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Abstract 

An abstract of the thesis of Evan V. Arntzen for the Master of Science in Geology 

presented December 5, 2001 

 

Title: In situ Hydraulic Testing and Water Quality Sampling in the Hyporheic Zone of  

the Columbia River, Hanford Reach, Washington 

 

Several chemical and radiological contaminants are present in an unconfined 

aquifer underlying the U.S. Department of Energy's Hanford Site in southeast 

Washington State.  Hexavalent chromium [Cr(VI)], previously used as an anti-

corrosive in plutonium production reactors on the shoreline of the Columbia River, is 

of particular concern because of its conservative nature, toxicity to humans and 

aquatic life, and proximity to protected salmon spawning habitat.   Hydrogeologic data 

are abundant from the unconfined aquifer, but are lacking from the hyporheic zone 

through which Cr(VI) is transported into the river.  A hydrogeologic study was 

conducted near one known Cr(VI) plume to determine the concentration and extent of 

Cr(VI), effect of anisotropy on transport of Cr(VI) into the river, and the relationship 

between changing river stage and water quality within the hyporheic zone. 

 
Forty-one piezometers were installed along a 4,000 m reach of the river at depths 

from 0.2 m to 2.0 m below the riverbed.  The piezometers were used to sample Cr(VI), 

specific conductance, dissolved oxygen, and temperature.  Cr(VI) concentrations 
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ranged from undetectable to >0.7 mg/L, with 75% of the samples above the 

federal standards for protection of aquatic life and 25% above federal drinking water 

standards.  Vertical hydraulic gradients ranged from -0.01 to +0.30.  Hydraulic 

conductivity values, estimated using slug tests, ranged from 2.8 x 10–5 cm/s to 4.3 x 

10-2 cm/s and were largest in areas with high Cr(VI) concentrations.  Specific 

discharge values were estimated using borehole dilution and ranged from 4.0 x 10-3 

cm/s to 1.5 x 10-1 cm/s.  In general, an inverse correlation was determined for river 

stage versus Cr(VI) and other water quality parameters; further investigation 

determined the relationship to be hysteretic.  Results showed that 0.044 kg/d Cr(VI) 

entered the river, and the concentration of Cr(VI) in the Columbia River downstream 

of the 100D Area was 1.8 x 10-7 mg/L .  This study produced results which will allow 

managers to make better risk-based decisions on Cr(VI) impacts to the biota living in 

the hyporheic zone. 
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Chapter 1: Introduction 

In 1943 the first of nine nuclear plutonium production reactors was constructed 

at the United States Department of Energy’s Hanford site in southeastern Washington 

(Figure 1).  The reactors were operational from 1944 to 1984 and produced weapons  
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Figure 1:  Former plutonium production reactor areas on the Hanford Site, southwest 
Washington State. 
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grade plutonium for World War II and the cold war (Becker, 1990).  All nine reactors 

were constructed along the bank of the Columbia River because large volumes of water 

were needed for cooling and removing waste.  Treatment, storage, and disposal of liquid 

and solid waste during the reactor operation period have resulted in extensive 

contamination of the unconfined aquifer the reactors are built upon (Dirkes et al., 1998).   

Hanford site-wide monitoring efforts test for the presence of several chemical 

and radiological substances in the ground water (Table 1).  Among these  

Table 1:  Radiological and chemical contaminants at Hanford.  
Radiological  Chemical 
Americium-241 Ag, Al, As, B, Ba, Be, Br-, Ca, Cd 
Antimony-125 Co, Cu, Cr, Cr(VI), Cl-, CN- 
Beryllium-7 Fe, F-, Hg, K, Li, Mg, Mn 
Carbon-14 Na, NH4+, NO3-, Pb, Sb, Se, Si, Sn 
Cesium-134 Sr, SO4-2, Ti, Tl, V, Zn 
Cobalt-58, Cobalt-60 Alkalinity 
Europium isotopes Chemical oxygen demand 
Gross alpha Diesel oil 
Gross beta Dissolved oxygen 
Iodine-129 Electrical Conductivity 
Iron-59 Gasolene 
Neptunium-237 Oil and grease 
Plutonium isotopes Pesticides/herbicides 
Potassium-40 pH 
Radium isotopes Polychlorinated biphenyls 
Ruthenium-106 Semivolatile organic compounds 
Strontium-90 Total carbon, Total organic carbon 
Technetium-99 Total Dissolved Solids 
Tritium Total organic halogens 
Uranium (total)  Total petroleum hydrocarbons 
Uranium isotopes Volatile organic compounds 
     Notes:  Modified from the 1998 Hanford Site Environmental Report. 
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substances, many have concentrations exceeding federal maximum contamination levels 

(MCLs) determined by the Environmental Protection Agency (EPA).  These standards 

provide a reference concentration and are useful for the interpretation of water quality 

data.  Table 2 lists Hanford Site contaminants that have been measured in excess of 

federal drinking water standards.  

  

Table 2:  Hanford contaminants exceeding EPA drinking water limits. 
Constituent Chemical 

standard 
(mg/L) 

Radiological 
standard 
(pCi/L) 

Chemical constituents   
1,1-Dichloroethane 0.001 NA 
1,2 cis-Dichloroethylene 0.07 NA 
1,4-Dichlorobenzene 0.075 NA 
Aluminum 0.050 NA 
Antimony 0.006 NA 
Antimony 0.006 NA 
Arsenic 0.050 NA 
Bis(2-ethylhexyl)phthalate 0.006 NA 
Cadmium 0.005 NA 
Carbon tetrachloride 0.005 NA 
Chloroform 0.100 NA 
Chromium 0.100 NA 
Fluoride   4 NA 
Iron 0.300 NA 
Manganese 0.050 NA 
Methylene chloride 0.005 NA 
Nickel 0.100 NA 
Nitrogen in nitrate   10 NA 
Pentachlorophenol 0.001 NA 
pH   8.5* NA 
Sulfate    250 NA 
Thallium 0.002 NA 
Total Dissolved Solids    500 NA 
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Table 2: Continued   
Trichloroethylene 0.005 NA 
   
Radiological constituents   
Gross alpha NA 15 
Gross beta NA 50 
Iodine-129 NA 1 
Ruthenium-106 NA 30 
Strontium-90 NA 8 
Technetium-99 NA 900 
Tritium NA 20,000 
     Notes:  Modified from the 1997 Hanford Site Groundwater 
Monitoring Report.   
*Unitless hydrogen ion concentration, not mg/l. 
 

The most widespread contaminants in the unconfined aquifer are nitrate, tritium, 

and iodine-129 (Hartman et al., 2001).  There are also significant contaminant plumes 

originating near former production reactors, commonly referred to as the 100 Areas 

(Figure 1).  Contaminants in the 100 areas often include chromium and strontium-90 

(Hartman et al., 2001).  Of particular concern is the presence of hexavalent chromium 

(the CrO4
2- ion; hereafter represented as Cr(VI)) in sediments underlying the Columbia 

River near several of the 100 areas (Hope and Peterson, 1996a; Peterson et al., 1998; 

Hartman et al., 2001).  Cr(VI) is a remnant of reactor operations when sodium 

dichromate was used to treat reactor cooling water to prevent corrosion in pipes 

(Hartman et al., 2001).  Water contaminated with sodium dichromate is thought to 

have leaked into the ground near facilities where it was used, and from retention 

basins and ditches where it was stored or disposed of (Hartman et al., 2001).  Cr(VI) is 

now present in the groundwater adjacent to the Columbia River, as well as present in 
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the groundwater-surface water mixing zone (Figure 2).  This zone of mixing is also 

referred to as the hyporheic zone, or the subsurface region of streams and rivers that 

exchanges water with the surface (Valett et al., 1993).  Contaminant transport through 

the hyporheic zone into the Columbia River is not well understood, and is  

 

Figure 2:  100D wells and Cr(VI) results in ? g/l (Hartman et al., 2001). 
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complicated by frequent hydraulic gradient reversals caused by river stage fluctuations.  

The stage fluctuations are controlled by hydroelectric projects upstream of the Hanford 

Reach.  Fluctuations in power production can change the river stage by up to 2 m each 

day.  Despite frequent gradient reversals, the net movement of groundwater is from the 

adjacent aquifer toward the Columbia River.  Thus, groundwater containing Cr(VI) is 

migrating into the Columbia River.   

Cr(VI) is a concern near the 100 Areas because it is toxic to humans and aquatic 

life, very mobile, and highly soluble (Palmer and Wittbrodt, 1991; Hope and Peterson, 

1996b; Hartman and Dresel, 1998).  In addition, the Hanford Reach provides habitat 

for fall chinook salmon (Oncorhynchus tshawytscha) that spawn in highly selective 

areas of the riverbed (Geist et al., 1994).  In some cases salmon spawn near known 

Cr(VI) plumes (Figure 3).  Hyporheic chromium concentrations as high as 0.130 mg/L 

have been detected near dense fall chinook salmon spawning areas in the vicinity of 

the 100H Area reactor (Hope and Peterson, 1996b).  Near the 100D Area reactor 

values as high as 0.6 to 0.8 mg/L have been detected close to less dense spawning 

areas (Hartman and Dresel, 1998; Arntzen unpublished data, 2000).  These values 

exceed the U.S. EPA’s 0.01 mg/L chronic ambient water quality criteria (AWQC) for 

chromium by up to 60 times and exceed the EPA’s 0.1 mg/L federal MCL for 

chromium in drinking water (EPA 1986; WAC 173-201A-040).   

Unpublished data collected from fall 1997 to winter 2000 suggest that 

concentrations of Cr(VI) entering the river vary significantly on a scale of tens of  
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Figure 3:  Salmon spawning near Cr(VI), Hanford Reach Washington. 

 

meters or less.  Although concentrations are diluted below detection limits upon entry 

into the river, potentially damaging chromium levels exist within sediment underlying 

the river.  Therefore it is possible that aquatic life, especially salmon eggs and fry which 

are present within river gravel, are coming into contact with significant levels of Cr(VI).  

The potential damage inflicted by Cr(VI) is affected by the duration, concentration, and 

life stage of the salmon during exposure.  The problem is that few data exist to help 

predict the nature and magnitude of that contact.  Spatial variability of Cr(VI) 

contamination in the riverbed, the physical properties of the environment that control the 
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Cr(VI) variability, and the effect of changes in river stage control the interaction of 

aquatic organisms with Cr(VI).  

Statement of the Problem 

Evidence suggests that physical properties (e.g. hydraulic conductivity and 

hydraulic gradient) of the hyporheic zone influence the concentration and quantity of 

contaminants discharging into the Columbia River via specific discharge of subsurface 

waters.  The problem is that these relationships are not well understood.  The purpose 

of this study was to collect empirical data from the hyporheic zone that can be used to 

reduce the uncertainty of how physical properties (e.g. hydraulic conductivity and 

hydraulic gradient) influence the specific discharge and consequently the quantity of 

Cr(VI) reaching the river.  This thesis addresses five working hypotheses: 

1) Cr(VI) and specific conductance are inversely correlated with river stage 

?? Null hypothesis:  there is no significant correlation between water quality 

and river stage 

2) Cr(VI) and specific conductance are positively correlated with depth below the 

riverbed 

?? Null hypothesis:  there is no significant correlation between water quality 

and depth 

3) Hydraulic conductivity varies spatially  

?? Null hypothesis:  all hydraulic conductivity values are equal 

4) Cr(VI) concentrations are higher in zones of higher permeability 
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?? Null hypothesis:  hydraulic conductivity does not correlate with Cr(VI) 

5) Values of specific discharge are higher in zones of higher permeability 

?? Null hypothesis:  hydraulic conductivity does not correlate with specific 

discharge 

Hanford Site Hydrogeology 

The Hanford Reservation lies adjacent to the Columbia River within the Pasco 

Basin of the Columbia Plateau (Figure 1).  Hanford is bordered by basalt ridges 

comprising the Saddle Mountains to the north and Rattlesnake Mountain to the south.  

Major geologic units present within the Hanford Site include the Miocene Columbia 

River Basalt Group, the Miocene to Pliocene fluvial deposits of the Ringold 

Formation, and Pleistocene flood gravels of the Hanford Formation (Hartman and 

Dresel, 1997; Figure 4).  Within the Hanford Reservation the Ringold and Hanford 

formations contain an unconfined aquifer while confined aquifers exist between 

Columbia River Basalt flows.  The stratigraphy of the Hanford Site has been 

developed using well log data from many groundwater monitoring wells (Figure 5).  

In an effort to further explore the role of heterogeneity on contaminant transport across 

the zone of ground water-river water interaction, geologists are revisiting well log data 

to construct more detailed cross-sections (Robert E. Peterson, personal 

communication, January, 2000).  The Hanford Reach of the Columbia River is a 

gaining stream whose stage is influenced by Priest Rapids Dam, a power production 

facility located 30.6 km upstream of the 100D area.  Discharge from Priest Rapids 
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Dam varies on the order of tens of thousands of cubic feet per second both seasonally 

and hourly, as water management is maximized for power production (Figure 6). 

5 0 5 10 Kilometers

Miocene Columbia River Basalt
Pliocene Ringold Formation
Plio-Pleistocene Sediments
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Quaternary Sediments
Surface Water
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EW

S

 

Figure 4:  Hanford Site surface geology.  The 100D Area is underlain by Pleistocene 
sand and gravel from the Hanford Formation and Pliocene silt, sand, and gravel from 
the Ringold Formation. 
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Figure 5:  Hanford Site stratigraphy developed using well log data (Thorne et al., 
1993). 
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Hyporheic Zone as a Control on Contaminant Transport 

Water Quality Sampling 

The hyporheic zone can be described in terms of site-specific parameters, 

including biologic indicators and physicochemical properties (Gilbert et al., 1994).  

One important indicator differentiating ground water from river water in the Hanford 

Reach is specific conductance (Hope and Peterson, 1996a).  Columbia River water in 

the Hanford Reach has a specific conductance from 125 to 150 ?S/cm while local 

ground water ranges from 300 to 500 ?S/cm (Peterson and Johnson, 1992; Hartman 

and Dresel, 1997).  Another important indicator in the 100D Area is Cr(VI) with 

concentrations ranging from 0 mg/L to over 0.6 mg/L.  The hyporheic zone in the 

Hanford Reach can be defined using specific conductance because it is a property that 

can be measured everywhere, while contaminants such as Cr(VI) are only present at 

certain locations.  For purposes of this study the hyporheic zone is the subsurface zone 

adjacent to the Columbia River in which specific conductance or Cr(VI) values were 

lower than in the adjacent aquifer but higher than in the river. 

Environmental controls on water quality include sediment heterogeneity, 

hydraulic gradients, and the interaction of ground water and river water.  The concept 

of sediment heterogeneity was addressed using in situ hydraulic techniques (see 

following section).  The relationship between water quality and subsurface hydraulic 

gradients was explored by comparing water quality data to changes in river stage.  

Surface water chemistry of the river is different from the chemistry of the contiguous 

groundwater (Dirkes et al., 1999), and large changes in river stage change the 
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hydraulic gradients affecting the magnitude and direction of hyporheic water flow.  

Consequently, the nature and concentration of water quality parameters such as 

temperature, specific conductance, pH, Cr(VI), and dissolved oxygen vary as a  
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Figure 6:  Daily Columbia River stage variation at the 100D Area. 
 

function of river stage.  The objectives of collecting water quality data were to (1) 

collect and analyze empirical data describing properties of the hyporheic zone, (2) 

determine the relationship between water quality data and changing river stage and (3) 

determine the relationship between water quality and depth below the riverbed. 

 

Hydraulic Testing 

The extent to which Cr(VI) is toxic to aquatic life depends on biotic as well as 

abiotic facters.  Abiotic influences are controlled mostly by the physical environment 
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through which Cr(VI)is transported within sediment pore water flowing through the 

hyporheic zone (Figure 7).  Sediment heterogeneity, hydraulic conductivity, and 

ground water/surface water interactions all affect interstitial flow within the hyporheic 

zone (Peterson and Johnson, 1992; Geist, 2001).   

 

Figure 7:  Conceptual model of a cross-section through the hyporheic zone. 
 

Although estimates of sediment hydraulic conductivity, specific discharge of 

groundwater, and hydraulic gradients have been measured extensively in the aquifer 

containing the Cr(VI) plumes, similar estimates in the hyporheic zone are lacking.  For 

Hanford site modeling purposes, data were used from the adjacent aquifer, and have 
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assumed large areas of shoreline sediments to be homogeneous (Peterson and 

Connelly, 2001).  The Hanford site-wide three dimensional groundwater flow model 

utilized stratigraphic data from well logs (Figure 5) to establish 10 major 

hydrogeologic units, each with an associated estimate of hydraulic conductivity, for 

use in the three dimensional groundwater flow model (Hartman and Dresel, 1998).  

Site stratigraphy data for the 100D Area (Figure 8) were used to correlate the entire 

100D Area shoreline with Ringold Unit E (Hartman and Dresel, 1998).  The estimated 

hydraulic conductivity for Ringold Unit E is 9.3 x 10-3 cm/s, and that is the hydraulic 

conductivity value that has been used to estimate groundwater flow rates from the 

unconfined aquifer at 100D Area, through the hyporheic zone, into the Columbia 

River (Hartman and Dresel, 1998).   

Within the hyporheic zone, advection and dispersion of contaminant plumes 

depend on the hydraulic gradient, hydrogeology of sedimentary layers, and 

geomorphic structures (Dahm and Valett, 1996; Dauble and Geist, 2000).  These 

complications could be accounted for more effectively if the effects of heterogeneity 

were better understood in shoreline environments such as the 100D Area.  The 

purpose of conducting slug tests, borehole dilution, and hydraulic gradient 

measurements was to improve estimates of hydrogeologic properties in areas where 

Cr(VI) enters the river, to better understand the nature and extent of heterogeneity.  

The two primary objectives were (1) to evaluate the applicability and effectiveness of 

slug tests and borehole dilution when deployed in the unconventional riverbed 
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environment and (2) given that the hydraulic tests were capable of detecting 

differences in that environment, to determine what, if any, relationships exist between 

hydraulic properties of the environment and water quality data.  These objectives were 

designed to address the lack of knowledge regarding groundwater flux through the 

hyporheic zone, which impairs the ability to establish relevant biological, physical, 

and chemical models.  Improving our understanding of the hyporheic zone will allow 

managers to make better risk-based decisions on contaminant impacts to biota living 

in the hyporheic zone. 

Chapter 2: Background 

Water Quality Sampling 

Various studies have been conducted to measure shoreline contamination and the 

interaction of ground water with the Columbia River.  Previous work on the Hanford 

Reach has included the use of devices to detect differences in river-bottom specific 

conductance, temperature, hydraulic gradients, and dissolved oxygen content.  Studies 

to determine hyporheic water quality have generally been conducted for one of three 

reasons.  First, researchers wished to determine the location, concentration and nature 

of contaminants entering the Columbia River from the adjacent contaminated aquifer 

(Hope and Peterson, 1996b; Peterson et al., 1998).  Shoreline sampling has been 

conducted extensively along the shoreline of the Hanford Reach including the 100 

Areas.  Data collected from the 100D Area shoreline were used to describe the 100D 

Area Cr(VI) “hot spot”, where particularly high Cr(VI) concentrations are present in 
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the hyporheic zone (Figure 8; Hartman and Dresel, 1998).  Additionally, water 

 

Figure 8:  100D Cr(VI), stratigraphy, and well data (Peterson et al., 1998) 
 

samples have been collected from the Columbia River and from seeps and springs along 

its banks in the Hanford Reach, including the 100D Area (Patton, 1999).  I have 

participated in some preliminary work of this nature that was conducted in the vicinity 

of the 100 Area reactors during the fall of 1997 through 1999 (Arntzen, unpublished 

data).   Approximately 100 piezometers were installed and tested for Cr(VI).  The 

second reason the hyporheic zone has been studied was to model the affect of changing 
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river stage on contaminant transport across the hyporheic interface (Connelly, 1998).   

Finally, research in the hyporheic zone has been used to explain how water quality 

affects aquatic life.  This includes a direct impact (i.e. the potential harm to fall chinook 

salmon by Cr(VI)) and indirect impact such as changes in habitat selection caused by 

subtle water quality differences (Geist et al., 1994; Geist et al., 2001).   

The toxicological and biological effects of Cr(VI) are complex.  Published 

research indicated that Cr(VI) exposures as low as 0.077 mg/L significantly affect the 

mortality of chinook salmon during the first several months of life, and concentrations 

of 0.18 mg/L have a more pronounced impact on mortality, growth, and development 

(Olson and Foster, 1956).  Similar research on rainbow trout (Oncorhynchus mykiss) 

from the fertilized egg to feeding fry life-stage found concentrations of 0.089 mg/L 

total chromium to have a statistically significant impact on mortality, 0.157 mg/L to 

cause over 50% mortality, and 0.271 mg/L to cause 97% mortality (Stevens and 

Chapman, 1984).  A recent study completed by the Pacific Northwest National 

Laboratory (PNNL) tested exposure of early life stage fall chinook salmon to Cr(VI).  

The results showed that Cr(VI) levels up to 0.266 mg/L had no significant impact on 

survival, development, or growth (Patton et al., 2001).  The PNNL results reflected the 

protection juvenile salmon experience while at the egg stage prior to emerging into 

river gravels and the overlying water column of the river (Patton et al., 2001).  

Organisms are not only exposed to contaminants such as Cr(VI) directly, but they are 

also susceptible to Cr(VI) uptake through the aquatic food chain (i.e. fish feed on 
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meiofauna, meiofauna feed on microorganisms, and microorganisms accumulate 

metals through passive sorption and other biologic processes).  Ultimately, 

environmental controls such as hydraulic gradients and sediment heterogeneity 

determine the location of Cr(VI), and are the largest control on biological interactions 

with Cr(VI).   

Hydraulic Testing 

The hydraulic characteristics of the hyporheic zone are largely dependent on the 

size and structure of sediments underlying the Columbia River.  River velocities 

exceeding 2.0 m/s and the highly permeable nature of riverbed material contribute to a 

lack of knowledge regarding the flow of water and transport of ions in the hyporheic 

zone.  Traditional methods used to measure the permeability of subsurface material 

include tracer tests, grain size analysis, permeameter testing, slug tests, geophysical 

methods, and borehole dilution methods (Palmer, 1993).  Tracer methods have 

successfully produced the most accurate estimates of hydraulic properties, however 

they are time consuming and involve the use of regulated substances (Pickens and 

Grisak, 1981; Sudicky et al., 1985; Molz et al., 1986; Ronen et al., 1991).  Methods of 

obtaining sediment samples for grain size analyses using freeze coring are well 

documented in the literature (Stoker and Williams, 1972; Walkotten, 1976; Lotspeich 

and Reid, 1980; Carling and Reader, 1981; Rood and Church, 1994).  Although time 

consuming and labor intensive, freeze core samples have provided sample sizes large 

enough to be statistically significant in large cobble size riverbed material (Kondolf, 

2000).  Grain size analyses, however, are difficult to correlate with hydraulic 
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properties and provide order of magnitude estimates at best (Palmer, 1993).  Ground 

penetrating radar is a feasible geophysical technique for collecting subsurface 

structure data from the surface of the river (Naegeli et al., 1996, Geist et al., 1999 

unpublished data), however, relating sediment structure to permeability is only a 

qualitative proposition.  Hydraulic techniques, including slug tests and borehole 

dilution, were deemed the most cost effective of all the methods reviewed.   

Slug tests have been used with wide success in the past, and provide fast, 

inexpensive estimates of hydraulic conductivity (Bouwer and Rice, 1976; Bouwer, 

1989; Fetter, 1994; Butler et al., 1996; Weight and Wittman, 1999).  Butler (1998) 

summarized popular slug test methodology in the literature, and pointed out that the 

appropriate method was dependent first upon the fundamental response of the aquifer 

to a slug test, and secondly on site specific considerations.  The fundamental response 

is a function of conservation of momentum, and can be represented the same way a 

damped spring has been in classic physics (Kabala et al., 1985; Kipp, 1985; Butler, 

1998).  Aquifer responses have been categorized, based on their fundamental 

response, into under damped, critically damped, and over damped responses (Figure 9; 

Van der Kamp, 1976; Kabala et al., 1985; Kipp, 1985; Butler, 1998; Weight and 

Wittman, 1999).  Aquifer responses must be categorized into one of these three 

response groups before appropriate radial flow solutions (i.e. the Bouwer and Rice 

method) can be selected.     
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Figure 9:  Theoretical fundamental aquifer responses to slug tests.  Functions are 
based on modifications of the Van der Kamp (1976) and Kabala (1985) solutions to 
conservation of momentum equations.  Under damped responses are oscillatory by 
nature, over damped responses approximate exponential decay, and critically damped 
responses are transitionary between the other two (Butler, 1998). 

 

The majority of the research has been conducted on overdamped responses 

(Hvorslev, 1951; Cooper et al., 1965; Bouwer and Rice, 1976) and underdamped 

responses (Van der Kamp, 1976; Kipp, 1985; Weight and Wittman, 1999), although 

the critically damped case was evaluated by Kabala et al., (1985).  For overdamped 

data, the Hvorslev method (Hvorslev, 1951) and Bouwer and Rice methods (Bouwer 

and Rice, 1976; Bouwer, 1989) are reasonable techniques for the case of a partially 

penetrating well in an unconfined aquifer (e.g., Hanford riverbed conditions).  Both 
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methods involve plotting the natural logarithm of the head response against time.  The 

slope of these data and the piezometer geometry are used to solve for hydraulic 

conductivity.  Bouwer and Rice improved estimates for the effective radius (e.g., the 

effective radial distance from the well over which the average hydraulic conductivity 

is measured) by conducting an electric analog experiment.  The experiment improved 

estimates for the effective radius, given the well diameter and the length of the well.  

Because of improved effective radius estimates, the Bouwer and Rice method is 

generally considered an improvement over Hvorslev (Brown et al., 1995).  Various 

researchers have presented solutions for underdamped data in highly permeable 

formations, such as the alluvium found in riverbeds (Van der Kamp, 1976; Kipp, 

1985; Weight and Wittman, 1999).  Weight and Wittman (1999) assert that the 

Bouwer and Rice and Hvorslev methods are suitable for overdamped, nonoscillatory 

data sets, however for underdamped, oscillatory responses they propose a simplified 

approach to the Kipp (1985) solution for oscillatory data, and suggest that the Kipp 

method is applicable to unconfined aquifers.  Kabala et al. (1985) presented a solution 

for critically damped aquifer responses to slug tests.   

Spane (1996) described a method by which the vertical hydraulic conductivity 

could be determined using interference slug testing and has successfully used this 

technique on the Hanford site.  This method analyzes the head versus time curve 

obtained via an observation well when a slug test is performed in an adjacent well 

producing a pressure wave within the aquifer.  The shape of the interference curve 
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provides insight into aquifer properties such as hydraulic conductivity, storativity, 

specific yield and vertical anisotropy.   

Borehole dilution techniques, while requiring large amounts of time in low 

conductivity formations, have been completed in reasonable amounts of time in high 

permeability formations such as alluvial sediments (Palmer, 1993).  Time estimates for 

individual tests range from over 1000 hours in mud and clay to only a few minutes for 

coarse sand and gravel mixtures (Halevy et al., 1967).  Halevy et al. (1967) 

summarized the theory, application, and accuracy of borehole dilution techniques.  

Drost et al. (1968) used dye tracer tests to demonstrate how the presence of the 

borehole skewed the flow lines of water flowing through the well screen.  Subsequent 

research has refined the methodology used to conduct borehole dilutions, including the 

use of multiple layer dialysis cells in lieu of mechanically mixed single chamber 

devices (Ronen et al., 1986).  Estimates of flow line distortion near the borehole (skin 

effects) have been further improved (Bidaux and Tsang, 1991).  Palmer (1993) 

evaluated borehole dilution theory, methodology, application, and potential for use 

near an extraction well that allowed tests to be conducted in shorter time periods.   

 

Chapter 3:  Methodology 

Sampling Strategy 

The first data set collected for this thesis defined the boundary of the study site 

along the 100D Area shoreline.  This was accomplished by testing hyporheic water 

samples for Cr(VI) within and beyond the 100D Area chromium “hot spot” (Figure 2).  
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The shoreline was sampled using an interval of approximately 100 m upstream and 

downstream from the center of the high Cr(VI) area during October 18-27, 1999.  

Samples were collected at these intervals away from the center of the hot spot, until 

Cr(VI) was undetectable.  The results defined a 4,000 m reach of shoreline adjacent to 

the 100D Area.  Additionally, four sites established during October 1997 were also 

used for this thesis.  The previously established sites were located near the center of 

the study site and each site had a minipiezometer installed at two depths, for a total of 

eight piezometers.  The 1997 sites used  polyethylene tubes that were reinforced with 

electrical conduit, and the ends of the tubes guided out of the river above the high 

water mark, so they could be sampled at changing river stage.  Water samples were 

collected from the subsurface through 0.64 cm outside diameter (O.D.) polyethylene 

tubes (minipiezometers) and were installed using a Geoprobe?  driving system (Figure 

10).  The tubes were first attached to screens by inserting the tube into the end  

 

Figure 10:  Minipiezometer and Geoprobe?  driving system using a post-pounder. 
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of a 0.95 cm outer diameter polyethylene tube with approximately 10 holes punched 

through it.  The 15 cm long screens were wrapped in approximately four layers of #240 

nylon mesh and secured to the 0.95 cm polyethylene tubes with hot glue.  The screen 

apparatus was then secured to the 0.635 cm diameter tube with stainless steel welding 

wire.  The opposite end of the screen was then pushed over the barbed end of a 2.54 cm 

outer diameter brass point that was secured to the screen using a stainless steel welding 

wire.  Several 0.91 m long sections of 2.54 cm outer diameter Geoprobe?  internally 

threaded drive rod were then threaded together.  One end was attached to a slotted 

Geoprobe?  drive cap, while the brass tip was placed in the other end.  The drive cap 

allowed the rods to be driven into the sub-surface without cutting the tubing.  The 

polyethylene tubing was passed through the rods and out of the drive cap.  A post 

pounder or pneumatic hammer was then used to pound on the drive cap until the screen 

was driven to the desired depth, and then the drive rods were removed with a pipe 

wrench.  If the resistance to removal was too great the rods were removed using a 

tripod, lever chain hoist, and specially designed pull cap (Figure 11).  The pull cap was 

similar to the drive cap but had a sturdy welded loop on the top that the lever chain hoist 

was attached to. 

Once the boundary of the study site was determined using minipiezometers, 

larger, galvanized steel piezometers were installed for water quality testing as well as 

for in situ hydraulic testing.  The budget allowed for the installation of 20 galvanized 

piezometers.  The shoreline was divided into roughly 300 m increments.  This allowed 
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for two galvanized piezometers to be installed at most locations, one shallow and one 

deeper below the riverbed.  Locations were established on the Hanford shoreline and  

 

Figure 11:  Piezometer extraction equipment used to remove the Geoprobe?  driving 
system. 
 

on one adjacent island.  Near the Cr(VI) hot spot, a nested sampling scheme was 

employed to look for smaller scale heterogeneity.  Five galvanized piezometers were 

installed in intervals of approximately 75 m for the nested scheme.   
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Figure 12:  Piezometers installed along the 100D Area shoreline.  Minipiezometers 
were installed first to help determine where the larger, galvanized piezometers would 
be installed.   

 

Nineteen galvanized piezometers were installed along the 100D shoreline 

(Figure 12).  The galvanized piezometers were constructed by either Midwest Well 

Supplies or by Johnson ScreensTM.  The Midwest piezometers consisted of a cast iron 

drive point threaded onto a 30.5 cm long stainless steel screen.  The screen was in turn 
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threaded onto a galvanized steel riser pipe (5 cm I.D.; Figure 13).  The top of the riser 

pipe was threaded so that galvanized extensions could be attached and the piezometer 

 

Figure 13:  Galvanized piezometers and their installation.  (a) Galvanized piezometers 
had an inside diameter of either 5.0 cm or 3.0 cm.  (b) Installation of a Midwest 
piezometer using a pneumatic hammer.  

 

installed to the desired depth.  The Johnson piezometers (3.0 cm I.D.) consisted of a tip 

welded to the shaft of the piezometer and had threaded tops so that extensions could be 

attached (Figure 13 a).  Both galvanized types were driven by pounding on a 2.54 cm 

steel drive rod inserted into the piezometer (Figure 13 b).  A post pounder or pneumatic 

hammer was used to pound the rod and piezometer into the sediment (Geist et al., 1998).  

Piezometers were installed such that the bottom of the screen was between 0.52 m and 

2.3 m, with an average depth of 1.57 m below the riverbed and a standard deviation 

(? ??of?0.47 m.  The piezometers were driven to the depth where their threaded tops 

5cm 

3cm 

a b 
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extended slightly above the riverbed.  In most cases the length of piezometer left 

extending above the riverbed was approximately 0.1 m and was always less than 0.5 m.  

An extension pipe was threaded onto the piezometer to extend it above the surface of the 

river and the piezometers were developed using a bucket and a hand pump.  

Approximately 2.5 L of river water were poured down the top to assure that the screen 

was not plugged for the Midwest piezometers, and about 1 L was used for the Johnson 

piezometers.   

The study site was also defined in terms of depth into the riverbed.  Data 

regarding the subsurface geology of the Hanford Site were available (Figure 8), 

however, they were compiled at a scale exceeding that of this project.  Bounds for 

sampling with respect to depth were defined in terms of water quality criteria 

measured during the preliminary data collection period (using minipiezometers).  The 

preliminary data showed that groundwater (high specific conductance) was often 

reached at depths of 1.8 m, and river water (low specific conductance) often 

penetrated to depths of 0.6 m.  This meant that in order to relate sediment properties 

(e.g., heterogeneity) to water quality parameters, the sampling interval had to be no 

greater than approximately 0.6 m to 0.9 m.  This fact, coupled with the limited number 

of galvanized piezometers available for the study, led to the decision to install one 

galvanized piezometer at a depth of just over 1 meter and one galvanized piezometer 

to approximately 2 m below the riverbed for each location.   
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The horizontal positions of all piezometers were recorded using a Trimble 

PathfinderTM Pro XR Global Positioning System (GPS).  All data were stored using 

the North American Datum 1983, state plane meters, Washington south zone.  In order 

to compare the elevations of water levels measured in different piezometers, the 

vertical elevations of all galvanized piezometers were surveyed relative to stakes that 

were installed above the high water mark of the riverbank.  Surveying was completed 

using the differential level technique.  A Sokkia model B21 automatic level was used 

to determine the elevation change between each piezometer and its associated survey 

stake.  The elevation difference was determined two times for each piezometer, and 

the associated error between the two measurements was computed.  The Sokkia level 

was then used to survey the elevation change between survey stakes.  The distance 

between survey stakes varied and was often greater than 300 m, so a survey interval of 

approximately 70 m was used to minimize survey error.  The interval between stakes 

was surveyed twice so the most probable error could be computed (?  2.33 cm).  The 

Research and Education Association's 1983 Handbook of Field Surveying was used to 

determine the appropriate corrections to make for curvature of the Earth and the 

refraction of light by the atmosphere.  The correction for both refraction and Earth 

curvature was accounted for using the following relationship from the handbook: 

 

 h=M2(0.0000676) (1) 
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where h is the correction for both refraction and earth curvature (mm) and  M is the 

distance between points (m).  Procedures outlined in the handbook were used to 

calculate the most probable difference, and the most probable error using the sum of the 

squares of the residuals from the actual measured difference and the most probable 

difference (the arithmetic mean).  Survey data are included in Appendix A. 

To tie the elevation data to a known datum, I compared my elevations to water 

stage data recorded at the same time at a surveyed recording gage operated at 100D 

Area reactor by Bechtel Hanford, Inc (hourly data from the 100D Area gage for the 

entire study period are included in Appendix B).  Although the Bechtel gage only 

recorded values once per hour, the water surface of the river was relatively stable 

during the survey; the standard deviation of the river stage (Bechtel stage gage) during 

time periods in which water level measurements were recorded in piezometers was 6.2 

cm.  

 

Water Quality Sampling 

Galvanized piezometers were sampled within two weeks of installation and 

tested for specific conductance, Cr(VI), temperature, and hyporheic head.  Piezometer 

location, depth, sample time, and water quality data collected are documented in 

Appendix C.  Sub-surface water samples were obtained from the minipiezometers 

using a peristaltic pump or a hand powered suction pump.  Representative samples 

were collected by removing approximately three piezometer volumes of water from 
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the piezometer before any sample was taken.  For galvanized piezometers, the volume 

removed was 7.5 L for Midwest piezometers and 3 L for Johnson piezometers.  Water 

samples were analyzed for Cr(VI) within 24 hours of collection using a Hach model 

DR2000 spectrophotometer with a cell path length of 2.54 cm. In order to obtain better 

resolution Cr(VI) measurements, a calibration curve (Figure 14) was constructed using 
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Figure 14:  Calibration curve used to determine the Cr(VI) concentration of hyporheic 
water samples.  
 

an existing method for the determination of Cr(VI) (BHI-EE-05 Field Screening 

Procedures Procedure No. 1.17).  The calibration curve was used to obtain a minimum 

detection limit (MDL) of 0.0014 mg/L.  The MDL was determined by preparing seven 

standards near the expected limit (0.005 mg/L), measuring the standard deviation of 
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the seven samples, and using three times the standard deviation as the minimum 

detection limit (Eaton et al., 1995).  The accuracy of the method was equal to twice the 

standard deviation of the residuals in Figure 14.  The error associated with accuracy 

was +/- 0.003 mg/L.  The error associated with precision was determined by preparing 

six replicates each of five different standards (0.005, 0.01, 0.02, 0.04 and 0.1 mg/L).  

All 30 standards were analyzed using Figure 14.  Twice the standard deviation was 

computed for replicates of each standard.  The maximum value for error obtained 

using this method was 0.0047 mg/L.  Thus the maximum error expected due to 

accuracy and precision of the method was +/- 0.0077 mg/L.   

 Electrical conductivity and temperature were determined in the field using a 

Yellow Springs, Incorporated (YSI) conductivity/temperature meter.  Electrical 

conductivity, the inverse of electrical resistivity, is usually expressed in terms of 

specific conductance.  Specific conductance is the conductance of one cubic 

centimeter of a given substance compared to one cubic centimeter of pure water, and 

values must be normalized to a similar temperature in order to be compared (Driscoll, 

1995).  Specific conductance was determined by correcting electrical conductivity for 

differences in temperature.  The YSI meter was corrected for temperature in 

freshwater using the following relationship (Eaton et al., 1995):  

 

25) - r temp..0191(wate01
tyconductivi
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?

??  

 

(2) 
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The YSI instrument was equipped with a probe that was either lowered into the 

full sized piezometers or used to test water samples pumped from mini-piezometers.  

The meter was calibrated using two different concentration standards at least once 

every three days while fieldwork was conducted.  The standards were 100 ?S/cm and 

1000 ?S/cm Fisher brand specific conductance potassium chloride solution.   

To determine the temporal variation of water quality with respect to changing 

river stage, multiple samples from four sites were collected on different dates.  As 

previously mentioned, piezometers were installed at two different depths at each of the 

four sites (Figure 12).  Each of the eight piezometers was sampled bi-weekly between 

November 10, 1999 and February 4, 2000.  A minimum  of three to five samples were 

collected between these dates.  Additionally, one or two samples were collected during 

initial surveys of the multiple-sample mini-piezometers.  The additional samples were 

collected during November 1998 or between November 1997 and December 1997.  

Samples were collected at different river stages and tested for Cr(VI) and specific 

conductance, using the same methodology that was used for the spatial variation 

sampling.   

In addition to repeated sampling of the individual piezometers, short-term 

temporal variability in the water quality was examined using a data logger in 

piezometer 17 (Figure 12) for a two day period from February 4-6, 2000.  A Hydrolab 

Minisonde data logger, capable of recording specific conductance, temperature, pH, 

pressure head, and dissolved oxygen was used for the deployment.  The Minisonde 
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recorded data once every 30 minutes.  Prior to its deployment it was calibrated using 

100 ?S/cm and 1000 ?S/cm Fisher brand specific conductance potassium chloride 

solutions.  The Hydrolab data logger was corrected for temperature in freshwater using 

the following factory installed relationship: 

 

 ? ?f(T)tyconductiviC25 @ econductanc specific ??  (3) 
 

where f(T) was a function equal to C1T5 + C2T4 + C3T3 + C4T2 + C5T + C6 and 

C1=1.43x10-9, C2=-6.072x10-8, C3=-1.067x10-5, C4=1.094x10-3, C5=-5.3091x10-2 , and 

C6=1.82. 

Hydraulic Testing 

Slug Tests 

Hydraulic conductivity was determined by conducting slug tests in 18 

galvanized piezometers that were also used for water quality sampling.  A total of 46 

slug tests (average 2.4 tests per piezometer) were conducted between November 11, 

1999 and November 18, 1999.  To perform the test, an airtight pressure-regulating 

wellhead assembly was threaded to the top of each piezometer (Figure 15).  The 

assembly consisted of a 5.0 cm ball valve coupled to a 20.0 cm section of schedule-40 

PVC containing a small valve stem for pressurizing.  A pressure transducer 

(Instruments NW model 9800) was lowered into the piezometer to measure changes in 

hydraulic head during the test (Figure 15).  A modified rubber stopper was used to seal 

the transducer cable’s entry into the well assembly.  The system was pressurized with 
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a portable battery-powered air compressor (Black and Decker VersaPak cordless 

inflator), causing the water level in the piezometer to be depressed downward.  The 

change in water level was measured by the transducer and recorded by an electronic 

data logger (Campbell CR10x).  When the water level in the well was sufficiently 

depressed, the air compressor was shut off and the ball valve simultaneously opened, 

marking the beginning of the slug test.  When the pressure was released, the data 

logger recorded the pressure response (rising water level) with respect to time.   

 

Figure 15:  Slug test pressure regulating device with pressure transducer lowered 
inside to record head response vs. time.  The Columbia River undercuts the Ringold 
Formation in the background, exposing ancient alluvium in an area now known as the 
White Bluffs. 
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The slug tests were all overdamped, and were therefore analyzed using the 

Bouwer and Rice method (Bouwer and Rice, 1976; Bouwer, 1989).  Data were then 

compared using the Hvorslev method (Hvorslev, 1951).   

Hydraulic conductivity using the Bouwer and Rice method was determined via 

the Bouwer and Rice equation: 
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where K is hydraulic conductivity (cm/s), rc is the radius of the well casing (cm), Re/R is 

the dimensionless ratio of radius of gravel envelope to distance away from the well over 

which the average value of K is being measured (this was obtained as outlined in Fetter 

1994), Le is length of the screen or open section of the well (cm), H0 is the drawdown at 

time t = 0, Ht is the drawdown at time t = t, and t = time from H0. 

The hydraulic conductivity was also determined via the Hvorslev slug test 

method: 
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where K is hydraulic conductivity (cm/s), r is the radius of the well casing (cm), R is the 

radius of the well screen (cm), Le is the length of the well screen (cm), and T0 is the time 

for the water level to rise or fall to 37% of the initial change (Fetter, 1994).  Note that 

1/T0 is equivalent to the slope of LN(H0/Ht) versus time for the case where (H0/Ht) is 
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0.37 (Butler 1998) and where H0 is drawdown at time t = 0, and Ht is equal to 

drawdown at time t = t. 

Since the environment sampled was very close to the riverbed, I assumed that 

subsurface flow was mostly vertical, either from the overlying river column into the 

hyporheic zone, or from the hyporheic zone out into the overlying water column.  The 

vertical hydraulic gradient (VHG) was estimated using: 

 

 ? ?
screen piezometer of  top toriverbed from distance

headriver -piezometer inside head
VHG ??

dl
dh

 (6) 

 

The hydraulic gradient was determined so that hydraulic conductivity values, 

together with the hydraulic gradient, could be used to determine the specific discharge 

(q).  The specific discharge was determined by first using Darcy’s equation, 

 

 
A

dl
dh

??
?

??
?-K=Q  (7) 

 

where Q is volumetric discharge, K is hydraulic conductivity, dh/dl is the gradient of 

hydraulic head, and A is cross-sectional area.  Because specific discharge equals the 

quotient of volumetric discharge (Q) and the cross-sectional area (A), the product of 

hydraulic conductivity (K) and hydraulic gradient (dh/dl) is equal to the specific 

discharge (q):  



 

 39

 

 
??
?

??
?

dl
dh

-K=q  (8) 

 

Two errors are associated with hydraulic conductivity estimates.  The standard 

error associated with linear regressions of the natural logarithm of the aquifer’s 

response versus time was determined for one replicate in each piezometer.  This value 

represented the standard error on the y-axis, which was the natural logarithm of 

drawdown.  In order that the value be compatible with a solution for hydraulic 

conductivity (i.e., Bouwer and Rice or Hvorslev), it was divided by the time interval 

over which the error was measured.  The value (standard error of the slope) was then 

inserted into the Bouwer and Rice equation to determine the standard error due to 

regression in units of centimeters per second, allowing the error to be compared to 

results determined in the same units.  The second error is the standard deviation of 

hydraulic conductivity estimates for piezometers with replicates.  These two sources 

of error were added together to obtain a measure of total precision.   

Results were summarized based on the order of magnitude of the calculated 

hydraulic conductivity, in order to present only distinctly different response data.  

Results for every piezometer are included in Appendix D.   
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Borehole Dilution 

A single borehole dilution test was conducted in one Midwest piezometer at each 

location.  A total of nine borehole dilution tests were conducted.  The depths of 

piezometers sampled using borehole dilution are shown in Table 3.  

 

Table 3:  Piezometers used for borehole dilution testing.  Depths below the river 
bottom to the bottom of the piezometer screen are included. 
Piezometer number Depth to bottom of screen 

(m) 
43 1.62 
40 1.56 
35 1.68 
27 1.65 
23 2.18 
18 2.32 
2 1.55 
 1 1.46 
30 1.65 

 

Borehole dilution tests were only conducted in the larger, Midwest piezometers 

because the necessary instrumentation would not fit inside the smaller diameter 

piezometers.  Following installation of the piezometers, a Minisonde downhole water 

quality data logger was deployed.  The data logger was fitted with four polyethylene 

tubes that extended from the downhole end of the logger to the surface of the 

piezometer, and allowed for injection of a potassium chloride (KCl) tracer.  Specific 

conductance was measured via the data logger.  The specific conductance is directly 

related to the concentration of KCl (660 mg/L KCl is equivalent to 1000 ?s/cm 
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specific conductance).  The logger was connected to a laptop computer via a cable at 

the study site.   

The probes on the downhole end of the logger were located at the top of the 

screened interval of the piezometer (Figure 16).  An inflatable packing device was 

fixed to the tubes and cable immediately above the logger, so that after deployment the 

packing device could be inflated and the volume of water in the screened interval 

known.  A small hand-held pump was used to inflate the packer.  The volume of the 

sealed interval inside the piezometer screen was estimated in the lab and remained 

constant in the field, as the logger was lowered to the same level above the screen in  

 

Figure 16:  Schematic diagram of a borehole dilution device. 
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each piezometer during each test.  The volume of the sealed interval around the screen 

included the volume inside the screened interval of the piezometer, plus the volume of 

water above the screen surrounding the data logger, minus the volume occupied by 

probes that extended below the bottom of the logger.  The volume of the screened 

interval inside the piezometer was determined empirically using four trials, and 

averaged 792.5 ml.  The volume surrounding the logger, determined theoretically using 

the difference between the inside radius of the piezometer and the outside radius of the 

data logger, was determined to be 203.2 ml.  The volume occupied by the sensor probes 

was determined by displacement to be 40 ml.  Thus, the net volume of the sealed area of 

the screen was  955.7 ml (792.5 ml + 203.2 ml – 40 ml). 

 After the packer was inflated and prior to the test the logger monitored the 

background specific conductance.  The data logger was equipped with an 

electronically controlled stirring device within the sealed interval, and was used to 

keep the tracer well mixed within the sealed interval.  Approximately 200 ml of tracer 

was injected using a peristaltic pump, and the specific conductance was logged and 

viewed real-time via the logger and a laptop computer.  Specific conductance, 

temperature, dissolved oxygen, pressure head, and pH were logged in 10 second 

intervals. 

The borehole dilution method involves installing a standpipe into the subsurface 

with an isolated volume of tracer (such as KCl) within it.  The tracer is stirred 
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continuously and allowed to dilute.  The change in concentration with respect to time 

is related to the specific discharge (q) via the equation: 

 

 
V

)C-(CAq'-
dt
dC b?  (9) 

 

where C is the concentration of the tracer within the standpipe, Cb is the concentration of 

the tracer in the background groundwater, t is time, q' is the specific discharge of the 

water in the borehole, A is the cross-sectional area of the borehole, and V is the volume 

of the isolated section.  Assuming Cb and q' are constants, if the equation is integrated 

from t0 to t and solved for q', the result is: 

 

 

)t-A(t
CC

C-C
Vln-

q'
0

b0

b
??
?

?
??
?

?
?

?  
(10) 

 

The specific discharge is corrected by dividing q' by a borehole factor related to 

the geometry of the standpipe (Palmer 1993), and the result is the corrected specific 

discharge within the aquifer.  In the case of an undeveloped well lacking a filter pack, 

the borehole factor is equal to 2 and the specific discharge of the aquifer (q) is equal to 

½ q' (Halevy et al., 1967).  Results were summarized based on the order of magnitude 

of the calculated specific discharge, in order to present only distinctly different 

response data.  Results for every piezometer are included in Appendix E. 
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The hydraulic gradient and hydraulic conductivity were used to estimate the total 

mass of Cr(VI) entering the river.  First, the 4,000 m shoreline adjacent to 100D Area 

was broken into 13 cells, with the location of each piezometer used to determine the 

center of each cell.   The zone of discharge into the river was assumed to be from the 

river bed to a depth of 1 m below the river bed, thus the depth of each cell was 1 m.  

The volume of water discharging into the river was then calculated by: 

 

 IK x   x D x L Q ?  (11) 
 

where Q is hyporheic discharge into the river (cm3/s), L is cell length (cm), D is cell 

depth (cm), K is hydraulic conductivity (cm/s), and I is the vertical hydraulic gradient 

(unitless).  The total discharge (Q) for each cell was then multiplied by average Cr(VI) 

concentrations for piezometers within the cell and the results summed to determine 

total estimates of Cr(VI) entering along the shoreline.   

 

 Chapter 4:  Results 

Water Quality Sampling 

Twenty five percent of the one-time samples contained Cr(VI) concentrations 

above the 0.10 mg/L federal drinking water standard, and 77% contained Cr(VI) 

concentrations above the 0.01 mg/L limit for aquatic life (EPA, 1986; Figure 17).    
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Figure 17:  Cr(VI) results for piezometers sampled along the 100D Area shoreline.  
The higher concentrations in piezometers 8 through 20 reflect the Cr(VI) “hot spot” 
adjacent to 100D reactor (Figure 2).  Error bars show the error associated with Cr(VI) 
accuracy and precision (+/- 0.0077 PPM).  The EPA’s maximum contamination limit 
for Cr(VI) in drinking water is 0.10 mg/L, represented by a dashed line. 

 

Cr(VI) content was plotted against screen depth to verify that samples with high 

chromium concentrations were not simply collected from greater depths but that they 

represented spatial variation of the contaminant as it entered the river.  Results of this 

comparison showed no statistical evidence that Cr(VI) increased as depth below the 

riverbed increased (R2=0.0039; p=0.7).   

Of the 33 piezometers sampled one-time for specific conductance, three values 

were over 300 ? s/cm and were classified as groundwater, nine samples were less than 
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150 ?s/cm and were classified as river water, and the remaining 21 samples 

represented hyporheic water that had undergone some mixing (Figure 18).  A  
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Figure 18:  Specific conductance relative to shoreline position.  Zero m represents the 
upstream terminus of study site, 3,700 m represents downstream terminus.  Specific 
conductance increased in an upstream direction. 

 

significant trend related specific conductance to shoreline position, with specific 

conductance increasing from downstream to upstream (R2=0.23; p=0.005; Figure 18).  

Specific conductance was compared to screen depth, with results showing no evidence 

that specific conductance increased with increasing depth (R2=0.06; p=0.16).   One-time 

data were collected during periods of similar river stage to make them comparable.  The 
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average river stage during specific conductance data collection was 116.94 m (? =0.19 

m). 

The effect of changing Columbia River stage on pressure head, specific 

conductance, temperature, dissolved oxygen, and hydrogen ion concentration was 

evaluated using a Minisonde data logger to record water quality changes with respect 

to changing river stage at a fixed location (Figure 19 and Figure 20).  The results of  
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Figure 19:  Specific conductance and river stage versus time, piezometer 17. 
 

regressions between all water quality parameters logged by the Minisonde are shown in  

Figure 21.  All of the relationships were very significant (p<<0.05) except for the 

relationship between hydrogen ion concentration and temperature, which was not 

significant (p=0.2).  Although grossly linear, the relationship between water quality and 
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Figure 20:  [H+], temperature, DO, and river stage, piezometer 17. 
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Figure 21:  Regression of water quality variables using Minisonde data.  Values for the 
x and y axes increase up and to the right.  Most of the data show correlation reflecting 
a difference in water chemistry between the river and hyporheic water. 
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river stage was also hysteretic.   The hysteresis is most evident between temperature and 

river head recorded by the Minisonde logger, however, it also occurred between river 

head and the other water quality parameters (Figure 21 and Figure 22).  The hysteretic  
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Figure 22:  Hysteresis between river head and hyporheic temperature, piezometer 17.  
The hysteresis is caused by a combination of changes in the river stage and 
temperature differences between river water and groundwater.  
 

relationship shows that as the river head increased, initial hyporheic temperature 

remained relatively constant.  The mixing zone between groundwater and surface water 

was above the piezometer screen.  The temperature at the depth of the data logger began 

to cool only after the head difference caused by the rising river stage was sufficient to 

depress the mixing zone down to the depth of the data logger.  Once the mixing zone 
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front reached the logger, the stage continued to increase and the hyporheic temperature 

continued to cool.  The water became increasingly like that of the river.  After the stage 

increased nearly 2 m, the hyporheic zone was in a state of dynamic thermal equilibrium 

(the temperature remained constant while the head continued to increase).  Eventually 

the stage stopped rising and remained constant for a short time.  The insulative 

properties of the surrounding sediments caused the temperature to slowly increase.  The 

stage then dropped and the temperature increased more quickly, influenced by insulative 

sediment properties and the rise of the mixing front.  Water mixed with warm 

groundwater began to reach the logger.  Minor river stage fluctuations caused the 

temperature to reverse its direction several times until the stage began to drop more 

quickly.  The hyporheic temperature continued to increase slowly as it approached that 

of the groundwater, until the logger stopped recording data.  

Additional insight into the effect of stage on water quality was gained from the 

results of the temporal mini-piezometer sampling.  Water samples (n=46) from eight 

piezometers were tested (Figure 23 and Figure 24).  Results generally show that as 

stage decreased, Cr(VI) and specific conductance increased.  The relationship was 

complicated by hysteresis and was difficult to discern due to a lack of data. 

Vertical elevations were determined for the river surface and hyporheic water 

surface for each piezometer (Figure 25).  The difference between the two water 

surface elevations was used to calculate the vertical hydraulic gradient. 
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Figure 23:  Cr(VI) and specific conductance versus stage for mini-piezometers 9, 10, 
12, 13, 15 and 16.  Open circles show Cr(VI) concentrations while closed circles show 
specific conductance. 
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Figure 24:  Cr(VI) and specific conductance versus stage for mini-piezometers 19 and 
20.  Open circles show Cr(VI) concentrations while closed circles show specific 
conductance. 
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Figure 25:  Vertical water surface elevation results (presented in NAVD88).  The 
difference between hyporheic and river surface elevations is shown.  The average 
slope of the river surface was 0.0003, or about 30 cm/km.   
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Hydraulic Testing 

Slug Tests 

The recovery data for all 100D Area slug tests displayed an exponential form, 

and by definition were overdamped (Kabala et al., 1985; Butler, 1998; Weight and 

Wittman, 1999).  Plots of head versus time for overdamped responses had the shape of 

an exponential decay curve, and plots of the logarithm of drawdown versus time were 

straight lines or slightly concave up, both indicating overdamped data (Butler, 1998).  

The response in piezometer 18 exhibited this form, and in general represented the 

overdamped responses observed in all piezometers tested (Figure 26). 
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Figure 26:  Overdamped response in piezometer 18 during a slug test.  The drawdown 
curve, closely matching the form of an exponential decay curve, together with the 
linear plot of LN(drawdown) show that the response was overdamped.  All other 
piezometer responses were also overdamped. 
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Other responses were grouped into four categories, based on the amount of time 

required for the aquifer to recover after the pressure test was initiated, and the 

resulting estimate of hydraulic conductivity.  Fast responses were classified as having 

hydraulic conductivity (K) values greater than 1 x 10-2 cm/s.  High mid-range 

responses had values between 1 x 10-2 cm/s and 1 x 10-3 cm/s, low mid-range 

responses were between 1 x 10-3 cm/s and 1 x 10-4 cm/s, and slow responses had 

values between 1 x 10-4 cm/s and 1 x 10-5 cm/s.  An example of each response range 

has been included in Figure 27.  All other responses were included in Appendix D. 
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Figure 27:  Head recovery of slug tests.  Piezometer responses were categorized into 4 
groups, based on the time necessary for recovery to occur and the resulting hydraulic 
conductivity estimates.   
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Figure 28:  Examples of several different aquifer responses to Hanford Reach slug 
tests.  The natural logarithm of the response versus time produced a straight line, the 
slope of which was used to determine hydraulic conductivity (K) as outlined in the 
Bouwer and Rice method (Bouwer and Rice, 1976; Bouwer, 1989).     

 

Faster responses were characterized by steeper slopes and higher hydraulic 

conductivity values (Figure 28).  Hydraulic conductivity values using Bouwer and 

Rice ranged from 2.8 x 10–5 cm/s to 4.3 x 10-2 cm/s, and Hvorslev results ranged from 

5.4 x 10-5 cm/s to 7.7 x 10-2  cm/s (Figure 29; Table 4).  Results using Hvorslev were 

consistently 1.9 times the Bouwer and Rice results.  This finding was consistent with 

other studies comparing the two methods (Palmer and Paul, 1987). 
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Figure 29:  Box plots showing hydraulic conductivity values determined using the 
Bouwer and Rice and Hvorslev methods.  The ends of the boxes are the 25th and 75th 
quartiles.  The difference between the quartiles is the interquartile range.  The 
whiskers, or lines above and below each box, extend  to (+) 1.5 the interquartile range, 
and to (-) 1.5 the interquartile range.  The line across the box is the sample median.  
Points outside the whiskers are possible outliers. 
 
 
Table 4:  Geometric mean hydraulic conductivity values with the standard error of 
regression for responses analyzed using Bouwer and Rice.  The standard deviation for 
each group of replicates was also included.  Piezometer 26 was damaged during 
installation and was not tested.  Standard deviations were not listed for piezometers 
having only 1 replicate. 
Piezometer 
(in order of 
increasing K) 

Depth 
(m) 

n Mean K using  
Bouwer and 

Rice  
(cm/s) 

Mean K using 
Hvorslev 

(cm/s) 

Standard Error 
due to 

regression 
(cm/s) 

 

Standard 
deviation of 
replicates 

(cm/s) 
 

26 1.58 NA NA NA NA NA 
27 1.34 1 0.000028 0.000054 0.0000061 NA 
24 1.35 1 0.000042 0.000081 0.0000198 NA 
11 0.56 1 0.000081 0.000147 0.0000180 NA 
35 1.37 2 0.000162 0.000310 0.0000204 0.0001219 
34 1.95 2 0.000203 0.000378 0.0000044 0.0000562 

8 0.66 3 0.000504 0.000900 0.0000827 0.0000960 
23 1.87 1 0.000593 0.001106 0.0000237 NA 

1 1.16 3 0.000827 0.001609 0.0001036 0.0000474 
30 1.34 3 0.001870 0.003596 0.0001242 0.0002798 
40 1.26 3 0.002004 0.003875 0.0001114 0.0001293 
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Table 4: Continued      
3 1.48 3 0.002452 0.004675 0.0002252 0.0001449 
7 0.21 3 0.002509 0.004854 0.0004472 0.0001296 

17 1.22 3 0.002676 0.005188 0.0003597 0.0000788 
39 1.57 3 0.002897 0.005493 0.0002590 0.0005191 
43 1.31 4 0.003896 0.007505 0.0006357 0.0003497 

2 1.25 3 0.004415 0.008541 0.0004302 0.0001975 
18 2.01 3 0.024440 0.045268 0.0013287 0.0068008 
14 0.68 4 0.043480 0.077394 0.0074167 0.0076850 
 

The error in determining hydraulic conductivity was determined for the slope 

regression and for variance between replicates in each piezometer.  Error estimates 

were made for results using the Bouwer and Rice method.  The errors were small and 

represented an insignicant fraction of the hydraulic conductivity (Figure 30).  
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Figure 30:  Error due to regression of slope estimates and variance among replicates 
for each piezometer analyzed using the Bouwer and Rice method.  Error was 
calculated using the sum of the standard error for slope regressions and one standard 
deviation for replicates. 
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There was no significant correlation (R=0.08; p=0.75) between hydraulic 

conductivity and depth of piezometer screen.  The highest hydraulic conductivities 

were near the center of the study site, where the 100D Area is closest to the river.  The 

lowest values were found adjacent to a flood plain just downstream of the 100D Area.  

Mid range values were scattered throughout the study site (Figure 31).    
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Figure 31:  Hydraulic conductivity results for the 100D Area.  The lowest values were 
adjacent to a flat bench downstream of the 100D Area, and the highest values were 
near the center of the study site.  
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Borehole Dilution 

Borehole dilution data generally approximated the shape of exponential decay 

curves (Figure 32).  Fast responses were considered greater than 1 x 10-2 cm/s.  Slower 

responses had values between 1 x 10-2 cm/s and 1 x 10-3 cm/s.  One example of a 

semilogarithmic plot of tracer concentration versus time was included for each 

response range (Figure 33).  All other responses are included in Appendix E. 
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Figure 32:  Exponential decay of tracer concentration with time in piezometer 23.  The 
peak in the curve represents the introduction of potassium chloride tracer into the 
borehole, and the decay was due to the velocity of subsurface water passing through 
the screened interval of the borehole, diluting the tracer.  Specific conductance was 
used as an analog for KCl. 
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Figure 33:  Specific discharge was determined using the slope of the plot of natural 
logarithm of tracer concentration versus time.  Piezometer 23 was in the fast response 
range (q=0.068 cm/s), and piezometer 1 was in the slower range (q=0.0041). 

 

Specific discharge estimates ranged from 0.004 cm/s to 0.145 cm/s (Figure 34; 

Table 5).  All of the “fast response” areas were downstream of the 100D Area, 

suggesting more movement of hyporheic water there (Figure 35).  Because there was 

only one replicate for each borehole dilution test, replication error could not be 

computed.  The standard error associated with regression was computed in the same 

manner as for slug test results (Table 5).   
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Figure 34:  Specific discharge results for Hanford Reach piezometers.  Error bars 
show the standard error associated with the regression of natural logarithm versus 
time. 

 

Table 5:  Specific discharge determined using borehole dilution tests.  The standard 
error (SE) was determined for the slope of LN[tracer concentration]/time. 
Piezometer 
number 

Specific discharge  
(cm/s) 

SE 
(cm/s) 

43 0.026 0.00044 
40 0.006 0.00051 
35 0.099 0.00734 
27 0.018 0.00040 
23 0.068 0.00129 
18 0.008 0.00062 
2 0.009 0.00032 
1 0.004 0.00053 

30 0.145 0.08000 
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Figure 35:  Specific discharge results for the 100D Area.  The highest values were 
downstream of the 100D Area, suggesting higher subsurface water velocities in those 
locations.   
 

Mass flux estimates of Cr(VI) from the hyporheic zone into the river were made 

using hydraulic conductivity and Cr(VI) results.  The total mass of Cr(VI) entering the 

river along the 100D Area shoreline study site was 0.044 kg/d using equation 13 and 

the data from Table 6 (Figure 36).  The concentration of Cr(VI) in the Columbia River 

from the 100D Area downstream to the river’s mouth in the Pacific Ocean was 

estimated by dividing total mass flux of Cr(VI) at the 100D Area (0.044 kg/d) by the 
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volumetric discharge of the Columbia River flowing at a rate of 100,000 ft3/s near the 

100D Area (2.4 x 1011 L/d).  The result was 1.8 x 10-13 kg/L (1.8 x 10-7 mg/L) Cr(VI).  

The quantity did not consider seasonal changes in river discharge or input from 

downstream tributaries.  The assumption was also made that all Cr(VI)  remained in 

the river water column from discharge at the 100D Area to discharge into the Pacific 

Ocean. 
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Figure 36:  Mass flux of Cr(VI) into the Columbia River through the hyporheic zone at 
the 100D Area.  Shoreline cell labels correspond to cell numbers in Table 6. 
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Table 6:  Variables used to estimate mass flux of Cr(VI) into the Columbia River near 
the 100D Area.  Values represent averaged data collected from piezometers within 
each cell. 
Cell 
number 

Length 
(km) 

Depth 
(m) 

VHG K (cm/s) Cr(VI) 
(mg/L) 

Mass flux 
Cr(VI) (kg/d) 

1 0.6 1 0.10 0.00083 0.006 0.000274 
2 0.5 1 0.30 0.00343 0.027 0.012491 
3 0.2 1 0.24 0.00251 0.012 0.001460 
4 0.1 1 0.12 0.00050 0.146 0.000592 
5 0.1 1 0.06 0.00008 0.041 0.000014 
6 0.1 1 0.02 0.04348 0.242 0.020543 
7 0.3 1 0.03 0.01356 0.099 0.007951 
8 0.4 1 0.04 0.00032 0.032 0.000117 
9 0.3 1 0.21 0.00003 0.003 0.000005 
10 0.3 1 0.00 0.00187 0.004 -0.000009 
11 0.3 1 0.15 0.00018 0.016 0.000125 
12 0.4 1 0.00 0.00245 0.012 0.000026 
13 0.3 1 0.12 0.00390 0.001 0.000140 

Total           0.0440 
 

Chapter 5:  Discussion 

Water Quality Testing 

Cr(VI) concentrations determined for this thesis match closely with other 

chromium concentrations reported near the 100D Area on the Hanford Site (Figure 

37).  Past water concentration results varied along the margins of the 100D Area 

shoreline because of temporal variation in river stage, chromium plume migration, and 

differences in analysis techniques.  The results of this study and previous work all 

show Cr(VI) water concentrations consistently over 0.1 mg/L along a 400 m reach of 

100D Area shoreline.  In addition, Cr(VI) water concentrations over 0.4 mg/L have 

been consistently observed along a narrower 200 m zone along the 100D Area 
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shoreline (Hartman and Dresel, 1998; Peterson et al., 1998; Arntzen unpublished data, 

2000; Patton, 1999; Figure 37).   
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Figure 37:  Cr(VI) water concentration results from this study, adjacent Hanford 
monitoring wells, surface water samples, and past shoreline sampling efforts.  Results 
show good correlation between Cr(VI) water concentrations determined from 
independent sources. 

 

Understanding the relationship between Cr(VI) and river stage is important 

because Cr(VI) concentrations in the hyporheic zone are influenced by river stage 

controlled hydraulic gradients.  For example, Cr(VI) concentrations were generally 

higher during periods of low river stage (Figure 23 and Figure 24).   The relationship 
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between Cr(VI) and river stage is probably hysteretic, similar to the relationship 

between river stage and the other water quality variables (Figure 22).  By 

understanding this relationship, estimates of Cr(VI) discharge into the river could be 

made simply by monitoring river stage.  This would be valuable because currently 

modelers must rely on expensive Cr(VI) concentration data from nearshore wells, and 

river stage changes have a more immediate and pronounced effect on water quality in 

the hyporheic zone than in the adjacent aquifer. 

Comparisons between river stage, specific conductance, and Cr(VI) were made 

for individual piezometers because there was a large amount of variability in water 

quality data between piezometers.  However, general comparisons were possible 

between specific conductance and Cr(VI) because these data were collected from the 

same locations at approximately the same times.  The specific conductance and Cr(VI) 

data presented in Figure 23 and Figure 24 were compared to confirm their suspected 

positive correlation (Figure 38).  The result was a positive correlation (? =0.05; 

R2=0.32; p=0.0017).  Understanding the correlation between these variables would 

provide a potential cost effective tool that could be used to search for areas of 

contaminant discharge into the river.  However, caution must be exercised when 

generalizing these relationships.  The most effective approach would evaluate 

relationships between water quality and surface hydrology on the smallest reasonable 

spatial scale.   
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Figure 38:  Cr(VI) versus specific conductance in minipiezometers 9, 10, 12, 13, 15, 
16, 19, and 20.   

 

Hydraulic Testing 

The objective of this project was to demonstrate the application of hydraulic 

methods used to determine hydrogeologic properties of the hyporheic zone in a large 

river, and to compare hydraulic data to water quality data collected for this project in 

the same locations.  This objective was evaluated by comparing estimates of hydraulic 

conductivity using slug tests to those using borehole dilution methods, and by 

evaluating the reliability of each method individually.     

Hydraulic conductivity is directly comparable to specific discharge using 

Darcy’s equation (equation 7).  However, my data did not correlate and differed by 
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several orders of magnitude at all locations.  The comparison was complicated by 

differences between slug test methods and borehole dilution techniques, and also by 

potential problems with the hydraulic gradient data that were collected.  The vertical 

hydraulic gradient (VHG) measurements may have complicated the comparison for 

two reasons:  First, VHG values were determined using a single measurement and 

there was no statistical control over the results.  Second, although vertical flow 

through the borehole undoubtedly played an important role in the subsurface 

hydraulics, the horizontal component of flow was not accounted for by the VHG data;  
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Figure 39:  Specific discharge and hydraulic conductivity at piezometer locations in 
the 100D Area.  Specific discharge was determined from borehole dilution results and 
hydraulic conductivity was determined using the Bouwer and Rice solution for slug 
tests. 
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thus the total gradients were probably under estimated.  For these reasons, specific 

discharge determined using borehole dilution data were compared directly to hydraulic 

conductivity determined using slug tests (Figure 39). 

Given the small number of borehole dilution tests it is not surprising that the data 

sets were not significantly correlated (p=0.43).  The important result of the 

comparison is that most of the results are within an order of magnitude; it is not 

uncommon for specific discharge results determined using borehole dilution to differ 

from hydraulic conductivity estimates by orders of magnitude (Dexter and Kearl, 

1988).  This is largely a consequence of error sources collectively causing net 

increases in specific discharge estimates (Halevy et al., 1967).  In general, errors in 

borehole dilution tests are caused by unknown hydrogeologic properties 

(heterogeneity), variables associated with well construction, instrumental influences 

(mixing), and physical influences (diffusion, density effects, and adsorption of tracer 

ions onto the probe and piezometer wall) (Halevy et al., 1967).  For this project, errors 

in the borehole dilution methodology caused the tracer to fail to return to the pre-test 

concentrations in the borehole.  This caused the semi-logarithmic plot of tracer 

concentration versus time to be non-linear.  For about half of the tests, this non-

linearity was minimal and probably occurred due to some residual tracer caused by 

adsorption or non-uniform mixing.  In some cases this problem was severe, suggesting 

an event such as packer failure (Figure 40).  If packer failure occurred, it is likely that 

the well-mixed salt solution in the borehole diffused into the water above the sensor, 
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providing a relatively constant tracer supply that redefined the background 

concentration.  To compensate for this, the background concentration was assumed to 

be the concentration that the borehole dilution test was approaching at the end of the 

test, rather than the initial value (Borowczyk et al., 1965).  The adjusted background 

values maximized the linear record of the response and allowed the data to be 

analyzed.  The majority of the values were within one order of magnitude of hydraulic 

conductivity estimates from slug tests.  However, despite corrections for background 

concentrations, some values of specific discharge were three orders of magnitude 

greater than hydraulic conductivity estimates (Figure 39).  
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Figure 40:  Tracer response for a borehole dilution in piezometer 1.  There was a 
problem (i.e., possible packer failure) that caused the ending concentration to be much 
higher than the background level prior to tracer injection.  
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Overdamped slug test data collected for this project demonstrated that the 

hydraulic conductivity of fluvial Hanford Reach sediments varied over four orders of 

magnitude.  This is significant because typical groundwater modeling assumptions 

include the assertion that river boundary zone sediments are homogeneous (e.g., the 

Hanford site three dimensional groundwater flow model uses an estimate of 9.3 x 10-3 

cm/s for the hydraulic conductivity of the 100D Area).  Hydraulic conductivity results 

from 100D Area piezometers were between 2.8 x 10–5 cm/s and 4.3 x 10-2 cm/s and 

were within the range of values other researchers have determined in similar alluvial 

environments (Table 7; Fetter, 1994; Barrash et al., 1997; Morrice et al., 1997; 

Springer et al., 1999; Weight and Wittman, 1999). 

Table 7:  Published values of hydraulic conductivity that were determined in alluvial 
environments similar to that of the Hanford Reach. 

Reference Location Sediment type Hydraulic Conductivity  
(cm/s) 

Fetter, 1994 General Sands 1.0 x 10-5 to 1.0 x 10-3 

Weight & 
Wittman, 1999 

Alluvial valley, 
Dillon Montana 

Alluvial silt, sand, and 
gravel 7.1 x 10-5 to 8.6 x 10-2 

Springer et al., 
1999 Colorado River Sand Bars 7.0 x 10-4 to 4.9 x 10-2 

Morrice et al., 
1997 

Headwater 
Streams 

Sand and Cobble sized 
gravel 1.3 x 10-4 to 4.1 x 10-3 

Barrash et al., 
1997 Boise River Alluvial sands 1.0 x 10-2 to 1.0 x 10-1 

Arntzen, 2002 
(this thesis) 

Hanford Reach, 
Columbia River 

Alluvial silt, sand, and 
cobble sized gravel 2.8 x 10-5 to 4.3 x 10-2 
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Although comparisons to other research lend confidence to the methodology and 

results of this thesis, one primary concern was that all of the Hanford Reach data were 

overdamped.  This fact alone was not alarming; however, it cast some doubt over the 

sensitivity of the methodology.  It would be helpful to know if the methodology is 

capable of detecting fundamentally different aquifer responses.  During 2000, some 

slug tests were conducted on the Snake River, Idaho, using the same equipment and 

identical methods as for the Hanford Reach work.  The Snake River alluvial sediments 

were contained in a relatively high gradient, bedrock confined river reach and were 

more permeable than those tested on the Hanford Reach.  Some of the Snake River 

slug tests produced oscillatory, underdamped response data (Figure 41).  The fact that  
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Figure 41:  This response, clearly oscillatory in nature, was collected in very 
permeable Snake River alluvium, and represents underdamped data. 
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the same instrumentation and methodology were capable of detecting fundamentally 

different types of aquifer responses (i.e., underdamped responses) lends credence to the 

reliability of the Hanford Reach methodology, and thereby the results.   

Inexpensive techniques (such as those presented in this thesis) have commonly 

been used to determine the heterogeneity and hydrogeology of aquifers (Fetter, 1994; 

Butler, 1998).  These methods, when applied to the zone of groundwater-surface water 

mixing (i.e., the hyporheic zone of the Columbia River), may be of valuable to 

remediation managers by improving estimates of the quantity and concentration of 

contaminants entering the river.  For example, remediation efforts are currently 

underway at the 100D Area site.  These efforts include pump and treat as well as in 

situ redox manipulation (chemical reduction and consequent immobilization of Cr(VI) 

to Cr(III); Hartman and Dresel, 1998).    
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Figure 42:  Hydraulic conductivity values versus Cr(VI).  The correlation between the 
variables was significant but weak, suggesting the need for additional data collection. 

R=0.77 R=0.42 



 

 75

 

Future efforts to evaluate the success of these technologies will need to consider the 

quantity of Cr(VI) entering the river.  Improved estimates of hydraulic conductivity 

along the shoreline in the zone where Cr(VI) flows into the river are necessary in order 

to predict this quantity accurately.  Hydraulic conductivity data collected adjacent to 

the 100D Area were compared with Cr(VI) data collected from the same locations  to 

determine if there was a correlation between hydraulic conductivity and Cr(VI) 

(Figure 42).  The correlation coefficient for hydraulic conductivity and Cr(VI) was 

0.77 (p=0.0002).  Typically, due to large-scale differences in hydraulic data, the 

logarithm of hydraulic conductivity is used for comparisons with other data.  The 

correlation coefficient for the natural logarithm of hydraulic conductivity and Cr(VI) 

was 0.42 (p=0.085).  Based on these data, a significant relationship was determined at 

a confidence level of ? =0.05 for hydraulic conductivity and Cr(VI), and the 

relationship between the natural logarithm of hydraulic conductivity and Cr(VI) was 

not significant.  A similar relationship was found between hydraulic conductivity and 

specific conductance (Figure 43).  For K versus specific conductance R2 was 0.45 

(p=0.002).  The natural log of K versus specific conductance had an R2 value of 0.17 

(p=0.09).   

The scatter about the regression was large for both comparisons, suggesting 

limitations on the attached significance.  It is recommended that future efforts to 

collect hydraulic data along the shoreline of the 100D Area sample as densely as 
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possible, especially in the vicinity of the 100D Area chromium “hot spot”, in order to 

improve our understanding of the relationship between Cr(VI), specific conductance, 

and hydraulic conductivity. 
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Figure 43:  Hydraulic conductivity (K) versus specific conductance.  The relationship 
was similar to that of K and Cr(VI). 
  

   Chapter 6:  Conclusions 

Cr(VI) is present in Columbia River gravels near the 100D Area and exceeded 

the U.S. EPA’s 0.01 mg/L limit for exposure to aquatic life by over 50 times; one 

quarter of all samples exceeded the EPA’s federal 0.1 mg/L drinking water standard.  

Cr(VI) water concentrations were correlated with position along the river shoreline, 

with the highest concentrations centered  at the upstream end of  the 100D Area over a 

400 m reach of shoreline.  These results are consistent with past research that found 

similar Cr(VI) in the groundwater-surfacewater mixing zone and in riverbank seeps 



 

 77

and springs.  Cr(VI) was below detection limits in water samples collected from the 

overlying water column of the river, thus potential impacts to aquatic life were limited 

to those in contact with contaminated hyporheic water immediately beneath the river 

bed.  Location and concentration of Cr(VI) were likely a function of small scale 

variation in sediment heterogeneity, hydraulic gradients, and contaminant source 

location.   

A hysteretic relationship was found between river stage and specific 

conductance, dissolved oxygen, temperature, and hydrogen ion concentration, 

suggesting that although there is a gross negative correlation between river stage and 

water quality, the relationship is complex and requires further research before the river 

stage would be suitable for use as an analog to Cr(VI) for monitoring purposes in areas 

where Cr(VI) is known to exist.   

A significant positive correlation was determined for the relationship between 

Cr(VI) and specific conductance (R2=0.32; p=0.0017).  This relationship was not 

affected by the same variability that hindered general stage versus specific 

conductance and Cr(VI) comparisons, because values were collected from the same 

piezometers at essentially the same time and date.   

Hydraulic sampling techniques including slug tests and borehole dilution were 

evaluated in the riverbed of the Columbia River, Hanford Reach, Washington to 

determine whether they were capable of discerning hydrogeological variability in the 

ecologically sensitive hyporheic zone beneath the river, and if so, to determine that 
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variability.  Borehole dilution results resulted in specific discharge estimates ranging 

from 4.0 x 10-3 cm/s to 1.5 x 10-1 cm/s.  Relatively few borehole dilution tests were 

conducted, resulting in no estimates of precision.  Additionally, there was a problem 

with the borehole dilution methodology, speculatively the result of packer failure 

during some tests.  Due to the lack of data, and the presumed packer failure, attempts 

to relate hydraulic conductivity values determined using slug tests to specific 

discharge values using borehole dilution failed.  In order to determine the success of 

the borehole dilution methodology in hyporheic environments, more borehole dilution 

experiments would have to be conducted in the future.  The determination of 

horizontal hydraulic gradients between hyporheic water surface elevations and the 

potentiometric surface of the adjacent aquifer would help explain borehole dilution 

results. 

Hydraulic conductivity was determined using the Bouwer and Rice solution and 

was reproducible and highly variable, and showed that Hanford Reach response data 

were overdamped (Kabala et al., 1985; Butler, 1998; Weight and Wittman, 1999).  

Values ranged from 2.8 x 10–5 cm/s to 4.3 x 10-2 cm/s, and the precision associated 

with replicates reinforced the confidence placed in these data.  The accuracy of the 

data was a function of the solution used to solve for hydraulic conductivity and was 

largely unknown, although values were comparable to others collected in similar 

alluvial environments, and the chosen solution has commonly been used in similar 

environments (Butler et al., 1996; Weight and Witman, 1999).  The methodology used 
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for this thesis was used in the Snake River to successfully detect fundamentally 

different oscillatory response data, which demonstrated the capability of the method 

and provided further confidence to the data collection technique.  This methodology is 

inexpensive, not labor intensive, and provides a practical means by which managers 

can collect additional hydrogeologic data in the groundwater surface water zone to 

improve groundwater modeling efforts.   

Hydraulic conductivity determined using slug tests correlated positively with 

Cr(VI) estimates made in the same locations on the Columbia River shoreline near the 

100D Area (r=0.77, p=0.0002).  This relationship may complement point source 

location data and help explain the location of the elevated Cr(VI) area that has been 

detected in shallow riverbed sediments near the center of the study site adjacent to the 

100D Area reactor (Peterson et al., 1998; Arntzen unpublished data 2000).  Although 

more data is needed to definitively correlate contaminant interaction with the 

hydrogeology of Columbia River sediments on the Hanford site, these results show 

that the hydrogeology of the shoreline environment is highly variable, may correlate 

with contaminant concentrations in some areas, and should be considered when 

modeling contaminant transport into the river. 

Estimates to determine the effects of heterogeneity on Cr(VI) discharge into the 

river were made based on hydraulic conductivity measurements determined using slug 

tests, and Cr(VI) determined using a colorimetric technique.  Data were collected 

during low periods of river stage (approximately 117 m above MSL; NAVD 88) when 
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vertical hydraulic gradients were at seasonal highs.  The estimate for total mass of 

Cr(VI) entering the river was 0.044 kg/d.  The concentration of Cr(VI) in the 

Columbia River downstream of the 100D Area was 1.8 x 10-7 mg/L.  
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Appendix A:  Survey Data 

Data for vertical elevation survey between piezometer and survey stake. 

Survey 
pin/piezo 
number 

Survey 1 ? L 
(cm) 

Survey 2 ? L 
(cm) 

AVG. ? L 
(cm) 

Dist. Pin-
piezometer 

(m) 

Correction* 
(cm) 

Corrected ? L 
(cm) 

1LS/1 -271.7 -272.0 -271.9 67.41 0.0307 -271.8 
2LS/4 -243.0 -242.3 -242.7 56.04 0.0212 -242.6 
2LS/5 -272.0 -271.3 -271.7 56.04 0.0212 -271.6 
3LS/9 -331.0 -330.5 -330.8 18.48 0.0023 -330.7 
3LS/10 -331.2 -332.0 -331.6 18.48 0.0023 -331.6 
3LS/12 -329.5 -328.9 -329.2 342.95 0.7951 -328.4 
4LS/17 -336.8 -336.6 -336.7 10.99 0.0008 -336.7 
4LS/18 -344.4 -344.3 -344.4 10.99 0.0008 -344.3 
5LS/20 -208.2 -208.3 -208.3 8.78 0.0005 -208.2 
5LS/21 -214.3 -213.9 -214.1 8.78 0.0005 -214.1 
6LS/26 -616.7 -617.0 -616.9 24.61 0.0041 -616.8 
6LS/27 -637.2 -636.0 -636.6 27.30 0.0050 -636.6 
1NS/30 -467.6 -466.9 -467.3 29.11 0.0057 -467.2 
2NS/33 -441.0 -442.5 -441.8 21.69 0.0032 -441.7 
2NS/36 -442.0 -443.0 -442.5 88.32 0.0527 -442.4 
2NS/37 -416.5 -417.0 -416.8 153.09 0.1584 -416.6 
7LS/41 -478.5 -478.5 -478.5 13.80 0.0013 -478.5 
7LS/42 -503.9 -502.9 -503.4 13.80 0.0013 -503.4 
8LS/43 -425.1 -424.5 -424.8 19.07 0.0025 -424.8 

Notes: 
* Correction is for errors due to light refraction and curvature of the earth 

 

The following table includes data for vertical elevation surveys between survey pins.  

Survey pins were established above the high water mark for future reference. 

Survey pins Survey 1 ? L* 
(cm) 

Survey 2 ? L* 
(cm) 

AVG. ? L 
(cm) 

Correction^ 
(cm) 

Corrected ? L 
(cm) 

1LS-2LS 8.0  8.0  8.0 
2LS-3LS 53.5 50.0 51.8 0.2015 53.3 
3LS-4LS 46.8 46.5 46.7 0.2190 46.6 
4LS-5LS -119.0 -122.0 -120.5 0.2227 -119.2 
5LS-6LS 419.6 419.0 419.3 0.1381 419.5 
6LS-1NS -167.0 -169.0 -168.0 0.2581 -167.3 
1NS-2NS -11.5 -12.5 -12.0 0.0237 -11.5 
2NS-3NS 212.0 211.5 211.8 0.0276 212.0 
3NS-4NS -310.5 -308.0 -309.3 0.0331 -310.5 
4NS-7LS 144.0 142.0 143.0 0.0275 144.0 
7LS-8LS -39.5 -36.0 -37.8 0.1818 -39.7 
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Notes: 
*?  foresights and backsights 
^?  corrections for all foresights and backsights 
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Appendix B:  Priest Rapids Discharge and Columbia River Stage at 100D 

 

Date/Time Q* 
(KCFS) 

Stage^ 
(m) 

Date/Time Q* 
(KCFS) 

Stage^ 
(m) 

10/18/99 0:00 124.7 117.99 11/3/99 1:00 103.1 117.69 
10/18/99 1:00 104.1 117.97 11/3/99 2:00 94.8 117.55 
10/18/99 2:00 109.9 117.91 11/3/99 3:00 95.2 117.53 
10/18/99 3:00 111.6 117.88 11/3/99 4:00 103.9 117.53 
10/18/99 4:00 109.7 117.86 11/3/99 5:00 103.5 117.56 
10/18/99 5:00 98.8 117.83 11/3/99 6:00 57.4 117.61 
10/18/99 6:00 58.8 117.73 11/3/99 7:00 37.7 117.53 
10/18/99 7:00 41.9 117.47 11/3/99 8:00 50.5 117.27 
10/18/99 8:00 53.6 117.37 11/3/99 9:00 53.8 117.06 
10/18/99 9:00 50.4 117.20 11/3/99 10:00 53.3 116.91 
10/18/99 10:00 53.0 117.08 11/3/99 11:00 54.3 116.82 
10/18/99 11:00 52.9 117.02 11/3/99 12:00 55.2 116.72 
10/18/99 12:00 52.7 116.91 11/3/99 13:00 54.2 116.73 
10/18/99 13:00 52.6 116.88 11/3/99 14:00 54.1 116.71 
10/18/99 14:00 52.7 116.78 11/3/99 15:00 54 116.69 
10/18/99 15:00 52.8 116.74 11/3/99 16:00 54.1 116.64 
10/18/99 16:00 52.9 116.75 11/3/99 17:00 54.1 116.63 
10/18/99 17:00 52.7 116.73 11/3/99 18:00 116.1 116.62 
10/18/99 18:00 52.7 116.66 11/3/99 19:00 161 116.72 
10/18/99 19:00 76.1 116.69 11/3/99 20:00 146.4 117.29 
10/18/99 20:00 184.2 117.15 11/3/99 21:00 113.9 117.85 
10/18/99 21:00 183.6 117.96 11/3/99 22:00 110.6 118.00 
10/18/99 22:00 182.9 118.42 11/3/99 23:00 110.3 117.99 
10/18/99 23:00 149 118.60 11/4/99 0:00 115.4 117.96 
10/19/99 0:00 130.9 118.50 11/4/99 1:00 134.6 117.92 
10/19/99 1:00 140.4 118.45 11/4/99 2:00 133.5 118.00 
10/19/99 2:00 167.1 118.53 11/4/99 3:00 155.6 118.05 
10/19/99 3:00 163.3 118.57 11/4/99 4:00 161.7 118.24 
10/19/99 4:00 156.7 118.61 11/4/99 5:00 158.8 118.43 
10/19/99 5:00 169.5 118.67 11/4/99 6:00 84.8 118.55 
10/19/99 6:00 146 118.70 11/4/99 7:00 38.4 118.37 
10/19/99 7:00 36.2 118.57 11/4/99 8:00 38.7 117.92 
10/19/99 8:00 36.6 117.73 11/4/99 9:00 51.3 117.50 
10/19/99 9:00 48.7 117.34 11/4/99 10:00 54.4 117.15 
10/19/99 10:00 51 117.08 11/4/99 11:00 54.1 116.98 
10/19/99 11:00 51.7 116.95 11/4/99 12:00 54.4 116.86 
10/19/99 12:00 52.5 116.79 11/4/99 13:00 54.6 116.76 
10/19/99 13:00 54.4 116.73 11/4/99 14:00 54.5 116.72 
10/19/99 14:00 53.1 116.70 11/4/99 15:00 53.9 116.69 
10/19/99 15:00 51.8 116.67 11/4/99 16:00 54.7 116.68 
10/19/99 16:00 53.1 116.70 11/4/99 17:00 55.3 116.66 
10/19/99 17:00 52.8 116.63 11/4/99 18:00 124 116.66 
10/19/99 18:00 52.7 116.62 11/4/99 19:00 167.5 116.77 
10/19/99 19:00 78 116.62 11/4/99 20:00 170 117.39 
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10/19/99 20:00 177.2 117.12 11/4/99 21:00 175.8 117.99 
10/19/99 21:00 171.5 117.84 11/4/99 22:00 182.5 118.37 
10/19/99 22:00 182.4 118.35 11/4/99 23:00 169.4 118.64 
10/19/99 23:00 175.5 118.61 11/5/99 0:00 158.4 118.76 
10/20/99 0:00 173.5 118.74 11/5/99 1:00 142.9 118.74 
10/20/99 1:00 163.2 118.78 11/5/99 2:00 146.5 118.66 
10/20/99 2:00 114.7 118.58 11/5/99 3:00 151 118.57 
10/20/99 3:00 136.7 118.43 11/5/99 4:00 166.4 118.54 
10/20/99 4:00 168.8 118.49 11/5/99 5:00 146.7 118.59 
10/20/99 5:00 153.3 118.57 11/5/99 6:00 67.2 118.59 
10/20/99 6:00 153.8 118.57 11/5/99 7:00 36.7 118.29 
10/20/99 7:00 45.9 118.21 11/5/99 8:00 38.9 117.82 
10/20/99 8:00 50 117.79 11/5/99 9:00 54.3 117.39 
10/20/99 9:00 49.1 117.47 11/5/99 10:00 51.8 117.10 
10/20/99 10:00 54.9 117.17 11/5/99 11:00 53.9 116.92 
10/20/99 11:00 55.3 117.05 11/5/99 12:00 53 116.82 
10/20/99 12:00 54.7 116.89 11/5/99 13:00 54.4 116.76 
10/20/99 13:00 54.8 116.86 11/5/99 14:00 52.9 116.72 
10/20/99 14:00 55 116.77 11/5/99 15:00 54.2 116.70 
10/20/99 15:00 55 116.73 11/5/99 16:00 55.1 116.68 
10/20/99 16:00 55 116.71 11/5/99 17:00 124.3 116.68 
10/20/99 17:00 55 116.70 11/5/99 18:00 167 116.79 
10/20/99 18:00 54.8 116.69 11/5/99 19:00 144.8 117.44 
10/20/99 19:00 118.9 116.78 11/5/99 20:00 123.1 117.89 
10/20/99 20:00 159.6 117.34 11/5/99 21:00 124.3 118.07 
10/20/99 21:00 165 117.93 11/5/99 22:00 138.1 118.06 
10/20/99 22:00 174.5 118.33 11/5/99 23:00 118.8 118.11 
10/20/99 23:00 182.2 118.61 11/6/99 0:00 126.6 118.10 
10/21/99 0:00 182 118.79 11/6/99 1:00 171.2 118.07 
10/21/99 1:00 181.9 118.91 11/6/99 2:00 178.5 118.25 
10/21/99 2:00 182.3 118.96 11/6/99 3:00 174.6 118.47 
10/21/99 3:00 182.7 119.01 11/6/99 4:00 175.8 118.63 
10/21/99 4:00 182.3 119.03 11/6/99 5:00 208.1 118.74 
10/21/99 5:00 182 119.04 11/6/99 6:00 155 118.94 
10/21/99 6:00 181.7 119.06 11/6/99 7:00 65.9 118.94 
10/21/99 7:00 106.8 118.83 11/6/99 8:00 66.4 118.47 
10/21/99 8:00 47 118.32 11/6/99 9:00 54.3 118.06 
10/21/99 9:00 51.3 117.87 11/6/99 10:00 56.1 117.67 
10/21/99 10:00 53.7 117.51 11/6/99 11:00 60.3 117.36 
10/21/99 11:00 54.1 117.25 11/6/99 12:00 65.4 117.16 
10/21/99 12:00 53.5 117.02 11/6/99 13:00 67.5 117.04 
10/21/99 13:00 53.4 116.90 11/6/99 14:00 77.1 116.99 
10/21/99 14:00 53.2 116.81 11/6/99 15:00 122.3 116.99 
10/21/99 15:00 53.9 116.75 11/6/99 16:00 121 117.16 
10/21/99 16:00 56 116.72 11/6/99 17:00 99.6 117.46 
10/21/99 17:00 56.6 116.69 11/6/99 18:00 142.9 117.59 
10/21/99 18:00 59.3 116.73 11/6/99 19:00 164.8 117.75 
10/21/99 19:00 133.3 116.85 11/6/99 20:00 166.2 118.07 
10/21/99 20:00 172 117.55 11/6/99 21:00 167.4 118.33 
10/21/99 21:00 176 118.10 11/6/99 22:00 168.7 118.51 
10/21/99 22:00 180 118.48 11/6/99 23:00 169.9 118.61 
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10/21/99 23:00 178.9 118.69 11/7/99 0:00 172.2 118.70 
10/22/99 0:00 172.4 118.78 11/7/99 1:00 174.6 118.75 
10/22/99 1:00 178 118.85 11/7/99 2:00 178.3 118.79 
10/22/99 2:00 180 118.92 11/7/99 3:00 170.2 118.86 
10/22/99 3:00 180.4 118.96 11/7/99 4:00 154 118.88 
10/22/99 4:00 179.8 118.99 11/7/99 5:00 146.5 118.79 
10/22/99 5:00 179.4 118.99 11/7/99 6:00 83.7 118.69 
10/22/99 6:00 166.5 118.96 11/7/99 7:00 36.6 118.40 
10/22/99 7:00 39.9 118.49 11/7/99 8:00 46.1 117.93 
10/22/99 8:00 37.2 117.94 11/7/99 9:00 55.6 117.49 
10/22/99 9:00 37.5 117.48 11/7/99 10:00 54.9 117.20 
10/22/99 10:00 50.4 117.14 11/7/99 11:00 54.9 117.02 
10/22/99 11:00 53.5 116.94 11/7/99 12:00 54.8 116.90 
10/22/99 12:00 52.6 116.83 11/7/99 13:00 54.6 116.82 
10/22/99 13:00 53 116.76 11/7/99 14:00 54.4 116.77 
10/22/99 14:00 53.9 116.72 11/7/99 15:00 54.5 116.73 
10/22/99 15:00 53.7 116.70 11/7/99 16:00 54.3 116.73 
10/22/99 16:00 53.6 116.69 11/7/99 17:00 54 116.69 
10/22/99 17:00 53.7 116.68 11/7/99 18:00 95 116.68 
10/22/99 18:00 53.8 116.67 11/7/99 19:00 135.2 116.75 
10/22/99 19:00 90.7 116.69 11/7/99 20:00 143.1 117.11 
10/22/99 20:00 179.3 117.24 11/7/99 21:00 144.9 117.58 
10/22/99 21:00 182.9 118.00 11/7/99 22:00 146.3 117.90 
10/22/99 22:00 182.4 118.45 11/7/99 23:00 144.3 118.11 
10/22/99 23:00 181.8 118.71 11/8/99 0:00 130 118.23 
10/23/99 0:00 181.2 118.85 11/8/99 1:00 108.6 118.24 
10/23/99 1:00 180.9 118.92 11/8/99 2:00 110.9 118.13 
10/23/99 2:00 180.4 118.97 11/8/99 3:00 114.1 118.01 
10/23/99 3:00 180.1 118.99 11/8/99 4:00 130.5 117.94 
10/23/99 4:00 178.8 119.01 11/8/99 5:00 113.9 117.96 
10/23/99 5:00 177.5 119.00 11/8/99 6:00 65.8 117.97 
10/23/99 6:00 166.4 118.96 11/8/99 7:00 37.7 117.81 
10/23/99 7:00 40.3 118.49 11/8/99 8:00 57.6 117.49 
10/23/99 8:00 37.4 117.94 11/8/99 9:00 59.3 117.20 
10/23/99 9:00 37.6 117.48 11/8/99 10:00 59.5 117.02 
10/23/99 10:00 50.5 117.14 11/8/99 11:00 59.8 116.92 
10/23/99 11:00 53.1 116.94 11/8/99 12:00 59.6 116.86 
10/23/99 12:00 52.9 116.82 11/8/99 13:00 59.8 116.82 
10/23/99 13:00 53.9 116.76 11/8/99 14:00 59.9 116.79 
10/23/99 14:00 53.5 116.72 11/8/99 15:00 59.6 116.78 
10/23/99 15:00 53.8 116.70 11/8/99 16:00 59.7 116.77 
10/23/99 16:00 54 116.69 11/8/99 17:00 60.7 116.76 
10/23/99 17:00 53.9 116.68 11/8/99 18:00 156.7 116.79 
10/23/99 18:00 53.9 116.67 11/8/99 19:00 181.8 117.03 
10/23/99 19:00 88.1 116.69 11/8/99 20:00 182.1 117.76 
10/23/99 20:00 166.8 117.18 11/8/99 21:00 138.5 118.31 
10/23/99 21:00 172.4 117.89 11/8/99 22:00 97.5 118.47 
10/23/99 22:00 175.8 118.34 11/8/99 23:00 90 118.30 
10/23/99 23:00 179.6 118.63 11/9/99 0:00 118.5 118.02 
10/24/99 0:00 178.2 118.79 11/9/99 1:00 132 117.87 
10/24/99 1:00 129 118.71 11/9/99 2:00 121 117.94 
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10/24/99 2:00 135.6 118.57 11/9/99 3:00 137.2 117.97 
10/24/99 3:00 137.6 118.43 11/9/99 4:00 168.7 118.05 
10/24/99 4:00 138.7 118.44 11/9/99 5:00 165.7 118.25 
10/24/99 5:00 115.1 118.33 11/9/99 6:00 117.4 118.45 
10/24/99 6:00 101.3 118.16 11/9/99 7:00 38.2 118.43 
10/24/99 7:00 40.9 117.84 11/9/99 8:00 40.9 118.01 
10/24/99 8:00 38 117.46 11/9/99 9:00 59.3 117.56 
10/24/99 9:00 38 117.14 11/9/99 10:00 59.3 117.23 
10/24/99 10:00 38.1 116.86 11/9/99 11:00 59.6 117.04 
10/24/99 11:00 38.3 116.66 11/9/99 12:00 59.8 116.93 
10/24/99 12:00 38.2 116.57 11/9/99 13:00 63.4 116.86 
10/24/99 13:00 47.3 116.47 11/9/99 14:00 65 116.83 
10/24/99 14:00 54 116.41 11/9/99 15:00 65.1 116.85 
10/24/99 15:00 54.1 116.46 11/9/99 16:00 65 116.87 
10/24/99 16:00 54.4 116.52 11/9/99 17:00 65.6 116.85 
10/24/99 17:00 53.7 116.62 11/9/99 18:00 158.4 116.86 
10/24/99 18:00 54.7 116.61 11/9/99 19:00 180.1 117.13 
10/24/99 19:00 91.7 116.66 11/9/99 20:00 181.4 117.81 
10/24/99 20:00 159 117.14 11/9/99 21:00 181.1 118.33 
10/24/99 21:00 162.4 117.76 11/9/99 22:00 165.2 118.63 
10/24/99 22:00 150.9 118.12 11/9/99 23:00 136.6 118.72 
10/24/99 23:00 148.9 118.27 11/10/99 0:00 144.3 118.63 
10/25/99 0:00 137.9 118.33 11/10/99 1:00 172.2 118.54 
10/25/99 1:00 116.4 118.26 11/10/99 2:00 179.2 118.60 
10/25/99 2:00 106.5 118.12 11/10/99 3:00 178.8 118.72 
10/25/99 3:00 106.2 117.99 11/10/99 4:00 168.5 118.83 
10/25/99 4:00 120.1 117.94 11/10/99 5:00 163.8 118.86 
10/25/99 5:00 127.8 117.97 11/10/99 6:00 124 118.84 
10/25/99 6:00 102.3 117.95 11/10/99 7:00 36.4 118.70 
10/25/99 7:00 46.3 117.72 11/10/99 8:00 53 118.20 
10/25/99 8:00 41.5 117.38 11/10/99 9:00 62.1 117.72 
10/25/99 9:00 53.9 117.11 11/10/99 10:00 62.4 117.40 
10/25/99 10:00 51.5 116.94 11/10/99 11:00 62.6 117.19 
10/25/99 11:00 52.7 116.82 11/10/99 12:00 62.4 117.06 
10/25/99 12:00 58.2 116.76 11/10/99 13:00 62.4 116.97 
10/25/99 13:00 51.5 116.73 11/10/99 14:00 62.3 116.91 
10/25/99 14:00 54.1 116.70 11/10/99 15:00 61.8 116.88 
10/25/99 15:00 55.2 116.70 11/10/99 16:00 62.1 116.85 
10/25/99 16:00 53 116.67 11/10/99 17:00 63.4 116.87 
10/25/99 17:00 52.4 116.66 11/10/99 18:00 91.9 116.86 
10/25/99 18:00 53.2 116.64 11/10/99 19:00 150 116.91 
10/25/99 19:00 101.4 116.68 11/10/99 20:00 166.7 117.21 
10/25/99 20:00 171.7 117.26 11/10/99 21:00 174.1 117.83 
10/25/99 21:00 174.4 117.93 11/10/99 22:00 159.2 118.27 
10/25/99 22:00 175.5 118.35 11/10/99 23:00 145.5 118.44 
10/25/99 23:00 175.4 118.60 11/11/99 0:00 144.1 118.47 
10/26/99 0:00 176.4 118.73 11/11/99 1:00 137 118.46 
10/26/99 1:00 152.9 118.72 11/11/99 2:00 162.6 118.40 
10/26/99 2:00 161.9 118.70 11/11/99 3:00 176.7 118.46 
10/26/99 3:00 158.7 118.71 11/11/99 4:00 168.5 118.60 
10/26/99 4:00 143 118.63 11/11/99 5:00 165.1 118.70 
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10/26/99 5:00 145.3 118.58 11/11/99 6:00 136.1 118.73 
10/26/99 6:00 125 118.48 11/11/99 7:00 36.8 118.65 
10/26/99 7:00 57 118.16 11/11/99 8:00 47.6 118.19 
10/26/99 8:00 36.4 117.71 11/11/99 9:00 60.9 117.72 
10/26/99 9:00 46.9 117.32 11/11/99 10:00 60.8 117.39 
10/26/99 10:00 53.9 117.08 11/11/99 11:00 60.7 117.18 
10/26/99 11:00 52.7 116.93 11/11/99 12:00 60.6 117.04 
10/26/99 12:00 52.7 116.80 11/11/99 13:00 60.4 116.96 
10/26/99 13:00 52.6 116.74 11/11/99 14:00 60.2 116.90 
10/26/99 14:00 52.6 116.73 11/11/99 15:00 60.2 116.86 
10/26/99 15:00 52 116.67 11/11/99 16:00 60 116.83 
10/26/99 16:00 53.2 116.65 11/11/99 17:00 60.4 116.81 
10/26/99 17:00 56.2 116.64 11/11/99 18:00 141.7 116.79 
10/26/99 18:00 55.2 116.64 11/11/99 19:00 159.1 116.98 
10/26/99 19:00 98.6 116.69 11/11/99 20:00 160.9 117.54 
10/26/99 20:00 157.9 117.20 11/11/99 21:00 162.1 118.00 
10/26/99 21:00 160.9 117.81 11/11/99 22:00 162.9 118.29 
10/26/99 22:00 163.2 118.21 11/11/99 23:00 163.9 118.45 
10/26/99 23:00 163.6 118.45 11/12/99 0:00 163.6 118.55 
10/27/99 0:00 161.3 118.57 11/12/99 1:00 150.1 118.61 
10/27/99 1:00 161.8 118.65 11/12/99 2:00 170.8 118.60 
10/27/99 2:00 162.4 118.69 11/12/99 3:00 175.6 118.64 
10/27/99 3:00 162.2 118.73 11/12/99 4:00 177.6 118.74 
10/27/99 4:00 161.3 118.74 11/12/99 5:00 173 118.82 
10/27/99 5:00 160.2 118.74 11/12/99 6:00 128.5 118.85 
10/27/99 6:00 157.9 118.73 11/12/99 7:00 36.6 118.74 
10/27/99 7:00 53.5 118.37 11/12/99 8:00 48.5 118.23 
10/27/99 8:00 36.3 117.87 11/12/99 9:00 60.9 117.74 
10/27/99 9:00 48.5 117.44 11/12/99 10:00 62.4 117.41 
10/27/99 10:00 52.1 117.15 11/12/99 11:00 62.7 117.22 
10/27/99 11:00 52.6 116.98 11/12/99 12:00 63.9 117.07 
10/27/99 12:00 53.6 116.87 11/12/99 13:00 63.8 117.03 
10/27/99 13:00 53.9 116.78 11/12/99 14:00 63.8 116.99 
10/27/99 14:00 54.3 116.72 11/12/99 15:00 63.8 116.97 
10/27/99 15:00 56.7 116.70 11/12/99 16:00 63.7 116.95 
10/27/99 16:00 53.7 116.69 11/12/99 17:00 63.7 116.95 
10/27/99 17:00 53 116.68 11/12/99 18:00 130.2 116.94 
10/27/99 18:00 53.3 116.66 11/12/99 19:00 179.4 117.08 
10/27/99 19:00 102.5 116.70 11/12/99 20:00 181.3 117.70 
10/27/99 20:00 165.2 117.26 11/12/99 21:00 180.9 118.27 
10/27/99 21:00 164.5 117.91 11/12/99 22:00 180.4 118.60 
10/27/99 22:00 164.2 118.29 11/12/99 23:00 180 118.74 
10/27/99 23:00 163.9 118.50 11/13/99 0:00 163.3 118.84 
10/28/99 0:00 164 118.62 11/13/99 1:00 154.1 118.87 
10/28/99 1:00 163.6 118.69 11/13/99 2:00 148.7 118.78 
10/28/99 2:00 163.2 118.74 11/13/99 3:00 152.2 118.70 
10/28/99 3:00 163 118.75 11/13/99 4:00 146.7 118.61 
10/28/99 4:00 162.7 118.76 11/13/99 5:00 143.1 118.55 
10/28/99 5:00 162.3 118.77 11/13/99 6:00 105.1 118.53 
10/28/99 6:00 156.3 118.75 11/13/99 7:00 36.3 118.40 
10/28/99 7:00 41 118.35 11/13/99 8:00 56.8 117.97 
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10/28/99 8:00 36.4 117.83 11/13/99 9:00 62.5 117.57 
10/28/99 9:00 52.1 117.42 11/13/99 10:00 61.7 117.32 
10/28/99 10:00 54.9 117.16 11/13/99 11:00 61 117.16 
10/28/99 11:00 54.7 117.00 11/13/99 12:00 63 117.06 
10/28/99 12:00 54.5 116.91 11/13/99 13:00 63.7 116.99 
10/28/99 13:00 54.2 116.84 11/13/99 14:00 63.5 116.93 
10/28/99 14:00 53.9 116.79 11/13/99 15:00 63.5 116.91 
10/28/99 15:00 54 116.74 11/13/99 16:00 63.4 116.94 
10/28/99 16:00 54 116.72 11/13/99 17:00 63.3 116.93 
10/28/99 17:00 54.2 116.71 11/13/99 18:00 116 116.92 
10/28/99 18:00 58 116.70 11/13/99 19:00 163.7 117.01 
10/28/99 19:00 101.6 116.74 11/13/99 20:00 162.2 117.51 
10/28/99 20:00 162.5 117.32 11/13/99 21:00 158.7 118.00 
10/28/99 21:00 164 117.95 11/13/99 22:00 136.6 118.27 
10/28/99 22:00 163.8 118.32 11/13/99 23:00 146.4 118.33 
10/28/99 23:00 163.6 118.54 11/14/99 0:00 128.6 118.35 
10/29/99 0:00 163.5 118.64 11/14/99 1:00 106.8 118.28 
10/29/99 1:00 163.5 118.72 11/14/99 2:00 167.5 118.14 
10/29/99 2:00 163.2 118.77 11/14/99 3:00 181.2 118.21 
10/29/99 3:00 161.4 118.79 11/14/99 4:00 177 118.49 
10/29/99 4:00 151.7 118.70 11/14/99 5:00 180.7 118.68 
10/29/99 5:00 127.2 118.56 11/14/99 6:00 94 118.80 
10/29/99 6:00 64.6 118.23 11/14/99 7:00 38.1 118.58 
10/29/99 7:00 37.2 117.78 11/14/99 8:00 54 118.08 
10/29/99 8:00 49.7 117.38 11/14/99 9:00 62.2 117.64 
10/29/99 9:00 55.1 117.12 11/14/99 10:00 61.8 117.35 
10/29/99 10:00 55.2 116.97 11/14/99 11:00 61.7 117.17 
10/29/99 11:00 55 116.87 11/14/99 12:00 61.4 117.05 
10/29/99 12:00 54.7 116.80 11/14/99 13:00 61.5 116.98 
10/29/99 13:00 54.7 116.80 11/14/99 14:00 62.2 116.93 
10/29/99 14:00 54.3 116.77 11/14/99 15:00 63.1 116.89 
10/29/99 15:00 53.8 116.75 11/14/99 16:00 63.1 116.88 
10/29/99 16:00 54.3 116.73 11/14/99 17:00 62.8 116.88 
10/29/99 17:00 54.8 116.69 11/14/99 18:00 111.8 116.88 
10/29/99 18:00 54.8 116.68 11/14/99 19:00 108.7 116.99 
10/29/99 19:00 123.3 116.81 11/14/99 20:00 114.5 117.22 
10/29/99 20:00 158.9 117.38 11/14/99 21:00 102.9 117.44 
10/29/99 21:00 162.7 117.95 11/14/99 22:00 108.2 117.56 
10/29/99 22:00 162.7 118.29 11/14/99 23:00 96.2 117.63 
10/29/99 23:00 162.1 118.49 11/15/99 0:00 84 117.63 
10/30/99 0:00 161.4 118.59 11/15/99 1:00 92.5 117.58 
10/30/99 1:00 148.6 118.61 11/15/99 2:00 143.8 117.52 
10/30/99 2:00 125.1 118.49 11/15/99 3:00 182.5 117.66 
10/30/99 3:00 119.4 118.36 11/15/99 4:00 182 118.10 
10/30/99 4:00 107.4 118.18 11/15/99 5:00 181.7 118.48 
10/30/99 5:00 85.3 117.98 11/15/99 6:00 144.2 118.70 
10/30/99 6:00 59.4 117.71 11/15/99 7:00 37.8 118.68 
10/30/99 7:00 43.8 117.40 11/15/99 8:00 54 118.21 
10/30/99 8:00 53.8 117.17 11/15/99 9:00 63.3 117.75 
10/30/99 9:00 51.8 116.99 11/15/99 10:00 61 117.44 
10/30/99 10:00 51.8 116.87 11/15/99 11:00 63.6 117.23 
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10/30/99 11:00 51.8 116.76 11/15/99 12:00 63.5 117.09 
10/30/99 12:00 51.9 116.71 11/15/99 13:00 63.3 117.01 
10/30/99 13:00 51.7 116.67 11/15/99 14:00 63.4 116.96 
10/30/99 14:00 53 116.65 11/15/99 15:00 64.7 116.93 
10/30/99 15:00 54.5 116.64 11/15/99 16:00 64.4 116.91 
10/30/99 16:00 54.2 116.64 11/15/99 17:00 64.5 116.91 
10/30/99 17:00 54 116.65 11/15/99 18:00 110.7 116.90 
10/30/99 18:00 54 116.65 11/15/99 19:00 117.5 117.02 
10/30/99 19:00 53.9 116.65 11/15/99 20:00 118.6 117.30 
10/30/99 20:00 53.6 116.65 11/15/99 21:00 104.5 117.56 
10/30/99 21:00 53.6 116.64 11/15/99 22:00 91.4 117.68 
10/30/99 22:00 53.6 116.64 11/15/99 23:00 79.9 117.67 
10/30/99 23:00 53.5 116.64 11/16/99 0:00 94.7 117.57 
10/31/99 0:00 53.5 116.66 11/16/99 1:00 124.8 117.50 
10/31/99 1:00 53 116.64 11/16/99 2:00 182.5 117.58 
10/31/99 2:00 53.1 116.65 11/16/99 3:00 182 118.00 
10/31/99 3:00 79.2 116.66 11/16/99 4:00 181.8 118.40 
10/31/99 4:00 77.3 116.78 11/16/99 5:00 181.6 118.66 
10/31/99 5:00 69.8 116.97 11/16/99 6:00 148.5 118.81 
10/31/99 6:00 39.9 117.01 11/16/99 7:00 37.9 118.78 
10/31/99 7:00 37.3 116.97 11/16/99 8:00 38.5 118.30 
10/31/99 8:00 36.8 116.82 11/16/99 9:00 63.2 117.79 
10/31/99 9:00 36.8 116.65 11/16/99 10:00 62.9 117.42 
10/31/99 10:00 36.7 116.52 11/16/99 11:00 63.8 117.21 
10/31/99 11:00 37.6 116.40 11/16/99 12:00 63 117.08 
10/31/99 12:00 37.4 116.33 11/16/99 13:00 63.1 117.01 
10/31/99 13:00 50.2 116.26 11/16/99 14:00 64.3 116.96 
10/31/99 14:00 51.6 116.27 11/16/99 15:00 64.6 116.93 
10/31/99 15:00 51.4 116.30 11/16/99 16:00 64.7 116.94 
10/31/99 16:00 51.4 116.39 11/16/99 17:00 75.7 116.94 
10/31/99 17:00 51.3 116.46 11/16/99 18:00 176.2 116.94 
10/31/99 18:00 65.7 116.51 11/16/99 19:00 182.1 117.33 
10/31/99 19:00 78.8 116.56 11/16/99 20:00 181.8 118.00 
10/31/99 20:00 81.9 116.65 11/16/99 21:00 181.5 118.46 
10/31/99 21:00 48.1 116.87 11/16/99 22:00 181.1 118.70 
10/31/99 22:00 41.6 116.91 11/16/99 23:00 175.9 118.81 
10/31/99 23:00 41.5 116.83 11/17/99 0:00 178.4 118.85 
11/1/99 0:00 41.5 116.75 11/17/99 1:00 180.2 118.90 
11/1/99 1:00 41.3 116.58 11/17/99 2:00 180 118.93 
11/1/99 2:00 92.1 116.49 11/17/99 3:00 180.2 118.95 
11/1/99 3:00 110.6 116.47 11/17/99 4:00 180.4 119.01 
11/1/99 4:00 112.4 116.78 11/17/99 5:00 179.9 119.01 
11/1/99 5:00 70.6 117.16 11/17/99 6:00 167.1 119.03 
11/1/99 6:00 38.8 117.34 11/17/99 7:00 40.5 118.97 
11/1/99 7:00 53.4 117.24 11/17/99 8:00 37.5 118.48 
11/1/99 8:00 51.8 117.05 11/17/99 9:00 58.7 117.91 
11/1/99 9:00 50.6 116.91 11/17/99 10:00 63 117.50 
11/1/99 10:00 46.2 116.81 11/17/99 11:00 63.8 117.25 
11/1/99 11:00 47.3 116.73 11/17/99 12:00 64.1 117.14 
11/1/99 12:00 54.7 116.65 11/17/99 13:00 64.1 117.02 
11/1/99 13:00 54.9 116.60 11/17/99 14:00 64.5 116.98 
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11/1/99 14:00 54.8 116.60 11/17/99 15:00 64.4 116.95 
11/1/99 15:00 54.3 116.62 11/17/99 16:00 64.2 116.96 
11/1/99 16:00 54.8 116.64 11/17/99 17:00 144.1 116.95 
11/1/99 17:00 55.2 116.65 11/17/99 18:00 191.8 117.12 
11/1/99 18:00 94 116.67 11/17/99 19:00 250 117.78 
11/1/99 19:00 163.1 116.72 11/17/99 20:00 249.8 118.63 
11/1/99 20:00 164.5 117.19 11/17/99 21:00 249.7 119.20 
11/1/99 21:00 163.8 117.88 11/17/99 22:00 240.6 119.50 
11/1/99 22:00 163.7 118.25 11/17/99 23:00 214.8 119.65 
11/1/99 23:00 163.6 118.47 11/18/99 0:00 211.9 119.63 
11/2/99 0:00 158.2 118.60 11/18/99 1:00 210.9 119.54 
11/2/99 1:00 157 118.65 11/18/99 2:00 210.5 119.50 
11/2/99 2:00 156.3 118.67 11/18/99 3:00 212.8 119.47 
11/2/99 3:00 156.7 118.65 11/18/99 4:00 214.3 119.50 
11/2/99 4:00 159.6 118.66 11/18/99 5:00 190.8 119.45 
11/2/99 5:00 92.9 118.67 11/18/99 6:00 154.2 119.38 
11/2/99 6:00 41.8 118.44 11/18/99 7:00 41.3 119.16 
11/2/99 7:00 43.2 118.00 11/18/99 8:00 37.9 118.60 
11/2/99 8:00 54.5 117.60 11/18/99 9:00 58.6 118.01 
11/2/99 9:00 54.4 117.25 11/18/99 10:00 64.2 117.56 
11/2/99 10:00 54.5 117.04 11/18/99 11:00 63.4 117.30 
11/2/99 11:00 54.6 116.91 11/18/99 12:00 63.1 117.14 
11/2/99 12:00 54.6 116.83 11/18/99 13:00 63.5 117.04 
11/2/99 13:00 53.7 116.78 11/18/99 14:00 63.8 116.98 
11/2/99 14:00 53.8 116.74 11/18/99 15:00 64.1 116.95 
11/2/99 15:00 57.2 116.72 11/18/99 16:00 64 116.95 
11/2/99 16:00 53.6 116.70 11/18/99 17:00 68.6 116.95 
11/2/99 17:00 52.8 116.68 11/18/99 18:00 170.8 116.94 
11/2/99 18:00 101.5 116.67 11/18/99 19:00 181.7 117.27 
11/2/99 19:00 161.6 116.72 11/18/99 20:00 181.8 117.95 
11/2/99 20:00 167.5 117.22 11/18/99 21:00 181.4 118.42 
11/2/99 21:00 158.3 117.84 11/18/99 22:00 181.3 118.69 
11/2/99 22:00 102.1 118.22 11/18/99 23:00 178.7 118.84 
11/2/99 23:00 86.5 118.19 11/3/99 1:00 103.1 117.69 
11/3/99 0:00 57.9 117.98 11/3/99 2:00 94.8 117.55 

Notes: 
* Priest Rapids Dam discharege in thousand of cubic feet per second 
^ Columbia River stage at 100D (NAVD 88, meters) from Bechtel, Hanford, Inc. 
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Appendix C:  Water Quality Data 

 

Piezometer 
Number* 

Piezo ID* Easting^ Northing^ Depth` 
(m) 

1 8L 2.0 3.8 571798.0 150630.0 1.2 
2 7L 2.0 4.1 572183.0 151140.2 1.2 
3 7L 2.0 4.85 572183.0 151140.2 1.5 
4 18M 0.25 3.6 572183.0 151140.2 1.1 
5 17M 0.25 3.6 572293.7 151279.4 1.1 
6 16M 0.25 1.5 572414.4 151409.8 0.5 
7 4N 1.25 0.7 572443.3 151444.4 0.2 
8 3N 1.25 2.17 572481.9 151501.6 0.7 
10 15M 0.25 3.0 572529.7 151540.0 0.9 
11 2N 1.25 1.84 572541.2 151557.1 0.6 
12 14M 0.25 4.6 572583.2 151603.0 1.4 
13 14M 0.25 3.3 572583.2 151603.0 1.0 
14 1N 1.25 2.24 572595.5 151627.6 0.7 
15 13M 0.25 6.0 572636.7 151687.8 1.8 
16 13M 0.25 3.0 572636.7 151687.8 0.9 
17 6L 2.0 4.0 572645.0 151689.0 1.2 
18 6L 2.0 6.6 572658.0 151693.5 2.0 
19 12M 0.25 6.0 572716.3 151730.8 1.8 
20 12M 0.25 3.3 572716.3 151730.8 1.0 
21 11M 0.25 2.6 572832.0 151837.6 0.8 
22 10M 0.25 5.0 572931.8 151999.7 1.5 
23 5L 2.0 6.15 572965.5 152034.0 1.9 
24 5L 2.0 4.42 572965.5 152034.0 1.3 
25 9M 0.25 6.3 573056.4 152108.3 1.9 
26 4L 2.0 5.2 573204.8 152214.0 1.6 
27 4L 2.0 4.4 573204.8 152214.0 1.3 
28 8M 0.25 6.0 573205.2 152215.8 1.8 
29 8M 0.25 2.0 573205.2 152215.8 0.6 
30 9L 2.0 4.4 573277.5 152507.5 1.3 
31 7M 0.25 6.0 573331.3 152291.0 1.8 
32 7M 0.25 2.0 573331.3 152291.0 0.6 
33 6M 0.25 2.4 573459.1 152370.0 0.7 
34 3L 2.0 6.4 573606.0 152497.5 2.0 
35 3L 2.0 4.5 573606.0 152497.5 1.4 
36 5M 0.25 3.0 573663.9 152547.2 0.9 
37 4M 0.25 2.2 573722.6 152584.7 0.7 
38 3M 0.25 2.7 573771.9 152638.9 0.8 
39 2L 2.0 5.15 573834.0 152768.0 1.6 
40 2L 2.0 4.13 573834.0 152768.0 1.3 
41 2M 0.25 1.2 573876.6 152837.0 0.4 
42 1M 0.25 2.5 573915.7 152960.4 0.8 
43 1L 2.0 4.3 573946.9 153095.8 1.3 
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Notes:  
* Original piezometer label was replaced with piezometer number to simplify text and figures.  The 
number is ordered by easting, or meters downstream along the 100D shoreline.  Use this appendix to 
cross reference with the original piezometer labels in appendix D and appendix E..  ^ Coordinate system 
and datum are NAD 83, State Plane Meters, WA south.  ` Depth is to the top of piezometer screen. 

 

 

 

  Ec* 
(ms/cm) 

Temperature* 
(c) 

Piezo DO 
mg/L       % 

 

River DO 
mg/L       % 

Cr(VI) 
(mg/L) 

N Date/time P R P R      
1 11/17/99 13:15 128.2 116.4 13.2 12.0 8.5 81.6   0.006 
2 11/17/99 13:30 216.1 116.2 13.1 12.1 9.0    0.027 
3 11/17/99 13:00 206.5 116.2 13.1 12.1  88.9   0.027 
4 10/27/99 16:00 229.0 125.0 11.8 13.3     0.026 
5 10/27/99 15:00 334.2 125.8 12.4 13.4     0.019 
6 10/26/99 15:00 327.3 121.9 13.0 13.7     0.119 
7 11/18/99 15:45 144.9 107.9 12.4 11.4 9.2 85.7   0.012 
8 11/18/99 15:00 278.3 107.1 12.7 12.3 9.1 84.0   0.146 
10 11/10/99 11:45         0.382 
11 11/18/99 13:30 201.6 106.7 12.7 11.4 6.5 60.7   0.041 
12 11/10/99 11:30         0.104 
13 11/10/99 11:35         0.752 
14 11/18/99 12:30 342.3 106.4 13.3 11.8 9.0 84.4   0.242 
15 11/10/99 10:45         0.067 
16 11/10/99 11:10         0.122 
17 11/15/99 15:30 246.4 121.5 12.9 12.6     0.104 
18 11/14/99 15:30 234.5 119.3 13.1 12.6     0.093 
19 11/10/99 11:00         0.268 
20 11/10/99 11:15         0.126 
21 10/26/99 14:00 254.6 120.1 14.1 13.8     0.012 
22 10/26/99 13:00 130.0 125.2 14.2 14.2     0.014 
23 11/14/99 12:30 141.9 120.0 13.7 12.6     0.005 
24 11/14/99 12:35 129.5 120.0 13.4 12.6     0.059 
25 10/25/99 16:00 215.0 121.0 15.0 14.0     0.004 
26           
27 11/13/99 16:00 195.0 119.2 13.5 12.8     0.003 
28 10/18/99 17:30 225.6  16.3      0.022 
29 10/18/99 17:00 249.7  18.8      0.012 
30 11/18/99 13:30 142.2 106.4 13.0 11.3 0.9 8.7 10.5 95.9 0.004 
31 10/18/99 16:30          
32 10/18/99 16:00 185.9  19.9      0.019 
33 10/25/99 15:00 156.0 120.1 14.1 14.0     0.010 
34 11/13/99 12:00 150.3 118.7 13.3 12.5 7.5  9.8  0.016 
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35 11/13/99 11:30 140.6 118.7 12.9 12.5 7.6  9.8  0.015 
36 10/18/99 15:00 152.5  18.1      0.022 
37 10/18/99 14:00 186.2  16.9      0.016 
38 10/18/99 13:00 170.0  17.4      0.016 
39 11/12/99 16:00 120.3 119.0 12.6 12.5 1.3    0.009 
40 11/12/99 14:30 185.7 119.0 13.1 12.5 2.3    0.014 
41 10/25/99 14:00 166.0 119.6 13.9 14.0     0.001 
42 10/25/99 13:00 175.3 119.7 14.3 14.0     0.008 
43 11/11/99 13:34 122.1 118.4 13.2 12.1  81.9   0.001 

Notes: 
* P=measurement collected from a piezometer; R=measurement from the river contiguous to the 
piezometer 
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Appendix D:  Slug test data 

 

Charts show drawdown data (units are millivolts recorded by the pressure 

transducer and correlate directly with pressure) and the natural logarithm of 

drawdown.  Curved lines represent drawdown, and resemble exponential decay 

functions.  Straight lines represent the natural logarithm of drawdown.  The slope of 

the straight segments was used to calculate hydraulic conductivity using the Bouwer 

and Rice and Hvorslev methods. 
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2L 2.0 4.13 (3 replicates)
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3L 2.0 4.5 (2 replicates)
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3L 2.0 6.4 (2 replicates)
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4L 2.0 4.4 (1 replicate)
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5L 2.0 6.15 (1 replicate)
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5L 2.0 4.42 (1 replicate)
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6L 2.0 4.0 (3 replicates)
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6L 2.0 6.6 (3 replicates)
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9L 2.0 4.4 (3 replicates)
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7L 2.0 4.85 (3 replicates)
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7L 2.0 4.1 (3 replicates)
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8L 2.0 3.8 (3 replicates)
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1N 1.25 2.24 (4 replicates)
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2N 1.25 1.84 (1 replicate)
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3N 1.25 2.17 (3 replicates)
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4N 1.25 0.7 (3 replicates)
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Appendix E:  Borehole dilution data 
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3L 2.0 4.5 
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5L 2.0 6.15 
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7L 2.0 4.1 
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