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Abstract 

Identification and interpretation of archaeological phenomena is typically based on 

visual cues and the physical presence of “something archaeological,” such as a diagnostic 

artifact, landscape modification, or structural element. Yet many archaeological features, 

i.e. the discrete archaeological deposits related to past human behavior, lack clear 

indicators of human activity that provides clues to the feature’s origin. At the Cape 

Krusenstern beach ridge complex, located in northwest Alaska, ambiguous features, that 

could be natural or anthropogenic (vegetation anomalies), or are of unknown cultural 

function (indeterminate), comprise 60% of the identified features at the complex. These 

ambiguous features represent a large gap in our understanding and interpretations of the 

occupation history of Cape Krusenstern and the Arctic. The goal of this thesis was to 

identify anthropogenic features and interpret the original human behaviors that contributed 

to their formation, through soil geochemical analysis. I sought to identify 1) which features 

are natural and which are anthropogenic; and 2) what behaviors created the cultural features 

(e.g. occupation of houses or caching of marine versus terrestrial food resources). I used 

photometric phosphates spot tests and inductively coupled plasma mass spectrometry (ICP-

MS) to geochemically characterize bulk sediment samples from ambiguous features. I then 

used a variety of statistics, including principal component and discriminant function 

analysis to identify patterning in elemental compositional data. I compared results to 

geochemical expectations for different types of cultural features based on prior research 

and my own analysis of cultural and non-cultural control samples. 
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Analysis indicated that a single feature is natural, and the other tested features are 

anthropogenic features. However, the analysis did not aid in definitely identifying specific 

human behaviors (i.e. house/occupation versus storage activities) that could have created 

the ambiguous anthropogenic features. Broadly, food storage features showed slightly 

greater enrichment levels and less overall variation than house/occupation feature samples. 

In addition, food storage features showed very low variation between one another for 

several elements (Cr, Al, Ni, K, Co, Mg, and -Fe). My analysis did indicate that between 

10 to 13 of the tested ambiguous (or indeterminate) features may be house features, and 

between four and 15 may be some form of storage feature. Analysis to identify caching of 

marine versus terrestrial resources, using the ratios of Ba/Ca, Sr/Ca and Ba/Sr, suggest that 

potentially six features may have held marine resources, while the remaining either held 

terrestrial resources or had their contents emptied prior to abandonment. 

Overall this thesis indicates that there are likely more house (7.9 to 10.2% increase) 

and food storage features (1.5 to 5.2% increase) present at the Cape Krusenstern beach 

ridge complex than previously thought. Increasing the number of house and food storage 

features suggests that the occupation history at the complex is potentially more intense than 

previously established. These results also suggest that geochemical analysis has potential 

use for feature identification at a broader landscape scale than previously performed in 

other archaeological applications of soil geochemistry. Last, this thesis shows there is 

potential in using previously collected bulk samples to gain in-depth information that can 

guide future work at the complex 
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Chapter 1 - Introduction 

Identification and interpretation of archaeological phenomena is typically based on 

visual cues and the physical presence of “something archaeological,” such as a diagnostic 

artifact, landscape modification, or structural element. Yet many archaeological features, 

i.e. the discrete archaeological deposits related to an past human behavior, lack clear 

indicators of human activity and may not have a characteristic form that provides clues to 

the feature’s origin. Often, archaeologists cannot reliably identify archaeological features 

with traditional archaeological survey techniques that are limited to the length of a shovel 

and constrained by the nature of the substrate. Feature identification is further confounded 

by the decay of organic materials and other post-depositional processes (Stein and Farrand 

2001; Wood and Johnson 1978). This makes it difficult to understand the nature of the past 

activities that created the archaeological record (Schiffer 1975, 1976, 1987). So how do we 

identify anthropogenic features and interpret the past when no clear cultural indicators are 

present?  

The goal of this thesis is to identify anthropogenic features and interpret the original 

human behaviors that contributed to feature formation at Cape Krusenstern (Figure 1-1) 

through soil geochemical analysis. I aim to identify 1) which features are natural and which 

are anthropogenic; and 2) what behaviors created the cultural features (e.g. occupation of 

houses or caching of marine versus terrestrial food resources). Geochemical analysis of 

sediments and soils is used in a variety of archaeological settings to aid in the identification 

of archaeological features and activity areas (Knudson et al. 2004; Knudson and Frink 

2010; Middleton and Price 1996; Misarti 2007). Geochemical analysis has significant 
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potential in the Arctic, where frozen soils are likely to preserve ancient fats, proteins, and 

other chemical evidence of human activities (Butler 2008; Pastor et al. 2016). Geochemical 

analysis could identify more archaeological feature types, particularly features containing 

minimal artifacts, and provide new information about feature formation processes. In 

Northwest Alaska, geochemical analysis of features could provide more information about 

on-site activities, subsistence practices, and settlement patterns.  

  

Figure 1-1. Cape Krusenstern National Monument beach ridge complex. 
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The Cape Krusenstern National Monument beach ridge complex (hereafter referred 

to as The Complex) is a series of low-lying beach ridges that contains evidence of nearly 

continuous human occupation since the formation of the landform between 5,000 to 6,000 

years ago (Anderson et al. 2018; Mason and Jordan 1993). Recent research at the Complex 

is challenging interpretations of regional settlement patterns that use the presence and 

quantity of semi-subterranean houses and food storage features as the basis for population 

estimates and indicators of increased sedentism and intensification of resource use  

(Anderson and Freeburg 2014; Anderson et al 2019; Dumond 1975; Giddings and 

Anderson 1986; Mason 1998). Radiocarbon sequences tied to the interpretation of feature 

classes indicate a more intensive and continuous occupation than previously thought 

(Anderson and Freeburg 2013, 2014; Freeburg and Anderson 2012; Anderson et al. 2018). 

For example, during the Thule period (Approx. 1200-500 years ago), there is a dramatic 

increase in the number of archaeological features at the site complex (Table 1-1: Beach 

Segment I and II) (Anderson and Freeburg 2013, 2014; Freeburg and Anderson 2012). 

Sixty percent of identified features (identified through pedestrian surface, subsurface and 

test excavations) at the site complex appear cultural in origin based on their shape (e.g. 

depressions or mounds), but investigators were unable to unequivocally classify the 

features as either cultural or natural in origin from surface characteristics and due to a lack 

of clear cultural indicators (Figure 1-2). These ambiguous features were classified as 

vegetation anomalies (vegetation anomalies 14.8%, n=240), which are regularly shaped, or 

circular, highly vegetated depressions (approx. 0.5 meters below ground surface) or 

mounds. No cultural materials were present at the surface or observed during subsurface 
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testing. If these vegetation anomalies are anthropogenic, occupation of Cape Krusenstern 

over the last 2000 years is much more intensive than previously thought. 

A second category of features, called ‘indeterminate’ features, are clearly cultural 

in origin but ambiguous enough in size, shape, or constituent artifact materials that their 

original cultural function (e.g. as houses or food storage) is not clear (n=971; indeterminate 

45.2%, n=731). These features are typically isolated depressions that contain surface or 

sub-surface artifacts but could not be classified as house or food storage features because 

they lack discernible structural elements (e.g. tunnel, side-rooms, or food storage structure) 

and/or do not fit the size/area expectations of houses or storage features (Table 1-2). It is 

likely that the indeterminate features represent additional house or food storage features. 

 Table 1-1. Frequency of Features by Class and Ridge Segment at Cape 

Krusenstern 

 

 

Beach Ridge Segment 

(Upper Limiting Date Cal. BP) 

 

Feature Class 

I 

(1310) 

II 

(2310) 

III 

(2780) 

IV 

(3210) 

V 

(3380) 

VI 

(4420) Total 

C
u

lt
u

ra
l 

F
ea

tu
re

s 

Hearth 1 15 13 33 31 8 101 

House 35 92 9 12 0 0 148 

Surface Scatter 12 18 19 34 15 5 103 

Burial  4 5 2 0 0 0 11 

Food Storage Features 95 176 7 3 1 1 283 

Indeterminate Features 168 401 110 16 19 17 731 

 Vegetation Anomalies 65 156 16 2 1 0 240 

 Total  380 863 176 100 67 31 1617 

 *Adapted from Anderson and Freeburg 2014. Upper limiting dates represent the oldest dates 

associated with occupation, younger sites do exist on older ridge segments, particularly at 

truncations of older segments by younger segments and the modern shoreline. 
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Figure 1-2. Overview photographs of representative features; house (top left), food storage 

feature (top right), indeterminate (bottom left) features, vegetation anomaly (bottom right). 

 

Interpretation of the Complex’s occupation history requires accurate identification 

of archaeological features, their original function, and better understanding of feature 

formation processes. The large proportion of unclassified indeterminate features and 

vegetation anomalies at Cape Krusenstern represents a gap in our understanding of the 

history and lives of those that inhabited the beach ridge complex. 
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Table 1-2. Feature Classifications Used in Survey of Cape Krusenstern 

This thesis investigates the archaeological nature of the numerous indeterminate 

features and vegetation anomalies observed at the Cape Krusenstern site complex through 

multi-elemental geochemical sediment analysis. My research questions are as follows: 1) 

Are the vegetation anomalies at the site complex anthropogenic or natural features? And: 

2) What behaviors created the indeterminate cultural features? My analysis occurred in two 

phases. In Phase I, I use photometric phosphates analysis to identify if soil phosphates are 

enriched from cultural occupations. All available bulk soil samples (n=151) from features 

on the first three beach ridge segments analyzed to 1) determine if vegetation anomaly is 

more likely natural or anthropogenic features, and 2) to aid in selection of samples with the 

most potential to contain archaeological residues created by past human activities. In Phase 

II, samples tested in Phase I, along with samples from representative house and food 

Feature/Sample Class Feature Description 

Control Samples taken from natural areas. Measurements reflect the natural geologic 

background of the beach ridge complex. 

Vegetation Anomaly Vegetated areas greater than 5 m2 that are different than the surrounding 

vegetation, with regular shape/appearance. May have a slight or deep 

depression, or mound, within the vegetated area (~1m in depth or height). Have 

the appearance of cultural features, but no cultural materials are found during 

subsurface testing. 

House Large surface depressions, greater than 4 m2, that may have the following 

features: multiple rooms, tunnel(s), and or associated features such as cache 

pits, surface scatters, or vertical posts. 

Food Storage Features Small surface depressions, less than 4 m2 (when unexcavated), that may be 

circular or square in shape, and are associated with a house feature or other 

features. 

Indeterminate Features Surface or subsurface features that contain cultural materials but do not fit in 

any of the other feature categories. These are often isolated features, not found 

in association with houses, activity areas, or other cultural features.  They could 

be the remains of a single house, a storage features associated with more 

ephemeral occupations.  

 *Descriptions adapted from Freeburg and Anderson 2012: Appendix 1 
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storage features, were subjected to further geochemical testing. The purpose of Phase II 

was threefold: (1) to collect and identify elemental concentrations and significant 

patterning present in the Cape Krusenstern samples, (2) to establish distinctions between 

cultural feature classes, and (3) to identify the range of human activities that created the 

indeterminate features by reclassifying them as house or food storage features. The 

behaviors that formed the features were identified using multi-elemental analysis. This 

process involved comparing soil signatures from archaeological features of 

known/interpreted function (e.g. houses and food storage features) to the soil composition 

of the indeterminate features. 

Theoretical Orientation 

In this research, I drew on behavioral archaeological theory, particularly as it is 

implemented in geoarchaeological research. Behavioral archaeology examines the 

relationships between humans, their environments, and the processes that created the 

archaeological materials we observe in the archaeological record (Schiffer 1972, 1975, 

1976; 1987). In this case, the archaeological materials are invisible anthropogenic inputs 

into sediments and soils. Behavioral archaeology complements middle range theory 

building, linking human behaviors to the archaeological record. Behavioral archaeology 

hinges on the concept that what is seen in the archaeological record is not a direct reflection 

of the past. The archaeological record is instead the result of a series of both human (c-

transforms) and natural events (n-transforms) acting on an object, feature, or cultural 

material as it transfers from its original use (systemic context) to the archaeological context 

(the archaeological record) (Schiffer 1972, 1975, 1976 1987). These transforms describe a 
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variety of ways the original context, use, function, or association of an item can be 

misinterpreted as it is observed in the archaeological record (Schiffer 1972, 1975, 1976, 

1987). This includes past behaviors such as purposeful discard, cleanout events, and raw 

material or object recycling. Additionally, natural post-depositional processes such as 

erosion, feature collapse, and freeze-thaw cycles, as well as cultural processes such as 

artifact collecting, and later site reoccupation and use may obscure how archaeological 

materials are interpreted (Schiffer 1972, 1975, 1976, 1987). 

I used behavioral archaeological theory to conduct middle range research. I 

undertook geochemical analysis of soil residues to address questions about human 

behaviors (e.g. food caching, domestic/house occupation) and the effect of natural 

processes (e.g. decay of organic materials) on the archaeological record.  My results have 

implications for the reconstruction of local and regional occupation history over the last 

2500 years. While the total number of features I analyzed is small, elucidation of the 

archaeological nature of these features advances our understanding of the occupation 

intensity at the site complex. In addition, I explored the application of a method that has 

seen only limited application in Arctic settings in a new and meaningful way. Multi-

elemental geochemical analysis in archaeological studies has generally been performed at 

a smaller scale, at the site or individual features level. These smaller scale studies focus on 

identifying spatial patterning within archaeological features or sites,  identification of site 

boundaries, prospection to guide archaeological excavations, or to link specific past human 

behaviors to elemental signatures (Rapp and Hill 2006:122-124: see also Couture et al. 

2016 and Knudsen et al. 2010). My analysis differs by using geochemistry as a method for 

feature identification at a larger landscape scale. Identifying what these features are at Cape 



 

9 

Krusenstern features could illuminate past subsistence and settlement patterns and aid in 

understanding past human behaviors and site formation processes. 

Thesis Organization 

This thesis is organized into six chapters and three appendices. The appendices 

present tables of background data as well as data resulting from the presorting and 

geochemical analysis of the bulk sediment samples. 

In Chapter 2, I review the geographic and prehistoric cultural context of 

Northwest Alaska, focusing on previous studies of coastal settlement and subsistence 

practices in northern Alaska and at Cape Krusenstern. I also review the use of soil 

geochemical studies in archaeological research with a focus on prior studies that use 

multi-elemental soil geochemistry to identify archaeological activity areas and features. 

In Chapter 3, I present my hypotheses and expectations and introduce the 

analyzed materials. I outline bulk soil sample preparation and acid digestion methods 

before discussing the photometric spot test and ICP-MS multi-elemental composition 

methods in greater depth. I conclude the chapter with a discussion of the statistical 

methods used to compare and interpret geochemical data. 

In Chapter 4, I present the results of both phases of my analysis. I highlight the 

differences between control, vegetation anomaly, indeterminate feature samples, and 

known feature categories before assessing the potential of reclassifying the vegetation 

anomaly and indeterminate features. 
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In Chapter 5, I discuss the results of the analysis. In Chapter 6, I present the 

conclusion of my research project, discuss the implications for use of ICP-MS and 

geochemical multi-elemental methods, and suggest lines of further research.  
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Chapter 2 - Background 

In this chapter I review the setting of the Cape Krusenstern beach ridge complex as 

well as the regional prehistoric cultural context of Northwest Alaska. I focus on coastal 

settlement and subsistence practices of the Thule period, including the use of house and 

food storage features. I briefly present the historical development of soil geochemical 

studies in archaeological research and examine recent use of multi-elemental plasma 

spectrometry methods in Arctic and high latitude settings. This serves as a base for using 

geochemistry as a tool to identify archaeological features, elucidate the original function, 

and illuminate the past activities that created the Cape Krusenstern features in relation to 

the theoretical framework of this research project. 

Cape Krusenstern Beach Ridge Complex Development 

Cape Krusenstern National Monument is a coastal plain with scattered brackish 

lagoons and drainages backed by bluffs and upland tussock tundra hills. The shoreline that 

forms the western and southern boundary of the Monument runs along the Chukchi Sea 

and forms the northern entrance to Kotzebue Bay. The beach ridge complex of Cape 

Krusenstern is located at the southern end of the National Monument (Figure 1-1). 

The Complex is one of the oldest and most extensive beach ridge systems of the 

region, forming shortly after eustatic sea levels stabilized in the Chukchi Sea approximately 

5000 to 6000 years ago (Anderson et al. 2018; Mason and Jordan 1993, 2002). The beach 

ridge complex is a progradational beach system comprised of sand and sandstone, chert 

and limestone gravels sourced from the erosion of bedrock cliffs and bluffs along the shore 

north of the complex (Hopkins 1977). These deposits were subsequently reworked by 
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longshore currents and mixed with near shelf sediments, a process that incorporated marine 

shell material into the sediment. As sea levels dropped, the continued seaward formation 

of new younger beaches at the active shoreline led to the initial development of barrier 

islands and spit landforms, which eventually evolved into the beach ridge complex 

(Anderson et al. 2018; Hopkins 1977). The more than 100 beach ridges at the Complex 

serve as horizontal stratigraphy linking the development of the Complex to past human 

occupations and environmental conditions (Anderson et al. 2018; Anderson and Freeburg 

2013, 2014; Freeburg and Anderson 2012). The oldest beach ridges, and the oldest human 

occupations, are located on the north side of the Complex, while younger ridges and 

occupations are found closer to the modern shoreline. The beach ridge segments serve as a 

proxy for past coastal processes and provide a temporal framework for human occupation 

of the Complex. Early development of the beach ridge complex appears to have been 

relatively rapid and consistent between 5000 and 3000 cal. BP. This is indicated by the 

broad form and low elevation of ridges on segments IV and V, suggesting a period of 

relatively stable climate; sediment supply to the complex was potentially low during this 

period. After 2100 cal. BP numerous truncations and orientation shifts in the beach ridges 

suggest a period of increased climatic variability (Anderson et al. 2018; Mason and Ludwig 

1990; Mason et al. 1995). The younger beach ridges are smaller in width, with more 

variable form, and have a higher maximum elevation. The difference in ridge form may be 

indicative of increased sediment loads and more intensive coastal processes during the later 

periods (Anderson et al. 2018).  
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Current Interpretation of Coastal Hunter-Gatherer Settlement Patterns in Northwest 

Alaska  

Early research at Cape Krusenstern, conducted by J. Louis Giddings and Douglas 

D. Anderson, established that people occupied the Complex shortly after its formation and 

continued to utilize the area into the present day (Giddings and Anderson 1986). The 

earliest preserved human use of Arctic Alaskan coastal areas (4500 BP to 2800 BP) was 

limited to seasonal use by small, highly mobile groups, with a broad subsistence base. More 

intensive use of coastal environments, derived from the presence of higher investment 

semi-subterranean house features and larger settlements, is evident in northern Alaska 

starting around 2800 BP. Beginning approximately 2000 years ago, dramatic increases in 

population, settlement size, and the number of semi-subterranean houses, plus the 

expansion of social complexity, are apparent around the region(Anderson 1984; Anderson 

and Freeburg 2014; Anderson et al. 2018; Freeburg and Anderson 2012; Giddings and 

Anderson 1986; Mason 1998). Around 1350 BP, the Birnirk people, predecessors to the 

Thule peoples, appear along the coasts of the northern Arctic from the Bering Strait to the 

North Slope. The presence of whale bone in faunal assemblages (i.e. its use in house 

structures and other cultural materials) is interpreted as evidence of whaling during this 

period (Mason 2000; Mason and Barber 2003). The development of the Thule from the 

Birnirk occurred sometime between 1200-950 years BP (Anderson 1984; Giddings and 

Anderson 1986; Mason 2000). As Thule culture developed, Thule people spread rapidly 

across the North American Arctic, bringing with them a specialized maritime hunting 

technology (e.g. multicomponent harpoons) and an increased focus on marine resource use 

(Anderson 1984; Giddings and Anderson 1986). Considerable variability in technology, 
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subsistence practices, and social complexity is represented in larger multi-family houses 

and community structures occurring throughout this period (Anderson 1984; Giddings and 

Anderson 1986). 

Cape Krusenstern Features and Population Dynamics 

At Cape Krusenstern, there is an increase in anthropogenic archaeological features 

during the period between 1750 BP and 1150 BP, including semi-subterranean houses and 

food storage features. This increase in the number of features suggests intensified 

occupation, population increases, and specialized food processing and storage activities at 

the beach ridge complex (Anderson and Freeburg 2013, 2014; Anderson et. al 2018; 

Freeburg and Anderson 2012). The Thule period is marked by three major declines in 

population: approximately 1250-1000 BP, 850-750 BP, and 750-450 BP. These declines 

are identified by a relative lack and or lower quantity of features dating to those periods 

(Table 1-1) (see Figure 8: Anderson et al. 2019; Anderson and Freeburg 2014; Anderson 

et al. 2018; Freeburg and Anderson 2012; Giddings and Anderson 1986). Giddings and 

Anderson (1986) note that Thule peoples continued a semi-sedentary lifestyle and shifted 

their subsistence practices from marine mammal hunting to more intensive fishing. Some 

researchers have attributed these decreases in settlement sizes and occupational intensity 

to the dispersion of Thule peoples around the coast and migrations into the interior as 

responses to increasing population pressures and resource competition (Gerlach and Mason 

1992; Mason 1998; Mason and Barber 2003). Starting 500 years ago, the archaeological 

record indicates a continued decrease in settlement size and further dispersion of 
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occupations into previously unoccupied areas of the coast and interior river valleys 

(Anderson et al. 2019; Junge 2017). 

In Northwest Alaska, the presence and quantities of semi-subterranean houses and 

food storage features are used as the basis of population estimates and indicators of 

increased sedentism and intensification of resource use ( Anderson and Freeburg 2014; 

Anderson et al 2019; Dumond 1975; Giddings and Anderson 1986; Mason 1998); this is 

similar to hunter-gatherer practices in other parts of the world (.e.g Ames 1994). Measures 

of occupation intensity have relied on the density of archaeological features, such as house 

and storage features, to establish estimates of population. House features in particular, 

paired with ethnographically informed assumptions about the number of occupants per 

house (Burch 1984:316-317, 1998:20), are used as general baselines for population 

estimates (e.g. Mason 1998). Additionally, archaeological features such as storage features 

and evidence of resource caching and marine resource use are linked in many cases to the 

development of larger populations, increased sedentism, technological complexity, and in 

some cases, the emergence of social complexity (Ames 1994; Anderson and Freeburg 

2014; Erlandson 2001; Fitzhugh 2003). 

While feature counts are a primary source of archaeological information, using 

them to estimate population can be problematic for numerous reasons (Chamberlain 

2006:126-132). Namely, it is hard to say without extensive supporting excavations and 

analysis such as radiocarbon dating whether a house or series of houses was occupied at 

the same time, consecutively by a single family returning yearly, or concurrently by several 

families (Hassan 1978; Ropper 1979). Additionally, the use of storage feature quantities 

alone is problematic as many storage features may be associated with a specific/singular 
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occupation. This is compounded by the fact that multiple storage feature types (i.e. for 

different resources) were likely in use at a single time. Therefore, it is important that 

archaeologists understand the context of feature types present in the archaeological record 

(Chamberlain 2006: 126-132; Schiffer 1976). Geochemistry can provide information 

regarding archaeological feature types in order to develop the context necessary to 

accurately interpret their function, as well as guide future research to date them and identify 

similar features. The identification of more features and their function can provide 

additional information to better understand the cause of declines in population at the 

Complex. 

Thule Sites: Houses, Storage Features, and Activity Areas 

Arctic semi-subterranean house structures have been well documented both 

ethnographically and archaeologically since the early 20th century. Houses are highly 

variable in form at a regional level. Construction materials and internal arrangement are 

tied to distinct cultural groups and periods, as well as representing social practices or 

institutions (e.g. whaling crews, increasing social complexity), and/or different functional 

or seasonal uses of houses (Darwent et al. 2013; Dussault 2014; Giddings and Anderson 

1986; McGhee 1984; Norman et al. 2017; Park 1988). Regional work including at the 

Complex and Cape Espenberg, located southwest of the Complex across Kotzebue Sound 

(Figure 1-1), has helped shed light on the internal arrangement and use of space in semi-

subterranean houses and, more specifically, those of the Thule house (Braymer-Hayes 

2018; Norman et al. 2017; Norman 2018). The following discussion serves to describe the 



 

17 

form and variety of activities performed in Arctic semi-subterranean houses, storage 

features, and activity areas that may be reflected in geochemical residues. 

The typical Thule winter house form consists of a single main room where most 

daily activities would have taken place. The main room is accessed and protected from the 

outside by way of a long sunken entrance tunnel that served as a cold trap. Separate rooms 

or alcoves, often thought to be cooking rooms or kitchen areas, are common features, 

especially in later Thule houses. Kitchen areas are generally well defined by midden 

deposits associated with burnt marine mammal oils, crushed bone, and charcoal. Internal 

central hearths were not a common feature of early Thule houses, in which lighting and 

heat primarily came from the use of local ceramic or soapstone oil lamps (Norman et al. 

2017; Park 1988, 1999). The sides of many houses contain elevated split log benches along 

the internal walls of the main room. These benches often functioned as sleeping platforms, 

lamp stands, as well as occasional internal storage. Structural architecture of the houses is 

primarily driftwood log posts and/or whale bone, and floors are formed from split wood 

logs (Alix 2005, 2016). The use of both skins and sods as insulating layers to form the 

major exterior wall and roof segments has been reported (Alix 2005, 2016; Park 1988, 

1999). 

Layers of cultural deposits have been found in the areas of tunnels, suggesting the 

deposition of internal cleaning episodes (Norman et al. 2017; Park 1988, 1999). Cemented 

sediments are often observed below the floorboards and less often reported at various 

places around the perimeter of the main room. The cementation is believed to be caused by 

the conglomeration of sediments by marine mammal oils, either from spillage of oil lamps 
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or, as has been suggested, as potentially intentional in some areas, likely serving as a means 

of sealing the sediments of the perimeter (Norman et al. 2017; Norman 2018; Park 1988). 

As discussed previously, Thule culture is characterized as having a highly adept 

maritime focused subsistence, with technology adapted for intensive hunting of marine 

mammals, the associated environmental conditions, and high group mobility. The highly 

specialized marine mammal hunting technology (e.g. composite harpoons, skin boats and 

skin floats)  allowed people to take larger game, providing greater quantities of resources 

(Giddings and Anderson 1986; Mason and Barber 2003). This necessitated methods of 

processing and food dispersion to save food for later use without spoiling (Giddings and 

Anderson 1986; Park 1988; Sheehan 1995). Ethnographically, the use of external cache 

pits (here, food storage features) on the coast is generally tied to seal and marine mammal 

products after harvesting and processing. Often the primary harvest and processing of large 

marine mammals occurred in spring and summer on active beaches with only flesh, 

blubber, skin, and limited bones being taken to inshore locations for hang drying and 

preservation for winter consumption (Giddings and Anderson 1986:319; Park; 1988; 

1999). Blubber was often placed in seal skin bags, or pokes, and dried meats were similarly 

stored in skin bags and placed in stone or dug out pit caches (Burch 1998:53; Park 1988, 

1999). 

The construction of cache pits has seen relatively limited research in Arctic studies. 

This is likely due to their simple construction which can lack architectural elements. 

Ethnographically, caches are constructed as stone or wood dug-out pits, and often lined 

with vegetation such as seaweeds and capped by rocks or log covers to prevent predator 

scavenging (Burch 1998:53, 73, 298; Entwistle 2007; Park 1988, 1999). Above-ground 
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wood built caches are also noted at village locations (Burch 1998:185). The location of the 

pits in relation to living structures has also seen limited research in archaeology, though 

ethnographic accounts indicate caches would be placed near the site of processing (similar 

to interior terrestrial mammal meat processing) or adjacent to village and house locations 

(Park 1988, 1999). However, evidence of processing or temporary storage of foods taken 

in winter, either on the ice or when covered by snow, would not likely preserve. 

Geochemical analysis of soil residues may elucidate the subsistence practices of the Thule 

people in relation to the development and use of food resource storage pits. 

Geochemical Analysis of Soils in Arctic or Subarctic Settings as a Tool for 

Identification of Archaeological Features 

Above I discuss Thule house construction, subsistence, and resource caching as 

discrete archaeological features that may be found in the archaeological record and are 

suggestive of past human behaviors. However, decomposition and use may obscure or 

remove the visible traces of these features and activities from the archaeological record. 

These past behaviors have implications for how these features may be expressed in the 

geochemical archaeological record. 

Soil geochemistry has been utilized as a tool in archaeological investigation since 

the early 20th century (See Arrhenius 1929; 1962; and 1954: Lorch 1939). Early research 

observed increased levels of calcium (Ca), carbon (C), nitrogen (N), and phosphorus (P) in 

soils as indicators of past human presence at those locations. These elements are tied to the 

human deposition and decomposition of organic materials and refuse such as Ca from bone 

and shell, C from charcoal and general decomposition of organic materials for N and P. 
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Phosphate analysis became the dominant method, as anthropogenic or organic P is 

recognized as being easily separated from naturally occurring soil phosphorous (Barba 

2007; Eidt 1977; Heizer and Cook 1965; Lutz 1951; Middleton and Price 1996; Rypkema 

et al. 2007). Numerous test methods exist for in-field and laboratory geochemical elemental 

analysis. However, many are purely qualitative, possess limited precision, focus on single 

elements and minerals, or are primarily utilized to guide archaeological prospection and 

excavations (Eidt 1977; Holliday and Gartner 2007; Middleton and Price 1996). With the 

advent of mass spectrometry (the sorting of ions of elements based on their mass to charge 

ratio), the field of archaeological geochemistry has turned to using multiple elements as 

indicators of human presence. Inductively coupled plasma mass spectrometry (ICP-MS) 

and inductively coupled plasma atomic emission spectrometry (ICP-AES) are the most 

common methods for soil geochemical analysis because they can analyze multiple 

elements and provide reliable quantitative data for analysis at a relatively low cost. 

Research utilizing multi-element analytical methods is increasing in the region and 

improving our understanding of how anthropogenic activities influence soils. 

Numerous archaeological and ethnoarchaeological geochemical analyses have 

established that geochemical analysis works well in Arctic soil depositional environments 

(Buonasera et al. 2015; Couture et al. 2016; Hoffman 2002; Knudson et al. 2004; Knudson 

and Frink 2010; Lutz 1951). More specifically, many studies have provided information 

about potential sources of elemental soil inputs (Butler 2008; Goffer 2007; Heizer and 

Cook 1965; Misarti 2007; Oonk et al 2009; Wells 2004a). These studies established that in 

addition to P and Ca, other elements including sodium (Na), potassium (K), aluminum (Al), 

manganese (Mn), magnesium (Mg), barium (Ba), strontium (Sr), titanium (Ti), zinc (Zn), 
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and iron (Fe) often appear in either elevated or depleted concentrations as a result of 

specific human activities (Table 2-1). In particular, Misarti et al. (2011) found significant 

distinctions between anthropogenic sediments and natural sediments in the concentrations 

of Fe, Ti, P, Sr, and Zn levels from two Aleutian Islands archaeological sites. Statistical 

analysis of the element concentrations showed house pits and midden deposits were easily 

distinguished from each other and from other “on site” soils (Misarti et al. 2011). 

Geochemical analysis has great potential to identify the types of signatures that may 

characterize Arctic house features. Couture et al. (2016) used soil geochemical analysis 

and micromorphology to study spatial patterning of 18th century Inuit houses in northern 

Labrador. The elemental enrichment patterning  indicated the influence of past behaviors 

and activities on specific locations within houses (Table 2-1). Specifically, floors and 

entrance tunnels showed similar enrichments of the same elements and compounds (P, Sr, 

and CaO), while sleeping platforms had unique signatures with additional enrichment of 

organic Ba and Na2O. Marine mammal oil lamp maintenance was tied to the enrichment 

of S and Zn present on lamp stands or alcoves. Overall, this study shows the potential of 

identifying internal spatial patterning from geochemical analysis. Statistically, however, 

the distinctions were generally only clear in two of the houses. The incongruence seen 

between houses may be indicate depositional processes in the systemic context, such as the 

mixing of deposits from different areas from multiple cleaning events. 
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Similar to houses, the construction and use of food storage features for caching, and 

food processing areas provides clues to their probable geochemical expression. The 

research of Kelly Knudson, Liam Frink, and others (2004; 2010) to identify the 

geochemical signatures of anthropogenic activities and food processing can inform us on 

the possible elements that may be elevated by the type of food resource being processed or 

Table 2-1. Human Activities and Inferred Elemental Expressions in Arctic Soil 

Human Activities Elevated Elements  Depleted Elements  

General waste, decomposition    

Bone and organic matter P, N, Mg, Na, Ca  Fe, Mn 

Fish bone and bird bone Na, Ca, Mg  

Marine organic materials Sr, Zn  Ba  

Dung Ca Cr, Al, Pb 

Heating of rocks Na, Ca, Mg 
 

Waste, and wood ash K, Mg 
 

Marine shell Ca, P  

 House features:   

Entrance tunnel P, Ca, and Sr  

Floor Ca, P, S, Sr, Zn, Cu, Pb  

Sleeping platform Ba, Na, K  Ti, Fe, Mn, Mg, V 

Lamp stand  Ba, S, Zn Fe, V 

Caches Cu, Pb  

Kitchen areas Na, K, P, Ca, Mg  Low metals  

Food preparation Ca, Sr  
 

Ovens Ba, Fe, Na   

Hearths (internal & external) P, K, Al, Mg, Ti   

Other Areas:  
 

Fish processing P, Ca, K, Mg, Na   

Kiln areas P, Ca, K, Mg   

Lithic production/natural soils Fe, Ti, Al,  
 

Burial contexts 
 

Fe, Al, K  

Compiled from Knudson 2004, 2001; adapted from Couture et al. 2016; Misarti et al. 2011; Villagran et 

al. 2013. 
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stored. Using ICP-AES, they found elevated levels of Ca, P, Na, and Sr in soils from inside 

the boundaries of known fish drying racks. The elevated elements are attributed to the 

decay of bones and accumulated oily drippings in the soil over the use life of the drying 

rack (Knudson et al. 2004). Additional ethnoarchaeological contexts of herring processing 

camps and activity areas on Nelson Island in western Alaska were analyzed using ICP-MS 

(Knudson and Frink 2010). The analysis indicated similar elevation levels of Na, Mg, Mn, 

Al, P, K, Fe, cobalt (Co), copper (Cu), and lead (Pb) in the tested features. Ratios of Ba/Ca 

and Sr/Ca concentrations are noted as depleted in fish processing areas (Knudson and Frink 

2010; Knudson et al. 2004). These element ratios are used as indicators for marine 

influence on archaeological soils (Burton and Price 1990; 1999; Knudson et al. 2004; 

Knudson and Frink 2010). Ratios of these elements are inversely tied to trophic levels, 

decreasing as trophic levels increase (Burton and Price 1999; Knudson and Frink 2010). 

Maschner et al. (2010:71-77) had similar results with multi-elemental geochemical 

analysis on soils from two archaeological sites along the Sapsuk River in western Alaska. 

Couture et al. (2016) similarly found that caches were enriched in Cu and Pb. 

Geochemical Analysis of Soils as a Tool for Identification of Marine and Terrestrial 

Food Resources 

Work outside of Alaskan archaeology has also contributed to our interpretations of 

the elemental inputs that various animal types have on archaeological soils and sediments. 

Villigran et al. (2013) conducted multi-elemental geochemical analysis alongside micro-

morphological and fatty acid analysis of sediments from two sealing structures in 

Antarctica. The authors found elevated levels of P2O5, CaO, Zn, and Cl and depleted levels 
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of SiO, Al2O3, and Fe2O3 in a combustion feature. The elevated values are attributed to the 

presence of seal remains, including burnt seal bone and charred material, as Cl is elevated 

in seal soft tissue. Villigran et al.’s (2013) interpretations of soil element and mineral 

composition were informed by food and nutritional sciences research showing that the 

blubber and meat of Greenlandic harp (Pagophilus, or Phoca, groenlandica) and hooded 

seals (Cystophora cristata) have high values of dietary minerals (e.g. major elements Ca, 

P, K, Na, and Mg; and trace elements S, Fe, Cl, Co, Cu, Zn, Mn, molybdenum (Mo), iodine 

(I), and selenium (Se)), though Ca and Fe are particularly high (Synowiecki 1993; 

Brunborg et al. 2006). Similar values of Ca, Fe, Zn, and Mg are found in other marine 

mammal species important to western Arctic Alaskan diets, such as bearded seals 

(Erignathus barbatus), ringed seals (Pusa hispida), and walrus (Odobenus rosmarus) 

(Kuhnlein et al. 2002). Additionally, beluga (Delphinapterus leucas) and narwhal 

(Monodon monoceros) show little elemental distinction between each other and from other 

marine mammals. However, high Se values are observed in raw beluga and narwhal 

muktuk, as well as walrus meat (Kuhnlein et al. 2002). Villagran’s study also found 

elevated levels of sulfur (S) in samples associated with fur and skin materials in the 

sediment matrix. This is corroborated by Gillespie and Frenkel (1974), who indicated that 

seal fur keratin is high in S compounds. Villigran et al. (2013) also noted high Fe levels in 

sediments with high fatty acid content which is interpreted as a signature for seal blood 

(Brunborg et al. 2006; Shahidi and Synowiecki 1993; Yamamotto, 1987). This research 

suggests that Cl, S, and Fe may serve as indicators for food storage feature contents as 

these are where items such as seal skin pokes may have been stored. Additionally, as 

marine mammal skin use was ubiquitous across the Arctic (Burch 1998), the signature 
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could potentially be linked to other aspects of archaeological features such as roof 

coverings or bedding materials in houses. 

While there is considerable nutritional research on seals, less information is 

available for other important food sources, such as terrestrial mammals.  A study by Butler 

et al. (2013) showed elevated concentrations of K2O, MgO, Fe2O3, Sr, Sc, Y, Ca, Ni, and 

Pb in areas where open air animal processing is thought to have occurred. This research 

from the central Canadian Arctic is corroborated by the use of fourier transform infrared 

spectroscopy (FTIR), which showed the presence of trans-fats associated with ruminant 

tissues, interpreted to be caribou, preserved in the sediments. Kuhnlein et al.’s (2002) arctic 

dietary research also included many Arctic terrestrial mammals (see Table 3 in Kuhnlein 

et al. 2002:554-557). The authors showed that mineral compositions in terrestrial mammals 

are generally low (except in P, Mn, and K, which are similar to other animals) when 

compared to marine mammals. 

Non-Human Influences and Natural Process on Sediment Elemental Concentrations 

There is considerable research that establishes humans as the agent of elemental 

enrichment in sediments as a result of the deposition and decomposition of organic 

materials, including bodily wastes (Burton and Price 1990; Couture et al. 2016; Lutz 1951; 

Misarti 2007). However, there is little research to establish if a distinction between human 

and non-human enrichment is possible. That is, do animals (such as Arctic fox {Vulpes 

lagopus}) create different soil signatures than humans, and can this be used to identify 

anthropogenic versus natural features on the landscape? This question is of interest in the 

Arctic where sediment accumulation and soil formation are slow, and animals like the 
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Arctic fox and ground squirrel (Spermophilus parryii), which build dens, can create 

features on the landscape that mound and have high vegetative potential like those of past 

human occupations. 

Some researchers, such as Misarti et al. (2011), cite sediment and plant nutritional 

research that suggests that the presence of fox on landscapes results in significant decreases 

in N and P availability in natural soils (Croll et al. 2005; Maron et al. 2006), though 

Misarti’s results did not actually show the predicted decrease in N and P. The assumption 

made by the cited research (Croll et al. 2005; Maron et al. 2006) is reliant upon a multi-

trophic level relationship between fox predation and marine birds, whose excrement is the 

major supply of the soil nutrients. Unfortunately, this is not a direct measure of fox 

influence on landscapes, and presumably a human presence on a landscape could have the 

same effect. Gharajehdaghipour et al. (2016) specifically tested the nutrient availability of 

Arctic fox dens and showed dramatic increases of inorganic N and P. These increases, 

however, are highly variable and fluctuate seasonally, presumably due to the intensity of 

litter/pup rearing and the intensity of urine, feces, and food waste accumulation. This 

research has implications for interpreting features based purely on common soil nutrient 

minerals such as N and P, where burrowing animals may have affected or contributed to 

the geochemical signature. 

Limitations of Geochemical Analysis and Identifying Features and Function 

Geochemical analysis has two major limitations relevant to this study. First, while 

elemental enrichment and depletion levels are useful for detecting anthropogenic 

phenomena, elemental data alone does not provide a complete picture of the past, and 
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accompanying analyses (i.e. micromorphology, detailed excavation) are required to fully 

contextualize geochemical findings for meaningful archaeological interpretation. This 

limits the level at which interpretation can be made in identifying the specific past event, 

behavior, or item that created the signature. While research suggests that distinctions 

between features types (e.g. house versus caches) is possible, geochemical studies alone 

are not sufficient to determine the specific species people were processing or storing in 

features.  However, in conjunction with other data on cultural behavior (e.g. feature form) 

and analyses (e.g. aDNA, or soil lipids) it is possible to generate more broad information 

regarding food contents as marine versus terrestrial mammal use (Knudsen et al. 2004; 

Knudson and Frink 2010), or internal spatial distinctions (Couture et al. 2016); this is 

minimally a greater level of detail than what could be said with limited excavation in 

features where physical materials (i.e. bone or structural materials) have not preserved. 

Second, this limitation is further compounded by the need for a deep understanding 

on the effects that weathering and other post-depositional processes such as diagenesis, 

cryoturbation, etc. can have on the potential chemical properties of sediments and soils. 

This understanding is necessary to account for the observations and interpretations of 

elemental concentrations. This limitation is more easily overcome by understanding the 

geochemistry of local native sediments and having a robust set of natural non-cultural 

control samples provides a baseline to asses any potential affect that post depositional and 

or weathering processes may have. 



 

28 

Chapter 3 - Materials and Methods 

In Chapter 3 I discuss the materials and methods used in this study. First, I present 

the hypothesis and expectations of my research project. I then consider the Cape 

Krusenstern bulk sample collections and the sample selection process. I introduce the 

methods I use for bulk soil sample preparation and acid digestion methods. I then discuss 

the Phase I soil spot tests and Phase II ICP-MS elemental composition methods. I conclude 

with a discussion of the statistical methods I use to compare and interpret the geochemical 

data. 

Hypothesis and Expectations 

My research addresses two question: 1) Are the vegetation anomalies at the site 

complex natural or anthropogenic features? And: 2) What behaviors created the 

indeterminate cultural features? Addressing these questions required a two-phase approach 

(Table 3-1). 

The primary goal of Phase I was to determine if the vast number of vegetation 

anomaly features present at the complex actually represent a large unidentified 

anthropogenic component of the archaeological record. Unfortunately, as the vegetation 

anomalies did not contain archaeological materials, only a single feature was sampled in 

the field. I tested multiple samples from Vegetation Anomaly 3624B (samples; CAKR 

14172-14176) to assess if the vegetation anomaly feature class are likely a natural or 

cultural feature. To do this, I compared vegetation anomaly samples to natural control 

samples and to samples from known cultural features (specifically houses).  Phase I had an 

additional implication for Phase II of my analysis; that is, identifying which samples had 
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the highest concentrations of phosphates, and thus the greatest potential to contain 

archaeological residues. I use these samples in Phase II. 

Null Hypothesis (H-10): If the level of phosphorus in the vegetation anomaly samples are 

not elevated, or are at similar concentrations in comparison to control samples, then 

Vegetation Anomaly 3624B is likely a natural feature. 

Hypothesis 1 (H-11): If levels of phosphorous in the vegetation anomaly samples are a) 

observed as elevated in comparison to control samples and b) at similar levels to house and 

food storage features, Vegetation Anomaly 3624B is likely anthropogenic and will be 

reclassified as an indeterminate feature. Samples from this feature are used regardless of 

phosphate testing results for further analysis in Phase II testing Hypothesis 2. 

Table 3-1. Hypotheses, Expectations, and Analytical Methods 

Hypothesis Description Expectation Analysis Method 

H-10: Vegetation anomaly is a 

natural feature 

Similar phosphate levels to 

control samples 

Phosphates Spot 

tests 

H-11: Vegetation anomaly is 

anthropogenic 

Elevated phosphate levels 

indicate anthropogenic 

Phosphate spot tests 

H-20: House and food storage 

features are indistinguishable. 

Indistinct elemental 

concentrations 

ICP-MS 

H-21: House and food storage 

features have distinct 

geochemical signatures 

Distinct elemental 

concentrations 

ICP-MS 

2a: Indeterminate features are 

houses 

Element concentrations 

group with houses 

ICP-MS 

2b: Indeterminate features are 

food storage features 

Element concentrations 

group with food storage 

features 

ICP-MS 

H-30: Food storage features have 

indistinguishable geochemical 

signatures 

Distinct elemental grouping 

within food storage features 

ICP-MS 

H-31: Food storage features have 

multiple distinct geochemical 

signatures 

Distinct elemental grouping 

within food storage features 

ICP-MS 
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The goal of the second phase of my analysis was to identify the past behaviors that 

created the indeterminate features, i.e. whether the indeterminate features were occupation 

features (i.e. houses) or food caching features (i.e. food storage features). In Phase II, I 

establish that differences between house and food storage features exists (H-21 and H-20), 

and I then compare the elemental concentrations of the indeterminate features to the 

elemental concentrations of control samples and features of known function (house and 

food storage features). 

Null Hypothesis (H-20): The cultural features will not have distinctions in elemental 

composition based on use and past activities that created them. The cultural features are 

not geochemically distinguishable between each other and the elemental signatures are 

reflective of general anthropogenic activities. I compare house and food storage feature 

samples to evaluate this hypothesis. 

Hypothesis 2 (H-21): The cultural features will have distinctions in elemental composition 

based on use and past activities that created them. The house and food storage features are 

geochemically distinguishable between each other and the elemental signatures are 

reflective of the anthropogenic activities that created them. Indeterminate features are 

similar to house or food storage feature signatures. I compare cultural feature samples to 

evaluate this hypothesis and explore the nature of the indeterminate features by the sub-

hypotheses below. 

Hypothesis 2a: The indeterminate features are houses. House deposits have a broad range 

of elevated or depleted elements within the soils, reflecting the wider range of daily 

activities that took place within the house structure. Specifically, food preparation and 
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consumption will elevate levels of Ca and Sr if small bones are discarded and the use of 

seal oil lamps and ash from cooking fires will elevate Ba, Fe, Na, K, P and Mg (Middleton 

and Price 1996). Decomposition of plant and animal materials such as hides and bone 

implements will elevate Ca, K, Mg, Na, and P in soils (Table 2-1; Entwistle et al. 1998; 

Entwistle et al. 2000; Middleton and Price 1996). There are a variety of potential elemental 

enrichment patterns that could be expressed in house features and the signatures of houses 

are not limited to those discussed here.  I compare indeterminate feature samples to house 

feature samples to evaluate this hypothesis. 

Hypothesis 2b: The indeterminate features are food storage features. Food storage features 

will have fewer elements at elevated or depleted levels in comparison to house features. 

This chemical composition reflects the more limited use or activities related to storage 

features in comparison to occupation features. In particular, decomposition of plant 

materials from pit linings, and animal/food material contents will elevate Ca, K, Mg, Na, 

Cu and Pb and P in as well as deplete Fe and Mn soils (Table 2-1; Entwistle 2007; 

Middleton and Price 1996). I compare indeterminate feature samples to food storage 

feature samples to evaluate this hypothesis. 

After I identify probable new food storage features, I then assess the potential of 

identifying the stored contents of the food storage features. 

Null Hypothesis 3 (H-30): If the food storage features (including reclassified 

indeterminates) do not represent distinct storage features related to the contents of that 

feature, then the geochemical signatures will be similar to each other, and no distinctions 

between the features can be made. 
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Hypothesis 3 (H-31): If the food storage features were used to store different materials, the 

specific elements that are elevated or depleted within food storage feature samples will 

reflect the contents of that feature. Fish remains have been shown to elevate Ca, P, Na, and 

Sr levels in soil, and to deplete Ba levels (Knudson and Frink 2010; Middleton and Price 

1996; Misarti et al. 2011). I compare the specific patterning between food storage feature 

samples (including reclassified indeterminate feature samples) to evaluate this hypothesis. 

Materials 

I analyze a 151-sample subset of the 230 bulk sediment samples collected from 

Cape Krusenstern between 2008 and 2010 (Freeburg and Anderson 2012). As a field crew 

member for the project in 2008 and 2009, I participated in the collection and field 

processing of these bulk samples. The bulk samples I analyze are from the first three beach 

ridge segments and represent 39 unique feature locations associated with houses (n=7 

features; 36 samples), food storage features (n=4 features; 23 samples), indeterminate 

features (n=27 features; 87 samples), and vegetation anomalies (n=1 features; 5 samples) 

from the Thule occupation of the site complex (Figure 3-1; Table 3-2; Appendix A Table 

A-1). Samples from features that were designated in the field as house and food storage 

features are used as cultural controls in this analysis. Samples came from a variety of 

contexts and features encountered during the archaeological investigations. Generally, bulk 

samples were collected from shovel tests and excavation units either in arbitrary 10 cm 

levels or natural levels when identified in the field. Not all features were sampled at the 

same regular intervals or to the same depth and some sampling occurred only in cultural 

deposits. Some samples represent replicate and or duplicate sample elevations from the 
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features; these samples are included in Phase 1 analysis to address any potential post-

collection biases introduced by splitting bulk samples (replicate) or sample collection 

location (duplicate). Control samples (n=1 locus; 8 samples) were also collected from 

presumed non-cultural deposits (areas removed from feature locations and where no 

surface or subsurface archaeological materials had been identified). Bulk samples collected 

from 2008 and 2009 were not screened in the field, while bulk samples collected in 2010 

were screened through 0.25-inch mesh in the field to reduce packing weight and to identify 

any small artifacts that were present. Additional sorting of the 2008 and 2009 collected 

materials occurred in lab to reduce the bulk, and sediment materials were separated into 

multiple size fractions down to 1mm (.039 inches). Additional control samples (n=4) were 

collected from four unique locations in the summer of 2017 by NPS archaeologist Andrew 

Tremayne. 

Table 3-2. Features and Samples used in Analysis 

  Beach Ridge Segment  

 Feature Class: 

Feature Quantity  

(Number of Samples) 

I 

 

II 

 

III 

 Total 

C
u

lt
u

ra
l 

F
ea

tu
re

s 

Houses 3 (15) 4 (21) - 7 (36) 

Food Storage Features 4 (23) - - 4 (23) 

Indeterminate Features 3 (17) 25 (68) 1(2) 28 (87) 

N
at

u
ra

l Vegetation Anomalies - 1 (5) - 1 (5) 

Controls 1 (8) 4(4) - 5 (12) 

 Total 11(63) 31(98) 1(2) 44 

(163)  
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Geochemical Methods 

The use of geochemical analysis to identify anthropogenic indicators in 

archaeological sediments has stirred much debate regarding appropriate digestion methods. 

It is possible that acid digestion procedures may be too strong and hide anthropogenic 

inputs in geologic backgrounds, or conversely too weak and unable to fully digest the 

anthropogenic inputs. Many studies attempted to address these methodological issues, 

however, there is little consensus regarding the best method to capture anthropogenic 

residues (see Knudsen and Frink 2010; Wells 2010; Wilson et al. 2006). 

One study, Wilson et al. 2006, looked at the distinction between two methods, a 

strong acid dissolution versus a five-step sequential digestion. The results of the study 

suggested that the use of weak acid digestion method could result in the loss of information 

regarding anthropogenic inputs, but the study concluded that the choice of extraction 

method is ultimately element and soil specific (Wilson et al. 2006:443). The authors 

suggest that a pseudo-total extraction method such as HNO3 strong acid digestion is a 

suitable method to identify such interactions and any issues that would warrant the use of 

element specific extraction methods. 

Despite this, a majority of archaeological chemical studies in the Arctic (see 

Knudson and Frink. 2010; Wells 2010; Wilson et al. 2006) have placed an emphasis on the 

use of weak or mild acid extraction methods, commonly an open digestion with a mixture 

of HCl. The basis of this digestion method is to digest what are believed to be more mobile 

elemental sediments and soil inputs which are assumed to reflect anthropogenic additions 

rather than fully digest geologic background signatures. This digestion method has shown 
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to give reliable results, and has been used across both ICP-AES/OES and ICP-MS. I elected 

to use this method in my analysis based on its relative simplicity of execution and for 

regional comparison. 

Phase I Method: Photometric Spot Tests 

In Phase I, I selected 151 sediment samples of the total 230 collected samples from 

the first three beach ridge segments. I selected samples from known feature classes, 

indeterminate features, and the vegetation anomaly, as well as control samples from 

independent locations presumed to be non-cultural (Appendix A; Table A-1). Controls 

were considered to be from non-cultural contexts and representative of natural sediments 

as they did not react for phosphates in Phase 1. Initial sample preparation included air 

drying as necessary for 24-48 hours before being sifted through 0.25 inch (6.35 mm), 0.125 

inch (3.175 mm), 0.078 inch (2 mm), and 0.039 inch (1 mm) graduated sieves to remove 

large constituents and identify any cultural materials (i.e. debitage, bone, wood). I use the 

fine < 1mm fraction in my analysis as sand size materials are necessary and allow for 

comparability in results to the geochemical methods I selected to use (Barba et al. 1991; 

Knudson et al. 2004; Knudson and Frink 2010; Middleton and Price 1996; Wells 2010; 

Wilson et al. 2006. The samples were then subsampled by weight as required for the soil 

composition tests (between 0.05 g and 0.20 g per sample). 

After initial sample preparation, I performed a series of simple chemical procedures 

(spot tests) to identify the presence of soil phosphates. Spot tests are an inexpensive and 

simple first step to assess anthropogenic soil inputs. These spot tests utilize methods set 

forth by Luis Barba et al. (1991). The soil phosphates test required 50 mg of the prepared 
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fine fraction (< 1mm) sample. I placed the sample on Whatman #42 filter paper and added 

a few drops of reagent A (a mixture of 35 milliliters (ml) hydrochloric acid (HCl) mixed 

with 5 g of ammonium molybdate, dissolved into 100 ml of solution with distilled water) 

to the sample. After 30 seconds I added two drops of reagent B (0.5 g of ascorbic acid in 

100 ml of distilled water) to the sample. After two minutes, I added reagent C (one-part 

sodium citrate and two-parts distilled water) to stop the reaction and set the color. The filter 

disks were then dried completely. The resulting color shows the presence and relative 

concentration of phosphorous in the sample. Low phosphorus concentrations are indicated 

by lighter, diffuse blue coloring, and high phosphorus concentrations are indicated by an 

intense dark blue color. 

I rated the dried filter disks on a five-point scale based on observed reaction 

intensity: (1) no reaction, (2) very little reaction, (3) little reaction, (4) moderate reaction, 

and (5) intense reaction (photographs of example reaction levels are presented in Appendix 

A, Figure A-1). To address potential bias of qualitative interpretation based on the 

knowledge of the samples, three volunteers visually assessed the reaction intensity on three 

separate occasions and the results were averaged to account for variation in interpretations 

of reaction intensity. 

Phase II Method: ICP-MS 

I analyzed an additional subsample (n=44 samples) of sediment from samples with 

the highest level of phosphate intensity identified in the geochemical analysis of Phase I. I 

also included samples that showed small, very small, or no reactions in Phase II of my 

analysis if they were the only samples from a feature. Phase II geochemical analysis was 
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performed at Portland State University’s Trace Element Analytical Laboratory using an 

Agilent 7900 quadrupole ICP-MS to determine elemental concentrations of sample digests. 

I chose to use weak or mild acid extraction methods for this analysis (See Knudson 

et al. 2004; Knudson and Frink 2010; Middleton and Price 1996; Wells 2010; Wilson et al. 

2006). This allowed for consistency and regional comparability of results. Specifically, 

using an OHOUS Scout Pro SP202 digital balance with .01 g readability, I placed a 

subsample of 0.2 g ± .01g in 100 ml virgin polypropylene digestion vials that had been 

cleaned in 5% nitric acid bath and rinsed using deionized water. I added 20 ml of 1 Molarity 

HCl (1M HCl) acid (made from Fisher Chemical Optima grade high purity acid with purity 

levels in parts per trillion) to the digestion vessel and loosely placed caps to allow for 

ventilation during digestion. Samples were allowed to digest for two weeks at room 

temperature. 

I then filtered the digested samples into clean sample vials and diluted the samples 

to 50 ml (± 0.5 ml) with deionized water to be within instrumentation limits (< 3% HCl). 

Initially, I diluted 1 ml aliquots of digested samples into 9 ml of dilution fluid for analysis 

. Some element concentrations were too high for the available standards, so I diluted an 

additional set of half milliliter (0.5 ml) aliquots of the digested samples into 9.5 ml of 

dilution fluid and reanalyzed for Al, P, S, K, and Ca. 

Calibration and Validation 

The instrument was calibrated with external standards (concentrations ranging from 

0.1 ppb to 5,000 ppb) prepared from NIST-traceable commercial stock standards(Inorganic 

Ventures IV-ICPMS-71A; Inorganic Ventures IV-ICPMS-27A SPEX CL-ICV-1) in 
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matrix matched dilution fluid. Analytical accuracy was verified using verification 

standards prepared from the available commercial stock solutions. Precision (accounting 

for digestion and analysis) was assessed by preparing and analyzing duplicate samples on 

one of every ten samples. A certified reference material (CRM) (Sigma Aldrich Trace 

Metals Sand 1; CRM 048-50g lot#LRAB1604) was chosen as a suitable material given the 

similarity in sediment matrix to the Krusenstern sediment samples and replicate house and 

food storage features was digested and analyzed as a sample to confirm element recoveries 

and reproducibility. Instrument drift was accounted for by re-analyzing select standards at 

the midpoint and end of the run. 

The concentration of analyte elements was determined using calibration curves 

built from a linear regression across the expected concentration range of external standards 

with the measured intensities; y = ax + b, where y is the analyte intensity (CPS), a is the 

slope of the line, x is the predicted analyte concentration, and b is the y-axis intercept. 

Calibration curves with correlation coefficient (R2) values greater than 0.995 were 

achieved by either forcing the regression through the intercept or removing select internal 

standards. All tested sample concentrations were below the highest available standard 

concentration. Assessing of the validity of the collected data set was performed by 

examining the parameters of the linear regression including recovery of standards and R2 

values. I corrected measured concentration values for dilution levels and sample size to get 

the ppb concentrations of each analyte element in the digest CRM sample by multiplying 

the calculated concentration by total dilution level (50 ml) and dividing by the sample 

weight and analyzed volume (10 ml) for each sample. 
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Statistical Methods 

While the machine provides concentrations of an element in a sample as analyzed, 

absolute concentrations are not of primary interest as individual element concentrations do 

not tend to distinguish cultural from natural deposits (Knudson and Frink 2010; Wells 

2004b; Wells et al. 2007). It is the relative concentrations of the elements and elemental 

ratios from features in comparison to control samples and samples from known feature 

classes that are important for drawing conclusions from an analysis (Wells 2004b; Wells 

et al. 2007). The concentration data dilution level corrections, and statistical analyses were 

performed using Microsoft Excel and IBM’s SPSS (Statistical package for the social 

sciences). I used statistical analyses to identify significant elements, and to understand how 

groupings of those elements may represent archaeological features. 

Natural abundances of elements tend to not be normally distributed, but rather 

skewed to the positive (Ahrens 1965; Burton and Simon 1993). To address this issue, I 

normalized the concentration data using a base 10 logarithmic transformation (Log10) prior 

to performing the statistical analyses described below, and all references to concentration 

in the document are to the converted Log10 ppb concentrations. This type of transformation 

is commonly used for its simplicity in displaying the data and in data analysis (Burton and 

Simon 1993; Drennan 1996). The following descriptions provide a basic concept of the 

statistical analysis I use in this thesis. 

I first gathered descriptive statistics to summarize and identify patterns in the 

concentration data. Descriptive statistics include measures of central tendency (e.g. mean 

and the range of the data set such as minimum, maximum, and standard deviations) of each 
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analyte element and feature class (Drennan 1996:17-20;27-29). I then performed several 

analyses of variance (ANOVA) tests for each analyte element concentration by feature 

class. ANOVA is used to establish whether significant variation between samples exists 

(Drennan 1996:171-186) for a given analyte element. The ANOVA test assumes the null 

hypothesis that the mean concentration of the independent variable (here, feature class) is 

statistically the same or similar for each analyte element (the dependent variable), and an 

alternative hypothesis that the mean of at least a single population (feature class) is 

dissimilar. Comparison of element concentrations found in indeterminate, vegetation 

anomaly, and house features to the element concentrations of the control samples is 

important for establishing that distinctions exist between anthropogenic and natural inputs 

in the data set. Concentrations in elements differing significantly from the control samples 

are likely generated from human activities. 

While ANOVA identifies whether significant variation exists in a data set, it does 

not identify specifically where the variation occurs. To address this, I used a series of post-

hoc t-tests assuming equal variance to identify the source of variance between feature 

categories, and a Bonferroni correction to the significance value (Corrected p values are 

derived by dividing the original α-value by the number of analyses on the dependent 

variable). The Bonferroni correction is a multiple-comparison correction to the confidence 

interval of a statistical analysis. It is used when several dependent or independent statistical 

tests are being performed simultaneously and provides a more accurate assessment of the 

significance of an individual test (Weisstein 2018). 

I performed a variety of multivariate statistical analyses including principal 

component and Discriminant function analysis. I use the principal component analysis 
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(PCA) to discover variation in the data set without prior grouping of feature classes. 

Principal component analysis is a dimension reduction or data compression analysis, 

commonly used in archaeological geochemistry. Principal component analysis identifies 

the components (here, elements) that are responsible for the most variance in the entire 

data set, and thus most likely suitable for distinguishing the nature of the features. These 

principal components can then be used to interpret the sources and nature of the variation. 

This is done through examining the patterning of the elemental loadings and factor scores 

that distinguish each principal component as well as the relative variance explained by each 

sample. Components with Eigenvalues greater than one are selected for analysis and 

displayed using a direct Obelimin rotation which rotates the factor axis at an oblique angle 

(as opposed to orthogonal angle) to create a more simplistic output for interpretation. 

Oblique rotations allow for factors to be correlated but does not force the factors to be 

uncorrelated as an orthogonal rotation does. Additionally, if the data is not correlated the 

outputs are nearly orthogonal (Brown 2009). This is advantageous for multi-elemental 

analysis as elemental loadings (what defines a factor) may be related to many 

archaeological behaviors (the interpretation of a factor) that have a similar source for an 

element enrichment and would potentially be represented by correlation between factors. 

It must be noted, however, that once a principal component is identified, there is no 

assurance that the source of variation can be identified, as this relies primarily on the 

assumed and interpreted meanings of the variables included in the analysis (Baxter and 

Hayworth 1989; Carlson 2017). 

Lastly, I used discriminant function analysis (DFA) to assess the correctness of the 

original classification of features and attempt to reclassify the indeterminate features as 
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house or food storage features (Davis 1986; Glascock 1992). While PCA can be used to 

identify patterning and sources of variation in a data set, it does not directly group or 

provide a statistically significant assessment. Discriminant function analysis provides a 

statistical significance assessment of categories (here, feature classes). Discriminant 

function analysis is similar to ANOVA in that it is an analysis of variance that defines a 

group of known categories from a set of variables (elemental concentrations) and 

reclassifies the individual entries (samples) to the predefined categories. Discriminant 

function analysis requires that the categories be known a priori (unlike cluster analyses, 

which generate groupings without prior knowledge of a classification group) (Glascock 

1992). The effectiveness of the discriminant function is determined by how accurately it 

classifies known samples into the correct classification groups by cross validation. This 

allows us to compare the indeterminate features to classified feature classes based upon the 

identified distinguishing elements, and to assess the potential for them to be reclassified as 

a known feature category. 
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Chapter 4 - Results 

In Chapter 4, I present the results of all phases of the geochemical analysis. I first 

examine the soil phosphates photometric spot tests relating to Hypothesis 1, and the 

selection of feature samples included in Phase II of my analysis (Phase I). I then present 

the results of Phase II (ICP-MS geochemical characterization of the sediment samples). 

The raw data for all phases of the analysis are in appendices B  and C respectively. 

Phase I: Photometric Spot Test Results 

Similar rates of phosphate reaction intensities are seen across the cultural feature 

classes (Figure 4-1; Table A-1). All control samples (n=12) tested negative for the presence 

of soil phosphates. As such the control samples are confirmed as collected from non-

cultural contexts and represent suitable sources of local background sediment composition 

for use in Phase II of this analysis. Of the 151 archaeological samples, 47% (n=70) showed 

no reaction for soil phosphates. All vegetation anomaly samples (n=5) tested negative for 

the presence of soil phosphates. I tested seven distinct house features and five (71%) 

showed positive reactions. I tested four food storage features, and all showed positive 

results for soil phosphates. Of the 28 tested indeterminate features, 26 (92%) had positive 

reactions for soil phosphates. The results of the photometric spot tests are presented in 

Appendix B (Table B-1) and are summarized in Figure 4-1 and Figure 4-2. 
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n=40 features, 151 samples; 35 (87.5%) positive features n=4 features, 23 samples; (100%) positive features 

n=7 features, 36 samples; 5 (71%) positive features  n= 28 features, 86 samples; 26 (92%) positive features 

 

 
n= 1 feature 5 samples; 0 (0%) positive features 

Figure 4-1. Bulk sediment phosphate sample reactions. 
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Two samples from a single house feature (House 5437B; Samples CAKR 14916 

and CAKR 14976) showed an intense reaction for soil phosphates. No moderate reactions 

occurred in the house samples. Seven samples from four houses had a small reaction. Nine 

samples representing five individual houses had a very small reaction. Sixteen samples 

from the seven tested house features had no reaction at all, and two of these house features, 

represented by three samples (House 1180A; samples CAKR 15033, CAKR 15034, and 

House 5664B; sample CAKR 14979), had no reaction at all. The lack of reactions in house 

feature samples is attributed primarily to sample context being from non-cultural sediments 

formed post abandonment. However, in Houses 2602B and 5664B no reactions were 

observed at nearly every sampled depth and only very small reactions were observed at 

two sample depths in House 2602B (Figure 4-2). This may be a result of the sample matrix 

which primarily consisted of gravels or coarse sands that allowed for post-depositional 

processes to affect the preservation of phosphates. I included samples representing the 

greatest phosphate intensity from all five of the positive house features (Houses: 2602B, 

5436B, 5437B, 696B, 697B) and a sample from each negative house feature in Phase II as 

they are the only samples representing those features, and are an interesting opportunity to 

assess the variability of house feature geochemical signatures. 

Three food storage features had an intense reaction for soil phosphates (Food 

Storage 440A; sample CAKR 14401, Food Storage 457A; sample CAKR 14410, Food 

Storage 1186A Sample CAKR 15197). Feature 440A has the most diverse reactions, 

showing all five reaction levels throughout the vertical column of the feature (Figure 4-2). 

Feature 457A similarly had a diverse reaction across the vertical column. Small and very 

small reactions were seen in Feature 458A. Feature 1186A had both negative and intense 
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reactions. As all food storage features tested positive for soil phosphates, the samples with 

the greatest intensities from each feature are included in Phase II of this analysis. 

Two indeterminate features (Indeterminate 1185a; sample CAKR 15082, and 

indeterminate 1190a; sample CAKR 15348) showed no reaction for soil phosphates (Figure 

4-2). Each of these features are represented by a single sample. Ten indeterminate features 

indicate only very small phosphate reactions, while two indeterminate features are 

represented by small reactions. Five indeterminate features show moderate reactions and 

eight intense reactions for soil phosphates. Samples with the greatest intensities from each 

indeterminate feature are included in Phase II of this analysis. 

Overall, in Phase I, I eliminated 112 samples from inclusion in Phase II of my 

analysis. I selected 39 samples from features and five control samples for ICP-MS analysis 

in Phase II (Figure 4-2; Appendix B, Table B-1). I address any potential bias/obscuring of 

elemental enrichments by natural processes that may be causing vertical migration or 

leaching of elements in the sediment column, by selecting the samples from each feature 

exhibiting the highest phosphates reaction. Intense (n=12) and moderate (n=5) reactions 

likely indicate the cultural layers with the best preservation of anthropogenic elemental 

inputs. As such I included the sample with the highest level of phosphate intensity in the 

geochemical analysis of Phase II. Samples that showed a small (n=6), very small (n=11), 

or no reactions (n=5) are included in the second phase of analysis if they are the only 

samples from a feature. 
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Phase II: ICP-MS Results 

In Phase II my goal is to elucidate more fully the premise of Hypothesis 1 and 

evaluate if elemental concentrations differed between feature classes (Hypothesis 2). The 

purpose of this portion of my analysis is threefold: (1) Confirm the vegetation anomaly is 

not anthropogenic, (2) investigate the differences between cultural feature types, and (3) 

identify the past behaviors that created the indeterminate features as outlined in Hypothesis 

2. The number features and quantity of samples used in phase two are summarized in Table 

4-1. The results of the ICP-MS analysis are presented below;Table B-1 box plots of mean 

analyte concentration by feature class are displayed in Figure 4-3, and full ICP-MS data 

outputs are in Appendix B; Table B-1. I was not able to accurately or reliably measure 

sulfur in the range of available standard concentrations; therefore, it was excluded from 

further analysis. A detailed discussion addressing the data and method validation results is 

provided in Appendix B. 

Table 4-1. Features and quantity of samples included in Phase 2 ICP-MS analysis 

  

  Beach Ridge Segment  

 Feature Class: 

Feature Quantity (samples) 

I II III 
Total 

C
u

lt
u

ra
l 

F
ea

tu
re

s 

Houses  3 (3) 4 (4) - 7 (7) 

Food Storage Features 4 (4) - - 4 (4) 

Indeterminate Features 3 (3) 25 (25) 1(1) 28 (28) 

N
at

u
ra

l Vegetation Anomalies - 1 (2) - 1 (2) 

Controls 1 (2) 3(3) - 4 (5) 

 Total 11(63) 31(98) 1(2) 44 (46) 
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Descriptive Statistics, and ANOVA 

The ICP-MS concentration data collected in Phase II highlights patterns between 

analyte concentrations and feature classes. Overall, mean concentrations of analyte 

elements (Figure 4-3;Table 4-2; and Table B-1 located in Appendix B) indicate that while 

values are generally similar cultural features are enriched in comparison to control and 

vegetation anomaly samples for Cr, Mg, Ni, Al, Ba Sr, Cu, Zn, P and Ca analyte elements. 

Mean concentrations of Na, Mn, Co, Fe, K and Pb are present at similar or slightly depleted 

concentrations in cultural features compared to control features (Figure 4-3). Vegetation 

anomaly samples generally follow the patterning of control samples except that vegetation 

anomaly samples have lower concentrations of Na, Sr, and Zn, and elevated levels of K in 

comparison to control samples. The greatest range of concentrations is present in cultural 

samples, most notably in indeterminate features. 

Some distinctions between cultural feature classes are also observable in the 

concentration data. In comparison to house features, food storage features have elevated 

concentrations of Na, Mg, Mn, Fe, Cr, Co, Cu, Ba, Zn, P, and Ca, and lower concentrations 

of Ni, Sr, and K (Figure 4-3; Table B-1). Despite the patterning seen between cultural 

feature classes, there is overlap in the ranges of all concentrations between cultural feature 

classes. Furthermore, the concentration range of the indeterminate features generally 

covers the ranges observed in both house and food storage feature class for all analyte 

elements. This overlap is well illustrated by the concentration of Cr in indeterminate 

features, which shows a greater range, and values that encompasses house and food storage 

features and control features. 
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To further explore the concentration data set, I analyzed the concentration of each 

analyte element grouped by feature classes from the ICP-MS analysis for statistical 

significance using a one-way ANOVA test. The results of the ANOVA analysis indicate 

that Na, Al, Cr, and Ni are all statistically significant elements at the 95% confidence 

interval (p ≤ .05) when comparing across all feature classes (Table 4-2; Table B-2). The 

post-hoc t-tests indicate that the variation in these elements indicated by the ANOVA is 

primarily between control and indeterminate feature classes. Statistically significant 

relationships between feature classes are indicated in bold and/or italic text in Table 4-2 

and Table B-2. An exception to this is seen with regards to the variation between control 

and indeterminate features in Cr: The vegetation anomaly showed statistically significant 

variation between both indeterminate and house features, but was not significantly different 

from the food storage features. 

Sodium is a peculiar case; while the ANOVA tests indicate significant variation in 

the data set, the post-hoc t-tests with Bonferroni corrected significance values indicate that 

Na is only statistically significant for distinguishing between the vegetation anomaly and 

cultural features when they are considered as a single group (Bonferroni corrected p= ≤ 

.1667). When cultural feature classes are considered independently(distinct comparison to 

house, food storage features, and indeterminates), the post-hoc t-test is not statistically 

significant (observed p = .007; Bonferroni corrected significant p ≤ .005). However, similar 

to other analyte elements, the variation in Na is observed between vegetation anomaly and 

indeterminate feature samples. 
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Table 4-2. Elements and Feature Classes with Statistically Significant Variation 

determined by ANOVA and Post-hoc T-Tests 

The post-hoc t-tests indicate that there is no statistically significant variation 

between control and vegetation anomaly samples, nor between any cultural feature classes. 

The vegetation anomaly sample concentrations are dissimilar to the cultural feature classes 

for most analyte elements, with exception to Mn, Fe, and K, where mean concentrations of 

the vegetation anomaly samples are within the concentration range observed in the cultural 

features. Additionally, as pointed out previously, it is common in elemental analysis of 

archaeological features that no single analyte element distinguishes between feature 

classes, but rather the relationship of multiple element concentrations provides the greatest 

insight into geochemical patterning (Knudson and Frink 2010; Wells 2004b; Wells et al. 

2007). 

Na 

Mean  Max. Min. 

Std. 

Dev. 

 Cr 

Mean  Max. Min. 

Std. 

Dev. 

Total: 5.315 5.957 4.817 0.221  Total: 3.854 4.078 3.476 0.142 

Control (n=5) 5.187 5.248 5.050 0.082  Control (n=5) 3.667 3.863 3.476 0.153 

Veg. Anom. (n=2) 4.919 5.020 4.817 0.144  Veg. Anom. (n=2) 3.601 3.712 3.490 0.157 

Cultural (n=37) 5.356 5.957 4.962 0.893  Cultural (n=37) 3.885 4.078 3.671 0.104 

House (n=8) 5.283 5.644 5.171 0.154  House (n=8) 3.862 3.920 3.807 0.045 

Food Storage 

(n=4) 

5.418 5.889 5.213 0.317  Food Storage 

(n=4) 

3.889 3.948 3.834 0.048 

Indeterminate 

(n=25) 

5.367 5.957 4.962 0.211  Indeterminate 

(n=25) 

3.904 4.078 3.671 0.122 

Ni 

Mean  Max. Min. 

Std. 

Dev. 

 Al 

Mean  Max. Min. 

Std. 

Dev. 

Total: 4.300 4.754 3.644 0.216  Total: 6.55 6.89 6.24 0.13 

Control (n=5) 4.008 4.337 3.644 0.259  Control (n=5) 6.40 6.59 6.24 0.16 

Veg. Anom. (n=2) 4.124 4.186 4.062 0.088  Veg. Anom. (n=2) 6.42 6.50 6.35 0.10 

Cultural (n=37) 4.349 4.754 3.798 0.179  Cultural (n=37) 6.58 6.89 6.34 0.11 

House (n=8) 4.344 4.471 4.196 0.099  House (n=8) 6.53 6.69 6.37 0.10 

Food Storage 

(n=4) 

4.366 4.530 4.287 0.111  Food Storage 

(n=4) 6.56 6.69 6.51 0.09 

Indeterminate 

(n=25) 

4.347 4.754 3.798 0.209  Indeterminate 

(n=25) 6.60 6.89 6.34 0.12 

Bold text indicates ANOVA Significance at p= < .05; Italic text indicates T-test assuming equal variance 

with Bonferroni correction Significance p=<. 005. Non-significant results are presented in Appendix B. 
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Figure 4-3. Box plots of mean concentration data for all analyte elements. Bold 

text indicates ANOVA Sig. at p=<.05; Italic text indicates T-test Sig. at p=<. 005. 
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Figure 4-3 cont’d. Box plots of mean concentration data for all analyte elements. Bold 

text indicates ANOVA Sig.at p=<.05; Italic text indicates T-test Sig. at p=<. 005.
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Principal Component Analysis 

To investigate the use of analyte elements as anthropogenic indicators, I ran a PCA 

including all feature classes and analyte elements to identify the factors and elemental 

loadings that best explain the data set. After establishing distinctions between control and 

cultural feature classes, I ran a second PCA using only the cultural feature classes (PCA-

Cult). Correlation values of all components in both PCA are <0.80 indicating that 

multicollinearity (when one or more variables are dependent upon each other) is not an 

issue. The significance values for Bartlett’s test of sphericity is < 0.01, indicating that both  

PCA are reliable. The elements and relative level of variation of each feature class 

associated with the principal components are presented in Table 4-3. 

Analysis of the entire data set identified five principal components (PC) with 

eigenvalues greater than 1; eliminating components accounting for less than approximately 

5% of variation. In total, the five principal components account for approximately 79.3% 

of the variation in the analyte element concentrations. The first principal component (PC-

1) showed strong positive loadings of Sr, Ca, Cu, Ba, Na, P, and Zn (in descending order 

of loading), with loading values ranging from 0.96 to 0.616. The second principal 

component (PC-2) contained positive loadings of Cr, Al, Ni, K, Co, and Mg with loading 

values ranging from 0.976 to 0.373. Generally, cultural features were more varied (wider 

range of factor scores and overall higher values) than non-cultural features (tighter range 

and lower factor cores). The biplot of the first two principal components (Figure 4-4a) 

shows clear distinctions between known feature classes and controls. 
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While cultural feature classes are highly variable, house and food storage feature 

samples show moderate to low variation in PC-1 and PC-2 (Figure 4-4a). The first and 

second principal components show the greatest potential for distinguishing between 

cultural features, with a slight distinction indicated by the trend of positive factor scores in 

food storage feature samples and negative factor scores of PC-2 seen in house feature 

samples. The third principal component (PC-3) shows a distinction similar to that described 

by PC-2 but with inverted values in house and food storage features (loadings of Mg and 

Fe are negatively contributing to PC-3) when plotted against PC-1 (Figure 4-4 a & b; Table 

Table 4-3. Principal Components, Loading Elements and Observed Feature Class 

Variation 

Principal Component  

(% variation) 

Associated Elements  

(Factor score range) 

Feature Class Variation  

(by ascending order) 

PC-1 (39.8%) 

 

Sr, Ca, Cu, Ba, Na, P, Zn 

(-1.56 to 2.53) 

Food Storage 

Indeterminates 

House 

Control  

Vegetation Anomaly 

PC-2 (13.9%) Cr, Al, Ni, K, Co, Mg 

(-2.89 to 1.73) 

Control  

Vegetation Anomaly,  

Indeterminates, 

House,  

Food Storage 

PC-3 (10.1%) K, -Fe, -Mg 

(-2.34 to 1.94) 

Control 

Indeterminate 

House  

Vegetation Anomaly 

Food Storage 

PC-4 (8.9%) -P, Ni, Mn, Co 

(-2.48 to 2.41) 

Control  

House 

Indeterminate 

Food Storage 

Vegetation Anomaly  

PC-5 (7.5%) -Ni, Pb, -Mg 

(-1.72 to 3.36) 

Control 

House 

Indeterminate 

Food Storage 

Vegetation Anomaly 
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4-3). The remaining principal components (PC-4 to PC-5) do not show any clear patterning 

between feature types (Figure 4-4c-d). 

To aid in interpreting the nature of the indeterminate feature classes I performed an 

additional exploratory PCA using only the cultural features as well as a series of K-means 

and Hierarchical cluster analyses to identify if the loading elements identified in the PCA 

indicated significant groupings of feature types. The result of the PCA were similar to the 

initial PCA I performed on the entire data set and indicated minimal additional patterning. 

A similar suite of elements makes up each component, with the greatest differences coming 

from the refinement of the second and third principal components. The K-means and 

hierarchical cluster analysis did indicate distinct groups of cultural features however it did 

not explicitly distinguish between house and food storage groups beyond what was 

observable in the PCA analysis, nor did the clustering’s reflect a spatial association 

between features at the complex. As the cultural only PCA results were similar, I focus on 

the initial PCA in the discussion and remainder of the document. The results of the PCA 

and K-means cluster analysis using only the cultural feature samples, including tables and 

biplots, are provided in Appendix B (Table B-2 and Figure B-1). 
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Figure 4-4. Biplots of first principal component factor scores vs (a) PC2, (b) PC-3, (c) 

PC-4, (d) PC-5. 
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Figure 4-5. Biplot of second and third principal component factor scores. 
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Discriminant Function Analysis 

I performed multiple DFAs as an exploratory analysis to further investigate the 

feature classes. First, I used all feature classes as possible group categories (DFAa). 

Secondly, I removed the vegetation anomaly category and the indeterminate feature class, 

leaving them as unassigned to be reassigned as known feature classes (DFAb). A third 

DFA (DFAc) investigates the nature of the cultural features. The results of my DFAs are 

presented below and summarized in Table 4-4, and biplots of each discriminant function 

are presented in Figure 4-6 (a-c). 

As seen in Table 4-4, When considering all feature class categories (DFAa), 

prediction of all initial samples for the predetermined categories is moderately accurate 

(79.5% correct), with excellent probability of feature class assignment (probability values 

of 0.1). However, cross validation is poor, with only 38.6% correct classification. All but 

one control sample is correctly classified; this sample is reclassified as an indeterminate 

feature. Vegetation anomaly samples, while being correctly classified in totality, have 

values similar to control features (Figure 4-6a). House and food storage feature samples 

are only partially correctly classified (62.5% and 75% respectively), with three house 

samples and food storage feature samples classified as indeterminates. The indeterminates 

are 84% correctly classified, with a single sample each reclassified as a control and a food 

storage feature and three samples reclassified as houses. DFAa indicates that there are 

distinctions between all feature classes, however, the relationship between them is 

complex. 

To further explore the relationship between feature classes, I performed a second 

DFA (DFAb) with the indeterminate and vegetation anomaly feature classes removed. 
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Prediction of all initial samples in DFAb for the predetermined categories (control, house, 

and food storage), is again excellent (100%), with probability values of feature class 

assignment at 0.1. Cross validation of the classification is still poor at 35.3%. Classification 

of the unassigned samples is dispersed across all categories; with seven indeterminate 

samples classified as control features, 12 of the unassigned samples (ten indeterminate, two 

vegetation anomaly) are classified as house features and eight are classified as food storage 

features (Table 4-4Error! Reference source not found.). The biplot of DFAb functions 

(Figure 4-6b) indicates two unique aspects: (1) Dispersion of the unassigned samples is 

greater across all predetermined feature classes, and (2) the vegetation anomaly samples 

are classified as house features (discussed in greater detail in the following chapter). I 

believe the inclusion of these samples in the house category is due to the natural enrichment 

of the sediment in the few analyte elements discussed above. 

Thirdly, I performed DFAc to explore the reclassification of the indeterminates 

with greater focus on the cultural features by classifying the vegetation anomaly samples 

as control samples, leaving only the indeterminate feature samples as unassigned. 

Prediction of all initial samples in DFAc for the predetermined categories (control, house, 

and food storage), is again excellent (100%), and all probability values of feature class 

assigned at 0.1. Cross validation of the classification improved but is again only moderately 

correct (57.9%). Reclassification of unassigned indeterminate samples is dispersed across 

all feature categories; with eight indeterminate samples classified as control features, ten 

samples classified as house features and four samples classified as food storage features). 

The biplot of DFAc functions (Figure 4-6c) again shows high level of dispersion in 
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unclassified features; though food storage features grouped well together, only a few 

indeterminate features are classified as food storage features. 

Table 4-4. Summary of Discriminant Function Analyses 

DFAa) All feature classes included 

Original 

groupings:  

Predicted 

cases (%) 

Reclassification 

Class (n) 

Cross validation 

results: 

Predicted 

cases (%) 

Reclassification 

Class (n) 

Control (n=5) 4 (80%) Indeterm. (n=1) Control (n=5) 2 (40%) Veg. Anom (n=1) 

Indeterm. (n=2) 

Veg. Anom. 

(n=2) 

2 (100%) 
- 

Veg. Anom. 

(n=2) 

1 (50%) Control (n=1) 

House (n=8) 5 (62.5%) Indeterm. (n=3) House (n=8) 2 (25%) Control (n=1) 

Indeterm. (n=5) 

Food Stor. (n=4) 3 (75%) 

Indeterm. (n=1) 

Food Stor. (n=4) 1 (25%) Control (n=1) 

House (n=3) 

Indeterm. (n=25) 21 (85%) Control (n=1) 

House (n=3) 

Indeterm. (n=25) 11 (44%) Control (n=1) 

Veg. Anom. (n=1) 

House (n=6) 

Food Stor. (n=4) 

Overall Correct 79.5%   38.6%  

DFAb) Indeterminates and Vegetation Anomaly unassigned 

Original 

groupings:  

Predicted 

cases (%) 

Reclassification 

Class (n) 

Cross validation 

results: 

Predicted 

cases (%) 

Reclassification 

Class (n) 

Control (n=5) 5 (100%) 
- 

Control (n=5) 1 (20%) House (n=3) 

Food Store. (n=1) 

Veg. Anom (n=2) - House (n=2) Veg. Anom. (n=2) - - 

House (n=8) 8 (100%) 
- 

House (n=8) 3 (37.5%) Control (n=2) 

Food Stor. (n=3) 

Food Stor. (n=4) 4 (100%) 
- 

Food Stor. (n=4) 2 (50%) Control (n=1) 

House (n=1) 

Indeterm. (n=25) 

- 

Control (n=7) 

House (n=10) 

Food Stor. (n=8) 

Indeterm. (n=25) 

- - 

Overall Correct 100%   35.3%  

DFAc) Vegetation Anomaly samples assigned as controls 

Original 

groupings:  

Predicted 

cases (%) 

Reclassification 

Class (n) 

Cross validation 

results: 

Predicted 

cases (%) 

Reclassification 

Class (n) 

Control (n=5) 7 (100%) - Control (n=5) 4 (57.1%) - 

Veg. Anom. n=2) 
- 

Control (n=2) Veg. Anom. 

(n=2) 
- 

Control (n=2) 

 House (n=8) 8 (100%) - House (n=8) 7 (87.5%) Food Stor. (n=1) 

Food Stor. (n=4) 4 (100%) 
- 

Food Stor. (n=4) 0 (00.0%) Control (n=2) 

Food Stor. (n=2) 

Indeterm. (n=25) 

- 

Control (n=8) 

House (n=13) 

Food Stor. (n=4) 

Indeterm. (n=25) 

- - 

Overall Correct 100%   57.9%  
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Figure 4-6. Canonical discriminant function analyses biplots. 
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Results Summary 

Overall in Phase I, I confirmed that the control samples were not from cultural 

contexts, and that cultural deposits did contain elevated levels of soil phosphate. The 

samples from Vegetation Anomaly 3624B did not have a reaction for soil phosphates 

suggesting that it is likely a natural feature. However, given that some samples from 

cultural features also showed no reaction for soil phosphates I included two samples from 

the vegetation anomaly in Phase 2 analysis to further explore the nature of the feature. I 

eliminated 112 samples from inclusion in Phase II of my analysis, selecting a total of 39 

samples from cultural features with the greatest potential (highest available phosphate 

reaction per feature) for exploring anthropogenic elemental inputs and five control samples 

for ICP-MS analysis in Phase II. The statistical analysis of ICP-MS concentration data I 

performed in Phase II of my analysis shows that concentrations of elements do vary by 

feature class, however, only a few elements are statistically significant according to 

ANOVA and post-hoc t-tests. PCA of the data set confirms that, similar to many previous 

geochemical analyses (Knudson et al. 2004; Knudson and Frink 2010; Wells 2004b; Wells 

et al. 2007), no single element distinguishes between feature classes and three main 

components account for the major sources of variation in the data set. Primarily, the suite 

of elements that are defined as the first principal component across all principal component 

analyses is consistent regardless of feature class exclusions. I used multiple DFAs to 

explore these data and attempt to reclassify and interpret the original function of the 

vegetation anomaly and indeterminate features as control, house, or food storage features. 

The results are discussed in further detail and specifically as they apply to my hypotheses 

in the following chapter. 
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Chapter 5 - Discussion 

In Chapter 5 I discuss the results of my analysis. I start by discussing the patterning 

seen in the elemental compositions data analyses presented in Chapter 4 in relation to the 

hypotheses of this thesis, including interpreting the nature of Vegetation Anomaly 3624B 

(Hypothesis 1) and the relationship of the indeterminate features to house and food storage 

feature classes based on their geochemical signatures (Hypothesis 2) (Table 5-1). 

Interpretations are given to assign the indeterminate feature samples as house or food 

storage cultural features (Hypothesis 2a) and to explore the potential of multiple food 

storage feature types (Hypothesis 2c). 

Hypothesis 1: The Vegetation Anomaly is a Natural or Cultural Feature 

The initial goal of my geochemical analysis was to determine whether Vegetation 

Anomaly 3624B is a natural or cultural feature. Hypothesis 1 is repeated here: (H-10) If 

levels of phosphates in the vegetation anomaly samples are observed at similar levels in 

comparison to control samples and at lower intensities to house and food storage features, 

Vegetation Anomaly 3624B will be identified as a natural feature; (H-11) If levels of 

phosphate are observed as elevated in the vegetation anomaly samples in comparison to 

control samples and at similar intensities to house and food storage features, Vegetation 

Anomaly 3624B will be identified as likely anthropogenic and reclassified as an 

indeterminate feature. 

My work indicates that Vegetation Anomaly 3624B is a natural feature (Table 5-

1). The vegetation anomaly samples showed no reaction for soil phosphates, suggesting 

that the feature may be natural in origin. However, I was not able to reject the null 
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hypotheses on soil phosphates data alone based on the presence of negative results in 

cultural feature samples. To further explore this, I included two samples from Vegetation 

Anomaly 3624B, representing two depths in the second phase of analysis to confirm the 

feature’s origin as natural. Samples from multiple depths were included in order to asses if 

natural or other cultural processes are interfering with or obscuring the interpretation of 

these features. 

 

 

  

Table 5-1. Hypothesis 1 Results and Summary 

Hypothesis 
H-10: Vegetation Anomaly is as natural feature 

 Results Phase I: 

• No soil phosphates reaction in vegetation anomaly samples 
 Results Phase II: 

• Similar compositions to control 

• Few elements elevated – attributed to animal and natural processes 

• PCA-Grouped near control samples 

• DFA- Reclassed as control features 
 Conclusion: Supported 

H-11: Vegetation Anomaly is anthropogenic 
 Results Phase I: 

• No soil phosphates reaction in vegetation anomaly samples 
 Results Phase II: 

• Lower concentrations than cultural feature samples. 

• Few elements elevated – attributed to animal and natural processes 

• PCA- Lower concentration values in PC-1, PC-2, and PC-3 

elemental loadings 

• DFA-Reclassed as houses based on few elemental enrichments- – 

attributed to animal and natural processes 
 Conclusion: Not Met 
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The results of Phase II also indicate that the Vegetation Anomaly is a natural feature 

(H-10). The results of the ICP-MS analysis and statistical analysis (ANOVA and PCA) 

indicate that the vegetation anomaly samples have compositions and concentrations of 

analyte elements most similar to the control samples (Table B-1, ). Some elements, 

however, are elevated and depleted in comparison to control samples, including elevated 

K and depleted Na, Zn, and Pb. My DFA does not refute the conclusion that Vegetation 

Anomaly 3624B is a natural feature. Samples are generally grouped as control samples and 

none are reclassified as cultural features when used as a known or defined feature class 

(DFAa). When removed as a feature class, DFAb indicated that vegetation anomaly 

samples group more closely with house features. This grouping  likely results from the 

variation and relative enrichment of the select elements mentioned above. I believe the 

enrichment of these elements is the result of animal and plant activity rather than an 

anthropogenic source or primary geologic or geomorphic process. Specifically, the low Pb 

and elevated K, Ca, and Ba compared to control samples may be from the input and 

decomposition of wastes, bone, and feces deposited by animals such as fox or ground 

squirrel (Knudson et al. 2004; Wilson et al. 2007) (See Table 2-1). However, Misarti et al. 

(2011) observed low levels of K in areas in the presence of fox. 

Elevated levels of K in comparison to controls is suggestive that multiple factors 

may be contributing to the unique signature observed in the vegetation anomaly samples, 

including plant and/or sedimentologic processes. The low levels of Fe may be attributed to 

the accumulation and decomposition of organic material from the relatively lush vegetation 

that defines the feature class (Couture et al. 2016). Additionally, the low P levels observed 

may be related to seasonal depletion of vegetated arctic soils observed during the growing 
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season (Weintraub 2011), which is when the bulk samples were collected. The fine 

sediments that accumulate as a result of this decomposition of plant and animal wastes may 

contribute to the high level of K in the vegetation anomaly samples as a result of K’s 

relatively high susceptibility to cation exchange in fine sediments. Overall this suggests 

that Vegetation Anomaly 3624B is distinct in regard to its geochemical signature based on 

non-human inputs but is similar to control samples and likely a natural feature. 

Hypothesis 2: The Indeterminate Features are House or Food Storage Features 

The primary goal of my analysis was to identify the past behaviors that created the 

indeterminate features. Hypothesis 2 explores the potential of identifying the 

Indeterminates  as house or food storage features. To do this, I first establish that house 

and food storage features have distinct geochemical signatures as hypothesized (Table 5-

2). Under Hypothesis 2 (H-20), if the house and food storage features show little or no 

distinction from each other in their elemental composition and concentrations, then no 

distinction between cultural feature classes can be made. Alternatively, (H-21) if house and 

food storage features are observed to have dissimilar elemental compositions and 

concentrations in comparison to each other, then distinctions can be made, and the 

indeterminate features can be further identified based on their original function and use. 

I am not able to make distinctions between the cultural features based on 

photometric phosphates test I performed in Phase I. Though the results suggest distinctions 

between the natural and cultural feature classes, the cultural feature classes had similar 

rates of reaction intensity for soil phosphates. The similarity of phosphate reaction levels 

between house and food storage features suggests that the source of P in these 
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archaeological sediments is not explicitly traceable to a distinct past behavior, but rather 

that the general decomposition of anthropogenic wastes as is common in Arctic systems 

(Derry et al. 1999; Proudfoot 1976). 

 

  

Table 5-2. Hypothesis 2 Results and Summary 

Hypothesis  

H-20: Cultural features (including indeterminates) are indistinguishable from each other. 

 Conclusion: Not Met 

H-21: Indeterminate features show compositions similar to house and food storage features 

 Results Phase I: 

• Controls and vegetation anomaly samples all tested negative for soil 

phosphates. 

• Cultural feature samples showed similar rates of positive reactions for soil 

phosphates. 

 Results Phase II: 

• Cultural samples elevated in comparison to control samples in all but Mn, Fe, 

and Pb analyte elements. 

• Houses are elevated in comparison to control samples in all but Mn, Fe and Pb 

analyte elements, but less elevated than food storage features. 

• Indeterminates have broad range of high concentrations that include both house 

and food storage features. 

 Conclusions: Supported 

H-2a: Indeterminate features are houses 

 Results Phase II 

• DFA indicates that some are possibly associated with house activities 

• Between 10 and 13 indeterminate features are possible houses 

 Conclusions: Supported 

2b: Indeterminate features are food storage features 

 Results Phase II: 

• DFA indicates that some are possibly associated with food storage features  

• Between 4 and 15 possibly storage features 

 Conclusions: Supported 
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In Phase II, I established that house and food storage features are somewhat distinct 

in elemental composition. However, ANOVA indicates that there is only statistical 

significance between these features for four (Na, Al, Cr, and Ni) individual analyte 

elements. While the lack of significant variation between indeterminate features and house 

or food storage features independently suggests similarity between feature types, it is not 

entirely unexpected as it is believed that the indeterminate features could represent both 

house and food storage features as discussed in Hypotheses 2a and 2b. The lack of 

statistically significant variation in elemental concentrations between house and food 

storage features, however, is unexpected. I expected the past behaviors that created and 

occurred in the use of these features to be unique, and that variation would exist between 

their geochemical signatures. However, while these features are created and used in 

different ways, the anthropogenic signature is likely similar because of similarity in the 

past behaviors represented and because of overlap in the source of the residues. That is, the 

behaviors (e.g. caching of food, discarding of food wastes in houses and midden deposits, 

and tool manufacturing) could have similar signatures because of a common source for the 

residues from animal products and food resources. This interpretation is supported by the 

high variation and overlap in elemental composition and concentration between the feature 

classes in the first and second principal component of my PCA analysis (Figure 4-4a). The 

elemental loadings of these principal components are interpreted as common indicators of 

cultural residues, including the presence of marine resources and the decomposition of 

waste materials such as bone and fish remains (Table 2-1). It is not entirely unexpected that 

a majority of the cultural features are enriched in these elements as the source of these 
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elements are relatively common in Arctic archeological sites and are often present in most 

Arctic cultural features, including house, midden, and food storage features. 

My PCA results indicate that while there is considerable overlap in the elemental 

concentrations, there are differences between the feature classes which support my 

alternative hypothesis. I interpret the separation of two food storage feature groups, and the 

lower concentrations in house features, by the first principal component to indicate 

distinctions between the two features based on contents or in-feature spatial patterning. 

Primarily, the food storage features with higher concentrations may represent features 

whose contents were not removed, or it is possible that the signatures of specific past 

behaviors tied to use of these features may be masked by other behaviors, such as cleaning 

events in house deposits.  The third principal component, indicates more clear variation 

between  cultural feature classes. In particular, PC-3 indicates that food storage features 

are uniquely defined by low variation in K, Mg and Fe, and offers a unique perspective for 

interpreting distinctions between them and House features. Biplots of the second and third 

components (Figure 4-5) show tight definitions of the food storage features and high 

variation in the house features, but there is still much overlap in their elemental 

concentrations, particularly in third principal component loading elements. Specifically, 

the lower Fe and Mg and higher K levels may be tied to a greater accumulation of organic 

matter in house features. These residues may be sourced from fur items (e.g. floor linings), 

general waste deposition on house floors, and/or sod roof collapse. The elevated level of K 

and lower Mg in house features is likely connected to the processing and cooking of food 

resources and the accumulation of food waste materials into floor midden deposits. These 

enrichment patterns would not necessarily occur as a result of simple storage feature 
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construction and use. However, interpreting the nature of this spatial patterning is not 

directly possible without further work in these features. 

My discriminant function analysis supports my alternative hypotheses that the 

house and food storage features are distinct. Only a few house (n=1) and food storage 

feature (n=2) samples are reclassified to other cultural feature classes, suggesting a good 

statistical definition of each feature class. Unfortunately, the four known food storage 

features do not correctly cross validate, but probability of group assignments is low for 

these reclassifications. The limited precision of the cross validation results and associated 

low prediction values are the result of the high variation in, and similarity between, 

elemental compositions in both feature classes. Two food storage features are reclassified 

as possible controls and the other two as house features. The two features reclassified as 

control features may be storage features that were emptied prior to abandonment, or storage 

of non-food related resources. Those reclassified as house features likely indicate storage 

features whose contents were not removed prior to abandonment or features that saw 

particularly intensive use. Additionally, it is possible that it may represent a storage feature 

associated with a house feature. Interestingly, one of the eight original house features were 

reclassified as a food storage feature; the sample may represent a spatial patterning within 

a distinct portion of a house structure such as an alcove or storage feature of a house. I 

interpret the observed low reclassification, and diffuse patterning seen in the canonical 

function plots, to be indicative of spatial patterning in the features and complexity in the 

use of space, with potential overlap in the sources of signatures from multiple types of 

cultural activities and features being represented. 
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There were few statistically significant relationships (Table 4-2) and broad overlap 

in the loadings of my PCA.  But, the concentrations of most analyte elements are distinct 

between house and food storage features.  Specifically, food storage features having higher 

mean concentrations than houses in all elements but Cu, K, and Pb. The chemical 

concentrations measured in these features probably overlap because of the complexity of 

cultural phenomena or behaviors, taking place as part of feature creation or use (e.g. spatial 

patterning of activities within a house). A diversity of activities could have involved similar 

organic by-products. Unfortunately, most Arctic archaeological materials are derived from 

common material resources, and I cannot fully attribute the geochemical signatures to any 

specific or unique behaviors associated with the respective features. As such I accept the 

alternative hypothesis (H-21) that distinctions between cultural feature classes exist, 

however, the nature of such patterning based on the original function and activities or 

behaviors that created them is not clear given the limited contextual information available 

and it is likely that many behaviors have similar geochemical expressions. Much more field 

and lab work would be needed to fully assess the specifics of these interpretations. I discuss 

identifying the indeterminates as house or food storage features in the following sections. 

Hypothesis 2a and 2b: The Indeterminate Features are Houses or Food Storage 

Features 

As I ultimately accepted my alternative hypothesis (H-20), I next attempted to 

identify whether indeterminate features were house or food storage features. Under 

hypotheses 2a and 2b, if the indeterminates are house or food storage features I expected 

that they would have elemental compositions and concentrations at similar levels to the 
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tested known house or food storage features, respectively. I interpreted the similarity of 

concentrations for all analyte elements (as indicated by a lack of statistically significant 

variation by ANOVA) between indeterminate features and house or food storage features 

independently to support my hypothesis, indicating different origins for the indeterminate 

features; specifically, here as house and or food storage features. 

As discussed previously, I identified patterns in my PCA results that help to 

distinguish the indeterminates as house or food storage features. The variability of 

concentration in the first principal component loading elements, attributed to the likely 

overlap in the source of archaeological residues, makes interpretations between cultural 

features based on this component difficult. However, the biplot of the second component 

with the third component indicates that approximately 11 indeterminate features have 

similar compositions and concentrations to house features that are separated between two 

groups based on high (Group A) and low (Group B) values. I attribute the separation of 

two distinct house groups to spatial patterning in house features. The high elemental 

loading values in some houses may represent floor deposits and the low values in others 

may represent roof or infill/alcoves etc. 

There is little variation in the food storage features based on the loading elements 

of the second and third components, and food storage features are clustered tightly in the 

biplot. Interestingly, no indeterminates are plotted directly adjacent to the food storage 

features, but two known house features plot near the food storage features. It is plausible 

that these features represent components of house features where caching of resources 

occurred. While no indeterminate features plot directly adjacent to food storage features, a 

distinct cluster of 10 indeterminate features (Group C) is observed with elevated PC-2 
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elements. I believe these features likely represent a cluster of food storage features, as food 

storage features showed higher PC-2 factor scores than most houses. In particular, the Al, 

Fe, and K may be tied to food processing and possibly the elevated Fe could be sourced 

from meat resources (Brunborg et al. 2006; Shahidi and Synowiecki 1993; Yamamotto 

1987). 

I used DFA to statistically identify the nature of indeterminate features as house or 

food storage features. I believe the reclassification of a few (n=5) house and food storage 

features (n=3) as indeterminate features in DFAa supports my hypothesis that the 

indeterminate features represent multiple types of cultural activities and features . Despite 

this, as many as 13 indeterminate feature samples are reclassified as houses and four as 

food storage features. I interpret the lack of tight clustering (variation of chemical 

enrichments) in indeterminates reclassified as house features (Figure 4-6) to most likely 

represent spatial patterning associated with activity areas around occupation sites and in 

house features. The lack of clustering in those reclassified as food storage features is likely 

tied to various use patterns and post depositional and/or taphonomic processes. Due to the 

likely overlap in anthropogenic sources for the geochemical residues, I suspect that only 

10 represent house features (Figure 5-1; Group A), as three plotted close to an 

indeterminate feature reclassified as a food storage feature. However, it is also possible 

that these features may represent a distinct portion of a house structure, such as an alcove 

or storage feature of a house. 

In addition to the four indeterminates reclassified as food storage features, eight 

indeterminate features reclassified as controls  plotted more closely (and thus have similar 

elemental concentration patterning)to food storage features than house features (Figure 5-
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1 Group B). It is possible that these indeterminate features (particularly the outliers; Group 

C on Figure 5-1) represent caching of non-food resources or storage features in various 

states of abandonment which have been emptied prior to their disuse. Unfortunately, 

interpretation of specific indeterminate features as house or food storage features is 

complicated by many factors including poor to moderate cross validation. The factors that 

interfere with interpreting the DFA results are discussed in the ‘confounding factors’ 

section that follows the remainder of my hypothesis discussion. 

The results of my analysis indicate that elemental compositions and concentrations 

of house features are distinct from the food storage feature class and that the indeterminates 

are cultural deposits. The clustering of as many as 13 indeterminates near house features 

in the PCA is supported in the DFA reclassification of the indeterminate feature samples. 

Hypothesis 2a (H-2a) is partially supported and as many as 13 indeterminate features may 

be houses. However, based on the dispersion observed in the PCA and DFA, paired with 

the nature of the three indeterminates that plot near food storage features, I suspect only 10 

may represent houses or minimally intensive occupation surfaces. Hypothesis 2b (H-2b) is 

also shown to be partially true; at least four are likely food storage features, but as many 

as 15 may be some form of storage feature, including the eight indeterminates reclassified 

as control, as well as the three classified as houses that are similar in composition to food 

storage features. 
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Figure 5-1. Proposed groupings of cultural features from DFAc. 
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Hypothesis 3: Food Storage Features Represent Different Contents 

In Chapter 3 I hypothesized that multiple food storage feature types may exist at 

the Complex and that elemental composition of the bulk sediment samples may allow for 

the identification of the specific use of each food storage feature (Hypothesis 3; Table 5-

3). Under Hypothesis 3, if the food storage features held similar contents, they will have 

similar elemental compositions (H-30). If different food storage contents are represented in 

the data set, then individual food storage features will have distinct elemental compositions 

(H-31). The dispersion of samples seen in the PCA and DFA analyses suggest that some 

distinctions are  present in the data set. The first principal component showed a distinct 

split in the food storage features based on high and low concentrations of elemental 

loadings tied primarily to anthropogenic residues associated with marine resources (Sr, Ba, 

Ca, Zn, and P). It is possible that this distinction reflects the type of resource stored in a 

feature. To explore this, I looked at the potential of identifying the type of resources based 

on a trophic level distinction using Sr/Ca and Ba/Ca ratios (Burton and Price 1990, 1999; 

Knudson et al. 2004; Knudson and Frink 2010). As many of the indeterminate features 

could not clearly be reclassified as food storage features, I include all previously identified 

food storage features and all indeterminate features, including those grouped as controls or 

houses, to distinguish between the possible types of storage features present at the 

Complex. 
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The mean Ba and Sr concentrations, and mean Ba/Ca and Sr/Ca ratios, are both 

lower in food storage feature samples than the control samples as expected (Table 5-4). A 

biplot of Ba/Ca and Sr/Ca ratios suggest two possible groups. One group (A) contains 

higher values which are slightly lower than but similar to the control samples (Figure 5-1). 

A second group (B) is described by both lower Sr and Ba concentrations than Ca. Both 

groups’ ratios are in the range that Price and Middleton (1999) plotted as indicative of plant 

materials, however, the study used direct samples of plant and animal tissues, so the values 

are not directly comparable; presumably, those resulting from the decomposition in 

sediments would be lower. The mean Ba/Sr ratios are also lower in food storage feature 

samples than the control samples at similar rates, but slightly lower than Knudson and 

Frink’s (2010) study of archaeological sediments from food processing features. 

While the lower Ba/Sr ratios may indicate the presence of marine resources, the 

elemental compositions of the Group B also indicate potential marine/anadromous fish and 

terrestrial inputs. The composition Group B features have the lowest Ba/Sr levels and are 

also more elevated than the group describing fish (Na, Mg, Mn, P, and K) and terrestrial 

Table 5-3. Hypothesis 3 Results and Summary 

Hypothesis  

H-31: Food storage features are similar in geochemical composition  

 Results Phase II: 

• Distinct groups of Ba/Sr Ratios suggest distinct contents. 

• But resource distinctions not clear. 

 Conclusion: not met 

H-31: Food storage features have distinct geochemical compositions 

 Results Phase II: 

• Multiple storage features likely represented. 

• Low Ba/Sr Ratios suggest in some features marine inputs. 

 Conclusion: Maybe? 
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resources such as plant or caribou processing areas (K, Mg, Sr, Cr, Fe, Ni, and Pb) (Table 

5-4) (Butler et al. 2013; Knudson and Frink 2010). However, these elements are observed 

at similar concentrations in Group A features. Additionally, Group B have higher 

concentrations of Fe and Zn which may be indicative of marine mammal soft tissue and 

blood (Couture et al 2016; Brunborg et al. 2006; Yamamotto, 1987; Shahidi and 

Synowiecki 1993). Overall, I interpret this to indicate that different contents are 

represented in the food storage features. Group A likely represents storage features used 

primarily for terrestrial resources and Group B represents food storage features that stored 

marine resources. 

Interestingly, Indeterminate 1188A (CAKR 15345), where a whale vertebra was 

recovered from the lower deposits, is reclassified as a house feature that plotted near the 

food storage features. The Ba/Sr/Ca ratios of this feature place it as a transitional feature 

between the two groups and supports the interpretation of marine inputs for Group B. It is 

possible that the observed differences do not explicitly reflect the specific use of a feature 

for distinct food resource type but rather, more generally, a pattern of caching. Particularly 

in Group A, this interpretation may be explained by the removal of food resources from 

storage features. Removal of contents from a food storage feature may not leave behind 

adequate archaeological/anthropogenic residues to identify the contents of a feature, 

However, repeated use of a storage feature as it remains in the systemic context (repetitive 

filling and removal of contents), or if the contents are left in place, entering the 

archaeological context, and thus allowed to decompose in situ it is likely that adequate 

residues will be present. 



 

81 

While I accept the alternative hypothesis (H-31) that different contents of the food 

storage features are represented, my analysis also shows that interpretation of food storage 

features contents is more complicated than initially thought. My results suggest that the use 

of storage features is more nuanced, and perhaps the food storage features present at the 

Cape Krusentern site complex were, unsurprisingly, used to hold more than a single food 

resource type or perhaps both food and non-food resources all together. 
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Table 5-4. Ba/Ca and Sr/Ca Ratios for Feature Classes 

Sample Feature Class Ba/Ca Sr/Ca 

Log 

Ba/Ca 

Log 

SR/Ca 

CAKR 14015 Control 0.261 0.022 -0.583 -1.653 

CAKR 14018 Control 0.307 0.016 -0.514 -1.795 

BCS-02 Control 0.307 0.03 -0.513 -1.52 

BCS-03 Control 0.337 0.032 -0.473 -1.497 

BCS-04 Control 0.442 0.044 -0.355 -1.36 

CAKR 14173 Control/ Vegetation Anomaly 0.367 0.026 -0.436 -1.59 

CAKR 14175 Control/ Vegetation Anomaly 0.291 0.015 -0.536 -1.822 

 Mean control 0.342 0.027 -0.471 -1.597 

CAKR 14401 Food Storage Feature 0.229 0.021 -0.64 -1.67 

CAKR 14410 Food Storage Feature 0.068 0.013 -1.166 -1.896 

CAKR 14430 Food Storage Feature 0.3 0.025 -0.523 -1.598 

CAKR 15197 Food Storage Feature 0.22 0.012 -0.658 -1.912 

 Mean Food Storage Features 0.204 0.018 -0.747 -1.769 

CAKR 13640 Indeterminate 0.148 0.021 -0.83 -1.683 

CAKR 13968 Indeterminate 0.281 0.019 -0.551 -1.724 

CAKR 14179 Indeterminate 0.265 0.017 -0.577 -1.772 

CAKR 14359 Indeterminate 0.28 0.042 -0.552 -1.379 

CAKR 14396 Indeterminate 0.093 0.014 -1.033 -1.851 

CAKR 14531 Indeterminate 0.147 0.018 -0.832 -1.743 

CAKR 14978 Indeterminate 0.15 0.027 -0.825 -1.567 

CAKR 15036 Indeterminate 0.392 0.018 -0.407 -1.75 

CAKR 15081 Indeterminate 0.275 0.021 -0.561 -1.686 

CAKR 15085 Indeterminate 0.243 0.019 -0.615 -1.713 

CAKR 15159 Indeterminate 0.094 0.006 -1.025 -2.229 

CAKR 15341 Indeterminate 0.05 0.004 -1.303 -2.389 

CAKR 15345 Indeterminate 0.195 0.019 -0.711 -1.719 

CAKR 15348 Indeterminate 0.351 0.03 -0.455 -1.529 

CAKR 15003 Indeterminate 0.041 0.009 -1.383 -2.042 

CAKR 15350 Indeterminate 0.088 0.013 -1.054 -1.878 

 Mean Indeterminate 0.193 0.019 -0.795 -1.791 
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Figure 5-2. Biplot of Ba/Sr and Ba/Ca Ratios. 



 

84 

Confounding Factors 

Several confounding factors exist that complicate my data analysis. First, sampling 

bias represents perhaps the greatest potential in confounding the results of Phase I, as well 

as challenges in post-hoc geochemical analyses. Though some patterning by sample depths 

is apparent in the data (Figure 4-2), not all features were sampled at the same regular 

intervals or to the same depth (Table B-1). Bulk sediment sampling only from cultural 

deposits is not out of the norm for archaeological studies, but this is problematic as it does 

not create a complete or even picture of the archaeological features, and skews data toward 

positive cultural results. Sampling bias does exist in the bulk sample collection from the 

Complex. Not all features are represented by a complete vertical column of bulk sediment 

samples, and this sampling bias may account for the lack of moderate range of phosphate 

reactions in house feature samples, as well as the complete lack of reactions in the two 

house and indeterminate features (House 1180A-CAKR 15034); House 5664B-CAKR 

14979; Indeterminate 1185A-CAKR 15081; Indeterminate 1190A-CAKR 15348). All 

available samples from these features are from the upper 30 cmbd, and examination of the 

test unit profiles indicates that they are from just above the primary cultural deposits  

(Profile drawings are provided in appendix C; profile drawings of all features are included 

in Freeburg and Anderson 2012: 192, 197, 222). While it is possible that leaching and other 

processes such as permafrost have acted on the sediments in these features, I do not believe 

that leaching is a major contributing factor to the observed differences in elemental 

composition or phosphate reactions in these or the other features at the complex. As shown 

in Figure 4-2 phosphate reaction intensity vary across the range of sample depths. 

Additionally, permafrost is not interpreted as a confounding factor for interpreting the 
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results as while it was encountered during the shovel testing survey, it was primarily limited 

to the older ridges, and explicitly was not encountered in the exaction units of features used 

in my analysis. 

The lack of reactions in Vegetation Anomaly 3624B and select known cultural 

deposits is interesting but not entirely unexpected given the multitude of possibilities that 

may affect where archaeological residues may be present. Such factors as archaeological 

context (roof sods, posit abandonment infill, etc.) or post-depositional processes may affect 

the expression or preservation of archaeological residues. However, given that the house 

and indeterminate features with only negative results are sampled from relatively close to 

the surface, this cannot be confirmed, and sampling bias is likely a contributing factor for 

these specific features. As the sample depths are within the depth range of a majority of 

the positive phosphate reactions (Figure 4-2), it is also possible that they may represent 

cultural phenomena. Specifically, if the indeterminates represent storage features that had 

been emptied prior to abandonment or only saw short term use, their geochemical 

expression may be limited. Therefore, I recognize that the lack of deeper deposits in the 

two house features are likely resultant from sampling bias. However, I do not fully attribute 

the negative reactions in the indeterminate features to sampling bias. Additionally, I do not 

attribute sampling bias as a contributing factor in the vegetation anomaly samples as it is 

vertically well represented. In the vegetation anomaly, five samples cover a depth range of 

50 cm, common depths for positive phosphate reactions. 

In Phase II three main confounding factors are at play regarding interpreting 

geochemical analysis data. The first of these factors is founded in my hypothesized 

geochemical expression of house versus food storage features. In Chapter 3 I postulated 
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that house deposits would have a broader range of elevated or depleted elements within the 

soils, and that these elements would be found at higher concentrations in comparison to 

food storage features. The wider composition and higher concentrations are thought to 

reflect the wider range of daily activities that took place within house structures in 

comparison to the relatively limited types of past activities that are associated with caching 

of food resources. That is, I expected food storage features to have contained a limited 

range of items that would have a more simplistic geochemical signature , and be relatively 

“clean” of waste sediments, such as midden deposits that would be more likely found in 

house features or other areas. Contrary to this, in my analysis, food storage features showed 

a broader suite of elemental enrichments at higher elevations than house features. The 

overall high values observed in the house features, although lower than food storage 

features, likely indicate that the activities and sources of elemental loadings are being 

observed as hypothesized but are not interpretable to unique behaviors. In addition to the 

previously discussed overlap in residue sources, interpreting the results is confounded by 

the possible masking of enrichment levels from cleaning events, taphonomic processes, or 

post-depositional processes. 

The lower concentrations observed in house deposits may reflect a taphonomic 

process or an explicit past human activity. It is probable and expected that not all sediments 

in house deposits would show the same intensities of element enrichments. Deposits found 

in house features are typically from three contexts: 1) roof, 2) infill, and 3) occupation 

layers (e.g. living surfaces, floors, subfloors). Sod roof deposits are expected to have some 

anthropogenic enrichments (likely similar to external midden deposits and general waste 

decomposition) but are not likely to be as elevated as floor or other occupational cultural 
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deposits. Infill usually comes from collapse of roof structures, local sediments, or 

completely natural sediment influx such as beach overwash from intensive storm activities. 

Infill deposits representing post-depositional (i.e. abandonment) processes sourced from 

cultural deposits should still show enrichment levels, but potentially at lower 

concentrations than living surfaces. This enrichment level however would still likely be 

dependent on the specific context of the source material; as food, hides and furs as well as 

other materials that may leave geochemical traces, could have been stored in rafter type 

storage. 

Secondly, the broad composition and lower concentrations in houses may represent 

well-documented past human activities. Cleaning events, such as regular sweeping and 

maintenance of house floor deposits, is well known from Arctic research (Couture et al. 

2016, 2017; Norman et al. 2017). Additionally, structural elements such as wood from 

floors and walls were often harvested post-abandonment for use in new structures (Alix 

2005, 2016; Larsen and Rainey 1948; Norman et al. 2017). It is expected that as a result of 

these activities, much of the sediments containing archaeological residues would be 

masked, removed, or disturbed as it moves from its primary context (systemic context) into 

secondary refuse deposit as it may be found in the archaeological context (Schiffer 1972, 

1987). Cleaning events, if not fully erasing, are likely to muddle and dilute specific 

anthropogenic signatures from floors or in tunnel deposits in house features. Removal of 

floorboards and disturbance of sediments would also increase the susceptibility of these 

deposits to post-depositional processes that may affect the expression of the anthropogenic 

residues. 
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Thirdly, it is possible that the location, construction, and structure of the food 

storage features are determining factors for their broader and higher geochemical 

expression in comparison to houses. Specifically, food storage features are often associated 

with habitation sites, and may be connected internally to, or located externally near, houses. 

It is also possible that their construction represents simpler structures than expected. Many 

of the food storage features are likely simple pits with little or no structural elements, or, 

as discussed above, had their structural elements removed. This would allow for post-

abandonment infill of these features from sediments, such as external midden, that are 

heavily influenced by many anthropogenic activities and would likely have geochemical 

signatures similar to house deposits or at higher enrichments. 

Similarly, complexity in human use of space represented by the likely performance 

of multiple activities at a single location and overlap in the elemental signature sources in 

house features and occupation sites, confounds the interpretation of the indeterminate 

features. Specifically, in houses, side rooms and alcoves where storage of materials 

occurred would likely have similar signatures. This potential is highlighted by the broad 

overlap in geochemical signatures and limited cross validation in the DFA results. In 

particular this can be seen in the three indeterminate features reclassified as houses. At 

Indeterminate 1178A (CAKR 14978) the excavation profiles suggest a small pit feature 

(Freeburg and Anderson 2012, 187). This feature is adjacent to Indeterminate 1195A which 

was reclassified as a house and indicates a burn or cooking deposit in the profile (Freeburg 

and Anderson 2012, 200). At Indeterminate 1188A (CAKR 15345) a whale vertebra was 

recovered from the lower deposits, but no specific structural components were noted in the 

profile (Freeburg and Anderson 2012, 195). This feature is associated with a cluster of 
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indeterminate features, including Indeterminate 1190A (15348), which was also 

reclassified as a house feature by my analysis (Freeburg and Anderson 2012, 198). At 

Indeterminate 2603B (CAKR 13968), the excavation profiles suggest a small pit feature 

(Freeburg and Anderson 2012, 213) located near Indeterminate 2604B (CAKR 13989), 

which was reclassified as a house feature in my analysis. It is plausible that some of the 

indeterminates identified as house or food storage features, and samples from house or food 

storage features represent components of house features, where caching of resources 

occurred, or cultural deposits from occupation surfaces. 

It is also possible that other types of feature classes (e.g. community structures, 

processing areas for specific food (i.e. fish) or non-food materials, kitchen alcoves, or open 

air activity areas), not included in my analysis, are represented in the indeterminate feature 

class. The dispersion of indeterminate features in the PCA and DFA suggests that the 

relationship between feature categories, while distinct, is more nuanced than the few 

specific groups used in my analysis. The dispersion may suggest multiple feature categories 

not identified by the typical archaeological survey feature classes. In my PCA, four cultural 

feature samples group close to the control and vegetation anomaly samples. These features 

include a single house feature sample and three indeterminate samples. The inclusion of 

indeterminate feature samples in DFAc as controls may represent archaeological activities 

with limited geochemical expression in sediment residues, such as caching of non-food 

resources, expedient lithic tool production, or casual discard.  
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Discussion Summary 

My analysis indicates that Vegetation Anomaly 3624B (CAKR 14173 and CAKR 

14175) lacked consistent cultural indicators and I cannot reject the null Hypothesis 1. I 

conclude that it is a natural feature and that similar features at the site complex are likely 

natural features as well. As postulated in Hypothesis 2, both house and food storage 

features are represented in the indeterminate feature class. From the results of my analysis 

I conclude both Hypothesis 2a and 2b are supported, though the signatures that define the 

feature classes are more complex and nuanced than I expected at the outset of this project. 

Many confounding factors limit the ability to directly estimate the number of house or food 

storage features represented by the indeterminate features. My analysis indicates that 10 

indeterminate features are possibly house features or closely associated with house 

features, though as many as 13 may represent significant cultural deposits. Minimally four 

indeterminate features are likely food storage features. The dispersion and classification 

throughout the PCA and DFA indicate as many as 15 may be some form of storage feature. 

It is also possible that many of these indeterminate features represent other archaeological 

activities not clearly defined by the archaeological constituents. 
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Chapter 6 - Conclusions 

The goal of this thesis was to identify anthropogenic features and the original 

human behaviors that contributed to feature formation at Cape Krusenstern through soil 

geochemical analysis. In Phase I of my analysis, I performed photometric soil phosphates 

spot tests on bulk soil samples recovered from the Cape Krusenstern National Monument. 

The purpose of this Phase was twofold; (1) Attempt to reclassify an archaeologically 

ambiguous vegetation anomaly as an anthropogenic archaeological feature, and (2) identify 

soil samples with the greatest potential to contain archaeological signatures for elemental 

composition analysis by ICP-MS in Phase II. In Phase II of my analysis I performed an 

ICP-MS analysis to characterize the bulk samples and carried out subsequent statistical 

analysis on the elemental concentration data set. The purpose of the second Phase was 

threefold: (1) Collect and identify elemental concentrations and significant patterning 

present in the Cape Krusenstern samples, (2) establish distinctions between cultural feature 

classes, and (3) identify the range of human activities that created the indeterminate 

features by reclassifying them as house or food storage features. 

The results of the soil phosphates photometric test I performed in Phase I identified 

the samples with the greatest potential from each feature to contain archaeological residues 

or signatures, reducing the number of archaeological samples included in Phase II from 

150 to 39 samples. Additionally, the analysis did not indicate that Vegetation Anomaly 

3624B (CAKR 14173 and CAKR 14175) contained soil phosphates (an indicator of past 

human presence). Under the criteria of hypothesis 1, Vegetation Anomaly 3624B (CAKR 

14173 and CAKR 14175) was not reclassified as an indeterminate feature but was included 

in Phase II of the analysis to further investigate its origin. The results of Phase II supported 
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the interpretation of Vegetation Anomaly 3624B (CAKR 14173 and CAKR 14175) as a 

natural feature and ultimately PCA and DFA led to the rejection the alternative hypothesis 

(H-11) and the acceptance of the null hypothesis (H-10) (Table 5-1). 

Many such vegetation anomaly features exist at the Cape Krusenstern National 

Monument, and identifying their nature is worth pursuing. Although this single feature is 

not identified as an anthropogenic feature, the other vegetation anomalies may be 

anthropogenic. This analysis does, however, suggest that limited testing in these features 

provides adequate information to assess the features’ likely origin, and that in-field 

observations are reliable. ICP-MS represents a valid and low impact method to identify the 

nature of these features. As a natural feature, the vegetation anomaly may have formed 

from a multitude of geomorphological processes or natural phenomena such as ice push-

ups, freeze-thaw, and animal denning. Further research into the nature of these features 

will help to reconstruct the human occupation history of the Beach Ridge Complex. Further 

research may identify these processes and explain why archaeological features are not 

present at certain locations on the beach ridges. 

Phase II of my analysis included the elemental characterization of the 

archaeological samples and offsite control samples using ICP-MS. The results of my 

geochemical and statistical analysis supported my second hypothesis; ANOVA, PCA, and 

DFA showed that the distinctions are traceable to distinct feature categories, indicating that 

the cultural features differed from non-cultural samples, and that archaeological feature 

classes can be statistically characterized by a suite of elemental concentrations. Using these 

distinctions, PCA corroborated other geochemical studies and identified element groups 

that distinguished between control or natural features and cultural features. Secondly, it 
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indicated that distinguishing between cultural feature classes is possible, substantiating 

Hypothesis 2. Specifically, it shows that the indeterminate features could be reclassified 

based on their element concentrations, though interpretation is confounded by many factors 

including overlap in the source of archaeological residues. There is also the possibility that 

multiple feature classes not specifically identified by my analysis are represented by the 

indeterminate samples. My analysis of food storage features did not specifically indicate 

the anthropogenic source of differences in use, however, a potential distinction based on 

marine soil inputs is present. A marine resource food storage feature group is described by 

relative enrichments of Sr and depletions of Ba/Sr and Ba/Ca, and a second storage feature 

type may be indicative of another resource type represented by overall higher Ba/Sr and 

Ba/Ca ratios. Thus, while I interpret that multiple storage features are represented, their 

nature as specific food storage feature categories is not explicitly clear. Instead, a more 

general pattern of caching is expressed in the archaeological record. Hypothesis 2c is likely 

but I am not able to explicitly confirm it. 

Implications for Regional Research and Study of Thule Subsistence Practices 

Further classifying the indeterminate features has implications for interpretations 

of the local and regional occupational history of the last 2500 years. Clarifying the 

archaeological nature of these features advances our understanding of the occupation 

intensity at the site complex as it relates to the increases in sedentism, population growth, 

and resource competition that may have led to inland migrations of peoples during the 

Thule period. At the Cape Krusenstern beach ridge complex, 60% of features (971 of 1617) 

are indeterminate features, which hinders our ability to reconstruct past life ways and 
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population levels at the site complex. Accurate interpretation of the Complex’s occupation 

history requires accurate identification of archaeological features, their original function, 

and accurate interpretation of the original behaviors that created them. My analysis shows 

that 10 to 13 indeterminate features may potentially be house features, and four to 15 

features may represent food storage features. Additionally, eight indeterminate features 

suggest that an additional feature class may be represented in the data set. 

In Northwest Alaska and elsewhere, the presence and quantities of semi-

subterranean houses and food storage features are used as indicators of increased sedentism 

and intensification of resource use (Ames 1994; Anderson and Freeburg 2014; Dumond 

1975; Giddings and Anderson 1986; Mason 1998). Estimates of population derived from 

the number of house features may be affected dramatically as an increase of 10 to 13 house 

features at the site complex is a 7.9 to 10.2% increase, respectively, and an increase of four 

to 15 food storage features is a 1.5 to 5.2% increase, respectively. These increases, though 

small, may help elucidate the nature of decreases in settlement sizes and occupation 

intensity by providing more known features on which to base our interpretations. Indicating 

that more houses and food storage features are present at the site complex may help answer 

questions about increasing population pressures and resource competition that led to the 

dispersion of Thule people around the coast and migrations into the interior (Gerlach and 

Mason 1992; Mason 1998; Mason and Barber 2003). 

My research accompanies a growing body of work that increases the regional 

importance of the Cape Krusenstern occupations for interpreting cultural transitions and 

social interactions in the Arctic (Anderson and Freeburg 2014; Anderson et al. 2018; 

Freeburg and Anderson 2012). While the total number of features I analyzed is relatively 
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small in comparison to the number of features present at the complex, the elucidation of 

the archaeological nature of these features advances our understanding of the occupation 

intensity at the site complex as it relates to the increases in sedentism, population growth, 

and resource competition that may have led to inland migrations of peoples during the 

Thule period. The increase of possible house features as indicated by my analysis suggests 

that the population at Cape Krusenstern during the Thule period may be greater than 

previously thought. Additionally, my results have potential in studying past food 

processing and storage behavior during the Thule Period. 

Implications for Method Application 

The application of multi-elemental geochemical analysis is seeing increasing but 

still limited application in coastal Arctic settings and represents an opportunity to explore 

and assess this method for feature identification and interpretation of past human behavior 

in the Arctic. My research shows that ICP-MS is a useful method in Arctic research. Again, 

though the number of features I analyze in this study represents only a small portion of the 

total number of indeterminate features and vegetation anomalies, the results of my project 

indicate the potential of geochemical analysis for other features from the site complex and 

can be used to guide further archaeological investigations. Although the results of these 

tests are highly specific to the locality of the samples, general trends in elemental 

concentrations associated with known archaeological features are important for testing and 

corroborating interpretations of elemental signatures as archaeological activities. These 

results contribute more generally to the understanding of site formation processes and 

identification of archaeological features. My results align with the growing body of 
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geochemical research in Arctic archaeological settings, and I identified a similar suite of 

elements (Sr, Ca, Cu, Ba, Na, P, and Zn) that define cultural versus natural deposits. 

Additionally, I am contributing to the geochemical literature by identifying elemental 

signatures that possibly show distinctions between cultural feature types, specifically house 

and resource storage features. 

More broadly, my analysis represented an opportunity at exploring and assessing 

geochemical analysis for feature identification. Traditionally, archaeological geochemical 

analyses have focused on individual features or sites to guide archaeological excavations 

or identify aspects of spatial variation within a feature or connect elemental signatures to 

explicit past behaviors (see Couture et al. 2016 and Knudsen et al. 2010 respectively). In 

contrast, the analysis I performed uses geochemical signatures to asses archaeological 

feature identification at the landscape scale, while providing greater details about the 

archaeological record. My analysis shows that while there is still more work to be done in 

using geochemical analysis at this scale, there is great potential with these types of analysis. 

The results of my project also show the value of analyzing previously obtained 

collections and bulk samples that have already been removed from the field. I use this 

conservative ethic to provoke worthwhile research without further destruction to 

archaeological sites from new excavation. Bulk sediment samples are routinely collected 

during field projects but are all too often under-investigated or completely ignored after 

initial collection and curation. And though this process is destructive, it is considered 

minimally so, requiring that only a few grams of fine sediment be destroyed, and can be 

conducted using minimally invasive sampling techniques. My research suggests that 

sediments removed from the field offer a viable route of inquiry to explore and collect 
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detailed archaeological data that may not be readily observable through other traditional 

means. Additional experimental geochemical studies specifically targeted at connecting 

and identifying past household activities associated with occupation and food storage 

features may provide greater insight into interpreting the geochemical signatures, and 

account for the observed variations identified in my analysis. There is great potential for 

soil geochemical studies to provide the data to illuminate subsistence and settlement 

patterns, as well as social and population dynamics, and to identify past human behaviors. 
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Appendix A Phase One: Photometric Phosphates Reactions 
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Appendix B Phase Two: ICP-MS Element Concentration Data. 
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ICP-MS Analysis Data Validation 

Accuracy of the analysis is considered good for all elements with exception of S. 

Accuracy is measured here as percent difference between expected and predicted values of 

the external standards. Generally, all standards measured within 10 % of the expected 

concentration values. Measurements with high (≥ 20 %) percent differences were not 

included in calibration curves. Sulfur and phosphorus are hard elements to ionize and 

measure in ICP-MS analysis (Nakano 2018). Intensities (CPS) of sulfur are low in the 

available standards and only recorded in higher concentrations of (between 1000 and 5000 

ppb). Phosphorus intensities were similarly low in the standards, but were recorded across 

the range of standard dilutions, and a reliable concentration curve was produced. 

Precision of the analysis is considered excellent for select elements and good to 

poor for the remainder discussed below. The analysis indicated excellent precision (%RSD 

values ≤ 5 %) for the Na, Cr, Fe, Co, Ni, Cu, Zn, Pb standards while precision of Mg, K, 

Mn, Sr, and Ba is considered good (%RSD values ≤ 10 %). Precision is considered fair to 

poor for analyte elements Al (Fair; 5 % to 25 %), P (Poor; 3.3 % to 100 %), S (Not reliably 

detectable), and Ca (Poor; 5.6 % to 173.2 %). Most often the high %RSD values are 

obtained in the low end of standard concentrations (≤ 50 ppb). High %RSD values are 

excluded from calibration curves when possible. Unfortunately, S was not able to be 

measured accurately or reliably in the range of available standard concentrations, as such 

it was excluded from further analysis. Despite the fair to poor precision in Al, P, and Ca, 

these elements are included in the statistical analysis given their importance in 

anthropogenic signatures. 
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ICP-MS Analysis Method Validation 

Each analyte element was recovered within ± 25 % of the expected reference values 

with exception to Al, Mn, Fe, and Ca which recovered in significantly lower quantities (≤ 

59 %), while S and P are recovered in significantly higher quantities than expected. 

Precision for the method is considered excellent with %RSD observed at or below 10 % 

for all analyte elements with exception to P, S, and Ca. The low recovery of Al, Mn, and 

Fe suggest that the high recovery of S and P is likely related to the high imprecision 

associated in the measurement of these elements in the analysis. As noted previously, these 

elements are particularly difficulty of measuring in ICP-MS analysis. Due to the 

importance of P and Ca as anthropogenic indicators, I include these elements along with 

Al, Mn and Fe in the statistical analysis with the caveat that their concentration values are 

likely reporting as lower than the actual concentration in the samples. 

  



 

122 

 

Table B-1. Descriptive Statistics of Analyte Elements by Feature Class 

Na 

Mean  Max. Min. 

Std. 

Dev. 

 Mn 

Mean Max. Min. 

Std. 

Dev. 

Total: 5.315 5.957 4.817 0.221  Total: 5.492 5.918 4.746 0.276 

Control (n=5) 5.187 5.248 5.050 0.082  Control (n=5) 5.476 5.821 5.101 0.284 

Veg. Anom. (n=2) 4.919 5.020 4.817 0.144  Veg. Anom. (n=2) 5.539 5.564 5.514 0.035 

Cultural (n=37) 5.356 5.957 4.962 0.893  Cultural (n=37) 5.489 5.918 4.746 0.538 

House (n=8) 5.283 5.644 5.171 0.154  House (n=8) 5.403 5.737 4.906 0.291 

Food Storage 

(n=4) 

5.418 5.889 5.213 0.317  Food Storage 

(n=4) 

5.556 5.832 5.345 0.230 

Indeterminate 

(n=25) 

5.367 5.957 4.962 0.211  Indeterminate 

(n=25) 

5.509 5.918 4.746 0.296 

 

Mg 

Mean  Max. Min. 

Std. 

Dev. 

 Fe 

Mean  Max. Min. 

Std. 

Dev. 

Total: 6.41 6.97 5.93 0.21  Total: 6.823 7.462 6.513 0.148 

Control (n=5) 6.255 6.586 6.087 0.21  Control (n=5) 6.789 7.012 6.664 0.135 

Veg. Anom. (n=2) 6.214 6.275 6.153 0.09  Veg. Anom. (n=2) 6.774 6.787 6.761 0.018 

Cultural (n=37) 6.453 6.970 5.933 0.20  Cultural (n=37) 6.833 7.462 6.513 0.154 

House (n=8) 6.414 6.589 6.020 0.18  House (n=8) 6.768 6.894 6.655 0.094 

Food Storage 

(n=4) 

6.495 6.559 6.422 0.06  Food Storage 

(n=4) 

6.890 6.987 6.810 0.078 

Indeterminate 

(n=25) 

6.449 6.970 5.933 0.22  Indeterminate 

(n=25) 

6.841 7.462 6.513 0.174 

 

Cr 

Mean  Max. Min. 

Std. 

Dev. 

 Co 

Mean  Max. Min. 

Std. 

Dev. 

Total: 3.854 4.078 3.476 0.142  Total: 3.811 4.308 3.523 0.156 

Control (n=5) 3.667 3.863 3.476 0.153  Control (n=5) 3.703 3.842 3.523 0.136 

Veg. Anom. (n=2) 3.601 3.712 3.490 0.157  Veg. Anom. (n=2) 3.720 3.763 3.677 0.061 

Cultural (n=37) 3.885 4.078 3.671 0.104  Cultural (n=37) 3.816 4.308 3.543 0.156 

House (n=8) 3.862 3.920 3.807 0.045  House (n=8) 3.785 3.965 3.686 0.101 

Food Storage 

(n=4) 

3.889 3.948 3.834 0.048  Food Storage 

(n=4) 

3.815 3.941 3.737 0.096 

Indeterminate 

(n=25) 

3.904 4.078 3.671 0.122  Indeterminate 

(n=25) 

3.848 4.308 3.543 0.177 

 

Ni 

Mean  Max. Min. 

Std. 

Dev. 

 Sr 

Mean  Max. Min. 

Std. 

Dev. 

Total: 4.300 4.754 3.644 0.216  Total: 4.673 5.471 4.067 0.320 

Control (n=5) 4.008 4.337 3.644 0.259  Control (n=5) 4.466 4.604 4.343 0.105 

Veg. Anom. (n=2) 4.124 4.186 4.062 0.088  Veg. Anom. (n=2) 4.348 4.392 4.303 0.063 

Cultural (n=37) 4.349 4.754 3.798 0.179  Cultural (n=37) 4.718 5.471 4.067 0.327 

House (n=8) 4.344 4.471 4.196 0.099  House (n=8) 4.651 4.916 4.356 0.206 

Food Storage 

(n=4) 

4.366 4.530 4.287 0.111  Food Storage 

(n=4) 

4.762 5.280 4.425 0.379 

Indeterminate 

(n=25) 

4.347 4.754 3.798 0.209  Indeterminate 

(n=25) 

4.732 5.471 4.067 0.358 
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Table C-2 cont’d. Descriptive Statistics of Analyte Elements by Feature Class 
Cu 

Mean  Max. Min. 

Std. 

Dev. 

 Ba 

Mean  Max. Min. 

Std. 

Dev. 

Total: 3.994 4.589 3.453 0.275  Total: 5.666 6.320 5.309 0.207 

Control (n=5) 3.703 3.842 3.523 0.134  Control (n=5) 5.544 5.661 5.414 0.101 

Veg. Anom. (n=2) 3.782 3.811 3.752 0.042  Veg. Anom. (n=2) 5.568 5.590 5.546 0.031 

Cultural (n=37) 3.999 4.589 3.453 0.284  Cultural (n=37) 5.687 6.320 5.309 0.217 

House (n=8) 4.052 4.266 3.632 0.200  House (n=8) 5.627 5.727 5.387 0.111 

Food Storage 

(n=4) 

3.903 4.267 3.453 0.397  Food Storage 

(n=4) 

5.784 6.053 5.499 0.288 

Indeterminate 

(n=25) 

4.041 4.589 3.555 0.295  Indeterminate 

(n=25) 

5.691 6.320 5.309 0.232 

           

Zn 

Mean  Max. Min. 

Std. 

Dev. 

 Pb 

Mean  Max. Min. 

Std. 

Dev. 

Total: 4.605 5.620 4.029 0.449  Total: 3.697 4.361 3.405 0.176 

Control (n=5) 4.331 4.732 4.148 0.232  Control (n=5) 3.791 4.094 3.548 0.223 

Veg. Anom. (n=2) 4.088 4.097 4.079 0.013  Veg. Anom. (n=2) 3.622 3.671 3.573 0.069 

Cultural (n=37) 4.670 5.620 4.029 0.453  Cultural (n=37) 3.688 4.361 3.405 0.173 

House (n=8) 4.576 5.313 4.226 0.366  House (n=8) 3.662 3.906 3.533 0.131 

Food Storage 

(n=4) 

4.777 5.488 4.227 0.565  Food Storage 

(n=4) 

3.592 3.710 3.419 0.142 

Indeterminate 

(n=25) 

4.683 5.620 4.029 0.473  Indeterminate 

(n=25) 

3.712 4.361 3.405 0.186 

           

Ca 

Mean  Max. Min. 

Std. 

Dev. 

 Al 

Mean  Max. Min. 

Std. 

Dev. 

Total: 6.229 7.252 5.288 0.469  Total: 6.55 6.89 6.24 0.13 

Control (n=5) 5.835 6.006 5.564 0.164  Control (n=5) 6.40 6.59 6.24 0.16 

Veg. Anom. (n=2) 5.866 5.967 5.765 0.143  Veg. Anom. (n=2) 6.42 6.50 6.35 0.10 

Cultural (n=37) 6.301 7.252 5.288 0.474  Cultural (n=37) 6.58 6.89 6.34 0.11 

House (n=8) 6.106 6.650 5.413 0.411  House (n=8) 6.53 6.69 6.37 0.10 

Food Storage 

(n=4) 6.419 7.139 5.852 0.572 

 Food Storage 

(n=4) 6.56 6.69 6.51 0.09 

Indeterminate 

(n=25) 6.345 7.252 5.288 0.479 

 Indeterminate 

(n=25) 6.60 6.89 6.34 0.12 

           

K 

Mean  Max. Min. 

Std. 

Dev. 

 P 

Mean  Max. Min. 

Std. 

Dev. 

Total: 6.217 6.385 5.919 0.108  Total: 5.799 7.454 0.000 1.427 

Control (n=5) 6.117 6.303 5.919 0.141  Control (n=5) 5.657 5.953 5.527 0.192 

Veg. Anom. (n=2) 6.216 6.251 6.182 0.049  Veg. Anom. (n=2) 5.351 5.351 5.351 0.000 

Cultural (n=37) 6.231 6.385 5.990 0.100  Cultural (n=37) 5.842 7.454 0.000 1.553 

House (n=8) 6.252 6.372 6.035 0.119  House (n=8) 5.897 6.732 5.351 0.489 

Food Storage 

(n=4) 6.201 6.339 6.138 0.095  

Food Storage 

(n=4) 6.292 7.354 5.050 0.950 

Indeterminate 

(n=25) 6.229 6.385 5.990 0.098  

Indeterminate 

(n=25) 5.753 7.454 0.000 1.842 

Bold text indicates ANOVA Significance at p= < .05; Italic text indicates T-test assuming equal variance with 

Bonferroni correction Significance p=<. 005 
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Principal Component Analysis- Cultural features only 

Table B-2. PCA-Cult. Principal Component Data of Cultural Samples Only 

 

 PC-1c PC-2c PC-3c PC-4c PC-5c 

Variance 35.963% 14.021% 10.993% 9.484% 7.695% 

Cumulative  

Variance 

35.963% 49.984% 60.977% 70.461% 78.156% 

Eigen Value 5.754 2.243 1.759 1.517 1.231 

Sr .960 .026 -.097 -.023 .043 

Ca .902 .056 -.172 -.015 .100 

Cu .816 .215 -.070 .056 -.087 

Na .765 .068 .193 .044 .003 

Ba .750 .251 .131 -.138 -.206 

P .617 -.408 .061 -.029 .047 

Zn .577 -.101 .080 .323 -.213 

Co -.046 .894 .070 -.037 -.159 

Mn .130 .865 -.134 .027 .216 

Ni .386 .523 .354 .064 .394 

Cr -.221 -.070 .988 -.051 .207 

Al .181 .030 .732 .031 -.263 

Fe .081 .156 .207 .826 -.134 

K .156 .167 .362 -.776 -.204 

Mg .101 .114 .251 .249 .850 

Pb .152 .064 .186 .243 -.677 
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 Figure B-1. PCA-Cult. Biplots of the first, second, and third principal components. 
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