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Abstract 

Bridges are critical lifeline components of the infrastructure network, 

enabling economies to function under normal conditions and disaster response 

and recovery missions to take place after extreme events. Therefore, ensuring 

satisfactory performance increases community resilience and minimizes both 

human and economic losses. Coastal bridges, which are the focus of this PhD 

dissertation, are vulnerable to coastal storms. High failure rates of these bridges 

during two major hurricane events in the mid-2000s have spurred research 

activities to better understand the wave-induced forces of coastal bridges.  

This PhD research represents a continuation effort to build, implement, and 

introduce new fundamental concepts and methods that are important to the bridge 

engineering community. The data set analyzed was part of an experimental study 

conducted at the O. H. Hinsdale Wave Research Laboratory at Oregon State 

University in 2007. A unique aspect of the setup was that the substructure flexibility 

of the 1:5-scale bridge specimen could be adjusted by inserting springs with 

different stiffnesses. The realistic specimen was subjected to a range of wave 

conditions, water levels, and substructure fixity conditions. 

First, a suitable equation of motion was developed as it represents an 

essential building block for the any for any planned simulation effort. This equation 

was derived based on the examination of the damping behavior of the system. This 

effort lead to a better understanding of how the dynamic properties of the bridge 

superstructure specimen are affected by different levels of submersion, and what 

their numerical values are. 
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Second, the available data set was analyzed in depth with the objective to 

determine the effect of substructure flexibility on the observed wave-induced forces 

on the bridge superstructure specimen. Reinforced by the test of restriction, it was 

found that that the measured forces experienced by the superstructure specimen 

with a flexible substructure were notably larger compared to the rigid case. These 

findings highlight the need to account for substructure flexibility when estimating 

wave forces. The proposed force magnification factors can be used in conjunction 

with code equations that are based on rigid support conditions.  

Finally, in order to expand the understanding of substructure flexibility and 

exploring test conditions that are not part of the original experimental dataset, 

having a numerical model is a promising solution. The particle finite element 

method (PFEM) was selected as the tool for this purpose and is introduced and 

evaluated against sample responses from the experiment. 

In conclusion, support conditions affect the dynamic response of bridges 

subjected to wave action and thus need to be considered. This PhD dissertation 

created a better fundamental understanding of how bridges respond dynamically 

to wave action considering varying levels of submersion as well as substructure 

flexibility. The findings allow bridge engineers to build more accurate numerical 

models for fluid-structure interaction problems and provide practical guidance with 

respect to the magnification of wave-induced forces for design and evaluation 

applications. 
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Chapter 1  

Introduction 

 

1.1 Introduction 

Bridges are critical lifeline components of the infrastructure network, enabling 

economies to function under normal conditions and disaster response and 

recovery missions to take place after extreme events. Their satisfactory 

performance increases community resilience and minimizes both human and 

economic losses. Therefore, enhancing the understanding of the behavior of these 

structures as they interact with waves has become an important area of study for 

many researchers.  

Deck girder bridges, a common type of coastal bridge, can be divided in terms 

of three components: superstructure (which refers to the top part of the structure, 

including deck, girders, and diaphragms), substructure (which refer to the bottom 

part of the structure, consisting of bent columns and caps), and the connections 

between them. Due to the impact of hurricanes on coastal bridges, and 

contemplating on the failure modes of these structures, many researchers have 

been motivated to understand and estimate the wave-induced forces on bridges 

to improve bridge engineering practice [1]–[4]. These efforts have varied between 

being purely theoretical or numerical in nature [5]–[10] or by means of experimental 

testing [11]–[14]. Most of these studies assumed the investigated bridge 

component to be supported rigidly when studying the estimated forces. Since this 
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represents a simplification that is not realistic of a bridge in the real world, 

researchers [11], [12] considered substructure flexibility as an important factor to 

be investigated and its effect on wave forces to be determined. A preliminary study 

in 2008 [15] showed the difference between the magnitudes of the measured 

forces for different fixity conditions. Since then, only a few studies have been 

performed to investigate this effect, and with contradictory findings [8], [16], [10]. 

Creating a better understanding and quantifying the effect of substructure 

flexibility on the dynamic properties as well as the wave-induced forces on bridge 

superstructures were thus the inspiration and represent the key objectives of this 

PhD dissertation. Because conducting large-scale experiments costs effort, time, 

and money, simulations using numerical methods has become an important 

alternative in engineering research and practice. The particle finite element method 

(PFEM) is particularly powerful to simulate fluid-structure interaction problems 

[17]–[20], and was chosen in this research to build numerical models that would 

be representative of the experimental tests.  

This PhD research represents a continuation effort to build, implement, and 

introduce new fundamental concepts and methods that are important to the bridge 

engineering community. The data analyzed was part of an experimental study 

conducted at the O. H. Hinsdale Wave Research Laboratory at Oregon State 

University in 2008 [11].  In this research effort, a realistic 1:5-scale bridge 

superstructure specimen was subjected to over 400 wave trials with different wave 

conditions and structural configurations and the resulting forces at the specimen 

supports measured in the vertical and horizontal directions. A unique aspect of the 
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setup is that the support conditions of the substructure could be adjusted to 

represent different horizontal bridge bent (or substructure) stiffnesses. In total, 

three substructure flexibilities were modeled: rigid, medium, and soft, enabling the 

team to create a unique and realistic dataset. 

This PhD research starts by studying the dynamic properties of the bridge 

superstructure specimen. A suitable equation of motion was developed as it 

represents an essential building block for any planned simulation effort. This 

equation of motion was derived based on the examination of the damping behavior 

of the system. An additional outcome of this study is the estimation of those 

dynamic quantities (i.e., added mass and damping) that have a potential 

explanation to the dynamic behavior of the structure. Based on the available 

dataset from the large-scale experiment [11], a preliminary analysis of the data 

showed evidence that the measured forces experienced by the superstructure 

specimen with a flexible substructure were notably larger compared to the rigid 

case. The findings highlight the need to account for substructure flexibility when 

estimating wave forces. The proposed force magnification factors can be used in 

conjunction with code equations that are based on rigid support conditions. Finally, 

in order to expand the understanding of substructure flexibility and exploring test 

conditions that are not part of the original experimental dataset, having a numerical 

model is a promising solution. The particle finite element method (PFEM) was 

selected as the tool for this purpose and is introduced and evaluated against 

sample responses from the experiment. 
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1.2  Dissertation Outline  

This PhD dissertation follows the multi-paper format per Portland State 

University’s electronic thesis and dissertation (ETD) formatting requirements and 

is divided into five chapters. Chapters 1 and 5 are the introduction and conclusion 

chapters, respectively, whereas Chapters 2 to 4 represent manuscripts intended 

for submission to peer-reviewed journals. 

• In Chapter 1, an introduction and the motivation to the performed research is 

provided along with this outline.  

• Chapter 2 is the first manuscript entitled “Characterization of Dynamic 

Properties from Free Vibration Tests of a Large-Scale Bridge Model” and 

investigates the dynamic properties of a bridge superstructure specimen 

introduced in [11] under free vibration during varying levels of submersion. It is 

co-authored by Thomas Schumacher (adviser), Christopher Higgins, and 

Brittany Erickson, and is currently under review in the Journal of Fluids and 

Structures.  

Abstract: To accurately predict dynamic response of a structure subjected to 

fluid induced loading, a thorough understanding of the dynamic properties 

(mass, stiffness, and damping) and associated interactions is required. Limited 

data are available to characterize dynamic fluid-structure interactions. Data are 

particularly limited for large scale and flexible structural models. In this article, 

the dynamic response characteristics of a large-scale highway bridge 

superstructure model were extracted from free vibration tests under varying 

water levels in the laboratory. The nature of the damping response was 



5 

identified based on the exhibited logarithmic decrements of the model’s free 

vibration displacement amplitudes, and a suitable equation of motion (EOM) 

was subsequently developed. Using the classical fourth-order Runge-Kutta 

method, the EOM was solved for the different test trials and the dynamic 

parameters of the model were obtained through optimization employing a 

genetic algorithm. Finally, the values for two important quantities, namely 

added mass factor and added mass coefficient, were computed for the fully 

submerged bridge superstructure model. This study provides the suitable EOM 

needed for numerical simulations of fluid-structure interaction problems of the 

studied experiment and a method for establishing structural dynamic properties 

of hydro-dynamic analytical models. 

• Chapter 3 is the second manuscript entitled “Effect of Substructure Flexibility 

on Wave-induced Forces on Bridge Superstructures” and investigates the 

effect of substructure flexibility on the observed forces on bridge 

superstructures due to wave action using experimental data. Co-authors 

include Thomas Schumacher (adviser), Christopher Higgins, and Avinash 

Unnikrishnan. This manuscript is currently being prepared for submission to a 

journal. 

Abstract: Hurricane-induced wave forces have caused major damage on 

bridges ranging from local damage due to debris impact to complete removal 

of superstructures due to deficient connections failing between sub- and 

superstructures. Much research, both experimental as well as numerical, has 

been completed over the last two decades to study wave forces on bridges. 
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Most of the work, however, has focused on the hydraulics aspect, omitting 

structural engineering considerations. A particular aspect that has not received 

much attention is the effect of substructure flexibility on the forces a bridge 

superstructure has to endure during a hurricane event. The objective of the 

study discussed in this article was three-fold. First, a unique large-scale 

experimental dataset was analyzed to determine whether the effect of 

substructure flexibility has a statistically significant effect on the horizontal and 

vertical forces experienced by a bridge superstructure. Second, a physics-

based explanation was developed to describe the observations. Third, force 

magnification factors were determined for different exceedance levels that 

bridge engineers can use in conjunction with existing force prediction equations 

that were developed using rigid substructures. In summary, substructure 

flexibility affects the magnitudes of the induced wave forces at the 95% 

confidence level. Longer waves create larger magnification factors for more 

flexible substructures. Force magnification factor magnitudes are close and 

largest for the two examined substructure flexibilities for the case when the 

superstructure is not submerged; they decrease with increasing levels of 

submersion.  

• Chapter 4 represents the third manuscript entitled “Implementation of the 

OpenSEESPy Particle Finite Element Method (PFEM) to Study Wave-induced 

Forces on Bridge Superstructures”. In this chapter, the particle finite element 

method (PEFM) is introduced and implemented to build a simulation model for 

the bridge specimen. Co-authors include Minjie Zhu, Thomas Schumacher 
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(adviser), and Christopher Higgins. This manuscript is currently being prepared 

for submission to a journal. 

Abstract: The response of coastal bridges subject to wave forces has been 

studied quite extensively over the last decade. In particular, the effect of 

substructure flexibility on the induced wave forces on bridge superstructures 

has been received little attention. Moreover, the few studies that have 

investigated it hold two different opinions. While one group claims that as 

structural support flexibility increases, the induced wave forces increase, the 

other group claims that the induced wave forces decrease. Information 

regarding this influence is critical for both the design of new systems as well as 

the evaluation of existing ones. In this study, the Particle Finite Element Method 

(PFEM) is implemented and validated using a large-scale experimental study 

performed at Oregon State University for a bridge superstructure specimen 

subjected to different wave and support conditions. The simulation results show 

acceptable agreement with the experimental results and provide initial 

evidence that an increase in substructure flexibility result in an increase in the 

wave-induced forces on the superstructure. By utilizing this model, cases that 

were not tested as part of the physical experiment can be simulated and 

additional relationships studied. 

• Chapter 5 presents the main conclusions drawn from this research and 

suggests potential future work. 
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Chapter 2  

Manuscript 1: Characterization of Dynamic Properties from Free Vibration 

Tests of a Large-Scale Bridge Model 

 

This manuscript is co-authored by Thomas Schumacher (adviser), Christopher 

Higgins, and Brittany Erickson, and is currently under review in the Journal of 

Fluids and Structures. 

 

2.1 Introduction and Background 

Hurricanes in 2004 (Ivan) and 2005 (Katrina) caused failure of many 

existing coastal highway bridges. Bridge structures are critical lifeline components 

of the infrastructure network, enabling disaster response and recovery. Therefore, 

ensuring satisfactory performance increases community resilience and minimizes 

both human and economic losses. The observed bridge failures spurred research 

to better understand wave forces on bridges and fluid-structure interaction has 

become an important area of study for the engineering community.  

One type of bridge structure that was particularly affected by past hurricane 

events is simply supported prestressed concrete bridges. Weak or non-existent 

connections [1] were found to be the main cause for bridges failures due to 

hurricane wave impacts. Connection failures allowed the superstructure to be 

washed off the substructure and into the water. Therefore, many experimental [2]–

[8], mathematical [9], [10], theoretical, semi-empirical [11], and numerical [12]–[14] 

research studies have been conducted to quantify wave hydrodynamic forces on 
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these structures. Theoretical studies investigated the wave kinematics and 

momentum of the water body in order to derive force equations, considering 

simplified assumptions. Moreover, these studies resolved the problem of 

estimating the induced forces from a fluid mechanics perspective, which 

represents a significant limitation given that the measured experimental response 

is represented by the convolution between the force function with the impulse 

response function of the structure. Guo et al. [15] evaluated this feature in their 

laboratory experiment and presented a methodology to de-convolve the two 

functions. In other words, the structure’s dynamic properties are expected to 

influence the forces experienced by the structure. 

Multivariate regression analyses have been utilized for a variety of 

applications and provide means to study relationships between input parameters 

and empirically observed wave forces. In an earlier study [16], a multivariate 

regression analysis was employed without considering the convolution behavior of 

the collected data. To improve that, the study presented in this article investigated 

the dynamic characteristics of a highway bridge superstructure model that will 

enable the implementation of additional regressor variables for such analyses. 

Most models, numerically or experimentally, were dedicated to study wave impacts 

on bridge superstructures with fixed supports, representing rigid substructures [3], 

[4], [17], [18]. Bradner et al. [2] report the first large-scale experiment that allowed 

for varying the horizontal support flexibility to represent realistic structural behavior 

of the substructure. The bridge superstructure model used was a realistic 1:5-scale 

model representing the I-10 Bridge over Escambia Bay, FL. This causeway was 
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severely damaged during Hurricane Ivan in 2004. Over the period of one year, the 

researchers created a large data set consisting of over 400 test trials what varied 

the following parameters: wave period, wave height, still water level, presence of 

a guardrail, and substructure flexibility. Trials consisted of regular as well as 

random waves. Additionally, a series of free vibration tests were conducted under 

varying water levels and are the subject of this article. Most prior studies have 

considered the case of fixed support conditions [5], [12], [14], [15]. To date, few 

numerical studies have investigated the effect of flexibility on wave forces 

numerically [19]–[21]. Interestingly, these findings are conflicted as to whether 

substructure flexibility increases or decreases the wave forces experienced by the 

superstructure. Chen et al. [19] showed that as structural flexibility increases, a 

reduction to the force magnitude occurs. Xu and Cai [20], [21] on the other hand, 

showed the opposite. All of these studies used the data produced in [2] to verify 

their numerical models. Istrati [8], in 2017, conducted an experimental test similar 

to the 1:5 large-scale experimental study presented in [2]. In that experiment, the 

effect of tsunami wave loads on a composite bridge model with four steel I-girders 

were examined. The researchers report that the structure’s dynamics affect the 

observed forces and they used slightly different support conditions than those 

employed in [2]. Bradner et al. [2] studied the total horizontal stiffness of the 

substructure only. Istrati used the same setup (two horizontal springs of different 

stiffness) but added elastomeric and steel bearings between the bridge model and 

the substructure.  
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2.2  Motivation and Significance 

As mentioned in the previous section, most experimental tests and 

numerical models have used a rigidly supported bridge structure, which does not 

properly reflect realistic structural stiffness [2], [8]. As presented in [8], [22], 

structural dynamics have an important effect on the measured forces. Except for 

the two large scale experimental tests performed by Bradner et al. (2010) [2] and 

Istrati (2017) [8], substructure flexibility and dynamic effects on the measured wave 

forces have not been investigated experimentally. During the period between these 

two experiments, researchers attempted to address this issue by building and 

studying numerical models using the data presented in [2] to validate their models. 

Some prior research has applied regression models that exclude the dynamic 

structural behavior. 

This paper focuses on the dynamic system properties required to define and 

develop a numerical model using the equation of motion (EOM) for the studied 

structure. The study reported in this article provides the required modeling 

components: proposes and evaluates an appropriate EOM and provides a method 

to properly capture the salient dynamic properties. Free vibration test data from a 

large-scale model were analyzed (data from [2]) that presents a unique opportunity 

to infer the dynamic properties required to capture dynamic responses and the 

influence of varying levels of submersion on such properties including model 

frictional resisting forces, hydrodynamic and hydroviscous damping. The former 

refers to the combined damping effect of the water body (added mass and added 
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damping), whereas the latter refers to the specific contribution of the water body 

to the effect of viscous damping. 

 

2.3 Experimental Test Setup and Free Vibration Tests 

The experimental test setup is illustrated in Fig. 1 and described in full detail 

in [2]. A unique aspect of this setup is the ability to change the flexibility of the 

substructure to represent different horizontal bridge bent stiffnesses. This is 

achieved by inserting coil springs between the horizontal load cell (LC) and the 

end block of the steel reaction frame. Two springs with different stiffnesses 

(labeled “Phase 2a” and “Phase 2b”) were selected to be representative of actual 

prototype substructure configurations (see [23]). Phase 1 represents the rigid 

configuration without a spring while Phase 2a and 2b represent medium and soft 

substructure configurations, respectively. The stiffnesses of the springs 

representing these configurations were selected based on a finite element analysis 

of different bent frame configurations with battered piles (for details see [24]). 
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Figure 2.1. Elevation view of bridge superstructure model with key 
instrumentation used in this study (a) from the side and (b) looking down the 

flume. Dimensions are (m). Notation: LC = load cell, SWL = still water level, zd = 
mean water depth, hd = superstructure depth, d* = non-dimensional water level. 

 

A series of free vibration tests were conducted for two flexible substructure 

configurations and three different still water levels (SWL), as illustrated in Figure 

2.1. Figure 2.1 shows the elevation views of the specimen and setup which is 

located near the center of the flume. The physical model is shown in Figure 2.2. In 

Figure 2.2, the model bridge superstructure is shown during one of the free-

vibration tests. For the free-vibration test, the superstructure was slowly tensioned 

using a hoist and then suddenly released with a quick-release mechanism (shown 

in inset) to induce free vibration response with known initial displacement. The test 

matrix is illustrated in Table 2.1. The non-dimensional parameter, d* represents 

the still water level (SWL) elevation relative to the bottom of the girders [24]. The 

absolute horizontal motion of the bridge superstructure model during the free 

vibration tests was measured with two displacement sensors (string 
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potentiometers) attached near the flume walls. The sampling frequency for all trials 

was 500 Hz. 

 

Figure 2.2. Photo of experimental test setup during Phase 2a (medium springs, 
indicated by arrows). The inset shows the quick-release mechanism that initiated 

free vibration with initial displacement. 

 

Table 2.1. Test matrix of free vibration tests. 

Phase 
SWL 
(m) 

d* 
(-) 

Number 
of trials 

Description 

2a 

-1.89 dry 

3 

No water in the flume 

- 0.28 -1 
SWL is one full depth of the bridge deck 
thickness is below the bottom of the girders 

+/- 0.00 0 
Water level at bottom of girders, bent cap 
fully submerged 

+ 0.28 +1 Bridge superstructure fully submerged 

2b 

-1.89 dry No water in the flume  

- 0.28 -1 
SWL is one full depth of the bridge deck 
thickness is below the bottom of the girders 

+/- 0.00 0 
Water level at bottom of girders, bent cap 
fully submerged 

+ 0.28 +1 Bridge superstructure fully submerged 
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2.4 Initial Observations from Free Vibration Tests 

The bridge model setup can be represented as a single degree of freedom 

(SDF) system consisting of a mass, spring, and damper. In order to write an 

equation of motion to fully represent the model, the type of damping should first be 

defined. Since the model superstructure is mounted on linear guide rails to allow 

translational motion in the horizontal direction, a friction force exists. This force is 

expected to govern in the dry trials and for d* = -1. The presence of water in the 

subsequent trials, when the model is partially or fully submerged, i.e. for d* = 0 and 

+1, results in two types of damping. As discussed later in this section, based on 

the free vibration response analysis, total damping is a combination of viscous and 

friction (also called Coulomb) damping. 

 The time histories of the free vibration tests (see Table 2.1) were visualized 

in the time domain and analyzed in the frequency domain by means of the discrete 

Fourier transform (DFT). Zero-padding was used on the signals to increase the 

resolution in the frequency domain. An example response for Trial 2001 (Phase 

2b, dry) both in the time and frequency domains is shown in Figure 2.3(a) and (b), 

respectively. Also shown in Figure 2.3 (a) are the symbols and definitions used in 

the computation of logarithmic decrements, which is discussed later in this section.  
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Figure 2.3. Example free vibration response for Phase 2b, dry trial: (a) time history 
and (b) frequency domain (Trial 2001: dry setting with soft spring). 

 

 

The natural vibration frequencies, fn, for different springs at the different 

water levels and all test trials are reported in Table 2.2. As can be observed, the 

frequencies decreased with increasing water level, which is particularly obvious for 

the fully submerged case of d* = +1. This can be explained by the concept of added 

mass [25]–[27] whereby when a submerged body vibrates, it accelerates the 

surrounding fluid particles, that act as additional mass and damping compared to 

a body vibrating in air. For bodies submerged in water, this effect reduces the 

natural frequency of the vibrating body and increases the damping compared to 

what it would be in air [25]. Chandrasekaran et al. [25] also showed that the virtual 

mass “depends on the geometry and the size of the structure, dynamic properties 

of the structure in air (including its flexibility), the level of submergence, and the 

type of excitation to which it is subjected.” Additionally, they report that the stiffness 

of the structure is not affected by the level of submergence. 
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Table 2.2. Natural vibration frequencies, fn for different test trials and phases 
obtained by DFT. 

d* 
 Phase 2a 

(medium springs) 

Phase 2b 

(soft springs) 

dry 
Trial # 3001 3002 3003 2001 2002 2003 

fn (Hz) 2.159 2.151 2.151 1.068 1.068 1.068 

-1 
Trial # 3101 3102 3103 2101 2102 2103 

fn (Hz) 2.151 2.151 2.151 1.068 1.068 1.076 

0 
Trial # 3301 3302 3303 2301 2302 2303 

fn (Hz) 2.132 2.132 2.129 1.060 1.060 1.060 

1 
Trial # 3501 3502 3503 2501 2502 2503 

fn (Hz) 1.926 1.915 1.911 0.885 0.885 0.885 

 

Following the research presented in [28], logarithmic decrements were 

computed to identify the types of damping present in the system for all free 

vibration test trials in this study. Figure 2.4 (a) shows the theoretical logarithmic 

decrement behaviors obtained by solving the EOM via Runge-Kutta method for 

three types of damping: linear viscous (i.e., when the damping force is proportional 

to velocity), nonlinear viscous (i.e., when the damping force is a quadratic function 

of velocity), and Coulomb (or friction) damping. The abscissa is interpreted as 

vibration amplitudes decreasing in time. For linear viscous damping, the 

logarithmic decrement is independent of the amplitude; therefore, it is a constant 

value during vibration. For the nonlinear viscous damping case, the logarithmic 

decrement is a function of amplitude and thus decreases linearly. Lastly, for friction 

damping, the behavior is also dependent on the amplitude of vibration; however, it 

increases exponentially. The amplitude values used in the computation of the 

logarithmic decrements for Figure 2.4 were illustrated in Figure 2.3. The 

logarithmic decrements measured for the free vibration response for all trials are 
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shown in Figure 2.4b. and are compared with the expected behaviors (theoretical 

behavior) of the three damping models [28] (shown previously in Figure 2.4a). 

Comparing Figure 2.4(a) and (b), one can observe that for the medium 

spring setup (Phase 2a) the damping behavior follows that of a viscous damping 

system at the beginning of the response; however, at the end of the response, the 

behavior changes and resembles a friction damped system. For the soft spring 

setup (Phase 2b), possibly because of the limited number of vibration cycles, the 

behavior is not as clear for the submerged cases; however, for the dry trial it shows 

a trend approximately following a friction damped system. The conclusion of these 

results is that a combination of both viscous and friction damping exist for the 

model and thus both need to be included in the EOM when creating a numerical 

model of this bridge superstructure. 

 

Figure 2.4. Comparison of logarithmic decrements for (a) theoretical values for 
three different types of damping following [26] and (b) free vibration tests from 
large-scale bridge superstructure model. The terminology in legend detailed in 

Table 1. 
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2.5 Analysis 

After studying the damping characteristics exhibited by the bridge model, 

this section presents the relevant equation of motion (EOM), which is the first step 

for analysis. Subsequently, the optimization scheme used to estimate the dynamic 

parameters for the system is presented. 

 

2.5.1 Numerical Model 

The classic fourth-order Runge-Kutta (RK) numerical method [29] was 

implemented in this study to solve the SDF equation of motion (EOM) for free 

vibration of the large-scale experiment presented in [2]. Appendix A provides the 

details of the implemented method along with a test for code verification. Based 

on the findings presented in Section 4, the free vibration EOM implemented in this 

study considers two types of damping forces simultaneously, viscous and friction 

damping, as follows: 

 
𝑚 ∙ �̈�  + c ∙ �̇� + 𝐹 ∙ 𝑠𝑖𝑔𝑛(�̇�) + 𝑘 ∙ 𝑥 = 0 2.1 

 

where m, c, and k represent mass, viscous damping coefficient, and stiffness 

constant of the SDF system, F is the friction force, and �̈�, �̇�, and x are acceleration, 

velocity, and displacement of the mass, respectively. Analytical solutions for the 

steady-state response of a similar system excited with a harmonic force and 

assuming a small friction force with no standstill regions were first presented by 

Den Hartog [30] using a closed-form non-continuous solution. In other words, two 

solutions based on the velocity sign, i.e. when �̇� > 0 and �̇� < 0, were used. Den 
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Hartog presented the solutions for several damping ratios as a function of the 

amplification factor vs. frequency ratio with a discussion of the regions when 

motion would or would not stop. Perls and Sherrard [31] extended Den Hartog’s 

work for a wider range of damping ratios. Cheng and Zu [32] presented a different 

analytical solution for the steady-state response of a system with combined 

viscous and friction damping mechanisms subjected to two excitation forces with 

different frequencies. Like Den Hartog, Cheng and Zu presented a discontinuous 

solution due to discontinuities in the friction force function. Moreover, they 

discussed two cases of motion behavior: when the motion is assumed not to have 

a stopping region and when the motion experiences one stop. Feeny and Liang 

[33] presented a methodology to quantify the damping coefficients for a system 

with combined viscous and friction damping, assuming linearity of the system. This 

led them to assume a linearly decreasing behavior for the successive extremes of 

the displacement response, known as the displacement decrement identification 

method. However, as was observed earlier in the logarithmic decrement analysis, 

the decrement was not linear due to the nonlinearity of the system. Liang [34] 

extended the previous work to identify the damping parameters from the 

acceleration response, which they refer to as the acceleration decrement 

identification method. Both methods are based on the discontinuous form of the 

friction force function. Stanway and Mottershead [35] presented a numerical 

comparison between three least-squares techniques to identify the damping 

coefficient for a defined system using a continuous friction force function, by 

assuming a constant friction force with a magnitude that is altered based on the 
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sign of velocity. This representation was modeled by introducing the term 𝐹 ∙

𝑠𝑖𝑔𝑛(�̇�). Finally, Mostaghel and Davis [36] suggested additional continuous 

functions to represent the friction force-sliding velocity function. In this study, the 

authors used the term 𝐹 ∙ 𝑠𝑖𝑔𝑛(�̇�) to represent the Coulomb friction damping force, 

as previously described in [35], since, based on [36], it showed an instantaneous 

phase change rather than any of the other presented functions. In addition, stop 

motion behavior was not observed in the experimental results. 

 

2.5.2 Parameter Estimation 

Since the main objective of this study was to characterize the dynamic 

properties associated with the effects of water submersion on the free vibration 

response of the laboratory model, the unknown and most important parameters to 

be estimated are: (a) viscous damping coefficient and (b) friction force. System 

mass and stiffness could be directly computed from the experimental data [2]. 

Estimating (a) and (b) represents a classic inverse problem [37] where the 

unknown input and known output parameters are the initial displacement as well 

as level of submersion and the displacement response, respectively. The unknown 

input parameters were obtained by varying them in the numerical model and 

maximizing the correlation coefficient between the two responses. Using MATLAB 

2017b [38], two methods were implemented for this optimization process. The first 

one is referred to as “manual looping” where suitable ranges and increments for 

each model parameter (e.g. damping ratio or friction force) were determined based 

on the experimental results. By looping over these values, the best set of 
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parameters was found by maximizing the correlation coefficient between 

experimental and numerically predicted vibration responses. The second method 

is referred to as “global search” and utilizes a MATLAB built-in function called 

GlobalSearch, which is a solver for optimization problems, e.g. to find a single 

global minimum based on a user-defined objective function. The total absolute 

error criteria was used to find the best-fit parameters. GlobalSearch operates a 

local solver, fnimcon, which is designed to find solutions near the starting point 

using a gradient-based method. Since the solution from this approach can be 

influenced by the starting point itself, a heuristic approach was implemented 

whereby multiple random starting points are employed to avoid the final solutions 

being associated with a local minima.  

Both methods were validated by first simulating a number of vibration 

responses using a range of input parameters with the numerical approach 

described in Section 5.1. The two optimization schemes were then used on these 

simulated responses to estimate the input parameters. Globalsearch was able to 

match the assumed input parameters with a maximum error of 1.9% where manual 

looping led to larger errors (up to 11%) due to the finite increments required by the 

method. Detailed results of this validation are provided in Appendix B. 

Three levels of optimizations were initially evaluated using the two methods 

with an increasing number of parameters to be estimated: 

1. First level: damping ratio, 𝜻 and friction force, F (two variables) 

2. Second level: mass, m damping ratio, 𝜻, and friction force, F (three 

variables) 
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3. Third level: stiffness, k, mass, m, damping ratio, 𝜻, and friction force, F (four 

variables) 

While the second and third level optimizations usually produced results, the 

objective functions for these two cases was likely relatively flat, leading to 

unreasonable results for some of the trials. Thus, the optimization was ultimately 

only performed for the first level, i.e. estimating damping ratio, 𝜁 and friction force, 

F. For the manual looping method, the range of values for the viscous damping 

ratio was set at 0 to 20% with 0.5% increments. For the friction force, the range 

was set at 0 to 500 N using 10 N increments. The global search method uses a 

scatter-search mechanism using the same ranges but without predefined 

increments.  

The spring stiffness, k, was computed for each trial as the slope from a 

linear least squares regression on the force vs. displacement response taken when 

the specimen was pulled to the initial displacement prior to release. Force and 

displacement were measured with the horizontal load cell (LC) and the 

displacement sensor labeled in Figure 2.1. An example force vs. displacement 

response for Trial 2303 is shown in Figure 2.5 along with the mean prediction line 

from the linear regression.  
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Figure 2.5.  Example force - displacement response of model with mean prediction 
line from linear regression (Trial 2303, 3rd water level with soft springs). 

 

Using k, and assuming that damping in the range considered does not 

change the natural frequency, along with the computed natural vibration frequency, 

fn (obtained from Table 2.2), the total vibrating mass, m could be estimated using 

the following equation: 

 
𝑚 = 𝑘 (2 ∙ 𝜋 ∙ 𝑓𝑛)2⁄  2.2 

 

The natural vibration frequencies of the dry trials were considered reference 

values. Subsequent trials had higher water levels that produced added mass on 

the system. Added mass, md, is defined as the difference between the total 

vibrating mass computed from Eq. 3 and the reference mass, m computed in the 

dry trials. Section 2.6 contains a detailed discussion of the added mass concept 

and its use. 
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The results from the global search method were chosen for further use in 

the study because they were more consistent and not bound to the values defined 

by the fixed increments used in the manual looping search method. The estimated 

parameters for all trials and both phases (medium and soft springs) determined 

from the global search method are shown in Table 2.3. Mean, standard deviation, 

and coefficient of variation (CV) for both stiffness and initial (dry) mass are also 

reported here. 

 

Table 2.3.  Parameter estimates for all test trials obtained from the global search 
method. 

 

 

Phase 2a 

(medium springs) 

Phase 2b 

(soft springs) 

Trial # 
k 

(kN/m) 

m 

(kg) 

md 

(kg) 
𝜻 

F 

(N) 
R2 

k 

(kN/m) 

m 

(kg) 

md 

(kg) 
𝜻 

F 

(N) 
R2 

Dry 449.2 2,458 -17 0.043 238 0.988 109.6 2,433 0 0.048 274 0.995 

Dry 447.3 2,448 0 0.046 161 0.995 109.4 2,429 0 0.048 250 0.996 

Dry 450.4 2,465 0 0.039 168 0.994 109.5 2,431 0 0.043 311 0.993 

-1 444.1 2,430 0 0.040 174 0.991 109.6 2,433 0 0.059 254 0.995 

-1 445.0 2,435 0 0.046 134 0.995 109.5 2,431 0 0.047 375 0.994 

-1 447.7 2,450 0 0.037 162 0.995 109.9* 2,406 0 0.110 170 0.993 

0 445.2 2,436 44 0.051 107 0.990 109.7 2,436 35 0.055 248 0.991 

0 446.7 2,444 44 0.042 126 0.991 109.5 2,431 35 0.073 226 0.996 

0 448.0 2,452 53 0.044 113 0.994 109.6 2,433 35 0.073 228 0.994 

1 444.6 2,433 602 0.101 58 0.995 109.6 2,433 1111 0.106 311 0.993 

1 444.1 2,430 637 0.097 58 0.996 109.7 2,436 1112 0.117 271 0.995 

1 442.9 2,424 648 0.092 75 0.995 109.7 2,436 1112 0.089 388 0.993 

Mean 446.3 2,442     109.6 2,433     

STD 2.2 12.1     0.1 2.3     

CV 0.49% 0.50%     0.09% 0.10%     

*This result was considered an outlier and thus excluded from the analysis. 

The values in Table 2.3 show an increasing trend for added mass and 

hydroviscous damping with increasing water level, i.e. with greater submersion. 

This corresponds to the findings of [25] that as the fundamental vibration period 
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increases the added mass should decrease. One additional note is that the values 

presented as hydroviscous damping are not net values, rather they contain the 

initial structural viscous damping component. In other words, the inherent viscous 

damping of the structure in air is included in the values presented in Table 3 as 

hydroviscous damping.  
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Figure 2.6. Box-and-whisker plot for the estimated parameters as a function of 
water level with median based estimation. Also shown are numerical values for 

the means. 

 

Figure 2.6 shows box-and-whisker plots for the estimated values of added 

mass, hydroviscous damping, and the friction force (values taken from Table 2.3). 

The friction force does not exhibit a specific trend for the soft springs setup (Phase 
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2b), although the range of these values fall within the observed sliding friction 

values as found previously [23]. On the other hand, for the medium springs setup 

(Phase 2a), the friction force decreases with increasing water level, which would 

be expected. Moreover, the Phase 2b setup shows larger friction forces compared 

to those of the Phase 2a setup. As was observed in the logarithmic decrement 

analysis, the medium springs setup showed a more viscously damped behavior 

while the soft spring setup exhibited a more frictionally damped behavior. This may 

explain why the friction force for the medium springs setup was smaller compared 

to the values for the soft springs setup. To gain deeper insight into the combined 

effects of these parameters, a parametric study was performed and is presented 

in Appendix C.  

Figure 2.1 provides a comparison between the experimental results and the 

numerical solutions using the dynamic parameters found by the optimization 

procedure. Also shown are the values for added mass, damping ratio, friction force, 

and the coefficient of determination, R2 between the two curves for each of the 

selected trials. As can be observed, the two curves are almost identical, visually 

demonstrating the ability of the optimization scheme to accurately estimate the 

dynamic parameters from the free vibration trials. 

Through the additional observations made from a parametric study (refer to 

Appendix C) it became evident that added mass and damping ratio are 

substantially influenced when the model was fully submersed. It had been argued 

in some studies that the added mass effect is more significant than the effect due 

to damping [26]. However, this argument depends on how the level of significance 
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is defined. In this study, both parameters play important roles in the dynamic 

response of the test specimen alongside with the effect of friction damping. For 

these experiments, the damping ratio ranged on average between 4.2 to 9.7% for 

the medium springs setup (Phase 2a) and 4.6 to 10.5% for the soft springs setup 

(Phase 2b). Added mass reached a value of 648 kg (26.6% of the dry mass) for 

the medium springs setup and 1,112 kg (45.6% of the dry mass) for the soft springs 

setup. Recall that the total mass of the superstructure model under dry conditions 

is approximately 2,440 kg. The dynamic characteristics, i.e. added mass and 

hydroviscous damping, appeared to have a greater effect for the soft springs setup. 

In other words, for flexible substructures the added mass and damping should be 

expected to be larger than for stiffer substructures. 
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Figure 2.7. Comparison between experimental data and numerical model for 
Phase 2a (medium springs setup) and 2b (soft springs setup) for select trials and 

water levels. Also listed are the numerical values of the estimated parameter 
values. 
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2.6 Quantification of Added Mass Parameters 

In this section, the concept of added mass is discussed in further detail. 

When defining added mass, md, and considering only the fully submerged case, 

there are two parameters that can be computed. The first one is the added mass 

factor, 𝛼, which is the ratio between added mass, md and actual (or dry) mass, m, 

and can be computed as [25]: 

 
𝛼 = (𝑓𝑎 𝑓𝑤⁄ )2 − 1 2.3 

 

 
𝑚𝑑 = 𝑚 ∙  𝛼 2.4 

 

where 𝑓𝑎 and 𝑓𝑤 are the natural vibration frequency of the structure in air and water 

(fully submerged). The second parameter is referred to as added mass coefficient, 

𝐶𝑚, which is defined as follows [26]: 

 𝐶𝑚 = 𝑚𝑑 𝑚𝑟𝑒𝑓⁄  2.5 

 

where 𝑚𝑟𝑒𝑓 is a reference fluid (or displaced fluid) mass defined as the mass of a 

cylinder of fluid with a diameter equal to the dimension perpendicular to the 

direction of motion as illustrated in Figure 2.8. This reference mass can be 

computed as follows: 

 
𝑚𝑟𝑒𝑓 = [𝜌𝑤𝑎𝑡𝑒𝑟 ∗ 𝐿 ∗ 2𝜋 ∗ (

𝐷

2
)

2

] 2.6 

 

where 𝜌𝑤𝑎𝑡𝑒𝑟 = 1000 𝑘𝑔/𝑚3 (freshwater was used for this study), and L and D are 

the total width and depth of the structure perpendicular to the flow motion. 
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Figure 2.8. Parameters for the computation of the reference mass, mref. 

 

For the case of partial submersion, the method of calculating the added 

mass parameters differs as discussed in [25]. Also, because of the limitation in the 

available data, the computation for the partially submerged cases is not addressed 

here. Moreover, the analyzed data represent only one type of geometry, i.e. a 

concrete deck-girder bridge superstructure with six girders. Both the geometric 

limitation as well as the lack of partial submersion trials are considered for a future 

study. As observed earlier, the structural stiffness influenced the added mass 

factor and coefficient values. Table 2.4 presents the calculated values for the 

added mass factor and the added mass coefficient for both test spring setups. 

 

Table 2.4. Added mass factors and added mass coefficients calculated for both 
setups in fully submerged condition, 2a (= medium springs) and 2b (= soft 

springs)*. 

 Added mass 
factor 

Added mass 
value, kg 

% of added mass 
from actual mass 

Added mass 
coefficient 

Phase 2a 𝛼2𝑎  0.262 𝑚𝑑,2𝑎 639  26% 𝐶𝑚,2𝑎 3.01 

Phase 2b 𝛼2𝑏  0.456 𝑚𝑑,2𝑏 1113  46% 𝐶𝑚,2𝑏 5.23 

 *mref = 212.4kg, mactual (dry) = 2440kg 
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From the results of Table 2.4, the added mass coefficient can be interpreted 

as follows: the hydrodynamic force acting on the cylinder is approximately 3.0 

times the mass of fluid displaced times the acceleration of the flow for the medium 

springs case, and 5.2 times the mass of fluid displaced times the acceleration of 

the flow for the soft springs case. Table 2.5 reports a sample of the added masses 

presented in [26], [39] for two cross sectional shapes: circle and rectangular, and 

along three directions of excitations: one vertical (heave) and two horizontal 

(surge, and sway) motions. It can be observed, for example, that in the vertical 

motion, as the ratio of the side perpendicular to the movement direction (dimension 

“a” in Table 2.5) to the side parallel to it increases, the added mass (hydrodynamic 

mass) per unit length decreases. Comparing the two motion cases, added mass 

seems to have the same magnitude. For the bridge specimen tested in this study, 

the ratio was 0.144, therefore, the added mass coefficient is expected to be 

between 1.98 and 2.23. The results from the present study show substantially 

higher added mass compared to the reference values: 3.01 (1.35 times higher than 

2.23 reference) for the medium springs setup and 5.23 (2.35 times higher than 

2.23 reference) for the soft springs setup. Since the bridge deck specimen 

contained chambers between the girders, which play as additional spaces for 

water to fill in, that will contribute to increasing the observed added mass compared 

to that for a solid structure. The large difference between the medium springs and 

soft springs setups demonstrates how the substructure stiffness can strongly 

influence the added mass. 
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Table 2.5. Hydrodynamic mass per unit length for circular and rectangular 
sections. 

Section through body Translational 
direction 

Hydrodynamic mass per 
unit length 

   

Horizontal*,1 

(surge) 
(sway) 

𝑚𝑎𝑑𝑑𝑠𝑢𝑟𝑔𝑒 = 1 ∙ 𝜋 ∙ 𝜌 ∙ 𝑑2 

𝑚𝑎𝑑𝑑𝑠𝑤𝑎𝑦 = 1 ∙ 𝜋 ∙ 𝜌 ∙ 𝑑2 

      

Vertical2 
(heave) 

𝑚𝑎𝑑𝑑 = 1 ∙ 𝜋 ∙ 𝜌 ∙ 𝑎2 

   

Horizontal1 

(surge) 
 (sway) 

𝑚𝑎𝑑𝑑𝑠𝑢𝑟𝑔𝑒 = 1.51 ∙ 𝜋 ∙ 𝜌 ∙ 𝑎2 

𝑚𝑎𝑑𝑑𝑠𝑤𝑎𝑦 = 1.51 ∙ 𝜋 ∙ 𝜌 ∙ 𝑎2 

      

𝑎 𝑏⁄ = ∞ 
𝑎 𝑏⁄ = 10 

𝑎 𝑏⁄ = 5 
𝑎 𝑏⁄ = 1 

𝑎 𝑏⁄ = 1/5 
𝑎 𝑏⁄ = 1/10 

Vertical2 
(heave) 

𝑚𝑎𝑑𝑑 = 1 ∙ 𝜋 ∙ 𝜌 ∙ 𝑎2 

𝑚𝑎𝑑𝑑 = 1.14 ∙ 𝜋 ∙ 𝜌 ∙ 𝑎2 

𝑚𝑎𝑑𝑑 = 1.21 ∙ 𝜋 ∙ 𝜌 ∙ 𝑎2 

𝑚𝑎𝑑𝑑 = 1.51 ∙ 𝜋 ∙ 𝜌 ∙ 𝑎2 

𝑚𝑎𝑑𝑑 = 1.98 ∙ 𝜋 ∙ 𝜌 ∙ 𝑎2 

𝑚𝑎𝑑𝑑 = 2.23 ∙ 𝜋 ∙ 𝜌 ∙ 𝑎2 

* 𝑚𝑎𝑑𝑑 represent the added mass, 1: Ref. [37], 2: Ref. [24]. 

 

2.7 Summary and Conclusions 

In this study, the dynamic response of a highway bridge superstructure 

model was investigated using free vibration tests under varying degrees of 

submersion to characterize the salient dynamic properties required for numerical 

modeling of structural responses for fluid loading. In addition to varying water 

levels, the substructure flexibility was also varied by inserting two sets of springs 

with different stiffnesses into the experimental test setup. Friction force was 

integrated into the equation of motion (EOM) to accurately capture the behavior of 

the model. The dynamic response of the bridge model was significantly affected 
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by the level of submersion and substructure stiffness, resulting in different values 

for damping and added mass. Consequently, these values (for damping and added 

mass) affect the forces experienced on the structure and transmitted to 

connections during highly-transient wave loading.  

Numerical responses were generated by solving the EOM for a single 

degree of freedom (SDF) mass-spring-damper system with combined viscous and 

Coulomb friction damping via the classical 4th order Runge-Kutta numerical 

method. An optimization scheme was used to estimate the dynamic properties of 

the system, such as damping coefficient and friction force, by maximizing the 

correlation coefficient between the observed and numerically simulated vibration 

responses for each test trial. Based on the estimated parameters, the following 

observations were made: 

1. The natural vibration frequency of the bridge superstructure model 

decreases with increasing water level (or submersion). In other words, the 

added mass increases with increasing water level and for softer 

substructure stiffness. This demonstrates that dynamic fluid-structure 

responses are influenced by substructure stiffness.  

2. Damping increases with increasing water level. 

3. Dynamic fluid-structure responses are influenced by substructure stiffness. 

Both added mass and damping coefficients were affected by the stiffness 

of the substructure. Added mass and damping increased for the reduced 

stiffness substructure.  
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4. The friction force, for the soft springs setup, stayed within the sliding friction 

limits discussed in [2]. However, for the medium springs setup, the friction 

force values were less than the sliding value limit and tended to decrease 

as the water level increased. 

The substructure flexibility was observed to influence the free-vibration dynamic 

response of the model bridge when submersed in water. A properly developed 

EOM is required to capture the bridge model response and it must include the 

salient dynamic properties. Added mass and damping are important factors for 

interpretation and understanding of fluid-structure response and can be used as 

explanatory parameters in subsequent regression analyses. 

 

2.8 References 

[1] I. N. Robertson, H. R. Riggs, S. C. Yim, and Y. L. Young, “Lessons from Hurricane 
Katrina Storm Surge on Bridges and Buildings,” J. Waterw. Port Coast. Ocean Eng., 
vol. 133, no. 6, pp. 463–483, Nov. 2007, doi: 10.1061/(ASCE)0733-
950X(2007)133:6(463). 

[2] C. Bradner, T. Schumacher, D. Cox, and C. Higgins, “Experimental setup for a large-
scale bridge superstructure model subjected to waves,” J. Waterw. Port Coast. 
Ocean Eng., vol. 137, no. 1, pp. 3–11, 2010. 

[3] G. Cuomo, M. Tirindelli, and W. Allsop, “Wave-in-deck loads on exposed jetties,” 
Coast. Eng., vol. 54, no. 9, pp. 657–679, 2007. 

[4] S. Douglass, Q. Chen, and J. Olsen, “Wave Forces on Bridge Decks Draft Report,” 
Coast. Transp. Eng. Res. Educ. Cent. Univ. South Ala., 2006. 

[5] M. Hayatdavoodi, B. Seiffert, and R. C. Ertekin, “Experiments and computations of 
solitary-wave forces on a coastal-bridge deck. Part II: Deck with girders,” Coast. 
Eng., vol. 88, pp. 210–228, 2014. 

[6] R. L. McPherson, “Hurricane induced wave and surge forces on bridge decks,” PhD 
Thesis, Texas A & M University, 2010. 

[7] B. Seiffert, M. Hayatdavoodi, and R. C. Ertekin, “Experiments and computations of 
solitary-wave forces on a coastal-bridge deck. Part I: Flat plate,” Coast. Eng., vol. 88, 
pp. 194–209, 2014. 

[8] D. Istrati, “Large-Scale Experiments of Tsunami Inundation of Bridges Including 
Fluid-Structure-Interaction,” PhD Thesis, 2017. 



39 

[9] P. Kaplan, J. J. Murray, and W. C. Yu, “Theoretical analysis of wave impact forces 
on platform deck structures,” American Society of Mechanical Engineers, New York, 
NY (United States), 1995. 

[10] P. Kaplan, “Wave impact forces on offshore structures: re-examination and new 
interpretations,” in Offshore Technology Conference, 1992. 

[11] J. Marin and D. M. Sheppard, “Storm surge and wave loading on bridge 
superstructures,” in Structures Congress 2009: Don’t Mess with Structural 
Engineers: Expanding Our Role, 2009, pp. 1–10. 

[12] Q. Chen, L. Wang, and H. Zhao, “Hydrodynamic investigation of coastal bridge 
collapse during Hurricane Katrina,” J. Hydraul. Eng., vol. 135, no. 3, pp. 175–186, 
2009. 

[13] D. James, J. Cleary, and S. Douglass, “Estimating Wave Loads on Bridge Decks,” in 
Structures Congress 2015, 2015, pp. 183–193. 

[14] G. Xu and C. S. Cai, “Wave forces on Biloxi Bay Bridge decks with inclinations under 
solitary waves,” J. Perform. Constr. Facil., vol. 29, no. 6, p. 04014150, 2014. 

[15] A. Guo, Q. Fang, X. Bai, and H. Li, “Hydrodynamic experiment of the wave force 
acting on the superstructures of coastal bridges,” J. Bridge Eng., vol. 20, no. 12, p. 
04015012, 2015. 

[16] J. Jin and B. Meng, “Computation of wave loads on the superstructures of coastal 
highway bridges,” Ocean Eng., vol. 38, no. 17–18, pp. 2185–2200, 2011. 

[17] J. Marin and D. M. Sheppard, “Storm surge and wave loading on bridge 
superstructures,” in Structures Congress 2009: Don’t Mess with Structural 
Engineers: Expanding Our Role, 2009, pp. 1–10. 

[18] “Development of the AASHTO guide specifications for bridges vulnerable to coastal 
storms | Request PDF,” ResearchGate. 
https://www.researchgate.net/publication/299678527_Development_of_the_AASHT
O_guide_specifications_for_bridges_vulnerable_to_coastal_storms (accessed Nov. 
09, 2018). 

[19] X. Chen, J. Zhan, Q. Chen, and D. Cox, “Numerical Modeling of Wave Forces on 
Movable Bridge Decks,” J. Bridge Eng., vol. 21, no. 9, p. 04016055, Sep. 2016, doi: 
10.1061/(ASCE)BE.1943-5592.0000922. 

[20] G. Xu and C. S. Cai, “Numerical simulations of lateral restraining stiffness effect on 
bridge deck–wave interaction under solitary waves,” Eng. Struct., vol. 101, pp. 337–
351, 2015. 

[21] G. Xu and C. S. Cai, “Numerical investigation of the lateral restraining stiffness effect 
on the bridge deck-wave interaction under Stokes waves,” Eng. Struct., vol. 130, pp. 
112–123, 2017. 

[22] T. Schumacher, C. Higgins, C. Bradner, D. Cox, and S. C. Yim, “Large-Scale Wave 
Flume Experiments on Highway Bridge Superstructures Exposed to Hurricane Wave 
Forces,” presented at the Sixth National Seismic Conference on Bridges and 
HighwaysMultidisciplinary Center for Earthquake Engineering ResearchSouth 
Carolina Department of TransportationFederal Highway 
AdministrationTransportation Research Board, 2008, Accessed: Mar. 09, 2020. 
[Online]. Available: https://trid.trb.org/view/1120856. 

[23] C. Bradner, Large-scale laboratory observations of wave forces on a highway bridge 
superstructure. Oregon State University, 2008. 

[24] C. Bradner, T. Schumacher, D. Cox, and C. Higgins, “Large–Scale Laboratory 
Observations of Wave Forces on a Highway Bridge Superstructure,” 2011. 

[25] A. R. Chandrasekaran, S. S. Siani, and M. M. Malhorta, “Virtual mass of submerged 
structures,” J. Hydraul. Div., vol. 98, no. 8923 Paper, 1972. 



40 

[26] R. G. Dong, “Effective mass and damping of submerged structures,” California Univ., 
Livermore (USA). Lawrence Livermore Lab., 1978. 

[27] R. J. Fritz, “The effect of liquids on the dynamic motions of immersed solids,” J. Eng. 
Ind., vol. 94, no. 1, pp. 167–173, 1972. 

[28] E. Nezirić, S. Isić, V. Doleček, and A. Voloder, “An Analysis of Damping type 
Influence to Vibration of Elastic Systems,” 2010. 

[29] J. F. Epperson, An Introduction to Numerical Methods and Analysis. John Wiley & 
Sons, 2013. 

[30] J. D. Hartog, “LXXIII. Forced vibrations with combined viscous and coulomb 
damping,” Lond. Edinb. Dublin Philos. Mag. J. Sci., vol. 9, no. 59, pp. 801–817, 1930. 

[31] T. A. Perls and E. S. Sherrard, “Frequency response of second order systems with 
combined Coulomb and viscous damping,” J. Res. Natl. Bur. Stand., vol. 57, no. 1, 
p. 45, 1956. 

[32] G. Cheng and J. W. Zu, “Two-frequency oscillation with combined Coulomb and 
viscous frictions,” J. Vib. Acoust., vol. 124, no. 4, pp. 537–544, 2002. 

[33] B. F. Feeny and J. W. Liang, “A decrement method for the simultaneous estimation 
of Coulomb and viscous friction,” J. Sound Vib., vol. 195, no. 1, pp. 149–154, 1996. 

[34] J.-W. Liang, “Identifying Coulomb and viscous damping from free-vibration 
acceleration decrements,” J. Sound Vib., vol. 282, no. 3–5, pp. 1208–1220, 2005. 

[35] R. Stanway and J. E. Mottershead, “Identification of combined viscous and Coulomb 
friction-a numerical comparison of least-squares algorithms,” Trans. Inst. Meas. 
Control, vol. 8, no. 1, pp. 9–16, 1986. 

[36] N. Mostaghel and T. Davis, “Representations of Coulomb friction for dynamic 
analysis,” Earthq. Eng. Struct. Dyn., vol. 26, no. 5, pp. 541–548, 1997. 

[37] J. C. Santamarina and D. Fratta, Discrete signals and inverse problems: an 
introduction for engineers and scientists. John Wiley & Sons, 2005. 

[38] “How GlobalSearch and MultiStart Work - MATLAB & Simulink.” 
https://www.mathworks.com/help/gads/how-globalsearch-and-multistart-work.html 
(accessed May 19, 2018). 

[39] Techet, “2.016 Hydrodynamics _ Added Mass,” . 
[40] P. J. Roache, Verification and validation in computational science and engineering, 

vol. 895. Hermosa Albuquerque, NM, 1998. 
[41] B. A. Erickson and E. M. Dunham, “An efficient numerical method for earthquake 

cycles in heterogeneous media: Alternating subbasin and surface-rupturing events 
on faults crossing a sedimentary basin,” J. Geophys. Res. Solid Earth, vol. 119, no. 
4, pp. 3290–3316, 2014. 

 



41 

Chapter 3  

Manuscript 2: Effect of Substructure Flexibility on Wave-induced Forces on 

Bridge Superstructures 

 

This manuscript is co-authored by Thomas Schumacher (adviser), Christopher 

Higgins, and Avinash Unnikrishnan. This manuscript is currently being prepared 

for submission to a journal. 

 

3.1 Introduction and Background 

A common failure mode of coastal bridges after the hurricane impacts in 

2004 (Katrina) and 2005 (Ivan) was attributed to strength-deficient connections 

between superstructure and substructure. Once these connections had failed, 

wave loads were in many cases large enough to move superstructures off their 

substructures into the water [1], as can be observed in Figure 3.1. 

 

Figure 3.1. Photo of superstructures of the US 90 Biloxi Bay Bridge that have been 
removed from their substructures by wave loads during Hurricane Katrina. Source 

[2]. 
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Prior to the hurricane events in the early 2000s, it was thought that the 

superstructure’s self-weight, along with shear-keys, would be sufficient to resist 

any hurricane-induced wave forces. The reason for the observed system failure is 

that the storm surge was much higher than anticipated, which lead to vertical, i.e. 

uplift, forces that were, in combination with the large horizontal forces, exceeding 

the capacity of the commonly used girder anchorage systems [3]. In many cases, 

no major damage was observed on the superstructures or to the substructures. 

Studying and providing stronger connections, i.e. anchorages, between girders 

and bent-caps has thus been proposed. The caveat is that stronger connections 

have the ability to transfer higher forces between superstructures and 

substructures. Therefore, it becomes necessary for the substructure to be able to 

carry these higher forces. Assuming the presence of anchorages that can transfer 

any forces, substructure flexibility is thus a factor that might significantly affect the 

experienced wave forces on bridge superstructures. To address these questions, 

Bradner et al. [4] tested a realistic 1:5-scale highway bridge model under various 

wave conditions experimentally. The setup is unique in that the horizontal flexibility 

of the substructure representing the bent columns, bent cap, and foundation, could 

be adjusted by inserting springs of different stiffness. The reported experiments 

were performed for three different substructure stiffnesses, including rigid (no 

springs), medium, and soft. The stiffnesses of the springs were selected based on 

2D frame analyses of realistic substructure configurations [5], [6]. While some 

preliminary results have been reported [2], [4]–[6], no systematic analysis has been 

performed to date. Schumacher et al. in [2] qualitatively showed that the wave-
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induced forces for a flexible setup are larger compared to a rigid setup. In [4]–[6], 

they showed that a second-order polynomial relationship between wave height and 

wave forces could be defined for both regular and random waves. Also, they 

addressed the effect of water level. They showed that, for the first three levels, 

forces were increased as water level increased. However, as the structure started 

to submerge until it got fully submerged, forces start to level off or even decrease. 

In this study, these observations are reinforced by a statistical test emphasizing 

the effect of substructure flexibility, besides the derivation of factors that account 

for this effect. Additionally, wave forces on coastal structures, particularly bridges, 

attracted the attention of many other researchers, who studied them 

experimentally [6]–[12] or numerically [13]–[20]. Through these efforts, many 

concepts and theories regarding wave-structure interaction dynamics have been 

established and equations for estimating wave forces developed. Additionally, an 

AASHTO guide has been developed to calculate horizontal and vertical forces, as 

well as overturning moment for highway bridge superstructures having a variety of 

girder types [21]. Most of the aforementioned research has focused on bridge 

systems where the substructure is assumed to be rigid horizontally. Some recently 

conducted numerical studies have studied the effects of horizontal fixity issue and 

submersion depth on the experienced forces [17], [18]. Both of these studies found 

that the induced wave forces increase with increasing flexibility of the structure. 

Most coastal engineers use normalized features in their analyses as a way 

to generalize the results [22]. One advantage is that these non-dimensional 
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analyses help in reducing the scattering in the estimated values and provides 

physics-based models that are less sensitive to superior correlations [22]. 

For example, air trapped under a bridge deck between girders has been 

studied as a factor affecting the wave forces acting on an elevated coastal bridge 

deck [23]. The procedure for analyzing the data was to filter the collected signals 

using the wavelet transform of the recorded signals, and distinguish the forces’ 

time history to have two regions: short time wave application (slamming force) and 

long-time wave application (quasi-static force). In their analysis, the researchers 

normalized the measured pressure by the static-equivalent pressure (𝜌𝑔𝐻), where 

𝜌 is water density, 𝑔 is the gravitational acceleration, and 𝐻 wave height, and 

plotted them against the hydrostatic head (
𝜂−𝑐

ℎ
), where 𝜂 is the wave elevation, 𝑐 is 

the clearance between the still water level and the bottom of the structure, and ℎ 

is the water depth. Hydrostatic head could be interpreted as the relative wetted 

area. Three distinct regions were observed in the analyzed data and they were 

attributed to the structural inundation level. These regions are defined as follows: 

1. Hydrostatic head < 0: rapid increase in loading 

2. 0 < Hydrostatic head < 0.4: slow increase in loading. 

3. 0.4 < Hydrostatic head < 0.65: rapid increase in loading. 

Openings introduced in the deck to relief trapped air showed a decrease on 

the measured forces. 

AASHTO [21], on the other hand, counted for this factor (air entrapment) 

which was defined by calculating the trapped air factor (TAF). TAF in turn was a 
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function of several parameters: submersion depth, bridge width, and girders 

depths per their specifications. This factor defines a wide rank (0 -100%) 

depending on the designer decision.  

[7] found that vertical force was highly affected by air entrapment, and by 

introducing openings in the deck, the vertical forces decreased.  

Using potential flow theory, Guo et al. [19] studied the behavior of forces 

normalized by (𝜌𝑔ℎ𝐴) vs. wavenumber (k = 1/𝜆) as the independent variable, with 

𝐴 being the area by which the wave interacts with the structure, and 𝜆 being 

wavelength. Two equations where derived to estimate vertical and horizontal 

forces. In their study they showed that the normalized vertical force experienced a 

dramatic decrease by an increase of wave numbers ≤ 1.0, after this point (i.e. for 

wave numbers > 1.0) the vertical force decreased slowly. For horizontal force, a 

reversed behavior was observed. For wave number ≤ 1.0, the normalized 

horizontal force increased dramatically as k increased. For 1.0 ≤ k < 1.5, the 

normalized horizontal force slowly increased. For k > 1.5, the normalized horizontal 

force exhibited a decreasing trend. 

Using the last numerical model presented in [19], Fang et al. [20] studied 

the effect of incident angle on wave forces on bridge superstructures. Similarly, 

they employed normalized features in their analyses and showed that the 

perpendicular direction produces the highest wave forces. Three additional 

normalized parameters were studied besides the angle of action. The first one is 

submersion depth normalized by water depth. The other parameter was the 

relative thickness of the bridge, which was measured by dividing deck thickness 
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by the submersion depth. The third parameter was the number of girders. All three 

parameters were shown to affect the horizontal force, whereas they had no effect 

on the vertical force components. 

Hayatdavoodi et. al. [24] studied the effect of solitary and cnoidal waves on a 

submerged horizontal deck on the normalized horizontal force, vertical force, and 

overturning moment (around the middle of the deck). Wave height, wave period, 

deck submersion, and deck width were among the studied parameters after they 

were normalized. Simplified empirical equations were developed based on the 

numerical results. Their findings can be summarized as follows: 

For solitary waves: 

a. Vertical force, horizontal force, and overturning moment linearly increase 

with increasing wave height.  

b. Vertical force and overturning moment increase with increasing deck width. 

The horizontal force reaches a constant value after the deck width reaches 

a certain value.  

c. The level of submersion has little effect (if none) on the forces, in general. 

For cnoidal waves: 

a. Forces change nonlinearly with wave height. 

b. Vertical force and overturning moment decrease with increasing level of 

submersion. The horizontal force remains constant after a certain level of 

submersion is reached. 
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c. Vertical force and overturning moment increase nonlinearly with increasing 

deck width, whereas the horizontal force oscillates.     

Finally, Park et al. [25] normalized wave forces by the incident wave energy 

along the shoreline and plotted them against normalized clearance by water depth, 

which can be thought of as relative water depth. The normalized forces by the 

incident wave energy is a measure of energy dissipation. Following in this study, 

the normalized wave forces by the incident wave energy vs. the relative width will 

be examined. 

 

3.2 Motivation and Objectives 

The effect of horizontal flexibility of the substructure representing bent 

columns, bent cap, and foundation, have not been studied sufficiently. In fact, the 

two studies found, i.e. [15], [17], actually contradict each other as to whether 

flexible support conditions lead to increased or decreased wave-induced forces. 

Additionally, current design guides are based on rigid substructure conditions, 

which from a structural engineering perspective are not realistic [21]. The 

motivation of the work presented in this article, which is based on the unique 

dataset described in [4], was to study the effect of substructure flexibility and 

develop force magnification factors that bridge engineers can use in conjunction 

with prediction equations to estimate wave forces on bridge superstructures.  
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3.3 Experimental Setup 

The analysis presented in this article is based on data produced from a 

large-scale experimental research project conducted in the O.H. Hinsdale Wave 

Research Laboratory at Oregon State University [4]. Details of the experimental 

setup as well as testing protocols and some preliminary data can be found in [4], 

[6]. Only a brief overview of the experiment is given subsequently. Figure 3.2 

shows an elevation view of the realistic 1:5-scale highway bridge superstructure 

model used in the experiments as well as some of the instrumentation. The three 

different horizontal support conditions representing three different substructure 

flexibilities are highlighted as well and include: Phase 1, 2a, and 2b. These 

correspond to rigid, medium, and soft horizontal support conditions, respectively. 

Numerical values are summarized in Table 3.1. 

 

Table 3.1. Structural configurations and test phases investigated in [6] and used in 
this study. 

Phase 
Horizontal support 
condition 

Model spring 
stiffness 

kN/m (lb/in) 

Connection between model 
superstructure and bent cap 

1 Rigid Very large 

Fixed, bolted (assumed rigid) 
2a Dynamic, medium 

springs 
458 (2614) 

2b Dynamic, soft springs 107 (612) 

3* Unconstrained N/A None (free, held by gravity and 
friction) 

* Data from this test phase was not used in this study. 
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Figure 3.2. Elevation view of experimental test setup showing different horizontal 
support conditions, i.e. test phases (LC = load cell, SWL = still water level). 

Dimensions: m (ft). (Courtesy of Dr. Schumacher). 

 

Figure 3.3 illustrates a bridge superstructure under wave action and 

provides commonly used terminology, which is also used herein. 
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Figure 3.3. Elevation view of bridge superstructure under wave action with 
commonly used terminology. (Courtesy of Dr. Schumacher). 

 

In the experiment [6], five still water levels (SWL), corresponding to depths 

ranging from h = 1.61 m to 2.17 m, were studied with increments of 0.14 m, which 

is equal to one-half of the total depth of the bridge superstructure, hd. Let 𝑧𝑑 

represent the elevation of the bridge specimen measured from the bottom of the 

girders, which is equal to the water depth (h) plus the clearance (c). Subsequently, 

normalized water levels are referred to and are calculated as follows: 

 
𝑑∗ =

ℎ − 𝑧𝑑

ℎ𝑑
 3.1 

 

The range of normalized depths is thus -1.0 to 1.0 with increments of 0.5. In the 

text we also refer to first to fifth water level, which correspond to d* = -1.0 to +1.0, 

respectively. 
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Table 3.2. Studied still water levels (SWL). 

Description Water depth, h 

(m) 

clearance, c 

(m) 

Normalized water 

level d* (-) 

First water level 1.61 +0.28 -1.0 

Second water level 1.75 +0.14 -0.5 

Third water level 1.89 0.00 0 

Fourth water level 2.03 -0.14 0.5 

Fifth water level 2.17 -0.28 1.0 

 

 

Figure 3.4. Sample experimental measurements for d* = 0.0, T = 3.0 s, H = 0.625 m, 
Phase 1: Time histories of (a) Water level at WG 9, 4.21 m (13.8 ft) away from front 

face of the bridge model, (b) total horizontal force, (c) total vertical force (WG = 
wave gage). 

 

Figure 3.4 shows sample measurements for a select wave trial for Phase 1 

(rigid setup). Note that the total horizontal force is the summation of the two 

horizontal load cells measurements, whereas the total vertical force is the 
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summation of all four vertical load cells (two offshore and two onshore). 

Researchers define wave force as having two components, horizontal and vertical, 

that are used to identify the forces experienced by a structure. Each component 

has two distinct regions; positive that increases until reaching the force maximum 

positive value and negative that decreases until reaching the force maximum 

negative value. The forces that are analyzed and processed are those that capture 

the dynamic action of the bridge superstructure. In this article the net positive 

forces were considered in the analysis. Figure 3.5 shows a close-up view of 

sample time histories for total vertical force that show these two regions. The same 

can be applied for total horizontal force. Different windows were selected for each 

wave force time history (which corresponds to a single trial), over which the 

average was computed, which represented one sample measurement in the data 

set. 
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Figure 3.5. A close-up view for a sample time-history for a total vertical force due 
to two passing waves. 

 

In Figure 3.6, the time histories for the fixed/rigid (Phase 1) and soft (Phase 

2b) setups at the second water level (d* = -0.5) with a wave period, T = 2.5 s for 

both vertical and horizontal forces are shown for comparison. As can be observed, 

the behavior of the horizontal wave force differs significantly between the two 

substructure flexibilities. For the flexible condition, besides the increase in wave 

force, the horizontal force is smooth and dominated by the spring stiffness, 
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whereas for the vertical force response, not much difference in the behavior except 

for a slight increase in the force magnitude can be observed. 

 

Figure 3.6. A close-up view for a sample time-history for the effect of substructure 
fixity on the on the observed wave force at same wave condition.  

 

Subsequently, the effect of substructure flexibility on the forces experienced 

by the bridge superstructure model are analyzed and discussed through 

presenting parameters that the authors believe to be important in understanding 

and estimating wave forces. These parameters are organized in two categories: 

unnormalized features (parameters), and normalized features (parameters), as 

suggested in the literature.  
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3.4  Data Analysis 

In this section, visualizations are done to the experimental data through 

presenting two categories of the commonly used parameters through the literature 

in defining wave forces. These categories are unnormalized and normalized 

features. Levels of submersion, wave height, wave steepness, and wave celerity 

are features presented under the unnormalized features. Normalized features 

analyzed include normalized forces by the incident wave energy along with the 

relative width. 

The main point of this section is to show how substructure flexibility affects 

the magnitude of the induced wave forces considering these different features, set 

the stage for future work in building refined models that account for substructure 

flexibility, and provide physical interpretations for the reason why structures with 

flexible supports have larger forces. 

 

3.4.1  Unnormalized feature analysis 

Plotting data is an important key to depicting interesting features of possible 

relationships between the defined variables. As seen earlier, many parameters 

were believed to have an influence on the magnitude of the measured forces. In 

Figure 3.7, box plots of horizontal and vertical wave forces are drawn vs. 

normalized water level, d* for waves with wave height, H = 0.5 m, and wave period, 

Tp = 2.5 s. It can be observed that both horizontal and vertical wave force 

components increase with increasing water level, reaching their maxima (in this 
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defined wave condition) at the fourth water level, i.e. at d* = +0.5, when the bridge 

superstructure is partially submerged [14], [16], [24], [26]. After that, a drop in their 

magnitudes occurs when the deck is fully submerged, i.e. for d* = +1.0. This can 

likely be attributed to the decrease in wave celerity with increasing water depth. 

For other wave conditions, the maximum occurred at the third water level, i.e. for 

d* = 0.0.  

 

Figure 3.7. Boxplots of horizontal (left) and vertical (right) wave forces vs. 
normalized water level for wave height = 0.5 m and wave period = 2.5 s for rigid 

setup. 

 

Substructure flexibility has not been a common subject of investigation until 

recently, where it has been studied through numerical modeling [15], [17], [18]. 

Bradner et al. [6] were the pioneers in investigating this aspect in their large-scale 

experimental study. In Chapter 2, a subset of the dataset used herein that captures 

the free vibration response of the bridge model, was analyzed to determine the 

dynamic properties of the experimental setup. Because of the unique experimental 

setup, which allows the superstructure specimen to move on top of a guardrail, an 

equation of motion having friction force hydrodynamic damping terms was 
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developed and its dynamic parameters quantified. This equation of motion is 

essential to build any numerical model of this particular experimental setup [5]. 

Some researchers who implemented numerical modeling did not consider the 

appropriate damping terms in their work [15], [17], [18]. As a result, inconsistencies 

between their results and the experimental data of [5] can be observed. As 

presented in [15], wave forces experienced a reduction in their magnitudes with 

increasing support flexibility. Contradicting this finding, [17] showed that wave 

forces were increasing with increasing support flexibility. To answer the question 

whether increasing substructure flexibility leads to increasing or decreasing wave 

forces, a series of plots are interpreted subsequently. 

Figure 3.8 shows the behavior of wave forces vs. wave heights for different 

substructure flexibilities, which are shown in different symbols and colors. 

Normalized water depth, d* = +0.5 and wave period, Tp = 2.5 s. Both horizontal 

and vertical wave forces with their mean values within a selective window of their 

actual response are presented. Distinct features can be observed. The forces 

experienced for the soft substructure flexibility are larger than those experienced 

for the rigid case, as proposed in [2], [17], and the difference increases linearly 

with increasing wave height, reaching a value of approximately 38% for a wave 

height of 0.58 m. Therefore, increasing substructure flexibility make a structure 

more susceptible to wave action, especially when the structure interferes with the 

water body (i.e., for partially submerged cases), putting the bridge superstructure 

in the maximum fluid flow field, and the surrounding water body starts to add 

additional mass to the moving structure. This additional mass increases the 
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momentum induced in the structure, which leads to increased forces experienced 

to be sustained by the structure. This also could be linked to the drag force. Drag 

force plays a role in determining the wave forces, since it is related to the projected 

area of interaction and wave celerity [27], [28]. 

 

Figure 3.8. Scatter plots of (a) horizontal and (b) vertical wave forces vs. wave 
height. Normalized water depth, d* = +0.5 and wave period, Tp = 2.5 s.  

 

Appendix D shows the remaining cases of wave forces vs. wave heights for 

wave periods 𝑇𝑃 = 2, 2.5, and 3.0 s and for all five water levels. From these figures, 

it seems that the action of a wave will not be noticed until its height reaches a 

certain level. A positive correlation between wave forces and wave height be 

found, which is intuitive and has been confirmed by others [2], [4]–[6]. As water 

level increase, the role of wave height is more significant up to the third water level 

when it is starting to decline, as observed from the inclination of the line formed by 

the data.  
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Another unnormalized feature that may affect wave forces is wave 

steepness, which is calculated by dividing the wave height by the wavelength. 

Figure 3.9 depicts the relation between wave forces and wave steepness. As wave 

steepness increases (which an indication of wave energy increase) the induced 

wave forces increase as well. 

 

Figure 3.9. Scatter plots of (a) horizontal and (b) vertical wave forces vs. wave 
steepness. Normalized water depth, d* = +0.5 and wave period, Tp = 2.5 s. 

 

Wave celerity (or velocity) is another factor thought to be one of the 

important features shaping wave force magnitudes, since it is related to forces via 

the drag term. Again, a positive correlation can be observed between wave celerity 

and wave-induced forces, as visualized in Figure 3.10. 
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Figure 3.10. Scatter plots of (a) horizontal and (b) vertical wave forces vs. wave 
celerity. Normalized water depth, d* = +0.5 and wave period, Tp = 2.5 s. 

 

3.4.2 Normalized feature analysis 

Implementing ocean engineers’ practices in writing equations by 

normalizing features, another analysis to the data was performed and is presented 

in this section. As mentioned in the introduction section, normalized features can 

help generalizing results, and reducing the scatter in estimated values, while 

providing physical-based models that are less sensitive to superior correlations 

[22]. Following this approach, Figure 3.11 and Figure 3.12 were created and are 

discussed next. These figures show the normalized horizontal force by the incident 

wave energy (
𝐹ℎ

𝜌∙𝑔∙𝐻2∙ 𝐵
) vs. the relative width, which is defined as the wavelength, L 

divided by the bridge width, W in the direction of wave action, x. B is the width of 

the specimen perpendicular to the wave direction. The normalized force quantity 

represents a measurement for the degree of relative wave energy dissipation [25]. 

However, this quantity can also be interpreted as a measure of the relative 

preserved energy. As shown in Figure 3.11(a), the data are grouped according to 
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wave periods, Tp with an interesting behavior of the normalized wave forces. This 

behavior defines an inflection point between short and long wave periods. These 

two regions were observed in [15] through a different comparison. In [15], they 

showed that for short wave periods (𝑇𝑝 < 3.0) wave celerity plays a major role, 

whereas for longer wave periods (𝑇𝑝 > 3.0), it plays a secondary role. This can be 

explained by the limitations in wave steepness, which required no wave breaking 

or flume overflow, therefore, wave celerity gets slower for the same wavelength as 

wave height decreases, and that is why we see a reduction in the energy level. As 

a result, for further analyses, normalized forces generated by waves with periods, 

Tp = 2.5 s are examined, as shown in Figure 3.11(b). 

 

Figure 3.11. Scatter plots of normalized horizontal wave force vs. relative width. 

 

Figure 3.11 (b) visualizes the different substructure flexibility effects on the 

measured forces. A more rigorous analysis is done to Figure 3.11(b) in Figure 3.12. 

A clear distinction between the three flexibility configurations shows that a 

superstructure with a flexible substructure has the least wave energy dissipation, 

or the highest relative energy preservation from the wave application. Additionally, 
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waves with wave height, H = 0.375 m show the highest relative energy 

preservation from wave action compared to other wave heights starting from the 

third water level. In another words, when the wave height is almost a full projection 

on the superstructure depth - i.e. complete wave interaction with the structure - the 

relative preserved wave energy by the superstructure is the highest. However, at 

initial water levels (the superstructure is above the still water level), as wave height 

increases, the more wave energy is preserved. This means wave height plays a 

significant role in adding more force to the structure when the superstructure is 

elevated. This observation reinforces the conclusion made in the previous section. 
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Figure 3.12. The relative energy preservation at different water levels and wave 

heights. 

3.5 Substructure Flexibility Effect 

Motivated by the strong evidence of the substructure flexibility influence on 

the induced wave force magnitudes, this section quantifies the amount of 

magnification. As suggested by [2], an anticipated quadratic relation could be 

observed between wave forces and wave height. Therefore, a linear least-squares 

first-order curve fit was used to describe the relation between the square root of 

wave force and wave height. The curve was forced to pass through the origin, 
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ensuring that zero wave height corresponds to zero force. Additional data 

processing prior to the regression process was needed for the first and second 

water levels, since at these water levels certain minimum wave heights are 

required to produce any wave forces. Therefore, a shift in the x-axis equal to the 

clearance between the still water level and the bottom of the superstructure 

girders, which reflect the height that the wave needs to reach before have some 

interaction with specimen. In Figure 3.13 and Figure 3.14, the mean curve fit lines 

along with 95% prediction limits for both horizontal and vertical forces and wave 

height are shown. Finally, force magnification factors were calculated by dividing 

the computed slopes for the two flexible setups by the slope of the rigid setup (the 

reference case). Since three slopes, corresponding to mean, lower, and upper 

95% prediction limits, were available for each case, force magnification factors 

using combinations were computed. 

Recall that the data used to generate these curve fits are represented by 

the average value of 5 to 7 peaks in series for a selected window of loading cycles, 

as shown in Figure 3.5. Three windows per one trial were defined and their average 

were computed. The magnification factors for all five water levels and three wave 

periods are included in Appendix E. 
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Figure 3.13. Illustration of force magnification factors for sample horizontal force 
with d* = 0.0 and Tp = 2.5 s: (a) Mean curve fit lines along with 95% prediction 
limits for the horizontal wave forces and (b) force magnification factors for 

different substructure flexibilities, considering the rigid condition as the reference 
value. Error bars represent 95% prediction limits of the curve fits. 

 

 

Figure 3.14. Illustration of force magnification factors for sample vertical force 
with d* = 0.0 and Tp = 2.5 s: (a) Mean curve fit lines along with 95% prediction 

limits for the vertical wave forces and (b) force magnification factors for different 
substructure flexibilities, considering the rigid condition as the reference value. 

Error bars represent 95% prediction limits of the curve fits.  

 

To find if the slopes of the fitted regression lines for the flexible setups are 

significantly different from the fitted regression lines for the rigid setup, tests of 
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restrictions were run for all different cases of water levels and wave periods. In 

these tests, two models are generated. The full model (or: unrestricted model) is 

one which assumes that the slope of the regression line fitted to the whole data is 

affected by both data setups (rigid and flexible), which can be written as: 

 
√𝐹𝑜𝑟𝑐𝑒 = 𝑚𝑟𝑖𝑔𝑖𝑑 ∙ 𝑤𝑎𝑣𝑒 ℎ𝑒𝑖𝑔ℎ𝑡𝑠𝑟𝑖𝑔𝑖𝑑 + 𝑚𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 ∙ 𝑤𝑎𝑣𝑒 ℎ𝑒𝑖𝑔ℎ𝑡𝑠𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 3.2 

 

In this case, the wave heights are recognized by their groups (rigid/ flexible), 

and the final regression line is affected by the two groups. 

For the restricted model, on the other hand, it is assumed that the slopes of the 

two groups are the same. Therefore, the new model (or: restricted model) is written 

as: 

 
√𝐹𝑜𝑟𝑐𝑒 = 𝑚 ∙ (𝑤𝑎𝑣𝑒 ℎ𝑒𝑖𝑔ℎ𝑡𝑠𝑟𝑖𝑔𝑖𝑑 + 𝑤𝑎𝑣𝑒 ℎ𝑒𝑖𝑔ℎ𝑡𝑠𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒) 3.3 

 

F-tests are run using: 

 
𝐹 =

(𝑆𝑆𝑅𝑒𝑠
𝑅 −𝑆𝑆𝑅𝑒𝑠

𝐹 ) 𝑟⁄

𝑆𝑆𝑅𝑒𝑠
𝐹 (𝑛−𝑘)⁄

, 3.4 

 

in which 𝑟 is the number of restrictions, which in this case is equal to 1. 𝑆𝑆𝑅𝑒𝑠 is the 

sum square of residuals, 𝑛 is the number of the rows in the data set, and 𝑘 is 

number of the total variables used in both models. This test was run for all water 

levels and wave periods, and the results are summarized in Table 3.3. This table 
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shows that there is a significant difference between the rigid and flexible setups for 

all water levels and wave periods at 0.05 level, except for the first water level for 

wave periods, Tp = 2 and 2.5 s, where they were not significant. Note: Significance 

codes shown in Table 3 are color coded as follows: 

p ≤ 0.001 p ≤ 0.01 p ≤ 0.05 p ≤ 0.1 p ≤ 1 
 

Table 3.3. Test of restrictions results.  

Water 
level 

Wave 
period 

Medium Soft 

Horizontal force Vertical force Horizontal force Vertical force 

p-value 
F-

statistic 
p-value 

F-
statistic 

p-value 
F-

statistic 
p-value 

F-
statistic 

1 

2 4.78E-01 5.16E-01 1.15E-01 2.64E+00 3.56E-03 9.81E+00 9.13E-01 1.22E-02 

2.5 3.29E-02 4.87E+00 3.80E-01 7.88E-01 3.63E-01 8.45E-01 7.79E-02 3.27E+00 

3 4.29E-05 2.29E+01 1.82E-02 6.24E+00 4.09E-05 2.30E+01 4.18E-02 4.52E+00 

2 

2 6.02E-08 6.38E+01 7.85E-04 1.51E+01 7.49E-05 2.21E+01 2.77E-06 3.55E+01 

2.5 1.49E-10 1.25E+02 8.49E-06 3.32E+01 1.68E-08 6.43E+01 1.93E-07 4.91E+01 

3 2.91E-05 2.33E+01 3.84E-05 2.24E+01 7.66E-08 4.40E+01 5.96E-05 2.04E+01 

3 

2 2.40E-11 9.45E+01 5.05E-07 3.41E+01 3.91E-07 3.61E+01 7.60E-02 3.31E+00 

2.5 1.51E-04 1.82E+01 2.43E-04 1.68E+01 5.42E-13 1.05E+02 1.26E-07 4.03E+01 

3 1.05E-06 3.52E+01 5.52E-03 8.78E+00 1.46E-06 3.06E+01 5.05E-07 3.41E+01 

4 

2 1.56E-02 6.87E+00 3.76E-01 8.18E-01 1.41E-01 2.31E+00 3.05E-02 5.23E+00 

2.5 1.99E-04 1.87E+01 1.05E-08 6.76E+01 3.90E-10 7.52E+01 1.52E-12 1.17E+02 

3 1.36E-03 1.29E+01 1.32E-01 2.42E+00 3.08E-08 5.47E+01 2.55E-06 3.35E+01 

5 

2 1.45E-02 6.87E+00 2.09E-03 1.17E+01 2.74E-01 1.25E+00 1.84E-02 6.32E+00 

2.5 9.04E-02 3.09E+00 8.51E-02 3.20E+00 2.75E-02 5.45E+00 4.17E-04 1.63E+01 

3 5.81E-02 3.93E+00 7.47E-02 3.45E+00 3.77E-04 1.60E+01 6.37E-05 2.16E+01 

 

To gain a better understanding on the behavior of the magnification factors 

and their range, their values were examined at different water levels across all 

wave periods, at different wave periods across all water levels, and for the whole 

data set. Boxplot, as shown in Figure 3.15, were selected as the means to evaluate 

differences, trends, and to qualitatively confirm whether there was a statistical 
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difference between force magnification factors associated with different 

substructure flexibilities. 

 

Figure 3.15. Boxplot of the force magnification factors for both horizontal and 
vertical forces. Numerical values shown represent the median value for the 

specified group. 
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Lumped together, force magnification factors across all water level and 

wave periods for both horizontal and vertical forces are shown in Figure 3.16. 

 

Figure 3.16. Boxplot of the force magnification factors for both horizontal and 
vertical forces for the all data. Numerical values shown represent the median 

value for the specified group. 

 

Several important observations can be derived from Figure 3.15 and Figure 

3.16, and are as follows: 

1. As wave period, Tp increases, the level of substructure flexibility starts to play 

a role in magnifying both the horizontal and vertical wave forces. 

2. With increasing submersion, increasing substructure flexibility magnifies both 

horizontal and vertical forces.  

3. The largest magnification factors are found for d* = -0.5. This may be attributed 

to the effect of wave height that was discussed in Sections 3.4.1 and 3.4.2.  

4. From Figure 3.16, it can be observed that force magnification factors span the 

same range for both medium and soft setups. 
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Recommended force magnification factors for horizontal and vertical forces for 

design purposes are obtained after fitting a distribution function and compute the 

50th, 75th, 95th, and 99th percentiles based on the cases shown in Figure 3.16, 

and as shown in Figure 3.17. Numerical values are shown in Table 3.4 for two 

fitted distributions, Logistic and Normal. 

 

Figure 3.17. Derived MGF from logistic distribution. 

 

Table 3.4. Force magnification factors at different percentiles, for both horizontal 
and vertical forces 

 
Fitted 

distribution 
50% 75% 95% 99% 

Horizontal 
Normal 1.14 1.23 1.34 1.42 

Logistic 1.15 1.22 1.33 1.44 

Vertical 
Normal 1.12 1.17 1.25 1.30 

Logistic 1.12 1.17 1.25 1.32 
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Finally, to estimate the horizontal and vertical forces experienced by a 

bridge superstructure with a flexible substructure, the following equation can be 

used: 

 
𝐹𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 = (MGF√𝐹𝑟𝑖𝑔𝑖𝑑)

2

 3.5 

where 𝐹𝑟𝑖𝑔𝑖𝑑 represents the horizontal or vertical forces calculated using equations 

that were developed based on rigid test setups. MGF are the force magnification 

factors values showed in and 𝐹𝑓𝑙𝑒𝑥𝑖𝑏𝑙𝑒 represents the modified force magnitudes. 

 

3.6  Summary and Conclusion 

Data from a unique experimental testing program on wave-induced forces 

on a large-scale highway bridge superstructure model were analyzed and are 

presented and discussed in this article. A unique aspect of the test was the ability 

to adjust the substructure’s flexibility. The available data includes three 

substructure conditions: rigid, medium, and soft. The main conclusion of this study 

is that substructure flexibility results in increased horizontal as well as vertical 

forces that a superstructure has to withstand. While equations exist to estimate 

wave-induced forces, they are based on either rigid supports or unverified 

numerical models. A physics-based explanation was also developed to explain the 

observed increase in wave-induced forces. For example, cases with a rigid 

superstructure show high energy dissipation, whereas for the flexible conditions 

they showed high energy preservation, which was the reason for the force 

increase. The effect of wave height is larger for an unsubmerged superstructure 
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and the case of zero clearance; this effect decreases with increasing level of 

submersion.  

To study the magnification of wave-induced forces, measured horizontal 

and vertical forces were plotted against different parameters, separately for each 

substructure flexibility. It was found that waves with longer periods resulted in an 

increase of the magnification factors. The reason for this could be that longer 

waves are an indication of higher wave amplitudes with longer contact time with 

the structure, which allows for a higher level of energy transfer. As the level of 

submersion increases, increasing substructure flexibility leads to an increase in 

force magnification. Based on the test of restrictions, substructure flexibility shows 

a significance effect on the measured forces. However, there is no statistical 

difference as evident by the significant overlap visible in the boxplots. Hence, 

magnification factors are proposed at different exceedance levels, which account 

for the increase in the wave forces when a realistic flexible bridge substructure is 

considered. These can be used in conjunction with force prediction equations that 

were based on experiments or models using rigid support conditions. 

Future work includes developing more sophisticated force magnification 

factors that are a function of independent variables such as wave period, water 

level, and substructure flexibility. Finally, advanced modeling techniques such as 

the particle finite element method (PFEM) will be employed to substitute additional 

wave trials allowing for the creation of a force prediction model. 
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Chapter 4  

Manuscript 3: Implementation of the OpenSeesPy Particle Finite Element 

Method (PFEM) to Study Wave-induced Forces on Bridge Superstructures 

 

This manuscript is co-authored by Minjie Zhu, Thomas Schumacher (adviser), 

and Christopher Higgins. This manuscript is currently being prepared for 

submission to a journal. 

 

4.1 Introduction 

Bridges are considered important link elements in an infrastructure network 

during crises to provide rescue and assistance to the stricken areas. Studying and 

investigating these structures helps to minimize the danger and reducing their 

vulnerability to damage, while increasing the structure’s lifetime. Many coastal 

bridges are susceptible to wave action, especially during hurricanes where the still 

water level can rise significantly, and tsunami events. Records from Hurricane 

Katrina in 2005 show that a common type of failure was related to the inadequate 

connections between bridge superstructure and substructure [1]–[3], which in 

some cases led to the superstructure being swept off the substructure [4]. 

Reflecting on this type of failure, researchers started to perform experimental 

studies to quantify the forces that are induced by hurricane waves [5]–[8]. Many 

parameters were believed to affect the magnitude of the induced forces such as 

wave height, wave period, level of submersion [9]–[11], and amount of entrapped 

air [12], [13]. Other parameters were studied via numerical methods such as 
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number of girders, air vents in the deck [14], inclination of the deck, and other 

general modeling parameters [15].  

The effect of support flexibility on the observed forces has been a subject 

in several studies. The first observations based on large-scale experimental test 

data is reported in [16]. In this research, support flexibility is represented by the 

lateral flexibility of the bridge substructure, consisting of bent cap and columns, as 

well as the soil. The dynamic properties, type of damping, as well as a proper 

equation of motion that controls the behavior of the studied bridge superstructure 

system were presented in Chapter 2. An analysis of the experimental data set 

described in [17] was presented in Chapter 3, where the effect of support flexibility 

was investigated after contradicting findings looking into support flexibility issue 

were raised [16], [18]–[20]. Some studies show the opposite, i.e. forces decrease 

with increasing support flexibility [21]. Others have reported that as support 

flexibility increases, wave forces increase, which they found both experimentally 

[16] and numerically [19], [20]. The latter position is supported by the authors of 

this article, and discussed in Chapter 3. Based on the recommendations given in 

Chapter 2, one should consider the proper equation of motion and the estimated 

dynamic parameters to accurately model wave action on bridges. In this article, 

the PFEM available through OpenSeesPy [22] is introduced as a means to 

properly simulate fluid-structure interaction for bridge superstructures under wave 

action. 

Numerical modeling is an effective and inexpensive way to conduct different 

studies in different areas, since it minimizes time and cost that physical 
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experiments can take. Besides, it has the ability to build models as the real 

structure size, along with the ability to change different parameters easily. Particle 

Finite Element Modelling (PFEM) is a numerical method based on the standard 

finite element method (FEM), which discretizes the studied domain into elements 

of finite size and solves the governing equations using the shape functions with 

the Galerkin-weighted residual method [23], [24]. However, in PFEM, the nodes of 

these elements can freely move based on the solutions of the Lagrangian 

formulation to the governing equations. This method has a variety of important 

applications. In this chapter, the implementation of the PFEM method for modeling 

a bridge superstructure subjected to wave action and evaluating the effect of 

substructure flexibility to the measured forces is presented and discussed. 

 

4.2 Motivation and Objective 

In fluid-structure interaction problems (FSI), PFEM has received significant 

attention among researchers [25]–[27] due to its ability to process problems 

encountered with large deflections in both the fluid and solid domains. FSI 

represents a fully coupled problem where fluid movement directly affects how the 

structure is represented in the fluid. Simultaneously, there is a reverse action 

(effect) on the fluid flow. The PFEM has been used to solve a wide range of 

engineering problems, including wave action on breaking waters and bridges, and 

large motion of floating objects and submerged bodies [28]. The objective of this 

study was to implement and validate the PFEM by modeling select trials of a large-

scale experimental study [17] and thereby set the foundation to perform parameter 
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studies on modified versions of the setup. Additionally, this study can be 

considered a real-world application of the open source package OpenSeesPy 

scripting with Python [22]. Moreover, this provides a continuation of the work 

discussed in Chapter 3, which studied the effect of substructure flexibility on the 

observed forces using experimental data.  

 

4.3 Overview of the PFEM Method 

The PFEM is analogous to the standard FEM in that it solves the discretized 

governing equations through iterative time stepping. However, the main difference 

between the two methods lies within the remeshing techniques and the 

identification of updated domain boundaries at each time step [29]. In PFEM, the 

meshing nodes are treated as moving materials in both the fluid and solid domains, 

which have the capability to separate from each other for large motions. This 

capability of separating while maintaining their material properties allows for 

realistic representations of phenomena such as wave breaking or water splashing.  

A key attribute of the PFEM is that the governing equations are formulated 

using a Lagrangian formulation, which eliminates the convective terms in the 

momentum equation. One difficulty that emerges thereby is how to move the 

meshing nodes in an efficient way [30], [31]. A moving mesh approach was used 

as the first implementation of the PFEM [25], in which the meshes for all domains 

are updated and remeshed again at each time step. The updating does not take 

place during nonlinear iterations within one time step, which may lead to numerical 

difficulties [32]. A method using a fixed mesh promises computational efficiency 
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over a moving mesh approach since a remeshing of the domain is not required 

[32]. Moreover, an advanced remeshing technique, which is considered as a 

balance between a fixed and moving mesh, is a background mesh. This approach 

keeps the mesh fixed for the fluid and the solid, but a local moving mesh is created 

at each time step within the interface layer between fluid and solid (structure) [32]. 

This method is used in this work. 

At each time step, the state variables are assumed to be known, then the 

discretized governing equations are solved to compute the next time state 

variables. The solution of these equations iterates until it reaches a specified 

convergence criterion. 

 

4.4 Governing Equations 

The governing equations for conservation of linear momentum and 

conservation of mass in both the fluid and solid domains need to be satisfied. As 

presented in [29], the Lagrangian form for the conservation of momentum 

equation can be written as: 

 𝜌 ∙
𝜕𝑢𝑖̇

𝜕𝑡
=

𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+ 𝑏𝑖 4.1 

The conservation of mass equation, also referred to as pressure-velocity 

relationship, for a real fluid is defined as: 

 
1

𝐾
∙

𝜕𝑝

𝜕𝑡
−

𝜕𝑢𝑖̇

𝜕𝑥𝑖
= 0 4.2 

For an incompressible fluid, where 𝐾 = ∞, Equation (2) reduces to:  
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𝜕𝑢𝑖̇

𝜕𝑥𝑖
= 0 

4.3 

In Equations (4.1) to (4.3), 𝑢𝑖̇  is velocity along the ith global coordinate, 𝑝 is 

the fluid pressure, and K , 𝜌, 𝑏𝑖, and  𝜎𝑖𝑗 are bulk modulus, density of the fluid, 

body force, and Cauchy stress, respectively. 

The constitutive equations used for an incompressible continuum follow 

[33] and are: 

 𝜎𝑖𝑗
𝑡+1 = 2𝜇 ∙ 𝜖�̇�𝑗 − 𝛿𝑖𝑗 ∙ 𝑝𝑡+1 

4.4 

where 𝜇 is fluid viscosity, 𝜖̇ is deformation rate, and 𝛿𝑖𝑗 is the Kronecker delta. The 

deformation rate is derived from the displacement field: 

 
𝜕

𝜕𝑡
(𝜖𝑖𝑗) =

𝜕

𝜕𝑡
[
1

2
∙ (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)] 

4.5 

These set of equations are completed by defining boundary conditions for 

displacement, and surface traction, as follows: 

 𝜎𝑛𝑖 = 𝜎𝑛𝑖    on Γ𝜎 
4.6 

 𝑉𝑖 = �̅�𝑖    on Γ𝑉 
4.7 

Maintaining mass balance was an issue in several studies that used PFEM 

[34]. However, in this study, a MINI element [35] was used, which is a mixed 

velocity-pressure finite element. Using this element, the velocity field is 

represented by a continuous piecewise linear function enriched by a bubble 

function, whereas pressure is represented by a piecewise linear function. This 
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element satisfies the inf-sup condition and converges with the first order for both 

velocities and pressures [35]. 

Synthesizing the contribution of all elements, the governing equations can 

be written in matrix form, as follows: 

 Mf uf + Kf uf – Gf p = Ff 
4.8 

 Gf
T uf + L p = 0 

4.9 

FSI problems are coupled problems, which implies fluid flow induces 

forces due to pressure and viscous stress on the structure present in the fluid 

stream. This effect is manifested as an external force, fext defined in the 

structure’s equation of motion: 

 Ms us+ Ks. us + C. us = fext 
4.10 

For more information on the derivations of the equations and their solutions, 

the reader may refer to [36], [37]. 

 

4.5 Experimental Study 

The OpenSeesPy PFEM was implemented by validating it against select 

results from a large-scale experimental study conducted in 2007 at the O. H.  

Hinsdale Wave Research laboratory at Oregon State University [17]. A realistic 

1:5-scale concrete bridge specimen was placed in the 100 m wave flume at a 

distance of 45.62 m from a flap-type motion wavemaker, as shown in Figure 4.1.  
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Figure 4.1. Elevation view of the large wave flume. (Courtesy of Dr. Schumacher). 

 

The test specimen consisted of a 5 cm thick slab supported by six scaled 

AASHTO Type III girders. The overall depth of the specimen superstructure, hd = 

0.28 m. Total span of the bridge specimen is 3.45 m. The width of the specimen, 

W = 1.94 m, which is running along the wave propagation. The experimental setup 

is characterized by a unique ability to adjust the lateral support flexibility to 

represent different substructure flexibilities. This is achieved by inserting springs 

between the horizontal load cell (LC) and the end block of the steel reaction frame. 

Phase 1 represents the rigid configuration without a spring, while Phase 2a and 2b 

represent medium and soft substructure configurations, respectively. The 

stiffnesses of the springs representing these configurations were selected based 

on a finite element analysis of different bent frame configurations with battered 

piles (for details see [38]). Figure 4.2 shows drawings of the test specimen and 

setup. Additional details can be found in [17]. 
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Figure 4.2. Drawing of bridge superstructure specimen with key instrumentation 
used in this study (a) elevation view (longitudinal cut) and (b) view up the flume 
(cut across the flume). Dimensions: m (ft). Notation: LC = load cell, SWL = still 

water level, h = water depth, hc = superstructure depth. (Courtesy of Dr. 
Schumacher) 

 

The testing protocol included running over 400 trials with different wave 

conditions, water levels, and substructure flexibility conditions. Reaction forces 

were measured directly with six load cells, as shown in Figure 4.2. Displacement 

sensors captured the lateral motion of the specimen during Phase 2. 

 

4.6 Simulations 

The objective of this chapter was to implement a numerical model based on 

the OpenSeesPy PFEM and validate it with select experimental data described in 

[17]. Two substructure configurations were selected: Phase 1 (rigid) and Phase 2b 

(soft springs). To minimize computational time, the numerical simulation was 

based on the 1:5 model scale to directly match the experimental measurements. 

Additionally, only a portion of the flume was included in the simulation. The total 

length of wave flume included in the domain was 50.0 m, of which the first 3.5 m 
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were part of the wavemaker, followed by 30 and 20 m of horizontal and 1/10 

inclined floor beds, respectively. The inclined floor bed is designed to dissipate the 

coming waves and minimize their reflections, in both the physical and numerical 

experiments. As opposed to the experimental tests, waves in the numerical 

simulations were generated via a piston wavemaker, through selecting a desired 

water level, wave period, and wave height. The selection of piston wave maker 

over the flap wave maker was made because the generated waves via the flap 

type experienced larger reduction in wave height. As presented in [39], the piston 

wavemaker gate motion is defined in a numerical simulation through the equation: 

 𝑥𝑝(𝑡) =
𝑆

2
∙ sin 𝜔𝑡 

4.11 

where 𝑆 is gate stroke and 𝜔 frequency of piston movement, which is equal to 

the target wave frequency. The resulting transfer function is defined as: 

 𝑇𝐹 =
2(cosh 2𝑘ℎ − 1)

sinh 2𝑘ℎ + 2𝑘ℎ
 

4.12 

where 𝑘 is the wavenumber, and ℎ is water level. The gate stroke can be defined 

as: 

 𝑆 =
𝐻

𝑇𝐹
 

4.13 

where H is wave height. The bridge superstructure model was placed at 18 m from 

the wavemaker. Two wave gauges were defined in front of the model at a distance 

of 7.8 m and 3.76 m. These wave gauges are representative of the actual locations 
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of wave gauges 8 and 9, respectively, in the experiment (see Figure 4.1). Figure 

4.3 shows the simulation domain. 

The mesh size used for the bridge specimen was 0.01 m using the 

dispBeamColumn element. This element is based on the displacement 

formulation, and it considers the distribution of the plasticity along the element. 

Gauss-Legendre quadrature is considered as the default rule of integration along 

the element. Elements properties are identified by the section modulus at each 

integration point. By default, this element is considered prismatic [40]. For the 

water body, the mesh size was 0.02 m using the MINI elements as described in 

Section 4. The number of particles in each element is five in both the x- and y- 

directions. Maximum and minimum time steps were set equal to 10e-3 sec and 

10e-6 sec, respectively. Water density, ρ = 998.2 kg/m3, water viscosity, υ = 8.90e-

4 𝑃𝑎 ∙ 𝑠, and water bulk modulus, K = 2.2e6 (N/m2). The mass of the bridge 

superstructure specimen was taken to be, m = 2470 kg, whereas concrete density 

was assumed, ρc = 2400 kg/m3. Two substructure flexibility configurations were 

studied, similar to those defined in the experimental study: rigid (Phase 1) and soft 

(Phase 2b), which assumes a total lateral substructure stiffness, ktot = 2 x 107 kN/m 

= 214 kN/m.  

Both the experimental and simulation data were subjected to filtering process 

with a Butterworth low-pass filter with a cutoff frequency = 50 Hz. 
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Figure 4.3. Simulation domain of the bridge superstructure setup. 

 

4.7 Model Validation and Results 

Initially, the mesh size for the water body was taken equal to 0.03 m, with 

five particles per element. Implementing this mesh size resulted in a significant 

reduction in the propagating wave height, which affected the induced forces, 

especially the vertical component. Therefore, the mesh size was reduced to 0.02 

m having four particles per element. This refinement resulted in a notable change 

in the propagating wave height as well as in the measured forces. Figure 4.4 shows 

wave gauge readings at wave gauge 8 and wave gauge 9 (WG 8 and WG 9) for 

d* = -0.5 (second water level), H = 0.75m, and Tp = 2.5 s. 
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The increase due to mesh refinement at WG 8 was equal to 66.7%, whereas 

for WG 9 it was 117%) However, wave amplitudes at these wave gauges were still 

below the magnitudes observed in the experiment by 19.4 and 25.4% at WG  and 

WG 9, respectively. In the experiment, a reduction in wave height between WG 8 

and WG 9 of 9.9% could be observed. In the simulation with mesh size 0.02 m it 

was 13.3%, which is comparable. The reduction in wave amplitude as the wave is 

propagating can be attributed to the friction viscosity force. As for the simulation, 

this can be attributed to the numerical model used to define turbulence effects and 

the used mesh size, in addition to the friction viscosity force.  

 

Figure 4.4. Effect of mesh size on propagating wave height. 

 

A comparison of the forces corresponding to the above wave amplitudes is 

shown in Figure 4.5. The magnitudes of the forces jumped from being unnoticeable 

to almost the same magnitude of the experimental readings. As for the horizontal 
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force, the simulation captures the general trend for the experimental record, on the 

other hand, the vertical force exhibits a couple of noticeable inconsistencies. For 

this trial, the simulation was not able to capture the significant drop that occurs at 

time 32.3 s, neither the maximum negative value. Whereas, for the case d* = 0.0 

(third water level), H = 0.625 m, and Tp = 3.0 s, better results were obtained 

regarding the vertical wave force component, which can be observed in Appendix 

F. 

The discrepancy found for the case of the second water level (d* = -0.5) can 

be attributed to the specific condition of the test specimen that was not added to 

the simulation model. In the experiment, the specimen was sitting on two 

HSS7x5x1/2 steel sections (see Figure 4.2a)  that were allowing water to be 

trapped inside them as the waves approached the superstructure and was 

discharged after the wave had passed the specimen. Therefore, the additional 

water affected the weight of the specimen, which resulted in a vertical off-set of the 

force, as can be observed in Figure 4.5b.  
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Figure 4.5. Effect of mesh size on simulated forces. 

 

The simulation results did provide a better match with the experimental 

results for longer wave periods, which can be attributed to the mesh size effect. 

Hence, improvement for shorter periods will be achieved by further reducing the 

mesh size. 

Figure 4.6 and Figure 4.7 represent cases at d* = -0.5, H = 0.75 m, and Tp 

= 3 s.  In Figure 4.6, even though the simulation results for the horizontal force 

shows acceptable agreement with the experimental results for both the rigid and 

soft substructure conditions, there is still a discrepancy in the width of the transient 

force response. In addition to the overestimation of the horizontal wave force for 

the soft setup, an oscillation in the response can be observed. This can be 

attributed to the friction force, which has not yet been included in the PFEM model, 

but should be considered in the equation of motion in the future, as suggested per 

Chapter 2. For the vertical forces, the simulation results show a closer response in 
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terms of the general trend. However, due to the lack in achieving the required wave 

height in addition to the water trapped in the bent caps, the simulation results 

underestimate the maximum positive and negative values recorded in the 

experiment. This is shown in Figure 4.7. 

 

Figure 4.6. Simulation results for horizontal forces compared with the 
experimental data for case d*= -0.5, H= 0.75m, and Tp= 3.0 s, and for both rigid and 

soft setups. 
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Figure 4.7. Simulation results for vertical forces compared with the experimental 
data for case d*= -0.5, H= 0.75m, and Tp= 3.0 s, and for both rigid and soft setups. 

 

Finally, the effect of substructure flexibility on the horizontal and vertical 

forces for both the experimental and simulation results are compared and shown 

in Figure 4.8 and Figure 4.9.  
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Figure 4.8. Effect of substructure flexibility on horizontal forces for experiment 
results. 
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Figure 4.9. Effect of substructure flexibility on horizontal forces for simulation 
results. 

 

As mentioned in Chapter 3, the observed forces for the soft substructure 

conditions are larger than those measured for the fixed support condition at the 

same wave conditions, which is supported by both Figure 4.8 and Figure 4.9. In 

Appendix G, an expansion to these cases in terms of showing the effect of fixity 

conditions on vertical forces is presented. 
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4.8 Summary and Conclusions 

A PFEM model was built to simulate a large-scale highway bridge 

superstructure laboratory specimen tested under wave action. The aim of creating 

this model was to (a) have the ability to expand the range of parameters tested in 

the laboratory study and (b) answer new questions that cannot be answered with 

the available laboratory data. The model was implemented and validate using 

select available cases. The mesh size was found to be a critical factor affecting the 

simulation results. Although the results are still informative about the actual 

behavior and magnitudes for horizontal and vertical forces, more refinement and 

adjustment of the model needs to occur as well as more sophisticated boundary 

conditions need to be tested.  

Attributable to a number of reasons, a noticeable wave height reduction is 

observed in the simulation results between WG 8 and WG 9 compared to what 

was observed in the experiment. In general, wave heights experience a reduction 

in their amplitude due to fluid viscous friction. The source of this energy dissipation 

can be divided into two sources: numerical and physical. Numerically, the 

attributes could be found due to: numerical hardening, mesh size, usage of the 

turbulent models [41], and the used advection scheme for momentum [41]. 

Physically, bottom friction/viscosity is considered a main source for wave energy 

dissipation, which in turn manifested as a wave height reduction as well.  

The horizontal forces showed a noticeable change in the behavior 

especially in terms of the occurrence of the peak value as well as its magnitude 

when substructure flexibility is varied. Supporting the experimental observations, 
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peak force is larger for the soft setup compared to the rigid one. Also, the time 

history of the horizontal force is smoothed out because it is dominated by the 

single-degree of freedom response discussed in Chapter 2 and this was something 

found in the simulation results as well. The vertical forces, on the other hand, were 

not affected by the change of support flexibility conditions in terms of the general 

behavior, however, a slight increase was found. It should be noted that a decrease 

in mesh size is expected to significantly improve the simulation results for the 

vertical forces as they are found to be more sensitive. 

In conclusion, the PFEM shows promise with acceptable agreement with 

the experimental data under the limited mesh sizes studied. A further decrease of 

the mesh size is needed, and will be performed in the future. This will come with 

additional significant computational cost. 

 

4.9 References 

[1] I. N. Robertson, H. R. Riggs, S. C. Yim, and Y. L. Young, “Lessons from Hurricane 
Katrina Storm Surge on Bridges and Buildings,” J. Waterw. Port Coast. Ocean Eng., 
vol. 133, no. 6, pp. 463–483, Nov. 2007, doi: 10.1061/(ASCE)0733-
950X(2007)133:6(463). 

[2] M. Hayatdavoodi and R. C. Ertekin, “Review of wave loads on coastal bridge decks,” 
Appl. Mech. Rev., vol. 68, no. 3, p. 030802, 2016. 

[3] Q. Chen, L. Wang, and H. Zhao, “Hydrodynamic investigation of coastal bridge 
collapse during Hurricane Katrina,” J. Hydraul. Eng., vol. 135, no. 3, pp. 175–186, 
2009. 

[4] J. Jin and B. Meng, “Computation of wave loads on the superstructures of coastal 
highway bridges,” Ocean Eng., vol. 38, no. 17–18, pp. 2185–2200, 2011. 

[5] “Development of the AASHTO guide specifications for bridges vulnerable to coastal 
storms | Request PDF,” ResearchGate. 
https://www.researchgate.net/publication/299678527_Development_of_the_AASHT
O_guide_specifications_for_bridges_vulnerable_to_coastal_storms (accessed Nov. 
09, 2018). 

[6] R. G. Bea, T. Xu, J. Stear, and R. Ramos, “Wave Forces on Decks of Offshore 
Platforms,” J. Waterw. Port Coast. Ocean Eng., vol. 125, no. 3, pp. 136–144, May 
1999, doi: 10.1061/(ASCE)0733-950X(1999)125:3(136). 



96 

[7] James Derek, Cleary John, and Douglass Scott, “Estimating Wave Loads on Bridge 
Decks,” Struct. Congr. 2015, doi: 10.1061/9780784479117.016. 

[8] T. Q. Do, J. W. van de Lindt, and D. T. Cox, “Performance-based design 
methodology for inundated elevated coastal structures subjected to wave load,” Eng. 
Struct., vol. 117, pp. 250–262, Jun. 2016, doi: 10.1016/j.engstruct.2016.02.046. 

[9] G. Cuomo, M. Tirindelli, and W. Allsop, “Wave-in-deck loads on exposed jetties,” 
Coast. Eng., vol. 54, no. 9, pp. 657–679, 2007. 

[10] H. Park, T. Tomiczek, D. T. Cox, J. W. van de Lindt, and P. Lomonaco, “Experimental 
modeling of horizontal and vertical wave forces on an elevated coastal structure,” 
Coast. Eng., vol. 128, pp. 58–74, Oct. 2017, doi: 10.1016/j.coastaleng.2017.08.001. 

[11] H. Xiao, W. Huang, and Q. Chen, “Effects of submersion depth on wave uplift force 
acting on Biloxi Bay Bridge decks during Hurricane Katrina,” Comput. Fluids, vol. 39, 
no. 8, pp. 1390–1400, Sep. 2010, doi: 10.1016/j.compfluid.2010.04.009. 

[12] G. Cuomo, K. Shimosako, and S. Takahashi, “Wave-in-deck loads on coastal bridges 
and the role of air,” Coast. Eng., vol. 56, no. 8, pp. 793–809, Aug. 2009, doi: 
10.1016/j.coastaleng.2009.01.005. 

[13] B. R. Seiffert, R. C. Ertekin, and I. N. Robertson, “Wave loads on a coastal bridge 
deck and the role of entrapped air,” Appl. Ocean Res., vol. 53, pp. 91–106, 2015. 

[14] M. Hayatdavoodi, B. Seiffert, and R. C. Ertekin, “Experiments and computations of 
solitary-wave forces on a coastal-bridge deck. Part II: Deck with girders,” Coast. 
Eng., vol. 88, pp. 210–228, 2014. 

[15] N. Ataei and J. E. Padgett, “Influential fluid–structure interaction modelling 
parameters on the response of bridges vulnerable to coastal storms,” Struct. 
Infrastruct. Eng., vol. 11, no. 3, pp. 321–333, Mar. 2015, doi: 
10.1080/15732479.2013.879602. 

[16] T. Schumacher, C. Higgins, C. Bradner, D. Cox, and S. C. Yim, “Large-Scale Wave 
Flume Experiments on Highway Bridge Superstructures Exposed to Hurricane Wave 
Forces,” presented at the Sixth National Seismic Conference on Bridges and 
HighwaysMultidisciplinary Center for Earthquake Engineering ResearchSouth 
Carolina Department of TransportationFederal Highway 
AdministrationTransportation Research Board, 2008, Accessed: Mar. 09, 2020. 
[Online]. Available: https://trid.trb.org/view/1120856. 

[17] C. Bradner, T. Schumacher, D. Cox, and C. Higgins, “Experimental setup for a large-
scale bridge superstructure model subjected to waves,” J. Waterw. Port Coast. 
Ocean Eng., vol. 137, no. 1, pp. 3–11, 2010. 

[18] D. Istrati, “Large-Scale Experiments of Tsunami Inundation of Bridges Including 
Fluid-Structure-Interaction,” PhD Thesis, 2017. 

[19] G. Xu and C. S. Cai, “Numerical investigation of the lateral restraining stiffness effect 
on the bridge deck-wave interaction under Stokes waves,” Eng. Struct., vol. 130, pp. 
112–123, 2017. 

[20] G. Xu and C. S. Cai, “Numerical simulations of lateral restraining stiffness effect on 
bridge deck–wave interaction under solitary waves,” Eng. Struct., vol. 101, pp. 337–
351, 2015. 

[21] X. Chen, J. Zhan, Q. Chen, and D. Cox, “Numerical Modeling of Wave Forces on 
Movable Bridge Decks,” J. Bridge Eng., vol. 21, no. 9, p. 04016055, Sep. 2016, doi: 
10.1061/(ASCE)BE.1943-5592.0000922. 

[22] “The OpenSeesPy Library — OpenSeesPy 3.1.5.12 documentation.” 
https://openseespydoc.readthedocs.io/en/latest/# (accessed Jan. 27, 2020). 

[23] T. J. Chung, Finite element analysis in fluid dynamics. New York: McGraw-Hill 
International Book Co., 1978. 



97 

[24] D. Chandrakant S and A. John F., Introduction to the Finite Element Method A 
numerical method for engineering analysis. VAN Nostrand Reinhold Company. 

[25] E. Oñate, S. R. Idelsohn, F. Del Pin, and R. Aubry, “The particle finite element 
method — an overview,” Int. J. Comput. Methods, vol. 01, no. 02, pp. 267–307, Sep. 
2004, doi: 10.1142/S0219876204000204. 

[26] S. R. Idelsohn, E. Oñate, F. D. Pin, and N. Calvo, “Fluid–structure interaction using 
the particle finite element method,” Comput. Methods Appl. Mech. Eng., vol. 195, no. 
17, pp. 2100–2123, Mar. 2006, doi: 10.1016/j.cma.2005.02.026. 

[27] S. R. Idelsohn, E. Oñate, and F. D. Pin, “The particle finite element method: a 
powerful tool to solve incompressible flows with free-surfaces and breaking waves,” 
Int. J. Numer. Methods Eng., vol. 61, no. 7, pp. 964–989, 2004, doi: 
10.1002/nme.1096. 

[28] E. Oñate et al., “Advances in the Particle Finite Element Method (PFEM) for Solving 
Coupled Problems in Engineering,” in Particle-Based Methods: Fundamentals and 
Applications, E. Oñate and R. Owen, Eds. Dordrecht: Springer Netherlands, 2011, 
pp. 1–49. 

[29] E. Oñate, M. A. Celigueta, S. R. Idelsohn, F. Salazar, and B. Suárez, “Possibilities 
of the particle finite element method for fluid–soil–structure interaction problems,” 
Comput. Mech., vol. 48, no. 3, p. 307, Jul. 2011, doi: 10.1007/s00466-011-0617-2. 

[30] J. Donea and A. Huerta, Finite Element Methods for Flow Problems. John Wiley & 
Sons, 2003. 

[31] M. D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: A 
Guide to Theory, Practice, and Algorithms. Elsevier, 2012. 

[32] M. Zhu, I. Elkhetali, and M. H. Scott, “Validation of OpenSees for Tsunami Loading 
on Bridge Superstructures,” J. Bridge Eng., vol. 23, no. 4, p. 04018015, Apr. 2018, 
doi: 10.1061/(ASCE)BE.1943-5592.0001221. 

[33] S. R. Idelsohn, J. Marti, A. Limache, and E. Oñate, “Unified Lagrangian formulation 
for elastic solids and incompressible fluids: Application to fluid–structure interaction 
problems via the PFEM,” Comput. Methods Appl. Mech. Eng., vol. 197, no. 19, pp. 
1762–1776, Mar. 2008, doi: 10.1016/j.cma.2007.06.004. 

[34] “Improving mass conservation in simulation of incompressible flows - Ryzhakov - 
2012 - International Journal for Numerical Methods in Engineering - Wiley Online 
Library.” https://onlinelibrary-wiley-com.proxy.lib.pdx.edu/doi/full/10.1002/nme.3370 
(accessed Jan. 24, 2020). 

[35] Arnold, D. N., Brezzi, F., and Fortain, M., “A stable Finite Element for the Stokes 
Equations,” Estratto Calcolo, vol. XXI, no. IV. 

[36] M. Zhu and M. H. Scott, “Modeling fluid–structure interaction by the particle finite 
element method in OpenSees,” Comput. Struct., vol. 132, pp. 12–21, Feb. 2014, doi: 
10.1016/j.compstruc.2013.11.002. 

[37] E. Oñate, J. García, S. R. Idelsohn, and F. D. Pin, “Finite calculus formulations for 
finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian 
approaches,” Comput. Methods Appl. Mech. Eng., vol. 195, no. 23, pp. 3001–3037, 
Apr. 2006, doi: 10.1016/j.cma.2004.10.016. 

[38] C. Bradner, T. Schumacher, D. Cox, and C. Higgins, “Large–Scale Laboratory 
Observations of Wave Forces on a Highway Bridge Superstructure,” 2011. 

[39] “Module-2.pdf - MODULE II LABORATORY WAVE GENERATION Prof S A 
Sannasiraj Department of Ocean Engineering IIT Madras 1 INTRODUCTION Wave 
form moves.” https://www.coursehero.com/file/32913067/Module-2pdf/ (accessed 
Feb. 18, 2020). 



98 

[40] “Displacement-Based Beam-Column Element - OpenSeesWiki.” 
https://opensees.berkeley.edu/wiki/index.php/Displacement-Based_Beam-
Column_Element (accessed May 21, 2020). 

[41] “Why wave height (solitary) is not constant along its propagation in Ansys Fluent?,” 
ResearchGate. 
https://www.researchgate.net/post/Why_wave_height_solitary_is_not_constant_alo
ng_its_propagation_in_Ansys_Fluent (accessed Mar. 27, 2020). 



99 

Chapter 5  

Conclusions and Future Work 

 

5.1 Summary and Conclusions 

This PhD dissertation explores the dynamic behavior of coastal bridges 

subjected to wave action. In particular, a better understanding has been created 

into how the dynamic properties are affected by submersion as well as how the 

forces a bridge superstructure experiences are affected by substructure flexibility. 

This was done by performing a comprehensive analysis of a large data set and by 

implementing the particle finite element method (PFEM). The data set had been 

created as part of previous research study that built a unique bridge model with 

different substructure flexibility levels. The testing protocol consisted of over 400 

trials studying a range of wave conditions, water levels, and substructure 

flexibilities. The findings of this dissertation research are documented in three 

articles that will allow bridge engineers to build more accurate numerical models 

for fluid-structure interaction problems and provide practical guidance with respect 

to the magnification of wave-induced forces for design and evaluation applications. 

The main findings are summarized as follows:  

• The dynamic properties of a structure such as type of damping and natural 

frequency change with changing levels of submersion. This change can be 

attributed to the added mass and hydroviscous damping provided by the 
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surrounding water. As the water level increases, and with it the level of 

submersion, both added mass and damping increase. 

• Dynamic property changes affected by the level of fluid-structure interaction, 

which in turn affect the wave-induced forces a bridge must sustain and that was 

captured by the magnification factors. 

• The degree of substructure flexibility influences the amount of added mass and 

damping increment. As substructure flexibility increases, added mass and 

damping increase. This is an indication of the increase of the vulnerability of a 

structure, by increasing external forces input. 

• While the measured horizontal and vertical forces for both flexible (i.e., medium 

and soft) substructure conditions are notably different from the rigid case, the 

difference between the two flexible conditions do not appear significantly 

different but still show an increasing trend. 

• As substructure flexibility increases, a decrease in wave energy dissipation can 

be observed. In another words, as flexibility increases, an increase in energy 

preservation occurs, which is the reason for the increase in the observed 

forces.  

• Wave height is a more important variable for the unsubmerged cases and the 

case of zero clearance. Its effect decreases with increasing level of 

submersion.  

• Forces are magnified as wave period increases. This can be attributed to the 

associated longer waves, which result in a longer time of exposure, which in 

turn leads to a higher energy transfer resulting in higher wave forces. 
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• As the level of submersion increases, an increase in level of substructure 

flexibility leads to an increase in the measured forces. 

• The PFEM is able to predict the experimental data with reasonable accuracy. 

Even though the friction force was not implemented in the model, simulation 

results support the notion that structures with flexible supports experienced 

larger forces. 

• From the simulation results, horizontal forces showed to be affected by wave 

celerity, whereas vertical forces are more dependent on wave height. 

 

5.2 Recommendations for Future Work 

A comprehensive statistical analysis of the available experimental data set 

along with PFEM simulations have provided insightful information on the 

importance of dynamic property changes on the measured response of a bridge 

superstructure specimen for different substructure flexibilities. It has further 

allowed studying how fluid-structure interaction changes by the change of these 

properties. Based on the work presented in this PhD dissertation, the following 

aspects should be investigated in the future: 

• Investigate additional variables that may affect the proposed force 

magnification factors and develop a predictive equation that could be used to 

predict these quantities. 

• Employ the PFEM method to perform numerical parameter studies in order to 

fill in data gaps existing in the current data set such as additional water levels, 

substructure flexibilities, and wave conditions. 
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• Utilizing the fundamental knowledge gained in this work as well as employing 

experimental and numerical data, develop a comprehensive regression model 

that allows bridge engineers to predict wave-induced forces on bridge 

superstructures, including substructure flexibility. Compare the model with the 

current AASHTO guide equations. 

• Explore more advanced data mining techniques such as principal component 

analysis (PCA) (or dimensionality reduction method) to study the importance of 

variables and their relationships.  

• Utilize the PFEM method to study other wave types, e.g. tsunami-based, as 

well as other structures, e.g. buildings to fill additional knowledge gaps and 

provide engineers with tools to predict wave-induced forces more accurately. 
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Appendix A: Runge-Kutta Method 

A.1. Runge-Kutta for First Order Differential Equation 

The classical fourth-order accurate Runge-Kutta method is used to compute 

numerical solutions to a first order ordinary differential equation of the form �̇� =

𝑓(𝑥, 𝑡). Letting 𝑥𝑖 denote the approximation to the solution, i.e. 𝑥𝑖 ≈ 𝑥(𝑡𝑖) at time 𝑡𝑖, 

the Runge-Kutta method is based on the explicit Euler method which predicts the 

solution at the next time step 𝑥𝑖+1by adding the multiplication of the time step (∆t) 

by the slope (dx/dt) of the curve to the previous value 𝑥𝑖. The RK method however, 

is a weighted average that means it calculates several slopes and take the average 

of them that is used in the next step prediction. The following steps provide an 

explanation of how this method works when the ODE is coupled with the initial 

condition 𝑥(0) = 𝑥0. 

1) First four slopes are calculated:  

𝑘1 = 𝐹(𝑡𝑖, 𝑥𝑖), the slope at current time and position, 

𝑘2 = 𝐹(𝑡𝑖 +
∆𝑡

2
, 𝑥𝑖 + 𝑘1 ∙

∆𝑡

2
), the slope at half step ahead using the first predicted 

slope, 

𝑘3 = 𝐹(𝑡𝑖 +
∆𝑡

2
, 𝑥𝑖 + 𝑘2 ∙

∆𝑡

2
), the slope at half step ahead using the second 

predicted slope, and 

𝑘4 = 𝐹(𝑡𝑖 + ∆𝑡, 𝑥𝑖 + 𝑘3 ∙ ∆𝑡), the slope at full step ahead using the third 

predicted slope. 

2) Next the weighted average of the four slops is multiplied by the time step and 

added to the current value to get the next predicted value 
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𝑥𝑖+1 = 𝑥𝑖 + ∆𝑡 ∙ (
𝑘1+2𝑘2+2𝑘3+𝑘4

6
)  

A.2. Implementation of Runge-Kutta Method for Solving Equation of Motion 

In this work we seek numerical solutions to the second order equation of motion  

𝑑2𝑥

𝑑𝑡2
+ 𝐴

𝑑𝑥

𝑑𝑡
+ 𝐵𝑥 = 𝑓(𝑡), where x denotes the position, and A & B depend 

nonlinearly on 𝑥, �̇� and 𝑡. 

We first translate the second order equation to a system of two first-order 

equations. To do that, the following methodology [29] is implemented:  

1. We introduce a moderator that manipulates the 2nd ODE to a system of 1st 

ODEs, as follows: 

Let 𝑣 =
𝑑𝑥

𝑑𝑡
 denote the velocity and 

𝑑𝑣

𝑑𝑡
= 𝑣

˙
= 𝑎(𝑡, 𝑥, 𝑣) denotes the acceleration.  

The first order system is thus: 

𝑠𝑦𝑠𝑡𝑒𝑚 (1) {
�̇� = 𝑣

�̇� = 𝑓(𝑡) − 𝐴 ∙ 𝑣 − 𝐵 ∙ 𝑥
  

2. Given initial conditions 𝑥0 and 𝑣0, we next apply the RK method to the system 

(1) 

Letting i=0, we get the first predicted slopes for acceleration and velocity  

𝑘1 = 𝑎(𝑡𝑖, 𝑥𝑖, 𝑣𝑖):   

𝑙1 = 𝑣𝑖    

3. We then compute the slopes at the various points throughout the time step: 

𝑘2 = 𝑎(𝑡𝑖 +
∆𝑡

2
, 𝑥𝑖 +

𝑙1

2
, 𝑣𝑖 +

𝑘1

2
)  

𝑙2 = 𝑣𝑖 +
𝑘1

2
  

𝑘3 = 𝑎(𝑡𝑖 +
∆𝑡

2
, 𝑥𝑖 +

𝑙2

2
, 𝑣𝑖 +

𝑘2

2
)  
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𝑙3 = 𝑣𝑖 +
𝑘2

2
  

𝑘4 = 𝑎(𝑡𝑖 +
∆𝑡

2
, 𝑥𝑖 + 𝑙3, 𝑣𝑖 + 𝑘3)  

𝑙4 = 𝑣𝑖 + 𝑘3  

4. Finally, we update position and velocity using the average:  

𝑣𝑖+1 = 𝑣𝑖 +
1

6
∙ (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) ∙ ∆𝑡  

𝑥𝑖+1 = 𝑥𝑖 +
1

6
∙ (𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4) ∙ ∆𝑡 . 

 

A.3. Runge-Kutta Verification Test 

Numerical methods can serve as powerful tools in computing numerical solutions 

to differential equations whose analytical solutions are difficult to obtain. However, 

the reliability of the method in solving a certain problem should be analyzed in 

terms of its accuracy, stability, and convergence. 

The Runge-Kutta method used in this work is both fourth order accurate, and 

conditionally stable (a property common to all explicit methods). Convergence 

means that the numerical solution converges to the true solution, as the time step 

decreases. If we do not know the exact solution, we can manufacture one through 

the method of manufactured solutions [40] and compare it with our numerical 

solution. This commonly used technique verifies convergence of the method at the 

convergence rate predicted by the method’s accuracy. 

The method of manufactured solutions determines an exact analytical solution to 

a modified version of the ODE we wish to solve. In most cases the modified 

problem is the original equation but with an additional source term. If convergence 
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can be shown for the modified problem, we have verified that our numerical code 

is producing reliable results. This methodology provides a rigorous test of 

convergence, allowing us to quantify the error as a function of time step used, and 

is frequently used in current research projects [41]. The fourth order RK method 

implies that the error is: 

𝐸∆𝑡 = ‖𝑋𝑒𝑥𝑎𝑐𝑡 − 𝑋∆𝑡‖ ≈ 𝐶. (∆𝑡)4  

Where C is a constant, 

‖∙‖ denotes the L2 – norm, 

𝑋𝑒𝑥𝑎𝑐𝑡 is the exact solution evaluated at the grid pints 𝑡0, 𝑡1,⋯, and 

𝑋∆𝑡 is the numerical approximation obtained using a time step ∆𝑡. 

Therefore, to verify that our method is convergent of order 4, we successively halve 

the time step and take the 𝑙𝑜𝑔2 of the ratio of the computed errors. This ratio should 

approach the theoretical prediction of 4, since, 

𝐸∆𝑡

2

= ‖𝑋𝑒𝑥𝑎𝑐𝑡 − 𝑋∆𝑡

2

‖ ≈ (
∆𝑡

2
)

4

 , then the ratio 

𝐸∆𝑡

𝐸∆𝑡
2

=
𝐶∙(∆𝑡)4

𝐶∙(
∆𝑡

2
)

4 = 24 , thus 

𝑙𝑜𝑔2(𝑟𝑎𝑡𝑖𝑜) = 𝑙𝑜𝑔2(24) = 4  

The equation we solve in this work is the nonlinear second order equation:  

𝑚 ∙ 𝑥
¨

+ c ∙ 𝑥
˙

+ 𝜇 ∙ 𝑚 ∙ 𝑔 ∙ 𝑠𝑖𝑔𝑛(𝑥
˙
) + 𝑘 ∙ 𝑥 = 0  

We manufacture a solution to the modified problem (i.e. we add a source term): 

𝑚 ∙ 𝑥
¨

+ 𝑐 ∙ 𝑥
˙

+ 𝜇 ∙ 𝑚 ∙ 𝑔 ∙ 𝑠𝑖𝑔𝑛(𝑥
˙
) + 𝑘 ∙ 𝑥 = 𝐹(𝑡) 

Where the exact solution is given by 
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𝑥 = 𝑢0 𝑐𝑜𝑠(𝑡) , 𝑥
˙

= −𝑢0 ∙ 𝑠𝑖𝑛(𝑡) , 𝑥
¨

= −𝑢0 ∙ 𝑐𝑜𝑠 (𝑡)  

This means we can solve for the source term F(t) such that our manufactured 

solution solves the modified problem, namely 

𝐹(𝑡) = −𝑚 ∙ 𝑢0 ∙ 𝑐𝑜𝑠(𝑡) − 𝑐 ∙ 𝑢0 ∙ 𝑠𝑖𝑛(𝑡) + 𝜇 ∙ 𝑚 ∙ 𝑔 ∙ 𝑠𝑖𝑛𝑔(−𝑢0 ∙ 𝑠𝑖𝑛(𝑡)) + 𝑘 ∙ 𝑢0 ∙

𝑐𝑜𝑠 (𝑡)  

Re-arranging the equation yields 

𝑥
¨

=
1

𝑚
(−𝑐 ∙ 𝑥

˙
− 𝜇 ∙ 𝑚 ∙ 𝑔 ∙ 𝑠𝑖𝑔𝑛 (𝑥

˙
) − 𝑘 ∙ 𝑥 − 𝑚 ∙ 𝑢0 ∙ 𝑐𝑜𝑠(𝑡) 𝑚𝑛 − 𝑐 ∙ 𝑢0 ∙ 𝑠𝑖𝑛(𝑡) + 𝜇 ∙

𝑚 ∙ 𝑔 ∙ 𝑠𝑖𝑛𝑔(−𝑢0 ∙ 𝑠𝑖𝑛(𝑡)) + 𝑘 ∙ 𝑢0 ∙ 𝑐𝑜𝑠 (𝑡)  

Using the 4th order Runge-Kutta method to compute a numerical solution, we 

compare it with the exact solution in the following table: 

 

Table A.1. Rate of convergence of the Runge – Kutta method as expected to be 
approaching four for the classical fourth order 

∆𝒕  𝑬∆𝒕  ratio 𝒍𝒐𝒈𝟐(𝒓𝒂𝒕𝒊𝒐) 

0.2 5.00E-05   

0.1 3.28E-06 1.52E+01 3.930 

0.05 2.05E-07 1.60E+01 4.002 

0.025 1.27E-08 1.61E+01 4.007 

 

The results presented in the above table demonstrate that our Runge-Kutta 

method is converging with fourth order of accuracy, as expected, and we have 

assurance that numerical solutions to the un-modified problem are reliable. 
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Appendix B: Global Search Algorithm Validation 

 

The results shown in this section are simulated examples used as part of a 

parameter study to evaluate the optimization schemes, and do not reflect the real 

structure. Also, this validation shows a comparison between the used 

globalsearch and manual looping optimization techniques. Moreover, it holds 

for both soft and medium spring cases. As mentioned and explained in section 

(5.2), manual looping is based on defined increments for both the damping ratio 

(𝜁) and the friction force (F), and they are defined here to be 0.01 and 10N, 

respectively. Whereas globalsearch is based on the gradient descent method 

to find the global minimum for the defined function, the manual looping method 

gets zero percentage errors when the actual values for both damping ratio and 

friction force are multiples of the defined increments. However, when this condition 

is not satisfied, globalsearch starts to give percentage errors less than the 

manual looping. Even though the percentage errors are very small and do not 

exceed 11% (for manual looping), global search proves to be more reliable than 

the manual looping. Therefore, globalsearch was chosen as the optimization 

tool throughout the study. 
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Table B.1 Global search algorithm validation for medium spring 

  %error_ GS %error_ ML 

X(0) 
(m) 

k 
(N/m) 

m 
(kg) 𝜁 actu (-) 

F_actu 
(N) 𝜁 (%) 

F (%) 
𝜁 (%) 

F (%) 

0.05 450000 2500 0.07 250 0.060 0.320 0.000 0.000 

0.07 450000 2500 0.07 250 0.020 0.063 0.000 0.000 

0.1 450000 2500 0.07 250 0.050 0.097 0.000 0.000 

0.07 450000 2500 0.07 350 0.000 0.095 0.000 0.000 

0.07 450000 2500 0.07 450 0.071 0.266 0.000 0.000 

0.05 450000 2500 0.07 253 0.029 0.139 0.000 1.186 

0.05 450000 2500 0.063 253 0.740 2.832 3.175 5.138 

0.05 450000 2500 0.062 253 0.078 0.224 3.226 10.672 

0.05 450000 2500 0.064 252 0.081 0.390 1.563 4.762 

0.05 450000 2500 0.064 251 0.003 0.200 1.563 4.382 

 

Table B.2 Global search algorithm validation for soft spring 

 %error_ GS %error_ ML 

X(0) 
(m) 

k 
(N/m) 

m 
(kg) 𝜁 actu (-) 

F_actu 
(N) 𝜁 (%) F (%) 𝜁 (%) F (%) 

0.05 107000 2500 0.07 250 1.487 1.879 0 0 

0.07 107000 2500 0.07 250 0.917 0.982 0 0 

0.1 107000 2500 0.07 250 0.012 0.056 0 0 

0.07 107000 2500 0.07 350 1.352 0.904 0 0 

0.05 107000 2500 0.07 450 0.412 0.162 0 0 

0.05 107000 2500 0.07 253 0.605 0.623 0 1.186 

0.05 107000 2500 0.063 253 0.238 0.313 4.762 2.767 

0.05 107000 2500 0.062 253 0.183 0.058 3.226 2.767 

0.05 107000 2500 0.064 252 0.488 0.251 1.563 0.794 

0.05 107000 2500 0.064 251 0.147 0.153 1.563 0.399 
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Appendix C: Parametric Study Exploring Effect of Damping Types on 

Response 

 

A parametric study was conducted using numerical simulations of the EOM 

developed in this research (see Section 2.5.1) to provide insight on how the two 

damping mechanisms (viscous and friction) interact with each other. This study 

shows how both damping mechanisms are affected by initial displacement and 

damping ratio and how they interact with each other to produce the final response. 

In addition, the model’s dynamic properties also contribute to the final response, 

namely in this case the spring stiffness, whose effect also has been studied here. 

The fixed dynamic properties used in this parametric study are: 

• kmedium = 458 kN/m 

• ksoft = 107 kN/m 

• mass = 2500 kg 

• Friction force= 0.370 kN 

 

As the reader proceeds through the following sections, the authors would like to 

draw their attention to the concept of damping mechanism domination between 

friction and viscous damping. This domination of damping mechanisms is 

considered when the response curve for the dominated damping system becomes 

the lower bound of the two responses. 
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C.1. Medium Springs Setup 

C.1.1. Varying Initial Displacement  

For a constant damping ratio and the same structure, initial displacement, x(0) 

influences the domination of the phase response. Figure C.1 shows the free 

vibration response for four different initial displacements. As can be observed, as 

the initial displacement increases, the behavior starts to be dominated by viscous 

damping. However, friction damping at a certain point (near the end of the 

response, i.e. at small displacement amplitudes) will dominate. In other words, by 

increasing the initial displacement, we are increasing the potential energy imposed 

into the system, which causes the viscous damping role to dominate over the 

friction damping. 
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Figure C.1. Parametric study: the effect of initial displacement on the response of two 
systems having the same mass (2500kg) and stiffness (458 kN/m), one with friction 

damping (F=370 N) and the other with viscous damping 𝜁 = 0.05) (Medium spring case). 

 

C.1.2. Varying Damping Ratio 

For this case, the same initial displacement (x(0) = 15 mm) was used but in each 

analysis the damping ratio was increased. Fig. C.2 shows that as the damping 

ratio increases, the viscous damping force starts to dominate over friction force. 

Again, friction force starts to dominate at the end of the motion.  
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Figure C.2. Parametric study: the effect of damping ratio on the response of two 
systems of the same mass (2500kg) and stiffness (458kN/m), one with friction damping 

(F=370N) and the other with various viscous damping ratios, holding the initial 
displacement constant at (x(0)= 15mm), (Medium spring case). 

 

C.2. Soft Spring Setup 

In this case only the effect of the initial displacement will be studied 

C.2.1 Varying Initial Displacement 

Similar behavior was observed regarding the effect of initial displacement to that 

seen for the medium springs setup. As the initial displacement increases, viscous 
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damping starts to dominate over friction damping, except near the end of motion 

where the displacement amplitudes are small. 

 

Figure C.3. Parametric study: the effect of initial displacement on the response of two 
systems of the same mass (2500kg) and stiffness (107kN/m), one with friction damping 

(F=370N) and the other with viscous damping (𝜁 = 0.05), (soft spring case). 

 

C.3. Varying Stiffness  

Since two springs with different stiffnesses were used in the experiment, spring 

stiffness variation is chosen to be one of the studied parameters. Figure C.4 shows 

that for the same mass, damping ratio, and initial displacement, the response will 
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be dominated by friction more for softer spring, whereas for stiffer spring the 

response is dominated by viscous damping, until it reaches the end of response 

where it is controlled by friction. 

In this case, the amount of potential force for medium spring is larger than that for 

soft spring, since they are distorted the same amount. In other word, the force 

needed for the medium spring to be displaced to the same distance that the soft 

spring has been displaced to is larger. 

 

 

Figure C.4. Parametric study: the effect of system stiffness on the response of two 
systems having the same mass (2500kg), one with friction damping (F=370N) and the 
other with viscous damping (𝜁 = 0.05), holding the initial displacement constant (x(0)= 

25mm). 

 

C.4. Discussion and Conclusions 

Two types of damping, viscous and friction damping, are studied in this appendix, 

and several distinct parameter configurations and cases discussed. Motion of 

bodies in fluid (water in this case) is opposed by forces proportional to the viscosity 



116 

of that fluid. Assuming that added mass has no effect in this case, let us call this 

opposing force “viscous damping force”. By mounting the experimental model on 

a guide rail to allow for horizontal movement, an additional, i.e. friction force, is 

introduced. The restoring force comes from the potential energy stored in the 

springs when they are deformed, which represents a distortion from their resting 

position. 

When an initial displacement is introduced to the superstructure model, a force is 

stored in the springs in form of potential energy. Following release, a portion of this 

energy is gradually transformed into kinetic energy, whereas an additional portion 

is dissipated due to the friction force and viscous damping forces. When the model 

passes through the zero-displacement position, the kinetic energy reaches its 

maximum. This kinetic energy keeps model movement beyond the resting point if 

it is larger than the resisting forces (coming from friction and viscous damping 

forces). Passing the zero-displacement position, part of the kinetic energy will 

transform to potential energy and the other part will continue to be dissipated due 

to the friction force and viscous damping force. This schematic protocol in motion 

keeps happening until the motion is stopped. 

As discussed in Section (C.1.1), as initial displacement increases, the domination 

of viscous damping increases, too. The increase in displacement is a manifestation 

of increasing in potential energy, according to: 

 𝑃𝐸 =
1

2
∙ 𝑘 ∙ 𝑥2  (1.C) 

Finally, it was observed that, as stiffness increases, the domination of viscous 

damping over friction damping increases. The increase in stiffness could be 
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interpreted as a simultaneous increase in potential energy, according to equation 

(1.C). The domination of one type of damping system means that there is a 

mitigation of the other type of damping. That is why the value of friction force is 

less for the medium springs setup with a decreasing trend (in the experimental 

data analysis). This also means that viscous damping reached a limit where any 

change in its value leads to an influential effect on the frictional domination. For 

the soft springs setup, however, due to the low value of stiffness, a low domination 

effect of viscous damping can be expected (has been mitigated) countered by an 

apparent increase in friction force (i.e. increase in the domination of friction force). 
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Appendix D: Scatter Plots of Wave-Induced Forces vs. Wave Height  

 

Figure D.1. Scatter plots of horizontal wave forces vs. wave height at water depths and 

wave periods. 

 

Figure D.2. Scatter plots of vertical wave forces vs. wave height at water depths and 

wave periods.  
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Appendix E: Magnification Factors for all Cases 

 

 

Figure E.1. Force magnification factors for horizontal and vertical forces at Tp = 2.0 s 
and different water levels.  
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Figure E.2. Force magnification factors for horizontal and vertical forces at Tp = 2.5 s 
and different water levels.  
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Figure E.1. Force magnification factors for horizontal and vertical forces at Tp = 3.0 s 
and different water levels.  
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Appendix F: Experiment -simulation results comparisons 

 

Figure F.1. Simulation results for horizontal forces compared with the experimental data 
for case d*= 0.0, H= 0.625m, and Tp= 3.0sec, and for both rigid and soft setups. 

 

Figure F.2. Simulation results for vertical forces compared with the experimental data for 
case d*= 0.0, H= 0.625m, and Tp= 3.0sec, and for both rigid and soft setups.  
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Appendix G: Flexibility Effect via Experiment and Simulation Results 

 

 

Figure G.1. Fixity condition effect on vertical forces for experimental results. 
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Figure G.2. Fixity condition effect on vertical forces for simulation results. 
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