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Abstract

This thesis contains contributions in two main areas: calculus rules for generalized dif-

ferentiation and optimization methods for solving nonsmooth nonconvex problems with

applications to multifacility location and clustering. A variational geometric approach

is used for developing calculus rules for subgradients and Fenchel conjugates of convex

functions that are not necessarily differentiable in locally convex topological and Ba-

nach spaces. These calculus rules are useful for further applications to nonsmooth opti-

mization from both theoretical and numerical aspects. Next, we consider optimization

methods for solving nonsmooth optimization problems in which the objective functions

are not necessarily convex. We particularly focus on the class of functions representable

as differences of convex functions. This class of functions is broad enough to cover

many problems in facility location and clustering, while the generalized differentiation

tools from convex analysis can be applied. We develop algorithms for solving a num-

ber of multifacility location and clustering problems and computationally implement

these algorithms via MATLAB. The methods used throughout this thesis involve DC

programming, Nesterov’s smoothing technique, and the DCA, a numerical algorithm

for minimizing differences of convex functions to cope with the nonsmoothness and

nonconvexity.
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1

Introduction and Preliminaries

1.1. Introduction

It has been well recognized that convex analysis is an important fundamental mathemat-

ical foundation for many applications in which convex optimization is the first to name.

In recent years, convex analysis has become more and more important for applications

to several new fields such as computational statistics, machine learning, and location

science to cope with the state of the art problems arising in daily life. Although convex

optimization techniques have been topics of extensive research for more than 50 years,

solving large-scale optimization problems without the presence of convexity remains a

challenge.

“The great watershed in optimization is not between linearity and nonlinearity, but

convexity and nonconvexity”- R. T. Rockafellar.

In addition, many optimization techniques are based on the differentiability of data,

while nondifferentiable structures also appear frequently and naturally in many opti-

mization models. Motivated by applications to optimization problems of nondifferen-

tiable nature, nonsmooth/variational analysis has been developed to study generalized

differentiation properties of sets, functions, and set-valued mappings without making

assumptions about the smoothness of the data.

This thesis firstly focuses on a geometric approach of variational analysis for the case

of convex objects considered in locally convex topological spaces and in Banach space

settings. Next, we consider optimization methods for solving nonsmooth optimization

problems in which the objective functions are not necessarily convex, with applications

to location problems and clustering.
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1.2. Basic Tools of Convex Analysis and Optimization

Convex analysis was developed by Rockafellar [41] and Moreau [32] independently

in the 1960s. Their development of the subdifferential, which is a useful concept in

nonsmooth analysis and optimization theory, generalizes the idea of the derivative in

classical calculus from differentiable functions to functions that are convex but not nec-

essarily differentiable. This section provides the mathematical foundation for convex

analysis that will be used throughout this thesis. More details of convex analysis can be

found in [21, 25, 26, 41]. We begin with a systematic study of convex sets and functions

with the discussion beginning with sets.

1.2.1. Convexity of Sets.

Throughout this subsection, we will consider topological vector spaces. Given x, y ∈

X , we define the interval/line segment

[x, y] := {λx+ (1− λ)y |λ ∈ [0, 1]}.

If x = y then this interval becomes a singleton [x, y] = {x}. Naturally, this leads us to

the definition of convexity of sets.

Definition 1.2.1. A subset Ω of X is convex if for all x, y ∈ Ω and λ ∈ (0, 1), we have

λx+ (1− λ)y ∈ Ω.

FIGURE 1.1. Convex set and nonconvex set.
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Additionally, a mapping B : X → Y is affine if there exists a linear mapping A : X →

Y and a vector b ∈ Y such that

B(x) = Ax+ b for all x ∈ X.

It is not hard to check that the convexity of sets is preserved under operations using

affine mappings. Thus, this promotes the following proposition for affine mappings and

convex sets.

Proposition 1.2.2. Let B : X → Y be an affine mapping between topological vector

spaces X and Y . The following properties hold:

(a) If Ω is a convex subset of X , then the direct image B(Ω) is a convex subset of Y .

(b) If Θ is a convex subset of Y , then the inverse image B−1(Θ) is a convex subset of X.

Proceeding forward, for any subsets Ω1, Ω2 ⊂ X and γ ∈ R, we define

γΩ1 : = {γx | x ∈ Ω1} and Ω1 + Ω2 : = {x1 + x2 | x1 ∈ Ω1, x2 ∈ Ω2}.

The next corollary is a simple consequence of Proposition 1.2.2.

Corollary 1.2.3. Let Ω1 and Ω2 be convex subsets of X , and γ ∈ R. Then γΩ1 and

Ω1 + Ω2 are also convex.

We next consider the convexity under the Cartesian product.

Proposition 1.2.4. Let Ω1 be a convex subset of X and let Ω2 be a convex subset of Y .

Then the Cartesian product Ω1 × Ω2 is a convex subset of X × Y .

For any collection of convex sets {Ωi}i∈I , their intersection
⋂
i∈I Ωi is also convex. This

motivates us to define the convex hull of a set Ω ⊂ X by

co(Ω) :=
⋂{

C
∣∣∣ C is convex and Ω ⊂ C

}
.

Clearly, the convex hull of a set Ω is the smallest convex set containing Ω. The following

useful observation is a direct consequence of the definition of the convex hull.

3



Proposition 1.2.5. For any nonempty subset Ω of X , its convex hull admits the repre-

sentation

co(Ω) =
{ m∑

i=1

λiwi

∣∣∣ m∑
i=1

λi = 1, λi ≥ 0, wi ∈ Ω, m ∈ N
}
.

In all, we have given several definitions and theorems relating to convex sets. In the

next subsection we will discuss the convexity in terms of functions.

1.2.2. Convexity of Functions.

This subsection provides the study of convex functions in real vector spaces. We will

mainly focus on extended-real-valued functions f : X → R := (−∞,∞]. From this

definition it follows that f(x) can be equal to∞ for some elements x ∈ X .

Definition 1.2.6. Let X be a vector space and f : Ω → R be a function defined on a

convex set Ω ⊂ X . We say that f is convex on Ω if for all x, y ∈ Ω and λ ∈ (0, 1) the

following inequality holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

FIGURE 1.2. Convex and nonconvex functions.

4



We next introduce definitions of domain and epigraph associated with any extended-

real-valued function f defined as

dom f := {x ∈ X | f(x) <∞} and epi f := {(x, α) ∈ X × R | f(x) ≤ α},

respectively. Furthermore, we call a function f proper if dom f 6= ∅.

As a consequence, the next proposition shows the relation between the convexity of a

function and its epigraphical set.

Proposition 1.2.7. Let f : X → R be a function on a vector space X . Then, f is

convex if and only if epi f is a convex set in X × R.

FIGURE 1.3. An example of the epigraph of a function.

We next consider several useful definitions and properties in finite dimensional case Rd

and Hilbert space H .

Definition 1.2.8. Let H be a Hilbert space. A function h : H → R is called γ-convex

(γ ≥ 0) if there exists γ ≥ 0 such that the function defined by k(x) := h(x) − γ
2
‖x‖2,

x ∈ H , is convex. If there exists γ > 0 such that h is γ−convex, then h is called strongly

convex.

It is easy to see that if a function is strongly convex then it is also convex.

Definition 1.2.9. A function f : Rd → R is called a C1,1 function if it is differentiable

on X and its gradient∇f is Lipschitz continuous, i.e., if there exists L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, for all x, y ∈ H.

5



Note that any C1,1 function is also C1 (a continuously differentiable function).

Example 1.2.10. Let A be an m × n matrix and b ∈ Rm. The function f(x) :=

‖Ax − b‖2 is C1,1 whose gradient is Lipschitz continuous with the Lipschitz constant

determined by matrix norm.

Following the definition of a C1,1 function, we shall provide relevant propositions.

Proposition 1.2.11. Let f : Rd → R be a C1,1 function (not necessarily convex) with

Lipschitz continuous gradient and Lipschitz constant L. Then,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2 for all x, y ∈ Rd.

Proof. For all x, y ∈ Rd, define ϕ(λ) := f(x + λ(y − x)), λ ∈ R. Then ϕ is differen-

tiable on R. Observe that

ϕ(0) = f(x), ϕ(1) = f(y), ϕ′(λ) = 〈∇f(x+ λ(y − x)), y − x〉.

By the Fundamental Theorem of Calculus we have

ϕ(1)− ϕ(0) =

∫ 1

0

ϕ′(λ)dλ =

∫ 1

0

〈∇f(x+ λ(y − x)), y − x〉dλ.

Hence,

f(y)− f(x) =

∫ 1

0

〈∇f(x+ λ(y − x))−∇f(x) +∇f(x), y − x〉dλ

=

∫ 1

0

〈∇f(x+ λ(y − x))−∇f(x), y − x〉dλ+ 〈∇f(x), y − x〉.

Rearranging the above equation by moving f(x) to the right-hand side gives us

f(y) = f(x) + 〈∇f(x), y − x〉+

∫ 1

0

〈∇f(x+ λ(y − x))−∇f(x), y − x〉dλ

≤ f(x) + 〈∇f(x), y − x〉+

∫ 1

0

‖∇f(x+ λ(y − x))−∇f(x)‖.‖y − x‖dλ

≤ f(x) + 〈∇f(x), y − x〉+

∫ 1

0

Lλ‖y − x‖2dλ

≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2

6



Which concludes the proof. �

As mentioned earlier, any C1,1 function is also C1. We provide the following relevant

propositions associated with C1 functions.

Proposition 1.2.12. Suppose that f : Rd → R is a C1 function. Then f is convex if

and only if

〈∇f(y), x− y〉 ≤ f(x)− f(y) for all x, y ∈ Rd.

Proof. Fix any x, y ∈ Rd and λ ∈ (0, 1). Then we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

which is equivalent to

f(y + λ(x− y)) ≤ f(y) + λ[f(x)− f(y)].

Thus,
f(y + λ(x− y))− f(y)

λ
≤ f(x)− f(y).

Letting λ→ 0+, gives us

〈∇f(y), x− y〉 ≤ f(x)− f(y).

Conversely, for any x, y ∈ Rd and λ ∈ (0, 1), define zλ := λx+ (1−λ)y. Then we will

get that

〈∇f(zλ), x− zλ〉 ≤ f(x)− f(zλ) and 〈∇f(zλ), y − zλ〉 ≤ f(y)− f(zλ).

It follows that

λ〈∇f(zλ), x− zλ〉 ≤ λf(x)− λf(zλ),

(1− λ)〈∇f(zλ), y − zλ〉 ≤ (1− λ)f(y)− (1− λ)f(zλ).

Adding these inequalities gives us

7



0 ≤ λf(x) + (1− λ)f(y)− f(zλ).

Therefore, f(zλ) ≤ λf(x) + (1− λ)f(y), and thus f is convex. �

Corollary 1.2.13. Let f : Rd → R be a C1 function. Then f is convex if and only if it

is monotone in the sense that

〈∇f(x)−∇f(y), x− y〉 ≥ 0 for all x, y ∈ Rd.

Proof. Suppose that f is convex. Let us show that ∇f is monotone. For all x, y ∈ Rd

we have

〈∇f(x), y − x〉 ≤ f(y)− f(x),

〈∇f(y), x− y〉 ≤ f(x)− f(y).

Adding these inequalities, we get

〈∇f(x)−∇f(y), x− y〉 ≥ 0.

Thus, ∇f is monotone.

To prove the converse, fix any x, y ∈ Rd and let zλ := λx + (1 − λ)y. Using a similar

technique as in the proof of Proposition 1.2.11, we have

f(x)− f(y) =

∫ 1

0

〈∇f(zλ)−∇f(y) +∇f(y), x− y〉dλ

=

∫ 1

0

〈∇f(zλ)−∇f(y), x− y〉dλ+ 〈∇f(y), x− y〉.

We next prove that 〈∇f(zλ) − ∇f(y), x − y〉 ≥ 0 for all λ ∈ [0, 1]. If λ = 0, then

zλ = y, and hence

〈∇f(zλ)−∇f(y), x− y〉 = 0.

If 0 < λ ≤ 1, then zλ − y = λ(x− y) and x− y =
1

λ
(zλ − y). By the monotonicity of

∇f , we have

8



〈∇f(zλ)−∇f(y), x− y〉 =
1

λ
〈∇f(zλ)−∇f(y), zλ − y〉 ≥ 0.

Thus, f(x)− f(y) ≥ 〈∇f(y), x− y〉 and Proposition 1.2.12 tells us that f is a convex

function on Rd. �

We now conclude this subsection with a proposition, linking a C1 function with the

previous propositions and corollary.

Proposition 1.2.14. Let f : Rd → R be a C1 function. The following assertions are

equivalent:

(a) f is strongly convex with the parameter γ.

(b) For all x, y ∈ Rd, we have the inequality

〈∇f(y), x− y〉 ≤ f(x)− f(y)− γ

2
‖x− y‖2,

(c) The gradient of the function f is strongly monotone in the sense that

〈∇f(x)−∇f(y), x− y〉 ≥ γ‖x− y‖2 for all x, y ∈ Rd.

1.2.3. Fenchel Conjugate and Subgradient of Convex Functions.

We now move our discussion forward from the convexity of sets and functions, to the

Fenchel conjugate and subgradients of convex functions.

Definition 1.2.15. Given a function ϕ : Rd → R (not necessarily convex), the Fenchel

conjugate of ϕ is defined by

ϕ∗(v) := sup
{
〈v, x〉 − ϕ(x)

∣∣ x ∈ Rd
}
, v ∈ Rd.

Note that in the case where ϕ is a proper function, i.e.,

dom (ϕ) := {x ∈ Rd | ϕ(x) <∞} 6= ∅,

the Fenchel conjugate ϕ∗ : Rd → R is always convex and is an extended-real-valued

convex function. Suppose further that ϕ is convex and lower semi-continuous, then the
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Fenchel-Moreau Theorem states that (ϕ∗)∗ = ϕ; see, e.g., [51]. Based on this theorem,

we have the following relation between the subgradients of ϕ and its Fenchel conjugate:

(1.2.1) x ∈ ∂ϕ∗(y) ⇐⇒ y ∈ ∂ϕ(x).

With this relation in mind, the definition of the subgradient is as follows.

Definition 1.2.16. Let ϕ : Rd → R be a convex function and let x0 ∈ dom (ϕ). The

element v ∈ Rd is called a subgradient of ϕ at x0 if

〈v, x− x0〉 ≤ ϕ(x)− ϕ(x0) for all x ∈ Rd.

The subdifferential in the sense of convex analysis of ϕ at x0, denoted by ∂ϕ(x0),

consists of all subgradients of ϕ at this point. In the case when x0 /∈ dom (ϕ), we set

∂ϕ(x0) = ∅.

Additionally, this subdifferential concept possesses many calculus rules that are impor-

tant for applications. In particular, for a finite number of convex functions fi : Rd → R,

i = 1, . . . ,m, we have the following sum rule:

∂(f1 + · · ·+ fm)(x̄) = ∂f1(x̄) + · · ·+ ∂fm(x̄) for all x̄ ∈ Rd

provided that
⋂m
i=1 ri(dom (fi)) 6= ∅. Here ri(Ω) stands for the relative interior of Ω;

see, e.g, [25, Definition 1.68].

Moreover, if f = max
i=1,...,m

fi, and fi is continuous at x̄ for every i = 1, . . . ,m, then for

any x̄ ∈ Rd we have the following maximal rule:

(1.2.2) ∂f(x̄) = co
( ⋃
i∈I(x̄)

∂fi(x̄)
)
,

where I(x̄) = {i | fi(x̄) = f(x̄)} is called the active index set.

1.2.4. Normal Cones to Convex Set and Euclidean Projections.

In this subsection, we shall quickly mention normal cones and Euclidean projections

since they have well-known applications to convexity.
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Definition 1.2.17. Given a nonempty closed convex subset Ω of Rd with x̄ ∈ Ω, the

normal cone to Ω at x̄ is defined by

N(x̄; Ω) =
{
v ∈ Rd

∣∣ 〈v, x− x̄〉 ≤ 0 for all x ∈ Ω
}
.

If x̄ 6∈ Ω, we set N(x̄,Ω) = ∅. It is well-known that an element x̄ ∈ Rd is an absolute

minimizer of a convex function f : Rd → R on Ω if and only if x̄ is a local minimizer of

f on Ω. Moreover, this happens if and only if the following optimality condition holds

0 ∈ ∂f(x̄) +N(x̄; Ω).

The reader can find more details in [25, 41].

Further, given a nonempty set Ω ⊆ Rn and a point x ∈ Rn, the Euclidean projection

from x onto Ω is the set, denoted by P (x; Ω), is defined by

P (x; Ω) :=
{
w ∈ Ω

∣∣ ‖x− w‖ = d(x; Ω)
}
,

where d(x; Ω) defines the Euclidean distance from x to Ω, i.e.,

d(x; Ω) := inf
{
‖x− w‖

∣∣ w ∈ Ω
}
.

We can show that if Ω is a nonempty closed set, then P (x; Ω) is nonempty, and it is a

singleton if we assume in addition that Ω is convex. Moreover, we can show that if Ω

is a convex set and w ∈ P (x; Ω), then x − w ∈ N(w; Ω); see, e.g., [25, 41] and the

references therein.

1.2.5. DC Functions.

Convexity is a nice property of functions, but it is not preserved under simple algebraic

operations such as scalar multiplication or minimum. This is a motivation to search

for new optimization methods that are capable of handling broader classes of functions

and sets where convexity is not assumed. One of the most successful approaches to

go beyond convexity is to consider the class of functions representable as differences
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of two convex functions. Functions of this type are called DC functions, where DC

stands for difference of convex. It was first considered by Alexandrov (1940, 1950)

and Landis (1951), and some time later by P. Hartman (1959) who recognized that

the class of DC functions has many nice algebraic properties; see, e.g., [20]. In this

section we introduce DC functions and a number of important properties of this class

under operations which are commonly considered in nonconvex optimization problems.

More details can be found in [22, 26, 48] in the proofs and other properties. We first

begin with the definition of DC functions.

Definition 1.2.18. Let Ω be a nonempty convex subset of Rd. We say that a function

f : Ω → R is DC on Ω if there exists two convex function g, h : Ω → R such that

f = g−h. In addition to this, f is a continuous DC function if there exist two continuous

convex functions g, h : Ω→ R such that f = g − h.

Prompted by the definition of DC functions, we can show a connection between DC

functions and Fréchet differentiable functions under the condition that the Fréchet gra-

dient is Lipschitz continuous.

Proposition 1.2.19. Let f : Rd → R be a Fréchet differentiable function and the

Fréchet gradient be Lipschitz continuous with constant `. Then f is a DC function.

Proof. We can rewrite f as follows

f(x) =
1

2

[( `
2
‖x‖2 + f(x)

)
−
( `

2
‖x‖2 − f(x)

)]
, x ∈ Rd.

Next, we will show that both functions g(x) :=
`

2
+ ‖x‖2 and h(x) :=

`

2
− ‖x‖2 are

convex for all x ∈ Rd. It suffices to prove that g is convex since the proof for h can be

done similarly.

Taking any x̄ and d ∈ Rd, we first define the function ϕ := g(x̄ + td) for t ∈ R and

prove that ϕ is convex. To see this, we differentiate ϕ on R and get

ϕ′(t) = `〈x̄+ td, d〉+ 〈∇f(x̄+ td), d〉, t ∈ R.

Without loss of generality, consider t1 < t2. Then,
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ϕ′(t2)− ϕ′(t1) = `(t2 − t1)〈d, d〉+ 〈∇f(x̄+ t2d)−∇f(x̄+ t1d), d〉

≥ `(t2 − t1)‖d‖2 − ‖〈∇f(x̄+ t2d)−∇f(x̄+ t1d)‖‖d‖

≥ `(t2 − t1)‖d‖2 − `(t2 − t1)‖d‖2 = 0.

Trivially, this indicates that ϕ′ is increasing and thus shows us that ϕ is convex which

implies the convexity of g. �

The next propositions show that the class of DC functions is closed under many oper-

ations usually considered in optimization such as taking the linear combination, maxi-

mum, or product of a finite number of DC functions.

Proposition 1.2.20. Assume that f and fi : Rd → R for i = 1, . . . , k are DC functions.

Then, the following functions are also DC:

(a)
∑k

i=1 γifi(x), for any γi ∈ R, i = 1, . . . , k,

(b) max{f1(x), . . . , fk(x)}, min{f1(x), . . . , fk(x)},

(c) |f |, f+(x) := max{0, f(x)}, f−(x) := min{0, f(x)}.

Proof. (a) It is not hard to see that if f is a DC function then so is γf for any real

number γ and thus (a) is a trivial consequence of properties of convex and concave

functions.

(b) Let fi = gi − hi, for i = 1, . . . , k, be DC decompositions of fi. It is obvious that

fi = gi +
k∑

j=1,j 6=i

hj −
k∑
j=1

hj,

and

max
i=1,...,k

fi = max
i=1,...,k

{
gi +

k∑
j=1,j 6=i

hj
}
−

k∑
j=1

hj.

Since the maximum and the sum of a finite number of convex functions are convex, the

functions g := max
i=1,...,k

{
gi +

k∑
j=1,j 6=i

hj
}

and h :=
∑k

j=1 hj are convex. Hence, max
i=1,...,k

fi

is a DC function. The proof for min
i=1,...,k

fi is similar with the observation that
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min
i=1,...,k

fi = − max
i=1,...,k

(−fi).

(c) Let f = g − h with g, h convex. Then, we can rewrite f as

|f(x)| = 2 max{g, h} − (g + h).

This is a DC decomposition of |f |. The assertion for f+ and f− follows from (b). �

The next lemma is useful when it comes to the nonnegative DC decomposition.

Lemma 1.2.21. If f : Rd → R is a DC function. Then there exist convex functions

g, h : X → [0,∞) such that f = g − h.

Proof. Suppose that f1, f2 : Rd → R are convex functions in the DC decomposition

such that f = f1 − f2. We can choose x1, x2 ∈ Rd and b1, b2 ∈ R such that

f1(x) ≥ ϕ1(x) := 〈x1, x〉+ b1

f2(x) ≥ ϕ2(x) := 〈x2, x〉+ b2.

for all x ∈ Rd. Then f = (f1−ϕ1)−(f2−ϕ2)+(ϕ1−ϕ2). Let us define φ := ϕ1−ϕ2.

Then, it is an affine function with the representation

φ = max{φ, 0} −max{−φ, 0}.

Let φ+ := max{φ, 0} and φ− := max{−φ, 0}. It is easy to see that they are both

nonnegative and convex. Hence, f can be rewritten as follows

f = (f1 − ϕ1 + φ+)− (f2 − ϕ2 + φ−).

Let g := f1 − ϕ1 + φ+ and h := f2 − ϕ2 + φ−. �

Consequently, this lemma leads us to the next proposition.

Proposition 1.2.22. Let f : Rd → R be a DC function. Then, f 2 is also a DC function.

Proof. Based on Lemma 1.2.21, there exists two nonnegative convex functions g, h :

Rd → R such that f = g − h. Then
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f 2 = g2 + h2 − 2gh = 2g2 + 2h2 − (g + h)2,

which is clearly a DC function because both 2g2 + 2h2 and (g + h)2 are convex. �

More generally, we can see that the product of any two DC functions is also DC.

Proposition 1.2.23. Let fi be DC functions for i = 1, . . . ,m. Then the product
m∏
i=1

fi

is a DC function.

Proof. It suffices to prove for the case where m = 2. That is, consider

f1f2 =
1

2
((f1 + f2)2 − f 2

1 − f 2
2 ).

It follows directly from Proposition 1.2.22 that (f1 + f2)2, f 2
1 , and f 2

2 are DC functions.

Therefore, f1f2 is a DC function. The result for
m∏
i=1

fi follows by induction. �

Intuitively DC functions can be quite simple to picture in terms of the graphs, in the

next example we provide a DC function in terms of a symmetric matrix.

Example 1.2.24. Let A ∈ Rd×d be a symmetric matrix. Consider the quadratic form

f(x) := xTAx for x ∈ Rd.

Then f is a DC function. Indeed, fix a real number δ such that δ ≥ ρ(A) (here ρ(A) is

the spectral radius of A). Then

f(x) =
1

2
(xT (δI + A)x− xT (δI − A)x) for all x ∈ Rd.

Therefore, f is a DC function.

Another interesting result is the DC property of the distance function.

Proposition 1.2.25. Let Ω be a nonempty closed subset of Rd. Then the distance func-

tion f(x) := d2(x; Ω) for x ∈ Rd is DC.
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Proof. Indeed, for any x ∈ Rd we have

f(x) = inf
u∈Ω
‖x− u‖2

= ‖x‖2 + inf
u∈Ω
{−‖x‖2 + ‖x− u‖2}

= ‖x‖2 + inf
u∈Ω
{−2〈x, u〉+ ‖u‖2}

= ‖x‖2 − sup
u∈Ω
{2〈u, x〉 − ‖u‖2}

Observe that the functions g(x) := ‖x‖2 and h(x) := supu∈Ω(2〈u, x〉 − ‖u‖2) are

convex for all x ∈ Rd. Therefore, f is a DC function. �

Lastly for this subsection, we shall define a locally DC function and briefly mention

associated corollaries with locally DC functions.

Definition 1.2.26. We say that a function f : Rd → R is a locally DC function if for

any x0 ∈ X , there exists a ball B(x0; ε) such that f is DC on B(x0; ε). Equivalently, we

can always find convex functions g, h such that

f(x) = g(x)− h(x) for all x ∈ B(x0; ε).

Example 1.2.27. Every C2 function f : I → R , where I is an open interval in R is

locally DC. Indeed, for any x0 ∈ I , there exists δ > 0 such that J := [x0−δ, x0+δ] ⊂ I .

Then S := supx∈J |f
′′
(x)| <∞. We can rewrite f as

f(x) =
1

2
[(
γ

2
x2 + f(x))− (

γ

2
x2 − f(x))], x ∈ J.

It follows that for γ ≥ S,

g(x) :=
γ

2
x2 + f(x) and h(x) :=

γ

2
x2 − f(x), x ∈ J

are convex. Therefore, f is a locally DC function.

Theorem 1.2.28. Every locally DC function f : Rd → R is DC.

The proof of this theorem can be found in [22, 26].
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Remark 1.2.29. It can be shown that if f : Ω → R is a locally DC function, where

Ω ⊂ Rn is a nonempty convex set that is either open or closed, then f is a DC function.

More about this can be found in [20].

Theorem 1.2.28 leads to the following important corollaries.

Corollary 1.2.30. Any C2 function f : Rd → R is a DC function.

Since polynomials have continuous derivatives of any order, the next result follows

directly from Corollary 1.2.30.

Corollary 1.2.31. Any polynomial with x ∈ Rd is a DC function on Rd.

We next consider the composition of two DC functions.

Proposition 1.2.32. Let f : Rd → I and let g : I → R be DC functions, where I is an

open interval in R. Then g ◦ f is a DC function.

Consequently, this proposition leads us to the following corollary.

Corollary 1.2.33. If f1, f2 : Rd → R are DC functions, where f2(x) 6= 0 for all

x ∈ Rd, then
f1

f2

is a DC function.

Proof. Without loss of generality we can assume that f2(x) > 0 for all x ∈ Rd.

From Proposition 1.2.23 it suffices to show
1

f2

is DC. Since f2 : Rd → I := (0,∞)

is a DC function, and g : I → R with g(y) :=
1

y
for y ∈ I is also a DC function,

Proposition 1.2.32 tells us that
1

f2

is a DC function. �

1.2.6. Optimization Problem.

After the discussion of the basic tools of convex analysis, this leads us to the optimiza-

tion problems. Given a nonempty Ω ⊂ X and a function f : Rd → R, we consider the

optimization problem

(1.2.3) minimize f(x), x ∈ Ω.

We say that (1.2.3) is a constrained optimization problem if Ω is a proper subset of X .

Otherwise, it is called an unconstrained optimization problem. In the case where both

f and Ω are convex, (1.2.3) is a convex optimization problem.
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The following propositions and corollary give us an effective tools to solving optimiza-

tion problems when we have convexity.

Proposition 1.2.34. Let f : Rd → R be a continuously differentiable convex function

(C1 convex) and Ω ⊂ Rd be a nonempty closed convex set. Then, x∗ is the optimal

solution to (1.2.3) if and only if

〈∇f(x∗), u− x∗〉 ≥ 0 for all u ∈ Ω.

Proof. Let x∗ be the optimal solution. Then, f(x) ≥ f(x∗) for all x ∈ Ω. For any

u ∈ Ω and λ ∈ (0, 1), since Ω is convex x∗ + λ(u− x∗) = λu + (1− λ)x∗ ∈ Ω. This

implies f(x∗ + λ(u− x∗)) ≥ f(x∗), and hence

f(x∗ + λ(u− x∗))− f(x∗)

λ
≥ 0.

Letting λ→ 0+ gives us 〈∇f(x∗), u− x∗〉 ≥ 0.

Conversely, suppose 〈∇f(x∗), u− x∗〉 ≥ 0 for all u ∈ Ω. The convexity of f gives us

〈∇f(x∗), u− x∗〉 ≤ f(u)− f(x∗) for all u ∈ Rd.

Therefore,

0 ≤ 〈∇f(x∗), u− x∗〉 ≤ f(u)− f(x∗)

for all u ∈ Ω. It follows that x∗ is the optimal solution to (1.2.3). �

Corollary 1.2.35. Let f : Rd → R be a C1 concave function (i.e., f is convex) and Ω

be a nonempty closed subset of Rd. Then, x∗ is the optimal solution of

maximize f(x), x ∈ Ω

if and only if 〈∇f(x∗), u− x∗〉 ≤ 0 for all u ∈ Ω.

Proposition 1.2.36. If Ω ⊂ Rd is a nonempty closed set and f : Rd → R is strongly

convex, then (1.2.3) has a unique optimal solution.

18



2

Numerical Techniques and Algorithms

2.1. Nesterov Smoothing Technique

In this chapter, we shall go over numerical techniques and algorithms. Let f : Rd → R

be a convex function. Consider the unconstrained optimization problem

minimize f(x), x ∈ Rd,

where f (not necessarily differentiable) is given by

f(x) := max{〈Ax, u〉 − φ(u) | u ∈ Q}, x ∈ Rd.

Here, A is an m × d matrix, Q is a nonempty compact convex subset of Rm, and φ

is a continuous convex function on Q. We consider these class of functions for the

Nesterov’s smoothing technique. The reader can find more details in [37].

Let q be a continuous strongly convex function on Rm with parameter σ > 0. The

function q is called a prox-function. Proposition 1.2.36 tells us that q has a unique

optimal solution on Q. Let us denote

x̄ := argmin{q(x) | x ∈ Q}.

Without loss of generality, we can assume that q(x̄) = 0. Since q is strongly convex,

we also have

q(x) ≥ σ

2
‖x− x̄‖2, ∀x ∈ Q.

For all µ > 0, define

(2.1.4) fµ(x) := max{〈Ax, u〉 − φ(u)− µq(u) | u ∈ Q}.
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Then, µ is called the smoothing parameter and fµ is the Nesterov smooth approximation

of f .

Recall that for an m× n matrix A = (aij), if we define

‖A‖ := max{‖Ax‖ | ‖x‖ ≤ 1},

then

‖Ax‖ ≤ ‖A‖ ‖x‖ for all x ∈ Rd.

Theorem 2.1.1. The function fµ in (2.1.4) is well-defined, a C1 function with Lipschitz

gradient Lµ =
1

µσ
‖A‖2, and

∇fµ(x) = ATuµ(x).

Here, uµ(x) ∈ Q is the element for which the maximum is attained in the definition of

fµ(x).

Proof. Let us consider the continuous function

ϕ(u, x) := 〈Ax, u〉 − φ(u)− µq(u).

Since Q is compact, fµ(x) = max
u∈Q
{ϕ(u, x)} is clearly well-defined. For each u ∈

Q, ϕ(u, ·) is a convex function which implies the convexity of fµ(x); see, e.g., [25,

Theorem 2.93]. In addition to this, for each x ∈ Rd the function −ϕ(·, x) is strongly

convex on Q. Hence, there exists uµ(x) ∈ M such that (2.1.4) attains the maximum

and for each x ∈ Rd we have

S(x) = {u ∈M | ϕ(u, x) = fµ(x)} = {uµ(x)}.

Notice that∇xϕ(u, x) = ATu and [25, Theorem 2.93] gives us

∂fµ(x) = co
⋃

u∈S(x)

∂xϕ(u, x) = co
⋃

u∈S(x)

∇xϕ(u, x) = {ATuµ(x)}.

Since ∂fµ(x) is a singleton, fµ is differentiable on Rd; see, e.g., [25, Theorem 3.3].
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We next prove that ∇fµ is Lipschitz. By taking any x, y ∈ Rd and using Corollary

1.2.35 we get

〈Ax−∇φ(uµ(x))− µ∇q(uµ(x)), uµ(y)− uµ(x)〉 ≤ 0,

〈Ay −∇φ(uµ(y))− µ∇q(uµ(y)), uµ(x)− uµ(y)〉 ≤ 0.

Combining these inequalities gives us

〈A(x− y), uµ(x)− uµ(y)〉 ≥ 〈∇φ(uµ(x))−∇φ(uµ(y)), uµ(x)− uµ(y)〉

+ µ〈∇d(uµ(x))−∇d(uµ(y)), uµ(x)− uµ(y)〉.

Using the monotonicity of ∇φ and the strong monotonicity of q from Corollary 1.2.13

and Proposition 1.2.14, respectively, we get

〈A(x− y), uµ(x)− uµ(y)〉 ≥ µσ‖uµ(x)− uµ(y)‖2.

Thus,

‖∇fµ(x)−∇fµ(y)‖2 = ‖ATuµ(x)− ATuµ(y)‖2

≤ ‖A‖2‖uµ(x)− uµ(y)‖2

≤ 1

µσ
‖A‖2〈A(x− y), uµ(x)− uµ(y)〉

=
1

µσ
‖A‖2〈x− y, ATuµ(x)− ATuµ(y)〉

≤ 1

µσ
‖A‖2‖x− y‖ ‖ATuµ(x)− ATuµ(y)‖

=
1

µσ
‖A‖2‖x− y‖ ‖∇fµ(x)−∇fµ(y)‖.

And so

|∇fµ(x)−∇fµ(y)‖ ≤ 1

µσ
‖A‖2‖x− y‖.

That is,∇fµ is Lipschitz with the constant Lµ =
1

µσ
‖A‖2. �
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The following proposition shows that fµ provides a good smooth approximation for the

nonsmooth function f .

Proposition 2.1.2. Let D := max{q(u) | u ∈ Q}. Then

fµ(x) ≤ f(x) ≤ fµ(x) + µD for all x ∈ Rd.

Proposition 2.1.3. Assume further that in the setting of Theorem 2.1.1, we have q(u) :=

1

2
‖u− u0‖2, where u0 ∈ Q, and φ(u) = 〈b, u〉 for all b ∈ Rm. Then

fµ(x) =
‖Ax− b‖

2µ
+ 〈Ax− b, u0〉 −

µ

2

[
d(u0 +

Ax− b
µ

;Q)
]
.

Furthermore, fµ is differentiable with ∇fµ(x) = ATuµ(x), where uµ(x) can be repre-

sented in terms of the Euclidean projection

uµ(x) := P (u0 +
Ax− b
µ

;Q),

and ∇fµ(x) is Lipschitz continuous with constant Lµ =
1

µ
‖A‖2.

Example 2.1.4. Consider the function f(x) = |x| which is not differentiable at 0 and

can be represented as

f(x) = max{ux | u ∈ [−1, 1]}, x ∈ R.

Using the prox-function q(u) =
1

2
u2 gives us

fµ(x) = max{ux− µ

2
u2 | u ∈ [−1, 1]},

and

uµ(x) =


−1 x ≤ −µ,
x

µ
−µ < x < µ,

1 x ≥ µ.
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Therefore,

fµ(x) =


−x− µ

2
x ≤ −µ,

x2

2µ
−µ < x < µ,

x− µ

2
x ≥ µ.

In this case the Lipschitz constant of∇fµ is Lµ =
1

µ
.
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FIGURE 2.1. Nesterov’s smoothing for f(x) = |x| .

Example 2.1.5. Given any a ∈ Rd and µ > 0, a Nesterov smoothing approximation

of ϕ(x) := ‖x− a‖ has the representation

ϕµ(x) =
1

2µ
‖x− a‖2 − µ

2

[
d(
x− a
µ

;B)
]2
.

Moreover, ∇ϕµ(x) = P (x−a
µ

;B) and

ϕµ(x) ≤ ϕ(x) ≤ ϕµ(x) +
µ

2
,

where B is the closed unit ball of Rd.

2.2. Overview of the DCA

Consider the difference of two convex functions g−h on a Hilbert space H and assume

that g : H → R is extended-real-valued while h : H → R is real-valued on H . Then a
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general problem of DC optimization is defined by

(2.2.5) minimize f(x) := g(x)− h(x), x ∈ H.

Note that problem (2.2.5) is written in the unconstrained format, but—due to the al-

lowed infinite value for g—it actually contains the domain constraint x ∈ dom (g) :=

{u ∈ H | g(u) < ∞}. Furthermore, the explicit constraints of the type x ∈ Ω given

by a nonempty convex set Ω ⊂ H can be incorporated into the format of (2.2.5) via the

indicator function δΩ(x) of Ω, which equals 0 for x ∈ Ω and∞ otherwise.

The framework for DC programming and DC Algorithms (DCA) were introduced by

Tao and An in the late 1990’s. In this section, we consider the essential elements of

DCA in finite dimensional case, Rd. Firstly, we shall briefly overview two algorithms

of the DCA type to solve DC problems (2.2.5) and the convergence of the DCA. Then

we present numerical examples illustrating both algorithms. The reader can find more

details and further developments in [45, 46].

Algorithm 1 DCA-1

INPUT: x0 ∈ Rd, k = 0.
Repeat

Find yk ∈ ∂h(xk).
Find xk+1 ∈ ∂g∗(yk).
k := k + 1

Until convergence of {xk}.
OUTPUT: xk+1

Before presenting Algorithm 2, we shall do an analysis of the first algorithm. Since the

convex function h : Rd → R in (2.2.5) is real-valued on the whole space Rd, we always

have ∂h(x) 6= ∅ for all x ∈ Rd. At the same time, the other convex function g : Rd → R

in (2.2.5) is generally extended-real-valued, and so the subdifferential of its conjugate

g∗ may be empty. Let us present an efficient condition that excludes this possibility.

Recall that a function g : Rd → R is coercive if

lim
‖x‖→∞

g(x)

‖x‖
=∞.
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Proposition 2.2.1. Let g : Rd → R be a proper lower semi-continuous convex function.

Then

∂g(Rd) :=
⋃
x∈Rd

∂g(x) = dom ∂(g∗) := {y ∈ Rd | ∂g∗(y) 6= ∅}.

Proof. Let x ∈ Rd and y ∈ ∂g(x). Then x ∈ ∂g∗(y) which implies ∂g∗(y) 6= ∅, and so

y ∈ dom ∂g∗. The opposite inclusion is obvious. �

Proposition 2.2.2. Let g : Rd → R be a proper, lower semi-continuous, and convex

function. If in addition g is coercive, then ∂g∗(v) 6= ∅ for all v ∈ Rd.

Proof. Since g is proper, the conjugate function g∗ takes values in [−∞,∞] being

convex on Rd. Taking into account that g is also lower semi-continuous and invoking

the aforementioned biconjugate relationship, we find w ∈ Rd and c ∈ R such that

(2.2.6) c+ 〈w, x〉 ≤ g(x) for all x ∈ Rd.

The coercivity property of g ensures the existence of η > 0 for which

‖x‖
(
‖w‖+ 1

)
≤ g(x) whenever ‖x‖ ≥ η.

Furthermore, it follows that

sup
{
〈v, x〉 − g(x)

∣∣ ‖x‖ ≥ η
}
≤ −‖x‖ for any v ∈ Rd.

By using (2.2.6), we arrive at the estimates

sup
v∈Rd

{
〈v, x〉 − g(x)

∣∣ ‖x‖ ≤ η
}
≤ sup

v∈Rd

{
〈v, x〉 − 〈w, x〉 − c

∣∣ ‖x‖ ≤ η
}
<∞.

It follows that g∗(v) <∞, and therefore dom (g∗) = Rd. Since g∗ is a convex function

with finite values, it is continuous on Rd and hence ∂g∗(v) 6= ∅ for all v ∈ Rd. �

The following proposition gives us a two-sided relationship between the Fenchel con-

jugates and subgradients of convex functions.
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Proposition 2.2.3. Let ϕ : Rd → R be a proper, lower semi-continuous, and convex

function. Then v ∈ ∂ϕ∗(y) if and only if

(2.2.7) v ∈ argmin
{
ϕ(x)− 〈y, x〉

∣∣ x ∈ Rd
}
.

Furthermore, we have that w ∈ ∂ϕ(x) if and only if

(2.2.8) w ∈ argmin
{
ϕ∗(y)− 〈x, y〉

∣∣ y ∈ Rd
}
.

Proof. To verify the first assertion, suppose that (2.2.7) is satisfied. Then we get that

0 ∈ ∂ψ(v), where ψ(x) := ϕ(x)− 〈y, x〉 as x ∈ Rd. This implies the following

0 ∈ ∂ϕ(v)− y,

and hence y ∈ ∂ϕ(v), which is equivalent to v ∈ ∂ϕ∗(y) due to the biconjugate rela-

tionship ϕ∗∗ = ϕ valued under the assumptions made.

To prove the opposite direction, assuming v ∈ ∂ϕ∗(y) gives us by the proof above that

0 ∈ ∂ψ(v), which clearly yields (2.2.7) and thus justifies the first assertion.

To verify the second assertion, suppose that (2.2.8) holds and then get 0 ∈ ∂ψ(w),

where ψ(y) := ϕ∗(y)− 〈x, y〉 as y ∈ Rd. This clearly implies that

0 ∈ ∂ϕ∗(w)− x,

and hence x ∈ ∂ϕ∗(w), which is equivalent to w ∈ ∂ϕ(x) due to the biconjugate

relationship. The proof of the opposite implication in (2.2.8) is similar to the one given

above. �

Proposition 2.2.4. Let h : Rd → R be γ-convex with x̄ ∈ domh. Then v ∈ ∂h(x̄) if

and only if

〈v, x− x̄〉+
γ

2
‖x− x̄‖2 ≤ h(x)− h(x̄).

Proof. Since h is γ-convex, we can find a convex function k : Rd → R such that k(x) =

h(x) − γ
2
‖x‖2. For any v ∈ ∂h(x̄), we have v ∈ ∂φ(x̄), where φ(x) = k(x) + γ

2
‖x‖2
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for x ∈ Rd. The subdifferential sum rule gives us

v ∈ ∂k(x̄) + γx̄ or v − γx̄ ∈ ∂k(x̄).

Thus, using the definition of the subdifferential of k we obtain

〈v − γx̄, x− x̄〉 ≤ k(x)− k(x̄) for all x ∈ Rd.

That is,

〈v, x− x̄〉 ≤ γ〈x̄, x〉 − γ〈x̄, x̄〉+ h(x)− γ

2
‖x‖2 − (h(x̄)− γ

2
‖x̄‖2)

≤ h(x)− h(x̄)− γ

2
(‖x‖2 − 2〈x, x̄〉+ ‖x̄‖2)

= h(x)− h(x̄)− γ

2
‖x− x̄‖2.

This completes the proof. �

Proposition 2.2.5. Consider the function f defined in (2.2.5) and consider the sequence

{xk} generated by Algorithm 1. Suppose that g is γ1-convex and h is γ2-convex. Then

(2.2.9) f(xk)− f(xk+1) ≥ γ1 + γ2

2
‖xk+1 − xk‖2 for all k ∈ N.

Proof. Starting with yk ∈ ∂h(xk), Proposition 2.2.4 gives us

〈yk, x− xk〉+
γ2

2
‖x− xk‖2 ≤ h(x)− h(xk) for all x ∈ Rd.

In particular, we can let x = xk+1

〈yk, xk+1 − xk〉+
γ2

2
‖xk+1 − xk‖2 ≤ h(xk+1)− h(xk).

Moreover, xk+1 ∈ ∂g∗(yk) is equivalent to yk ∈ ∂g(xk+1). Similarly, we have

〈yk, xk − xk+1〉+
γ1

2
‖xk − xk+1‖2 ≤ g(xk)− g(xk+1).

Adding these inequalities gives us the inequality in (2.2.9). �
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Lemma 2.2.6. Suppose that h : Rd → R is a convex function. If wk ∈ ∂h(xk) and

{xk} is a bounded sequence, then {wk} is also bounded.

Proof. Let us first fix x̄ ∈ Rd. Then there exists ` > 0 and δ > 0 such that

|h(x)− h(y)| ≤ `‖x− y‖

whenever x, y ∈ B(x̄; δ) by the fact that h is locally Lipschitz continuous around x̄. So

it follows that whenever w ∈ ∂h(u) for u ∈ B(x̄; δ
2
), we have ‖w‖ ≤ `. Indeed,

〈w, x− u〉 ≤ h(x)− h(u) for all x ∈ Rd.

Now, whenever ‖x− u‖ ≤ γ, for a chosen sufficiently small γ > 0 such that B(u; γ) ⊂

B(x̄; δ), we have that

〈w, x− u〉 ≤ h(x)− h(u) ≤ `‖x− u‖

Hence, ‖w‖ ≤ `.

By contradiction, assume that {wk} is not bounded. Then trivially we can assume that

‖wk‖ → ∞. Now, since {xk} is bounded, it has a subsequence {xkp} that converges to

x0 ∈ Rd. Letting ` > 0 be the Lipschitz constant of f around x0, it follows that

‖wkp‖ ≤ ` for sufficiently large p,

a contradiction. Hence, {wk} is bounded. �

We next recall a stationary point of a DC function and present a theorem, which

can be derived from [45, 46], and summarize some convergence results of the DCA.

Deeper studies of the convergence of this algorithm and its generalizations involving

the Kurdyka-Lojasiewicz (KL) inequality are given in [3, 4].

Definition 2.2.7. An element x̄ ∈ Rd is called a stationary point of the function f

defined by (2.2.5) if ∂g(x̄) ∩ ∂h(x̄) 6= ∅.

Theorem 2.2.8. Let f be a DC function taken from (2.2.5), and let {xk} be an iterative

sequence generated by Algorithm 1. The following assertions hold:
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(a) The sequence {f(xk)} is always monotone decreasing.

(b) Suppose that f is bounded from below, g is lower semi-continuous and γ1-convex,

and that h is γ2-convex with γ1 + γ2 > 0. If {xk} is bounded, then the limit of any

convergent subsequence of {xk} is a stationary point of f .

Proof. (a) Using (2.2.9) we can see that {f(xk)} is a decreasing sequence.

(b) Since f is bounded from below and by part (a), it follows that {f(xk)}will converge

to a real number. Then, f(xk)− f(xk+1)→ 0 as k →∞ and hence ‖xk+1 − xk‖ → 0

by (2.2.9). Suppose that xk` → x∗ as `→∞. By definition, we have that

yk ∈ ∂g(xk+1) for all k ∈ N.

It follows from Lemma 2.2.6 that {yk} is also a bounded sequence since {xk} is bounded.

Furthermore, by extracting a further subsequence, we can assume without loss of gen-

erality that yk` → y∗ as `→∞. Then we have that

y∗ ∈ ∂h(x∗),

since yk` ∈ ∂h(xk`) for all ` ∈ N. Indeed, by the definition of ∂h(x∗) we get

(2.2.10) 〈yk` , x− xk`〉 ≤ h(x)− h(xk`) for all x ∈ Rd, ` ∈ N.

Replacing x by x∗, we have

〈yk` , x∗ − xk`〉 ≤ h(x∗)− h(xk`).

Rearranging the above equation gives us that h(xk`) ≤ 〈yk` , xk`−x∗〉+h(x∗), and hence

lim suph(xk`〉 ≤ h(x∗). Then, the lower semicontinuity of h implies h(xk`) → h(x∗).

Furthermore, by letting ` → ∞ in (2.2.10) we get y∗ ∈ ∂h(x∗). Lastly, we have that

xk → x∗ since ‖xk+1 − xk‖ → 0 and xk` → x∗ and from the relation yk` ∈ ∂g(xk`+1),

we have y∗ ∈ ∂g(x∗) by a similar argument. Therefore, x∗ is a stationary point of f .

Which completes the proof. �
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In many practical applications of Algorithm 1, for a given DC decomposition of f , it is

possible to find subgradient vectors from ∂h(xk) based on available formulas and cal-

culus rules of convex analysis. However, it may not be possible to explicitly calculate

an element of ∂g∗(yk). Such a situation requires either constructing a more suitable DC

decomposition of f , or finding xk+1 ∈ ∂g∗(yk) by using the description of Proposi-

tion 2.2.3. This leads us to the following modified version of our second algorithm.

Algorithm 2 DCA-2
INPUT: x0 ∈ dom g, k = 0
Repeat

Find yk ∈ ∂h(xk).
Find xk+1 by solving the problem

minimize ϕk(x) := g(x)− 〈yk, x〉, x ∈ Rd.
k := k + 1

Until convergence of {xk}.
OUTPUT: xk+1

Let us now present two examples illustrating the performances of Algorithms 1 and 2.

The first example concerns with a polynomial function of one variable.

Example 2.2.9. Consider the function f : R→ R given by

f(x) := x4 − 2x2 + 2x− 3 for x ∈ R.

This function admits the DC representation f = g − h with g(x) := x4 and h(x) :=

2x2 − 2x + 3. To minimize f , apply first the gradient method with constant stepsize.

Clearly the derivative of f is f ′(x) = 4x3 − 4x + 2 and picking any starting point

x0 ∈ R, we get the sequence of iterates

xk+1 = xk − t(4x3
k − 4xk + 2) for k = 0, 1, . . .

constructed by the gradient method with stepsize t > 0. The usage of the DC Algo-

rithm 1 (DCA-1) gives us yk = ∇h(xk) = 4xk − 2 and then g∗(x) = 3(x/4)4/3 with

∇g∗(x) = (x/4)1/3. Thus the iterates of DCA-1 are as follows

xk+1 = ∇g∗(yk) =
(yk

4

)1/3

=
(4xk − 2

4

)1/3

=
(2xk − 1

2

)1/3

, k = 0, 1, . . . .
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Figure 2.2 provides the visualization and comparison between the DCA-1 and the gra-
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FIGURE 2.2. Convergence of the gradient method and DCA-1.

dient method. It shows that for x0 = 0 and t = 0.01 the DCA-1 exhibits much faster

convergence.

The next two-dimensional example illustrates the performance of the DCA-2.

Example 2.2.10. Consider the nonsmooth optimization problem defined by

minimize f(x1, x2) := x4
1 + x2

2 − 2x2
1 − |x2| over x = (x1, x2) ∈ R2.

The graph of the function f is depicted in Figure 2.3a. Observe that this function has

four global minimizers, which are (1, 0.5), (1,−0.5), (−1, 0.5), and (−1,−0.5). It is

easy to see that f admits a DC representation f = g − h with g(x1, x2) := x4
1 + x2

2 and

h(x1, x2) := 2x2
1 + |x2|. We get the gradient∇g(x) = [4x3

1, 2x2]T and the Hessian

∇2g(x) =

12x1
2 0

0 2

,

while an explicit formula to calculate ∂g∗(yk) is not available. Let us apply the DCA-2

to solve this problem. The subdifferential of h is calculated by

∂h(x) =
[
4x1, sign(x2)

]T for any x = (x1, x2) ∈ R2.
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Having yk, we proceed with solving the subproblem

(2.2.11) minimize ϕk(x) := g(x)− 〈yk, x〉 over x ∈ R2

by the classical Newton method with ∇2ϕk(x) = ∇2g(x) and observe that the DCA-2

shows its superiority in convergence with different choices of initial points. Figure 2.3b

presents the results of computation by using the DCA-2 with the starting point x0 =

(−2, 2) and employing the Newton method with ε = 10−8 to solve subproblem (2.2.11).
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FIGURE 2.3. Graph and performance of Example 2.2.10.

In summary, both algorithms work well for the case when we do not have convexity in

the objective functions. In particular, Algorithm 2 is very useful when it’s not easy to

explicitly compute an element of ∂g∗(yk).

2.3. A Penalty Method via Distance Functions

In this section, we study a penalty method using distance functions for solving con-

strained optimization problems and apply them specifically to DC programming. This

method is based on the quadratic penalty method; see, e.g, [15, 38]. This section

presents the work we have done in [34]. The reader can find more details in there.

Let f : Rd → R be a function and let Ωi for i = 1, . . . , q be nonempty closed subsets of
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Rd with
⋂q
i=1 Ωi 6= ∅. Consider the optimization problem

(2.3.12)
minimize f(x)

subject to x ∈
⋂q
i=1 Ωi.

Let us first study the relation between this problem and the unconstrained one given by

(2.3.13) minimize fλ(x) = f(x) +
λ

2

q∑
i=1

[d(x; Ωi)]
2, x ∈ Rd.

The theorem below provides a relation between optimal solutions of the constrained

optimization problem (2.3.12) and the unconstrained optimization problem (2.3.13) ob-

tained by a penalty method based on distance functions. The proof follows [38, Theo-

rem 17.1].

Theorem 2.3.1. Consider (2.3.12) in which f : Rd → R is a lower semi-continuous

function. Suppose that (2.3.12) has an optimal solution. If lim
n→∞

λn = ∞ and xn ∈ Rd

is an absolute minimizer of the function fλn defined in (2.3.13) for all n ∈ N, then every

subsequential limit of {xn} is a solution of (2.3.12).

Proof. Let x̄ ∈ Rd be an optimal solution of (2.3.12). That is, x̄ ∈ Ωi for i = 1, . . . , q

and

f(x̄) ≤ f(x) whenever x ∈ Ωi for all i = 1, . . . , q.

Since xn ∈ Rd is an absolute minimizer of the function fλn ,

fλn(xn) ≤ fλn(x̄).

This implies, with the observation that d(x̄; Ωi) = 0 for i = 1, . . . , q, that

(2.3.14) f(xn) +
λn
2

q∑
i=1

[d(xn; Ωi)]
2 ≤ f(x̄).

Then,
∑q

i=1[d(xn; Ωi)]
2 ≤ 2

λn

(
f(x̄)− f(xn)

)
for all n ∈ N.

Let x∗ ∈ Rd be a subsequential limit of {xn}. Without loss of generality, we can

assume that lim
n→∞

xn = x∗. By the continuity of the distance function and the lower
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semicontinuity of f ,

q∑
i=1

[d(x∗; Ωi)]
2 = lim

n→∞

q∑
i=1

[d(xn; Ωi)]
2 ≤ lim inf

n→∞

2

λn

(
f(x̄)− f(xn)

)
≤ 0.

It follows that d(x∗; Ωi) = 0, and so x∗ ∈ Ωi for i = 1, . . . , q. In addition, by (2.3.14)

and the lower semicontinity of f we have

f(x∗) ≤ lim inf
n→∞

f(xn) ≤ lim inf
n→∞

(
f(xn) +

λn
2

q∑
i=1

[d(xn; Ωi)]
2
)
≤ f(x̄).

Therefore, x∗ is an optimal solution of (2.3.12). �

Now we discuss a direct consequence of Theorem 2.3.1 that will be used in the Chap-

ter 4. Let F : Rk×d → R be a function and let Ω`
i for ` = 1, . . . , k and i = 1, . . . , q be

nonempty closed subsets of Rd. Consider the problem

(2.3.15)
minimize F (x1, . . . , xk)

subject to x` ∈
⋂q
i=1 Ω`

i , x
` ∈ Rd for ` = 1, . . . , k.

We clarify the relation between this problem and the unconstrained problem given by

(2.3.16) minimize Fλ(x
1, . . . , xk) = F (x1, . . . , xk) +

λ

2

k∑̀
=1

q∑
i=1

[d(x`; Ω`
i)]

2

for x` ∈ Rd and ` = 1, . . . , k. In what follows, we identify X = (x1, . . . , xk) ∈ Rk×d

with the matrix X ∈ Rk×d, whose `th row is x` for ` = 1, . . . , k.

Corollary 2.3.2. Consider (2.3.15) in which F : Rk×d → R is a lower semi-continuous

function. Suppose that (2.3.15) has an optimal solution. If lim
n→∞

λn = ∞ and Xn =

(x1
n, . . . , x

k
n) ∈ Rk×d is an absolute minimizer of the function Fλn , then every subse-

quential limit of {Xn} is a solution of (2.3.15).

Proof. Let X = (x1, . . . , xk) ∈ Rk×d and let Ωi = Ω1
i × . . . × Ωk

i ⊂ Rk×d for

i = 1, . . . , q.

Note that
q⋂
i=1

Ωi =

q⋂
i=1

k∏
`=1

Ω`
i =

k∏
`=1

q⋂
i=1

Ω`
i .

34



It follows that x` ∈
⋂q
i=1 Ω`

i for ` = 1, . . . , k if and only if X ∈
⋂q
i=1 Ωi, and thus

(2.3.15) reduces to the following optimization problem

minimize F (X)

subject to X ∈
⋂q
i=1 Ωi.

Based on (4.1.26), we can rewrite the objective function Fλ in (2.3.16) as follows

Fλ(X) = F (X) +
λ

2

q∑
i=1

[d(X; Ωi)]
2.

The conclusion now follows directly from Theorem 2.3.1. �

Let us continue with a known result on DC decompositions of squared distance func-

tions. The proof of the following result can be found in [36, Proposition 5.1].

Proposition 2.3.3. Let Ω be a nonempty closed set in Rd (not necessarily convex).

Define the function

ϕΩ(x) = sup
{
〈2x,w〉 − ‖w‖2

∣∣ w ∈ Ω
}

= 2 sup
{
〈x,w〉 − 1

2
‖w‖2

∣∣ w ∈ Ω
}
.

Then we have the following conclusions:

(a) The function ϕΩ is always convex. If we assume in addition that Ω is convex, then

ϕΩ is differentiable with∇ϕΩ(x) = 2P (x; Ω).

(b) The function f(x) = [d(x; Ω)]2 is a DC function with f(x) = ‖x‖2 − ϕΩ(x) for all

x ∈ Rd.

We now consider (2.3.1) in which f(x) = g(x)−h(x) is a DC function where g, h : Rd →

R are convex functions. We also assume additionally that all constraint sets are convex

and satisfy
⋂q
i=1 ri(Ωi) 6= ∅. By [28, Theorem 5.3], this condition ensures that

(2.3.17) N(x̄;

q⋂
i=1

Ωi) =

q∑
i=1

N(x̄; Ωi) for every x̄ ∈
q⋂
i=1

Ωi.

Recall from [45] that an element x̄ ∈ Rd is a critical point of a DC function f with DC

decomposition f = g − h if ∂g(x̄) ∩ ∂h(x̄) 6= ∅. Observe that (2.3.1) can be written as
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an unconstrained optimization problem using the indicator function as follows

minimize
(
g(x) + δ(x,

⋂q
i=1 Ωi)

)
− h(x), x ∈ Rd.

Define v(x) = g(x) + δ(x,
⋂q
i=1 Ωi) for x ∈ Rd. By (2.3.17),

∂v(x̄) = ∂g(x̄) +N(x̄;

q⋂
i=1

Ωi) = ∂g(x̄) +

q∑
i=1

N(x̄; Ωi) for all x̄ ∈ Rd.

Thus, we call an element x̄ ∈ Rd a critical point of (2.3.1) if

(2.3.18)
(
∂g(x̄) +

q∑
i=1

N(x̄; Ωi)
)
∩ ∂h(x̄) 6= ∅.

The objective function of (2.3.13) now becomes

fλ(x) = g(x) +
λ

2

q∑
i=1

d(x; Ωi)
2 − h(x).

Using Proposition 3.2, we have

(2.3.19) fλ(x) =
(
g(x) +

λq

2
‖x‖2

)
−
(
h(x) +

λ

2

q∑
i=1

ϕΩi(x)
)

= g̃λ(x)− h̃λ(x),

where g̃λ and h̃λ are functions defined on Rd by

g̃λ(x) = g(x) +
λq

2
‖x‖2 and h̃λ(x) = h(x) +

λ

2

q∑
i=1

ϕΩi(x), x ∈ Rd.

Proposition 2.3.4. Suppose that lim
n→∞

λn = ∞ and xn is a critical point of the DC

function fλn = g̃λn − h̃λn given in (2.3.19). Then every subsequential limit of the

sequence {xn} is a critical point of (2.3.1).

Proof. Since xn is a critical point of fλn and by Proposition 2.3.3, there exist vn ∈

∂g(xn) and wn ∈ ∂h(xn) such that

(2.3.20) vn + λnqxn = wn + λn

q∑
i=1

P (xn; Ωi).
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Let x̄ be a subsequential limit of {xn}. Without loss of generality, we can assume that

{xn} converges to x̄. Since any finite convex function is locally Lipschitz continu-

ous, we can assume that both g and h are locally Lipschitz continuous around x̄ with

Lipschitz constant L > 0. Then

(2.3.21) ‖vn‖ ≤ L and ‖wn‖ ≤ L for sufficiently large n.

By (2.3.20), (2.3.21) and the assumption that λn →∞ as n→∞,

q∑
i=1

(
xn − P (xn; Ωi)

)
=

1

λn
(wn − vn)→ 0 as n→∞.

Letting n→∞ yields
∑q

i=1

(
x̄−P (x̄; Ωi)

)
= 0, due to the continuity of projection op-

erators onto convex sets. Note also that λn
∑q

i=1

(
xn−P (xn; Ωi)

)
∈
∑q

i=1N(xn; Ωi).

This implies

wn − vn ∈
q∑
i=1

N(xn; Ωi) = N(xn;

q⋂
i=1

Ωi).

By (2.3.21), we can assume without loss of generality that vn → v̄ and wn → w̄ as

n→∞. Then by passing to a limit, we have

w̄ − v̄ ∈ N(x̄;

q⋂
i=1

Ωi) =

q∑
i=1

N(x̄; Ωi).

Observe also that v̄ ∈ ∂g(x̄) and w̄ ∈ ∂h(x̄). Therefore, (2.3.18) is satisfied and thus x̄

is a critical point of (2.3.1). �

We continue by considering (2.3.15) in which

F (x1, . . . , xk) = G(x1, . . . , xk)−H(x1, . . . , xk)

is a DC function, where G,H : Rk×d → R are convex functions. From the proof of

Corollary 2.3.2, we can rewrite (2.3.15) as

minimize F (X) = G(X)−H(X)

subject to X ∈
⋂q
i=1 Ωi.
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Recall that a point X = (x̄1, . . . , x̄k) is called a critical point of this problem if

(
∂G(X) +

q∑
i=1

N(X; Ωi)
)
∩ ∂H(X) 6= ∅,

where N(X; Ωi) = N(x̄1; Ω1
i )× . . .×N(x̄k; Ωk

i ). For Ω ⊂ Rk×d, based on Frobenious

norm, define

ϕΩ(X) = ‖X‖2
F − d(X; Ω)2 = 2 sup

{
〈X,Y〉 − ‖Y‖

2
F

2

∣∣ Y ∈ Ω

}
,X ∈ Rk×d.

Observe that if Ωi = Ω1
i × Ω2

i . . .× Ωk
i and X = (x1, . . . , xk) ∈ Rk×d, then

d(X; Ωi)
2 =

k∑
`=1

d(x`; Ω`
i)

2 =
k∑
`=1

(
‖x`‖2 − ϕΩ`i

(x`)
)

= ‖X‖2
F −

k∑
`=1

ϕΩ`i
(x`).

Therefore, ϕΩi
(X) =

∑k
`=1 ϕΩ`i

(x`).

In this new notation, the function Fλ in (2.3.16) can be rewritten as

Fλ(X) =
(
G(X) +

λq

2
‖X‖2

F

)
−
(
H(X) +

q∑
i=1

ϕΩi
(X)

)
= G1(X)−H1(X),

where

G1(X) = G(X) +
λq

2
‖X‖2

F and H1(X) = H(X) +

q∑
i=1

ϕΩi
(X),X ∈ Rk×d.

We also recall that X ∈ Rk×d is a critical point of (2.3.16) if

∂G1(X) ∩ ∂H1(X) 6= ∅.

The proof of the following result is similar to that of Proposition 2.3.4.

Proposition 2.3.5. Suppose that limn→∞ λn =∞ and Xn = (x1
n, . . . , x

k
n) ∈ Rk×d is a

critical point of the function Fλn . Then every subsequential limit of {Xn} is a critical

point of (2.3.15).
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3

Calculus Rules for Fenchel conjugates and Subdifferentials

3.1. Introduction and Basic Definitions

Although most applications of convex analysis typically take place in the finite dimen-

sional space Rd with the objective function defined in an Rd → R setting, the develop-

ment of generalized calculus in a more general setting can lead to greater insight and

a more cohesive theory. In this chapter, we will provide basic definitions in the more

abstract setting of locally convex topological vector (LCTV) spaces and discuss the de-

velopment of major calculus rules for Fenchel conjugates of convex functions on these

spaces and Banach spaces.

Throughout this chapter, unless otherwise stated, that all the spaces under consideration

are separated LCTV. Given Ω ⊂ X , we write

R+(Ω) := {tv ∈ X | t ∈ R+, v ∈ Ω},

where R+ signifies the collection of positive numbers, and use the symbol Ω for the

topological closure of the set Ω. We also recall the symbols B and B∗ stand for the

closed unit balls in the normed space X and its topological dual X∗, respectively. In

what follows we deal with extended-real-valued functions f : X → R with the as-

sumption that they are proper. A class of these functions plays a highly important role

in many aspects of variational analysis, optimization, and their applications; see, e.g.,

[24, 43, 47] and the references therein. This chapter presents the work we have done in

[29]. The reader can find more details in there. We first recall several definitions from

Chapter 1 but in the LCTV setting.
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Given a convex set Ω ⊂ X with x̄ ∈ Ω, the normal cone to Ω at x̄ is

(3.1.1) N(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣ 〈x∗, x− x̄〉 ≤ 0 for all x ∈ Ω
}
.

Given an extended-real-valued function f : X → R with its epigraph

epi f :=
{

(x, µ) ∈ X × R
∣∣ µ ≥ f(x)

}
,

we know that the standard notions of convexity and lower semicontinuity of f can be

equivalently described via the convexity and closedness of its epigraph, respectively.

An element x∗ ∈ X∗ is a subgradient of f at x̄ ∈ dom f if

〈x∗, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ X,

while the collection ∂f(x̄) of all such x∗ is called the subdifferential of f at x̄. More

than that the subdifferential ∂f(x̄) can be represented geometrically as

∂f(x̄) =
{
x∗ ∈ X∗

∣∣ (x∗,−1) ∈ N
(
(x̄, f(x̄)); epi f

)}
.

We also have N(x̄; Ω) = ∂δ(x̄; Ω), where δ(x; Ω) = δΩ(x) is the indicator function of

the set Ω equal to 0 if x ∈ Ω and to∞ of x /∈ Ω. The support function σΩ : X∗ → R of

a nonempty subset Ω ⊂ X is defined by

σΩ(x∗) := sup
{
〈x∗, x〉

∣∣ x ∈ Ω
}
, x∗ ∈ X∗.

Note that σΩ is always convex on X∗ regardless of the convexity of Ω.

The Fenchel conjugate f ∗ : X∗ → [−∞,∞] of f : X → R is defined by

f ∗(x∗) := sup
{
〈x∗, x〉 − f(x)

∣∣ x ∈ X}.
Note that if f is proper, then f ∗ : X∗ → R is convex and lower semi-continuous on

X∗ regardless of the convexity and lower semicontinuity of f . Recall also the second
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Fenchel conjugate (or biconjugate) of f : X → R is given by

f ∗∗(x) := (f ∗)∗(x) = sup
{
〈x∗, x〉 − f ∗(x∗)

∣∣ x∗ ∈ X∗}, x ∈ X.

It is well-known that f ∗∗ = f on X provided that f is proper, lower semi-continuous,

and convex.

Another important operation on functions is the infimal convolution. Given two func-

tions f, g : X → R, their infimal convolution f ⊕ g is defined by

(f ⊕ g)(x) : = inf
{
f(x1) + g(x2)

∣∣ x1 + x2 = x
}

= inf
{
f(u) + g(x− u)

∣∣ u ∈ X}, x ∈ X.
(3.1.2)

Assuming that (f ⊕ g)(x) > −∞ for all x ∈ X , we clearly have the convexity of the

infimal convolution f ⊕ g provided that both functions f, g are convex.

3.2. Support Functions and Normal Cones to Set Intersections

In this section, we study support functions to set intersections largely used in what

follows. The key observation of this section is the extended version of the convex

extremal principle applied to deriving a refined support and normal cone intersection

rules in arbitrary LCTV spaces.

We first formulate the enhanced notion of set extremality, which is the most appropriate

for convex sets in LCTV spaces, and then establish the convex extremal principle in

this setting. The main applications of the convex extremal principle are given here to

deriving refined support and normal cone intersection rules.

We start with some auxiliary properties of support functions needed in what follows.

Recall that the support function σΩ : X∗ → R of a nonempty subset Ω ⊂ X is defined

by

(3.2.3) σΩ(x∗) := sup
{
〈x∗, x〉

∣∣ x ∈ Ω
}
, x∗ ∈ X∗.

41



Note that σΩ is always convex on X∗ regardless of the convexity of Ω and that we have

the conjugacy relationship σΩ(x∗) = δ∗Ω(x∗) as x∗ ∈ X∗ with the indicator function of

Ω.

Let us first present the following known result widely used below. We provide a direct

proof of it for the reader’s convenience.

Proposition 3.2.1. Let the sets Ω1 and Ω2 be nonempty, closed, and convex in X with

Ω1 ∩ Ω2 6= ∅. Then we have the representation

(3.2.4)
(
σΩ1 ⊕ σΩ2

)∗
(x) = δΩ1∩Ω2(x) for all x ∈ X.

Proof. Consider the infimal convolution (3.1.2) of the support functions of Ωi given by

f(x∗) :=
(
σΩ1 ⊕ σΩ2

)
(x∗), x∗ ∈ X∗.

It follows from [41, Corollay 2.4.7] and a well-known subdifferential result for support

functions on LCTV spaces that

∂f(0) = ∂σΩ1(0) ∩ ∂σΩ2(0) = Ω1 ∩ Ω2.

It is easy to see that f(x∗) is convex and positively homogeneous with f(0) = 0 under

the assumptions made, and so by [51, Theorem 2.4.11(i)] we get

f ∗(x) = δ∂f(0)(x) whenever x ∈ X,

which readily verifies the infimal convolution representation in (3.2.4). �

The proofs of the next two lemmas follow the arguments from [8] with some simplifi-

cations in the case of the support functions under consideration. They are essentially

based on the imposed Banach space and closedness assumptions.

Lemma 3.2.2. Let Ω1 and Ω2 be nonempty closed subsets of a Banach space X . Sup-

pose that R+(Ω1 − Ω2) = X . Then for any numbers α, β ≥ 0 the restricted level
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set

K = Kα,β :=
{

(x∗1, x
∗
2) ∈ X∗ ×X∗

∣∣ σΩ1(x
∗
1) + σΩ2(x

∗
2) ≤ α, ‖x∗1 + x∗2‖ ≤ β

}
is compact in the weak∗ topology of the dual product space X∗ ×X∗.

Proof. The closedness of the setK in the weak∗ topology ofX∗×X∗ is obvious. By the

classical Alaoglu-Bourbaki theorem it remains to show that this set is norm-bounded in

X∗ × X∗. Having in mind the uniform boundedness principle, we need to verify that

the set of linear continuous functionals from K is bounded pointwise. To proceed, take

any (x1, x2) ∈ X×X and find by the imposed assumption R+(Ω1−Ω2) = X elements

λ > 0, w1 ∈ Ω1, and w2 ∈ Ω2 for which x1 − x2 = λ(w1 − w2). Then we have

〈x∗1, x1〉+ 〈x∗2, x2〉 = λ〈x∗1, w1〉+ λ〈x∗2, w2〉+ 〈x∗1 + x∗2, x2 − λw2〉

≤ λ
(
σΩ1(x

∗
1) + σΩ2(x

∗
2)
)

+ ‖x∗1 + x∗2‖ · ‖x2 − λw2‖

≤ λα + β‖x2 − λw2‖.

Since the latter also holds for (−x1,−x2), we arrive at the conclusion of the lemma. �

Lemma 3.2.3. In the setting of Lemma 3.2.2 we have that the infimal convolution

(σΩ1 ⊕ σΩ2) : X∗ → R is lower semi-continuous with respect to the weak∗ topology

of X∗.

Proof. It suffices to prove that for any γ ∈ R the set

C :=
{
x∗ ∈ X∗

∣∣ (σΩ1 ⊕ σΩ2

)
(x∗) ≤ γ

}
is weak∗ closed in X∗. Consider the parametric set family

Cε :=
{
x∗ ∈ X∗

∣∣ x∗ = x∗1 + x∗2, σΩ1(x
∗
1) + σΩ2(x

∗
2) ≤ γ + ε

}
, ε > 0,

with C =
⋂
ε>0Cε and show that each set Cε as ε > 0 is weak∗ closed in X∗. Using the

seminal Banach-Dieudonné-Krein-S̆mulian theorem (see, e.g., [16, Theorem V.5.7]),

we only need to check that the intersection Cε ∩ rB∗ is weak∗ closed in X∗ for all
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r > 0. To this end, define the mapping T : X∗ ×X∗ → X∗ by

T (x∗1, x
∗
2) = x∗1 + x∗2,

which is continuous in the weak∗ topology of X∗ ×X∗. It is easy to observe that

Cε ∩ rB∗ = T (Kγ+ε,r),

where Kγ+ε,r is defined in Lemma 3.2.2. It follows from Lemma 3.2.2 that Cε ∩ rB∗ is

weak∗ compact and hence weak∗ closed, which verifies that σΩ1 ⊕ σΩ2 is weak∗ lower

semi-continuous on X∗. �

To proceed further, let us first formulate an appropriate LCTV version of set extremal-

ity defined recently in [27] in normed spaces. It seems to be more efficient to deal

with convex sets in LCTV spaces in comparison with its local extremality counterpart

developed in [24].

Definition 3.2.4. We say that two nonempty sets Ω1,Ω2 ⊂ X form an extremal system

in the space X if for any neighborhood V of the origin there exists a vector a ∈ X such

that

(3.2.5) a ∈ V and (Ω1 + a) ∩ Ω2 = ∅.

Note that (3.2.5) does not require that the sets Ω1,Ω2 have the nonempty intersection

in contrast to [24]. As discussed in [27] similarly to [24, Section 2.1] for the local

counterpart, the extremality notion (3.2.5) covers various concepts of optimal solutions

to problems of scalar and multiobjective optimization, equilibrium systems, etc. with

numerous applications.

The following result is an extension of [27, Theorem 2.2] for the case of normed spaces.

Theorem 3.2.5. Let the sets Ω1,Ω2 ⊂ X be nonempty and convex. Then we have the

assertions:
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(a) The sets Ω1 and Ω2 form an extremal system in X if and only if 0 /∈ int(Ω1 − Ω2).

Furthermore, the extremality of Ω1,Ω2 implies that (int Ω1) ∩ Ω2 = ∅ and (int Ω2) ∩

Ω1 = ∅.

(b) If Ω1 and Ω2 form an extremal system in X and the set difference Ω1 − Ω2 is solid,

i.e.,

(3.2.6) int(Ω1 − Ω2) 6= ∅,

then the set Ω1 and Ω2 are separated, i.e.,

(3.2.7) sup
x∈Ω1

〈x∗, x〉 ≤ inf
x∈Ω2

〈x∗, x〉 for some x∗ ∈ X∗, x∗ 6= 0.

(c) The separation property (3.2.7) always yields the set extremality (3.2.5) even if

(3.2.6) fails.

Proof. (a) Let the sets Ω1 and Ω2 form an extremal system in X . Arguing by contra-

diction, suppose that 0 ∈ int(Ω1 − Ω2). Then there is a balanced neighborhood V of

0 ∈ X with

V ⊂ Ω1 − Ω2.

For any a ∈ V we have −a ∈ V ⊂ Ω1 − Ω2 and arrive at the contradiction (Ω1 + a) ∩

Ω2 6= ∅.

Now suppose that 0 /∈ int(Ω1−Ω2). Then for any neighborhood V of the origin we get

V ∩
[
X \ (Ω1 − Ω2)

]
6= ∅.

Assume without loss of generality that V is balanced, which yields (−V )∩ [X \ (Ω1−

Ω2)] 6= ∅. Choosing a ∈ V gives us the inclusion

−a ∈
[
X \ (Ω1 − Ω2)

]
,

and hence (Ω1 + a) ∩ Ω2 = ∅. This verifies that the sets Ω1 and Ω2 form an extremal

system.
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For the second part of (a), suppose for contradiction that (int Ω1)∩Ω2 6= ∅. Then there

exists a vector x ∈ int Ω1 with x ∈ Ω2. We can always choose a balanced neighborhood

V of the origin such that x + V ⊂ Ω1. For any a ∈ V it shows that −a ∈ V and

x− a ∈ Ω1. Hence (a+ Ω1) ∩ Ω2 6= ∅, which is a contradiction.

(b) If Ω1 and Ω2 form an extremal system, then it follows from (i) that 0 /∈ int(Ω1−Ω2).

In addition to this, the assumption of (b) on the solidness of the set difference Ω1 − Ω2

allows us to use the convex separation theorem, which yields (3.2.7).

(c) Suppose that (3.2.7) holds, which gives us a vector c ∈ X with 〈x∗, c〉 > 0. Fix

any neighborhood V of the origin. Since V is always absorbing, we can select a natural

number k sufficiently large such that a := −c/k ∈ V . Let us show that (3.2.5) is

satisfied with this vector a. Indeed, the negation of this means that then there exists

x̂ ∈ Ω2 such that x̂− a ∈ Ω1. By the separation property from (3.2.7) we have

〈x∗, x̂− a〉 ≤ sup
x∈Ω1

〈x∗, x〉 ≤ inf
x∈Ω2

〈x∗, x〉 ≤ 〈x∗, x̂〉,

On the other hand, the construction of a tells us that

〈x∗, x̂〉 − 〈x∗, a〉 = 〈x∗, x̂〉+ k〈x∗, c〉 ≤ 〈x∗, x̂〉 for all k ∈ N.

This shows that 〈x∗, c〉 ≤ 0, which contradicts the above choice of the vector c. �

It is worth mentioning that [27, Theorem 2.2] offers a version of Theorem 3.2.5(b) in

Banach spaces with the replacement of (3.2.6) by the sequential normal compactness

(SNC) property imposed on one of the sets Ω1,Ω2. The SNC property is effectively

characterized in [24, Theorem 1.21] for convex sets. Furthermore, in [27, Theorem 2.5]

the reader can find an approximate version of the convex extremal principle without

imposing either (3.2.5) or the SNC property. The latter approximate version yields,

in particular, the celebrated Bishop-Phelps theorem establishing the density of support

points on the boundary of any closed convex subset of a Banach space; see [39, Theo-

rem 3.18].
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The next theorem presents major geometric results on representing the support function

for convex set intersections via the infimal convolution of the support functions for

each component. We derive these representations under three generally independent

groups of assumptions, which constitute the corresponding assertions of the theorem.

The first assertion is established in the general LCTV setting without any closedness

requirements on the sets in question under the difference interiority condition

(3.2.8) 0 ∈ int(Ω1 − Ω2)

and the boundedness of one of the sets by using the convex extremal principle from

Theorem 3.2.5. The second assertion, which is proved similarly in any LCTV space,

does not impose any set boundedness while requires a more restrictive qualification

condition; see more discussions after the proof of the theorem. The third assertion

holds for closed sets in Banach spaces with replacing (3.2.8) by the weaker Attouch-

Brézis qualification condition

(3.2.9) R+(Ω1 − Ω2) is a closed subspace of X

by using the above lemmas and Proposition 3.2.1.

Recall that a subset Ω of an LCTV space X is bounded if for any neighborhood V of

the origin there exists γ > 0 such that Ω ⊂ αV whenever |α| > γ.

Theorem 3.2.6. Let the sets Ω1,Ω2 ⊂ X be nonempty and convex. Suppose that one of

the following conditions is satisfied:

(a) The difference interiority condition (3.2.8) is satisfied and the set Ω2 is bounded.

(b) Either (int Ω2) ∩ Ω1 6= ∅, or (int Ω1) ∩ Ω2 6= ∅.

(c) The space X is Banach, both sets Ω1 and Ω2 are closed, and the Attouch-Brézis

qualification condition (3.2.9) holds.

Then the support function (3.2.3) to the intersection Ω1 ∩ Ω2 is represented as

(3.2.10)
(
σΩ1∩Ω2

)
(x∗) =

(
σΩ1 ⊕ σΩ2

)
(x∗) for all x∗ ∈ X∗.
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Furthermore, for any x∗ ∈ dom (σΩ1∩Ω2) there are x∗1, x
∗
2 ∈ X∗ such that x∗ = x∗1 + x∗2

and

(3.2.11) (σΩ1∩Ω2)(x
∗) = σΩ1(x

∗
1) + σΩ2(x

∗
2).

Proof. First we justify both formula (3.2.10) and representation (3.2.11) in case (a). To

verify the inequality “≤" in (3.2.10), fix x∗ ∈ X∗ and pick x∗1, x
∗
2 with x∗ = x∗1 + x∗2.

Then

〈x∗, x〉 = 〈x∗1, x〉+ 〈x∗2, x〉 ≤ σΩ1(x
∗
1) + σΩ2(x

∗
2) for any x ∈ Ω1 ∩ Ω2.

Taking the infimum on the right-hand side above with respect to all such x∗1, x
∗
2 yields

〈x∗, x〉 ≤
(
σΩ1 ⊕ σΩ2

)
(x∗) whenever x ∈ Ω1 ∩ Ω2,

which clearly implies the inequality “≤" in (3.2.10) without imposing the assumptions

in (a).

Next we prove the inequality “≥" in (3.2.10) under the assumptions in (a). To proceed,

fix any x∗ ∈ dom (σΩ1∩Ω2), denote α := σΩ1∩Ω2(x
∗) ∈ R for which we have

〈x∗, x〉 ≤ α whenever x ∈ Ω1 ∩ Ω2,

and define the nonempty convex subsets of X × R by

(3.2.12) Θ1 := Ω1×[0,∞) and Θ2 :=
{

(x, λ) ∈ X×R
∣∣ x ∈ Ω2, λ ≤ 〈x∗, x〉−α

}
.

It is easy to see from the constructions of Θ1 and Θ2 that

(
Θ1 + (0, γ)

)
∩Θ2 = ∅ for any γ > 0,

and thus these sets form an extremal system inX×R. We deduce from Theorem 3.2.5(a)

that 0 /∈ int(Θ1 − Θ2). To apply Theorem 3.2.5(b) to these sets, we need to verify that

the set difference Θ1 − Θ2 is solid. The property 0 ∈ int(Ω1 − Ω2) allows us to find a
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neighborhood U of the origin such that U ⊂ Ω1−Ω2. By the continuity of the function

ϕ(x) := 〈−x∗, x〉+α for x ∈ X , there exists a neighborhood W of the origin such that

ϕ is bounded above on W . Since Ω2 is bounded, we can find t > 0 such that Ω2 ⊂ tW .

Note that ϕ is also bounded above on tW , so we can find λ̄ ∈ R such that

λ̄ ≥ sup
x∈tW
〈−x∗, x〉+ α ≥ sup

x∈Ω2

〈−x∗, x〉+ α.

Let us check that U × (λ̄,∞) ⊂ Θ1 − Θ2, and so (3.2.6) holds. Indeed, for (x, λ) ∈

U × (λ̄,∞) we have x ∈ U ⊂ Ω1 − Ω2 and λ > λ̄. Hence x = w1 − w2 with some

w1 ∈ Ω1, w2 ∈ Ω2 and

(x, λ) = (w1, λ− λ̄)− (w2,−λ̄).

It follows from λ − λ̄ > 0 that (w1, λ − λ̄) ∈ Θ1. We deduce from (3.2.12) and the

choice of λ̄ that (w2,−λ̄) ∈ Θ2, and thus int(Θ1 − Θ2) 6= ∅. Theorem 3.2.5(b) tells us

now that there exists a pair (0, 0) 6= (y∗, β) ∈ X∗ × R for which we get

(3.2.13) 〈y∗, x〉+ βλ1 ≤ 〈y∗, y〉+ βλ2 whenever (x, λ1) ∈ Θ1, (y, λ2) ∈ Θ2.

It follows from the structure of Θ1 that β ≤ 0. By (3.2.13), assuming that β = 0 gives

us

〈y∗, x〉 ≤ 〈y∗, y〉 for all x ∈ Ω1, y ∈ Ω2.

This yields y∗ = 0 due to 0 ∈ int(Ω1 − Ω2), a contradiction. Take now the pairs

(x, 0) ∈ Θ1 and (y, 〈x∗, y〉 − α) ∈ Θ2 in (3.2.13) and get

〈y∗, x〉 ≤ 〈y∗, y〉+ β(〈x∗, y〉 − α) with β < 0,

which brings us to the estimate

α ≥
〈
y∗/β + x∗, y

〉
+
〈
− y∗/β, x

〉
for all x ∈ Ω1, y ∈ Ω2.
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By putting x∗1 := y∗/β+x∗ and x∗2 := −y∗/β we arrive at the inequality “≥" in (3.2.10)

and representation (3.2.11). This justifies the conclusions of the theorem in case (a).

To verify the results under (b), it clearly suffices to examine only the first case therein.

Considering the sets Θ1,Θ2 from (3.2.12), we see that

int Θ2 =
{

(x, λ) ∈ X × R
∣∣ x ∈ int Ω2, λ < 〈x∗, x〉 − α

}
6= ∅,

and so int(Θ1−Θ2) 6= ∅. Furthermore, it follows from the assumption (int Ω2)∩Ω1 6= ∅

that 0 ∈ int(Ω1 − Ω2), which allows us to proceed as in the above proof in case (a).

Consider finally the Banach space case (c) of the theorem and first verify its conclusions

when R+(Ω1−Ω2) = X . Taking the Fenchel conjugate of both sides of formula (3.2.4)

from Proposition 3.2.1, which holds even without the assumptions of (b), and then using

Lemma 3.2.3 gives us the equalities

δ∗Ω1∩Ω2
(x∗) = σΩ1∩Ω2(x

∗) =
(
σΩ1 ⊕ σΩ2

)∗∗
(x∗) =

(
σΩ1 ⊕ σΩ2

)
(x∗)

for all x∗ ∈ X∗, which justify the representation in (3.2.10) when the assumption

R+(Ω1 − Ω2) = X is satisfied. Treating further the general case of (3.2.9) in (c),

denote L := R+(Ω1 − Ω2) the closed subspace of X in question. Since Ω1 ∩ Ω2 6= ∅

by (3.2.9), we can always translate the situation to 0 ∈ Ω1∩Ω2, and hence suppose that

Ω1,Ω2 ⊂ L. This reduces the general case under (3.2.9) to the one R+(Ω1−Ω2) treated

above; so (3.2.10) is justified.

Representation (3.2.11) under (c) for x∗ ∈ dom (σΩ1 ∩ σΩ2) follows from the weak∗

compactness of the set Kα,β in Lemma 3.2.2 with α := (σΩ1 ⊕ σΩ2)(x
∗) + ε, where

ε > 0 is arbitrary and where β := ‖x∗‖. This completes the proof of the theorem. �

The results of type (3.2.11) in Theorem 3.2.6 (i.e., ensuring that the infimal convolu-

tion is exact) go back to Moreau [31] in Hilbert spaces. More recently, in [17], Ernst

and Théra established necessary and sufficient conditions for this property in finite-

dimensional spaces.
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If X is Banach and both sets Ωi are closed with int(Ω1 − Ω2) 6= ∅, then (3.2.8) reduces

to the core qualification condition 0 ∈ core(Ω1 − Ω2) developed by Rockafellar [42],

where

core Ω :=
{
x ∈ Ω

∣∣ ∀ v ∈ X ∃ γ > 0 such that x+ tv ∈ Ω whenever |t| < γ
}
.

This follows from the well-known facts that int Ω=core Ω for closed convex subsets

of Banach spaces (see, e.g., [13, Theorem 4.1.8]) and that int Ω=int Ω provided that

int Ω 6= ∅. Note that the Attouch-Brézis condition (3.2.9) from [8] essentially super-

sedes the equivalent core and difference interior qualification conditions for closed sets

in Banach spaces, while the latter works in general LCTV spaces. As shown in [27], the

conventional interiority conditions in (b) of Theorem 3.2.6 strictly imply the conditions

in (a), including the set boundedness, provided that the space X is normed. We cannot

conclude this in general, unless the LCTV space X in question has a basis of bounded

neighborhoods of the origin.

The next result provides various qualification conditions in LCTV and Banach space

settings under which the important normal cone intersection formula holds. This result

under the qualification condition (3.2.14) has been derived in [27] directly from the

convex extremal principle in normed spaces. Below we present a unified derivation of

the normal cone intersection rule from the corresponding conditions of Theorem 3.2.6.

Theorem 3.2.7. Let the sets Ω1,Ω2 ⊂ X be convex with x̄ ∈ Ω1 ∩ Ω2. Suppose that

one of the following conditions (a)–(c) is satisfied:

(a) There exists a bounded convex neighborhood V of x̄ such that

(3.2.14) 0 ∈ int
(
Ω1 − (Ω2 ∩ V )

)
.

(b) Either (int Ω2) ∩ Ω1 6= ∅, or (int Ω1) ∩ Ω2 6= ∅.

(c) The space X is Banach, both sets Ω1 and Ω2 are closed, and the Attouch-Brézis

qualification condition (3.2.9) holds.
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Then we have the normal cone intersection rule

(3.2.15) N(x̄; Ω1 ∩ Ω2) = N(x̄; Ω1) +N(x̄; Ω2).

Proof. First we verify (3.2.15) under (a). Denote A := Ω1, B := Ω2 ∩ V and observe

by (3.2.14) that 0 ∈ int(A − B) and B is bounded. It follows from the normal cone

definition (3.1.1) that x∗ ∈ N(x̄; Ω) for x̄ ∈ Ω if and only if σΩ(x∗) = 〈x∗, x̄〉. Then

pick x∗ ∈ N(x̄;A ∩ B) and get 〈x∗, x̄〉 = σA∩B(x∗). By Theorem 3.2.6(a) there are

x∗1, x
∗
2 ∈ X∗ with x∗ = x∗1 + x∗2 and

〈x∗1, x̄〉+ 〈x∗2, x̄〉 = 〈x∗, x̄〉 = σA∩B(x∗) = σA(x∗1) + σB(x∗2).

This implies that 〈x∗1, x̄〉 = σA(x∗1) and 〈x∗2, x̄〉 = σB(x∗2). Thus we have x∗1 ∈ N(x̄;A)

and x∗2 ∈ N(x̄;B), which show that N(x̄;A ∩ B) ⊂ N(x̄;A) + N(x̄;B). Observe

that N(x̄;A ∩ B) = N(x̄; Ω1 ∩ Ω2), N(x̄;A) = N(x̄; Ω1), and N(x̄;B) = N(x̄; Ω2);

hence we arrive at the inclusion “⊂" in (3.2.15). The opposite inclusion therein is

obvious. Similar arguments allow us to deduce normal cone intersection rule (3.2.15)

under assumptions in (b) and (c) from the corresponding assertions of Theorem 3.2.6.�

Observe that (3.2.14) reduces to the difference interiority condition (3.2.8) provided

that one of the sets Ωi, say Ω2, is bounded. Note that there are other qualification

conditions for the validity of (3.2.15) in various space settings studied in connection

with the so-called “strong conic hull intersection property" (strong CHIP); see, e.g.,

[9, 17, 14, 23, 30].

3.3. Geometric Approach to Conjugate Calculus

In this section we develop a geometric approach, based on the set intersection rules

obtained above, to easily derive some basic calculus results for Fenchel conjugates of

extended-real-valued convex functions in LCTV and Banach spaces settings. Known

proofs of such functional results are more involved and employ analytic arguments; see,

e.g., [12, 44, 51].
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First we present a simple lemma relating the conjugate and epigraphical support func-

tions.

Lemma 3.3.1. For any f : X → R we have the conjugate function representation

f ∗(x∗) = σepi f (x
∗,−1) whenever x∗ ∈ X∗.

Proof. It follows directly from the definitions that

f ∗(x∗) = sup
{
〈x∗, x〉 − f(x)

∣∣ x ∈ dom f
}

= sup
{
〈x∗, x〉 − λ

∣∣ (x, λ) ∈ epi f
}

= σepi f (x
∗,−1),

which therefore verifies the claimed relationship. �

This lemma allows us to derive the conjugate sum rules and other conjugate calculus

results from Theorem 3.2.6. In what follows we concentrate for simplicity on applying

this theorem under the assumptions imposed in (b) and (c) therein.

Theorem 3.3.2. For convex functions f, g : X → R, we assume the followings:

(a) either one of the functions f , g is continuous at some point x̄ ∈ dom f ∩ dom g,

(b) orX is a Banach space, f and g are lower semi-continuous, and R+(dom f−dom g)

is a closed subspace of X .

Then we have the conjugate to the sum f + g is represented by

(3.3.16) (f + g)∗(x∗) =
(
f ∗ ⊕ g∗

)
(x∗) for all x∗ ∈ X∗.

Moreover, in both cases the infimum in (f ∗ ⊕ g∗)(x∗) is attained, i.e., for any x∗ ∈

dom (f + g)∗, there are x∗1, x
∗
2 ∈ X∗ such that x∗ = x∗1 + x∗2 and

(f + g)∗(x∗) = f ∗(x∗1) + g∗(x∗2).

Proof. Fix x∗ ∈ X∗ and easily observe that (f + g)∗(x∗) ≤ (f ∗ ⊕ g∗)(x∗). Indeed, for

any x∗1, x
∗
2 ∈ X∗ with x∗1 + x∗2 = x∗ we have
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f ∗(x∗1) + g∗(x∗2) = sup
{
〈x∗1, x〉 − f(x)

∣∣ x ∈ X}+ sup
{
〈x∗2, x〉 − g(x)

∣∣ x ∈ X}
≥ sup

{
〈x∗1, x〉 − f(x) + 〈x∗2, x〉 − g(x)

∣∣ x ∈ X}
= sup

{
〈x∗, x〉 − (f + g)(x)

∣∣ x ∈ X} = (f + g)∗(x∗).

Taking the infimum with respect to all such x∗1, x
∗
2 justifies the claimed inequality.

Let us verify the opposite inequality in (3.3.16) for x∗ ∈ dom (f + g)∗ in each case (a)

and (b).

(a) Define the convex subsets Ω1,Ω2 of X × R× R by

Ω1 :=
{

(x, λ1, λ2) ∈ X × R× R
∣∣ λ1 ≥ f(x)

}
,

Ω2 :=
{

(x, λ1, λ2) ∈ X × R× R
∣∣ λ2 ≥ g(x)

}
and show that (int Ω1)∩Ω2 6= ∅ if f is continuous at some x̄ ∈ dom f ∩ dom g. Indeed,

int Ω1 =
{

(x, λ1, λ2) ∈ X × R× R
∣∣ x ∈ int(dom f), λ1 > f(x)

}
.

It follows from the continuity of f at x̄ that x̄ ∈ int(dom f). Letting λ̄1 := f(x̄)+1 and

λ̄2 := g(x̄) + 1 yields (x̄, λ̄1, λ̄2) ∈ int Ω1 and (x̄, λ̄1, λ̄2) ∈ Ω2, and hence (int Ω1) ∩

Ω2 6= ∅. Similarly to Lemma 3.3.1 we have the representation

(f + g)∗(x∗) = σΩ1∩Ω2(x
∗,−1,−1).

Then Theorem 3.2.6(b) gives us triples (x∗1,−α1,−α2), (x∗2 − β1,−β2) ∈ X∗ ×R×R

such that (x∗,−1,−1) = (x∗1,−α1,−α2) + (x∗2,−β1,−β2) and

(f + g)∗(x∗) = σΩ1∩Ω2(x
∗,−1,−1) = σΩ1(x

∗
1,−α1,−α2) + σΩ2(x

∗
2,−β1,−β2).

If α2 6= 0, then σΩ1(x
∗
1,−α1,−α2) =∞, which is not possible since x∗ ∈ dom (f+g)∗,

and so α2 = 0. Similarly we get β1 = 0. Employing Lemma 3.3.1 again and taking
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into account the structures of Ω1 and Ω2 tell us that

(f + g)∗(x∗) = σΩ1∩Ω2(x
∗,−1,−1) = σΩ1(x

∗
1,−1, 0) + σΩ2(x

∗
2, 0,−1)

= σepi f (x
∗,−1) + σepi g(x

∗
2,−1) = f ∗(x∗1) + g∗(x∗2) ≥ (f ∗ ⊕ g∗)(x∗),

which verifies (3.3.16) and also the last statement of the theorem.

(b) To prove the theorem under the conditions in (b), observe first that the sets Ω1,Ω2

above are closed by the lower semi-continuous assumption on f, g and then check that

(3.3.17) R+(Ω1 − Ω2) = R+
(
dom f − dom g

)
× R× R.

Indeed, consider u ∈ R+(Ω1−Ω2) and find t > 0, v ∈ (Ω1−Ω2) with u = tv; therefore

v = (x1, λ1, λ2) − (x2, γ1, γ2) with (x1, λ1, λ2) ∈ Ω1 and (x2, γ1, γ2) ∈ Ω2. Note that

x1 ∈ dom f and x2 ∈ dom g due to f(x1) ≤ λ1 <∞ and g(x2) ≤ γ2 <∞.

Hence we get

tv = t(x1 − x2, λ1 − γ1, λ2 − γ2) ∈ R+(dom f − dom g)× R× R.

To verify the opposite inclusion in (3.3.17), fix x ∈ R+(dom f − dom g)× R× R and

find t > 0, x1 ∈ dom f , x2 ∈ dom g, γ1, γ2 ∈ R, and λ1, λ2 with

x = (t(x1 − x2), γ1, γ2) = t(x1 − x2, λ1, λ2)

= t
[(
x1, f(x1), λ2 + g(x2)

)
− (x2,−λ1 + f(x1), g(x2)

)]
,

which readily yields x ∈ t(Ω1−Ω2) ⊂ R+(Ω1−Ω2). Applying now Theorem 3.2.6(c),

we arrive at both conclusions of the theorem under (b) and thus complete the proof. �

The next result derives geometrically the chain rules for Fenchel conjugates.

Theorem 3.3.3. Let A : X → Y be a linear continuous mapping, and let g : Y → R

be a convex function. Assume that:

(a) either g is finite and continuous at some point of AX ,
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(b) or X and Y are Banach spaces, g is lower semi-continuous, and R+(dom g−AX)

is a closed subspace of Y .

Then the conjugate of the composition g ◦ A is represented by

(3.3.18) (g ◦ A)∗(x∗) = inf
{
g∗(y∗)

∣∣ y∗ ∈ (A∗)−1(x∗)
}
.

Moreover, in both cases we have that for any x∗ ∈ dom (g◦A)∗ there is y∗ ∈ (A∗)−1(x∗)

with

(g ◦ A)∗(x∗) = g∗(y∗).

Proof. Fix any y∗ ∈ (A∗)−1(x∗) and deduce the following relationships from the defi-

nitions:

g∗(y∗) = sup
{
〈y∗, y〉 − g(y)

∣∣ y ∈ Y }
≥ sup

{
〈y∗, A(x)〉 − g(A(x))

∣∣ x ∈ X}
= sup

{
〈A∗y∗, x〉 − (g ◦ A)(x)

∣∣ x ∈ X}
= sup

{
〈x∗, x〉 − (g ◦ A)(x)

∣∣ x ∈ X} = (g ◦ A)∗(x∗).

This readily implies the inequality “≤" in (3.3.18). To verify the opposite inequality

therein, take x∗ ∈ dom (g ◦ A∗) and construct the following convex sets:

Ω1 := gphA× R ⊂ X × Y × R and Ω2 := X × epi g ⊂ X × Y × R.

It follows directly from the above constructions that

(g ◦ A)∗(x∗) = σΩ1∩Ω2(x
∗, 0,−1) <∞.

Let us further proceed with proof in each case (a) and (b).

(a) Under the assumption in (a) we clearly have

int Ω2 =
{

(x, y, λ) ∈ X × Y × R
∣∣ x ∈ X, y ∈ int(dom g), λ > g(y)

}
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and easily observe that Ω1∩(int Ω2) 6= ∅ for the sets Ω1,Ω2 above. Then Theorem 3.2.6

(b) tells us that there are triples (x∗1, y
∗
1, α1), (x∗2, y

∗
2, α2) ∈ X∗ × Y ∗ × R satisfying

(x∗, 0,−1) = (x∗1, y
∗
1, α1) + (x∗2, y

∗
2, α2),

and σΩ1∩Ω2(x
∗, 0,−1) = σΩ1(x

∗
1, y
∗
1, α1) + σΩ2(x

∗
2, y
∗
2, α2).

It follows from the structures of Ω1,Ω2 that α1 = 0 and x∗2 = 0. This yields

σΩ1∩Ω2(x
∗, 0,−1) = σΩ1(x

∗,−y∗2, 0) + σΩ2(0, y
∗
2,−1)

for some y∗2 ∈ Y ∗. Thus we arrive at the representations

σΩ1∩Ω2(x
∗, 0,−1) = sup

{
〈x∗, x〉 − 〈y∗2, A(x)〉

∣∣ x ∈ X〉}+ σepi g(y
∗
2,−1)

= sup
{
〈x∗ − A∗y∗2, x〉

∣∣ x ∈ X}+ g∗(y∗2),

which allow us to conclude that x∗ = A∗y∗2 and therefore

σΩ1∩Ω2(x
∗, 0,−1) = g∗(y∗2) ≥ inf

{
g∗(y∗)

∣∣ y∗ ∈ (A∗)−1(x∗)
}
.

This justifies both statements of the theorem in case (a).

(b) It is easy to check the equality

R+(Ω1 − Ω2) = X × R+(AX − dom g)× R.

Then we apply Theorem 3.2.6(c) and get both claimed statement in this case as well.�

Finally in this section, we present a simple geometric proof of the Fenchel conjugate

representation for the maximum of two convex functions f, g : X → R defined by

(3.3.19) (f ∨ g)(x) := max
{
f(x), g(x)

}
, x ∈ X.

In the next theorem we use the convention that 0f := δdom f
and similarly for g; see,

e.g., [12].
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Theorem 3.3.4. Given convex functions f, g : X → R, suppose that either the assump-

tions in (a) or the assumptions in (b) of Theorem 3.3.2 are satisfied. Then we have the

representation

(3.3.20) (f ∨ g)∗(x∗) = inf
λ∈[0,1]

[
λf + (1− λ)g

]∗
(x∗).

If furthermore (f ∨ g)∗(x∗) ∈ R, then the minimum in (3.3.20) is achieved.

Proof. Let us first check that the inequality “≤" always holds in (3.3.20) whenever

λ ∈ [0, 1]. Indeed, it follows directly from the definitions that

[
λf + (1− λ)g

]∗
(x∗) = sup

x∈X

[
〈x∗, x〉 − λf(x)− (1− λ)g(x)

]
≥ sup

x∈X

[
〈x∗, x〉 − λ(f ∨ g)(x)− (1− λ)(f ∨ g)(x)

]
= sup

x∈X

[
〈x∗, x〉 − (f ∨ g)(x)

]
= (f ∨ g)∗(x∗), x∗ ∈ X∗.

To verify the opposite inequality, observe that epi (f ∨ g) = epi f ∩ epi g, and hence we

deduce from Lemma 3.3.1 the relationships

(f ∨ g)∗(x∗) = σepi(f∨g)(x
∗,−1) = σΩ1∩Ω2(x

∗,−1) with Ω1 := epi f, Ω2 = epi g.

It follows from Theorem 3.2.6 under the assumptions in either (a) or (b) that

(f ∨ g)∗(x∗) =
[
σΩ1 ⊕ σΩ2

]
(x∗,−1), x∗ ∈ X∗.

Observe that the continuity of f at x̄ ∈ dom f ∩ dom g yields (int Ω1) ∩Ω2 6= ∅. In the

case where R+(dom f−dom g) is a closed subspace we have that the set R+(Ω1−Ω2) =

R+(dom f − dom g)× R is a closed subspace as well.

Suppose now that (f ∨ g)∗(x∗) ∈ R, i.e., x∗ ∈ dom (f ∨ g)∗. Then Theorem 3.2.6 gives

us pairs (x∗1,−λ1), (x∗2,−λ2) ∈ X∗ × R such that x∗ = x∗1 + x∗2, 1 = λ1 + λ2, and

(f ∨ g)∗(x∗) = σepi(f∨g)(x
∗,−1) = σΩ1∩Ω2(x

∗,−1) = σΩ1(x
∗
1,−λ1) + σΩ2(x

∗
2,−λ2).
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Note that if either λ1 < 0 or λ2 < 0, then σΩ1(x
∗
1,−λ1) = ∞ or σΩ2(x

∗
1,−λ1) = ∞,

which is a contradiction. Thus λ1, λ2 ≥ 0. In the case where λ1, λ2 > 0 it follows that

(f ∨ g)∗(x∗) = λ1σΩ1

(x∗1
λ1

,−1
)

+ λ2σΩ2

(x∗2
λ2

,−1
)

= λ1f
∗
(x∗1
λ1

)
+ λ2g

∗
(x∗2
λ2

)
= (λ1f)∗(x∗1) + (λ2g)∗(x∗2) with x∗ ∈ dom (f ∨ g)∗.

Furthermore, we obviously have the estimate

(λ1f)∗(x∗1) + (λ2g)∗(x∗2) ≥
[
λ1f + (1− λ1)g

]∗
(x∗) ≥ inf

λ∈[0,1]

[
λf + (1− λ)g

]∗
(x∗).

Plugging in λ1 = 0 gives us λ2 = 1, and hence

σΩ1(x
∗
1,−λ1) + σΩ2(x

∗
2,−λ2) = σdom f

(x∗1) + g∗(x∗2)

= δ∗dom f
(x∗1) + g∗(x∗2) ≥

[
δdom f

+ g
]∗

(x∗)

≥ inf
λ∈[0,1]

[
λf + (1− λ)g

]∗
(x∗).

Since the latter inequality also holds if (f ∨ g)∗(x∗) =∞, this completes the proof. �

3.4. Geometric Approach to Convex Subdifferential Calculus

This section presents a geometric design of major rules of convex subdifferential cal-

culus (including some new results) that is based on applications of the normal cone

intersection rule taken from Theorem 3.2.7. Having in mind a clear illustration of the

developed geometric approach, we mainly confine ourselves to the applications of the

easily formulated qualification conditions in (b) and (c) therein. Let us start with the

fundamental sum rule in both LCTV and Banach space settings.

Theorem 3.4.1. Given convex functions f, g : X → R, we have the subdifferential sum

rule

(3.4.21) ∂(f + g)(x̄) = ∂f(x̄) + ∂g(x̄) for all x̄ ∈ dom f ∩ dom g
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provided the validity of the following:

(a) either f is finite and continuous at some point in dom f ∩ dom g,

(b) orX is a Banach space, f and g are lower semi-continuous, and R+(dom f−dom g)

is a subspace of X .

Proof. Let x̄ ∈ dom f ∩ dom g be fixed for the entire proof. Since the inclusion “⊃"

in (3.4.21) can be easily checked by the definition, we now concentrate on proving the

opposite inclusion therein. Pick any x∗ ∈ ∂(f + g)(x̄) and show how the geometric

results of Theorem 3.2.7 can be used in verifying x∗ ∈ ∂f(x̄) + ∂g(x̄). Having

〈x∗, x− x̄〉 ≤ (f + g)(x)− (f + g)(x̄) for all x ∈ X,

define the following convex subsets of X × R× R

Ω1 :=
{

(x, λ1, λ2) ∈ X × R× R
∣∣ λ1 ≥ f(x)

}
,

Ω2 :=
{

(x, λ1, λ2) ∈ X × R× R
∣∣ λ2 ≥ g(x)

}
.

It follows from the definition that (x∗,−1,−1) ∈ N((x̄, f(x̄), g(x̄)); Ω1 ∩ Ω2). The

application of Theorem 3.2.7 under an appropriate qualification condition yields

(3.4.22) (x∗,−1,−1) ∈ N
(
(x̄, f(x̄), g(x̄)); Ω1

)
+N

(
(x̄, f(x̄), g(x̄)); Ω2

)
,

which tells us therefore that

(x∗,−1,−1) = (x∗1,−λ1,−λ2) + (x∗2,−γ1,−γ2)

with

(x∗1,−λ1,−λ2) ∈ N((x̄, f(x̄), g(x̄)); Ω1) and (x∗2,−γ1,−γ2) ∈ N((x̄, f(x̄), g(x̄)); Ω2).

By the construction of Ω1 and Ω2 we have λ2 = γ1 = 0 and hence find dual elements

(x∗1,−1) ∈ N((x̄, f(x̄)); epi f) and (x∗2,−1) ∈ N((x̄, g(x̄)); epi g) satisfying the rela-

tionships
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x∗1 ∈ ∂f(x̄), x∗2 ∈ ∂g(x̄), and x∗ = x∗1 + x∗2.

This shows that x∗ ∈ ∂f(x̄) + ∂g(x̄), and thus (3.4.21) holds, provided that the corre-

sponding conditions of Theorem 3.2.7 are satisfied under the assumptions imposed in

the theorem.

To this end, we easily observe that (a) yields (int Ω1) ∩ Ω2 6= ∅ and that (b) ensures the

closedness of the subspace

R+(Ω1 − Ω2) = R+(dom f − dom g)× R× R

for the sets Ω1,Ω2 defined above. �

Next we employ the geometric approach to obtain a chain rule for convex subgradients

under different qualification conditions.

Theorem 3.4.2. Let A : X → Y be a continuous linear mapping, and let g : Y → R

be convex. Suppose that:

(a) either g is finite and continuous at some point of AX .

(b) or X is Banach, g is lower semi-continuous, and R+(AX − dom g) is a closed

subspace of X .

Then we have the subdifferential chain rule

(3.4.23)

∂(g ◦ A)(x̄) = A∗∂g(Ax̄) :=
{
A∗y∗

∣∣ y∗ ∈ ∂g(Ax̄)
}

for all x̄ ∈ dom(g ◦ A).

Proof. First we verify the inclusion “⊂" in (3.4.23) under the validity of (a) and (b).

Pick any y∗ ∈ ∂(g ◦ A)(x̄) and form the subsets of X × Y × R by

Ω1 := (gphA)× R and Ω2 := X × (epi g).

If (a) holds, then it follows from the proof of Theorem 3.3.3(a) that Ω1 ∩ (int Ω2) 6=

∅. Using the definitions of subgradients and normals of convex analysis, we easily

conclude that (y∗, 0,−1) ∈ N((x̄, ȳ, z̄); Ω1 ∩ Ω2) with z̄ := g(ȳ) and ȳ := Ax̄. The
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intersection rule from Theorem 3.2.7(b) tells us that

(y∗, 0,−1) ∈ N
(
(x̄, ȳ, z̄); Ω1

)
+N

(
(x̄, ȳ, z̄); Ω2

)
,

which ensures the existence of

(y∗,−w∗) ∈ N((x̄, ȳ); gphA) and (w∗,−1) ∈ N((ȳ, z̄); epi g)

satisfying (y∗, 0,−1) = (y∗,−w∗, 0) + (0, w∗,−1). We can directly check that

N
(
(x̄, ȳ); gphA

)
=
{

(x∗, y∗) ∈ X∗ × Y ∗
∣∣ x∗ = −A∗y∗

}
and therefore deduce from the above that

y∗ = A∗w∗ and w∗ ∈ ∂g(ȳ).

This gives us y∗ ∈ A∗∂g(ȳ) and hence justifies the claimed inclusion “⊂" in (3.4.23).

To verify the opposite inclusion in (3.4.23), fix y∗ ∈ ∂g(A(x̄)) and deduce from the

definitions of convex subgradients and adjoint linear operators that

〈y∗, Ax− Ax̄〉 ≤ g(Ax)− g(Ax̄)⇐⇒ 〈A∗y∗, x− x̄〉 ≤ (g ◦ A)(x)− (g ◦ A)(x̄)

for every x ∈ X . This implies that A∗∂g(ȳ) ⊂ ∂(g ◦A)(x̄), which completes the proof

of the theorem under the assumptions in (a)

If now the assumptions in (b) are satisfied, then we can easily see that

R+(Ω1 − Ω2) = X × R+(AX − dom g)× R.

It remains to employ Theorem 3.2.7(c) in this setting by using the arguments above. �

The final result of this section employs the geometric approach to derive formulas for

subdifferentiation of maximum of convex functions. For simplicity we consider the case

of two functions; the maximum of finitely many ones can be deduced by induction.
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Theorem 3.4.3. Let x̄ ∈ dom f ∩ dom g, where the functions f, g : X → R are convex.

Then the following assertions hold:

(a) If f(x̄) > g(x̄) and g is upper semi-continuous at x̄, then

∂(f ∨ g)(x̄) = ∂f(x̄).

(b) If f(x̄) < g(x̄) and f is upper semi-continuous at x̄, then

∂(f ∨ g)(x̄) = ∂g(x̄).

(c) If f(x̄) = g(x̄), then

(3.4.24) ∂(f ∨ g)(x̄) = co[∂f(x̄) ∪ ∂g(x̄)].

provided that either the assumptions in (a) or the assumptions in (b) of Theorem 3.3.2

are satisfied. Here the symbol ‘co’ stands for the convex hull of a set.

Proof. We obviously have epi(f ∨ g) = epi f ∩ epi g, and thus it follows from the

subgradient definition that x∗ ∈ ∂(f ∨ g)(x̄) if and only if

(3.4.25) (x∗,−1) ∈ N
(
(x̄, (f∨g)(x̄)); epi (f∨g)

)
= N

(
(x̄, (f∨g)(x̄)); epi f∩epi g

)
.

Denote λ̄ := (f ∨ g)(x̄). Under the assumption given in (a), it is easy to check that

(x̄, λ̄) ∈ int(epi g) due to the imposed upper semicontinuity assumption on g. This

allows us to exclude the latter function from the intersection in (3.4.25) and arrive at the

conclusion. The proof of assertion (b) is the same.

It remains to verify formula (3.4.24) under the assumptions given in (c). To furnish

this, we only need to apply Theorem 3.2.7 and proceed similarly to the proof of Theo-

rem 3.3.4. �
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4

DC Programming for Constrained Multifacility Location and Clustering

4.1. Overview

In the current time of “big data”, clustering is a very important problem that helps clas-

sify data in many fields such as machine learning, pattern recognition, image analysis,

data compression, and computer graphics. Given a finite number of data points with

a measurement distance, a centroid-based clustering problem seeks a finite number of

cluster centers with each data point assigned to the nearest cluster center in a way that

a certain measurement distance is minimized.

It is well-known that the k-mean algorithm is one of the simplest clustering algorithms,

providing an easy way to classify a given data set through a certain number of clusters.

However, it possesses certain drawbacks: the k-mean algorithm depends heavily on

the initial choice of cluster centers; there is no guarantee that the k-mean algorithm

converges to a global optimal solution; the number of clusters k is an input parameter:

an inappropriate choice of k may yield poor results; the results depend heavily on the

measurement distance; the algorithm may not be applicable for handling constraints

imposed on the cluster centers.

This chapter focuses on solving a number of clustering and multifacility location prob-

lems with constraints. We use a penalty method with squared Euclidean distance func-

tions to convert constrained problems to unconstrained problems. Then appropriate DC

decompositions and the DCA are used to minimize the penalized objective functions.

In the case where the measurement distance is defined by the Euclidean norm instead of

the squared Euclidean norm, we use Nesterov’s smoothing techniques for reducing the

nonsmoothness of the model and for providing a DC decomposition that is favorable

for applying the DCA. Our method opens up the possibility of using distance function
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penalty methods for other problems of DC programming. This chapter presents the

work we have done in [34]. The reader can find more details in there.

For convenience, we define the data matrix A ∈ Rm×d as the matrix whose ith row is

ai ∈ Rd for i = 1, . . . ,m. Similarly, we define the variable matrix X ∈ Rk×d as the

matrix whose `th row is x` ∈ Rd for ` = 1, . . . , k. We equip the linear space Rk×d with

the inner product 〈X,Y〉 = trace(XTY). Recall that the Frobenius norm on Rk×d is

defined by

∥∥X∥∥
F

= 〈X,X〉1/2 =

(
k∑
`=1

〈x`, x`〉

)1/2

=

(
k∑
`=1

‖x`‖2

)1/2

.

Observe that the square of the Frobenius norm is differentiable with

∇‖X‖2
F = 2X for X ∈ Rk×d.

Let Ω` ⊂ Rd for l = 1, . . . , k be nonempty closed convex sets and let Ω = Ω1 × Ω2 ×

. . .× Ωk. For X ∈ Rk×d, the projection from X to Ω is the matrix Y whose `th row is

y` = P (x`; Ω`). We thus have

(4.1.26) [d(X; Ω)]2 = ‖X−Y‖2
F =

k∑
`=1

‖x` − y`‖2 =
k∑
`=1

d(x`; Ω`)2.

4.2. Clustering with Constraints

In this section, we study problems of clustering with constraints in which the measure-

ment distance is defined by the squared Euclidean norm. We seek k centers x1, . . . , xk ∈

Rd of m data nodes a1, . . . , am ∈ Rd and impose the restriction that each x` ∈
⋂q
i=1 Ω`

i

for some nonempty closed convex set Ω`
i ⊂ Rd with ` = 1, . . . , k and i = 1, . . . , q.

Here, without loss of generality, we assume that the numbers of constraints for each

center is equal to each other. The problem we are concerned with is given by

(4.2.27)
minimize ψ(x1, . . . , xk) =

∑m
i=1 min

`=1,...,k
‖x` − ai‖2

subject to x` ∈
⋂q
j=1 Ω`

j for ` = 1, . . . , k.
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This problem can be converted to an unconstrained minimization problem

minimize f(x1, . . . , xk) =
1

2

m∑
i=1

min
`=1,...,k

‖x` − ai‖2
+
τ

2

k∑
`=1

q∑
i=1

[d(x`; Ω`
i)]

2,(4.2.28)

x1, . . . , xk ∈ Rd and τ > 0 is a penalty parameter.

Recall from Proposition 2.3.3 that for any nonempty closed convex set Ω in Rd,

[d(x; Ω)]2 = ‖x‖2 − ϕΩ(x),

where ϕΩ(x) = 2 sup
{
〈x,w〉 − 1

2
‖w‖2 | w ∈ Ω

}
is a differentiable function with

∇ϕΩ(x) = 2P (x; Ω). Let us use the minimum-sum principle for k real numbers

α` for ` = 1, . . . , k:

min
`=1,...,k

α` =
k∑
`=1

α` − max
r=1,...,k

k∑
`=1,`6=r

α`

to obtain a DC decomposition of f as follows

f(x1, . . . , xk) =
(1

2

m∑
i=1

k∑
`=1

‖x` − ai‖2 +
τq

2

k∑
`=1

‖x`‖2
)

−
(1

2

m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

(‖x` − ai‖)2 +
τ

2

k∑
`=1

q∑
i=1

ϕΩ`i
(x`)

)
.

We see that f = g − h by defining

g1(x1, . . . , xk) =
1

2

m∑
i=1

k∑
`=1

‖x` − ai‖2, g2(x1, . . . , xk) =
τq

2

k∑
`=1

‖x`‖2 ,

h1(x1, . . . , xk) =
1

2

m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

‖x` − ai‖2, h2(x1, . . . , xk) =
τ

2

k∑
`=1

q∑
i=1

ϕΩ`i
(x`),

and setting g = g1 + g2 and h = h1 + h2.
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As discussed in the overview, we may collect xj into the variable matrix X and denote

Ωi = Ω1
i × Ω2

i × . . .× Ωk
i ∈ Rk×d for i = 1, . . . , q. Then (4.2.27) becomes

minimize ψ(X)

subject to X ∈
⋂q
i=1 Ωi.

We also collect ai into the data matrix A, and upon doing so we may express g in terms

of the Frobenius norm, namely,

g1(X) =
1

2

m∑
i=1

k∑
`=1

‖x` − ai‖2 =
1

2

m∑
i=1

k∑
`=1

(
‖x`‖2 − 2〈x`, ai〉+ ‖ai‖2

)

=
m

2

k∑
`=1

‖x`‖2 −
m∑
i=1

k∑
`=1

〈x`, ai〉+
k

2

m∑
i=1

‖ai‖2

=
m

2
‖X‖2

F − 〈X,EA〉+
k

2
‖A‖2

F ,

where E ∈ Rk×m is the matrix with all entries equal to 1. In this form, it is easy to

obtain the gradient of g1 as

∇g1(X) = mX− EA.

Similarly, g2 can be equivalently written as

g2(X) =
τq

2

k∑
`=1

‖x`‖2 =
τq

2

∥∥X∥∥2

F
.

Hence, g2 is differentiable and its gradient is given by∇g2(X) = τqX. Therefore,

∇g(X) = ∇g1(X) +∇g2(X) = (m+ τq)X− EA.

Based on the relation (1.2.1), finding X ∈ ∂g∗(Y) is equivalent to solving the equation

Y = (m+ τq)X− EA.

It follows that

X =
Y + EA

m+ τq
∈ ∂g∗(Y).
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Our goal, then, is to find Yp ∈ ∂h(Xp) from which we will obtain Xp+1 and thereby

compute the first N terms of the sequence {Xp} via Algorithm 1. Toward the end we

will find subgradients of the convex function h.

For each i = 1, . . . ,m, let r(i) ∈ {1, . . . , k} be an index for which

k∑
`=1,` 6=r(i)

‖x` − ai‖2
= max

r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖2
,

in which case we see that a subgradient W ∈ ∂h1(X) is given by

W =
m∑
i=1

(
X−Ai − er(i)(xr(i) − ai)

)
= mX− EA−

m∑
i=1

er(i)(x
r(i) − ai),

(4.2.29)

where Ai ∈ Rk×d is the matrix whose all rows are ai and er is the k × 1 column vector

with a one in the rth position and zeros elsewhere.

Now for h2(X) = τ
2

∑k
`=1

∑q
i=1 ϕΩ`i

(x`), we have

∂h2

∂xj
(X) =

τ

2

k∑
`=1

q∑
i=1

∂

∂xj
ϕΩ`i

(x`) = τ

q∑
i=1

P (xj; Ωj
i )

with j = 1, . . . , k. Then U = 1
τ
∇h2(X) is the k × d matrix whose rows are uj =∑q

i=1 P (xj; Ωj
i ).

The form of the DCA instructs us to find Yp ∈ ∂h(Xp) at the pth iteration, so we set

Yp = W+τU. Combining the above results gives Xp+1 = (W+τU+EA)/(m+τq).

Substituting (4.2.29) for W, we obtain the recursive relation

Xp+1 =
1

m+ τq

(
mXp + τU−

m∑
i=1

er(i)
(
xr(i)p − ai

))
,

where x`p denotes the `th row of Xp. The following algorithm summarizes the DCA-

based procedure we just derived.
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Algorithm 3 : DC program for (4.2.28)

INPUT: A,X0, {Ω`
j}
`=1,...,k
j=1,...,q, N, τ

for p = 1, . . . , N do
for i = 1, . . . ,m do

Find r(i) s.t. ‖xr(i)p−1 − ai‖2 = min{
∥∥x`p−1 − ai

∥∥2 | ` = 1, . . . , k}
Set Wi := er(i)(x

r(i)
p−1 − ai)

end for
for ` = 1, . . . , k do

Find u` :=
∑q

j=1 P (x`p−1; Ω`
j)

end for
Set Xp := 1

m+τq

(
mXp−1 + τU−

∑m
i=1 Wi

)
end for
OUTPUT: XN

Inspecting (4.2.28), we see that for small τ our problem begins to resemble the asso-

ciated unconstrained problem. For solving the clustering (4.2.27), we may gradually

increase the value of the penalty parameter τ > 0 by periodically multiplying by some

σ > 1 and terminate whenever τ > τf . This may be accomplished by Algorithm 4.

Notice that for the initial choice of τ , the maximum number of overall iterations of

Algorithm 4 is Ndlogσ(τf/τ)e, where d · e denotes the ceiling function.

Algorithm 4 : Penalty DC program for (4.2.27)

INPUT: A,X0, {Ω`
j}
`=1,...,k
j=1,...,q, N, τ, σ, τf

while τ < τf do
Find XN by executing Algorithm 3 with A,X0, {Ω`

j}
`=1,...,k
j=1,...,q, N, τ

Reassign X0 := XN

Reassign τ := στ
end while
OUTPUT: XN

Remark 4.2.1. Assume that in problem (4.2.27) the constraint Q` = ∩qj=1Ω`
j for each

center x` for ` = 1, . . . , k is simple enough. Then we can use the projected k-means

algorithm which is similar to the k-means algorithm as follows. After assigning each

data point to its nearest centroid, we update each centroid by

x` ←− P

(∑
i∈A(x`) a

i

|A(x`)|
;Q`

)
,
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where A(x`) = {i ∈ {1, . . . ,m} | ‖ai − x`‖ = minj=1,...,k ‖ai − xj‖} is the cluster

associated with x`. In this case, to get a good starting point X0 for Algorithm 3, we

perform the projected k-means algorithm in several initial steps. This procedure has

shown its efficiency in clustering without constraint; see, e.g., [1].

4.3. Set Clustering with Constraints

In this section, we turn our attention to a model of set clustering with constraints, i.e.,

for given m subsets Λ1, . . . ,Λm ⊂ Rd, we seek k cluster centers x` ∈
⋂q
j=1 Ω`

j for

` = 1, . . . , k, where each Ω`
j is a subset of Rd. The measurement distance is defined by

the squared distance functions to the sets involved. The optimization modeling of the

problem to be solved is given by

(4.3.30)
minimize ψ(x1, . . . , xk) =

∑m
i=1 min

`=1,...,k
[d(x`; Λi)]

2

subject to x` ∈
⋂q
j=1 Ω`

j for ` = 1, . . . , k.

Throughout this section, we assume that Λi for i = 1, . . . ,m and Ω`
j for j = 1, . . . , q

and ` = 1, . . . , k are nonempty, closed and convex.

Using the penalty method based on distance functions with a parameter τ > 0, we

consider the constrained set clustering model:

minimize f(x1, . . . , xk) =
1

2

m∑
i=1

min
`=1,...,k

[d(x`; Λi)]
2 +

τ

2

k∑
`=1

q∑
j=1

[d(x`; Ω`
j)]

2,(4.3.31)

x1, . . . , xk ∈ Rd. Using the minimum-sum principle, we will now find a DC decompo-

sition of f = g − h as follows. For each i = 1, . . . ,m, we have

min
`=1,...,k

[d(x`; Λi)]
2 =

k∑
`=1

[d(x`; Λi)]
2 − max

r=1,...,k

k∑
`=1,` 6=r

[d(x`; Λi)]
2
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Thus,

min
`=1,...,k

[d(x`; Λi)]
2 =

(
‖x`‖2 − ϕΛi(x

`)
)
− max

r=1,...,k

k∑
`=1,`6=r

[d(x`; Λi)]
2

= ‖X‖2
F −

( k∑
`=1

ϕΛi(x
`) + max

r=1,...,k

k∑
`=1,`6=r

[d(x`; Λi)]
2
)
.

Furthermore, we have

k∑
`=1

q∑
j=1

[d(x`; Ω`
j)]

2 =
k∑
`=1

q∑
j=1

(
‖x`‖2 − ϕΩ`j

(x`)
)

= q ‖X‖2
F −

k∑
`=1

q∑
j=1

ϕΩ`j
(x`).

Let

g1(X) =
m

2
‖X‖2

F , g2(X) =
τq

2
‖X‖2

F ,

h1(X) =
m∑
i=1

(1

2

k∑
`=1

ϕΛi(x
`) +

1

2
max
r=1,...,k

k∑
`=1,`6=r

[d(x`; Λi)]
2
)
,

and h2(X) = τ
2

∑k
`=1

∑q
j=1 ϕΩ`j

(x`). In this case we have the DC decomposition

f = g − h, where g = g1 + g2 and h = h1 + h2 are convex.

Using the relation (1.2.1), we can easily see that X = 1
m+τq

Y ∈ ∂g∗(Y). To apply

the DCA from Algorithm 1, we also need to find Y ∈ ∂h(X) as Y = V + U, where

V ∈ ∂h1(X) and U ∈ ∂h2(X).

Now, we focus on finding V ∈ ∂h1(X). Define

Di(X) =
1

2

k∑
`=1

ϕΛi(x
`),

and

Fi(X) =
1

2
max
r=1,...,k

k∑
`=1,` 6=r

[d(x`; Λi)]
2, i = 1, . . . ,m.

Then h1(X) =
∑m

i=1[Di(X)+Fi(X)]. Based on Proposition 2.3.3, we see that∇Di(X)

is the k × d matrix given by
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∇Di(X) =


P (x1; Λi)

...

P (xk; Λi)

 .
For each i = 1, . . . ,m, choose an index r(i) such that

max
r=1,...,k

k∑
`=1,`6=r

[d(x`; Λi)]
2 =

k∑
`=1,`6=r(i)

[d(x`; Λi)]
2.

Now, for j = 1, . . . , k, define

vji =


xj − P (xj; Λi) if j 6= r(i),

0 if j = r(i).

By (1.2.2) and the fact that ∇[d(x; Λ)]2 = 2
(
x − P (x; Λ)

)
for a nonempty closed

convex set Λ, the matrix Vi whose jth row is vji defines a subgradient of Fi at X. It

follows that such a subgradient V is

V = mX−
m∑
i=1

er(i)

(
xr(i) − P (xr(i); Λi)

)
.

As computed in the previous section, ∇h2(X) = τU, where U is the k × d matrix

whose `th row is
∑k

j=1 P (x`; Ω`
j) for ` = 1, . . . , k. Consequently, the k × d matrix

Y = mX−
m∑
i=1

er(i)

(
xr(i) − P (xr(i); Λi)

)
+ τU

= mX + τU−
m∑
i=1

er(i)

(
xr(i) − P (xr(i); Λi)

)
belongs to ∂h(X).

Now, for p ∈ N such that Xp−1 is given, one has

Yp−1 = mXp−1 + τUp −
m∑
i=1

er(i)

(
x
r(i)
p−1 − P (x

r(i)
p−1; Λi)

)
∈ ∂H(Xp−1),
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where x`p is the `th row of Xp and Up is the k×dmatrix whose `th row is
∑k

j=1 P (x`p; Ω`
j)

for l = 1, . . . , k. It follows that Xp from the DCA in Algorithm 1 can be determined by

Xp =
1

τq +m

(
mXp−1 + τUp −

m∑
i=1

er(i)
(
x
r(i)
p−1 − P (x

r(i)
p−1; Λi)

))
.

We are ready to give an algorithm for (4.3.31).

Algorithm 5 : DC program for (4.3.31)

INPUT: X0,Λi, {Ω`
j}
`=1,...,k
j=1,...,q, N, τ

for p = 1, . . . , N do
for i = 1, . . . ,m do

for ` = 1, . . . , k do
Set w`i := P (x`p−1; Λi)

end for
Find r(i) s.t. ‖xr(i)p−1 − ai‖2 = min{

∥∥x`p−1 − ai
∥∥2 | ` = 1, . . . , k}

end for
for ` = 1, . . . , k do

Find u` :=
∑q

j=1 P (x`p−1; Ω`
j)

end for
Xp := 1

τq+m

(
mXp−1 + τUp −

∑m
i=1 er(i)

(
x
r(i)
p−1 − w

r(i)
i

))
end for
OUTPUT: XN

We now adapt Algorithm 5 to solve our set clustering problem. Just as in the previous

section, we gradually increase the value of the penalty parameter τ > 0 by periodically

multiplying it by some σ > 1 and stopping when τ > τf > 0. This may be accom-

plished by Algorithm 6. We again see that for an initial choice of τ = τ0, the maximum

number of overall iterations of Algorithm 6 is Ndlogσ(τf/τ0)e.

Algorithm 6 : Penalty DC program for (4.3.30)

INPUT: X0, {Λi}mi=1, {Ω`
j}
`=1,...,k
j=1,...,q, N, τ, τf , σ

while τ < τf do
Find XN by executing Algorithm 5 with X0, {Λi}mi=1, {Ω`

j}
`=1,...,k
j=1,...,q, τ, N

Reassign X0 := XN

Reassign τ := στ
end while
OUTPUT: XN
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4.4. Multifacility Location with Constraints

Given a set of m points (nodes) a1, a2, . . . , am in Rd, our goal is find k centers x` for

` = 1, . . . , k, which must be in constraint sets
⋂q
i=1 Ω`

i for l = 1, .., k, such that the

transportation cost to the nodes is minimized. The same setting in Section 4.2 gives us

the constrained minimization problem

(4.4.32)
minimize ψ(X)

subject to X ∈
⋂q
i=1 Ωi,

where the total cost now is given by

ψ(X) = ψ(x1, . . . , xk) =
m∑
i=1

min
`=1,...,k

‖x` − ai‖.

This problem can be converted to an unconstrained minimization problem

(4.4.33)

minimize fτ (x
1, . . . , xk) =

∑m
i=1 min

`=1,...,k
‖x` − ai‖+

τ

2

k∑
`=1

q∑
i=1

[d(x`; Ω`
i)]

2,

where x1, . . . , xk ∈ Rd and τ > 0 is a parameter.

We apply Nesterov’s smoothing techniques from [36] to approximate the objective func-

tion fτ by a new DC function which is favorable for applying the DCA.

fτ,µ(x1, . . . , xk) =
(µ

2

m∑
i=1

k∑
`=1

∥∥∥∥∥x` − aiµ

∥∥∥∥∥
2

+
τq

2

k∑
`=1

‖x`‖2
)

−
(µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

+
m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

‖x` − ai‖ +
τ

2

k∑
`=1

q∑
i=1

ϕΩ`i
(x`)

)
.

In what follows, we use f instead of fτ,µ for the simplicity of notations. The original

clustering problem now can be solved using a DC programming

minimize f(x1, . . . , xk) = g(x1, . . . , xk)− h(x1, . . . , xk), x1, . . . , xk ∈ Rd.
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In this formulation, g and h are convex functions on (Rd)k defined by

g(x1, . . . , xk) = g1(x1, . . . , xk) + g2(x1, . . . , xk),

h(x1, . . . , xk) = h1(x1, . . . , xk) + h2(x1, . . . , xk) + h3(x1, . . . , xk),

with their respective components defined as

g1 =
µ

2

m∑
i=1

k∑
`=1

∥∥∥∥∥x` − aiµ

∥∥∥∥∥
2

, g2 =
τq

2

k∑
`=1

‖x`‖2,

h1 =
µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

, h2 =
m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

‖x` − ai‖,

h3 =
τ

2

k∑
`=1

q∑
i=1

ϕΩ`i
(x`).

The function g1 can be equivalently written as

g1(X) =
1

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2

=
1

2µ

m∑
i=1

k∑
`=1

(
‖x`‖2 − 2〈x`, ai〉+ ‖ai‖2

)
=

1

2µ

(
m
∥∥X∥∥2

F
− 2
〈
X,EA

〉
+ k
∥∥A∥∥2

F

)
.

Note that g1 is differentiable and its gradient is given by

∇g1(X) =
1

µ
[mX− EA] .

The function g2 is the same as before so its gradient is given by

∇g2(X) = τqX.

Since g(X) = g1(X) + g2(X), its gradient can be computed by

∇g(X) = ∇g1(X) +∇g2(X) =
1

µ

(
mX− EA

)
+ τqX = (

m

µ
+ τq)X− 1

µ
S,
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where S = EA. The latter can equivalently be written as

Y = (
m

µ
+ τq)X− 1

µ
S.

Our goal now is to compute∇g∗(Y), which can be accomplished by the relation (1.2.1).

Then with some algebraic manipulations, we can show that

∇g∗(Y) = X =
µY + S

m+ µτq
.

Next, we will demonstrate in more details the techniques we used in finding a subgra-

dient for the convex function h. Recall that h is defined by

h(X) =
3∑
i=1

hi(X).

We will start with the function h1 given by

h1(X) =
µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

.

Similar to the situation in [36], we get

∂h1

∂x`
(X) =

m∑
i=1

(
x` − ai

µ
− P

(x` − ai
µ

;B
))

.

Thus, for ` = 1, 2, . . . , k, ∇h1(X) = Z is the k × d matrix whose `th row is ∂h1
∂x`

(X).

Let us compute a subgradient of h2 as in [36]

h2(X) =
m∑
i=1

max
`=1,...,k

k∑
j=1,j 6=`

‖xj − ai‖ =
m∑
i=1

γi(X),

where γi(X) = max`=1,...,k

∑k
j=1,j 6=` ‖xj − ai‖. For each i = 1, . . . ,m, define

γi`(X) =
k∑

j=1,j 6=`

‖xj − ai‖, ` = 1, . . . , k.

Then γi(X) = max`=1,...,k γi`(X).
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Based on the subdifferential formula for maximum functions, for each i = 1, . . . ,m, we

find Wi ∈ ∂γi(X). Then define W =
∑m

i=1 Wi to get a subgradient of the function h2

at X by the subdifferential sum rule. To accomplish this goal, we first choose an index

`∗ = 1, . . . , k such that γi(X) = γi`∗(X) =
∑k

j=1,j 6=`∗ ‖xj − ai‖. Using the familiar

subdifferential formula of the Euclidean norm function, the jth row wji for j 6= `∗ of the

matrix Wi is determined as follows

wji =


xj−ai
‖xj−ai‖ if xj 6= ai,

0 if xj = ai.

The `∗th row of the matrix Wi is w`∗i = 0.

The procedure for computing ∂h3(X) is the same in Section 4.2. Let U be the matrix

whose rows are
∑q

i=1 P (x`; Ω`
i), for ` = 1, . . . , k, then∇h3(X) = τU.

At this point, we are ready to give a new DCA-based algorithm for our problem.

Algorithm 7 : DC program for (4.4.33)

INPUT: A,X0, {Ω`
j}
`=1,...,k
j=1,...,q, τ, µ,N ∈ N.

for p = 1, . . . , N do
Find Yp := Zp + Wp + τUp where

Zp := ∇h1(Xp)
Wp ∈ ∂h2(Xp)
Up := ∇h3(Xp)

Find Xp+1 := µ(Zp+Wp+τUp)+S

m+µτq

end for
OUTPUT: XN

We also present below an adapted version of Algorithm 7 for solving (4.4.32). We may

improve Algorithm 7 by gradually increasing and decreasing the value of the penalty

parameter τ and the smoothing parameter µ respectively. This can be done by peri-

odically multiplying them by some σ > 1, 0 < δ < 1 and stopping when τ > τf ,

µ < µf .

77



Algorithm 8 : Penalty DC program for (4.4.32)

INPUT: A,X0, {Ω`
j}
`=1,...,k
j=1,...,q, N, τ, σ, τf , µ, δ, µf

while τ < τf and µ > µf do
Find XN by executing Algorithm 7 with A,X0, {Ω`

j}
`=1,...,k
j=1,...,q, N, τ, µ

Reassign X0 := XN

Reassign τ := στ
Reassign µ := δµ

end while
OUTPUT: XN

4.5. Numerical Experiments

4.5.1. Clustering with constraints.

Example 4.5.1. We now consider the dataset EIL76 taken from the Traveling Salesman

Problem Library [40]. We impose the following constraints on the solution:

(a) The first center is a common point of a box whose vertices are (40, 40); (40, 60);

(20, 60); (20, 40) and a ball of radius r = 7 centered at (20, 60).

(b) The second center is in the intersection of two balls of the same radius r = 7,

centered at (35, 20) and (45, 22), respectively.

Choosing τ = 1, σ = 10, τf = 108, Algorithm 4 yields an approximate solution:

X =

26.69959 57.97125

41.06910 23.48799

 , with the cost ψ(X) = 33576.25387; see Figure 4.1.
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FIGURE 4.1. A 2-center constrained clustering problem for dataset EIL76.
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4.5.2. Set Clustering with Constraints.

Example 4.5.2. We now use Algorithm 5 to solve a set clustering problem with con-

straints. We consider the latitude and longitude of the 50 most populous US cities taken

from 2014 United States Census Bureau data 1, and approximate each city by a ball with

radius 0.1
√

A
π

where A is the city’s reported area in square miles.

We use Algorithm 5 for solving 3-center problem generated by this 50-set dataset with

requirement that each center must belong to the intersection of two balls. The centers

of these constrained balls are the columns of the matrix below−80 −80 −92 −90 −115 −110

34 38 37 40 45 40


with corresponding radii given by

(
2 3 4 3 4 4

)
. The result is plotted in Figure

4.2 using a plate Carrée projection 2. Each city is approximated by a ball proportional

to its area.

-130 -120 -110 -100 -90 -80 -70
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25

30

35

40

45

50

FIGURE 4.2. A 3-center set clustering problems with 50 most populous
US cities.

1https://en.wikipedia.org/wiki/List_of_United_States_cities_by_
population
2https://www.mathworks.com/help/map/pcarree.html
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We again choose τ = 1, σ = 10, τf = 108, Algorithm 6 yields an approximate optimal

value ψ(X) = 2271.09657 at an aproximate solution given by

X =


−79.32172 35.88148

−91.93134 37.70436

−113.82289 41.17711

 .

4.5.3. Multifacility Location with Constraints.

Example 4.5.3. We now test Algorithm 8 on a data set A containing random points in

4 balls of radius r = 0.3 centered at (2, 2), (4, 2), (4, 4) and (2, 4). Let k = 4 and the

constraint be the ball with the same radius, centered at (3, 3). We use the “kmeans”

(a MATLAB built in function) to partition the nodes into 4 clusters first, and then we

selected the 4 cluster centroid locations as starting centers. We choose τ = 1, σ = 10,

τf = 108, µ = 1, δ = 0.75, µf = 10−6. Typical centers are the intersections of the

constraint ball boundary and the line connecting centers of each ball to the center of the

constraint one. A visualization is shown in Figure 4.3.

1.5 2 2.5 3 3.5 4 4.5

2

2.5

3

3.5

4

FIGURE 4.3. A 4-center multifacility location with one ball constraint.

Example 4.5.4. Next we consider the latitude and longitude data of them = 988 most-

populated cities in the contiguous 48 United States [49]. We impose the following

constraints on the solution:
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(a) One center is to lie west of −115◦ longitude and within 4◦ latitude/longitude of

Caldwell, Idaho.

(b) One center is to lie within the state of Colorado and within 6◦ latitude/longitude of

Oklahoma City, Oklahoma.

(c) One center is to lie within 2◦ latitude/longitude of Skokie, Illinois and the triangle

with vertices at Cleveland, Ohio; Atlanta, Georgia; and Des Moine, Iowa.

(d) One center is to lie within 4◦ latitude/longitude of New York, NY and Washington,

DC.

Employing Algorithms 7 and 8 with τ = 1, σ = 100, τf = 108, µ = 1, δ = 0.85,

µf = 10−6, we terminate when ‖Xp+1 −Xp‖F < 10−6 and find final centers at

X =


−118.03185 39.89550

−102.04996 36.99996

−87.93854 40.90443

−76.63980 38.67968


with an objective value ψ(X) = 42586.65060; see Figure 4.4.

FIGURE 4.4. A 4-center constrained multifacility location problem with
US cities dataset.
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5

DC Progamming for Hierarchical Clustering

5.1. Overview

A hierarchical clustering of a set of points/nodes can be described as a tree, in which

the leaves are nodes to be clustered. Multilevel hierarchical clustering has a long his-

tory; see, e.g., [18, 19, 33], and has enormous important applications in data mining

and statistics. Since many kinds of data encountered in practical applications have

nested structures, they are required to use multilevel hierarchical clustering which in-

volves grouping a data set into a hierarchy of clusters. Bilevel hierarchical clustering

is a model of this class and is commonly used in designing optimal multicast networks.

While mathematical programming is widely used for nonhierarchical clustering prob-

lems, there exist a few optimization models and techniques for multilevel hierarchical

clustering ones. Except the work in [2, 11], we have not found other approaches using

mathematical programming model for multilevel hierarchical clustering. In this chapter,

we apply the mathematical optimization approach to the bilevel hierarchical clustering

problem. In fact, using mathematical optimization in clustering is a very promising

approach to overcome many disadvantages of the k-mean algorithm commonly used in

clustering; see, e.g., [1, 2, 11, 36] and the references therein. In particular, the DCA was

successfully applied in [2] to a bilevel hierarchical clustering problem in which the dis-

tance measurement is defined by the squared Euclidean distance. Although the DCA in

[2] provides an effective way to solve the bilevel hierarchical clustering in high dimen-

sions, it has not been used to solve the original model defined by the Euclidean distance

measurement proposed in [11] which is not suitable for the resulting DCA according

to the authors of [2]. By applying Nesterov’s smoothing technique and the DCA, we
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are able to solve the original model proposed in [11] in high dimensions. This chapter

presents the work we have done in [35]. The reader can find more details in there.

5.2. The Bilevel Hierarchical Clustering Problem

Given a set of m points (nodes) a1, a2, . . . , am in Rd, our goal is to decompose this

set into k clusters. In each cluster, we would like to find a point xi among the nodes

and assign it as the center for this cluster with all points in the cluster connected to

this center. Then we will find a total center x∗ among the given points a1, a2, . . . , am,

and all centers are connected to this total center. The goal is to minimize the total

transportation cost in this tree computed by the sum of the distances from the total

center to each center and from each center to the nodes in each cluster. This is a discrete

optimization problem which can be shown to be NP-hard. We will solve this problem

based on continuous optimization techniques.

5.2.1. The bilevel hierarchical clustering: Model I. The difficulty in solving this

hierarchical clustering problem lies in the fact that the centers and total center have

to be among the nodes. We first relax this condition with the use of artificial centers

x1, x2, . . . , xk that could be anywhere in Rd. Then we define the total center as the

centroid of x1, x2, . . . , xk given by

x∗ :=
1

k
(x1 + x2 + · · ·+ xk).

The total cost of the tree is given by

ϕ(x1, . . . , xk) :=
m∑
i=1

min
`=1,...,k

‖x` − ai‖+
k∑
`=1

‖x` − x∗‖.

Note that here each ai is assigned to its closest center. However, what we expect are the

real centers, which can be approximated by trying to minimize the difference between

the artificial centers and the real centers. To achieve this goal, define the function

φ(x1, . . . , xk) :=
k∑
`=1

min
i=1,...,m

‖x` − ai‖, x1, . . . , xk ∈ Rd.
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Observe that φ(x1, . . . , xk) = 0 if and only if for every ` = 1, . . . , k, there exists

i ∈ {1, . . . ,m} such that x` = ai, which means that x` is a real node. Therefore, we

consider the constrained minimization problem

minimize ϕ(x1, . . . , xk)

subject to φ(x1, . . . , xk) = 0.

This problem can be converted to an unconstrained minimization problem

(5.2.34) minimize fλ(x1, . . . , xk) := ϕ(x1, . . . , xk) + λφ(x1, . . . , xk),

where x1, . . . , xk ∈ Rd and λ > 0 is a penalty parameter. Similar to the situation with

the clustering problem, this new problem is nonsmooth and nonconvex, which can be

solved by smoothing techniques and the DCA. A particular case of this model in two

dimensions was considered in [11] where the problem was solved using the derivative-

free discrete gradient method established in [10], but this method is not suitable for

large-scale settings in high dimensions. The DCA was successfully applied in [2] to

solve these models in which the similarity measure is defined by the squared Euclidean

distance. Although the DCA in [2] provides an effective way to solve the bilevel hier-

archical clustering in high dimensions, it has not been used to solve the original model

defined by the Euclidean distance measurement proposed in [11] which is not suitable

for the resulting DCA according to the authors of [2]. Nevertheless, we will show in

what follows that the DCA is applicable to this model when combined with Nesterov’s

smoothing technique.
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Note that the functions ϕ and φ in (5.2.34) belong to the class of DC functions with the

following DC decompositions

ϕ(x1, . . . , xk) =
m∑
i=1

[ k∑
`=1

‖x` − ai‖ − max
r=1,...,k

k∑
`=1,`6=r

‖x` − ai‖
]

+
k∑
`=1

‖x` − x∗‖

=
[ m∑
i=1

k∑
`=1

‖x` − ai‖+
k∑
`=1

‖x` − x∗‖
]
−

m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖,

φ(x1, . . . , xk) =
k∑
`=1

m∑
i=1

‖x` − ai‖ −
k∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖.

It follows that the objective function fλ in (5.2.34) has the DC decomposition

fλ(x
1, . . . , xk) =

[
(1 + λ)

k∑
`=1

m∑
i=1

‖x` − ai‖+
k∑
`=1

‖x` − x∗‖
]

−
[ m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖+ λ
k∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖
]
.

This DC decomposition is not suitable for applying the DCA because there is no closed

form for a subgradient of the function g∗ involved.

In the next step, we apply Nesterov’s smoothing technique to approximate the objective

function fλ by a new DC function favorable for applying the DCA.

fλµ(x1, . . . , xk) :=
(1 + λ)µ

2

m∑
i=1

k∑
`=1

∥∥∥∥∥x` − aiµ

∥∥∥∥∥
2

+
µ

2

k∑
`=1

∥∥∥∥∥x` − x∗µ

∥∥∥∥∥
2

− (1 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

− µ

2

k∑
`=1

[
d

(
x` − x∗

µ
;B
)]2

−
m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

‖x` − ai‖ − λ
k∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖.

The original bilevel hierarchical clustering problem now can be solved using a DC

program

minimize fλµ(x1, . . . , xk) = gλµ(x1, . . . , xk)− hλµ(x1, . . . , xk), x1, . . . , xk ∈ Rn.
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In this formulation, gλµ and hλµ are convex functions on (Rn)k defined by

gλµ(x1, . . . , xk) := g1
λµ(x1, . . . , xk) + g2

λµ(x1, . . . , xk),

and

hλµ(x1, . . . , xk) : = h1
λµ(x1, . . . , xk) + h2

λµ(x1, . . . , xk)

+ h3
λµ(x1, . . . , xk) + h4

λµ(x1, . . . , xk).

Their respective components defined as

g1
λµ(x1, . . . , xk) :=

1 + λ

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2, g2
λµ(x1, . . . , xk) :=

1

2µ

k∑
`=1

‖x` − x∗‖2,

h1
λµ(x1, . . . , xk) :=

(1 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

,

h2
λµ(x1, . . . , xk) :=

µ

2

k∑
`=1

[
d

(
x` − x∗

µ
;B
)]2

,

h3
λµ(x1, . . . , xk) :=

m∑
i=1

max
r=1,...,k

k∑
`=1,`6=r

‖x` − ai‖,

h4
λµ(x1, . . . , xk) := λ

k∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖.

To facilitate the gradient and subgradient calculations for the DCA, we introduce a

data matrix A and a variable matrix X. The data A is formed by putting each ai,

i = 1, . . . ,m, in the ith row, i.e.,

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

...
...

...
...

am1 am2 am3 . . . amn


.
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Similarly, if x1, . . . , xk are the k cluster centers, then the variable X is formed by putting

each x`, ` = 1, . . . , k, in the `th row, i.e.,

X =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

...
...

...
...

xk1 xk2 xk3 . . . xkn


.

Then the variable matrix X of the optimization problem belongs to Rk×n, the linear

space of k × n real matrices equipped with the inner product 〈X,Y〉 := trace(XTY).

We represent the average of the k cluster centers by x∗, i.e., x∗ := 1
k

∑k
j=1 x

j .

Gradient and Subgradient Calculations for the DCA

Let us start by computing the gradient of

gλµ(X) = g1
λµ(X) + g2

λµ(X).

Using the Frobenius norm, the function g1
λµ can equivalently be written as

g1
λµ(X) =

1 + λ

2µ

m∑
i=1

k∑
`=1

‖x` − ai‖2

=
1 + λ

2µ

m∑
i=1

k∑
`=1

[
‖x`‖2 − 2〈x`, ai〉+ ‖ai‖2

]
=

1 + λ

2µ

[
m
∥∥X∥∥2

F
− 2
〈
X,EkmA

〉
+ k
∥∥A∥∥2

F

]
,

where Ekm is a k ×m matrix whose entries are all ones. Hence, one can see that g1
λµ is

differentiable and its gradient is given by

∇g1
λµ(X) =

1 + λ

µ
[mX− EkmA] .
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Similarly, g2
λµ can equivalently be written as

g2
λµ(X) =

1

2µ

k∑
`=1

‖x` − x∗‖2

=
1

2µ

k∑
`=1

[
‖x`‖2 − 2〈x`, x∗〉+ ‖x∗‖2

]
=

1

2µ

[∥∥X∥∥2

F
− 2

k

〈
X,EkkX

〉
+

1

k

〈
X,EkkX

〉]
=

1

2µ

[∥∥X∥∥2

F
− 1

k

〈
X,EkkX

〉]
,

where Ekk is a k× k matrix whose entries are all ones. Hence, g2
λµ is differentiable and

its gradient is given by

∇g2
λµ(X) =

1

µ

[
X− 1

k
EkkX

]
.

Since gλµ(X) = g1
λµ(X) + g2

λµ(X), its gradient can be computed by

∇gλµ(X) = ∇g1
λµ(X) +∇g2

λµ(X)

=
1 + λ

µ
[mX− EkmA] +

1

µ

[
X− 1

k
EkkX

]
=

1

µ

[
(1 + λ)mX− (1 + λ)EkmA + X− 1

k
EkkX

]
=

1

µ

[[
[(1 + λ)m+ 1] Ikk −

1

k
Ekk

]
X− (1 + λ)EkmA

]
.

Therefore,

∇gλµ(X) =
1

µ

[(
((1 + λ)m+ 1)Ikk − J

)
X− (1 + λ)S

]
,

where

J =
1

k
Ekk and S = EkmA.
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Our goal now is to compute∇g∗(Y ), which can be accomplished by the relation

X = ∇g∗(Y) if and only if Y = ∇g(X).

The latter can equivalently be written as

[[1 + (1 + λ)m] Ikk − J] X = [(1 + λ)S + µY] .

Then with some algebraic manipulation we can show that

∇g∗(Y) = X =

[
1

1 + (1 + λ)m
Ikk +

1

[1 + (1 + λ)m](1 + λ)m
J

]
[(1 + λ)S + µY] .

Next, we will demonstrate in more detail the techniques we used in finding a subgradient

for the convex function hλµ. Recall that hλµ is defined by

hλµ(X) =
4∑
i=1

hiλµ(X).

We will start with the function h1
λµ given by

h1
λµ(X) =

(1 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

.

From its representation, one can see that h1
λµ is differentiable, and hence its subgradient

coincides with its gradient, that can be computed by the partial derivatives with respect

to x1, · · · , xk, i.e.,

∂h1
λµ

∂x`
(X) = (1 + λ)

m∑
i=1

[
x` − ai

µ
− P

(
x` − ai

µ
;B
)]

.

Thus, for ` = 1, 2, . . . , k, ∇h1
λµ(X) is the k × n matrix U whose `th row is

∂h1λµ
∂x`

(X).

Similarly, one can see that the function h2
λµ given by

h2
λµ(X) =

µ

2

k∑
`=1

[
d

(
x` − x∗

µ
;B
)]2
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is differentiable with its partial derivatives computed by

∂h2
µ

∂x`
(X) =

[
x` − x∗

µ
− P

(
x` − x∗

µ
;B
)]
− 1

k

k∑
j=1

[
xj − x∗

µ
− P

(
xj − x∗

µ
;B
)]

.

Hence, for ` = 1, 2, . . . , k, ∇h2
µ(X) is the k × n matrix V whose `th row is ∂h2µ

∂x`
(X).

Unlike h1
λµ and h2

λµ, the convex functions h3
λµ and h4

λµ are not differentiable, but both

can be written as a finite sum of the maximum of a finite number of convex functions.

Let us compute a subgradient of h3
λµ as an example. We have

h3
λµ(X) =

m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖ =
m∑
i=1

γi(X),

where, for i = 1, . . . ,m,

γi(X) := max

{
γir(X) =

k∑
`=1,`6=r

‖x` − ai‖, r = 1, . . . , k

}
.

Then, for each i = 1, . . . ,m, we find Wi ∈ ∂γi(X) according to the subdifferential rule

for the maximum of convex functions. Then define W :=
∑m

i=1 Wi to get a subgradient

of the function h3
λµ at X by the subdifferential sum rule. To accomplish this goal, we

first choose an index r∗ from the index set {1, . . . , k} such that

γi(X) = γir∗(X) =
k∑

`=1,`6=r∗
‖x` − ai‖.

Using the familiar subdifferential formula of the Euclidean norm function, the `th row

w`i for ` 6= r∗ of the matrix Wi is determined as follows

w`i :=


x`−ai
‖x`−ai‖2 if x` 6= ai,

u ∈ B if x` = ai.

The r∗th row of the matrix Wi is wr∗i := 0.
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The procedure for calculating a subgradient of the function h4
λµ given by

h4
λµ(x1, . . . , xk) = λ

k∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖,

is very similar to what we just demonstrated for h3
λµ.

At this point, we can give a new DCA based algorithm for Model I using Algorithm 1.

The reader can find more details in [35].

5.2.2. The bilevel hierarchical clustering: Model II. In this section, we intro-

duce the second model to solve the bilevel hierarchical clustering problem. In this

model, we use an additional variable xk+1 to denote the total center. At first we allow

the total center xk+1 to be a free point in Rd, the same as the k cluster centers. Then the

total cost of the tree is given by

ϕ(x1, . . . , xk+1) :=
m∑
i=1

min
`=1,...,k

‖x` − ai‖+
k∑
`=1

‖x` − xk+1‖, x1, . . . , xk+1 ∈ Rd.

To force the k + 1 centers to be chosen from the given nodes (or to make them as close

to the nodes as possible), we set the constraint

φ(x1, . . . , xk+1) :=
k+1∑
`=1

min
i=1,...,m

‖x` − ai‖ = 0.

Our goal is to solve the optimization problem

minimize ϕ(x1, . . . , xk+1)

subject to φ(x1, . . . , xk+1), x1, . . . , xk+1 ∈ Rd.

Similar to the first model, this problem formulation can be converted to an uncon-

strained minimization problem involving a penalty parameter λ > 0:

(5.2.35) minimize fλ(x1, . . . , xk+1) := ϕ(x1, . . . , xk+1) + λφ(x1, . . . , xk+1),

where x1, . . . , xk+1 ∈ Rd.
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Next, we apply Nesterov’s smoothing technique to get an approximation of the objective

function f given in (5.2.35) which involves two parameter λ > 0 and µ > 0:

fλµ(X) :=
1 + λ

2µ

m∑
i=1

k+1∑
`=1

‖x` − ai‖2 +
1

2µ

k∑
`=1

‖x` − xk+1‖2 − 1

2µ

m∑
i=1

‖xk+1 − ai‖2

− λµ

2

m∑
i=1

[
d

(
xk+1 − ai

µ
;B
)]2

− (1 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

− µ

2

k∑
`=1

[
d

(
x` − xk+1

µ
;B
)]2

−
m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖

− λ
k+1∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖.

As we will show in what follows, it is convenient to apply the DCA to minimize the

function fλµ. This function can be represented as the differences of two convex func-

tions defined on R(k+1)×n using a variable X whose ith row is xi for i = 1, . . . , k + 1

fλµ(X) = gλµ(X)− hλµ(X), X ∈ R(k+1)×n.

In this formulation, gλµ and hλµ are convex functions defined on R(k+1)×n by

gλµ(X) := g1
λµ(X) + g2

λµ(X)

and

hλµ(X) := h1
λµ(X) + h2

λµ(X) + h3
λµ(X) + h4

λµ(X) + h5
λµ(X) + h6

λµ(X),

with their respective components given by

g1
λµ(X) :=

1 + λ

2µ

m∑
i=1

k+1∑
`=1

‖x` − ai‖2, g2
λµ(X) :=

1

2µ

k∑
`=1

‖x` − xk+1‖2,

h1
λµ(X) :=

1

2µ

m∑
i=1

‖xk+1 − ai‖2, h2
λµ(X) :=

λµ

2

m∑
i=1

[
d

(
xk+1 − ai

µ
;B
)]2

,
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h3
λµ(X) :=

(1 + λ)µ

2

m∑
i=1

k∑
`=1

[
d

(
x` − ai

µ
;B
)]2

,

h4
λµ(X) :=

µ

2

k∑
`=1

[
d

(
x` − xk+1

µ
;B
)]2

,

h5
λµ(X) :=

m∑
i=1

max
r=1,...,k

k∑
`=1,` 6=r

‖x` − ai‖, h6
λµ(X) := λ

k+1∑
`=1

max
s=1,...,m

m∑
i=1,i 6=s

‖x` − ai‖.

A similar calculation for gradient and subgradient can be done in the same way of

section 5.2.1. More details can be found in [35].

5.2.3. Numerical Experiments. We use MATLAB to code our algorithms and per-

form numerical experiments on a MacBook Pro with 2.2 GHz Intel Core i7 Processor.

For our numerical experiments, we use three data sets: one artificial data set with 18

data points in R2 (see Figure 5.1a), the EIL76 and the PR1002 from [40] (see Figure

5.1b and Figure 5.1c), respectively.

The two MATLAB codes used to implement our two algorithms have two major parts:

an outer loop for updating the penalty and the smoothing parameters and an inner loop

for updating the cluster centers. At the beginning of each outer loop excution, the

penalty and smoothing parameter are updated respectively as λi+1 = σ1λi and µi+1 =

σ2µi, i ≥ 0. After we set values µ0 > 0, λ0 > 0, σ1 > 1, and σ2 ∈ (0, 1), we used

µ < 10−6 as stopping criteria for the outer loop.

By trial and error we find out that the values chosen for λ0 and µ0 in large part determine

the performance of the two algorithms for each data set. Intuitively, we see that very

large values of λ0 will over-penalize the distance between an artificial center and its

nearest data node and may prevent the algorithm from clustering properly. We therefore

use λ0 ≤ 1 so that the algorithm has a chance to cluster the data before the penalty

parameter takes effect. Similarly, we choose µ0 ≥ 1.
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(A) 18 Data Points, 2 Centers

(B) 76 Data Points, 3 Centers (C) 1002 Data Points, 6 Centers

FIGURE 5.1. Plots of the three test data sets.

The starting center X0 is selected at a certain radius, γ rad(A), from the median point,

median(A), of the entire data set, i.e.,

X0 = median(A) + γ rad(A) U,

where rad(A) := max{‖ai − median(A)‖ | ai ∈ A}, γ is a randomly chosen real

number from the standard uniform distribution on the open interval (0,1), U is a k × n

matrix whose k rows are randomly generated unit vectors in Rn, and the sum is in the

sense of adding a vector to each row of a matrix.

As showed in Tables 5.1, 5.2, and 5.3, both algorithms identify the optimal solutions

with reasonable amount of time for both DS18 and EIL76 with two and three cluster
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centers, respectively. To get a good starting point which yields a better estimate of

the optimal value for bigger data sets such as PR1002, we use a method called radial

search described as follows. Given initial radius r0 > 0 and m ∈ N, set γ = ir0

for i = 1, . . . ,m. Then we test the algorithm with different starting points given by

X0(i) = median(A) + ir0(rad(A)U) for i = 1, . . . ,m. Figure 5.2 shows the result of

the method applied to PR1002 with six cluster centers, where the y-axis represents the

optimal value returned by ALG1 with different starting points X0(i), as represented on

the x-axis.

µ0 = 5.70, λ0 = 0.001, σ1 = 7500, σ2 = 0.5
Cost1 Cost2 Time1 Time2 Iter1 Iter2 k m n

ADS18 22.4853 22.4853 0.07 0.09 124 124 2 18 2
ADS18 22.4853 22.4853 0.07 0.09 124 124 2 18 2
ADS18 22.4853 22.4853 0.07 0.10 124 124 2 18 2

TABLE 5.1. Results for the 18 points artificial data set.

µ0 = 100, λ0 = 10−6, σ1 = 1, σ2 = 0.5
Cost1 Cost2 Time1 Time2 Iter1 Iter2 k m n

EIL76 1125.48 1107.47 1.61 1.86 540 540 3 76 2
EIL76 1099.36 1099.36 1.52 1.81 540 540 3 76 2
EIL76 1099.36 1099.36 1.53 1.87 540 540 3 76 2

TABLE 5.2. Results for EIL76 data set.

µ0 = 1950, λ0 = 10−6, σ1 = 7500, σ2 = 0.5
Cost1 Cost2 Time1 Time2 Iter1 Iter2 k m n

PR1002 1.63399e+06 1.63399e+06 22.16 25.37 330 330 6 1002 2
PR1002 1.63399e+06 1.63399e+06 22.30 25.54 330 330 6 1002 2
PR1002 1.63399e+06 1.63399e+06 23.54 26.08 330 330 6 1002 2

TABLE 5.3. Results for PR1002 data set.

For comparison purposes, both Cost1 and Cost2 are computed by the same way. First,

we systematically reassign the k cluster centers returned by the respective algorithms

by k real nodes that are close to them, i.e., for ` = 1, . . . , k

x̄` = argmin{‖x` − ai‖ | ai ∈ A}.
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Then the total center x∗ will be a real node, from the remaining nodes, whose sum of

distances from the k reassigned centers is the minimal, i.e.,

x∗ := argmin
{ k∑

`=1

‖x̄` − ai‖ | ai ∈ A
}
.

The total cost is computed by adding the distance of each real node to its closest center

(including the total center), and the distances of the total center from the k cluster

centers, i.e.,

Cost :=
m∑
i=1

min
`=1,...,k+1

‖x̄` − ai‖+
k∑
`=1

‖x̄` − xk+1‖, where xk+1 = x∗.

FIGURE 5.2. PR1002, The 1002 City Problem, with 6 Cluster Centers.
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6

DC Programming for Multifacility Location via Mixed Integer Programming

6.1. Overview

In many practical applications, one needs to consider facility location problems in which

more than one center must be found to serve a finite number of demand points. These

problems are referred to as multifacility location problems (MFLPs). Given a finite

number of demand points a1, . . . , an in Rd, we consider the facility location in which

k centers v1, . . . , vk (1 ≤ k ≤ n) in Rd need to be found to serve these demand points

by assigning each demand point to its nearest center and minimizing the total distances

from the centers to the assigned demand points. In the case where k = 1, this problem

reduces to the generalized Fermat-Torricelli problem which asks for a point that mini-

mizes the sum of the distances to a finite number of given points in Rd. Motivated by

recent work by An, Minh and Tao [5], we model this problem using mixed integer pro-

gramming and develop a DCA-based algorithm to solve its approximate version from

Nesterov’s smoothing.

For convenience, we use a variable k × d matrix V with vi as its ith row to store

the centers to be found. We also use another variable k × n matrix U = [ui,j] with

ui,j ∈ {0, 1} and
∑k

i=1 ui,j = 1 for j = 1, . . . , n to assign demand points to the centers.

The set of all such matrices is denoted by U . Note that ui,j = 1 if the center vi is

assigned to the demand point aj , and
∑k

i=1 ui,j = 1 means that the demand point aj is

assigned to only one center. The goal is to solve the constrained optimization problem

minimize F(U,V) :=
∑k

i=1

∑n
j=1 u

2
i,j‖aj − vi‖

subject to U ∈ U and V ∈ Rk×d.
(6.1.36)
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Note that, since ui,j ∈ {0, 1}, we use u2
i,j instead of ui,j in the definition of the objective

function F for convenience.

In their recent work [5], for the purpose of clustering, An, Minh and Tao studied a ver-

sion of (6.1.36) which involves the squared Euclidean norm instead of the Euclidean

norm as in our formulation. Note that the difference between the two models is signif-

icant because using the Euclidean norm allows us to model the total distance in supply

delivery, while using the squared Euclidean norm is meaningful in clustering. In addi-

tion, in the case where k = 1 our problem becomes the generalized Fermat-Torricelli

problem which does not have a closed-form solution, while the problem considered in

[5] reduces to the problem of minimizing the sum of squares of the Euclidean distances

to the demand points. The latter has a closed form solution given by the mean of the

data points. Solving the clustering problem in [5] and solving our multifacility location

problem (6.1.36) are difficult because of their discrete nature and nonconvexity, while

the multifacility location problem (6.1.36) requires techniques to deal with its nondif-

ferentiability/nonsmoothness. This chapter presents the work we have done in [7]. The

reader can find more details in there.

6.2. Smooth Approximation by Continuous DC Problems

Using Nesterov’s smoothing technique allows us to approximate the objective function

F in (6.1.36) by a smooth DC function Fµ as µ > 0 defined as follows

Fµ(U,V) :=
1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2 − µ

2

k∑
i=1

n∑
j=1

u2
i,j

[
d

(
aj − vi
µ

;B
)]2

= Gµ(U,V)−Hµ(U,V),

where Gµ,Hµ : Rk×n × Rk×d → R are given by

Gµ(U,V) :=
1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2,

Hµ(U,V) :=
µ

2

k∑
i=1

n∑
j=1

u2
i,j

[
d

(
aj − vi
µ

;B
)]2

.
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This leads us to the construction of the following family of smooth approximations of

the main problem (6.1.36) defined by

minimize Fµ(U,V) := Gµ(U,V)−Hµ(U,V) as µ > 0

subject to U ∈ U = ∆n ∩ {0, 1}k×n and V ∈ Rk×d,
(6.2.37)

where ∆n is the the nth Cartesian degree of the (k − 1)-simplex

∆ := {y ∈ [0, 1]k |
k∑
i=1

yi = 1},

which is a subset of Rk.

Observe that for each µ > 0 problem (6.2.37) is of discrete optimization, while our

intention is to convert it to a family of problems of continuous optimization for which

we are going to develop and implement a DCA-based algorithm in Section 6.3.

The rest of this section is devoted to deriving two results, which justify such a reduction.

The first theorem allows us to verify the existence of optimal solutions to the constrained

optimization problems that appear in this procedure. It is required for having well-

posedness of the algorithm construction.

Theorem 6.2.1. Let (U,V) be an optimal solution to problem (6.2.37). Then for any

µ > 0 we have V ∈ B, where B :=
∏k

i=1 Bi is the Cartesian product of the k Euclidean

balls Bi centered at 0 ∈ Rd with radius r :=
√∑n

j=1 ‖aj‖2 that contain the optimal

centers v̄i for each index i = 1, . . . , k.

Proof. We can clearly rewrite the objective function in (6.2.37) in the form

(6.2.38) Fµ(U,V) =
1

2µ

k∑
i=1

n∑
j=1

ui,j‖aj − vi‖2 − µ

2

k∑
i=1

n∑
j=1

ui,j

[
d

(
aj − vi
µ

;B
)]2

due to interchangeability between u2
i,j and ui,j . Observe that Fµ(U,V) is differentiable

onRk×n×Rk×d. Employing the classical Fermat rule in (6.2.37) with respect to V gives

us ∇VFµ(U,V) = 0. To calculate this partial gradient, we need some clarification for

the second term in (6.2.38), which is differentiable as a whole while containing the

nonsmooth distance function. The convexity of the distance function in the setting
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of (6.2.38) allows us to apply the subdifferential calculation of convex analysis (see,

e.g., [25, Theorem 2.39]) and to combine it with an appropriate chain rule to handle

the composition in (6.2.38). Observe that the distance function square in (6.2.38) is the

composition of the nondecreasing convex function ϕ(t) := t2 on [0,∞) and the distance

function to the ball B. Thus the chain rule from [25, Corollary 2.62] is applicable. Thus,

we can show that d2(·;B) is differentiable with

(6.2.39) ∇d2(x;B) = 2[x− P (x;B)] for x ∈ Rd.

Using (6.2.39), we consider the following two cases:

Case 1: (aj − v̄i)/µ ∈ B for the fixed indices i ∈ {1, . . . , k} and j ∈ {1, . . . , n}. Then

∇d2

(
aj − v̄i
µ

;B
)

= {0},

which gives us

∂Fµ
∂vi

(U,V) =
1

µ

n∑
j=1

ūi,j(v̄i − aj), i = 1, . . . , k,

for the corresponding partial derivatives of Fµ.

Case 2: (aj − v̄i)/µ /∈ B for the fixed indices i ∈ {1, . . . , k} and j ∈ {1, . . . , n}. In

this case we have

∂Fµ
∂vi

(U,V) =
1

2µ

n∑
j=1

ūi,j2(v̄i − aj) +
n∑
j=1

ūi,j

[
aj − v̄i
µ

− P
(
aj − v̄i
µ

;B
)]

=
1

µ

n∑
j=1

ūi,j(v̄i − aj) +
n∑
j=1

ūi,j

[
aj − v̄i
µ

−
(

aj − v̄i
‖aj − v̄i‖

)]

=
1

‖aj − v̄i‖

n∑
j=1

ūi,j(v̄i − aj).

Thus in both cases above it follows from the stationary condition ∇VFµ(U,V) = 0

that

v̄i =

∑n
j=1 ūi,jaj∑n
j=1 ūi,j

for all i = 1, . . . , k,

100



since we have
n∑
j=1

ūi,j > 0 due to the nonemptiness of the clusters. Then the classical

Cauchy-Schwarz inequality leads us to the estimates

‖v̄i‖2 ≤

(∑n
j=1 ūi,jaj

)2

(∑n
j=1 ūi,j

)2 ≤
n∑
j=1

‖aj‖2 := r2,

which therefore verify all the conclusions of this theorem. �

Our next step is to enclose each discrete optimization problem (6.2.37) into the corre-

sponding one of continuous optimization. For the reader’s convenience if no confusion

arises, we keep the same notation U for all the k × n matrices without the discrete

restrictions on their entries. Define now the function P : Rk×n → R by

P(U) :=
k∑
i=1

n∑
j=1

ui,j(1− ui,j) for all U ∈ Rk×n

and observe that this function is concave on Rk×n with P(U) ≥ 0 whenever U ∈ ∆n.

Furthermore, we have the representations

(6.2.40) U =
{
U ∈ ∆n

∣∣ P(U) = 0
}

=
{
U ∈ ∆n

∣∣ P(U) ≤ 0
}

for the set of feasible k × n-matrices U in the original problem (6.1.36). Employing

further the standard penalty function method allows us to eliminate the most involved

constraint on U in (6.2.40) given by the functionP . Taking the penalty parameter α > 0

sufficiently large and using the smoothing parameter µ > 0 sufficiently small, consider

the following family of continuous optimization problems

(6.2.41)
minimize Fµ(U,V) + αP(U) = Gµ(U,V)−Hµ(U,V) + αP(U)

subject to U ∈ ∆n and V ∈ B.

Observe that Theorem 6.2.1 ensures the existence of feasible solutions to problem

(6.2.41) and hence optimal solutions to this problem by the Weierstrass theorem due to
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the continuity of the objective functions therein and the compactness of the constraints

sets ∆n and B.

Let us introduce yet another parameter ρ > 0 ensuring a DC representation of the

objective function in (6.2.41) as follows

Fµ(U,V) + αP(U) =

=
ρ

2
‖(U,V)‖2 −

(
ρ

2
‖(U,V)‖2 −Fµ(U,V)− αP(U)

)
=
ρ

2
‖(U,V)‖2 −

(
ρ

2
‖(U,V)‖2 − Gµ(U,V) +Hµ(U,V)− αP(U)

)
=: G(U,V)−H(U,V),

where the function G(U,V) :=
ρ

2
‖(U,V)‖2 is obviously convex, and

H(U,V) :=
ρ

2
‖(U,V)‖2 − Gµ(U,V) +Hµ(U,V)− αP(U).

Since Hµ(U,V)− αP(U) is also convex as α > 0, we are going to show that for any

given number µ > 0 it is possible to determine the values of the parameter ρ > 0 such

that the function
ρ

2
‖(U,V)‖2 − Gµ(U,V) is convex under an appropriate choice of ρ.

This would yield the convexity of H(U,V) and therefore would justify a desired rep-

resentation of the objective function in (6.2.41). The following result gives us a precise

meaning of this statement, which therefore verify the required reduction of (6.2.41) to

DC continuous optimization.

Theorem 6.2.2. The function

G1(U,V) :=
ρ

2
‖(U,V)‖2 − Gµ(U,V)(6.2.42)

is convex on ∆n × B provided that

(6.2.43) ρ ≥ n

2µ

[(
1 +

1

n
ξ2

)
+

√(
1 +

1

n
ξ2

)2

+
12

n
ξ2

]
,

where ξ := r + max
1≤j≤n

‖aj‖ and r :=
√∑n

j=1 ‖aj‖2.

102



Proof. Consider the function G1(U,V) defined in (6.2.42) for all (U,V) ∈ ∆n × B

and deduce by elementary transformations directly from its construction that

G1(U,V) =
ρ

2
‖(U,V)‖2 − Gµ(U,V)

=
ρ

2
‖(U,V)‖2 − 1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2

=
ρ

2
‖U‖2 +

ρ

2
‖V‖2 − 1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2

=
ρ

2

k∑
i=1

n∑
j=1

u2
i,j +

ρ

2n

k∑
i=1

n∑
j=1

‖vi‖2 − 1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2

=
k∑
i=1

n∑
j=1

ρ

2
u2
i,j +

ρ

2n
‖aj − vi‖2 +

+
ρ

n
〈aj, vi〉 −

ρ

2n
‖aj‖2 − 1

2µ
u2
i,j‖aj − vi‖2.

Next we define the functions γi,j : R × Rd → R for all i = 1, . . . , k and j = 1, . . . , n

by

(6.2.44) γi,j(ui,j, vi) :=
ρ

2
u2
i,j +

ρ

2n
‖aj − vi‖2 − 1

2µ
u2
i,j‖aj − vi‖2

and show that each of these functions is convex on the set {ui,j ∈ [0, 1], ‖vi‖ ≤ r},

where r > 0 is taken from Theorem 6.2.1.

To proceed, consider the Hessian matrix of each function in (6.2.44) given by

Jγi,j(ui,j, vi) :=

ρ−
1

µ
‖aj − vi‖2 − 2

µ
ui,j(vi − aj)

− 2

µ
ui,j(vi − aj)

ρ

n
− 1

µ
u2
i,j


and calculate its determinant det(Jγi,j(ui,j, vi)) by

det(Jγi,j(ui,j, vi)) :=

(
ρ− 1

µ
‖aj − vi‖2

)(
ρ

n
− 1

µ
u2
i,j

)
− 4

µ2
u2
i,j(vi − aj)T (vi − aj)

=
ρ2

n
− ρ
(
u2
i,j

µ
+

1

nµ
‖vi − aj‖2

)
−

3u2
i,j

µ2
‖vi − aj‖2.
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It follows from the well-known second-order characterization of the convexity that the

function γi,j(ui,j, vi) is convex on {ui,j ∈ [0, 1], ‖vi‖ ≤ r} if det(Jγi,j(ui,j, vi)) ≥ 0.

Using [6, Theorem 1] gives us the estimate

det
(
Jγi,j(ui,j, vi)

)
≥ ρ2

n
− ρ
(

1

µ
+

1

nµ
‖vi − aj‖2

)
− 3

µ2
‖vi − aj‖2.

Then we get from the construction of B in Theorem 6.2.1 that 0 < ‖vi − aj‖ ≤ ‖vi‖+

‖aj‖ ≤ r + max
1≤j≤n

‖aj‖ =: ξ, and therefore

(6.2.45) det
(
Jγi,j(ui,j, vi)

)
≥ ρ2

n
− ρ

µ

(
1 +

1

n
ξ2

)
− 3

µ2
ξ2.

It allows us to deduce from the aforementioned condition for the convexity of γi,j(ui,j, vi)

that we do have this convexity if ρ satisfies the estimate (6.2.43). �

6.3. Design and Implementation of the Solution Algorithm

Based on the developments presented in the previous sections and using the established

smooth DC structure of problem (6.2.41) with the subsequent ρ-parameterization of

the objective function therein as G(U,V) − H(U,V), we are now ready to propose

and implement a new algorithm for solving this problem involving both DCA-2 and

Nesterov’s smoothing.

To proceed, let us present the problem under consideration in the equivalent uncon-

strained format by using the infinite penalty via the indicator function

(6.3.46)
minimize

ρ

2
‖(U,V)‖2 −H(U,V) + δ∆×B(U,V)

subject to (U,V) ∈ Rk×n × Rk×d,

where B, ∆, and ρ are taken from Section 6.2.

We first explicitly compute the gradient of the convex functionH(U,V) in (6.3.46).
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Denoting

[Y ,Z] := ∇H(U,V) = ∇
(
ρ

2
‖(U,V)‖2 − 1

2µ

k∑
i=1

n∑
j=1

u2
i,j‖aj − vi‖2

+
µ

2

k∑
i=1

n∑
j=1

u2
i,j

[
d

(
aj − vi
µ

;B
)]2

− α
k∑
i=1

n∑
j=1

ui,j(1− ui,j)
)
,

we have Y = ∇HU(U,V) and Z = ∇HV(U,V). Thus for each i = 1, . . . , k and

j = 1, . . . , n the (j, i)−entry of the matrix Y and the ith row of the matrix Z are

Yj,i := ρui,j −
ui,j
µ
‖aj − vi‖2 + µui,j

[
d

(
aj − vi
µ

;B
)]2

+ 2αui,j − α,

Zi := ρvi −
1

µ

n∑
j=1

u2
i,j(vi − aj)−

n∑
j=1

u2
i,j

[
aj − vi
µ

− P
(
aj − vi
µ

;B
)]
,

respectively. Let us now describe the proposed algorithm for solving the DC program

(6.3.46) and hence the original problem (6.1.36) of multifacility location. The symbols

Y l[j,:] and Z li in this description represents the jth row of the matrix Y and the ith row of

the matrix Z at the lth iteration, respectively. Accordingly we use the symbols U
(l+1)
[:,j]

and V
(l+1)
i .

Next we employ Algorithm 9 to solving several multifacility location problems of some

practical meaning. By trial and error we verify that the values chosen for µ determine

the performance of the algorithm for each data set. It can be seen that very small values

of the smoothing parameter µ may prevent the algorithm from clustering, and thus

we gradually decrease these values. This is done via multiplying µ by some number

0 < β < 1 and stopping when µ < µf . Note also that in the implementation of our

algorithm we use the standard approach of choosing U0 by computing the distance

between the point in question and each group center V0 and then by classifying this

point to be in the group whose center is the closest to it by assigning the value of 1,

while otherwise we assign the value of 0.

Let us now present several numerical examples, where we compute the optimal centers

by using Algorithm 9 via MATLAB calculations. Fix in what follows the values of
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Algorithm 9 Solving Multifacility Location Problems

INPUT: X (the dataset), V0 (initial centers), ClusterNum (number of clusters), µ >
0, β (scaling parameter) > 0.
INITIALIZATION U0, ε > 0, µf (minimum threshold for µ) > 0, α > 0, ρ > 0,
tol (tolerance parameter) = 1, l = 0
while tol > ε and µ > µf do

Repeat
for 1 ≤ i ≤ k and 1 ≤ j ≤ n do

Y lj,i := ρuli,j −
uli,j
µ

∥∥aj − vli∥∥2
+ µuli,j

[
d

(
aj − vli
µ

;B
)]2

+ 2αuli,j − α,

Z li := ρvli −
1

µ

n∑
j=1

(uli,j)
2(vli − aj)−

n∑
j=1

(uli,j)
2

[
aj − vli
µ

− P
(
aj − vli
µ

;B
)]
.

end for
for 1 ≤ i ≤ k and 1 ≤ j ≤ n do

U
(l+1)
[:,j] := P

(Y l[j,:]
ρ

; ∆

)
,

V
(l+1)
i := P

(
Z li
ρ

;Bi

)
=


Z li
ρ

if |Z li || ≤ ρr,

rZ li
||Z li ||

if ||Z li || > ρr.

end for
l := l + 1
Update:

tol :=
∥∥[U(l+1),V(l+1)]− [Ul,Vl]

∥∥
F

µ := βµ
end while
OUTPUT: [U(l+1),V(l+1)]

µ = 0.5, β = 0.85, ε = 10−6, µf = 10−6, α = 30, and ρ = 30 unless otherwise

stated. The objective function is the total distance from the centers to the assigned

data point. Note that this choice of the objective function seems to be natural from

practical aspects in, e.g., airline and other transportation industries, where the goal is to

reach the destination via the best possible route available. This reflects minimizing the

transportation cost.

In the following examples we implement the standard k-means algorithm in MATLAB

using the built-in function kmeans().
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Example 6.3.1. Let us consider a data set with 14 entries in R2 given by

X :=

0 2 7 2 3 6 5 8 8 9 1 7 0 0

3 2 1 4 3 2 3 1 3 2 1 4 4 1

T

with the initial data defined by

V0 :=

 7.1429 2.2857

1.1429 2.5714

 is obtained from the k-means algorithm; see Table 6.1,

ClusterNum := 2.

Employing Algorithm 9, we obtain the optimal centers as depicted in Table 6.1 and

Figure 6.1.

TABLE 6.1. Comparison between Algorithm 3 and k-means.

Method Optimal Center (VN ) Cost Function

k-means
[

7.1429 2.2857
1.1429 2.5714

]
22.1637

Algorithm 9
[

7.2220 2.1802
1.1886 2.5069

]
22.1352
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FIGURE 6.1. MFLP with 14 demand points and 2 centers.

Table 6.1 shows that the proposed Algorithm 9 is marginally better for the given data in

comparison to the classical k-means approach in terms of the objective function.
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In the next example we choose the initial cluster by the process of random selection

and see its effect on the optimal centers. Then the results obtained in this way by

Algorithm 9 are compared with those computed by the k-means approach.

Example 6.3.2. Let X be 200 standard normally distributed random datapoints in R2,

and let the initial data be given by

V0 := randomly permuting and selecting 2 rows of X,

ClusterNum := 2.

We obtain the optimal centers as outlined in Table 6.2.

TABLE 6.2. Comparison between Algorithm 3 and k-means.

Method Optimal Center (VN ) Cost Function

k-means
[

2.1016 1.2320
−1.3060 −1.0047

]
403.3966

Algorithm 9
[

1.4902 0.7406
−1.3464 −1.0716

]
401.7506

Observe from Table 6.2 that the proposed Algorithm 9 is better for the given data in

comparison to the standard k-means approach. In addition, our approach gives a better

approximation for the optimal center as shown in Figure 6.2.
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FIGURE 6.2. MFLP with 200 demand points and 2 centers.
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Note that a real-life data may not be as efficiently clustered as in Example 6.3.2. Thus a

suitable selection of the initial cluster V0 is vital for the convergence of the DCA based

algorithms. In the next Example 6.3.3 we select V0 in Algorithm 9 by using the standard

k-means method. The results achieved by our Algorithm 9 are again compared with

those obtained by using the k-means approach.

Example 6.3.3. Consider the dataset X consisting of the latitudes and longitudes of 50

most populous cities in the USA1 with

V0 :=


−80.9222 37.9882

−97.8273 35.3241

−118.3121 36.9535

 is obtained from the k-means algorithm; see Table 6.3,

ClusterNum := 3.

By using Algorithm 9 we obtain the following optimal centers as given in Table 6.3.

TABLE 6.3. Comparison between Algorithm 9 (combined with k-
means) and standard k-means.

Method Optimal Center (VN ) Cost Function

k-means

 −80.9222 37.9882
−97.8273 35.3241
−118.3121 36.9535

 288.8348

Algorithm 9 (combined with k-means)

 −81.0970 38.3092
−97.4138 35.3383
−119.3112 36.5410

 286.6523

We see that Algorithm 3 (combined with k-means) in which the initial cluster V0 is se-

lected by using k-means method performs better in comparison to the standard k-means

approach (Table 6.3). Moreover, it gives us optimal centers as depicted in Figure 6.3.

1Available at https://en.wikipedia.org/wiki/List of United States cities by population
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FIGURE 6.3. MFLP with 50 demand points and 3 centers.

In the last example presented in this section we efficiently solve a higher dimensional

multifacility location problem by using Algorithm 9 and compare it’s value of the cost

function with the standard k-means algorithm.

Example 6.3.4. Let X in R13 be the wine dataset from the UCI Machine Learning

Repositiory [50] consisting of 178 demand points. We apply Algorithm 3 with

V0 is obtained from the k-means algorithm,

ClusterNum := 3.

The total costs using Algorithm 9 and the k-means algorithm are obtained in Table 6.4

showing that former algorithm is better than the latter.

TABLE 6.4. Cost comparison between Algorithm 3 (combined with k-
means) and k-means.

Method Cost Function
k-means 16556

Algorithm 9 (combined with k-means) 16460
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7

Conclusion

In chapter 1 and 2, we presented the basic tools of convex analysis and optimization

which built the mathematical foundation for later chapters, and gave numerical tech-

niques and algorithms, namely Nesterov’s smoothing technique and DCA.

In chapter 3 we represented new results of convex analysis as well as their unified and

simplified proofs based on the geometric variational analysis approach for the case of

convex objects in locally convex topological and Banach spaces.

Throughout this thesis we saw that all the algorithms were simple, which is one of the

key advantages of this thesis. In chapter 4, 5 and 6 we demonstrated the successful

usage of DCA and Nesterov’s smoothing technique to solve facility locations and clus-

tering numerically in many different settings. However, it should be noted that most of

the algorithms were implemented in two dimensions with nonnegative weights. So, ex-

tending them to higher dimensions with arbitrary weights is another direction towards

future works.

Finally, we see that extensive research could be to improve convergence rates by apply-

ing other numerical algorithms such as boosted/stochastic DCA. Furthermore, it is pos-

sible to study the problems in which the distances are generated by different norms, for

instance l1 and l∞. Additionally, interesting areas to explore include using Nesterov’s

Accelerated version, refining the initial cluster selection, for instance, using derivative-

free methods for initializations in the DCA, the stopping criterion and the enhancing

the effectiveness of the gradient/subgradient-based nonconvex algorithms.
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[51] C. Zălinescu, Convex Analysis in General Vector Spaces, World Scientific, Singa-

pore, 2002.

116


	Convex and Nonconvex Optimization Techniques for Multifacility Location and Clustering
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1594136883.pdf.0bH6m

