” 

dates, which were not calibrated (Table 8).  

Table 8. Uncalibrated results of AMS analysis  

DirectAMS Code Sample Name Macrobotanical 

Identification 

Conventional Age 

Mean 

1 σ 

error 

D-AMS 032092 Stake 12 Thuja plicata Modern - 

D-AMS 032093 Stake 21 Thuja plicata 72 27 

D-AMS 032094 Stake 7 Thuja plicata 127 26 

D-AMS 033449 Stake 13 Thuja plicata 115 39 

D-AMS 033450 Stake 13 Thuja plicata 95 35 

D-AMS 033451 Stake 2 Thuja plicata Modern - 

D-AMS 033689 TU2 125-135cm Sediment (humin) 1031 26 

 

Table 9. Calibrated and modelled wood AMS dating results. 

Name Modelled (BC/AD) 

Indices 

Amodel= 99.2 

Aoverall=100 

  From To %  Μ m Acomb A C 

Start Boundary 1308 1919 95.40 1734 1777     98.10 

Sum       1832 1850     99.70 

R_combine (Stake 13) 1688 1928 95.40 1831 1849   102.80 99.60 

2 R_Date (Stake 21) 1695 1919 95.40 1835 1854   95.60 99.60 

3 R Date (Stake 7) 1681 1939 95.40 1829 1847   101.80 99.50 

End Boundary  1697 2293 95.50 1925 1915     97.70 

M= mean 

m=median  

Acomb= combination of agreement indices  

A= individual agreement indices  

C= Convergence Integral  

 

AMS Dating of Humin Fraction and Lake Formation  

As discussed above, during deep auguring (SP2, SP3, TU1, and TU2), we 

encountered a fine to medium grained sandy matrix, indicative of a higher energy 
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depositional environment, and a highly organic fibrous peat-like matrix. The peat-like 

matrix indicates a lower energy depositional environment. As discussed earlier, the 

development of peat may indicate the transition of the water body from an active side 

channel of the Multnomah, into a lake. 

Results of Humin fraction dating of the peat sample returned a calibrated date of 

between 969 and 1035 CE (925-981 BP). This date suggests that Virginia Lake has been 

separate from the main Multnomah Channel, for at least the last approximately 1000 

years.  

Macrobotanical Identification Results 

PAST laboratory identified all five stake samples as western red cedar (Thuja 

plicata). This identification is based on the presence of tracheids with “bordered pits in 1-

2 rows on the radial wall, taxioid cross-field pits, uniseriate rays measuring 1-12+ cells in 

height, and the absence of resin canals” (Appendix D). 

4.4 Inter-Site Comparisons 

 I compared characteristics of the Virginia Lake feature to four other sites with 

wood stakes on the Lower Columbia (Figure 23), focusing on stake dimensions, function, 

associated assemblage, age, and cultural affiliation. The sites were selected based on the 

location, relative completeness of reporting, availability of data and high-quality images. 

However, even with the high quality of reporting, a lack of standardization in recording 

and reporting wood stake features makes rigorous comparisons difficult. Depending on 
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the scope of the work and level of data collection in the field, raw data was often not 

reported, constraining comparisons to reported averages.  

 

Figure 23. Location map of regional comparison sites  
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45CL31 

45Cl31 is a multicomponent archaeological site located on the southeastern edge 

of Vancouver Lake, Washington, positioned directly east of Sauvie Island (Figure 23). 

The site is situated near where Burnt Bridge Creek enters the lake, and adjacent to a relic 

slough (now pond) that likely merged with the lake in high water, creating a bay-like 

environment (Wessen 1983). Vancouver Lake was once subject to drastic seasonal 

fluctuations in water level due to seasonal and tidal influence, dampened now as a result 

of flood control (Wessen 1983). 

45CL31 was initially recorded in 1972 during a reconnaissance survey of 

Vancouver Lake’s southern shore (Hibbs and Ross 1972). The site was further 

investigated in 1980 and 1983, in advance of the Vancouver Lake Restoration Project, 

which primarily consisted of dredging (Wessen 1983). Archaeological methods for the 

project included 1) background research, 2) inspection of dredge disposal sites, 3) 

pedestrian survey at 15 m intervals, 4) monitoring and inspection of dredge spoils, and 5) 

test excavations of 45CL31 and limited testing of other sites identified in the project 

vicinity. 

Test excavations at 45CL31 include two 65 m long stratigraphic trenches 

excavated up to 1.25 meters deep, and an unspecified number of 1x1, 1x2 and 2x2 m 

units (Figure 24). Stratigraphic trenches were used to explore site formation and 

stratigraphic sequence. Test units explored general questions about cultural occupation 

and individual features. The plow zone was mechanically stripped, after which test units 
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were excavated in 20cm arbitrary levels. Excavated sediments were screened through 

1/4” mesh. Select bulk samples were screened through 1/16” mesh.  

The site has four distinct components spanning approximately 3,400 years, based 

on five radiocarbon dates (Wessen 1983). There are two historic components and two 

precontact components, with one of the precontact components continuing into the 

contact era. The site has a number of features, and an artifact assemblage consisting 

predominantly of lithic tools, debitage, and fire cracked rock, with limited faunal and 

floral recovery. The faunal assemblage included terrestrial mammal, and fish. Identified 

fish were predominately sturgeon (Acipenseridae), sucker (Catostomidae) and minnow 

(Cyprinidae). Faunal recovery was low, which may be attributed to the relatively large 

mesh (1/4”) used in recovery. Identified features included pits, hearths, post holes, and 

notably, a wood stake fish weir.  

The feature of most relevance to my study is the wood stake weir, located in Area 

E, which was identified during monitoring, and subsequently excavated (Figure 24). The 

amount of time spent documenting the weir, and the specific methods of stake 

documentation, are not reported. However, the total number of stakes and arrangement of 

the alignment can be verified from the sketch maps. The weir includes 158 stakes, and 

120 identified stake holes, which Wessen suggests once held stakes, now decomposed. 

Wessen (1983) defines stake holes as representing the mold itself, where a vertical 

element was driven into the ground without the benefit of a pre-excavated hole.  
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Figure 24. Sketch map of testing at 45CL31. Image adapted from Wessen (1983: B-18). 

Stakes extend in a single alignment spanning 45 m, with 15-20 cm separating 

each stake. Stakes were split wood, and Wessen reported measurements of 10x12 to 2x6 
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cm in diameter and between 17 and 135 cm in length. However, the number of individual 

stakes measured is not reported. Based on observations of surface texture, Wessen 

suggested the stake wood was western red cedar. An unknown number of stakes were 

removed in entirety, as Wessen describes the distal ends. The distal ends of the stakes 

were modified to a rough point using what Wessen (1983) believed to be a metal tool, 

likely an axe (Figure 25). Despite the use of metal tools, Wessen suggests that the feature 

is an Indigenous feature, not Euro-American (Wessen 1983). He makes this assertion 

based on the associated site assemblage, and because of what group he felt was most 

likely to have constructed and used a feature of this design.  

Stakes in the eastern portion of the feature displayed poorer preservation than 

those in the west. According to Wessen, this discrepancy in preservation is possibly due 

to moisture differences, the east being drier, with better drained sediments, emphasizing 

the importance of water saturation to preservation. Decomposing organic mats were 

recorded connecting the stakes in the better-preserved western section of the weir. The 

organic fibers were identified as reeds, long grasses, and sometimes conifer. However, no 

evidence of weave or other structural organization was observed (Wessen 1983).  

The weir structure itself is simple in design. It is formed by two lines of single 

stakes that meet in the center (Figure 26). Stakes on the eastern line predominately tilt to 

the south (Figure 27); a small segment of stakes in the west angle northwest. According 

to Wessen, these angled positions may have acted as a funnel, preventing fish from 

reentering the lake (Wessen 1983). 
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Figure 25. Distal end of stakes from 45CL31 (Wessen 1983). 

 

Figure 26. Sketch map of the fish weir at 45CL31 in excavation Area E. Image adapted 

from Wessen (1983: B-60). 
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Figure 27. Eastern portion of the 45CL31 Vancouver Lake weir, view east (Wessen 
1983).  
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An uncalibrated radiocarbon date obtained by Wessen (1983) from material 

collected from two stakes places the weir at approximately 310 ± 60 BP. Calibration for 

the purpose of this study returned a 92.9% probability that the dates fall between 1446 

and 1669 CE (Figure 28). It should be noted that the relatively young age of the weir 

effects the accuracy of the calibration curve. Wessen (1983) speculates that the structure 

functioned for an extended duration, suggested by evidence of repair. Wessen indicates 

that evidence of repair includes sections of the feature where a large tree trunk damaged 

the alignment, and at one point replacement stakes were positioned slightly to the south 

of the original line.  

 

Figure 28. Figure showing the probability distribution of the calibrated age of the 
45CL31 weir. 

Wessen (1983) suggests that the weir was used to harvest freshwater lake fish, 

such as the families identified during excavations. He came to this conclusion based on 

the structure and placement of the weir, and the recovered ichthyofaunal assemblage. 

However, the majority of fish remains were recovered from a single pit feature in 

excavation Area C (Figure 24), and are not directly associated with the weir in Area E. 

The weir is positioned near a pond, believed to be a relic slough that once connected with 

Vancouver Lake (Figure 26). During high water in winter months fish could travel over 
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the structure and into the slough. Conversely, in summer months fish would become 

trapped as water levels dropped, exposing the weir (Wessen 1983). In this way, the weir 

at 45CL31 functioned as a barrier much like a tidal fish weir. 

35MU4 

As mentioned in Chapter 2, 35MU4, known colloquially as “Sunken Village”, is 

an extensive precontact archaeological site located on the southwest side of Sauvie Island 

adjacent to the Multnomah Channel (Figure 23). It has both inundated “wet site” and dry 

inland components, bisected by a levee (Newman 1991). The wet site component is an 

acorn leaching and processing site with numerous basket lined pits, wood stakes, and 

other perishable artifacts.  

Sunken Village was originally recorded by Richard Pettigrew in 1973 (Pettigrew 

1973). Prior to official recording, the site was locally well known and subject to 

pervasive looting (Newman 1991; Strong 1959). The site has been intermittently 

excavated by avocational archaeologists with the Oregon Archaeological Society, and 

professionally tested in 1987, 1988, 2006 and 2007 (Croes et al. 2007, 2009c; Pettigrew 

and Lebow 1987; Hibbs and Ellis 1988; Newman 1991). The most extensive excavations 

were conducted in 2006 and 2007 in the “wet” portion of the site, led by Dale Croes, then 

of South Puget Sound Community College, Archaeological Investigations Northwest 

(AINW), and in partnership with The National Institute for Cultural Heritage in Nara, 

Japan under a grant from the Japan Society of Science.  

Testing in 2006 consisted of the excavation of four test units, four geologic cores, 

one half unit bank exposure, and surface mapping (Figure 30). In 2007, the crew 
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excavated two additional cores and mapped additional features. Test units were excavated 

in 10 cm arbitrary levels using a combination of traditional and hydraulic techniques. 

Excavated sediments were screened through nested 1/4” and 1/8” mesh. Geologic coring 

extended to a maximum of 7.6 m.  

The Sunken Village site comprises over 100 recorded acorn leaching pits, 55 

wood stakes (Figure 29, Figure 30), fire cracked rock, and numerous wood fiber artifacts 

(wood chips, split wood, basketry, cedar bark clothing, etc.), lithic debitage, faunal 

remains, and acorns (Croes et al. 2009b, 2009c). The acorn leaching pits are generally 45-

80 cm in diameter, roughly circular in shape, and lined with western hemlock (Tsuga 

heterophylla) boughs, which protrude from the ground surface (Croes et al. 2007; 

Newman 1991). Investigations suggest that the hemlock lining served to separate the 

acorns from the surrounding sediment while still allowing water to pass, to remove 

tannins. This lining minimizes labor when eventually removing the acorns from the 

ground after the leaching process is complete.  
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Figure 29. Distal end of removed wood stake from 35MU4. Photo taken September 14, 
2006. Image courtesy of Ken Ames. 

 

Figure 30. Map of 2006/2007 testing at 35MU4. Map created by Michael Martin (Croes 
et al. 2009), used here with permission. 



83 

The composition, purpose, and dimensions of the wood stakes at Sunken Village 

are important elements in my comparison. The two excavated wooden stakes both 

measure about 1 m in length. All recorded stakes measure 5 cm in diameter on average 

(Croes et al. 2007, 2009c). All 55 stakes were mapped, photographed, drawn, measured, 

and recorded on an individual in-situ wooden stake form (Croes et al. 2009c). Of the 55 

recorded stakes, two were excavated and analyzed (Croes et al. 2009c). Both excavated 

stakes displayed modification from adzing on the distal end (Figure 29). Macrobotanical 

cellular analysis of the two stakes indicate one was Noble fir (Abies procera) and the 

other Sitka spruce (Picea sitchensis). The stakes are always found adjacent to or in 

conjunction with the leaching pits, and are thought to have either marked the acorn pits to 

facilitate relocation, or delineated ownership (Croes et al. 2009c).  

Four AMS radiocarbon dates were obtained during 2006 and 2007 testing. 

Samples consisted of charcoal, a hemlock bough lining a pit feature, and vegetation 

collected from cultural layers encountered during geologic coring (Croes et al. 2009c). 

Calibrated dates from charcoal and the hemlock bough returned 500 ±40 BP (1410-1490 

CE) and 130±60 BP (1760-1880 CE), respectively (Croes et al. 2009c).  

Two AMS dates from coring both returned calibrated dates spanning 0 to 440 BP 

(1510-1950 CE) (Croes et al. 2009c). The aberrant dates are believed to be the result of 

“fall in” during coring (Croes et al 2009c). These four dates, in conjunction with five 

radiocarbon dates from earlier work, indicate an occupation at Sunken Village spanning 

from approximately the late 1200s to the late 1800s, encompassing both the precontact 

and contact era (Croes et al. 2009c).  
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35CO87 

35CO87 consists of an abandoned wood and rebar structure located on the banks 

of the Columbia River at the mouth of Tide Creek, a meandering distributary channel on 

the western bank of the Columbia, approximately 40 km north of Virginia Lake (Figure 

23). The site was first recorded in 2018 by archaeologist Anna Neuzil of the Bonneville 

Power Administration (BPA) during survey in advance of a habitat restoration project. 

Pedestrian survey was conducted at 5-10 m intervals. No subsurface testing was 

conducted at the site.  

Neuzil (2018) estimated that there are hundreds of individual pilings and 

horizontal timbers within the site, most of which were not documented due to the limits 

of the project area and inundation (see Figure 31). One row of wood pilings begins on the 

bank and extends into the shallows of the Columbia River (Figure 31). As such, some 

were not accessible for detailed study at the time of initial recording. The pilings are 

oriented northeast/southwest and are laid out in a geometric pattern. Some are horizontal, 

while others stand vertically (Figure 31). The wood is very degraded and rebar is present 

in some of the timbers, possibly used as an anchor (see Figure 31). Neuzil measured an 

unknown number of accessible individual pilings. These pilings measured between 5 and 

12 m (16.4-39.4 ft) long, and up to 40.6 cm (1.4 ft) in diameter, although Neuzil noted 

that erosion has likely affected the shape (Neuzil 2018).  
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Figure 31. Overview of 35CO87, recorded horizonal timbers and rebar from 35CO87 in 
foreground, unrecorded pilings in background. View southeast (Neuzil 2018). 

The function and age of 35CO87 are alluded to in historic documents. A sawmill 

and a boom operated by the Tide Creek Boom and Dam Company existed at the mouth of 

Tide Creek in 1892 (Neuzil 2018). The company was incorporated in 1889, which places 

a limiting age on the structure. Aerial imagery from 1929 suggests the structure was 

present and still in use at that time. The last record of the structure, prior to Neuzil’s 

work, is on the 1954 USGS 7.5 min Deer Island topographic map. Artifacts were not 

found in association with the site (Neuzil 2018). 

Based on these records, Neuzil links 35CO87 with historic logging activities. It is 

most likely a boom dam, or other structure used to guide or hold logs at the mouth of 

Tide Creek. The site was in use from the 1890s to as late as the 1950s (Neuzil 2018). 
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35CO88 

35CO88 is an historic causeway located on the west bank of the Columbia River 

near the south shore, approximately 1.2 km upriver from 35CO87. The site was originally 

recorded by BPA in 2018 during survey in advance of a habitat restoration project 

(Neuzil 2018). However, its existence had been previously noted during research of a 

nearby historic homestead, which Neuzil (2018) suggested it is likely associated with. 

Field methods included pedestrian survey and excavation of three subsurface shovel 

probes (Neuzil 2018).  

Historic images indicate that the causeway extended from Highway 30 to an 

historic farmstead, and was made almost entirely of wood, with support pilings placed in 

pairs every six feet. The causeway as it stands today consists of seven wood pilings, 

clustered in two groups. The first group of four wood pilings stands approximately 3.6 m 

(12 feet) above the ground surface and 30.4 to 35.6 cm (12 to 14 inches) in diameter 

(Figure 32). The second cluster of three pilings is located about 300 m to the east and 

stands between one and three feet tall. However, it is unknown if these pilings are 

associated with the original causeway. Metal spikes are noted on the pilings’ upper 

surface. These spikes were possibly used to secure cross supports (Neuzil 2018).  
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Figure 32. 35CO88, first group of pilings, view west (Neuzil 2018). 

According to Neuzil, the causeway was likely used to provide access from 

Highway 30 to the farmstead prior to levee construction, when the area would have been 

frequently flooded by the Columbia. Historic images and maps suggest construction of 

the causeway occurred by or before the 1920s. The structure was no longer in use by the 

late 1940s, which aligns with the construction of the Deer Island Levee. The levee 

lessened flooding and decreased the need for a raised causeway for access (Neuzil 2018; 

Oliver 2017).  



 

 

Table 10. Inter-site comparison of Lower Columbia wood stake sites. 

Site  

Average 

Stake 

Diam. 

(cm) 

Stake 

Length 

(m) 

Spacing 

(cm)*** 

# of 

Stakes 
Function 

Age 

(CE/ 

BCE) 

Dating 

Method

* 

Cultural 

Affiliation  
Comments 

35CO87  40.6 5-12 - 200+ 
Timber 

industry 

1890-

1950  

Historic 

records 

Euro-

American  

Much of the site extends outside of the 

project area and was not recorded- 

possibly up to 1000 individual wood 

pilings. Few associated artifacts; rebar.  

 

35CO88 30.4-35.6 3.6 180 7 Causeway 

Pre 

1920s-

c.1940  

Historic 

records 

Euro-

American 

Bark removed from wood posts. 

Likely associated with nearby historic 

farmstead. Few associated artifacts; 

metal spikes. 

 

35MU4 5-7.3 1 - 34 Pit Marker  
1290-

1820 

14C 

dating  

Native 

American 

Distal end modification (adze); many 

associated artifacts and features; e.g. 

basketry, acorns, lithics, fauna, wood 

fiber. Reported date a range of seven 

median dates. 

 

45CL31 
10x12, 

6x2  

0.17-

1.35 
15-20 158 Fish weir 

1446-

1669 

14C 

dating 

Native 

American 

Distal end modification (metal axe); 

associated organic matting Many 

artifacts and features in other areas of 

site; e.g. post holes, lithics, pits. C14 

date in table from stake. 

Virginia 

Lake 

5.6 (in-

situ) 5.9 

including 

removed 

0.26 -

1.09  
250 23 Unknown 

1760-

1905** 

14C 

dating  
Unknown 

Distal end modification (metal chisel 

or axe); no associated 

artifacts/features. 

*All 14C dates calibrated for this project were calibrated using OxCal version 4.3 online (Bronk Ramsey 2001). If a date was present from a stake feature, that 

date was used preferentially over the full range of dates for the site (e.g. 45CL31). 

**Reported 95% probability range. Median age of the feature is 1850. 

*** Spacing listed as reported. Virginia Lake spacing is the average, adjusted for obvious aberrant gaps . 

8
8
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Comparison of the wood stake features and overall age, functions, and cultural 

affiliation of the sites to the Virginia Lake feature revealed some similarities, but many 

more differences (Table 10). The Virginia Lake feature’s individual stakes have an 

average maximum diameter of 5.6 cm measured in-situ, 5.9 cm including removed 

stakes, and an average height above ground surface of 25.6 cm (Table 4). The two 

removed stakes have an average diameter of 9.02 cm and total average length of 109 cm.  

Conversely, the stakes at historic sites 35CO87 and 35CO88 have a maximum 

average stake diameter over five times larger than those at Virginia Lake (Table 10). 

Precontact sites 35MU4 and 45CL31, have stake diameters much more consistent in size 

with Virginia Lake, however, spacing and number of stakes per feature differ 

substantially between 35MU4, 45CL31 and the Virginia Lake feature, which more 

closely resembles (but does not match) 35CO88 in this regard. Additionally, both 

precontact sites had numerous associated artifacts, while the historic sites did not, 

consistent with the Virginia lake site.  
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Chapter 5: Discussion and Conclusions  

In this chapter, I use diverse lines of evidence to address my multiple hypotheses 

and discuss results of my data analysis in relationship to my initial questions. I also 

discuss my results in the context of the broader region, directions future work could take, 

and the implications and limitations of my work. 

 Wood stake sites, as part of the larger category of “wet sites,” are rare in the 

Lower Columbia. Because of this rarity, the Virginia Lake site provides an opportunity to 

look at human ecosystem engineering, and more generally landscape modification in 

backwater wetlands, and how these modifications factor into larger systems of land use 

and resource optimization in these environments. In order to address these larger topics, it 

is necessary to answer basic questions of the feature’s age (Q1), cultural affiliation (Q2), 

and function (Q3). As discussed in Chapter 2, under these questions I produced a series 

of working hypotheses, which my methods aimed to test (Table 1). Because my methods 

overlap to address multiple hypotheses, I divide my discussion by questions and sub 

divide by hypotheses. 

5.1 Addressing Hypotheses  

Question 1: What is the Age of the Feature? 

To address the age of the feature, I posed three associated hypotheses (Table 1). 

The feature is radiocarbon dated to the mid-1800s, with median calibrated dates ranging 

from AD 1847 to 1854 (Table 8, Table 9), indicating historic era construction (H2). This 

result negates H1 (precontact) and H3 (spanning precontact and historic era). 

Additionally, metal was identified in two of the stakes (Stakes 10 and 12), and analysis of 
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toolmarks on Stake 13 determined that the distal end was modified using metal tools. 

These results support the idea that the feature was constructed after Euro-American 

contact. 

Question 2: What is the Cultural Affiliation of the Feature?  

Based on the median results of AMS dating, the Virginia Lake feature was 

constructed during the historic period, but resides within a complex phase of Euro-

American and Indigenous interaction on Sauvie Island. This phase begins after the 

epidemics in the 1830s markedly depleted Indigenous communities and Euro-American 

occupation of Sauvie Island began, but is prior to the larger influx of colonists following 

the donation land law in the 1850s.  

The metal detector survey indicated that three of the 23 identified stakes contain 

metal. The metal in two of these stakes could be visually confirmed (Stakes 10 and 12). 

These metal fragments were small, and appeared vaguely cylindrical, but are highly 

corroded, and have no other diagnostic characteristics. The metal could not be removed 

without damaging the stake, so closer examination was not conducted. Curiously, no 

other associated artifacts or features were found during fieldwork, which included 

screening sediment from the site through 1/8” mesh and, later, water screening of bulk 

samples through finer nested mesh. Metal minimally suggests Euro-American presence, 

but does not in itself indicate cultural affiliation. 

Macrobotanical analysis shows all five stakes from the feature are western red 

cedar (Thuja plicata) (Appendix D). Red cedar was widely used by both Indigenous and 
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Euro-American people across the region (Lang 2013; Stewart 1984). It is a rot resistant 

wood, making it a valuable material in the damp Pacific Northwest.  

Toolmark analysis indicates that the distal end of Stake 13 was modified with a 

metal tool, most likely a metal chisel, axe, or some combination therein. However, it is 

well documented that Pacific Northwest Indigenous groups had access to, and used metal 

tools prior to direct contact and into the historic era (Arcas Associates 1986; Gleeson 

1980). Additionally, Wessen (1983) suggests that metal tools were used to shape the 

stakes in the Vancouver Lake weir, an Indigenous feature (Figure 25).  

While the age of the feature is consistent with Euro-American occupation, the 

feature does not appear on any maps of the area from the 19th and early 20th century 

(GLO 1854,1862; USGS 1915), despite the presence of unimproved roads, structures, 

and agricultural fields. Additionally, the mid 1800s were a time of ongoing and complex 

interaction between Indigenous and Euro-American people in the Lower Columbia. Euro-

American and Indigenous communities were particularly entangled at this period in 

regards to labor and trade (Deur 2012). Therefore, it is difficult to differentiate 

Indigenous (H1) from Euro-American (H2) cultural affiliation based on the results of my 

analysis. 

Question 3: What is the Function of the Feature? 

The function of the Virginia Lake feature (Q3) is the question that generates the 

widest variety of hypotheses (Table 1), which I will discuss individually.   

H1: posits that the feature is a fish weir. Fish weirs, also called fish traps, are 

stationary structures constructed in water that act as a funnel or barrier to direct or trap 
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fish for harvesting and can be constructed out of wood, stone, brush, or reeds (Connaway 

2007; Elder et al. 2014; Lepofsky and Caldwell 2013). These technologies were an 

important part of North American Indigenous subsistence, and were used into the historic 

era (Connaway 2007; Erlandson and Moss 1993; Hewes 1998; Moulton 1991; Rostlund 

1952). Some weirs  have been dated on the Pacific Coast as far back as 5500 cal BP, 

however the majority of weirs in the region are much younger, even into the historic 

period (Byram 2002; Elder et al. 2014; Erlandson and Moss 1993; Moss 2013). 

Weirs also played an important role in Indigenous cultural and spiritual practices, 

especially in the relationship between people and fish (Losey 2010). Weirs were often 

owned by individuals or families (Byram 2002; Losey 2010), who controlled their use 

and oversaw the duration and intensity of harvest. Losey (2010) points to ethnographic 

and traditional knowledge that indicates that weirs were dismantled when not in use, 

because weirs and fish were sentient, and leaving a weir functional when people were not 

present to harvest the entrapped fish would offend the fish they depended on for food 

(Losey 2010). Natural erosional and depositional processes also affect weir preservation 

and diminish the number of recorded sites (Elder et al. 2014; Moss et al. 1990). This 

combination of cultural and environmental factors likely explains why many weirs appear 

incomplete or “non-functional” in the archaeological record, creating difficulty 

reconstructing how they were used.  

Weirs are generally divided into typologies based on location of use. Weirs are 

most often found in estuaries and riverine environments, although they are sometimes 

documented in lakes and other backwater environments. In Oregon, weirs are primarily 
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documented on the coast, but a smaller number have been recorded farther inland, in 

backwater environments and up river and into the Plateau (Hewes 1998; Wessen 1983). 

As previous discussed, Connaway (2007) places weirs into three distinct categories: 

flowing stream weirs, tidal weirs, and longshore weirs.  

Flowing stream weirs were constructed in freshwater streams, and used to direct 

fish, or obstruct their progress upstream. Usually built in the shape of a “V” or a straight 

fence-like alignment spanning the river, these structures direct the fish into a fish trap, or 

to a narrow opening where they can be easily speared or netted. These kinds of weirs 

were usually constructed in shallow waters, as deep water or high flow would hamper the 

construction and regular maintenance that placement in flowing water requires 

(Connaway 2007; Kroeber and Barrett 1960).  

Tidal estuary weirs function by allowing fish to swim over the barrier during high 

tide, where they become stuck on the outgoing tide when the barrier becomes impassable 

(Byram 1998; Connaway 2007; Moss et al. 1990). These structures could be left 

unattended and returned to on an outgoing tide to collect the trapped fish. Although most 

common in tidal environments, these types of weirs can also function in areas of seasonal 

water fluctuation, such as the Vancouver Lake weir. 

Longshore weirs are constructed in non-tidal inlets, mouths of rivers, on the edges 

of lakes, or along saltwater shorelines (Connaway 2007). Longshore weirs work by 

diverting fish that traditionally swim in schools parallel to the bank with a single linear 

alignment jutting from the bank. Upon encountering this barrier, fish would swim around 

it into a waiting trap (Connaway 2007).  
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If the feature is a weir, its location in a backwater environment off the main river 

channel is particularly interesting. Weirs are uncommonly recorded in the backwater. 

However, some of the most common fish species identified in the archaeological record 

are backwater species from the families Catostomidae and Cyprinidae, often 

outnumbering salmonids, which are more prominent in ethnographic records (Butler 

2004; Butler and Campbell 2004; Butler and Martin 2013; Saleeby 1983). Despite the 

prevalence of these species in faunal assemblages from the Lower Columbia, including 

the Vancouver Lake site, there is little mention of Catostomidae and Cyprinidae fishing 

practices or consumption in current ethnographic and ethnohistoric records (Butler 2004; 

Butler and Martin 2013; Hunn 1990). Neither Cyprinids or Catostomidae comprise the 

major fish species described by Lewis and Clark during their time in the region (Butler 

2004; Moulten 1991).  

While their apparent consumption and abundance are acknowledged, the role 

backwater fish species played in the regional economy, and the methods indigenous 

people used to harvest them remain unclear. This raises questions pertaining to the 

practices and technology, such as weirs, that may have been used in the harvest and 

cultivation of backwater species to enhance the productivity of this archaeologically 

prominent fishery, and the ways in which this technology contributes to a broader 

understanding of these larger systems (Butler 2004; Butler and Martin 2013; Butler and 

Campbell 2004; Boyd and Hajda 1987; Saleeby 1983).  

The Virginia Lake feature, if a weir, would likely have functioned as a longshore 

weir, or like the Vancouver Lake weir, a variation of a tidal barrier trap. I draw this 
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conclusion based on the location and form of the structure. The feature is located in a 

backwater lake, adjacent to the Multnomah Channel. Today, the lake is separated from 

the channel by a levee. LiDAR imaging indicates that the lake was once connected to the 

main channel, and separated as the Multnomah Channel migrated (Figure 11).  

Analysis of the lake history, including humin dating of lake sediments during this 

study, indicates that the lake has been separate from the main channel for at least 1000 

years; the feature is not a flowing stream weir. As a linear alignment jutting out from a 

lake shore into the water, it resembles a longshore weir in location and relative 

construction. It could have been used to direct fish into a trap that did not preserve, or 

was removed prior to recording. However, the seasonal nature of the lake suggests that 

perhaps the Virginia Lake feature may have functioned like the 45CL31 weir, despite 

obvious discrepancies in form. As described in Chapter 4, Wessen (1983) hypothesized 

that the weir at 45CL31 functioned like a tidal barrier weir, allowing fish to swim into the 

slough during high water, and trapping them in the confined area as lake levels dropped. 

The age of the Virginia Lake feature does not preclude its function as a weir. As 

previously mentioned, weirs were used into the historic-era. Connaway (2007) 

documented 21 historic fish weirs in his survey of Mississippi weir sites. These features 

were all recorded in rivers, creeks, or sloughs, and encompassed a variety of forms and 

material types including wood, stone, and wire. Connaway (2007) designated these 

structures as historic based on the nature of the construction materials, or historic 

documentation (i.e. the builder is known). 
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Documented historic and contact-era weirs on the Oregon Coast and inland 

confirm the use of these structures in the Pacific Northwest during the period of the 

Virginia Lake feature (Byram 2002; Erlandson and Moss 1993; Moulton 1991). In 

Byram’s (2002) seminal thesis describing the results of his extensive Oregon coastal weir 

survey documenting 72 sites, he noted that some of the sites contained milled lumber or 

were modified with metal tools (e.g. 35LA1103), indicating the sites were used during 

the historic era. Furthermore, radiocarbon dates place several weir structures post 300 BP 

(Byram 2002).  

As a linear alignment of wood stakes located in a wetland environment, it is 

tempting to directly assign the function of the Virginia Lake feature to a weir. However, 

while there are certainly many similarities between the feature and weirs described in the 

regional literature, there are also several differences, which contribute to uncertainty 

around this designation. Similarities between the Virginia Lake site and recorded weirs 

include the size of the stakes (maximum average stake diameter, length), distal end 

modification, material type, and general linear configuration (Byram 2002; Moss et al. 

1990; Schalk and Burtchard 2001; Tveskov and Erlandson 2003; Wessen 1983). 

Differences are seen in the spacing between the stakes, the lack of associated artifacts, 

and its location within a backwater lake  (Byram 2002; Tveskov and Erlandson 2003; 

Wessen 1983). These differences do not exclude the feature from functioning as a weir. 

However, without additional data, they diminish certainty.  

The Virginia Lake feature’s stakes are spaced approximately 250 cm apart, with 

50 to 77 cm between pairs. This differs substantially from the 15 to 20 cm spacing in the 
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Vancouver Lake weir, and the narrower spacing most commonly seen on weir stakes 

observed on the Oregon and Washington coast (Byram 2002; Wessen 1983). Larger 

spacings are rarer, but not unheard of (Byram 2002; Schalk and Burtchard 2001). 

However, they would need to be paired with other devices such as lattice panels, brush, 

or nets to appropriately function (Schalk and Burtchard 2001), neither of which were 

present or evident at the Virginia Lake site. This lack of lattice, brush or other horizontal 

in-filling to create a proper “fence” or blocking structure could be the result of poor 

preservation of these more delicate materials (Byram 2002; Wessen 1983), intentional 

removal during disuse (Losey 2010); or they may have never been present.  

Weirs on the Oregon coast are commonly associated with nearby lithic materials 

and residential debris (Byram 2002). The Virginia Lake feature, conversely, has a distinct 

lack of associated artifacts. Intensive pedestrian survey and subsurface testing should 

have identified these objects if they were present. Based on this evidence (or lack thereof) 

I conclude that the feature stands alone, although associated sites may be present in the 

adjacent uplands, which are primarily located on private property.  

There has only been one other weir recorded in the Lower Columbia located in a 

lake, the Vancouver Lake weir (45CL31). While this feature is unique in its inland 

location, in most other ways, the weir is typical of those found in coastal estuaries in 

stake diameter, construction, spacing, and associated artifacts. The existence of 45CL31 

creates precedent for a weir to exist in Virginia Lake, an environmentally similar 

location, occupied by people with similar cultural traditions. However, the Virginia Lake 

feature lacks many of the aforementioned characteristics that indicate 45CL31 was a 
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facility designed to catch fish. In summary, the evidence to the support the fish weir 

hypothesis (H1) for the Virginia Lake feature is weak, but not disproven.  

H2: states that the feature is the remnants of a causeway or pier. A causeway is 

defined here as a raised path or track across low or wet ground, and a pier as a platform 

supported by pillars extending out from shore into a body of water, sometimes used as a 

landing stage for boats. Interpretation of the results for this hypothesis is complicated, as 

evidence exists that both supports, and undermines it.  

In support of H2 are the spacing and paired nature of several sets of the stakes. 

The inter-site comparison indicates that the stake spacing in the linear alignments most 

closely resembles the historic causeway feature (35CO88). However, the spacing is 

slightly narrower between causeway stakes at 35CO88 (Table 10). Such wide spacing 

could compromise the stability of a cross plank or platform structure indicative of a 

causeway or pier. Because the stakes are paired, it stands to reason that there may have 

been some kind of cross-plank structure between the alignments, consistent with a pier or 

causeway. However, there is also no evidence of cross-planks between the stakes 

observed during fieldwork.  

There are six instances of pairing (12 stakes) in the feature, creating two parallel 

linear alignments. Paired stakes are spaced 50-77 cm (20-30 in) apart. This is a relatively 

narrow spacing. The spacing limits use and is unexpected for a structure that took a 

considerable amount of material and effort to build, extending approximately 60 m (196 

ft) into a water body. This narrow spacing would preclude using the feature to cross 

wagons or other large equipment over the wetland, but not individuals.  
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Only two of the 23 identified stakes were confirmed to contain metal, or any kind 

of possible fastener; this creates difficulty in drawing inferences about the feature’s 

original construction. This is inconsistent with the historic causeway discussed 

previously, which had multiple metal fastening spikes (Neuzil 2018).  

Additionally, as previously discussed in Chapter 4, during fieldwork we measured 

an approximately 3 m difference in elevation between the shore and the lakebed at the 

feature location. This indicates that overbank flooding may occur when water exceeds 

this depth. Sauvie Island was regularly flooded prior to levee construction, and this 

flooding would likely submerge the feature, precluding its use as a causeway during high 

water, when transport across the wetland was most necessary. Furthermore, the feature 

does not entirely cross the wetland as it stands now, ending before elevation rises again 

on the western shore. This indicates that the feature did not function as a means to fully 

cross the lake, as a causeway would. 

Moreover, there is no documented road, trail, or other structure illustrated on the 

property adjacent to the feature in any of the reviewed USGS quadrangles (Figure 33), or 

GLO maps in the location of the feature (Figure 8) (USGS 1915, 1940, 1956; GLO 1854, 

1862 ). The closest track, an “unimproved road,” crosses Virginia Lake over 750 m to the 

north of the stake feature on the 1915 USGS topographic map (Figure 33). Finally, if the 

feature is a causeway and the purpose is to cross the wetland, placing it at one of the 

widest sections of the lake seems impractical, given the additional resources necessary to 

construct it at this location. Based on this evidence the feature was not likely a causeway, 
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used to cross the wetland, but may still have functioned as a pier, extending out into the 

lake to facilitate access for an unknown purpose. 
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Figure 33. 1915 USGS Hillsboro 7.5 min quadrangle, feature location in red. 
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H3: The feature is an historic-era hunting platform/blind. The Lower Columbia 

was and continues to be part of the Pacific flyway for migrating waterfowl, making it a 

productive place for waterfowl hunting. It was also a key location in the extensive North 

American fur trade industry. To address this hypothesis, I compared the feature to 

modern and historic bird hunting blinds and platforms, and historic beaver traps.  

Archival research identified an association between Virginia Lake and historic era 

duck hunting (Spencer 1950). Ducks were and continue to be locally abundant (Figure 

34). Spencer (1950) names the Lake specifically as a premier duck hunting location in his 

history of Sauvie Island. Based on modern and historic designs, it is likely that a hunting 

platform/blind for waterfowl, constructed on the lake to allow the hunter to wait unseen 

above the water, would be square or rectangular.  

During survey I recorded what I believe is part of an historic duck blind, 

constructed with dimensional lumber (Figure 13). The hunting blind/platform consists of 

four, dimensional lumber posts arranged in an approximate square, which would have 

supported a flat platform at one time (Figure 13). These remains are consistent with the 

footprint and construction of a duck blind or hunting platform. The linear alignment of 

the Virginia Lake stake feature does not fit this form and is inconsistent with historic 

descriptions and illustrations of bird hunting techniques. Additionally, field survey 

identified no traps, nets, ammunition, or other artifacts that would link the feature to 

hunting. Overall, the hunting platform/blind hypothesis is not supported.  
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Figure 34. Ducks on Sauvie Island, 1957. Image courtesy of the Oregon Historical 
Society. 

The Lower Columbia was inarguably a key region for beaver trapping, as 

evidenced by the success of the HBC fur trade at Fort Vancouver. Both Indigenous 

people and Euro-Americans trapped beaver. Early ethnographies suggest that when 

beaver was hunted by the Chinook, it was primarily taken using harpoons (Ray 1938), 

although methods possibly varied. 

Hudson Bay era beaver traps were predominately deadfall or metal traps (Figure 

35). Deadfall traps kill the animal by crushing. HBC era metal traps used one to three 

stakes to anchor the trap underwater, where the animal would trigger the trap and then 

drown (Binus 2005; Proulx 2012). The widely spaced linear alignment of 23 stakes that is 

the Virginia Lake feature does not match this description.  
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Figure 35. Hudson Bay era metal beaver trap, image courtesy of the Oregon Historical 
Society. 

H4: The feature is a post and line structure used for straightening or storing planks 

when not in use. Wood was an important resource for Chinookan peoples of the Lower 

Columbia (Ames and Shepard 2019; Ames et al. 1992). Material was harvested from 

cedar trees, often in large planks, towed back to the village, and used for a variety of 

purposes, including canoe building and plankhouse construction and maintenance (Ames 

and Shepard 2019; Ames et al. 1992; Stewart 1984). Sometimes planks were not straight 

when harvested or became warped. To straighten the planks to better suit their intended 

purpose, Indigenous people took damp wood and utilized either a stake and line system to 

hold the planks straight, or weighted them with large rocks, applying pressure to the 

planks until they dried  (Figure 36) (Stewart 1984). These structures were presumably 
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built on land, as the drying process helped straighten the boards. Therefore, it is unlikely 

that this system is represented in the Virginia Lake feature. 

 

Figure 36. Plank straightening structures. Image used with permission (Stewart 1984:43) 

Although the plank straightening hypothesis is unlikely, the possibility that the 

feature was used in plank storage still needs to be considered. People of the Lower 

Columbia lived in semi-permanent villages in rectangular structures made predominately 

of cedar planks, remarkably similar in design throughout the Northwest Coast (Ames and 

Shepard 2019; Ames et al. 1992; Suttles 1990). These structures, known as plankhouses, 

contained multifamily households that required significant resources and effort to 
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construct and maintain (Ames and Shepard 2019; Ames et al. 1992). Plankhouses were 

built of large wooden post and beam frames, cladded and roofed with wooden planks. 

The frame stood permanently in a single location, and planks were often moved between 

frames with seasonal mobility cycles (Ames et al. 1992).  

Ames and others have speculated that when not in use, planks were sometimes 

stored immersed in water. This storage served to preserve the wood and drown any pests 

that may have taken up residence (Ames et al. 1992). Structures used to store planks in 

this environment may have emulated the post and line structures used to transport and 

straighten the planks (Stewart 1984).  

There are no known Chinookan villages in the immediate vicinity of the feature 

(Figure 3). While it is possible that the Virginia Lake feature is the remnants of such a 

storage system, it seems unlikely that the location of storing planks would be very far 

removed from a village, as transporting large planks was a resource intensive task. The 

closest known Chinookan village to the Virginia Lake site is Cathlahnahquiah 

(gaɬánaqʷaix), located approximately one-mile northwest (Figure 3: #37). Fort William, 

and later the HBC dairy, were built on the site of this village, indicating that it had been 

unequivocally abandoned by the 1830s (Cannif 1981). Furthermore, the Virginia Lake 

feature is dated to the mid-19th century, after the most virulent of the epidemics swept 

through the Lower Columbia, placing intense stress on the Indigenous populations (Boyd 

2013; Spencer 1950; Taylor and Hoaglin 1962). This reduction in population likely 

decreased the need for plankhouses, and possibly eliminated many energy and resource 

intensive practices, such as the removal, storage, and replacement of planks. Plankhouses 
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were a uniquely Indigenous form of housing, and there is no record of Euro-Americans 

engaging in this practice of storage. 

H5: The feature is a property line or fence. As a linear wood stake/post alignment 

I hypothesized that the feature could represent a simple fence or boundary line. Fieldwork 

confirmed that part of the feature consist of a series of two widely spaced paired linear 

stake alignments, not a single line. This is unusual for a fence, which is most commonly a 

single linear alignment of posts, except in the case of some waddle fences, in which 

“waddle” or brush is woven between staggered posts, and a variation on the post -and-rail 

fence where instead of boring holes in posts to insert the horizontal rails, two posts are 

used and rails are suspended between them (Raup 1947).  

Waddle fences were most common in arid portions of the country where wood is 

scarcer (Raup 1947), not the forested 19th century Northwest. Moreover, a variant of 

post-and-rail fencing would require a narrow spacing to hold up the rail; frequently the 

posts were placed in the same post hole (Raup 1947). The 50-77cm spacing between 

paired stakes is quite wide. A double fence alignment, unless there is a specific purpose, 

would also appear to be a waste of resources.  

Fieldwork provided no evidence of joining horizontal planks or wire. I also 

documented no consistent placement of nails, or other joining materials. Only two stakes 

were confirmed to contain metal. The bark does not appear to have been removed on the 

better-preserved stake specimens, nor are they constructed of dimensional lumber. 

Archival research and historic map review place the feature outside of both of the 

nearest properties (DLC 48 and 49) during the 1800s (Figure 8). The feature does not 
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follow a property line, nor does it appear to have significantly changed in position to the 

water, indicating that it was always at least partially submerged. I did not find evidence 

of a fence or boundary line in or near Virginia Lake in historic imagery or documents. No 

fence or similar structure is illustrated on USGS or GLO maps from the time period 

(USGS 1915, GLO 1862, USACE 1929). 

In summary, the feature’s function is still uncertain, though some hypotheses are 

less likely than others. In particular, evidence and logic help eliminate the hunting 

platform/blind (H3), post and line structure for straightening or storing planks (H4), and 

fence (H5) hypotheses, as well as the causeway (H2, part 1), narrowing the possibilities 

to either a fish weir (H1), or a pier (H2 part 2).  

Question 4: How Does the Feature Relate to Human Ecosystem Engineering in 

the Wetlands of the Lower Columbia? 

The Virginia Lake feature is undeniably an example of human landscape 

modification in a wetland of the Lower Columbia. However, because of the novel nature 

of the feature, and because the function and cultural affiliation cannot be determined with 

certainty, it is difficult to place it within a larger system of human ecosystem engineering. 

This difficulty stems from a lack of comparable sites, and the ambiguity of the feature 

itself, two issues which may benefit from additional work in the region. Because the 

feature’s function in uncertain, it is difficult to draw larger implications from my work. 

Specifically, I could not apply NCT towards understanding the feature, and its larger role 

in ecosystem engineering on a regional scale, as initially planned. To use NCT as a 

theoretical framework in understanding how human constructions optimize resources and 
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alter the environment to more efficiently meet human needs, I must first understand the 

function the construction serves in order to identify the need it meets, or the resource it 

optimizes.  

5.2 Limitations  

I encountered three main limitations in my research: a dearth of comparative sites, 

a lack of standardization in recording stake sites, and the tendency for relevant reports 

and summaries of previous work to only exist in so-called grey literature. I identified 

very few comparable features within the region in my research. Isolated wood features 

have not received much attention in backwater areas. Many are assumed to be recent, or 

of Euro-American origin. These assumptions go mostly unchallenged, as in the Pacific 

Northwest, inland fishing facilities have been little studied. Most fishing facilities have 

been recorded in riverine or estuarine environments (Byram 2002; Elder et al. 2014), not 

pluvial, as the Virginia Lake feature.  

The lack of standardization in wood stake site recording in the Lower Columbia 

has created differences in data collection and reporting. For example, at minimum, the 

number of individual stakes, dimensions, and precise locations should be recorded. 

Additionally, historic and precontact recording differs widely, increasing the need for 

standard recoding procedures across site types. 

Additionally, my research was hindered initially by the amount of relevant 

literature that has only been published in contract archaeology reports. Often a reference 

was listed as “report on file with an agency or company”. In older reports, some of these 

agencies and companies no longer existed under their previous names or forms. 
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Furthermore, many older documents have not been digitized, creating issues of access. 

This highlights a pervasive issue in archaeology surrounding grey literature and its 

separation and inaccessibility in comparison to academic publishing. This creates 

knowledge gaps even where research has already been completed, but is otherwise 

difficult to obtain.  

In the end, I did not find any precontact or historic features that closely resembled 

the Virginia Lake stake alignment in form and construction. This lack of like samples 

may be the result of inaccessibility of data rather than a true absence, but regardless 

stymied my ability to compare across sites. This created difficulty in associating the 

Virginia Lake feature’s form and origins, and in placing the feature in a regional context. 

The Virginia Lake feature is novel, having found no analogous features in my research. 

Its novelty creates difficulty in placing it in a larger system, or understanding its place 

among other examples of ecosystem engineering and wetland modification.  

5.3 Broader Values and General Contributions  

As one of the tasks associated with my research design, I created a series of 

recording protocols surrounding data collection in the field. This creates a standard of 

comparison, which, if used in the future, will create greater ease in comparison across 

anthropogenic stake sites, and, more broadly, wetland modifications. This not only has 

utility for replicability, but also for further differentiating the function and significance of 

the Virginia Lake feature. 

My project provides a clear structure, linking specific questions about a backwater 

feature to testable hypotheses, and outlining the necessary tasks for addressing them, 
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which could be used as a template. This structure lends itself well to future investigations, 

clearly outlining a multi- faceted approach that uses multiple methods, within a program 

of Historical Ecology. Creating a template that requires clearly stating research questions, 

associated hypotheses, and necessary tasks, is also relevant in that it discourages 

assumptions of origin and function prior to the start of work. Any assumption must be 

placed within the hypotheses structure and compared equally against the other 

hypotheses, forcing the researcher to plan for and address multiple possibilities equally. 

Using this structure, my thesis provides a methodological template for evaluating features 

associated with wetland landscape modification and exploring the relationship between 

these modifications and larger systems of ecosystem engineering. 

My thesis can facilitate future work by updating and increasing the accessibility 

of previously unpublished “grey literature” such as the Arcas Associates (1986) toolmark 

study and the Wessen (1983) excavation report on 45CL31. The Arcas Associates study 

created a replicable, tested, method for differentiating which tools created specific 

toolmarks on wood, but had not been previously digitized. In this document I have 

synthesized the results of the 1986 study, updated the graphics for greater utility, and 

created an accessible table of the original classifications (see Figure 7, Table 2, Table 5, 

Table 6). 

The Vancouver Lake weir (45CL31), despite its notable size, and unique 

backwater location, has garnered little attention since Wessen’s initial report was 

published in 1983. As previously discussed, both cultural and natural erosional and 

depositional processes affect the preservation and subsequent discovery of weir sites 
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(Elder et al. 2014). For heritage managers to better plan for, and create research designs 

capable of identifying these kinds of sites in backwater environments, the few recorded 

examples need to be highlighted and meaningfully incorporated into further regional 

synthesis and publications. Researchers cannot adequately test for specific site types, if 

there is no known precedent for them to exist in a given environment. My thesis 

highlights backwater wetland cultural constructions in the region, such as the 45CL31 

weir, and presents methods for better identification and recording. 

5.4 Future Work 

Several future studies would clarify the function of the stake alignment and place 

it in a broader cultural context. As noted above, I identified very few wood stake/post 

sites recorded in the Lower Columbia in the Oregon and Washington archaeological sites 

databases, limiting comparative analysis. Future work could identify additional sites not 

currently distinguished during my initial key word search, for example. Ideally, enough 

sites with sufficient data would one day be identified to make useful statistical 

comparison possible.  

That all stakes were created from western red cedar is noteworthy. The wood is 

both locally available and rot-resistant. However, other tree species were certainly 

common and locally available. Future research could investigate construction materials 

used in other local structures from both the 1800s, as well as the precontact era, and 

investigate similarities and differences in building materials, with the intention of 

inferring what pressures guide selection. 
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Finally, future work at the Virginia Lake site should include additional survey and 

subsurface testing in the uplands adjacent the lake. These areas are privately owned and 

were not accessible as part of my project. However, given their higher elevation, and 

relatively flat topography, they pose a high probability for encountering evidence of past 

human occupation, which may elucidate the function or cultural affiliation of the stake 

alignment.. 

5.5 Conclusions  

The goals of my thesis were to record the Virginia Lake feature and associated 

site, identify the age, cultural affiliation, and, function, and more broadly, relate the 

feature to human ecosystem engineering in the broader wetland landscape of the Lower 

Columbia. Based on the results of the archival research, fieldwork, and lab analysis, I can 

definitively say that the Virginia Lake feature dates to the mid-1800s. The feature’s 

cultural affiliation and function remain more ambiguous. However, I was able to 

eliminate some hypotheses relating to function, narrowing the field of possibility.  

 The Virginia Lake feature is not a hunting platform/blind. The feature is not 

likely a post and line structure for straightening/storing cedar planks, and the feature is 

also not a boundary line or fence. Less clear is if the feature represents a pier structure, or 

a fish weir, as my results both support these hypotheses of function, and point toward 

inconsistencies in form. 

That the fish weir hypothesis has not been eliminated is important, as facilities for 

catching fish that thrive in backwater environments have rarely been recorded, the 

Vancouver Lake site being an exception. Implications of this type of structure in a 
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backwater wetland are significant, given ongoing debates about capture efficiency and 

intensification that rely heavily on concepts of mass capture. This hypothesis remains 

possible, but ambiguous.  

In my study of the feature and its context, my research also contributes to the 

understanding of the history of Virginia Lake and its formation. Stratigraphic analysis 

and humin dating indicate that the lake was once a side channel of the Multnomah 

Channel, but has been separate for at least the last 1000 years. This information will aid 

in future interpretations of sites in the lake vicinity.  

Despite the tentative nature of my conclusions, my thesis provides a 

methodological template for evaluating wetland landscape modifications, potentially 

increasing replicability and utility of comparison between these sites in the future. The 

question, hypotheses, task structure is helpful in evaluating unknown features, and this 

document outlines a standard procedure for recording this feature type. Furthermore, the 

larger theoretical framework explored in this document, creates a starting point for 

understanding and exploring these constructions as components in a broader system of 

human ecosystem engineering through the research program of historical ecology.  
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