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Abstract

Large-scale quantum computers can solve certain problems that are not tractable

by currently available classical computational resources. The building blocks

of quantum computers are qubits. Among many different physical realizations

for qubits, superconducting qubits are one of the promising candidates to re-

alize gate model quantum computers. In this dissertation, we present new

multi-qubit gates for nearest-neighbor superconducting quantum systems. In

the absence of a physical hardware, we simulate the dynamics of the quan-

tum system and use the simulated environment as a framework for test, design,

and optimization of quantum gates and architectures. We explore three differ-

ent simulation-based gate design methodologies: analytical approach, heuris-

tic method, and machine learning techniques. Furthermore, we propose novel

quantum error correction architectures utilizing our new gates, which have re-

duced computational overhead with better performance and reliability.
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1 Introduction

Building quantum computers is one of the most active research areas in the 

century. Quantum computers exceed the computational power of today’s best 

classical supercomputers. Large-scale quantum computers have the potential 

to exceed classical computational resources in solving certain problems. The 

academia and industry leaders across the world are collaborating to reach quan-

tum supremacy, where the quantum computer would perform a computation 

task that is impossible for the classical computational resources. Quantum 

supremacy has been shown by Google for an algorithm designed specifically 

for this purpose, i.e., not from a useful application area.

Building a large-scale quantum computer is an interdisciplinary task and re-

quires the close collaboration of physicists, mathematicians, computer scien-

tists, and engineers. The electrical and computer engineers can extensively con-

tribute to building quantum computers by designing control electronics, quan-

tum architectures, low level quantum gate, and creating new design automation 

tools as well as development of physical computer aided design tools.

The building blocks of quantum computers are qubits. There exist differ-

ent physical realizations of qubits such as Nuclear Magnetic Resonance (NMR), 

liquid state NMR, Ion Trap, Optical Cavity, Photo Optics, Harmonic Oscillator, 

Superconducting devices, etc. Among all, quantum systems based on supercon-

ducting devices seem one of the most promising realizations in terms of scal-

ability and error rates. The number of startup companies and industry lead-

1



ers investing in superconducting quantum computing grows every day, some

of them are as follows: D-Wave, Google QuAIL (NASA), Intel (TU Delft), IBM

(MIT), Microsoft Research Station Q, Q-Ctrl, Quantum Circuits, Inc. (Yale),

RIKEN (Tokyo University of Science), Delft Circuits (QuTech), Rigetti Com-

puting, and Raytheon/BBN (MIT), etc. Many quantum systems are based on

Nearest-Neighbor (NN) layouts where qubits have direct interactions with only

nearest neighbor qubits. In some architectures the interaction or coupling be-

tween qubits can be shut-off during the course of computation while in others

the interactions are always on.

In this dissertation, we design new quantum gates and architectures for NN

superconducting quantum systems using the simulated environments. The gate

design methodologies presented in this work are applicable to many physical

realizations. We design new multi-qubit gates using three different method-

ologies: heuristics, machine learning/optimization methods, and analytical ap-

proach. The multi-qubit gates mimic the behavior of several gates at once,

therefore, they can increase the efficiency of quantum circuits and algorithms

implementations by reducing control circuitry, improving performance, and

achieving smaller error rates. In each chapter of this dissertation we describe

one of the mentioned methodologies to design new gates, and then provide an

application for the new gates by utilizing them in quantum circuits and new

quantum error correction architectures.

We contribute to the quantum computing research in the following main

ways. First, we explain given the Hamiltonian (the operator representing the

system energy) of an arbitrary quantum system, one can design new multi-

qubit gates analytically and confirm the results in simulation. Second, by focus-

ing on nearest-neighbor superconducting systems based on transmons in circuit

2



Quantum Electrodynamics (cQED) regime, we show how knowing the physics

underlying the quantum system can help us to design new quantum gates.

Third, for more complex quantum systems, we show how to model the quantum

gate design problem as a control/optimization problem and use the compu-

tational intelligence (artificial intelligence/machine learning) approaches and

high-performance computing resources to realize a desired quantum operation.

Forth, we design new efficient quantum error correction architectures utilizing

our new multi-qubit gates. Fifth, we describe the procedure of mapping a quan-

tum circuit to a physical system and discuss the importance of development of

Computer-Aided Design (CAD) tools for quantum systems.

In this chapter, first we provide some background on gate model quantum

information processing by introducing the quantum gates and quantum error

correction concepts using some examples. Finally, we put the next chapters in

simulation-based gate design context.

1.1 Quantum gates

A quantum register with two distinct energy levels is called a qubit. In quan-

tum computing literature, the ground state and excited state of the qubits are

respectively represented by state vectors

 1

0

 and

 0

1

 , or in Dirac notation

as |0〉 and |1〉, respectively. The state of a qubit can be in the superposition of

its ground and excited states which is a linear combination of |0〉 and |1〉:

∣∣∣ψ (t)
〉

= α |0〉+ β |1〉 , |α|2 +
∣∣∣β∣∣∣2 = 1 (1.1)

where α and β are complex numbers representing the probability amplitudes of

being in states |0〉 and |1〉, respectively. And ψ (t) is the state of the qubit at time
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t, ψ is a vector in a complex vector space with the orthonormal basis of |0〉 and

|1〉 [1]. We could use another orthonormal basis for instance |+〉 = ( 1√
2
)(|0〉+ |1〉)

and |−〉 = ( 1√
2
)(|0〉 − |1〉) to represent the quantum state.

The state of a quantum system consisting of multiple qubits spans a Hilbert

space of size 2n, where n is the number of qubits in the system. Hilbert space is

a complex inner product space that is a complete metric space with respect to

the distance function induced by inner product. The state of the n-qubit system

can be represented by tensor product (denoted by ⊗) of the state vectors of all

qubits. For example, the vector representation of the state of a two-qubit system

with states
∣∣∣ψ1

〉
and

∣∣∣ψ2
〉

is:

∣∣∣ 〉
=

∣∣∣ψ1
〉
⊗
∣∣∣ψ2

〉
= α |00〉+ β |01〉+γ |10〉+λ |11〉 , |α|2 +

∣∣∣β∣∣∣2 +
∣∣∣γ ∣∣∣2 + |λ|2 = 1(1.2)

where the time t is omitted for simplicity. Here α, β, γ , and λ are the probability

amplitudes of the two-qubit system being respectively in states |00〉, |01〉, |10〉,

and |11〉.

In gate model quantum computation, information is processed through quan-

tum circuits which consist of a sequence of quantum gates. Quantum gates are

reversible unitary transformations on quantum states. Therefore quantum cir-

cuits are reversible in time [2]. This means that there is a one to one relation

between input and output of a quantum circuit.

1.1.1 Single-qubit gates

An n-qubit gate is represented by unitary matrices of size 2n × 2n. Therefore,

single-qubit gates can be represented by 2×2 matrices. Some of the single qubit

gates are X, Y, and Z gates. They can be described using Pauli spin matrices as
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follows:

X =σx =

 0 1

1 0

 (1.3)

Y =σy =

 0 −i

i 0

 (1.4)

Z =σz =

 1 0

0 −1

 (1.5)

Other important single qubit gates are Hadamard, S, and T gates. The unitary

transformation matrices for these gates are as follows:

H =
1
√

2

 1 1

1 −1

 (1.6)

S =

 1 0

0 i

 (1.7)

T =

 1 0

0 e
iπ
4

 (1.8)

1.1.2 Multi-qubit gates

The multi-qubit gates or controlled-unitary gates can be applied on multiple

qubits at the same time. In most of the controlled-unitary gates, some qubits

have a target role and some qubits have the control role. Depending on the

states of the control qubits, a desired gate operation is performed/not per-

formed on the target qubits. One of the most famous two-qubit gates is the

CNOT gate which performs a controlled-X (controlled-bit-flip) operation, where

the state of the target qubit flips if and only if the state of the control qubit is

|1〉.
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CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(1.9)

A cPhase (CZ) gate is another example of a two-qubit gate which performs

a controlled-Z operation (controlled-phase-flip), only if both qubits are in state

|1〉. Although cPhase is a controlled-unitary operation, there is no control and

target associated with it. We can realize a CNOT gate by surrounding cPhase

gate between two Hadamard gates on any of the qubits.

cPhase =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


(1.10)

Another important two-qubit gate is the SWAP gate which exchanges the state

of two qubits.

SWAP =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


(1.11)

An example of a three-qubit gate is a Toffoli gate which is a controlled-controlled-

X operation, where the state of the target qubit flips if and only if both control
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qubits are in state |1〉.

Toffoli =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



(1.12)

Moreover, the Fredkin gate is also a three-qubit gate which performs a controlled-

SWAP operation, where the states of two target qubits exchange if and only if

the control qubit is in state |1〉.

Fredkin =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1



(1.13)

The cost of implementing the quantum gates depends on the technology of

the quantum system. In some technologies it is more natural to the system

to realize a cPhase gate rather than a CNOT gate. In some physical systems,

a direct SWAP gate implementation is possible, while in others a SWAP gate is

decomposed to three CNOT gates. The important factor in a quantum computer

is that a universal set of quantum gates be implemented that are capable to
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realize any operation in a quantum circuit. All other gates that are not directly

implemented in the hardware are decomposed to a finite sequence of available

gates from the universal set. For example, the set of (H, T, CNOT) gates and the

set of (H, Toffoli) form two different universal sets for quantum computing. In

general at least one multi-qubit gate is required in an universal set for quantum

computing.

In many technologies, the multi-qubit gates with three or more qubits are

realized by a decomposition to a sequence of single-qubit and two-qubit gates.

A theorem from [3] states that any controlled-controlled-Unitary gate can be

implemented utilizing CNOT, controlled-V , and controlled-V † gates, where

V 2 = U . This decomposition is shown in Fig. 1.1 where an arbitrary three-

qubit gate U0 is implemented by a quantum circuit consisting of a sequence of

5 two-qubit gates U1, U2, U3, U4, and U5. Each wire in a quantum circuit de-

notes a qubit. The circuit reads left to right to account for the time that gates

are being applied. In the notation of quantum circuits, single-qubit gates are

shown using a box on the qubit with a label showing the operation. The CNOT

gates are denoted by a line connecting the control qubit with a full dot notation

to the target qubit with an XOR notation. In Fig. 1.1, controlled-V /controlled-

V † gates operate such that when the control qubit is in the high state, a unitary

operation V /V † is applied on the target qubit.

Consider we would like to realize the Toffoli gate which has broad applica-

tions in many quantum circuits. Using the theorem from [3], the Toffoli gate

can be realized using five two-qubit gates where non-standard two-qubit gates

such as controlled-V and controlled-V † gates are required. Here according to

theorem from [3], V 2 = X, and since V must be a unitary operator VV † = I .

In other words, V , and V † gates can be represented by c
√

NOT, and c
√

NOT
†
,
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Figure 1.1 A quantum circuit realizing a controlled-controlled-Unitary
gate based on two-qubit gates.

respectively. In chapter 3, we realize the c
√

NOT, and c
√

NOT
†

gates using

controlled-rotation flux-tunable gates in transmons in cQED systems.

In nearest-neighbor architectures, in order to perform quantum gates be-

tween two non-neighbor qubits, we need to bring them adjacent to each other by

applying SWAP gate operations. In Fig. 1.1, the last controlled-V gate (shown

as U5) is between x1 and x3, where x1 has the control role and x3 has the target

role. Consider a nearest-neighbor architecture where there is no direct inter-

action between x1 and x3, but they are both neighbors to x2. In such system,

we require to perform two SWAP gates between x1 and x2 before and after a

controlled-V gate between x2 and x3, this way we bring the control from the

non-neighbor qubit x1 to the neighbor qubit x2 which is adjacent to the target

qubit x3.

The best-known decomposition of the Toffoli (controlled-controlled-NOT)

gate using standard single- and two-qubit gates [4] requires multiple single-

qubit gates (H, T, and T†) and 6 CNOT gates as shown in Fig. 1.2.

In this decomposition, at least two of the CNOT gates are applied to non-

neighbor qubits. Therefore, the circuit shown in Fig. 1.2 requires the addition
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Figure 1.2 A quantum circuit realizing a Toffoli gate based on standard
single-qubit and two-qubit gates.

of four SWAP gates in a nearest-neighbor architecture. The decomposition of

the Toffoli gate based on single- and two-qubit gates is costly in most of the

quantum systems. In chapter 4, we design a Toffoli gate based on a three-qubit

controlled-controlled-Phase (ccPhase) gate and two single-qubit gates (Hadamard

or single-qubit rotation gates).

1.2 Background on Quantum Error Correction

Due to the nature of the quantum systems, the quantum information is sub-

ject to decoherence where the state of the quantum system is affected by the

environmentally-induced errors and some information is lost. The loss of infor-

mation can be due to the loss of energy from the system (amplitude damping)

or due to the the loss of the relative phase between the energy levels (phase

damping). There are other sources of errors in quantum systems such as when

a qubit which is considered as a two-level (ground and excited states) system

leaks into non-computational states, or when noise is introduced to the system

through environment, or error happens during qubit initialization, or because

of erroneous gates or measurements. In general, quantum errors and instability

of quantum states are considered fundamental obstacles to achieve large-scale

quantum computers. To protect quantum information during storage and com-

putation we can employ error mitigation methods or use Quantum Error Cor-
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rection (QEC) schemes [5]. Currently, designing quantum architectures with

the least latency and efficient QEC schemes is an important area of research.

The chapters 2 and 4 investigate applying new multi-qubit gates to realize new

error correction circuits and architectures for nearest-neighbor quantum sys-

tems. Here we work through a few examples to provide background about QEC

codes.

1.2.1 Repetition Code

The QEC codes are fundamentally different than the classical error correction

codes and are facing the following challenges:

1. It is not possible to copy an unknown quantum state using unitary evolu-

tion.

2. Quantum errors can be decomposed to multiple types (e. g. bit-flip and

phase-flip).

3. Direct measurement destroys quantum superposition.

4. Quantum errors are continuous rather than discrete.

Here we show how a simple quantum error correction scheme works despite

above mentioned challenges. In QEC codes, we create redundancy by encoding

the unknown state of the qubit to the state of several physical qubits to form a

logical qubit:

∣∣∣ 〉
= α |0〉+ β |1〉 − >

∣∣∣ψL〉 = α |0L〉+ β |1L〉 , (1.14)

where
∣∣∣ψL〉 is an entangled state where |0L〉 = |000〉, and |1L〉 = |111〉 [1]. We

perform the measurements on the ancillary qubits so the state of the logical
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qubit is not disturbed. Consider we have a logical qubit consisting of two data

qubits and an ancillary qubit. We can realize a ẐẐ operator by applying two

CNOT gates where the ancillary qubit is the target qubit and two data qubits

are the control qubits as depicted in Fig. 1.3. The ancillary target qubit is a

measurement qubit called measure-Z qubit and it can be repetitively measured

to detect any bit-flip between its neighbor data qubits.

Figure 1.3 ẐẐ operator built from two CNOT gates can detect any bit-
flip error of the first and third qubits.

Similarly, the measure-X qubit can be used to detect phase-flip errors. An

X̂X̂ operator can be realized using two CNOT gates applied to three qubits

where the middle qubit is the measure-X ancillary qubit and has the control

role while the two adjacent data qubits are the target data qubits as depicted in

Fig. 1.4.

Figure 1.4 Two CNOT gates in combination with Hadamard gates on
the second qubit can detect any phase-flip error of the first and third
qubits.

In Fig. 1.4, by applying Hadamard gates before and after the ancillary measure-

X qubit; we can change the state of measure-X qubit from | 0〉 to | +〉 and revert

it back after applying X̂X̂ operator. Since the phase errors propagate to the con-

trol qubit, if adjacent data qubits contain any phase-flip error, it will change the
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(a)

(b)

Figure 1.5 Error syndromes are detected by performing measurements
on ancillary qubits. (a) Bit-flip repetition code (b)Phase-flip repetition
code

state of measure-X qubit from | +〉 to | −〉, then the last Hadamard gate opera-

tion converts it to | 1〉. Therefore, the X̂X̂ operator can be used to detect any

phase-flip of the adjacent data qubits.

Applying ẐẐ operator to | 00〉 and | 11〉 results in +| 00〉 and +| 11〉, respec-

tively. Applying ẐẐ operator to | 10〉 and | 01〉 results in −| 10〉 and −| 01〉, re-

spectively. Therefore, states | 00〉, | 01〉, | 10〉, and | 11〉 are eigenstates of ẐẐ

operator with corresponding eigenvalues +1, -1, -1, and +1. The ẐẐ operator

then can be used to detect the changes in parity of data qubits.

The circuit depicted in Fig. 1.5 (a) realizes the repetition code on the logical

qubit by introducing two ancillary qubits. A measurement performed on the

first ancillary qubit detects if the first pair of qubits have odd parity. And a
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measurement on the second ancillary qubit detects if the second pair of qubits

have odd parity. In Fig. 1.5 (a), a correctly encoded state (codeword) is a +1

eigenvector of Ẑ ⊗ Ẑ ⊗ Î operator: (Ẑ ⊗ Ẑ ⊗ Î)
∣∣∣ 〉

= +1
∣∣∣ 〉

. A state with an odd

parity between the first and the second qubit is a -1 eigenvector of Ẑ ⊗ Ẑ ⊗ Î

operator: (Ẑ⊗Ẑ⊗Î)
∣∣∣ 〉

= −1
∣∣∣ 〉

. Similarly an odd parity between the second and

the third qubit results in a -1 eigenvector of Î ⊗ Ẑ ⊗ Ẑ operator. Error syndrome

is formed by measuring enough operators to determine the location of error.

The group of all operators detecting the error syndrome are called stabilizer of

the code.

The circuit shown in Fig. 1.5 (a) can locate a single bit-flip error on any of

the three physical qubits forming the logical qubit. If we change the basis to |+〉

and |−〉, we can detect the phase-flip errors.∣∣∣ 〉
= α |+〉+ β |−〉 − >

∣∣∣ψL〉 = α |+L〉+ β |−L〉 , (1.15)

The circuit representing the phase-flip repetition code is shown in Fig. 1.5 (b).

Here the measurement operators (group of stabilizers) are represented by X̂ ⊗

X̂ ⊗ Î and Î ⊗ X̂ ⊗ X̂.

1.2.2 Shor Code

The Shor’s nine-qubit code [6] combines the bit-flip and phase-flip repetition

codes to detect a single error of any type in the logical qubit consisting of nine

physical qubits.

∣∣∣ 〉
= α |0〉+ β |1〉 − >

∣∣∣ψL〉 = α(|000〉+ |111〉⊗3) + β(|000〉 − |111〉⊗3) (1.16)

As depicted in Fig. 1.6, the information is encoded to a logical qubit consist-

ing of nine physical qubits. Then the information is sent through an erroneous
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communication channel E, then in destination the information is decoded and

if there is a single error, it will be automatically fixed by the Toffoli gates. How-

ever, the encoding and decoding circuit elements are also subject to noise and

decoherence.

Figure 1.6 Circuit realizing Shor’s nine-qubit code

Quantum errors on single qubits will propagate in quantum circuits through

multi-qubit quantum gates. A bit-flip error in a control qubit propagates to

the target qubit and a phase-flip error in a target qubit propagates to the con-

trol qubit. Additionally, erroneous gates can introduce errors to their coupled

qubits. Furthermore, an error in measurement can introduce errors to the re-

sult of calculation. Therefore, we need an error correction scheme to be fault

tolerant as well. A fault tolerant quantum computer works reliable despite the

noise on stored quantum information, faulty quantum gates, faulty quantum

preparation, and faulty measurements, as long as the error probability per op-
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eration be below a certain threshold. In fault tolerant quantum computing, the

computation is performed on the encoded qubits.

There are many quantum error correcting codes [5]. Some of the most rec-

ognized ones are Shor’s 9 qubits code [6], Steane 7 qubits code [7], Calderbank-

Shor-Steane (CSS) code [8], Stabilizer code [9], and the Bacon-Shore code, Repe-

tition Code, and Surface Code [10-13] . However, not all error correction codes

are fault tolerant. One of the most promising fault tolerant quantum computing

schemes that follows the fault tolerant metrology proposed by Martinis [14] is

the Surface Code [13].

1.2.3 Fault tolerance threshold

Martinis [14] proposed a metrology for fault-tolerant error correction for scal-

able quantum computers by measuring qubit parities which detect bit-flip and

phase-flip errors in pairs of qubits. Based on his metrology, in a parity oper-

ation which consists of one-qubit, two-qubits and measurement components,

we need to keep the error probability of each component less than a defined

threshold to reach an error suppression factor ∧ of higher than 1. Higher order

error detection leads to lower logical error probability Pl'∧−(n+1) [14], where n

is the order of error, and ∧=εt/ε is the error suppression factor, here ε is the

probability of physical error, and εt is the error threshold. According to Mar-

tinis, "∧ is the key metrological figure of merit that quantifies how much the

decoding error drops as the order n increases by one" [14] . Here ∧> 1 means

that the physical error ε is lower than the threshold εt, and by making the error

correction code larger the decoding error is decreased exponentially with n [14]

.

Assuming after Martinis that a typical quantum algorithm implementation
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uses 1018 operations, and that we need to achieve the overall logical error prob-

ability of less than Pl = 10−18 meaning a suppression factor of ∧= 10, this leads

to order error n = 17. To achieve error correction of n order in a Surface Code ar-

chitecture [14] , we need (4n+1)×(4n+1) array of qubits. This requires as many

as 4761 qubits for n=17. Although the cited above number seems to be large,

Surface Code architecture still is the best practical error correction method for

fault tolerant quantum computing because of high tolerance to the errors which

allows error rate of 1% per operation. Moreover, its two-dimensional physical

layout with nearest neighbor couplings makes it a scalable and practical ap-

proach in solid-state quantum computers [13, 15-16]. Furthermore, because

of simple projective measurements, and tracking of the detected errors in soft-

ware, there is no need for applying physical correction gates, therefore intro-

ducing less noise and perturbation to the physical system. In Surface Code

error correction, it is of high interest to be able to perform error correction cy-

cles on many qubits simultaneously which is where the multi-qubit gates can

be applied as explained in chapter 2.

1.2.4 Surface Code

The surface code architecture is based on the stabilizer formalism and consists

of Z and X stabilizers [11]. Surface Code introduces ancillary qubits dedi-

cated to these stabilizers and repetitively performs projective quantum non-

demolition (QND) parity measurements on these ancillary qubits to measure

the bit-flip and phase-flip errors of the data qubits [13] . The number of an-

cillary qubits in these measurements is approximately equal to the number of

data qubits. Although it has been shown that this approach results in storing

information with a lower error rate, the Surface Code methodology has a high
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computational and resource overhead to realize the logical states and process

information.

In surface code quantum computing, multiple physical qubits form a logical

qubit in a 2-dimensional array with interleaving data qubits and measurement

qubits called measure-Z and measure-X ancillary qubits, and a protocol is pre-

sented to protect the architecture from both bit-flip and phase-flip errors at the

same time. In this scheme, the quantum information is distributed over many

physical qubits that consist of data qubits and measurement qubits. Where the

measure-X and measure-Z qubits detect phase-flip and bit-flip parities, respec-

tively.

Figure 1.7 A 2D array of NN qubits forming a Surface Code. The la-
beled qubits form a logical qubit containing 17 physical qubits, 9 of
which are data qubits and 8 of which are measurement qubits. The box
shows two data qubits De and Df in green, one measure-Z qubit Zb in
blue and one measure-X qubit Xc in orange.

At the start, all measurement qubits are initialized to zero. At each error

correction cycle, we perform measurements only on the measurement qubits to

detect the error syndromes (bit-flip, phase-flip, measurement error). A software

maps these detected error syndromes to a graph model which keeps track of

errors and fixes the errors [5, 12-13].
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As we know | +〉= ( 1√
2
)(| 0〉+| 1〉 ) and | −〉= ( 1√

2
)(| 0〉−| 1〉 ) are eigenstates of X̂

operator, with eigenvalues +1 and -1, respectively. Considering a two-qubit sys-

tem, applying X̂X̂ operator to the Bell states ( 1√
2
)(| 00〉+| 11〉 ), ( 1√

2
)(| 01〉+| 10〉 ),

( 1√
2
)(| 00〉−| 11〉 ), and ( 1√

2
)(| 01〉−| 10〉 ) results in eigenvalues +1, +1, -1, and -

1, respectively. While applying ẐẐ operator to the same set of states results

in eigenvalues +1, -1, +1, and -1, respectively. Knowing the fact that all X̂

and Ẑ operators on different qubits commute with one another, it is possible to

measure the phase and amplitude of two data qubits simultaneously without

perturbing the state of the two-qubit system.

Table 1.1 shows the set of Bell states as eigenstates of X̂Df X̂De and ẐDf ẐDe

operators with their corresponding eigenvalues (Please refer to the black box in

Fig. 1.7). The eigenvalues for X̂Df X̂De and ẐDf ẐDe are recorded by measuring

measure-X and measure-Z qubits labeled Xc and Zb, respectively. Suppose we

have initialized the system in the ( 1√
2
)(| 00〉+| 11〉 ) state. If an X (bit-flip) error

happens on Df data qubit, the new state of the system becomes ( 1√
2
)(| 01〉+| 10〉).

As such, the result of applying X̂Df X̂De and ẐDf ẐDe operators will be changed

from the pair of eigenvalues (+1, +1) to (+1, -1). Note that, if an X error hap-

pens on De, we will get the same result. Consequently, we cannot distinguish

on which data qubit the error occurred because they both will have the same

measurement result. This is true for Z (phase-flip) errors too. Therefore, to

uniquely identify errors on specific data qubits, we need to consider a more

complex mechanism such as Surface Code [13] .

In Surface Code, each data qubit is surrounded with 4 measurements qubits

while each measurement qubit is surrounded with 4 data qubits as shown in

Fig. 1.7. The measure-Z qubit stabilizes the product of Ẑ operators on the sur-

rounding qubits. For example, in Fig. 1.7, the qubit Zb forces the data qubits
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Table 1.1 The set of eigenstates and corresponding eigenvalues for two-
qubit stabilizers X̂Df X̂DeandẐDfẐDe

X̂Df X̂De ẐDf ẐDe | ψ
〉

+1 +1 ( 1√
2
)(| 00〉+ | 11〉)

+1 -1 ( 1√
2
)(| 01〉+ | 10〉)

-1 +1 ( 1√
2
)(| 00〉 − | 11〉)

-1 -1 ( 1√
2
)(| 01〉 − | 10〉)

Df, De, Dc, and Db to an eigenstate of operator outer product ẐDf ẐDeẐDcẐDb.

The measure-X qubit stabilizes the product of X̂ operators on the surrounding

qubits. In Fig. 1.7, the qubit Xc forces the data qubits Di, Df, Dh, and De to

an eigenstate of operator outer product X̂DiX̂Df X̂DhX̂De. Note the chosen stabi-

lizers X̂DiX̂Df X̂DhX̂De and ẐDf ẐDeẐDcẐDb must commute with one another to

force the projective measurement outcome of the system into a unique eigen-

state of all the stabilizers. Table 4 shows the eigenstates of X̂DiX̂Df X̂DhX̂De and

ẐDf ẐDeẐDcẐDb operators with their corresponding eigenvalues. Suppose we

have initialized the system in | 0000〉 state. If an X error happens on Df data

qubit, measuring the system using ẐDf ẐDeẐDcẐDb stabilizer reports a change

from eigenstate | 0000〉 to | 1000〉. Now if an X error happens on De, measur-

ing the system using ẐDf ẐDeẐDcẐDb stabilizer reports a change from | 0000〉 to

| 0100〉. As it can be seen in Table 1.2, a single error in any data qubit can be

uniquely specified as the measurement result lands on a specific eigenstate with

eigenvalue -1.

The Surface Code error correction methodology on 2-dimensional (2D) array

of nearest-neighbor (NN) qubits preserves the logical states of qubits. In the be-

ginning of an error correction cycle, all the measurement qubits are initialized
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Table 1.2 The set of eigenstates and corresponding eigenvalues for four-
qubit stabilizers X̂DiX̂Df X̂DhX̂De and ẐDf ẐDeẐDcẐDb. Note X̂and Ẑare
Pauli operators acting on the data qubits as shown in Fig. 12 where the
measure-X qubit Xc stabilizes X̂DiX̂Df X̂DhX̂De operator and the measure-Z
qubit Zb stabilizes ẐDf ẐDeẐDcẐDb operator.

Eigenvalue X̂DiX̂Df X̂DhX̂De ẐDf ẐDeẐDcẐDb

+1 | + + ++〉 | 0000〉

+1 | + +−−〉 | 0011〉

+1 | +−−+〉 | 0110〉

+1 | − −++〉 | 1100〉

+1 | −+ +−〉 | 1001〉

+1 | +−+−〉 | 0101〉

+1 | −+−+〉 | 1010〉

+1 | − −−−〉 | 1111〉

-1 | + + +−〉 | 0001〉

-1 | + +−+〉 | 0010〉

-1 | +−++〉 | 0100〉

-1 | −+ ++〉 | 1000〉

-1 | +−−−〉 | 0111〉

-1 | −+−−〉 | 1011〉

-1 | − −+−〉 | 1101〉

-1 | − −−+〉 | 1110〉
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to zero. When qubits are idle, the Ẑ and X̂ operators are repeatedly applied to

measure all the measure-Z and measure-X ancillary qubits. If the state of any

measure-Z/measure-X ancillary qubit is flipped in a cycle, a bit-flip/phase-flip

error syndrome in adjacent data qubits is detected. If the state of a measure-

ment ancillary qubit changes per two consecutive cycles, a measurement error

syndrome is detected. Then a software is used to map the error syndromes to

a graph which represents the error propagation model. Later a recovery opera-

tion is applied to restore the states. It is notable that the recovery operations are

applied only in software by tracking error syndromes of all cycles, the software

corrects the final data measurement by fixing, if necessary, the measured data

[12].

In chapter 2 we further explain the Surface Code error syndrome detection

circuits and present a new Surface Code memory architecture that realizes the

required stabilizers utilizing our multi-qubit gates. Performing quantum com-

putation in Surface Code is not in the scope of this work. The interested reader

is referred to [13] for further information about Surface Code.

1.3 Simulation-based quantum gate design

In the absence of a physical quantum computer, one can design and optimize

quantum gates utilizing a software that simulates the dynamics of the quan-

tum system. There are three different formulations in quantum mechanics to

study the evolution of quantum systems: the Schrödinger picture, the Heisen-

berg picture, and the Interaction picture (or Dirac picture). In the Schrödinger

picture, the operators/observables are stationary, and the state vectors evolve

in time. In the Heisenberg picture, the state vectors are considered stationary

and the operators/observables evolve in time. In the Dirac picture, the Hamil-
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tonian is separated to two parts, one which is time-independent and the other

time-dependent. The time-independent portion of the Hamiltonian is used to

evolve the state vector as in the Schrödinger picture, and the time-dependent

portion of the Hamiltonian is used to evolve the observables/operators as in the

Heisenberg picture [17]. Though these pictures are different mathematical for-

mulations to represent the dynamics of the quantum system, using any of them

should result in the same solution. In chapter 3 we explain our approach to use

the Schrödinger picture to implement a quantum simulator.

To simulate the dynamics of a quantum system, a time-dependent Schrödinger

equation needs to be solved. Knowing the Hamiltonian of the system H and the

initial state |Ψ (t0)〉, the time evolution of a quantum state is given by |Ψ (t)〉 =

U (t) |Ψ (t0)〉 with U (t) = e−iHt/~ being the unitary transformation of the system.

Throughout this dissertation, we consider ~ = 1.

Any time dependent Hamiltonian that can be decomposed to m local interac-

tions can be written as a summation of m local Hamiltonians [18-19]. This

Hamiltonian can be efficiently simulated using a universal quantum computer

[20]. If we decompose the Hamiltonian to m local non-commuting Hamiltoni-

ans, we can estimate the term e
−i
~
H(t)t using Trotterization [18] as below.

e
−i
~
Ht≈

(
e
−i
~
H1

t
n e

−i
~
H2

t
n . . . e

−i
~
Hm

t
n

)n
(1.17)

Where, the estimation can be accurate by choosing very small Trotter steps ( tn ).

The Trotterization methodology for quantum simulation can also be done in a

classical computer for simulating the dynamics of a small quantum system. If

we try to simulate a quantum system with many qubits using classical computa-

tional resources, we are limited by the memory and computational power. Once

we have a simulator based on the Hamiltonian of our desired physical system,

we can treat it as a framework for design, optimization, or test of new gates or
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architectures.

1.3.1 Designing gates using an analytical approach

In chapter 2, we use an analytical approach to design multi-qubit controlled-

unitary gates for quantum systems with always-on Ising interactions. We use

the simulation environment as a test framework to check if the derived param-

eters result in the desired gate with high fidelity. Our analytical approach is

based on a pulsed bias scheme [21] which uses a reduced Hamiltonian tech-

nique [22] to derive the required quantum system parameters. In this chapter,

we show how the new multi-qubit gates can be applied in circuits implementing

Surface Code quantum error correction cycles.

1.3.2 Designing gates using a heuristic approach

In chapter 3, we use the simulation environment as a design framework similar

to an actual quantum hardware in an experimental lab. We present a heuristic

methodology to design single-qubit and two-qubit gates in a quantum simu-

lator which simulates the dynamics of the superconducting systems based on

transmons in cQED. Then we apply the designed two-qubit gates to realize a

quantum full-adder circuit. In NN architectures, in order to perform quantum

gates between two non-neighbor qubits, we need to bring them adjacent to each

other by applying extra gate operations named SWAP gates. This increases the

gate counts, the complexity of the control electronics, the latency of the quan-

tum circuits, and consequently increases the error rate. Therefore, we need to

design an efficient mapping of a quantum circuit to the qubit layout such that

the number of SWAP gates is minimized. In this chapter, we found the optimum

mapping of the full-adder circuit on the qubit layout.
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1.3.3 Designing gates using a machine learning approach

In chapter 4, we model the quantum gate design problem as a control/optimization

problem and implement an intelligent simulation environment to design new

three-qubit quantum gates for the superconducting systems based on trans-

mons in cQED. Then we investigate the robustness of the new gates, and finally

we apply these gates in a circuit to realize the Shor’s nine-qubit error correction

code [6] . The result of this chapter shows the benefit of applying multi-qubit

gates in quantum error correction codes.
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2 Realization of Surface Code Quantum Memory on Systems with 

Always-On Interactions

Note: This chapter has been published: S. Daraeizadeh1 , S. Mostame2 , P. Kumar 

Eslami3 , X. Song1, M. Perkowski1, arXiv:1811.09011v3

We realize Surface Code quantum memories for nearest-neighbor qubits with 

always-on Ising interactions. This is done by utilizing multi-qubit gates that 

mimic the functionality of several gates. The previously proposed Surface Code 

memories rely on error syndrome detection circuits based on CNOT gates. In a 

two-dimensional planar architecture, to realize a two-qubit CNOT gate in the 

presence of couplings to other neighboring qubits, the interaction of the target 

qubit with its three other neighbors must cancel out. Here we present a new 

error syndrome detection circuit utilizing multi-qubit parity gates. In addition 

to speed up in the error correction cycles, in our approach, the depth of the 

error syndrome detection circuit does not grow by increasing the number of 

qubits in the logical qubit layout. We analytically design the system parameters 

to realize new five-qubit gates suitable for error syndrome detection in nearest-

neighbor two-dimensional array of qubits. The five-qubit g ates a re designed 

such that the middle qubit is the target qubit and all four coupled neighbors 

are the control qubits. In our scheme, only one control parameter of the target

1 Department of Electrical and Computer Engineering, Portland State University.
2IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
3 Department of Electrical Engineering Computer Science, Wichita State University.
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qubits must be adjusted to realize controlled-unitary operations. The gate op-

erations are confirmed with a fidelity of >99.9% in a simulated system consists

of nine nearest-neighbor qubits.

2.1 Introduction

One of the most important areas of research in the field of quantum computing

is to design and implement highly efficient and fault-tolerant scalable quan-

tum architectures. The quantum systems are intrinsically error-prone since the

states of qubits can change by environmentally-induced errors. Therefore, to

realize a quantum memory, it is required to apply Quantum Error Correction

(QEC) schemes [1] to preserve the states of the qubits during idle times. One

of the most promising QEC schemes is Surface Code [2]. The Surface Code ar-

chitecture consists of Z and X stabilizers [3-4] and introduces ancillary qubits

dedicated to these stabilizers. The code repetitively performs projective quan-

tum non-demolition (QND) parity measurements on these ancillary qubits to

measure the bit-flip and phase-flip errors of the data qubits [5]. The number

of ancillary qubits in these measurements is approximately equal to the num-

ber of data qubits. Although it has been shown this approach results in storing

information with a lower error rate, the Surface Code methodology has a high

computational and resource overhead to realize the logical states and process

the information. In this work, we propose a protocol to implement an efficient

quantum memory based on Surface Code with applications in large scale 2-

Dimensional (2D) nearest-neighbor (NN) quantum architectures with always-

on interactions. This is possible due to our proposed five-qubit parity gates

which can be applied in parallel on the entire array of qubits.

Parity gates can be used as an elementary gate in universal quantum com-
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putation [6]. Kumar et. al. [7] designed a single-shot multi-qubit parity gate

for quantum systems with Ising interactions. That can be utilized to generate

efficient circuits for Mirror Inversion (MI) [8-10] as a sequence of controlled-

unitary operations between 2D nearest-neighbor qubits with tunable couplings.

This method significantly increases the efficiency by lowering the computa-

tional overhead since the state transfer can be achieved in fewer computational

steps without requiring ancillary qubits. Furthermore, there is not any dephas-

ing from idle qubits since all the qubits are used in the MI operation as target or

control qubits. However, the method is limited to 2D systems with tunable cou-

plings. Although it is easier to perform multi-qubit gates in the systems with

tunable couplings, there are some disadvantages such as increased circuit com-

plexity and more noise introduction. We generalize the previous approach to

design five-qubit controlled-unitary gates to realize parity gates in 2D nearest

neighbor layouts with always-on interactions.

In our model, each five-qubit parity gate consists of one target qubit which

is coupled to four adjacent control qubits where each control qubit can act as an

active control qubit or a dummy qubit. In the case of five-qubit parity gate with

four active control qubits, the gate operates so that the state of the target qubit

is flipped when the XOR of all four adjacent qubits is one. In other words, if

the four adjacent control qubits have even or odd parity, the state of the middle

target qubit is preserved or inverted, respectively. However, in the case of five-

qubit parity gate with two active control qubits, the state of the target qubit flips

when two adjacent qubits (two active control qubits) have odd parity, while the

other two adjacent qubits act as dummy qubits and have no effect on the gate

operation.

Here we introduce a new symbol to represent the multi-qubit parity gates.
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As it is known, the symbol of a full-colored circle on a control qubit means

when the logical state of control qubit is 1, the gate operation is performed on

the target qubit. While the symbol of an empty circle means when the logical

state of control qubit is 0, the gate operation is performed on the target qubit.

We introduce the half-colored circles as shown in Fig. 2.1 (a) which means the

logical state of the control qubit can be either 1 or 0. The half-colored circles

are meaningful when applied in pairs to represent the opposite states of two

control qubits resulting in a gate operation on target qubit. For example, in

Fig. 2.1 (b) there is a left-half colored circle on top control qubit, while on the

bottom control qubit there is a right-half colored circle. This means the two

pairs of control qubits must be in opposite states for the target qubit to change

its state (parity detection).

(a) (b)

Figure 2.1 (a) Notations to represent the state of the control qubits in
controlled unitary operations (b) A 3-qubits parity gate. Half colored
circles can be used in pairs to represent the parity of the states of a pair
of control qubits

2.2 Physical model and the simulation method

To simulate the dynamics of a quantum system, a time-dependent Schrödinger

equation needs to be solved. Knowing the Hamiltonian of the system H and the

initial state |Ψ (t0)〉, the time evolution of a quantum state is given by |Ψ (t)〉 =

U (t) |Ψ (t0)〉 with U (t) = e−iHt/~ being the unitary transformation of the system.

Throughout this paper, we consider ~ = 1.
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Consider a (m×n) two-dimensional system of qubits with always-on nearest-

neighbor Ising interactions. Such a system can be described by the following

Hamiltonian [10-13], where the qubits are labeled with j and k, for the rows

and columns, respectively.

H =
n∑
k=1

m∑
j=1

(
∆j,k σ

j,k
x + εj,k σ

j,k
z

)
+

+
n∑
k=1

m−1∑
j=1

ξkj,j+1σ
j,k
z σ

j+1,k
z +

n−1∑
k=1

m∑
j=1

ξk,k+1
j σ

j,k
z σ

j,k+1
z , (2.1)

where σx and σz are Pauli operators, ∆j,k is the tunneling energy for the qubit

located at the j-th row and k-th column, and εj,k is the bias energy for the

qubit. Here ξkj,j+1 is the coupling energy between two adjacent vertically cou-

pled qubits in column k. Similarly, ξk,k+1
j is the coupling energy between two

adjacent horizontally coupled qubits in row j. The Hamiltonian operator is a

2m×n × 2m×n matrix, which scales exponentially with the number of qubits in

the system. It is challenging to solve such a large matrix analytically in order

to derive the system parameters. However, using a pulses bias scheme [14-15]

and reduced Hamiltonian technique [16], we can solve the system parameters

to realize a desired multi-qubit parity gate.

We consider a system of nine qubits as depicted in the black square in Fig. 2.2,

where each qubit is interacting with 4 neighbors. We design a controlled-unitary

gate where qubits A, B, C, and D are control qubits and T is the target qubit. In

the architecture shown in Fig. 2.2, we consider four coupling strengths ξA, ξB,

ξC, and ξD respectively between the target qubit T and the control qubits A, B,

C, and D. By design, the coupling strengths between pairs of qubits are alter-

nating in a row or column of the two-dimensional array of qubits. Therefore, if

any qubit in the array be selected as the Target qubit, it is interacting with four
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neighbors with four distinct coupling strength.

The evolution of a nine-qubit system, qubits A, B, C, D, E, F, G, H and T

in Fig. 2.2, is described by a 512 × 512 Hamiltonian matrix. Qubits E, F, G,

and H have direct interactions with control qubits but do not have any direct

interaction with the target qubit. In order to study their impact on the dy-

namics of the system, we applied the same bias parameters on E, F, G, and H

qubits as for control qubits A, B, C, and D. We observed that they do not af-

fect the 5-qubit gate operation nor the gate operation affects the state of these

qubits. Therefore, to find the parameters of a five-qubit gate operation on A,

B, C, D and T, we analyze a 32 × 32 Hamiltonian matrix. Using the reduced

Hamiltonian scheme [16-17], we break this Hamiltonian matrix to sixteen 2× 2

Hamiltonian matrices. Each 2×2 Hamiltonian describes evolution of the target

qubit T in a subspace depending on the states of the control qubits. Then for

each of these 2 × 2 Hamiltonians, we generate a unitary matrix by integrating

the Schrödinger equation, and then equating the generated unitary matrix to a

desirable controlled unitary gate operation for that subspace. Next, we describe

this in details.

The evolution of the target qubit T being directly coupled to the control

qubits A, B, C, and D can be described by the reduced Hamiltonian:

Hred = ∆Tσ
T
x +

{
εT + ξA 〈Φ |σA

z |Φ〉 + ξB 〈Φ |σB
z |Φ〉

+ ξC 〈Φ |σC
z |Φ〉 + ξD 〈Φ |σD

z |Φ〉
}
σT
z (2.2)

where the label "red" stands for the reduced evolution subspace and |Φ〉 repre-

sents the initial state of four control qubits A, B, C, and D, each is initialized

to |0〉 or |1〉. The parameters of the Hamiltonian are the same as Eq. (2.1) but

for simplicity, we have dropped some labels for the 5-qubits system shown in

Fig. 2.2: ∆T, εT are the tunneling energy and the bias energy for the target
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Figure 2.2 In non-tunable coupling systems, each qubit is interacting
with 4 neighbor qubits. In this figure, we are interested to perform a
Parity gate on the target qubit T where it is directly coupled to qubits
A, B, C, and D.

qubit, respectively, and ξi is the coupling energy between control qubit “i” and

the target qubit, where i = A, B, C, D. Depending on the initial state of |Φ〉, the

expectation value of σ iz can be +1 or -1. Note that here we have ignored the

effect of the next-nearest-neighbor couplings. The qubits E, F, G, and H do not

contribute to the evolution of the target qubit T as they don’t have any direct

coupling with T. In our simulations, the biases on non-interacting qubits E, F,

G, and H are set such that their states are preserved.

Given the above reduced Hamiltonian, the unitary transformation on target

qubit in terms of the system parameters can be derived as

U (t) = eiθ


cos(ωt)− 2πiE

ω sin(ωt) 2π(−i∆T)
ω sin(ωt)

2π(−i∆T)
ω sin(ωt) cos(ωt) + 2πiE

ω sin(ωt)

 ,
(2.3)

with E being the effective bias and ω = 2π
√
∆2

T +E2 being the angular momen-

tum of the gate operation. Here θ is a global phase factor.

Designing multiple-controlled unitary gates in a system with always-on in-
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teractions requires careful attention to the connectivity or couplings between

the qubits. To design a controlled-unitary gate where the target qubit is in-

teracting with a set of neighbors but only a subset of neighbors have a control

role; one needs to cancel out the effect of those neighbors who do not have a

control role. For instance, in Fig. 2.2 consider designing a CNOT gate between

qubits A and T, where A is the control qubit and T is the target qubit. Here, the

qubits B, C, and D have direct interaction with qubit T but do not have a control

role. Therefore, we need to design a five-qubit controlled-unitary gate with one

target qubit T, one active control qubit A, and three dummy qubits B, C, and

D. Note that the states of the dummy qubits should not effect the CNOT gate

operation between A and T. Since there are 8 logical states (000,001, ...,111) as-

sociated with the dummy qubits, to achieve the desired CNOT gate, one needs

to realize a sequence of 8 five-qubit controlled-unitary operations, each taking

the duration of τ . Where each five-qubit controlled-unitary operation config-

ures T as the target qubit, A as the control qubit with logical state 1, and B, C,

and D as the control qubits with one of the 8 logical states [16].

In most of the error correction codes such as Repetition Code [18], the bit-

flip error syndrome detection circuit uses a sequence of two CNOT gates ap-

plied on two data qubits as control qubits and one measurement qubit as the

target qubit. In a 2-dimensional system with always-on interaction, this results

in a decomposition to a sequence of sixteen controlled-unitary operations (16τ).

Utilizing the five-qubit parity gates with two active control qubits, we realize

the same functionality while reducing the circuit depth to a sequence of only

three controlled-unitary operations (3τ).
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2.3 Five-qubit parity gates with two active control qubits

In this section we design a five-qubit parity gate in a 2D array of qubits where

only two of the four control qubits have an active effect while the effects of two

other control qubits are canceled. As discussed above and shown in Fig. 2.2,

qubit T is the target qubit. Our goal here is to apply a parity gate to detect

the parity of qubits A and B which are vertically coupled to the target qubit T.

Therefore, we perform an X unitary operation on the target qubit UT = X in

the subspaces QAQB = |10〉 and QAQB = |01〉, irrespective of the states of the

qubits C, and D. In the subspaces where QAQB = |00〉 or QAQB = |11〉 we will

perform an Identity unitary operation on the target qubit UT = I . This is done

by applying a sequence of four controlled-unitary gates as shown in Fig. 2.3 (a).

Similarly, the circuit shown in Fig. 2.3 (b) realizes a parity detector gate where

the qubits C and D are the two actively effective control qubits.

In Fig. 2.3 (a) and (b), the two gates located in the middle can be combined into

one gate which operates on the target qubit if the qubits A vs B and C vs D are in

different states. We can represent this gate with four half colored circles on the

control qubits, where (A, B) and (C, D) are considered the pairs with opposite

half-colored circles as shown in Fig. 2.4, where the pairs of half-colored circles

are color-coded.

Note we consider only the qubits that have direct coupling with the target

T. In Table 2.1 we list the effective bias in all 16 possible subspaces of QAQB =

|10〉, QAQB = |01〉, QAQB = |00〉, and QAQB = |11〉, where qubits C, and D, have

arbitrary values.

In the subspace QAQB = |10〉, where qubits C, and D have arbitrary values, the

effective bias is E = εT − ξA + ξB ± ξC ± ξD. To realize an X operation, we need

to cancel the diagonal terms in Eq. (2.3), and force sin(ωt) = 1 and ω = 2π∆T
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Table 2.1 Effective bias under each subspace when qubit T is coupled
to four neighbor qubits A, B, C, D.

AB CD Effective Bias

0 |00〉 |00〉 E = εT + ξA + ξB + ξC + ξD

1 |00〉 |01〉 E = εT + ξA + ξB + ξC − ξD

2 |00〉 |10〉 E = εT + ξA + ξB − ξC + ξD

3 |00〉 |11〉 E = εT + ξA + ξB − ξC − ξD

4 |01〉 |00〉 E = εT + ξA − ξB + ξC + ξD

5 |01〉 |01〉 E = εT + ξA − ξB + ξC − ξD

6 |01〉 |10〉 E = εT + ξA − ξB − ξC + ξD

7 |01〉 |11〉 E = εT + ξA − ξB + ξC − ξD

8 |10〉 |00〉 E = εT − ξA + ξB + ξC + ξD

9 |10〉 |01〉 E = εT − ξA + ξB + ξC − ξD

10 |10〉 |10〉 E = εT − ξA + ξB − ξC + ξD

11 |10〉 |11〉 E = εT − ξA + ξB − ξC − ξD

12 |11〉 |00〉 E = εT − ξA − ξB + ξC + ξD

13 |11〉 |01〉 E = εT − ξA − ξB + ξC − ξD

14 |11〉 |10〉 E = εT − ξA − ξB − ξC + ξD

15 |11〉 |11〉 E = εT − ξA − ξB − ξC − ξD
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(a)

(b)

Figure 2.3 The circuits to realize parity gates with only two active ver-
tical (a) or horizontal (b) control qubits.

which results in −2πi∆T sin(ωt)/ω = −i, where −i contributes as a phase factor

of 3π/2 on the target qubit. This extra phase on the target qubit can be tracked

in the course of computation. The following conditions must be satisfied:

cos(ωt) − 2πiE
ω

sin(ωt) = cos(ωt) +
2πiE
ω

sin(ωt) = 0

=⇒ E = 0, cos(ωt) = 0 (2.4)

Considering t = τ for the X operation time, we need to satisfy condition:

ωτ = (4n+ 1)π/2, where n is an integer. For rf-SQUID (Superconducting Quan-

tum Interference Devices) qubit systems, one set of parameters which satisfies

the conditions above would be ∆T = 25 MHz, n = 0, and τ = 10 ns, while bias

pulse magnitude can range up to 10 GHz [7,14,16]. Canceling out the effective

bias (E = 0) we would also need the condition:

εT = ξA − ξB ± ξC ± ξD . (2.5)
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(a)

(b)

Figure 2.4 (a) Two active vertical control qubits. The red half-colored
circles represent the different states of qubits C, and D. (b) Two active
horizontal control qubits. The red half-colored circles represent the
different states of qubits A, and B. The same principle applies to green
half-colored circles.
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As shown in Table 2.1, the effective bias in Eq. (2.5) – subspace QAQB = |10〉 –

expands to four subspaces depending on the state of QCQD:

QCQD = |00〉 , εT = ξA − ξB − ξC − ξD

QCQD = |01〉 , εT = ξA − ξB − ξC + ξD

QCQD = |10〉 , εT = ξA − ξB + ξC − ξD

QCQD = |11〉 , εT = ξA − ξB + ξC + ξD . (2.6)

By choosing ξA = ξB and ξC = ξD, for QCQD = |01〉, |10〉 we get εT = 0, while for

QCQD = |00〉, |11〉 we have εT = −ξC − ξD = −2ξD, and εT = ξC + ξD = 2ξD.

A similar calculation can be done for subspace QAQB = |01〉 with the same

results for the bias on the target qubit (εT). Therefore to realize an X operation

on the target qubit, we keep biases on all control qubits at some arbitrary value

such that it would not cancel the effect of couplings [16] εA = εB = εC = εD = 2

GHz, and apply a sequence of bias pulse steps on the target qubit as following,

with each of them taking τ = 10 ns:

εT1
= −ξC − ξD, εT2

= 0, εT3
= ξC + ξD (2.7)

where εTi represents the i-th bias magnitude on target qubit T. The order of

applying these three pulse steps does not matter, since at the end after 30 ns,

the desired gate operation has been realized. Table 2.2 summarizes all possible

effective biases in each subspace under the three pulse steps given by Eq. (2.7).

This table is derived by substituting the bias magnitude of the target qubit un-

der each pulse step (εT1
, εT2

, εT3
) in the effective bias E given in Table 2.1.

Then to perform anX operation in subspaces whereQAQB = |10〉 andQAQB =

|01〉, we set the coupling values such that the effective bias is canceled out un-

der one of the three pulse steps (εT1
, εT2

, εT3
) while an Identity operation is re-

alized elsewhere (see Table 2.2). For all other subspaces whereQAQB = |00〉 and
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Table 2.2 Effective bias in each subspace under each pulse sequence

AB CD εT1
= −ξC − ξD εT2

= 0 εT3
= ξC + ξD

|00〉 |00〉 E = +ξA + ξB E = ξA + ξB + ξC + ξD E = ξA+ξB+ 2ξC + 2ξD

|00〉 |01〉 E = ξA + ξB − 2ξD E = ξA + ξB + ξC − ξD E = ξA + ξB + 2ξC

|00〉 |10〉 E = ξA + ξB − 2ξC E = ξA + ξB − ξC + ξD E = ξA + ξB + 2ξD

|00〉 |11〉 E = ξA+ξB− 2ξC − 2ξD E = ξA + ξB − ξC − ξD E = +ξA + ξB

|01〉 |00〉 E = +ξA − ξB E = ξA − ξB + ξC + ξD E = ξA−ξB+ 2ξC + 2ξD

|01〉 |01〉 E = ξA − ξB − 2ξD E = ξA − ξB + ξC − ξD E = ξA − ξB + 2ξC

|01〉 |10〉 E = ξA − ξB − 2ξC E = ξA − ξB − ξC + ξD E = ξA − ξB + 2ξD

|01〉 |11〉 E = ξA−ξB− 2ξC − 2ξD E = ξA − ξB − ξC − ξD E = +ξA − ξB

|10〉 |00〉 E = −ξA + ξB E = −ξA +ξB + ξC +ξD E =

−ξA + ξB + 2ξC + 2ξD

|10〉 |01〉 E = −ξA + ξB − 2ξD E = −ξA + ξB + ξC − ξD E = −ξA + ξB + 2ξC

|10〉 |10〉 E = −ξA + ξB − 2ξC E = −ξA + ξB − ξC + ξD E = −ξA + ξB + 2ξD

|10〉 |11〉 E =

−ξA + ξB − 2ξC − 2ξD

E = −ξA + ξB − ξC − ξD E = −ξA + ξB

|11〉 |00〉 E = −ξA − ξB E = −ξA −ξB + ξC +ξD E =

−ξA − ξB + 2ξC + 2ξD

|11〉 |01〉 E = −ξA − ξB − 2ξD E = −ξA − ξB + ξC − ξD E = −ξA − ξB + 2ξC

|11〉 |10〉 E = −ξA − ξB − 2ξC E = −ξA − ξB − ξC + ξD E = −ξA − ξB + 2ξD

|11〉 |11〉 E = −ξA − ξB −

2ξC − 2ξD

E = −ξA − ξB − ξC − ξD E = −ξA − ξB
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QAQB = |11〉, we want to achieve Identity operation under all three pulse steps

(εT1
, εT2

, εT3
). By choosing ξA = ξB and ξC = ξD, most of the equations in Table

2.2 simplify or cancel out and only 7 effective bias equations remain which are

listed below

E = 2ξB, E = 2ξD, E = 4ξD, E = 2ξB + 2ξD

E = 2ξB − 2ξD, E = 2ξB + 4ξD, E = 2ξB − 4ξD (2.8)

Under the above effective biases, we like to achieve an Identity gate opera-

tion. Therefore, we should choose the coupling values such that the off-diagonal

terms in Eq. 2.3 are zero and diagonal terms are 1. This results in

cos (ωt) = 1 ⇒ ω =
2πn
τ

(2.9)

where n is an integer. For ξ � ∆T, we can ignore ∆2
T in ω = 2π

√
∆2

T +E2, which

results in ω = 2πE = 2πn/τ . Therefore, we choose the effective biases in the

equations above as multiples of some integers τ such that

2ξB = 2
v
τ
, 2ξD = 2

w
τ
, 4ξD = 4

w
τ
⇒

2ξB ± 2ξD = 2
v ±w
τ

, 2ξB ± 4ξD = 2
v ± 2w
τ

(2.10)

where v and w are integers. One set of values for a system with tunneling en-

ergy ∆T = 25 MHz and τ = 10 ns are the coupling values ξA = ξB = 0.6 GHz and

ξC = ξD = 0.4 GHz. The above set of parameters realizes a parity gate that de-

tects the parity of qubits A vs B (vertical) while ignoring the states of D and

C (horizontal). Similar calculations can be done to design a parity gate that

detects the parity of qubits D vs C (horizontal) while ignoring the states of A

and B (vertical). Here, we would like to perform an X unitary operation on the

target qubit (UT = X) in subspaces QCQD = |10〉 and QCQD = |01〉, no matter
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what the states of qubits A and B are. In all other subspaces whereQCQD = |00〉

or QCQD = |11〉, we want to perform an Identity operation on qubit T (UT = I).

Using the set of parameters as discussed previously, we can apply a bias pulse

on the target qubit with the following three magnitudes, each taking τ = 10 ns

εT1
= −ξA − ξB, εT2

= 0, εT3
= ξA + ξB (2.11)

2.4 Five-qubit parity gate with four active control qubits

Now consider the case where the target qubit detects the even or odd parity

of the four control qubits. For the target qubit to flip when the parity of four

control qubits is odd, we need to treat all four control qubits equally, therefore,

we set the coupling values connected to the target qubit equal ξA = ξB = ξC =

ξD = ξ. To realize an Identity operation on subspaces when the parity of four

control qubits is even (subspaces in rows 0, 3, 5, 6, 9, 10, 12, and 15 from Table

2.1), the effective bias on the target qubit must be chosen such that the angular

frequency of the target qubit equals an integer multiple of 2π over the Identity

operation duration, say ω = 2πE = 2πn/τ , with n being an integer. This results

in

E = εT =
v
τ
, E = εT ± 4ξ =

w
τ

(2.12)

where v and w are integers. Using the same parameters derived in the previous

section for the initial bias εT = 2 GHz and tunneling ∆T = 25 MHz, τ = 10 ns,

and ξ = 0.4 GHz the conditions above are met. That would be true even if we

change the coupling strength to ξ = 0.6 GHz.

In order to realize an X operation on the target qubit, the effective bias is set to

zero on the desired subspaces (rows 1, 2, 4, 7, 8, 11, 13, and 14 in Table 2.1).
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This results in E = εT ± 2ξ = 0 leading to

εT1
= 2ξ, εT2

= −2ξ. (2.13)

Note that this gate operation also results in a phase factor 3π/2 on the target

qubit which can be tracked in the course of computation. As we showed the

multi-qubit gate that detects the parity of four can be performed in a sequence

of two controlled-unitary operations (2τ) which is faster than detecting the par-

ity of two out of four which takes a sequence of three controlled-unitary opera-

tions (3τ).

2.5 Surface Code error syndrome detection based on multi-qubit gates

In Surface Code scheme [5], a 2D array of physical qubits is constructed with in-

terleaving data qubits and measurement qubits called measure-Z and measure-

X ancillary qubits, and a methodology is presented to protect the architecture

from both bit-flip and phase-flip errors at the same time. The measure-X and

measure-Z qubits detect phase-flip and bit-flip parities, respectively. As shown

in Fig. 2.5, each data qubit in Surface Code is surrounded with 4 measurement

qubits while each measurement qubit is surrounded with 4 data qubits. At the

start, all measurement qubits are initialized to zero. At each error correction

cycle, we perform measurements only on ancillary measurement qubits which

stabilize the data qubits. Note that the states of data qubits are not perturbed

by the measurement. A software maps the detected error syndromes (bit-flip,

phase-flip, measurement error) to a graph model which keeps track of errors

and fixes the errors [5,18].

For instance, in Fig. 2.5, the qubit Zb forces the data qubits Df, De, Dc,

and Db to an eigenstate of ẐDf ẐDe ẐDc ẐDb operator, while the qubit Xc forces

45



the data qubits Di, Df, Dh, and De to an eigenstate of X̂DiX̂DfX̂DhX̂De operator.

Note the chosen stabilizer operators X̂Di X̂Df X̂Dh X̂De and ẐDf ẐDe ẐDc ẐDb must

commute with one another to force the projective measurement outcome of the

system into a unique eigenstate of all the stabilizers. Moreover, the order of

applying X̂ and Ẑ operators on data qubits is important. The order must be

chosen to ensure that we are not measuring the result of X̂ and Ẑ operators of

any data qubit simultaneously. Failure to keep the commutation relationship of

neighbor stabilizers results in random measurements [5]. In our example, the

order of X̂ and Ẑ in X̂DiX̂DfX̂DhX̂De and ẐDfẐDeẐDcẐDb guarantees that the two

stabilizers are commuting as well as the shared data qubits Df and De between

the two stabilizer types X̂DiX̂DfX̂DhX̂De and ẐDfẐDeẐDcẐDb are interacting with

one ancilla qubit of a type (Xc or Zb) at a time. This ensures the robustness of

Surface Code to ancilla errors [19].

Figure 2.5 A 2D array of qubits with nearest-neighbor couplings form-
ing a Surface-17 planar code logical qubit. Here 17 physical qubits (la-
beled) are required to form a logical qubit, 9 of which are data qubits
and 8 of them are measurement ones. The box shows two data qubits
De and Df in green, one measure-Z qubit Zb in blue and one measure-X
qubit Xc in orange.
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The quantum circuits to detect bit-flip error or phase-flip error during one

cycle of Surface Code are based on applying CNOT gates. In some systems,

one could perform a CNOT gate on any pair of neighboring qubits while the

unwanted couplings to the other neighboring qubits are shut off or sufficiently

detuned such that their interaction with the target qubit can be neglected. How-

ever, in systems with always-on interactions, the coupling values can not be

tuned or shut off during the error syndrome detection and performing CNOT

gates are costly. Here we consider designing new multi-qubit gates to facilitate

error syndrome detection in such systems. In this section, we discuss different

scenarios to realize Surface Code error correction for systems with always-on

interactions using the introduced multi-qubit gates.

Figure 2.6 A 2D array of Surface Code where each pair of data qubits
share a measure-X qubit and a measure-Z qubit as shown in the square
box. All measure-Z qubits are coupled to data qubits with the same
coupling strength shown in red, while all measure-X qubits are coupled
to data qubits with the coupling strength shown in light grey.

Consider a large fabric of Surface Code with the proposed architecture shown

in Fig. 2.6. Here, all measure-Z qubits are coupled to the surrounded data

qubits using the same coupling strength ξA = 0.4 GHz and all measure-X qubits
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(a) (b) (c)

Figure 2.7 A two-dimensional array of Surface Code. (a) Applying
multi-qubit X operators on all vertical columns in 2D array of qubits
shown in dotted lines. (b) Applying multi-qubit X operator on all hor-
izontal rows in 2D array of qubits shown in dotted lines. (c) Applying
multi-qubit Z operators on 2D array of qubits shown in dotted red lines.

are coupled to the surrounded data qubits by the same coupling strength of

ξB = 0.6 GHz. In this architecture, we can use our multi-qubit gates plus

Hadamard gates to realize one cycle of error syndrome detection. The order

of applying multi-qubit gates is given below – note that Hadamard gates are

applied on all measure-X qubits at the beginning and end of each cycle:

A. Apply five-qubit parity gates where data qubits are the target qubits, and

top and bottom X stabilizers are the active control qubits, while the left

and right Z stabilizers are the dummy qubits (see Fig. 2.7 (a)).

B. Apply five-qubit parity gates where data qubits are the target qubits, and

top and bottom Z stabilizers are the active control qubits, while the left

and right X stabilizers are the dummy qubits (see Fig. 2.7 (b)).

C. Apply five-qubit parity gates where all Z stabilizers are the target qubits

and all data qubits are the active control qubits (see Fig. 2.7 (c)).
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Note that the order of applying these multi-qubit operators is important.

Next we use the Heisenberg representation [5] and work on the stabilizer for-

malism to confirm the correct order by evaluating two different choices. For

simplicity, we consider a small subspace of two data qubits a and b, and two

measurement qubits Z and X as shown in Fig. 2.6. Here, we analyze the effect

of our multi-qubit gates acting on the small subspace of interest step by step.

Let us start with the order of A, C, B from above; first a multi-qubit vertical

X̂ operator, second a Ẑ operator, third a horizontal X̂ operator. Consider the box

of four qubits as depicted in Fig. 2.6. Initially, the measure-X and measure-Z

qubits are initialized to |+〉 and |0〉, respectively, and the system is in a simul-

taneous eigenstate of the two operator products X̂X Îa Îb ÎZ and ÎX Îa Îb ẐZ . There

is a tensor product between each pair of single-qubit operators but is removed

for simplicity. Then applying the vertical X̂ operator results in X̂X X̂a Îb ÎZ and

ÎX Îa Îb ẐZ . Applying the Ẑ operator leads to X̂X X̂a ÎbX̂Z and ÎX Ẑa Ẑb ẐZ . And

finally applying the horizontal X̂ operator results in

X̂X X̂a X̂b X̂Z and ẐX Ẑa Ẑb ẐZ . (2.14)

The order chosen above will not work since the resulted stabilizers in Eq. 2.14

do not commute and the single measurements of X̂ and Ẑ operators give us

random results.

Next we consider the order of A, B, C from the above; first a multi-qubit

vertical X̂ operator, second a horizontal X̂ operator, and third a Ẑ operator.

Initially, we have X̂X Îa Îb ÎZ and ÎX Îa Îb ẐZ . Applying the vertical X operator

results in X̂X X̂a Îb ÎZ and ÎX Îa Îb ẐZ . Then applying the horizontal X operator

leads to X̂X X̂a X̂b ÎZ and ÎX Îa Îb ẐZ . Finally, applying the Z operator results in

X̂X X̂a X̂b ÎZ and ÎX Ẑa Ẑb ẐZ . (2.15)
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This order of applying multi-qubit gates guarantees that each two data qubits

share a pair of X̂ and Ẑ stabilizers and the measurements after each cycle are

valid.

In all three steps above, the states of all qubits that are not used in the multi-

qubit gate operations are frozen. The error correction cycle is performed by ap-

plying 3 sequences of multi-qubit parity gates as ordered in Fig. 2.7 (a), (b), (c).

We can add/remove an arbitrary number of multi-qubit parity gates to scale up

or down these gates in a larger 2D array of qubits when realizing a large-scale

Surface Code memory.

The proposed protocol can be further improved by considering a new phase-

error-detection circuit utilizing a five-qubit parity detection gate with four ac-

tive control qubits. The conventional phase-error-detection circuit is shown in

Fig. 2.8 (a). One can reach the same functionality by reversing the direction of

each CNOT gate and sandwiching it between Hadamard gates on both control

and target qubits. Canceling out the consecutive pair of Hadamard gates on

measure-X qubit, the equivalent circuit is shown in Fig. 2.8 (b). Moreover, the

functionality of the four CNOT gates shown in Fig. 2.8 (b) can be achieved by a

five-qubit parity gate with four active control qubits. As depicted in Fig. 2.8 (c),

to realize a phase-flip detection circuit, first, we apply Hadamard gates on data

qubits surrounding the measure-X qubit, then we apply a five-qubit parity gate

with four data qubits acting as active control qubits and the measure-X qubit

acting as the target qubit. Finally, we apply Hadamard gates on the four data

qubits.

Utilizing the five-qubit parity gates with four active control qubits plus single-

qubit Hadamard gates, one can realize Surface Code error detection cycles in a

sequence of only two multi-qubit gates plus single-qubit gates. Here the order
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(a) (b) (c)

Figure 2.8 The logically equivalent phase error syndrome detection
circuits (a) The conventional phase-error syndrome detection circuit
(b) The equivalent phase error syndrome detection circuit where the
direction of CNOT gates are reversed and some consecutive pair of
Hadamard gates are canceled out (c) The equivalent phase error syn-
drome detection circuit utilizing the five-qubit parity gate with four
active control qubits (a, b, c, d) and X as the target qubit

of applying multi-qubit gates is not important and Hadamard gates are applied

on all data qubits at the beginning and end of each cycle.

A. Apply five-qubit parity gate where the X stabilizers are the target qubits

and the surrounded data qubits are the active control qubits.

B. Apply five-qubit parity gates where the Z stabilizers are the target qubits

and the surrounded data qubits are the active control qubits.

2.6 Discussion

We use our derived gate parameters in a MATLAB simulator that performs

time evolution of a nine-qubit system as shown in Fig. 2.2. The simulator solves

the Schrödinger equation based on trotterization [20] method with 0.1 ns trotter

steps . We consider qubits E, F, G, H in the simulation to show that their states

remain unchanged during the five-qubit gate operations. We use the following

equations for calculating the gate fidelity:

Fid =

∣∣∣∣Tr
(
U†idealU

) ∣∣∣∣
d

, (2.16)
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Fid + Unit =
Tr

(
U†U

)
+
∣∣∣∣Tr

(
U†idealU

) ∣∣∣∣2
d × (d + 1)

(2.17)

where d = 29 is the dimentionality of the computational space, Uideal is the

unitary transformation of the desired ideal gate, and U is the achieved unitary

transformation calculated from the time evolution of the system:

U = e−i
∫ τtotal
0 H(t)dt , (2.18)

with τtotal being the overall duration of the gate operation and H(t) being the

Hamiltonian of the system at time t. The fidelity equation in Eq. 2.17 accounts

for checking the unitary condition of the quantum operation [21] and reports

slightly lower gate fidelity as it is depicted in Fig. 2.9.

Note that in an experimental setup, one can realize the presented gates by

choosing a different set of parameters which match with their physical sys-

tem. One may choose different integers or multiply each parameter by a scaling

factor such that the conditions explained in sections 2.3 and 2.4 remain satis-

fied [7,14]. For example, another set of parameters satisfying Eq. 2.4 would be

∆T = 25 MHz, n = 1, and τ = 50 ns. Or the same gate fidelity can be achieved

by keeping n = 0, but changing τ to 20 ns and reducing the tunneling param-

eter to ∆T = 12 MHz instead. An example of implementing controlled-unitary

gates deriven by bias pulse scheme on an rf SQUIDs physical system has been

presented in Ref. [14]. The parameters such as tunneling, coupling, bias pulse

magnitude and duration chosen in this paper are in the same range as discussed

in Ref. [14], where it is shown how these parameters can be adjusted to realize

the controlled-unitary gates on the hardware.

Figure 2.9 shows the sensitivity of the parity gate with four active con-

trol qubits on the different parameters. As depicted in Fig. 2.9 (a), a mis-
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match of up to 2 MHz in the tunneling value results in the fidelity drop of

< 1%, however this can be compensated by adjusting the bias pulse width τ

on the target qubit. In Fig. 2.9 (b) we swept away the coupling value of all

four control qubits from the designed value ξ = 0.4 GHz and plotted the fi-

delity change. As it can be seen, if we use the same bias pulse magnitudes from

Eq. 2.13, εT1
= 0.8, εT2

= −0.8, the gate fidelity drops significantly. However,

if we change the magnitudes of the bias pulse according to the new ξ values,

we can achieve a high fidelity gate again. As we discussed, any error from the

parameter mismatch in tunneling and couplings can be respectively recovered

by adjusting the bias pulse duration and magnitude. Therefore, the control cir-

cuitry is greatly reduced since by only adjusting one control parameter (bias

pulse), one can achieve a high fidelity gate.

Our simulation shows that increasing the chosen bias value on control qubits

would result in better gate fidelity. In Fig. 2.9 (c) the resulted fidelity vs bias

values varying from 1 GHz to 10 GHz is plotted. For instance, with bias on

control qubits as 2 GHz, the fidelity of the parity gate with four active control

qubits (with ∆T = 25 MHz, ξ = 0.4 GHz, and τ = 10 ns), was 0.9972 and 0.9944

based on Eq. 2.16 and Eq. 2.17, respectively. However, changing the bias on

control qubits to 3 GHz resulted in gate fidelity of 0.999 and 0.998, respectively.

In the physical realizations, the bias pulses are not ideal and have some

rise/fall times depending on the control electronics. The effect of the rise/fall

times can be compensated by slightly changing the gate duration times [14].

Ideally one can use the analytical methods to design the ideal bias pulses and

then use optimization methods to optimize the rise/fall times and bias pulse

shapes based on their physical system to achieve the highest fidelity.

In this work, we considered the Hamiltonian with Ising interactions, how-
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(a) (b) (c)

Figure 2.9 The effect of changing the system parameters on the fidelity
of the parity gate with four active control qubits. Initial parameters
are set as ∆T = 25 MHz, τ = 10 ns, ξ = 0.4 GHz, and bias on control
qubits as 2 GHz, then one parameter (tunneling, coupling or bias) is
changed while all others are constant. Here we considered two differ-
ent fidelity formulas as discussed in the main text. Fid represents the
fidelity based on Eq. 2.16, and Fid+Unit represents the fidelity based
on Eq. 2.17 where the unitary condition of the gate is also evaluated.
(a) The effect of changing the tunneling (b) The effect of equally chang-
ing the coupling strengths (c) The effect of changing the bias on control
qubits.

ever, the proposed gates can be realized for Hamiltonians with XX and YY inter-

actions by simply interchanging the tunneling and bias values while coupling

values and other parameters remain unchanged [7,15]. Furthermore, here we

considered an arbitrary size 2D array of qubits to represent the application of

multi-qubit parity gates in Surface Code schemes. However, it is often required

to perform a reduced X̂ or Ẑ stabilizers on the borders of a logical qubit. To

realize a two-terminal stabilizer, one can use the five-qubit parity gate with two

active controls. Also realizing a three-terminal stabilizer is possible using a

five-qubit parity gate with three active control qubits. Designing a five-qubit

parity gate with three active control qubits using the methods discussed here

is straightforward. Note that different coupling strengths are engineered de-

pending on the number of the active control qubits in a multi-qubit gate and

this effects on the architectural design decisions of the Surface Code array in

systems with always-on interactions.
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2.7 Conclusion

We designed new five-qubit parity gates with the fidelity of > 99.9% for nearest-

neighbor architectures with always-on Ising interactions. There are many appli-

cations for these new gates, such as performing quantum state transfer in blocks

of two-dimensional (2D) array of qubits. In this paper, we utilized these gates in

error-syndrome-detection circuits. We designed a new quantum memory archi-

tecture for systems with always-on interactions, and presented a Surface Code

protocol based on multi-qubit gates. The five-qubit parity gates can simultane-

ously be applied on many qubits in the array of Surface Code by adjusting only

one control parameter (bias on the target qubits). Here, the Surface Code cycles

can be achieved by applying two sequences of five-qubit parity gates across the

entire qubit array, with the duration of each sequence being 2τ plus the timing

required for single-qubit gates and measurements. The conventional Surface

Code schemes based on two-qubit gates use the same timing for single-qubit

gates and measurements, however, they need at least three sequences of CNOT

gates across the qubit array. In the 2D qubit systems with always-on interac-

tions, each CNOT gate takes 8τ which adds up to 24τ for a full Surface Code

cycle. The advantages of using our proposed Surface Code memory architecture

can be summarized in four main points:

1. It extensively simplifies the control circuitry.

2. It achieves a much faster error-correction cycle compared to the error syn-

drome detection circuits based on two-qubit gates.

3. It is expandable to large-scale Surface Code architectures with a fixed cir-

cuit depth for any size of a 2D array of qubits.
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4. It removes the possibility of developing relative phases (dephasing) dur-

ing idle times since there are no idle qubits in this scheme.
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3 Designing Gates to Realize a Full Adder Quantum Circuit in cQED

Transmon Systems

Note: This chapter has been republished with permission of Taylor and Francis 

Group LLC (Books) US, from "Nanoengineering, Quantum Science, and Nan-

otechnology Handbook", edited by Sergey Edward Lyshevski, Taylor Francis

Group LLC, S. Daraeizadeh1,2, S. P. Premaratne2, M. Perkowski1, A. Y. Matsuura2, 

chapter 20, first edition, 2019, ISBN 9780367197513; permission conveyed through 

Copyright Clearance Center, Inc."

In this chapter, we present the methodology of designing single-qubit and two-

qubit gates and implementing circuits for transmons within the circuit quan-

tum electrodynamics paradigm. We implement a Hamiltonian-level simulator 

to design quantum gates and use these gates to realize a reversible logic quan-

tum circuit of a full adder. The logic circuit is mapped to the physical con-

straints of a transmon chip, and we propose an alternative physical layout to 

reduce the communication overhead.

3.1 Introduction

Quantum entanglement and the superposition of states offer the potential of 

great computational power beyond the capabilities of transistor-based classical 

computers. However, simulation of quantum circuits using classical resources

1 Department of Electrical and Computer Engineering, Portland State University.
2 Intel Labs, Intel Corporation.
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is difficult, due to exponential overhead [1]. This is unfortunate, as simulation

is a fruitful practice in classical computing for architectural design. However,

simulation of small qubit systems is still possible and can be used as a crucial

tool for the architectural design of quantum computers and algorithms.

3.2 Superconducting Qubits

There exist different physical realizations of qubits such as trapped ions, nitrogen-

vacancy centers in diamond, quantum dots, nuclear magnetic resonance, neu-

tral atoms in optical lattices, superconducting devices, etc. Currently the trans-

mon [2] is the most popular implementation of superconducting qubits. The

transmon’s quantum level structure is that of a weakly anharmonic oscillator to

a good approximation. The relative anharmonicity is usually 3% — 5% of the

characteristic system frequency [3].

To realize a single-qubit gate Hamiltonian, we can take the effective Hamilto-

nian and add a drive Hamiltonian term. Consider a drive as follows [4]:

Ω (t)=

 Ωx (t)cos(ωdt) +Ωy (t) sin(ωdt)

0

0 <t<tg

otherwise
(3.1)

where tg refers to the gate duration time, ωd is the drive frequency, and Ωx (t)

and Ωy (t) are two independent quadrature controls. The effective Hamiltonian

in the rotating frame of the drive is as follows:

Heff=}ω̃ra
†a+

1
2
}ω̃qσz+}χσza

†a+
1
2
}

(
Ωx (t)σx+Ωy (t)σy

)
(3.2)

where a† and a are resonator’s raising and lowering operators, χ ' g2/ |ωr −ωq|,

and the resonator angular frequency ωr and the angular frequency of the qubit

transition ωq are shifted by the drive frequency ω̃r = ωr −ωd, and ω̃q = ωq −ωd

in the rotating frame. Since the drive frequency is chosen to be far from the
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frequency band ωr ± χ where the resonator population can be large, we can

assume 〈a†a〉 ∼ 0. Now by choosing ωd = ωq for an on-resonance gate
(
ω̃q = 0

)
,

the effective Hamiltonian is reduced to:

Heff=
1
2
}(Ωx (t)σx+Ωy (t)σy) (3.3)

Now by adjusting Ωx (t) and Ωy (t) different rotations around x or y axes can

be realized. Furthermore, choosing an off-resonance drive such that ωd = ωq −

Ωx (t) results in a Hadamard gate with the following Hamiltonian:

Heff=
1
2
}Ωx (t) (σz + σx) (3.4)

Using the effective Hamiltonians for single transmon gates, we can simulate X,

Y, and Hadamard gates which suffice for building a library of single qubit gates

for quantum computation.

Redefining the ground-state energy in the Tavis-Cummings Hamiltonian for

multi-level transmons, the effective Hamiltonian for two transmons can be writ-

ten as [5]:

H̃TC = }ωr

(
a†a

)
+

2∑
j

1
2
}

∑
m

ω
(j)
m |m〉(j) 〈m|+ }

∑
n

g
(j)
n,n+1(a | n+ 1〉(j) 〈n|+ a

†|n〉(j) 〈n+ 1|)
 (3.5)

The last term in the above Hamiltonian describes the coupling between the

transmons mediated through the resonator, where g(j)
n,n+1 represents the transmon-

resonator coupling value associated with the energy exchange between the en-

ergy levels (n and n + 1) of transmon j and resonator. The last term can be

replaced by the direct coupling term as follows:

H̃coupling = }

∑
j1,j2

√
j1 + 1

√
j2 + 1Jj1,j2(| j1, j2 + 1

〉〈
j1 + 1, j2|+ | j1 + 1, j2

〉〈
j1, j2 + 1|)

(3.6)
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where Jj1,j2is the direct coupling between level j1 from the first transmon and

level j2 from the second transmon. The coupling coefficients for different al-

lowed energy levels of two transmons can be calculated as [5]:

Jj1,j2 =
g1g2

(
ω

(1)
q + δ1j1 −ωr +ω(2)

q + δ2j2 −ωr

)
2
(
ω

(1)
q + δ1j1 −ωr

)(
ω

(2)
q + δ2j2 −ωr

) (3.7)

where δ1 and δ2 are the anharmonicity values associated with transmons 1 and

2, respectively. To realize a two-qubit controlled-phase gate we need to consider

the energy levels up to the second excitation manifold of each qubit. All the

couplings except for those involving |22〉 (which results in a total of 4 system

excitations) are considered. Then the effective Hamiltonian for two transmons

can be represented by the following matrix. The order of the levels in the matrix

is {|00〉 , |01〉 , |02〉 , |10〉 , |11〉 , |12〉 , |20〉 , |21〉 , |22〉} .

H =



0 0 0 0 0 0 0 0 0

0 ω̃
(2)
1 0 J0,0 0 0 0 0 0

0 0 ω̃
(2)
2 0

√
2J0,1 0 0 0 0

0 J0,0 0 ω̃
(1)
1 0 0 0 0 0

0 0
√

2J0,1 0 ω̃
(1)
1 + ω̃

(2)
1 0

√
2J1,0 0 0

0 0 0 0 0 ω̃
(1)
1 + ω̃

(2)
2 0 2J1,1 0

0 0 0 0
√

2J1,0 0 ω̃
(1)
2 0 0

0 0 0 0 0 2J1,1 0 ω̃
(1)
2 + ω̃

(2)
1 0

0 0 0 0 0 0 0 0 ω̃
(1)
2 + ω̃

(2)
2


(3.8)

Here ω̃(k)
(j) represents the angular frequency associated with the kth transmon at
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energy level j and is given [5] as follows:

ω̃
(k)
j ≡ jω

(k)
q +

δk

2
(j − 1) j +

jgk
2

ω
(k)
q −ωr + (j − 1)δk

(3.9)

Since the couplings are compared to the qubit transition frequencies, they can

be considered as perturbations to the system. A Schrieffer-Wolff transformation

is used to perform a full diagonalization of the Hamiltonian to second order in

J [5-6].

To design a two-qubit cPhase gate, the frequency difference between the two

qubit is adjusted to reach the avoided level crossing region between levels | 11〉

and | 02〉, where couplings between levels introduces a phase shift. When the

desired phase is collected the transmons are brought back to the original fre-

quencies. The behavior of the system depends on the speed of the frequency

change operation. In the adiabatic regime, the crossing is approached slowly to

ensure the population of each energy level does not change.

To realize the adiabatic regime, the frequency of qubits should change con-

tinuously with a smoothly shaped pulse when approaching the avoided crossing

region. It should be adiabatic with respect to the timescale given by the level

splitting [7]. By varying the frequencies of the pulses applied, the effective

Hamiltonian described in Eq. 3.8 changes in a perturbative manner. Using a

simulator, we can design the required pulses to achieve the controlled-rotation

gates between two transmons. We consider two transmons with fundamental

frequencies of 11.2 GHz and 9.6 GHz, with the resonator frequency fixed at 6.5

GHz. We assume both transmons have the same anharmonicity δ equal to -300

MHz, and the transmon-resonator coupling g is 200 MHz for both.
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3.3 Quantum simulation

Here we simulate the dynamics of a quantum system in a decoherence-free sub-

space where we consider pure state simulation. If we want to consider noise, de-

coherence, and mixed states, a master equation simulation using a density ma-

trix formalism is usually preferred [8]. The time evolution of the state of a quan-

tum system is described by a time-dependent Schrödinger Equation (TDSE) or a

related equation (e.g. Liouville–von Neumann equation or Lindblad equation).

In a decoherence-free subspace, knowing the initial state of the system and the

Hamiltonian, the solution to the Schrödinger equation is as follows:

∣∣∣ψ (t)
〉

= Û
∣∣∣ψ (t0)

〉
(3.10)

Here, the state
∣∣∣ψ (t)

〉
represents the vector for the probability amplitudes of

different eigenstates, and Û is the time evolution operator. Û (t, t0 ) is a unitary

transformation operator which maps the initial state at time t0, to the final state

at time t. Û (t, t0 ) = e−
iĤt
} , where Ĥ is the Hamiltonian operator that describes

the energy of the system. For instance, in case of single qubit gate operation,

one can realize a 2× 2 unitary transformation matrix Û [9] as follows:

Û=eiαRz (β)Ry (γ)Rz (δ) = eiα

 e
− iβ2 0

0 e
iβ
2


 cos

γ
2 −sinγ2

sinγ2 cosγ2


 e
− iδ2 0

0 e
iδ
2


(3.11)

where α is the global phase factor, Rz (β) and Rz (δ) are the rotations β and δ

around the z-axis, and γ is the rotation around the y-axis when the qubit state

is visualized on a three-dimensional Bloch Sphere [8].

Any time dependent Hamiltonian that can be decomposed to m local inter-

actions can be written as a summation of m local Hamiltonians Ĥ= Ĥ1 + Ĥ2 +

· · · + Ĥm, [10-11]. This Hamiltonian can be efficiently simulated using a uni-
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versal quantum computer [12]. If we decompose the Hamiltonian to m local

non-commuting Hamiltonians, we can estimate the term e
−i
~
Ĥ(t)t using Trotteri-

sation as below [10]:

e
−i
~
Ĥt ≈ (e

−i
~
Ĥ1

t
n e

−i
~
Ĥ2

t
n . . . e

−i
~
Ĥm

t
n )
n

(3.12)

where n→∞, i.e. the accuracy of this estimation is increased by choosing very

small Trotter steps
(
t
n

)
. In this method, we approximate the time evolution op-

erator as Û (t, t0) = Û (t, tn−1) . . . Û (t, t1) Û (t, t0), t0 < t1 < · · · < tn−1 < t, where at

each time interval
(
t
n

)
; the Hamiltonian is considered piecewise constant. The

Trotterisation methodology for quantum simulation can also be done in a clas-

sical computer for simulating the dynamics of a small quantum system, since

simulation of quantum systems with many qubits using classical computational

resources is limited by the memory and computational power.

3.4 Designing c
√

NOT and c
√

NOT
†

gates for transmons in cQED

It was found that large binary reversible quantum gates such as Toffoli with high

number of inputs or circuits such as arithmetic quantum circuits used in Grover

algorithm [9] can be efficiently realized from unitary gates such as CNOT and

CCNOT (Toffoli), c
√

NOT, c
√

NOT
†
, cc
√

NOT, cc
√

NOT
†
. Like the c

√
NOT

gate, analogous gates that control the nth-order root of NOT (controlled- n√NOT),

are important in reversible quantum circuits [13-16]. In this section we describe

designing of c
√

NOT, and c
√

NOT
†

gates for transmons in cQED technology.

In some literature,
√

NOT and
√

NOT
†
are introduced by symbols V and V †,

moreover c
√

NOT, and c
√

NOT
†

are denoted as cV , and cV †, respectively [5].

The unitary transformations of V =
√

NOT and V † =
√

NOT
†

gates are given as
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(a) (b)

Figure 3.1 A controlled rotation around the Z axis for 90◦ cRz
(
π
2

)
,

sandwiched between two Hadamard operations on the first qubit re-
sults in a c

√
NOT(Q2, Q1) gate. (a) Probabilities of qubits Q1 and Q2,

respectively, being in state | 1〉. (b) The required fundamental frequency
changes in GHz for Qubits. The horizontal axes show time in 100 pi-
coseconds units.

follows:

V =
√

NOT =
1 + i

2

 1 −i

−i 1

 (3.13)

V † =
√

NOT
†

=
1− i

2

 1 i

i 1

 (3.14)

In transmons in cQED physical systems realizing a cPhase gate is more con-

venient than a native CNOT gate. It can be shown that CNOT, c
√

NOT, and

c
√

NOT
†
gates can be realized using controlled-phase gates where the target

qubit will be sandwiched between two Hadamard gates before and after the

controlled-phase gate [13]. A CNOT gate can be realized using controlled-

Rz(π) gate since CNOT =HcRz(π)H . This idea can be generalized, in particular,

c
√

NOT =HcRz
(
π
2

)
H and c

√
NOT

†
=HcRz

(
3π
2

)
H.

The simulation results for cRz
(
π
2

)
and cRz

(
3π
2

)
gates for transmons are shown in

Fig. 3.1 and Fig. 3.2, respectively. We designed these gates by considering a fixed

gate time of 40 ns. Once the two transmons reach the avoided crossing region,

the wait time is adjusted to ensure a phase collection of 90◦ for the cRz
(
π
2

)
gate,
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(a) (b)

Figure 3.2 A controlled rotation around the Z axis for 270◦ cRz
(

3π
2

)
,

sandwiched between two Hadamard operations on the first qubit re-

sults in a c
√

NOT
†
(Q2, Q1) gate. (a) Probabilities of qubits Q1 and

Q2, respectively, being in state | 1〉. (b) The required fundamental fre-
quency changes in GHz for Qubits. The horizontal axes show time in
100 picoseconds units.

and 270◦ for the cRz
(

3π
2

)
gate.

3.5 Realizing a full adder quantum circuit

3.5.1 Quantum logic synthesis

The research area of quantum logic synthesis consists in developing methods

and algorithms to decompose larger matrices to elementary gates from prede-

fined gate libraries in such a way that the quantum circuit has the smallest total

gate cost, has the maximum speed, and the reduced number of ancilla qubits.

The implementation of operations such as Peres [17], Toffoli, and Fredkin gates,

as well as adders, multi-controlled AND gates, symmetric functions, and arith-

metic functions based on controlled- n√NOT have been proposed [15, 18-23]. In

this chapter, we demonstrate a methodology to design small quantum circuits of

this type in cQED transmons systems and how to map the circuit to the physical

layout of the qubits. The principle of using only two qubit gates is represented

on the full adder design given as Fig. 3.3 [23]. In the figures, for simplicity we
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use the notations of V and V †, for
√

NOT and
√

NOT
†
, respectively.

Figure 3.3 A full adder quantum circuit using

cV (c
√

NOT), cV † (c
√

NOT
†
), and CNOT gates, this circuit is taken

from Ref. [23] that explains also quantum logic synthesis of similar
quantum circuits.

In the design flow of the classical devices such as CMOS circuits in Very

Large-Scale Integration (VLSI) or other technologies, the logic synthesis is a

stage (abstraction layer) where a gate-level netlist is provided based on Register

Transfer Level (RTL) design, and it happens before the physical design stage.

Currently, the quantum logic synthesis is tightly bound to the research area

of optimizing physical design (placement and routing) of the quantum circuit

on the quantum chip layout. Therefore, in the next sections, we perform logic

synthesis considering the quantum chip layout in a one-dimensional and two-

dimensional space.

3.5.2 Quantum circuit implementation on a one-dimensional layout

To implement the quantum circuit in Fig. 3.3, let’s consider a chip consisting

of four transmons which are coupled through a waveguide resonator [24]. An

example of analytically/Experimentally designing a three-qubit gate for this

layout is found in Ref. [24], where the chip is made of a linear array of four

transmons with frequencies 6 GHz, 7 GHz, 7.85 GHz, and 13 GHz, respectively.

Note that when operating a two-qubit cPhase gate between qubits i and j, the
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frequency of either qubit must not cross any other fundamental frequency of

non-participating transmons. This criterion must be ensured between all neigh-

boring transmons. An example for coupling multiple transmons is shown in

Fig. 3.4 where four transmons are coupled in a linear array. In Fig. 3.4, the

circles represent the transmons and the boxes represent the direct coupling be-

tween two transmons.

Figure 3.4 A one-dimensional nearest neighbor (NN) layout of trans-
mons in cQED. The squares represent the coupling element, and circles
represent the transmon qubits.

In our simulation for the full adder quantum circuit, we consider the fun-

damental frequencies of the transmons Q1-Q4 to be 8.4 GHz, 9.6 GHz, 11.2

GHz, and 12.6 GHz, respectively. In the NN architectures, in order to realize a

two-qubit gate between two non-neighbor qubits, a SWAP operation is used to

transfer information along the connected chain to yield the desired operation.

Considering the full adder quantum circuit shown in Fig. 3.3, a possible place-

ment choice is to assign Q1, Q2, Q3, and Q4 is as 0, Cin, Y, and X, respectively.

The placement is simply assigning logical variables to qubits on the chip. Then

the first c
√

NOT
†

gate is operating between Q1 and Q3 which are not neigh-

bors due to the current assignment. Therefore, a c
√

NOT
†
(Q3, Q1) is physically

realized by sandwiching a c
√

NOT
†
(Q2, Q1) between two SWAP(Q3,Q2) gates.

Similarly, c
√

NOT
†

(Q4,Q1) is physically performed using 4 extra SWAP gates.

In total, 6 extra SWAP gates are required to realize our full adder quantum

circuit. However, it is possible to find a more optimal assignment of qubits con-

sidering connectivity of the logical quantum circuit. As input 0 has a direct

interaction with all other three qubits, it is advantageous to assign it to either
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Q2 or Q3. It is also advantageous to assign X and Cin for the extremities, since

they have no mutual gate. Then an efficient qubit assignment for Q1-Q4 is Cin,

0, Y, and X, respectively. Using this efficient qubit assignment, the number of

SWAP gates is reduced from 6 to 4. The full adder circuit realized in terms of

all NN interactions is shown in Fig. 3.5. (see Fig. 3.5).

Figure 3.5 A placement option for realizing the full adder quantum
circuit on the layout shown in Fig. 3.4 is assigning Cin, 0, Y, and X to
Q1, Q2, Q3, and Q4, respectively.

The SWAP operation is not a native gate available in transmon systems.

Thus, a SWAP gate can be constructed using three CNOT gates. This means

the SWAP is an expensive operation when considering the relative cost of op-

erations in terms of manipulation time. By changing the order of applying

gates which are commuting and using known logic synthesis methods, the full

adder circuit shown in Fig. 3.5 can be further simplified to reduce the number

of SWAP gates and extra CNOT gates. The full adder circuit optimized for one-

dimensional NN architecture is shown in Fig. 3.6. The detailed step-by-step

optimization procedure is explained in the published work in [25].

The functionality of the quantum circuit shown in Fig. 3.6 matches with

the functionality of circuit shown in Fig. 3.5, and both are confirmed by sim-

ulation. This example illustrates how the abstract quantum logic synthesis,

the one-dimensional logic synthesis, and the final placement to the actual lay-

out of quantum chip are interrelated. In the next section we propose a two-
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Figure 3.6 The full adder circuit following some logic synthesis and
optimizing for the one-dimensional layout in Fig.3.4

dimensional qubit layout that requires no SWAP operation to implement a full

adder quantum circuit.

3.5.3 Quantum circuit implementation on a two-dimensional layout

Suppose we have a two-dimensional nearest neighbor layout of transmons with

resonator couplings as shown in Fig. 3.7. In the two-dimensional layout, the

frequencies of the resonators between each transmon pair is set differently so

that they will not be resonant with each other. Since a resonator is shared only

between a unique pair of qubits, turning on an interaction may cause only weak

unwanted interactions between neighbor qubits that we can neglect to lowest

order.

Figure 3.7 Two-dimensional layout for coupling four transmons Q1-
Q4. The squares represent the resonators, and circles represent the
transmon qubits.

Here if we place Qubits as shown in Fig. 3.8 (a), (b), and (c), the quantum

cost will be different. As it can be seen from the original full adder circuit in
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(a) (b) (c)

Figure 3.8 Some placement options to realize circuit shown in Fig. 3.3
on the layout shown in Fig. 3.7

Fig. 3.3, there is no interaction between X and Cin, while all other qubit pairs

have direct interactions. Therefore, placement (a) is an optimal placement since

the qubit pairs that are interacting directly, are coupled directly in the layout as

well, and there is no SWAP operation needed at all. In Fig. 3.8, both (b) and (c)

choices have equal cost and require two SWAP gates. If the optimal assignment

shown in Fig. 3.8 (a) is chosen for layout shown in Fig 19, the full adder circuit

can be expressed without SWAP operations resulting in a quantum cost of 6.

A more systematic way of finding the optimal physical design given the con-

straints of the physical system, is by mapping the problem to a graph theory

problem and using graph theory algorithms already being used in more mature

fields such as Very Large-Scale Integration-circuits (VLSI) physical design tools.

For example, the physical layout of the qubits can be mapped to a connectivity

graph, where vertices represent the qubits, and edges represent the direct cou-

pling between qubits. The connectivity graph for the layout in Fig. 3.7 is given

in Fig. 3.9 (a). Similarly, the quantum circuit can be modeled as an interaction

graph where vertices represent the qubits, and edges represent the connection

between qubits through the gates. The number of gates between two qubits can

be specified as the weight on the edge between the two qubits. The interaction

graph of the layout in Fig. 3.3 is given in Fig. 3.9 (b).
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(a) (b)

Figure 3.9 (a) The connectivity graph of the layout in Fig. 3.7, (b) The
interaction graph of the circuit in Fig. 3.3

Now the qubit assignment problem is mapped to a graph embedding prob-

lem, where the interaction graph must be embedded into the connectivity graph

such that the total distance between adjacent vertices in the interaction graph

is minimized [26]. For this particular example, the optimal embedding is triv-

ial and can be performed visually. However, when the number of qubits in the

circuit grows, this graph problem becomes a NP-complete problem [27].

3.6 Conclusion

In this work, We presented a methodology to build a quantum simulator and use

this simulator to design two-qubit gates such as cRz
(
π
2

)
and cRz

(
3π
2

)
. Finally,

we used a full adder reversible logic circuit as an example to show what kind of

constraints one may consider when implementing the circuit on an actual qubit

chip. This study illustrates the need for Computer-Aided Design (CAD) tools for

physical design of quantum circuits with larger numbers of qubits, in order to

optimize the placement and routing of qubits and to reduce the communication

overhead introduced by SWAP gates. As quantum devices mature and scale-up,

it will be increasingly important to create new quantum logic synthesis methods

and physical design techniques that will be tailored to the specific constraints

of emerging quantum nanotechnology devices [26, 28-31].
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4 Machine-Learning-Based Three-Qubit Gate Design for Toffoli and 

Parity Check in Transmon Systems

Note: This chapter has been published: S. Daraeizadeh1,2, S. P. Premaratne2, N. 

Khammassi2, X. Song1, M. Perkowski1, A. Y. Matsuura2, arXiv:1908.01092

We use machine learning techniques to design three-qubit flux-tunable entan-

gling gates with fidelities of >99.9% and duration of 50 ns for nearest-neighbor 

coupled transmons in circuit quantum electrodynamics architectures. The gate 

design procedure enforces realistic constraints and analyzes the robustness of 

the new gates under decoherence, distortion, and random noise. The controlled-

controlled-phase gate in combination with two single-qubit gates realizes a Tof-

foli gate which is widely used in quantum circuits, logic synthesis, and quantum 

error correction. We also introduce a new three-qubit entangling Parity Checker 

gate which has applications in quantum arithmetic circuits and quantum error 

correction schemes. Using these three-qubit gates, we design a new circuit for 

Shor’s nine-qubit quantum error correction code and compare its performance 

to conventional realizations.

4.1 Introduction

Circuit quantum electrodynamics (cQED) [1,2] systems utilizing transmons [3–

5] are potential candidates for realizing gate model quantum computers [6],

1 Department of Electrical and Computer Engineering, Portland State University.
2 Intel Labs, Intel Corporation.
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with qubit coherence times of hundreds of microseconds [7] and the poten-

tial to scale up facilitated by quantum error correction schemes [8,9]. In these

systems, the realization of high fidelity single-qubit and two-qubit entangling

controlled-phase (CZ) gates enables universal quantum computation [7]. How-

ever, it is desirable to design three-qubit entangling gates to achieve better per-

formance in certain quantum circuits.

Multi-qubit controlled-phase gates in transmons are typically designed by

detuning the qubit transition frequencies to approach the avoided-level-crossing

regions. In this regime, state mixing or level shifting due to non-computational

quantum levels allows non-uniform phase collection within the computational

subspace. This gives rise to entangling operations between qubits [10-15]. Find-

ing the optimal transmon frequency detuning to achieve the desired avoided

level crossings between system energy levels is a complex task which can take

advantage of machine learning (ML) approaches [16-18]. Designing quantum

gates and optimized control pulses using ML techniques and optimization the-

ory has been demonstrated for various quantum systems [19-22]. We model

the quantum gate design problem as a supervised ML exercise, by adjusting the

system control parameters to converge to the target gate [17]. In this model,

the training set is the desired unitary matrix and the cost function is the gate

fidelity. We realize two types of three-qubit gates, the controlled-controlled-

phase (CCZ) and the Parity Checker (ParChe) gates for transmon systems based

on resonator-mediated nearest-neighbor (NN) couplings [23]. The CCZ gate col-

lects a π rotation when all three qubits are in the state |1〉. While the ParChe

gate collects a π rotation when the middle qubit is in the state |1〉 and the two

distant qubits are in the opposite states. Both gates are designed with fidelity

>99.9% and duration of 50 ns.

80



In sections 4.2, 4.3, and 4.4, we explain the motivation behind our work and

introduce the CCZ and ParChe gates from the logic perspective. In sections 4.5

and 4.6, our simulation method and gate design methodology are respectively

explained. The new gates are characterized in sections 4.7 and 4.8. Finally,

in section 4.9, we show how quantum error correction circuits can benefit from

these gates by applying them to the circuit for Shor’s nine-qubit error correction

code.

4.2 Motivation

The ParChe gate can be used in various quantum error correction (QEC) schemes

[9] where a parity check is used to detect error syndromes. Example quan-

tum circuits utilizing CNOT gates for detecting error syndromes are shown in

Fig. 4.1 (a) and Fig. 4.1 (b) for bit-flip and phase-flip error detection, respec-

tively. The circuits illustrated in Fig. 4.1 (a), and Fig. 4.1 (b) are utilized in

many QEC stabilizer codes, including Surface Code [24-26]. Previous works

have shown that the combinations of CNOT gates as shown in Fig. 4.1 (a), and

Fig. 4.1 (b) can in principle be replaced by individual three-qubit gates [17,27].

However, a realistic physical gate design for resonator-coupled transmons has

not been presented. Typically, in such systems, CNOT gates are realized us-

ing two-qubit CZ gates in combination with single-qubit rotations as shown in

Fig. 4.1 (c) and Fig. 4.1 (d). From the logic perspective, the proposed three-

qubit ParChe gate is equivalent to two consecutive 2-qubit CZ gates (compare

Fig. 4.1 (c) and Fig. 4.1 (e)). Bit-flip and phase-flip error syndrome detections

using ParChe gates are depicted in Fig. 4.1 (e), and Fig. 4.1 (f), respectively.

Following Reed et al. [15] and Fedorov et al. [14], we use the symbol of three

filled dots for the three-qubit CCZ gates. Here, we introduce a new symbol for
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(a) (b) (c)

(d)
(e)

(f)

Figure 4.1 Error syndrome detection circuits (a) The classical bit-flip
error syndrome detection circuit, (b) the classical phase-flip error syn-
drome detection circuit, (c) the classical bit-flip error syndrome detec-
tion circuit using controlled-phase gates, (d) the classical phase-flip
error syndrome detection circuit using controlled-phase gates, (e) the
new bit-flip error syndrome detection circuit using the parity checker
gate, (f) the new phase-flip error syndrome detection using the parity
checker gate
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the ParChe gate as shown in Fig. 4.1 (e) and Fig. 4.1 (f). The first and the last

dots are half-filled with opposite orientation, indicating the first and the last

control qubits are in opposite states. While the full dot on the middle qubit

means that it must be in the state |1〉 for phase collection.

Utilizing ParChe and CCZ gates, one can efficiently realize a family of majority-

based reversible gates [28]. For example, the ParChe gate in combination with

one CCZ gate and single-qubit gates as depicted in Fig. 4.2 (a) can realize a

majority function of three inputs which is the ‘carry-out’ in Full adder circuits

[29]. As illustrated in Fig. 4.2 (b), using four ParChe gates, one can reverse the

order of the three qubits. This method can be generalized to efficiently per-

form quantum state transfer in NN architectures [27]. In technologies where

the SWAP operations are decomposed to CNOT or CZ gates, using ParChe gates

to perform mirror inversion [30] operations improve performance significantly.

Following Reed et al. [15] and Fedorov et al. [14], we use the symbol of three

filled dots for the three-qubit CCZ gates. Here, we introduce a new symbol for

the ParChe gate as shown in Fig. 4.1 (e) and Fig. 4.1 (f). The first and the last

dots are half-filled with opposite orientation, indicating the first and the last

control qubits are in opposite states. While the full dot on the middle qubit

means that it must be in the state |1〉 for phase collection.

Utilizing ParChe and CCZ gates, one can efficiently realize a family of majority-

based reversible gates [28]. For example, the ParChe gate in combination with

one CCZ gate and single-qubit gates as depicted in Fig. 4.2 (a) can realize a

majority function of three inputs which is the ‘carry-out’ in Full adder circuits

[29]. As illustrated in Fig. 4.2 (b), using four ParChe gates, one can reverse the

order of the three qubits. This method can be generalized to efficiently per-

form quantum state transfer in NN architectures [27]. In technologies where
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(a)

(b)

Figure 4.2 Quantum circuits utilizing ParChe gate (a) Majority function
of three inputs is realized on the middle qubit. (b) The states of the first
and the last qubits are swapped while the state of the middle qubit is
unchanged.

the SWAP operations are decomposed to CNOT or CZ gates, using ParChe gates

to perform mirror inversion [30] operations improve performance significantly.

4.3 Realization of Toffoli gate

The Toffoli (controlled-controlled-NOT) gate has broad applications in many

quantum circuits. The most common decomposition of the Toffoli gate using

standard single- and two-qubit gates [31] requires multiple single-qubit gates

(H , T , and T †) and six two-qubit CNOT gates as shown in Fig. 4.3 (a). In this

decomposition, at least two of the CNOT gates are applied to non-neighboring

qubits which results in the addition of four SWAP gates in a NN-coupled ar-

chitecture. The total circuit depth in these architectures is 16, including 10

two-qubit gates steps and 6 single-qubit gates steps.

Another decomposition of the Toffoli gate with circuit depth of three is pos-
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(a)

(b)

Figure 4.3 Quantum circuits utilizing ParChe gate (a) Majority function
of three inputs is realized on the middle qubit. (b) The states of the first
and the last qubits are swapped while the state of the middle qubit is
unchanged.

sible based on a three-qubit CCZ gate and two single-qubit gates (Hadamard or

single-qubit rotation gates) as shown in Fig. 4.3 (b) [32]. Using the latter decom-

position, we show that a Toffoli gate can be realized for a resonator-mediated

NN-coupled transmon system utilizing single-qubit gates, and our high fidelity

CCZ gate (50 ns) with realistic frequency detuning sequences and system pa-

rameters.

In our simulations, we consider the lowest four energy levels (labeled |0〉 to

|3〉) to ensure system evolution within the full triple-excitation manifold [15].

However, the cost function evaluation for the ML approach is performed only

within the qubit subspace. The CCZ gate is designed to collect a π phase only

on the |111〉 computational state (i.e. when all three qubits are in the |1〉 state).
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The ideal CCZ gate in matrix form is:

UCCZ =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1



(4.1)

where the ordering of the states is |000〉 to |111〉 in binary increments.

4.4 Realization of ParChe gate

We introduce a novel three-qubit gate (ParChe gate), which can be used as an

elementary gate in universal quantum computing. Consider an array of three

NN-coupled qubits (L, M, and R). The ParChe gate applies a π rotation only if

qubit M is in state |1〉, and the first and the third qubits are in different states.

In other words, if the XOR of the states of qubits L and R is 1, and qubit M is

in state 1, then a π phase is collected. The matrix representation of the ideal
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ParChe gate is

UParChe =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1



. (4.2)

The typical avoided crossing used for two-qubit gates in transmons is be-

tween eigenstates |11〉 and |02〉 in a two-transmon system and these levels oc-

cupy the double-excitation manifold [10]. Here, we generalize this idea to a

three-transmon system and consider the primary interactions up to the triple-

excitation manifold. We steer the energy levels of the three-transmon system by

detuning qubit transition frequencies such that the computational states |011〉

and |110〉 each pick up a phase factor π, while all other energy levels collect

trivial phases.

4.5 Simulation of the system dynamics

The effective Hamiltonian for our model with n transmons, when the coupling

resonators are not populated, can be described as follows [33]:

H =
n−1∑
k=1

H̃(k,k+1)
c +

n∑
k=1

H̃(k)
t (4.3)

Here, the Hamiltonian of each transmon k is:

H̃(k)
t =

∑
j

ω̃
(k)
j |j

〉
(k)

〈
j | (4.4)
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where ω̃(k)
(j) is the dressed transition frequency associated with the kth transmon

at energy level j and is given by

ω̃
(k)
j = jω(k)

q +
δk

2
(j − 1) j +

jgk
2

ω
(k)
q −ωr + (j − 1)δk

(4.5)

where ω(k)
q is the bare transition frequency associated with qubit k; gk is the

coupling strength between transmon k and the connected resonator, and ωr

represents the frequency of the coupled resonator. The last term in Eq. 4.5

is repeated for each transmon with appropriate modifications depending on the

number of coupled resonators.

For any pair of resonator-coupled transmons, we estimate the direct cou-

pling between two transmons (k, k + 1) as:

H̃(k,k+1)
c =

∑
jk, jk+1

√
jk + 1

√
jk+1 + 1Jjk,jk+1

(| jk, jk+1 + 1
〉〈
jk + 1, jk+1|+

|jk + 1, jk+1
〉〈
jk, jk+1 + 1|) (4.6)

where Jjk,jk+1
is the direct coupling between the level jk from the kth transmon

and level jk+1 from the (k + 1)th transmon.

Jjk, jk+1
=
gkgk+1

(
ω

(k)
q + δkjk −ωr +ω(k+1)

q + δk+1jk+1 −ωr

)
2
(
ω

(k)
q + δkjk −ωr

)(
ω

(k+1)
q + δk+1jk+1 −ωr

) (4.7)

where δk and δk+1 are the anharmonicity values associated with transmons k

and k + 1, respectively.

Using the time-dependent Hamiltonian, the time evolution equation of the

system is solved to obtain the unitary transformation U :

U (t) = exp
{
− i
}

∫ t

0
H (τ) dτ

}
(4.8)

Here t is the time; H is the Hamiltonian of the system, and } is the reduced

Planck’s constant. To solve Eq. 4.8, we employ Trotterization [34]. Hence, the
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final unitary transformation is estimated as follows [35]:

U (tk) =UkUk−1Uk−2 U2U1U0 (4.9)

HereUi for i = {0, 1, , k} is calculated using Eq. 4.8 for the newly time-independent

Hamiltonian at each timestep i, where U0 = I and k is the total number of steps.

The Trotter step size is T /k, where T is the gate evolution time. In our simula-

tions, the Trotter step size was 100 ps.

When solving the time evolution equation, we considered a smaller subspace

to reduce the computational expenses. The Hamiltonian for n transmons with

four energy levels spans a 4n-dimensional Hilbert space. For a system com-

posed of three transmons (n = 3), the Hamiltonian is a 64× 64 matrix operator.

Solving the Schrödinger equation for this large operator is computationally ex-

pensive, and there are numerous energy levels that have a minimal impact on

the evolution of the gate of interest. Thus, we project this larger Hamiltonian

to a smaller subspace where at most three excitations are allowed, resulting

in a 20× 20 matrix [17]. The 20 states considered are {|000〉, |001〉, |002〉, |003〉,

|010〉, |011〉, |012〉, |020〉, |021〉, |030〉, |100〉, |101〉, |102〉, |110〉, |111〉, |120〉, |200〉,

|201〉, |210〉, |300〉}.

The reduced Hamiltonian is evolved based on the qubit transition frequen-

cies. The resulting unitary is projected [17] to the 8 × 8 computational sub-

space that includes the states {|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}.

Single-qubit phase compensation [13,16,17] is performed on this resultant uni-

tary using the diagonal compensation matrix

M = e−iθ0 diag(1, e−iθ1 , e−iθ2 , e−i(θ1+θ2), e−iθ4 ,

e−i(θ1+θ4), e−i(θ2+θ4), e−i(θ1+θ2+θ4)) (4.10)
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where θ0 represents the global phase, and θ1, θ2, and θ4 represent the relative

single qubit phases of states |001〉, |010〉, and |100〉, respectively.

The single-qubit phases are canceled out by multiplying matrix M with the

projected unitary matrix in the computational subspace:

Ufinal =UprojM (4.11)

Finally, we calculate the gate fidelity F considering unitarity and closeness

to the target ideal operation [36]:

F =
Tr

(
U†finalUfinal

)
+
∣∣∣∣Tr

(
U†idealUfinal

) ∣∣∣∣2
d(d + 1)

, (4.12)

where d = 23 is the dimensionality of the computational subspace.

4.6 The gate design methodology based on machine learning

There are many machine learning and optimization algorithms one can choose

to solve the optimal control problem for designing quantum gates. We design

the system parameters to realize the CCZ and ParChe gates by combining two

learning methods:

1. A machine learning method based on differential evolution [37] named

Subspace-Selective Self-Adaptive Differential Evolution (SUSSADE) [16,17].

2. Our new local search algorithm.

In both learning procedures, the gate fidelity (Eq. 4.12) is considered as the

fitness function to achieve the optimal control parameters for the given ideal

unitary matrix. During the learning procedure, all parameters are assumed to

be fixed, except for the frequency detuning of transmons.
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In our simulations, the resonator-transmon couplings are g = 0.2 GHz, and

the anharmonicity of each transmon is δ = −0.3 GHz. The three transmons (L,

M, R) with reference transition frequencies set to 5, 6, and 7 GHz, realize an

identity operation with fidelity 99.9% when idling for 10 ns. Transmons L and

M are coupled with an 8.05 GHz resonator, and transmons M and R are coupled

with an 8.2 GHz resonator.

To reduce the search space during the learning procedure, the reference

transition frequencies of the qubits are set closer during the ML algorithms

search; fL = 5.61 GHz, fM = 6 GHz, and fR = 6.39 GHz, respectively. The max-

imum frequency detuning ranges permitted from the reference frequency of

each qubit are set to [0, 0.5), (-0.5, 0.5), and (-0.5, 0], for qubits L, M, and R, re-

spectively. These constraints help further reduce the search space and increase

the efficiency of the learning process by removing the trial of detuning values

far away from the interaction region.

Note that we further impose the following constraints during learning to en-

sure that the optimal frequency detuning sequences are experimentally realis-

tic, achievable and that the target gate is robust. We enforce these constraints

by:

1. Limiting the maximum point-to-point variation of the frequency detun-

ing of each qubit to 220 MHz within the sequence to prevent undesired

excitations in the quantum system. To take into account the limitations of

physical signal instrumentation [38], the initial and the final points of the

sequence are limited to a maximum point-to-point variation of 500 MHz

from the initial reference transition frequencies of 5, 6, and 7 GHz.

2. Limiting the minimum difference between transition frequencies of two
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adjacent qubits to 0.21 GHz/0.309 GHz for the CCZ/ParChe gate; primar-

ily to prevent interactions within the single-excitation manifold.

Here, we briefly describe how the SUSSADE algorithm [16,17] was used to

generate the qubit transition detuning sequences. First, a population of 200

random frequency detuning sequences (chromosomes) is generated in which

each sequence contains 150 frequencies (50 per qubit). For a gate duration

of T = 50 ns, the detuning sequence of each qubit is discretized to 50 ampli-

tudes. After generating the initial population, we perform SUSSADE by ran-

domly modifying the values of detuning sequences using the differential evolu-

tion operations such as mutation, crossover, and selection [17,37]. Finally, the

fidelity of the resulting gate is calculated using Eq. 4.12. For any modified de-

tuning sequence, if the new fidelity value is larger than the initial one, the new

detuning sequence survives to the next generation. This procedure repeats until

we reach our choice of either the fidelity threshold value (99.99%) or the max-

imum number of iterations (one million cycles). We use the Message Passing

Interface (MPI) to distribute the simulation to 200 nodes on a computer cluster

[39] such that each node is performing a full cycle of solving the time evolution

and fidelity calculation for each member of the population.

SUSSADE was successfully used to obtain the frequency detuning sequences

for 50 ns three-qubit gates with a fidelity of 98.8%, but any further progress was

slow. Thus, a local search algorithm was implemented to refine the detuning

sequences and achieve a gate fidelity of >99.9%. Note that the local search

algorithm is efficient once the search space has been reduced by other learning

algorithms.

The local search algorithm consists of the following steps:

1. At the beginning of the learning process, we define the largest (100 MHz)
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and the smallest (1 kHz) change in frequency detuning allowed per data

point. This is referred to as the optimization step size ε. We also set the

maximum number of iterations (1000), the desired fidelity (99.99%), and

all constraints enforced during SUSSADE.

2. While the constraints are met and the desired fidelity or the maximum

number of iterations have not been reached, the following procedure is

repeated:

3. A local search window is moved from the first data point toward the last

data point.

4. At each window, we recursively vary the frequency detuning value up or

down by the optimization step size ε as long as it keeps improving the

gate fidelity.

5. Once the local search window has covered all data points of the detuning

sequence of all qubits, we reduce ε for a finer grain optimization (εnew =

0.1εold).

6. If the optimization is already completed for the smallest predefined ε dur-

ing the iteration, we increase the iteration number by one, reset ε to the

largest predefined value, and repeat from step a.

The three-qubit gate duration is set to 50 ns for evolution, and the learning algo-

rithms operate on 1 ns step size. The learned frequency detuning sequences are

kept constant during each 1 ns step to obtain piecewise-constant pulse forms as

shown in Fig. 4.4.
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(a)

(b)

Figure 4.4 The frequency (f) vs. time (t) plots for learned transition
frequency detuning sequences. The piecewise constant forms are gen-
erated from the learned frequency detuning sequences (50 learned data
points per each transmon). (a) CCZ gate (b) ParChe gate
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4.7 Gate verification and impact of decoherence

Simulated quantum process tomography (QPT) was used to independently eval-

uate gate performances by using master equation simulations. QPT is an excel-

lent tool to evaluate the dynamics of a quantum system due to any process [40],

in this case, the CCZ and ParChe gates. Given that this is QPT within the simu-

lation, state preparation and measurement errors do not affect the methodology.

Hence the results from QPT enable us to fully characterize the introduced gates.

Initial verification was performed assuming no decoherence in the system

by using the Von Neumann equation for time evolution:

i}
∂ρ

∂t
=Hρ − ρH, (4.13)

where the Hamiltonian H is the same as that given in Eq. 4.3 with the number

of levels in each transmon set to jmax = 4 and ρ is the density matrix for the

three transmon system.

The three transmon system was evolved using the generated resonance fre-

quency detuning sequences from learning algorithms. The evolution was per-

formed on all the initial states given by
{
I,R0.5π

x ,R0.5π
y ,Rπx

}⊗3
|000〉 resulting in

64 density matrices. Unlike experimental QPT, it was not necessary to perform

quantum state tomography to reconstruct these density matrices for the final

states. These results were used to perform QPT by imposing constraints that

the process matrix χ must satisfy [41,42]. The χ matrix completely character-

izes the underlying process and is positive-Hermitian by definition [40].

We use the following metrics as defined in Ref. [41] to evaluate the perfor-

mance of the new gates:

Process fidelity : Fp = Tr
(
χ(ideal)χ

)
(4.14)
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Table 4.1 Table of QPT matrices for simulations under different condi-
tions

Conditions Fp

CCZ/ParChe

Fg

CCZ/ParChe

Tr (ρ2)

CCZ/ParChe

kmax= 4,

T1 = T2 =∞

0.999/0.999 0.999/0.999 0.999/0.999

kmax= 3,

T1 = T2 =∞

0.998/0.996 0.998/0.997 0.999/0.999

kmax= 4,

T1 = T2 = 20 µs

0.995/0.994 0.995/0.995 0.991/0.991

kmax= 3,

T1 = T2 = 20 µs

0.993/0.992 0.994/0.993 0.991/0.991

Average gate fidelity : Fg =
dF p + 1

d + 1
(4.15)

Average purity : Tr(ρ2) =
d Tr

(
χ2

)
+ 1

d + 1
(4.16)

where χ is the experimentally determined process matrix; χ(ideal) is the ideal

process matrix for the new gates, and d = 23 is the dimensionality of the com-

putational subspace of the system. The results from the evaluation are given in

Table 4.1.

The simulations incorporating decoherence were performed using the Lindblad-

Kossakowski form of the master equation [43,44]. The appropriate operators

for the dephasing portion of the master equation were obtained as in Refs.

[45,46]. For convenience in simulation, T1 and T2 were both set to 20 s, as-

suming coherence times independent of the flux-tuning of the transmons [47].
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Please refer to supplementary material for the full process matrices resulting

from QPT. Comparison of results for kmax = 3 ({|0〉 , |1〉 , |2〉} levels) and kmax = 4

({|0〉 , |1〉 , |2〉 , |3〉} levels) from Table 4.1 indicates that the fourth level (|3〉) also

plays a limited role in the system evolution.

4.8 Robustness evaluation

The frequency detuning sequences derived from the learning algorithms have

a piecewise-constant form. To investigate the effect of the first-order distortion

due to control electronics, we use the following pulse reshaping method [13,17]

to smooth the frequency detuning sequences:

ωk (t) =
ωki + ωki+1

2
+
ωki+1

− ωki
2

Erf

t −
( tramp

2

)
√

2τ


 , (4.17)

where ωk (t) represents the distorted frequency detuning of qubit k during ti ≤

t ≤ ti+1, and ti represents the ith time step. Here Erf(t) ≡ 2√
π

∫ t
0
e−x

2
dx is the er-

ror function value of t, tramp = 1 ns, and τ =
tramp

4
√

2
[13]. The distorted sequences

are shown in Fig. 4.5. Fidelity >99% is observed for both gates with smoothed

frequency detuning distortions.

To investigate the effect of random noise on the CCZ and ParChe gates, we

plot the average fidelity while increasing the random noise with amplitudes

varying from 0 to 10 MHz. For each amplitude value, random noise is gener-

ated from a uniform distribution (−1, 1), multiplied by the noise amplitude and

added to the optimized detuning sequence. The latter step is repeated 10000

times and at each iteration, the system Hamiltonian is evolved, and the gate fi-

delity is calculated. The averaged fidelity of the 10000 results is reported as the

average fidelity at each noise amplitude. Fig. 4.6 illustrates the gates’ robust-

ness against random noise and demonstrates fidelity >99% with random noise
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(a)

(b)

Figure 4.5 The frequency (f) vs. time (t) plots for the smoothed learned
frequency detuning sequences of qubits. (a) CCZ gate (b) ParChe gate
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Figure 4.6 Average fidelities of CCZ gate and ParChe gate over 10000
samples under the effect of random noise with amplitudes ranging in 0
to 10 MHz.

amplitudes of up to 6.7 MHz for CCZ gate and up to 7 MHz for the ParChe gate.

4.9 Shor’s nine-qubit QEC circuit based on CCZ and ParChe gates

In order to evaluate the performance of the new parity check gate in comparison

with the conventional CZ-based parity check, we design the Shor 9-qubit error

correction code using ParChe and CCZ gates. Fig. 4.7 shows a circuit design of

Shor’s 9-qubit code using Hadamard, ParChe, and CCZ gates.

We use the QX Simulator [48] to simulate the different designs of the Shor’s

error correction code under noise, where we use the Pauli-Twirling Approxima-

tion (PTA) error model with qubit relaxation time T1 = 20 µs and an echo time

T2 = 20 µs. The duration of the single-qubit gates, two-qubit CZ gates, and

three-qubit (CCZ and ParChe) gates are respectively 20 ns, 40 ns, and 50 ns.

The Pauli-Twirling channel [49,50] allows the approximation of the deco-

herence channel as an asymmetric depolarizing channel where the decohering

qubit suffers from discrete Pauli errors (X, Y, Z) with respective probabilities

(pX , pY , pZ) [51]. The error probabilities are expressed in terms of the gate
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Figure 4.7 The proposed Shor’s nine qubit error correction circuit using
new parity checker gates and CCZ gates

execution time and the qubit coherence times T1 and T2:

pY =
1
4

[
1− exp

(
−t
T1

) ]
(4.18)

pX =
1
4

[
1− exp

(
−t
T1

) ]
(4.19)

pZ =
1
2

[
1− exp

(
−t
T2

) ]
− 1

4

[
1− exp

(
−t
T1

) ]
(4.20)

The approximated amplitude damping (AD) channel is given by

ρ→eAD (ρ)=EAD
1 ρEAD†

1 +EAD
2 ρEAD†

2 . (4.21)

Here EAD
1 and EAD

2 are the Kraus matrices for the amplitude damping channel:

EAD1 =

 1 0

0
√

1−pAD

 (4.22)
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EAD2 =

 0
√
pAD

0 0

 (4.23)

where pAD corresponds to the probability of single photon emission from the

qubit. Similarly, the phase damping channel can be expressed in terms of Kraus

matrices and the action of the two channels combined within a single channel

as in [50].

We compare three designs of the Shor’s code:

1. The CZ-based design where both the parity check stage and the Toffoli

gate are implemented in terms of CZ and single-qubit gates.

2. Replacing only the parity check stage of 1) with the ParChe-based design.

3. The full three-qubit gate implementation using ParChe-based parity check-

ing and a CCZ-based Toffoli gate.

For each of the Shor’s code implementations, we apply many error detection

and correction cycles and measure the logical error rate and thus the fidelity.

Figure 8 shows the fidelity decay of the logical qubit through the correction cy-

cles of the Shor’s code. While the fidelity of the logical state decays over the

correction cycles due to the low coherence time and the high physical error

rate of current systems used in this simulation, the fidelity is significantly im-

proved after introducing the ParChe gate for performing faster parity checks

with higher fidelity. The use of the ParChe gate in combination with the CCZ-

based Toffoli provides further improvement and results in a lower logical error

rate.
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Figure 4.8 Performance of a Shor’s error correction code under noise
when using the ParChe and CCZ gates in comparison with the tradi-
tional CZ-based design.

4.10 Conclusion

We designed two fast, high-fidelity, and robust three-qubit entangling (CCZ and

ParChe) gates for resonator-mediated NN-coupled transmons. We described the

gate design methodology using simulation and machine learning techniques

and presented a new local search algorithm for optimal quantum control appli-

cable to small search spaces. The operations of the CCZ gate and the ParChe

gate were confirmed by a C++ simulator that solves the Schrödinger equation

for the time-dependent Hamiltonian of the system. Moreover, the operations

of the gates were verified independently via quantum process tomography in

both the presence and absence of decoherence. The robustness of gates was

examined using random noise injection and frequency detuning distortion.

The presented gate design procedure, verification, and robustness investiga-

tion can be applied to designing new gates for other quantum systems as well.

We showed that our designed gates can significantly increase the performance

of the Shor’s nine qubit error correction circuit, compared to the traditional
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circuits based on two-qubit controlled-phase gates. The ParChe gate can be

considered as an elementary gate for universal quantum computing and can be

used in quantum arithmetic circuits and many QEC schemes.

4.11 Supplementary Material

Here the full process matrices resulted from simulated quantum process tomog-

raphy are presented.
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Figure 4.9 Real part of the process matrix χ(ideal) for the ideal CCZ oper-
ation. The Imaginary component is identically 0 for all elements. The
process matrix is expressed in terms of the complete basis set of 64
three-qubit Pauli matrices; I,X,Y,Z represent the matrices σ0, σx, σy , σz.
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Figure 4.10 Absolute values of the differences between elements of
ideal and simulated process matrices

[
χ(ideal) −χ

]
for the ideal CCZ op-

eration. Note the change in legend scale to increase clarity of error
terms. The process matrix is expressed in terms of the complete ba-
sis set of 64 three-qubit Pauli matrices; I,X,Y,Z represent the matrices
σ0, σx, σy , σz.
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Figure 4.11 Real part of the process matrix χ(ideal) for the ideal ParChe
operation. The Imaginary component is identically 0 for all elements.
The process matrix is expressed in terms of the complete basis set of 64
three-qubit Pauli matrices; I,X,Y,Z represent the matrices σ0, σx, σy , σz.
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Figure 4.12 Absolute values of the differences between elements of
ideal and simulated process matrices

[
χ(ideal) −χ

]
for the ideal ParChe

operation. Note the change in legend scale to increase clarity of error
terms. The process matrix is expressed in terms of the complete ba-
sis set of 64 three-qubit Pauli matrices; I,X,Y,Z represent the matrices
σ0, σx, σy , σz.
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5 Conclusion and Future Work

5.1 Conclusion

In this research work, different software environments were developed to sim-

ulate the dynamics of the superconducting quantum systems. We used the soft-

ware simulators to design, verify, and optimize new quantum gates and archi-

tectures. We explored three quantum gate design methodologies depending on 

the characteristics of the desired gate, the number of qubits involving in the 

gate operation, and the Hamiltonian describing the quantum system. The new 

gates proposed in this dissertation have many applications in quantum circuits 

and have significant i mpact o n v arious d esign d ecisions i ncluding l ogic syn-

thesis, quantum compiler/mapper design, quantum error correction codes, and 

quantum games and algorithms.

Designing scalable and efficient quantum architectures based on error cor-

rection codes is an active research area in the field of quantum information pro-

cessing. In chapter 2, we used analytical methods to derive the required system 

parameters to realize five-qubit c ontrolled-unitary e ntangling g ates f or two-

dimensional nearest-neighbor quantum systems with non-tunable Ising type 

interactions. Then we used our new multi-qubit gates to realize an efficient and 

scalable quantum memory based on Surface Code. The derived system param-

eters were confirmed to achieve high fidelity gates in a simulated environment, 

and the sensitivity of the gates to the system parameters were evaluated. It is 

notable that adjusting only one control parameter is required to achieve high-
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fidelity multi-qubit entangling gates, where these gates mimic the functionality

of several gates at once. Therefore, utilizing these gates in our quantum memory

results in better performance while the control electronics resources are exten-

sively reduced. To our knowledge, this is the first time a memory architecture

based on Surface Code is presented for the systems with always-on Ising inter-

actions. Furthermore, the presented multi-qubit gates can be realized in other

physical systems as well.

Moreover, realizing scalable quantum computers based on transmons in cir-

cuit Quantum Electrodynamics (cQED) systems is one of the most active ar-

eas of research in the field of quantum information processing. In chapter 3,

the physics of superconducting systems based on transmons in cQED regime

is explained. Moreover, the method of developing a quantum simulator for

such systems is described. Using a heuristic methodology, the simulator is used

to design two-qubit gates c
√
NOT and c

√
NOT

†
which are not among stan-

dard gates in a universal set of gates for quantum computation but they can ex-

tensively be used in quantum logic synthesis and quantum arithmetic circuits.

Then for the first time in transmons in cQED systems, we utilized c
√
NOT and

c
√
NOT

†
gates to realize an efficient quantum full adder circuit. Moreover,

we mapped the full adder quantum circuit to the physical layout of an exist-

ing quantum chip, and we proposed a new connectivity for the quantum layout

such that the full adder circuit can be efficiently realized.

In chapter 4, we used machine learning techniques and high performance

computing in our simulation environment to design two realistic high fidelity

three-qubit entangling gates with duration of only 50 ns. The theoretical re-

sults backed with extensive simulations presented in this chapter demonstrate

the feasibility of implementing robust, high-fidelity, and fast single-shot three-
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qubit entangling gates in quantum systems of transmons in cQED regime. To

our knowledge, this is the first time that high fidelity three-qubit entangling

gates taking realistic experimental constraints into account are reported for

transmons in cQED systems.

5.1.1 Accomplishments

This research work has resulted in the following achievements and publications:

Achievements

• Invented a new multi-qubit gate for rf-SQUID-based quantum systems

with non-tunable couplings

• Invented a new quantum memory based on surface code architecture for

quantum systems with always-on Ising couplings which include the known

rf-SQUID systems

• Designed a ccPhase gate for transmon in cQED regime technology that in

combination with Hadamard gates can realize a high fidelity Toffoli gate

in only 50 ns.

• Invented a new 3-qubit controlled-unitary phase gate named ParChe gate

for transmon-based technology that in combination with Hadamard gates

can perform parity check

• Invented a new Shor’s 9-qubit code architecture based on the new ccPhase

gate and new ParChe gate

• Invented a new Topological code based on multi-qubit gates that can cut

the latency of the parity detection circuits to half
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• Created several gate design simulators in Matlab and C++

• Created a linear algebra library (in C++) based on Dirac notation which

can be used for simulation of different physical quantum systems

• Realized a full adder circuit for the first time on Transmons in cQED tech-

nology

5.1.2 Publications

• P. Kumar, S. R. Skinner and, S. Daraeizadeh, “Reduced Hamiltonian Tech-

nique for Gate Design in Strongly Coupled Quantum Systems”, ICQNM

2011: The Fifth International Conference on Quantum, Nano and Micro

Technologies,ISBN: 978-1-61208-151-9, 2011

• P. Kumar, S. R. Skinner, S. Daraeizadeh, “Nearest-Neighbor Architecture

to Overcome Effects of Qubit Precessions in Gate Operations”, 2011 IEEE

Congress of Evolutionary Computation (CEC), DOI 10.1109/CEC.2011.5949960,

2011

• P. Kumar, S. R. Skinner, S. Daraeizadeh, “A Nearest Neighbor Quantum

Architecture to Overcome Dephasing”, Quantum Inf. Process. 12:157–188

DOI 10.1007/s11128-012-0365-z, 2013

P. Kumar, S. Daraeizadeh, “Parity-based mirror inversion for efficient quan-

tum state transfer and computation in nearest-neighbor arrays”, Phys.

Rev. A. 91. 042310, 2015

• S. Daraeizadeh, A. Matsuura, J. Hogaboam, published patent US 20190042974,

Oct. 2018

• S. Daraeizadeh, A. Matsuura, C. Zou, S. Johri, submitted patent, Jan. 2019
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• S. Daraeizadeh, S. Premaratne, A. Matsuura, M. Perkowski, “Designing

Gates to Realize a Full Adder Quantum Circuit in cQED Transmon Sys-

tems”, Book Chapter in “Handbook: Nanoengineering, Quantum Sciences

and Nanotechnolgies”, Editor: Sergey Lyshevski, CRC Press by Taylor and

Francis Group, LLC, ISBN 9780367197513, Dec. 2019

• S. Daraeizadeh, S. Premaratne, N. Khammassi, X. Song, M. Perkowski,

A. Matsuura, "Machine-learning-based three-qubit gate design for Toffoli

and parity check in transmon systems", submitted to Phys. Rev. A. on

Aug. 2019

• S. Daraeizadeh, S. Mostame, P. Kumar Eslami, M. Perkowski, X. Song, “Re-

alization of Surface Code Quantum Memory on Systems with Always-On

Interactions”, submitted to Phys. Rev. A. on Oct. 2019

5.2 Future work

• We proposed a Surface Code architecture for quantum systems with always-

on (non-tunable) Ising interactions. The multi-qubit gates designed in

chapter 2 as well as the presented Surface Code protocol can also be de-

signed for transmon-based superconducting quantum systems.

• Using the simulator for transmons in cQED systems, we can design any

controlled- n√NOT gate through controlled-arbitrary-rotation gates. More-

over, the simulator can be utilized to design and verify different quantum

circuits.

• We designed three-qubit entangling gates using a simulator for transmons

with resonator couplings. The simulator developed in this work can be
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extended to realize larger multi-qubit gates with higher number of trans-

mons involved. Moreover, it can easily be extended to be used as an au-

tomated quantum gate design tool for other quantum physical systems as

well.
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