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Abstract 

This dissertation aims to advance the existing knowledge related to spatial modeling of 

water quality by exploring and introducing innovative approaches to different spatial 

conceptualizations for water quality modeling and incorporating upstream-downstream 

relations in geographically weighted regression. By carrying out a systematic literature 

review of four different classes of spatial models in Chapter One, this dissertation 

identifies the following major research gaps: lack of incorporation of multiscale 

processes, not enough emphasis on spatial weights matrices, and unavailability of 

upstream-downstream relationships in geographically weighted regressions. Chapters 

Two and Three were designed to address these gaps in the literature. In Chapter Two, 

different spatial conceptualizations of sampling sites were compared based on their 

capacity to predict dissolved oxygen and electrical conductivity utilizing geographic 

information system derived explanatory variables in rivers of the Setikhola watershed in 

central Nepal. The model strengths are better while considering graph types close to the 

stream network structure for dissolved oxygen. The graph types that account for 

neighbors in all directions are better suited for electrical conductivity modeling. In 

Chapter Three, this dissertation demonstrates that a successful geographically weighted 

regression model could be developed using an upstream distance matrix that has 

comparable model strength with that of standard Euclidean distance weighted 

geographically weighted regression. The human impacts as population density and 

increased sand and gravel cover can be detected impacting water quality in the study 
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watershed. The relationships between socio-environmental factors and water quality and 

their spatial interrelationships identified in the second chapter shed light on the source, 

mobilization, and transport of dissolved oxygen and electrical conductivity and can assist 

the water quality management endeavor. The local insights obtained from the upstream 

distance weighted geographically weighted regression of the third chapter help 

understand fine-scale impacts of socio-environmental and biophysical factors on water 

quality and assist in designing locally specific water quality management efforts. 
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Introduction 

This dissertation aims to advance the existing knowledge related to spatial modeling of 

water quality by exploring and introducing innovative approaches to different spatial 

conceptualizations for water quality modeling and incorporating upstream-downstream 

relations in geographically weighted regression. I use these approaches to investigate the 

water quality of one of the Himalayan watersheds of central Nepal to understand the 

impacts of socio-environmental factors in surface water quality and develop models to 

explore and predict water quality when data are not available (Figure 0-1). 

 

Figure 0-1: Conceptual framework of the dissertation 

Water quality is defined as the physical, chemical, and biological characteristics 

of water based on the observation and measurement of various parameters like 



2 
 

concentration of salts, nutrients, or presence of a species to determine its suitability for a 

particular use (USGS, 2009). Different substances enter surface water bodies by various 

pathways such as overland flow, in-stream flow, or atmospheric deposition (Lintern et al., 

2018). Within the water bodies also these substances undergo various physical, chemical, 

and biological changes leading to different water quality characteristics in different 

sections of the surface water bodies (Lintern et al., 2018; Zhai et al., 2014). These various 

physical, biological, and hydrological processes are impacted by human, natural, and 

climatic interactions (Mainali and Chang, 2018; Mouri et al., 2011; Shen et al., 2015;  

Wang et al., 2013). Human interventions as increased agricultural and urban land-use and 

modification of river environments are the main sources of water quality deteriorations 

(Bu et al., 2014; Finlay et al., 2013). 

The impacts of these various social, climatic, and natural factors on water quality 

are explored using various mathematical modeling approaches. Several processes based 

or statistical modelling approaches like  SPARROW, QUAL, BASINS, WASP, 

QUASAR, MIKE, and GWR are used in water quality modelling (Brunsdon et al., 1998; 

Schwarz, 2006.; Wang et al., 2013). Among them, different regression modeling 

approaches are commonly used to establish relationships between multiple explanatory 

variables and a water quality response variable measured from the surface water body 

(Ullah et al., 2018). Different landscape characteristics like land use, land management, 

slope, soils, or geology as explanatory variables are used to model water quality (Lintern 

et al., 2018). The population density, socioeconomic status, and other social-

environmental variables are also used to assess their impacts on surface water bodies 
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(Chen and Lu, 2014; Mainali and Chang, 2018). The traditional regression models like 

Ordinary Least Square Regressions (OLS) are not  statistically valid when there is spatial 

autocorrelation of model residuals. The presence of spatial autocorrelation results in a 

spatially biased trend and violates the assumption of random and independent samples 

and un-correlated residuals of most standard parametric statistical procedures (Cliff and 

Ord, 1972; Legendre, 1993; Sokal and Oden, 1978). On the other hand, OLS models do 

not incorporate seemingly obvious spatial interrelationships between neighboring and 

upstream-downstream data points in stream environments. Several spatial regression 

approaches, which account for such spatial dependence, have been used in water quality 

modeling. These approaches include spatial lag model, spatial error model, 

geographically weighted regression (GWR), spatial eigenvector mapping, and spatial-

stream-network based model (Blanchet et al., 2008; Borcard and Legendre, 2002; 

Brunsdon et al., 1998; Getis and Griffith, 2002; Ver Hoef et al., 2018; Ver Hoef and 

Peterson, 2010).  

In this dissertation, I attempt to examine various spatial modeling approaches to 

find novel ways to incorporate spatial interrelationships, collect first-hand water quality 

data, extract explanatory variables, and develop models to demonstrate novel spatial 

statistical methods. In the first chapter, I conducted a review of recent literature to 

compare different statistical models based on their effectiveness in explaining and 

addressing spatial aspects of water quality. I, along with coauthors, specifically examine 

spatial autocorrelation of the water quality parameters, residual spatial autocorrelation, 
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use of weights matrix, and incorporation of directional spatial processes in the model and 

attempt to identify knowledge gaps related to spatial modeling of water quality. 

In the second chapter, I tackle one of the research gaps in the spatial modeling 

literature, which is a comparison of different spatial conceptualizations of sampling sites 

on water quality modeling. I compare five different spatial conceptualizations using 

graph theories to evaluate their effectiveness in modeling Dissolved Oxygen and 

Electrical Conductivity at two different spatial scales. I also explore spatial patterns of 

Dissolved Oxygen and Electrical Conductivity in the Setikhola Watershed of Central 

Nepal by collecting first-hand water quality data. I further explore how different 

landscape features like land cover, topography, and population density affect the water 

quality in the watershed. 

In chapter three, I attempt to modify Geographically Weighted Regression by 

incorporating up-stream downstream relationships. This chapter builds upon the findings 

of the first chapter, which discovered that the stream network structure and up-stream 

down-stream relationships are not yet incorporated in geographically weighted 

regression. I use a spatial stream network model to extract flow connected distance 

matrix to run geographically weighted regression and compare the model outputs of 

standard and upstream distance weighted geographically weighted regression.   
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A Review of Spatial Statistical Approaches to Modeling Water Quality 

Janardan Mainali and Heejun Chang 

Abstract 

We review different regression models related to water quality that incorporate spatial 

aspects in their model. Spatial aspects refer to the location of different sites and are 

usually characterized by the distance between different points and directions by which 

they are related to each other. We focus on spatial lag and error, spatial eigenvector-

based, geographically weighted regression, and spatial stream network-based models. We 

evaluated different studies using these methods based on how they dealt with clustering 

(spatial autocorrelation) of response variables, incorporated those clustering in the error 

(residual spatial autocorrelation), used multiscale processes, and improved the model 

performance. The water quality-based regression modeling approaches are shifting from 

straight-line-distance-based spatial relations to upstream-downstream relations. 

Calculation of spatial autocorrelation and residual spatial autocorrelation was dependent 

upon the type of spatial regression used. The weights matrix is used as available in the 

software and most of the studies did not attempt to modify it. Different scale processes 

like certain distance from rivers vs consideration of entire watersheds are dealt separately 

in most of the studies. Generally, the capacity of the predictor variables to predict the 

response variable significantly improves when spatial regressions are used. We identify 

new research directions in terms of spatial considerations, weights matrix construction, 
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inclusion of multiscale processes, and identification of predictor variables in such 

models. 

Keyword: Water quality, hydrology, watershed, spatial statistics, spatial autocorrelation, 

scale 

Introduction 

Water quality defined as the physical, chemical, and biological characteristics of 

water is directly associated with the human and ecosystem health. The water quality, 

itself is dependent on various factors, including land cover, land use, land management, 

atmospheric deposition, geology and soil type, climate, topography, and catchment 

hydrology (Lintern et al., 2018). Water quality parameters vary across space and time 

because of variations in these different factors. For effective water quality management, it 

is crucial to understand these factors and the pathways by which they affect water 

quality.  Understanding spatial patterns of water quality parameters and factors affecting 

them, therefore, is crucial in pinpointing locations of interventions for improving water 

quality in surface water bodies.  

The most common approach of water quality research involves the statistical 

method, which typically process raw quantitative data using mathematical models, 

formula, and techniques to extract information and generate meaningful output (Nature 

Statistics, 2019). Regressions are most common statistical methods to understanding the 

relationship between water quality and watershed characteristics (Chang, 2008;  Shi et 

al., 2016; Zhou et al., 2012). Regression approaches may or may not include spatial 
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aspects of water quality parameters (Ullah et al., 2018). Spatial aspects refer to location 

and relative position to each other usually analysed using different spatial statistics. A 

relatively new sets of spatial statistical approaches, which typically extend from linear 

regression analysis, attempt to incorporate spatial processes to identify environmental and 

spatial determinants of water quality in surface water (Blanchet et al., 2008; Legendre, 

1993).  

 Many studies have examined spatial aspects of water quality (e.g., spatial 

autocorrelation and distribution of high and low values along a river network.) using 

various modeling techniques to explore the effect of landscape-level variables in the 

water quality. These studies include several review papers that synthesized different 

aspects of water quality research. Giri and Qiu (2016) reviewed the current understanding 

of the relationship between land use and water quality, while Ullah et al. (2018) 

examined different statistical approaches to modeling water quality using land use types 

as predictor variables. Lintern et al. (2018) conducted a comprehensive review of key 

factors affecting the spatial patterns of water quality, while Guo et al., (2019) reviewed 

various factors affecting temporal patterns of water quality. Isaak et al., (2014) conducted 

a review of research on a group of spatial statistics, spatial stream network based models. 

However, there is not any comprehensive review related to the spatial aspects of water 

quality modeling that offers water quality researchers a way to understand the basic 

concept of the spatial statistics and help them choose an appropriate modeling approach.  

We carry out this review to compare different statistical models based on their 

effectiveness in addressing spatial aspects of water quality. We specifically examine 
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spatial autocorrelation of the water quality parameters, residual spatial autocorrelation 

(RSAC), use of weights matrix, and incorporation of directional spatial processes in the 

model. In the first section, we discuss how these methodologies have evolved, while in 

the later section we perform a systematic literature review to identify knowledge gaps 

related to spatial autocorrelation, use of multiscale processes, and directional spatial 

processes. We review papers related to spatial lag and error model, spatial eigenvector 

based models, geographically weighted regression, and spatial stream network based 

models. We recognize that there are other spatial modeling approaches which are not  

covered in this review, including spatial kriging, P-splines, and several spatial 

autoregressive models (e.g., McLean et al., 2019).  
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II Spatial Statistical Approaches in Water Quality Studies 

In the watershed science, watershed, basin, or sub-basin are considered units of 

analysis. Extracting predictor variables that affect surface water quality mostly involves 

consideration of entire watershed. Several ways exist to incorporate different scales in the 

water quality modeling endeavor (Allan, 2004; Mainali and Chang, 2018). One of the 

most common involves creating a buffer of a specified distance from stream or lakes.  

Some studies also use  a threshold distance upstream from sampling point (e.g., Shi et al., 

2017). Some new methods provide higher weight to the landscape factors close by the 

streams based on Euclidean (straight line) distance, flow distance, or flow accumulation 

(Grabowski et al., 2016; King et al., 2005; Peterson et al., 2011).  

Spatial variations in the watershed properties draining into the river results in the 

variable water quality across different parts of the river, which typically lead to a specific 

spatial pattern of water quality. As nearby places are more alike than distant spaces 

(Tobler, 1970), there might be a cluster of high or low values of water quality parameters. 

This phenomenon, spatial autocorrelation, is a measure of whether a data value of one 

location is independent of data values of other locations (Sokal and Oden, 1978). Spatial 

autocorrelation can be positive when similar data values are close to each other, or 

negative when dissimilar data values are neighbored (Legendre, 1993; Sokal and Oden, 

1978). Spatial autocorrelation opens new avenues, to statistically analyze, seemingly 

obvious but ignored spatial pattern of water quality and its relations with the watershed 

attributes (Legendre, 1993). 
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A family of statistical tools is being used to analyze spatial autocorrelation among 

sampling stations. Moran's I is the most commonly used measure to evaluate the pattern 

of the attributes as clustered, dispersed, or random in space. This is a global statistics, one 

that offers a single set of statistics for the entire set of data. Moran's I has been used to 

analyze different water quality attributes in order to identify whether the water quality 

attributes show any global pattern of spatial dependence (Liu et al., 2016; Miralha and 

Kim, 2018; Pratt and Chang, 2012). As Moran's I statistics only offer information about 

the level of spatial autocorrelation for an entire set of data, we cannot use it to identify 

any local clusters. There are a few statistical approaches developed to identify local 

clusters in spatial data and are also being used to explore clusters of sites with degraded 

or not-degraded water quality. Getis-Ord's Gi and local Moran's I are commonly used in 

such local statistics (Anselin, 1995; Getis and Ord, 1992). These methods identify 

whether or not similar high or low values are clustered together locally and identify those 

clusters in geographical space. Many water quality analyses works have used these 

statistics to explore local relations in a sampling space (Brody et al., 2005; Mainali and 

Chang, 2018; Tu and Xia, 2008). 

The spatial autocorrelation in any data is associated with spatial dependence 

among different neighboring data points, resulting in a spatially biased trend and 

violating the assumption of independence of most standard parametric statistical 

procedures (Cliff and Ord, 1972; Legendre, 1993; Sokal and Oden, 1978). In regression 

analysis, biases due to such neighboring data points need to be accounted for, as they can 

produce autocorrelated residuals (differences between actual and predicted values) and 
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ultimately inflate Type I error, leading to wrongfully rejecting the null hypothesis (Bini et 

al., 2009; Cliff and Ord, 1972; Miralha and Kim, 2018). It is not possible to account for 

such influence only using traditional simple linear regression approaches that assume that 

data points are randomly distributed in the sampling space, and that model residuals are 

not autocorrelated. Several spatial regression approaches that account for such spatial 

dependence and are being used in water quality modeling, including spatial lag model, 

spatial error model, Geographically Weighted Regression (GWR), spatial eigenvector 

mapping, and spatial-stream-network based model (Blanchet et al., 2008; Borcard and 

Legendre, 2002; Brunsdon et al., 1998; Getis and Griffith, 2002; Ver Hoef et al., 2018; 

Ver Hoef and Peterson, 2010).  

III Spatial Weight Matrix and Spatial Regression Models in Water Quality Studies 

1 Spatial Weight Matrix 

The spatial dependence between sampling points is formally expressed as a 

weights matrix and is a necessary element of spatial regression models (Anselin, 2001; 

Getis and Aldstadt, 2004). Each spatial weight refers to the relative influence of different 

spatial units under consideration to the candidate spatial unit. These weights matrices can 

be defined in several ways, according to spatial interactions among different factors 

under consideration, and the hypotheses of interest (Sokal and Oden, 1978). The most 

essential aspect of the weights matrix is defining a neighborhood set for each location. 

The neighborhood sets are specified for each location as the row and the neighbors as the 

columns in a matrix. Non-zero weight is assigned when observations are within a given 
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number of nearest neighbors or specified distance. In the spatial statistics literature, the 

weight can be specified based on Euclidean distance, economic distance, number of 

nearest neighbors, or empirical flow matrices (Anselin, 2001). The weight matrices use 

several approaches to incorporate the effect of adjacent observations. Sometimes, a 

certain number of nearest neighbors is used, while in other cases only observations within 

a certain distance is used with the same weight to all the observations within that distance 

(Figure 1-1). Spatial regression models usually differ in terms of conceptualizing the 

spatial relationships usually through the weights matrix.  In this section, we discuss how 

these different spatial regression approaches are conceptualized and used in water quality 

modeling endeavors (Figure 1-2). 
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Figure 1-1: Conceptualization of different weights matrices 

A spatial weights matrix is created based on whether polygons share a common boundary or not 

(a binary decision with 0 or 1). For example, for P1, four polygons (i.e. P2, P3, P6, P8, and P9) 

are considered as neighbors based on Queen’s connectivity), or P6 will not be included if a zero-

distance common boundary (i.e. point connectivity) does not count (Rook’s connectivity). A 

contiguity-based spatial weights matrix can be specified with either the length of a common 

boundary or the area of an adjacent polygon instead of 0–1 binary values. For example, for the 

length of a common boundary, P9 has the longest common boundary with P1 and, thus, will have 

the largest weight, while P8 shares the shortest common boundary with PI and has the smallest 

weight. For the area of an adjacent polygon, P3 is the largest adjacent polygon of P1 and will 

have the largest weight, while P2, which is the smallest adjacent polygon of P1, has the smallest 

weight. 2) Nearest neighbor: sometimes weight can also be provided based on the numbers of 

neighbors for each candidate polygon (k-nearest neighbor). If we only use one closest neighbor, 

polygons (first order) defined in the Queen’s case (P2, P3, P6, P8, and P9) are considered. If two 

nearest neighbors (second order) are considered, in addition to the polygons adjacent to P1, the 

polygons sharing 

a boundary with those (P2, P3, P6, P8, and P9) are also included during the weights matrix 

construction for the candidate polygon (P1), which results in the inclusion of P4, P7, and P10, but 

not P5. Nearest neighbors (which are often called k-nearest neighbors) are specified with a fixed 

number of neighbors. It is often adoptively utilized for a case in which observations are not 

(relatively) evenly distributed. For example, one remote point (it is often specified for points) 
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may not have any neighbor, which is a problem in spatial analysis. To avoid this problem, k-

nearest neighbors can be utilized. 3) Threshold distance: spatial neighbors can be specified based 

on a preset distance from the centroid of a polygon. Here, with a threshold distance d1, polygons 

inside the circle of radius d1 are considered as spatial neighbors for polygon P1. In this case, P1 

has four neighbors: P2, P3, P8, and P9. If d2 is used for a threshold distance, all polygons but P4 

and P5 are neighbors of P1 and have a non-zero weight 

 

 

Figure 1-2: Use of different landscape characteristics (Lintern et al., 2018) in different spatial 

statistical models reviewed in this chapter 

2 Spatial Lag and Error Model 

Spatial lag models and spatial error models are the commonly used global regression 

models that account for spatial dependence among observations in a model specification. 

Global models refer to the regression models that produce a single set of model statistics 

for a set of data. Spatial lag model (Anselin, 1988, 2001) is applied when response 

variables suffer from significant spatial autocorrelation. A spatially lagged variable is 

created by averaging the values of the response variable at neighboring locations (Figure 

1-3a). The spatial lag model includes a spatially lagged dependent variable with a weights 

matrix to account for the spatial autocorrelation. Such a weights matrix is often 
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constructed without consideration of a stream network, so it tends to have more 

neighboring sites than one that of a stream network (Figure 1-3a). Spatial error model 

(Anselin 2001) is used when model residuals suffer from significant spatial 

autocorrelation. This is similar to the spatial lag model except that it accounts for spatial 

autocorrelation in the error term.   

Several researchers have been using these methods to model water quality and 

reported a general improvement in model performance when such spatial models are used 

(Chang, 2008; Huang et al., 2016; Miralha and Kim, 2018). This improvement in the 

model performance typically relates to the degree of spatial autocorrelation and residual 

spatial autocorrelation (Kim et al., 2016; Kim and Shin, 2016; Miralha and Kim, 2018). 

 

Figure 1-3: Spatial relations among sampling stations for a spatial weight matrix creation in 

different types of spatial modeling for surface water quality. The black arrows refer to 

directionality of the spatial relations and the dotted circle represents a certain bandwidth. 

a) Spatial lag and/or error model – both upstream and downstream stations affect a station of 

interest. b) Moran’s eigenvector maps – all surrounding stations are considered with no 

directionality between upstream and downstream stations modified from Sharma et al., (2011) , c) 

Asymmetrical eigenvector maps – only upstream stations are considered, but stations in different 
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tributaries could affect each other, d) Geographically Weighted Regression – only neighbors 

within a threshold distance are considered with no specific upstream and downstream 

relationships, and e) Spatial Stream Network Based model. Arrows in spatial stream network 

models refer to the direction of the relation and moving average function. The width of the arrow 

refers to the strength of the influence for each potential neighborhood location. Spatial 

autocorrelation occurs when the moving average function overlaps. Modified from (Peterson and 

Hoef, 2010).  Once a spatial weights matrix specified, all of the four modeling method can be 

used with the spatial weights matrix 

3 Geographically Weighted Regression 

Global spatial regression models, such as spatial lag models and spatial error models, are 

used to develop a spatially rectified global regression model by accounting for the spatial 

dependence of an entire dataset. They only produce a single set of statistics for the entire 

dataset under consideration, hence are are a member of global spatial regression models. 

In reality, a relationship between predictors and a response variable can vary within a 

catchment, and the strength of those relations might also be different across regions. In 

order to address this issue, Geographically Weighted Regression (GWR) can be used to 

allow model coefficients to vary for each observation and create a set of local models 

based on the location of sampling sites (Brunsdon et al., 1998). The observed data 

included in each local model are geographically weighted, depending on the proximity of 

the location and are used to estimate local R2 and coefficients for each sample 

observation. The number of samples included for each data point is defined using a 

bandwidth function (Figure 1-3d). Although a fixed-distance band can also be used, a 

flexible bandwidth that adapts to the spatial pattern of the data can be more effective, 
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particularly when data are not evenly distributed over space (Fotheringham et al., 2002).  

During the modelling process, the nearby data points are weighted more heavily than 

those from more remote locations using a kernel function. GWR is increasingly used in 

water quality modeling not only to estimate the model parameters but also to explore the 

variabilities of those relationships in different watersheds (Chen et al., 2016; Pratt and 

Chang, 2012; Chang and Psaris 2013; Tu, 2011).  

4 Moran Eigenvector Maps and Spatial Filtering 

Eigenvector-based models are spatial models in which the vectors are derived using 

neighborhood criteria or distance with neighbors. In these models a matrix is constructed 

based on the geographical distance between locations. This matrix is transformed into 

eigenvectors by eigenfunction decomposition (Figure 1-3b). This method was originally 

proposed by Borcard and Legendre (2002) as the principal component of neighborhood 

matrix (PCNM), also called Moran's Eigenvector Maps (MEM). This method 

incorporates spatial autocorrelation in modeling ecological processes. Eigenvectors 

corresponding to positive eigenvalues are used as spatial descriptors in regression or 

canonical analysis (Borcard and Legendre, 2002). Vrebos et al. (2017) modeled water 

quality of 75 stations in the Kleine Nete Catchment in Northern Belgium and reported 

that about 30 percent of variation was explained by catchment land cover while about 11 

percent was explained by spatial Eigenvectors that of MEM. 

There are both distance-based eigenvector maps and spatial filtering based upon a 

geographic connectivity matrix (Borcard and Legendre, 2002; Getis and Griffith, 2002; 

Griffith, 2010; Griffith and Peres-Neto, 2006). Eigenvector-based spatial filtering is used 
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to separate spatial effects in regression modeling from model residuals so that a standard 

regression model can be used without suffering from spatial autocorrelation (Getis and 

Griffith, 2002).  Similar to the eigenvector mapping approach, it also uses 

“eigenfunctions of spatial configuration matrices to derive the spatial eigenvectors” 

(Griffith and Peres-Neto, 2006).  This approach has been used to model soil attributes 

(Kim et al., 2016), plant diversity (Kim and Shin, 2016),  crime patterns (Chun, 2014), 

and diseases (Jacob et al., 2008). Mainali and Chang (2018) used this approach to model 

the water quality trends of the Han River Basin, South Korea, reporting that it 

significantly increased model performance and removed the residual spatial 

autocorrelation.  

5 Asymmetrical Eigenvector Maps 

All of the spatial statistical approaches discussed in the previous section assume that the 

relations among sampling sites are multidirectional. The spatial associations of different 

points along the river are usually unidirectional as the water flows downstream (Figure 1-

3c). Therefore, upstream water quality affects downstream water quality but not vice-

versa. Recently, new spatial statistical methods have been developed in order to account 

for such directionality in water quality modeling. Blanchet et al. (2008) modified MEM's 

approach in order to incorporate the directional process of rivers and streams as 

Asymmetrical Eigenvector Maps (AEMs). They propose that “gradients influencing 

spatial distribution can be studied via spatial variables (eigenfunctions) that represent 

directional spatial processes.” This is also a part of the eigenfunctions-based spatial 

filtering framework, with the added feature that it "constructs space in an asymmetric 
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way" by only accounting for the sites connected through the water flow. The modeling 

involves defining a connection diagram based on the directional spatial process and 

creation of sites-by-edges matrix which are transformed into spatial eigenvectors.  

6 Spatial Stream Network 

A river can be effectively represented as a dendritic network, and any scientific inquiries 

and management decisions related to river networks should acknowledge this (Peterson et 

al. 2013). Dendritic networks use points and lines in geographical space, and typically 

have a directional component (Peterson et al., 2013). The modification of the 

autocovariance model that incorporates the dendritic network structure of rivers is 

dubbed a spatial stream network (SSN) model (Ver Hoef et al., 2006, 2014). It uses a set 

of autoregressive functions to derive the predictor variables to be used in the regression 

modeling. The weight of those directional processes can be river distance, flow volume, 

or catchment size, or any relevant variables for the watershed of interest (Figure 1-3e). 

The SSN allows users to test spatial autocorrelation and develop model at various 

scenarios like flow-connected, flow-unconnected, and Euclidean distance (Isaak et al., 

2017; Neill et al., 2018; Scown et al., 2017). It not only allows the development of 

models but also lets users explore the spatial properties of the data in relation to various 

in-stream processes (e.g., McGuire et al., 2014).  
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Table 1-1: Papers reviewed in different models 

Spatial Models No of papers 

included  

References 

Spatial error and 

lag 

14 Chang, 2008; Engström et al., 2017; Fox and 

Alexander, 2015; Huang et al., 2016; Miralha 

and Kim, 2018; Sanchez et al., 2014; Snelder 

et al., 2018; Su et al., 2013; Vitro et al., 

2017; Walters et al., 2018; Wan et al., 2015; 

Xu et al., 2016; Yang et al., 2017; Yang and 

Jin, 2010 

Geographically 

Weighted 

Regression 

18 Bhowmik et al., 2015; Chang and Psaris, 

2013; Chen et al., 2016; Chu et al., 2018; 

Eccles et al., 2017; Kim et al., 2018; Pratt 

and Chang, 2012; Salles et al., 2018; 

Shrestha and Luo, 2017; Sun et al., 2014; 

Taghipour Javi et al., 2014; Tu, 2013; Tu and 

Xia, 2008; Wang and Zhang, 2018; Wilson, 

2015; Xia et al., 2018; Yu et al., 2016; Zhao 

et al., 2015 

Spatial 

Eigenvector 

Based Models 

10 Brogna et al., 2017; Catherine et al., 2016; de 

Oliveira Marcionilio et al., 2016; Mainali 

and Chang, 2018a; Piorkowski et al., 2014; 

Pond et al., 2017; Souza-Bastos et al., 2017; 

Strangway et al., 2017; Vrebos et al., 2017; 

Zorzal-Almeida et al., 2018 

SSN 12 Detenbeck et al., 2016; Falke et al., 2016; 

Frieden et al., 2014; Holcomb et al., 2018; 

Isaak et al., 2018; Marsha et al., 2018; Neill 

et al., 2018; Post et al., 2018; Scown et al., 

2017; Steel et al., 2016; Turschwell et al., 

2016 

Total 54 
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IV A Systematic Review of Current Studies 

We carried out a systematic review of articles related to different types of spatial 

regression of water quality published from 2000 to 2018, using the Web of Science 

database on November 9, 2018 (Table 1). The search phrases we used included  “water 

quality” and “spatial regression”, “water quality” and “eigenvector”, “water quality and 

“autocorrelation”, and “water quality” and “spatial stream network.” We identified 54 

articles with a water quality focus that used at least one type of spatial regression (Table 

1). Notice that it may not be a comprehensive list, as we only searched for the term 

"water quality". The water quality information might well be published as water 

pollution, or in terms of individual parameter names such as temperature, pH, nitrogen, or 

phosphorus. These names were not included in our search term. We also removed studies 

that did not have spatial regression approaches. Although we mostly focused on surface 

water, we also included a few groundwater-quality works in this review. We focused our 

review on the use of spatial statistical methods to account for spatial autocorrelation and 

residual spatial autocorrelation, weight matrix construction, scale considerations, and 

improvements in model performance in different types of spatial statistical modeling. We 

also attempted to identify the spatial pattern of these studies to explore where such 

research efforts have been concentrated. 

1 Geographic Distribution of Studies 

The majority of study sites of research related to spatial statistical modeling of water 

quality are concentrated in USA and China with a few exceptions: Canada, Brazil, South 
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Korea, Australia, and some countries of Europe (Figure 1-4). This is likely because of the 

fact that these countries have relatively dense networks of monitoring stations over a 

large area. Only 15 nations were represented from 54 studies. Although developing 

countries are most vulnerable to water quality degradation (Schwarzenbach et al., 2010), 

very little research has been carried out there. This list may not be comprehensive, but we 

assume that this map represents the spatial pattern of current research related to spatial 

aspects of water quality. 

 

Figure 1-4: Country-wise distribution of the sites of the studies included in this review (n= 54). 

2 Spatial Autocorrelation in Different Spatial Regression  

Theoretically, exploring the spatial autocorrelations of the dependent variables and 

residual autocorrelations, and examining the significance of spatial autocorrelations, are 
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the first steps in incorporating spatial relations into the models. Although the relationship 

between residual spatial autocorrelation and variation of the model (pseudo-) R2 and 

coefficients is discussed in most of the studies, the relationship with the spatial 

autocorrelation of dependent variables is usually not taken into consideration. Many new 

studies have reported that spatial autocorrelation of dependent variable and residual 

spatial autocorrelation are usually related; the choice of covariates also affects the 

significance of residual spatial autocorrelation (Miralha and Kim 2018, Mainali and 

Chang, 2018).  

We find that the use of spatial autocorrelation statistics of the dependent variable 

is generally associated with the type of spatial regressions used. Approximately 43 % of 

papers that used either a spatial lag model or a spatial error model calculated the spatial 

autocorrelation of the dependent variable, while only 30 % of papers using eigenvector-

based model did so. Similarly, 43 % of papers using geographically weighted regression 

calculated spatial autocorrelation of the dependent variable, while about 75 % of SSNM 

papers did so. Forty eight percent of spatial-error/lag, 70% of Eigenvector-based, 61% of 

GWR, and 100% of SSN-model papers tested for residual spatial autocorrelation.  

The analysis of spatial autocorrelation in water quality leads to a better 

understanding  of the extent of spatial organization (clustered, dispersed or random) of 

water quality variables, and also helps explore the capacity of the independent variables 

to predict the water quality pattern (e.g., Miralha and Kim 2018). Accounting for spatial 

autocorrelation in regression can correct bias in parameter estimation and, hence, helps 

avoid an incorrect conclusion for potential factors. A higher percentage of residual spatial 
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autocorrelation testing in more recent studies stems from the fact that the independent 

variables might not explain all the spatial autocorrelation, and results in residual spatial 

autocorrelation. That is, spatial autocorrelation in residuals is the one that should be 

examined. A high spatial autocorrelation in the response variable may give a hint for 

spatial autocorrelation in residuals, but is not necessarily a reason to use spatial 

regression as long as there is no significant residual spatial autocorrelation. A future 

suggestion in this field would be checking for residual spatial autocorrelation before 

performing spatial regression models, if the researchers are concerned that the regression 

model does not account for the spatial autocorrelation.   

3 Spatial Weights Matrix 

All spatial statistical modeling approaches are based on some form of spatial weights 

matrix. The most common type of weights matrix, distance matrix, is constructed using 

the distance among the sampling sites based on geographical coordinates; sites are 

weighted based on distance, number of neighbors, or other relevant attributes. The other 

attributes include Euclidean distance upstream, river distance upstream, catchment size, 

and river flow (Isaak et al., 2018).  There are several standard distance matrices available 

for different types of spatial regression approaches. For example, spatial lag and spatial 

error methods use nearest-neighboring stations (Chang 2008, Huang et al. 2014); the 

spatial filtering approach uses at least one neighbor; the geographically weighted 

approach mostly uses adaptive bandwidth to include the desired number of sites;  SSN 

uses river distance, flow volume, or upstream catchment area. However, spatial 

statisticians recommend modifying the weights matrix based on the hypothesis being 
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tested, the scale of analysis, the spatial distribution of the sampling station, and spatial 

issues being addressed (Blanchet et al., 2008b; Sokal and Oden, 1978). 

Based on our review, we find that most of the papers use a 'standard' weight 

matrix provided by the software on which model is being implemented (Table 1-2). 

Traditionally, spatial-lag models use observations in all directions to create a spatial lag 

variable. Some studies attempted to modify the existing weights matrix to incorporate 

hydrologic connectivity. For example, Vitro et al. (2017) modified a spatial weights 

matrix to incorporate the effect of only upstream stations in a spatial lag model. They 

provided relative weights to upstream stations based on the proximity to the candidate 

station being considered.  Engström et al. (2017) used two different weights matrices, one 

with all proximate stations and the other with proximate and upstream stations. Most 

other studies used only a set number of nearby stations to define weights.  For example, 

Chang  (2008) and Huang et al. (2014) used four closest stations, Su et al. (2013) used ten 

such stations, and Yang and Jin (2010) used only adjacent stations. However, no study 

has tested how the study results might be sensitive to changes in weight matrices.  

Geographically Weighted Regression (GWR) uses an exponential (or Gaussian) 

distance decay function to create spatial weights among the sampling sites included 

within the specified distance defined by the bandwidth. A majority of the GWR papers 

use flexible (or adaptive) bandwidth to derive the spatial weights to be used in the 

regression models. An adaptive bandwidth allows the band (or buffer) around a sampling 

station to vary according to the number of nearby sampling stations. The bandwidth is 

small for clustered data and large for scattered data, based on the distance between 
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sampling stations. Most of these papers use a software-defined standard bandwidth 

approach (mostly adaptive bandwidth) available in ArcGIS. We did not find any studies 

that use GWR by including the effect of only upstream stations. However, Tu (2013) 

used sampling stations only from mutually exclusive watersheds, thereby avoiding any 

complexity that would be caused by upstream stations in the model. While this approach 

avoids the issue of upstream influence on downstream water quality, the sample size will 

be lowered as many spatially dependent stations are discarded for analysis.  Additionally, 

most studies did not address the potential issues of a small sample size when GWR 

models were used for water quality studies. This can be a new research direction where 

researchers define band only towards the upstream stations and weight those values to 

derive the local models, which hypothetically, would better explain the local patterns. 

Our hypothesis is based on the general understanding of the river flow where most of the 

physical and chemical components flow downstream.  

The research papers using MEMs and AEMs approaches also use a standard 

weights matrix based on the Borcard and Legendre (2002). As scale can be an issue in 

these kinds of weights matrices, some researchers construct eigenvectors at different 

scales. For instance, de Oliveira Marcionilio et al. (2016) calculated their weights matrix 

using eight different distance classes (50 meters to 450 meters, with an interval of 50 

meters) to incorporate the effect of scale on their analysis. The SSN modeling approach 

was initially proposed to incorporate weights based on the stream distance, flow volume, 

or stream order. When flow volumes are not available, the catchment area is commonly 

used as a weight attribute (Ver Hoef and Peterson, 2010).  But other attributes such as 
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slope, shrieve's stream order, and Euclidean distance among stations are also used 

depending upon the nature of the watershed and the availability of data. 

We notice from this review that a spatial weights matrix typically does not gain 

enough attention, in spite of its being the backbone of spatial modeling. Most previous 

studies rely on a weights matrix readily available in the ‘standard’ tools offered in 

software packages, rather than putting additional effort into generating a revised weight 

matrix that considers water flow along the hydrologic network. Therefore, researchers 

ought to be mindful of the spatial relations of water quality in the sampling space and 

design the weights matrix to best capture such spatial relations. We also need to be aware 

of the spatial relations of water quality sampling sites to source, mobilization process, 

delivery mechanism, and in-stream movement, and use appropriate weighting schemes to 

capture those processes.  

4 Use of Multiscale Processes 

The predictor variables for regression analysis are generally derived using a watershed 

because all the water flowing in the river comes from some part of the watershed, and 

watershed characteristics are reflected in river water quality (Allan, 2004). Researchers 

have worked to identify the scale at which water quality is best correlated with watershed 

characteristics (Figure 5). Although a majority of researchers used spatial lag/error, 

GWR, or MEM to extract predictor variables at different scales, they did not compare the 

effect of different scales in model prediction (Table 2). They rarely used different scaled 

data under the same regression model. The papers using SSN models, however, 
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recognized the effects of variables at different scales and incorporated those in the 

models.  

Some researchers have used different buffer distances from the river and/or 

sampling station. For example, vegetation cover within a 10m buffer is used for 

temperature modeling by Isaak et al. (2018), while other variables were used at the 

watershed scale. Turschwell et al. (2016) used 10m buffer for riparian vegetation and 

additionally used inverse-distance weighted effects of grazing land cover, while other 

variables were used as the lump attributes at the watershed scale, and reported 

significantly higher R2 values when SSN models were used.  

Like any other natural processes, the factors affecting water quality operate at 

different scales. These factors must be identified based on the understanding of the scale 

related to the source, mobilization, delivery, and instream processes related to these 

parameters (Lintern et al. 2018). This also depends on the scale at which disturbances 

drive water quality (Pond et al. 2017). If an "upland disturbance" is a driving factor of 

deteriorating water quality, using data derived only at the riparian buffer scale does not 

work (Pond et al. 2017). Our review also shows that the scale effects in water quality 

modeling using landscape characteristics are not universal, as they vary by parameters 

studied, location, seasons, and covariates used (Liu et al. 2017; Mainali and Chang 2018).  

Isaak et al. (2018) argue that the covariates used in modeling approaches should 

come from a review of the literature and an understanding of a plausible mechanism that 

could cause a variation in a particular water-quality parameter. If the scale is not clear for 

the parameter, it is always safe to start with the watershed scale and incorporate other 
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scales (e.g., Mainali and Chang 2018). In large-scale analysis, the availability of 

particular datasets also determines the scale at which covariates are extracted. Our review 

shows that the researchers should be able to provide explanations for the reasons behind 

choosing a particular covariate, its scale, and the need for any weights treatment in the 

spatial statistical modeling of water quality.  

Water flowing from various parts of a watershed drains into surface water bodies 

via multiple pathways. Water quality along the stream network, therefore, depends on the 

sources of the parameter, their delivery, and instream processes occurring in the vicinity 

of an area where water flows (Lintern et al., 2018). To best capture such spatial variations 

researchers need to collect data or install the monitoring network carefully. The spatial 

and temporal scale of data collection and monitoring should be informed by the available 

geographical information of the watershed related to land use, human impact, geology, 

and hydrological characteristics of the stream.  While increasing the spatial and temporal 

scale of analyses could help improve our understanding of the relationship between water 

quality and landscape variables, such effort requires time and resources (both human and 

computation resources). To make optimum use of time and resources, a selection of the 

data collection sites and appropriate scale should incorporate all the relevant 

characteristics of the range of watershed conditions (Jackson et al., 2015). 

While it is beyond the scope of this paper to list all different scales at which 

predictor variables are extracted, here we list different statistical methods to effectively 

include different scale processes in water quality modeling identified in the papers we 

reviewed. Multi-scale data sets can be treated with principal-component analysis to 
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reduce the dimension of the data and include the variability of different scale processes 

(Miralha and Kim, 2018). Redundancy analysis can identify which variables at what scale 

can explain variation in water quality, and use them as a predictor in the spatial 

regression (Strangway et al., 2017). To avoid overfitting of the data that identify the best 

subset of the covariates, a "Best Subset Regression" can be used (Scown et al. 2017). The 

Best Subset Regression uses Akaike Information Criteria (AIC) variation to identify a 

maximum number of covariates set by the analyst. Review of potential factors affecting 

water quality is of utmost importance before undertaking any water quality modeling 

efforts. From our review, we notice that there might be dozens of such candidate 

covariates. An appropriate variable reduction or selection method should be used in order 

to include a manageable number of water quality parameters representing different scales.  
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Table 1-2: Consideration of weights matrix, spatial autocorrelation, and residual spatial 

autocorrelation 

 

5 Comparison of Model Performance 

As expected, the spatial regression models typically explain the variation of the 

dependent variable better than their aspatial counterparts (Table 1-3). Studies using 

spatial-lag and error models generally reported improved model performances from an 

aspatial linear regression model. An increase in R2 and a decrease in AIC indicate the 

improved model performance of these models over an aspatial one (Chang, 2008; 

Engström et al. 2017; Huang et al. 2014; Yang and Jin, 2010). While using eigenvector-

based spatial filtering approach, Mainali and Chang (2018) reported that the model 

Model type Scale Spatial 
autocorrelation 
(SAC) 

Weights matrix Residual Spatial 
Autocorrelation (RSAC) 

Spatial 
Lag/Spatial 
Error 

Predictor variables extracted at 
multiple scales. Entire 
catchments (Yang and Jin, 
2010), a buffer of a certain 
distance (Chang, 2008), circular 
upstream buffer, multiscale (Su 
et al., 2013, Chang, 2008) 

About 60 percent 
of the papers 
evaluate SAC of 
response variable 
before pursuing 
these models. 

Most of the papers use 
weights matrix based on the 
Euclidean distance between 
neighboring stations while 
some modify it to test a 
different hypothesis (e.g., 
Engström et al., 2017; Vitro et 
al., 2017).  

Most of the papers do 
not evaluate whether 
RSAC has been an issue 
or not.  Only a couple 
papers used it (Miralha 
and Kim, 2018, 
Engström et al., 2017) 

Eigenvector-
based 
(MEM/AEM/ 
Spatial filters) 

Some papers only used 
watershed while the majority 
used different scales 
(Strangway et al., 2017Mainali 
and Chang 2018). Scale 
information derived from 
eigenvectors are also used 
(Vrebos et al., 2017) 

Only about a 
quarter of papers 
appeared in our 
list explored 
global or local 
SAC.  

Mostly used standard weights 
matrix derived using a binary 
coded sites-by-edges table 
and distance between the 
sites. Some modify it based on 
the distance classes (de 
Oliveira Marcionilio et al., 
2016).  

Majority of the papers 
report RSAC except 
Strangway et al. (2017) 
of the model. RSACs are 
removed when this 
modeling approach is 
used. 

Geographically 
Weighted 
Regression 
(GWR) 

Although the majority of 
papers only use watershed or 
some distance from the 
sampling station, some of the 
papers used different scales 
(Pratt and Chang, 2012). 

The 
autocorrelation of 
the response 
variable is tested 
scantly.  

Mostly adaptive or fixed 
bandwidth approach is used 
as available in the software. 
Shrestha and Luo ( 2017) tried 
to make sure that there are 
certain numbers of stations 
(119) nearest neighbors in 
each local models. 

As there is an inbuilt 
function to test RSAC in 
ArcGIS interface of 
GWR, most of the 
papers mention it in 
their model. 

Spatial Stream 
Network (SSN) 
Model 

Most of  the papers using SSN 
use a multi-scale approach 
where relevant covariates are 
extracted from either whole 
watershed, or buffer,  or using 
distance weighted approaches 

Semivariogram 
and Torgegrams 
are used to 
explore SAC 
almost exclusively 
although some 
papers do not 

Different attributes are used 
as weights like river distance, 
discharge, and catchment size 
with different spatial 
connectivity considerations 
like flow connected, not 

RSAC of the models are 
tested almost 
exclusively and SSN 
models have found to 
remove it.  
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strengths (R2) significantly increase when an aspatial model suffered from residual spatial 

autocorrelation.  However, most of eigenvector-based spatial statistical models we 

reviewed did not make an explicit comparison between aspatial and spatial models, as 

they used landscape characteristics and eigenvectors in the same model and used 

redundancy analysis to parse out the effect of ‘environmental’ and ‘spatial’ predictors 

(Souza-Bastos et al., 2017; Vrebos et al., 2017). Geographically weighted regression 

(GWR)-based models consistently showed higher model strengths than linear regression. 

Chu et al. (2018) reported that GWR performed better than linear regression, which was 

superseded by geographically and temporally weighted regression. Similarly, Tu (2013) 

reported that the model performance increased by up to 10-fold when GWR was used 

against linear regression models.  Tu and Xia (2008) also found some “dramatic” 

increases in R2 when GWR models were used. Most other papers using GWR for water 

quality modeling also reported a significant increase in model performance (Kim et al., 

2018; Pratt and Chang, 2012; Shrestha and Luo, 2017; Sun et al., 2014; Yu et al., 2013). 

The spatial stream network (SSN) based models have shown to produce high R2 values in 

modeling water quality parameters. An R2 value of higher than 0.9 was reported for 

modeling summer temperature using SSN (Isaak et al., 2018). Turschwell et al. (2016) 

found SSN performing strongest among different models used. However, in some cases, 

SSN-based models did not significantly improve model performance (e.g., Frieden et al., 

2014). These varying results appear to be associated with the choice of water quality 

parameters, landscape variables, the scale of analysis, sample size, and watershed 

conditions.  
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Table 1-3: Improvement of model performance using spatial statistical models.  

Author WQ parameters Predictor(s) Range of R2 

change 

Spatial Lag and Error Model 

(Yang et 

al., 2017) 

TN Land use types and 

hydrological soil 

groups 

Increase in R2 

values ranged 

from 

0.06 to 0.12 

Miralha 

and Kim, 

(2018) 

pH,  T,  SC,  DO,  TDS,  

TN,  DIN,  KjN,  TP,  Tur,  

Br,  Cl,  Mg,  Na,  Ca,  

SiO2,  Fe,  K,  CO2,  Mn,  

Alk,  SO4
- -   F,  T,  Csu,  

Chla,  TOC,  DOC,  As,  

Cd,  Zn,  PO4 
- - - , NO3

,   

Al,  

Land cover, elevation, 

slope, hydrological 

soil groups 

Increase in R2 

values ranged 

from 0.03 to 

0.29 

(Vitro et 

al., 2017) 

Fecal coliform Demographic, sewer, 

sine, landcover, policy 

dummies  

Model 

performance 

increased from 

0.44 to 0.46662 

to 0.4665  

(Engström 

et al., 2017) 

Microbiological 

contamination 

Distance to informal 

settlement, share of 

informal settlement, 

different land use, 

distance to marshland, 

etc.  

Reduction in 

model AIC 

from 158.31 to 

153.2 

(Sanchez et 

al., 2014) 

Different components of 

biological integrity 

Race, income, 

education, housing, 

and population size, 

household size. etc 

DIC decreased 

in spatial model 

against the 

spatial model ( 

2131 vs 2064, 

1848.7 vs 

1673.8, 2428 vs 

2270, 1252 vs 

1143) .  

(Huang et 

al., 2014) 

NH4, NO3 , COD, SRP, 

Cl, Na, K, and Mg++ 

Landscape 

composition, pattern, 

topography, geology, 

population, GDP 

Increase in R2 

ranged from  

0.003  to 0.2  
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(Su et al., 

2013) 

DO, NH3, and TP Population, GDP, soil, 

land use,  

R2 values not 

compared only 

spatial 

regressions run 

(Yang and 

Jin, 2010) 

NO3, NO2-N Landuse/cover, soil, 

slope, and area of 

watershed 

Increase in R2 

values ranged 

from 0.04 to 

0.1.   

(Chang, 

2008) 

T, TN, TP, pH, COD, 

BOD, SS, DO 

Land use, topography, 

soil 

R2 values 

generally 

increased up to 

0.3 

(Fox and 

Alexander, 

2015) 

E. Coli, TSS, DO, Cond, 

Temp 

Land use, Floodplain, 

wildlife, elephant-

specific fecal count, 

wildlife species 

Quantitative 

change in R2 is 

not reported. 

But spatial 

models 

performed 

better 

Walters et 

al. 2018 

TP Land use composition 

and pattern, area, 

precipitation  

Result of spatial 

regressions only 

reported. 

Snelder et 

al. 2017 

TN, NO3, TP, and  DRP Climate, topography, 

geology and land 

cover  

No comparisons 

were made 

Xu et al. 

2016 

Nitrogen Loss Morphometric 

variables and soil 

drainage of each land 

cover type 

No comparison 

only spatial lag 

model 

(Souza-

Bastos et 

al., 2017) 

Hematocrit, Plasma 

Osmolality, sodium, 

chloride, Mg, K, Cortisol, 

Glucose, etc. 

Different water quality 

parameters 

Spatial factors 

accounted for 

about 2% 

variation of 

dependent 

variables.  

(Wan et al., 

2015) 

Macroinvertebrates Different water quality 

parameters 

Spatial factors 

(eigenvectors) 

more important 

than the 

environmental   

factors. 

Overland 

distance worked 
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better (6.7 to 

9.5, and 10.2 to 

10.7 percent).  

(Brogna et 

al., 2017) 

DO, DOC, TP, NH4, NO2, 

NO3, pH, Cl, SO4 

Forest cover Variability 

explained by 

forest covers  

when elevation 

is included 

accounts for 9.3 

percent of 

variation in 

water quality 

which would be 

33.8 if elevation 

was not 

included 

(Vrebos et 

al., 2017) 

T, pH, O, NO3, NO2, 

NH4, TP, CL, Co2, BSi, 

Ca, Fe, K, Mg, Na, SiO2, 

Zn, COD, SS, Chl-a, Cond 

Land use and soil Space 

(Euclidean 

distance based 

MEM) 

explained for 

both analyses 

circa 22% of 

variance. But 

non of the 

AEMs were 

significant 

predictors 

(Strangway 

et al., 2017) 

TP, OP, E.Coli, KjN, 

DOC, pH, Cond, various 

metals, NO3, DO, 

dissolved Br, Ca, Mg, and 

SO4, F, Hg, Sb, As, B, Se, 

Si, Tellurium etc.  

Land use, road density River network 

based model 

explained the 

greater 

variations.  

(Catherine 

et al., 2016) 

Phytoplankton species Water quality 

parameters, land use, 

rainfall, water 

temperature, altitude, 

etc. 

No significant 

effect of MEMs 

were reported in 

the model 

performance 

Mainali 

and Chang 

2018 

TN. TP, COD, SS land use topography, 

soil, population 

Increase in R2 

ranged from -

0.16  to 0.31 
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(de 

Oliveira 

Marcionilio 

et al., 2016) 

Chl-a Water quality 

parameters, depth, 

vegetation cover 

 

Addition of 

spatial factors at 

eigenvector 

slightly 

increased the 

model 

performance 

(39 vs 28 %)  
Zorzal-

Almeida et 

al. 2018 

Trans.,  CO2, DO, Cond., 

pH, NH4, NO3, TN, PO4, 

TP, Chla, TOC, TN, TP, 

C/N, δ13C, and δ15N 

Land use index AEM R2s are 

higher from 

0.13 to 0.24 

over MEM. 

Only 

environmental  

Piorkowski 

et al. 2013 

E. coli Organic carbon and 

water velocity 

MEMs explain 

26.9 % of the 

population 

variance during 

baseflow and 

31.7% post 

stream flow.  

(Xia et al., 

2018) 

Cu, Zn, Pb, Cr and Cd  Land use GWR didn’t 

always increase 

R2 values.  R2 

change ranged 

from -0.029 to 

0.663     

(Kim et al., 

2018) 

Cyanobacteria band 2, 4, and 5 of 

RapidEye imagery 

R2 was 

increased to 

0.719 from 

0.615, and 

AICc was also 

reduced from 

1735 to 1710 

(Salles et 

al., 2018) 

Amplitude of the water 

table variation 

Soil water, soil types, 

drainage network, 

slope etc. 

0.22 in OLS vs 

0.9 in GWR 

(Wang and 

Zhang, 

2018) 

Water Quality Index (12 

different parameters) 

Landscape pattern 

matrix 

Global R2 of 

GWR models 

were not 

reported but 

increase in R2 
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in GWR models 

can be inferred 

from the results.   

(Chu et al., 

2018) 

TB, which refers to the 

haziness of fluid caused 

by suspended solids in 

flowing water 

Red, green, and blue 

reflectances 

R2 values of 

LR, GWR and 

GTWR are 

0.37, 0.44, and 

0.87 

respectively.  

(Shrestha 

and Luo, 

2017) 

Groundwater Nitrate Fertilizer, manure, 

crop, permeability, 

precipitation, slope, 

DO, Clay, Iron, and 

Mg 

GWR 

regression 

increased by 

0.05.  

(Eccles et 

al., 2017) 

Total Coliform, E.  coli Aquifer depth, 

hydraulic connectivity, 

flood hazard types, 

land cover data, 

abandoned well, 

population and 

dwelling density, 

number of farms,  and 

hectares of farmland 

R2 increased 

from 0.013  to 

0.11, 0.099 to 

0.155 

(Chen et 

al., 2016) 

TN, TP, DO, COD Different Land use 

types, census 

Corresponding 

GWR models 

had adjusted R2 

values an 

average of 

59.2% higher 

than the optimal 

OLS models 

(Chang 

and Psaris, 

2013) 

Temperature related 

matrix 

Base flow, 

precipitation, stream 

oreder, distance to 

coast, topography, and 

land cover 

R2 values 

increased from 

0 to 0.08 

(Zhao et 

al., 2015) 

COD, BOD, NH3, TP, Hg Land use change 

intensity 

R2 change not 

compared as no 

OLS were run 

(Sun et al., 

2014) 

Temp,  pH, DO, chla, Sal, 

Cond, TOC, TN, TP 

Land use composition, 

and matrix, 

topography 

Global value of 

GWR R2 was 

not reported.  
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Yu et al. 

2013 

T,  pH, DO, PP, BOD, 

NH3, TP, TN, Faecal 

choliform,  anionic 

surfactant 

dissolved oxygen 

Land use composition 

and matrix (mostly 

matrix) 

About  59% of 

GWR models 

have 

significantly 

higher 

explanatory 

power for water 

quality than the 

corresponding 

OLS models 

Tu 2013 SC, DO, OC, TN, KjN, 

NO3, NO2 

  

Land use data in Year 

2005  

R2 values 

sometimes 

increased by 10  

folds 

(Pratt and 

Chang, 

2012) 

Cond, DO, NO3, pH, TP, 

TS, T 

land cover, 

topography, built 

structure 

R2 values 

increased from 

0.04 to 0.44 

(Tu and 

Xia, 2008) 

SC, NH3-N, NO2-N, KN, 

NO3-N, P, Ca, Mg, Na, K, 

Cl, SO4, DS 

Land use and 

population 

A dramatic 

improvement in 

R2 of GWR 

over OLS is 

observed for 

every pair of 

models 

(Taghipour 

Javi et al., 

2014) 

Groundwater level 

changes and groundwater 

withdrawal differences 

(GWD) 

Land use/cover Increase in R2 

ranged from 

0.11 to 0.48 

Bhowmik 

et al. 2015 

 

As,  Cd,  Cr,  Cu,  Fe,  

Mn,  Hg,  Ni,  Pb,  Zn 

Land use, soil, 

elevation 

Not compared 

Wilson 

2015 

TSS, TP Different water quality 

parameters, land use, 

negativity, rainfall, 

water temperature, 

altitude, etc. 

Only temporal 

changes of 

GWR models 

are presented 

not compared 

with aspatial 

model 

(Neill et al., 

2018) 

E. coli Land use, soil, 

Anthropogenic Impact 

Index 

R2 values 

increased from 

0 to 0.2. R2 

value neared 
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one when 

random effects 

were included.  

(Marsha et 

al., 2018) 

Temperature Elevation   Quantitative 

comparisons not 

made.  But 

linear model 

and SSN had 

mixed effects in 

different kind of 

matrices.  

(Isaak et 

al., 2018) 

Temperature Elevation, slope, lake 

percentage, glacier, 

ppt, northing, base 

flow index, drainage 

area, riparian canopy, 

air temperature, 

discharge, tailwater 

No comparisons 

made but 

overall model 

performance of 

SSN was more 

than 90 % 

(Scown et 

al., 2017) 

TP Area, stream category, 

slope, soil area, 

clermont area, land 

use, septic systems, 

NPDES permit 

address, total P 

released, average tp 

concentration 

AIC value 

slightly reduced 

(134.98 to 

133.76).   

Steel  et al 

2016 

Temperature elevation, mean annual 

discharge, and per- 

cent commercial area 

Explicit 

comparisons not 

made 

Frieden et 

al. 2014 

Macroinvertebrates Air temperature, 

catchment area, soil, 

direction, land use  

Spatial 

models did not 

substantially 

increase model 

performance 

over the non-

spatial models 

Turschwell 

et al. 2016 

Different temperature 

matrices 

Elevation, air 

temperature, riparian 

vegetation within 100 

m buffer, IDW-HA of 

grazed land, solar 

radiation 

SSNM, RF, and 

Nonspatial R2s 

are 0.825, 0.81, 

and 0.824 

respectively 
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(SC: specific conductance; DO: dissolved oxygen; TDS: total dissolved solids; TSS: total suspended solids; 

TN: total nitrogen; DIN: dissolved nitrogen; KjN: Kjeldahl nitrogen; TP: total phosphorus; tur: turbidity; 

Alk: alkalinity; Csu: suspended carbon; Chla: chlorophyll; Nin: inorganic nitrogen; TOC: total organic 

carbon; FC: fecal coliform; DOC: dissolved organic carbon; Pb: lead; Zn: zinc; Cd: cadmium; CO2: carbon 

dioxide; SiO2: silicon dioxide; PO4: phosphate; As: arsenic; PP: potassium permanganate; BOD: 

biochemical oxygen demand; dissolved reactive phosphorus; DRP Cr: chromium; Cu: copper; Fe: iron; 

Mn: manganese; Hg: mercury; Ni: nickel; cond: conductivity; C/N: carbon-to-nitrogen ratio; Sal: salinity; 

(Shi et al., 

2016) 

DO, NH3, COD, TP Land cover and 

topography (slope, and 

elevation) 

Only aspatial 

multiple 

regressions 

were run 

Detenbeck 

et al. 2018 

Temperature Land cover, air 

temperature, slope, 

drainage, 

imperviousness etc. 

Yes compared 

against non-

spatial model 

Falke et al. 

2015 

 Temperature  No predictors  No 

comparisons 

made 

Holcomb et 

al. 2018 

Microbial Water Quality Landuse, rainfall The OLS model 

and the three 

spatial models 

performed 

similarly, with 

the OLS model 

faring slightly 

worse 

by all three 

metrics and the 

Euclidean 

space-only 

model 

performed 

slightly better 

by AIC 

Post et al. 

2018 

DO, Temperature, and 

Salinity.  

Space-time predictors Spatial and non-

spatial model 

R2s worked 

similarly.   
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SO4 sulphate; NO3: nitrate; E. coli: Escherichia coli; NO2: nitrite-nitrogen; GDP: gross domestic product; 

OLS: ordinary least square regression; AIC: Akaike information criteria; DIC: deviance information 

criteria; MEM: Moran’s eigenvector maps; AEM: asymmetrical eigenvector maps; GTWR: geographically 

and temporally weighted regression; NPDES: National Pollutant Discharge Elimination System; SSNM: 

Spatial Stream Network Model.) 

V Conclusions 

Spatial modeling of water quality is gaining increased attention, and researchers have 

been using novel and creative ways to incorporate spatial aspects into surface water 

quality modeling. Our review identifies a few aspects of these modeling that stood out.  

• Research in this field is dominated by resource-rich countries like the US and China. 

This may be associated with the availability of data over a large geographical area. 

• There is still insufficient emphasis on spatial autocorrelation and residual spatial 

autocorrelation, which deserve more attention as these techniques can help 

understand unidirectional, multidirectional, and river network-based spatial attributes 

of the dependent variable and overall models of surface water quality. A suggestion 

based on this review would be to check for residual spatial autocorrelation before 

performing spatial regression models if the researchers are concerned with the 

regression model not being able to account for the spatial autocorrelation.   

• Weight matrices have great potential in informing spatial autocorrelation of 

dependent variables at different scales, and in helping test several hypotheses of 

spatial eco-socio-hydrological processes in relation to surface water.  Thus, testing 

the model’s sensitivity to different weight matrices needs further investigation. 
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However, no study considered in our review has tested the sensitivity of a model 

against the changes in weight metrics. 

• Our reviews show that the modification of a weights matrix should be informed by 

spatial organization of water quality data points, understanding of the source, 

mobilization, and delivery of a particular water quality parameter, the hypothesis 

being tested, and the scale of analysis. 

• In most regression models except SSNs, predictor variables extracted from different 

scales are used differently to compare the model strength. A fusion of predictor 

variables extracted from different scales, such as in a multiscale model, might be 

better suited to predict water quality, as different processes occur at several different 

scales simultaneously.  

• A thorough review of source, mobilization, delivery, and instream flow mechanism of 

the water quality parameters under consideration might be necessary in order to 

include suitable predictor variables, multiscale processes, and identify appropriate 

weight matrix in the model. This should be accompanied by proper variable reduction 

statistics, like brute-force reduction, in order to include manageable and meaningful 

predictors. 

• Although most of the spatial models are recognizing and incorporating the directional 

aspect of water flow, we did not find any papers using GWR doing so. Researchers 

can attempt to modify GWR to incorporate directional process and river network 

structures.  
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• Researchers should also explore different spatial representations of the landscape 

matrix (e.g. composition, patterns, distance weighting, and hydrological weighting) in 

order to identify an appropriate approach to use them in spatial modeling of water 

quality. 
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Abstract 

Various spatial interrelationships among sampling stations are not well explored in the 

spatial modeling of water quality literature. This research explores the relationship 

between water quality and various social, demographic, and topographic factors in an 

urbanizing watershed of Nepal with a comparison of different connectivity matrices to 

conceptualize spatial interrelationships. We collected electric conductivity and dissolved 

oxygen (DO) data from surface water bodies using a handheld probe, and used the data to 

establish relationships with land use, topography, and population density-based 

explanatory variables at both watershed and 100-meter buffer scales. The linear 

regression model was compared with different eigenvector-based spatial filtering models. 

These spatial filtering models were constructed using five different spatial 

conceptualizations based on different graph types generated from the geographic 

coordinates of the sampling sites. Population density, elevation, and percentage sand in 

the watershed and riparian regions are most important in explaining DO concentration 

and electric conductivity. A human signature as population density and increased sand 

and gravel cover can be detected in this watershed impacting water quality. Among 

different graph types compared, the relative graph type provided the highest model 

strength signifying stronger upstream-downstream relationship to DO, while k-mean 

graph types with four neighbors provided the strongest model performance, indicating the 

impact of local factors in electric conductivity. The relationships between socio-

environmental factors and water quality and their spatial interrelationships identified in 

this work shed light on the source, mobilization, and transport of DO and conductivity 

and can assist the water quality management endeavor.  
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1. Background 

1.1. Landscape characteristics and water quality 

A stream’s water quality is a result of a complex interaction of natural and anthropogenic 

processes in the watershed. Land-use change, population density, geology, and 

topography affect water quality in rivers (Baker, 2003; Lintern et al., 2018a). Human-

modified land use is generally associated with degraded water quality and undermines 

ecosystem sustainability, including degradation of the freshwater ecosystem (Allan, 

2004; Foley et al., 2005; Zampella et al., 2007). The anthropogenic impacts on surface 

water quality are not always straightforward, as complex interactions among various 

social, environmental, climatic, and political factors determine the consequences of these 

changes (Baker, 2003; Turner and Rabalais, 2003). These impacts are usually manifested 

as increased water temperature, increased nutrients (e.g., nitrogen and phosphorus), salt 

compounds, reduction in oxygen availability, and increased conductivity (Lintern et al., 

2018a). The high concentration of nutrients and increased water temperature typically 

results in reduced oxygen levels in the water, as increased temperature reduces the 

solubility of oxygen, and remaining dissolved oxygen is also consumed rapidly by 

aquatic organisms, signifying eutrophication and deteriorated water quality (Cox, 2003). 

Researchers have been using watershed characteristics at different scales to 

understand the spatial patterns of different water quality parameters across the stream 

network (Allan, 2004; King et al., 2005). Different landscape characteristics such as 

landcover types, topography, and other relevant explanatory features are extracted at 

scales including the entire watershed,  riparian buffer, or some intermediate scales. The 
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scale effects are not universal, as some factors are likely to affect water quality at the 

riparian scale, while others tend to do that at a watershed scale (Mainali et al., 2019). 

These relationships are different among different sites, seasons, and parameters studied as 

well. For example, Uriarte et al., (2011) reported that turbidity and DO responded to 

land-use change at a larger watershed scale while nitrogen was affected at the riparian 

buffer scale. While Mainali and Chang (2018) found a generally stronger influence on 

water quality at the stream buffer scale, the impact of scale in their model performance 

varied according to the parameters studied and seasons at which water quality data were 

collected. Some studies like Pratt and Chang (2012),  Sliva and Williams (2001), and 

Zampella et al., (2007) reported a more significant influence of the whole watershed than 

a 100m buffer in their analyses. 

Regression modeling approaches are commonly used to explore landscape factors 

affecting water quality at different scales. As water quality information is tied to location, 

regression modeling approaches are expected to incorporate spatial interrelationships 

among different locations from which water quality information is collected. If spatial 

relationships are not considered, regression modeling might violate the assumption of 

independence of the residuals of such models. There are several spatial regression models 

that overcome the limitation of ordinary least square (OLS) models in analyzing the 

relationship between water quality and landscape variables. These models include spatial 

lag and error models (Anselin, 1988), spatial eigenvector-based models (Borcard and 

Legendre, 2002; Tiefelsdorf and Griffith, 2007), geographically weighted regression 

(GWR) models (Brunsdon et al., 1998), and spatial stream network-based models 
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(Peterson and Hoef, 2010; Ver Hoef et al., 2006). In this work, we use an eigenvector-

based spatial filtering-based regression method to explore the relationships between water 

quality and landscape matrices. We use eigenvector-based spatial filters to capture the 

spatial heterogeneity in the data and remove any clustering of residuals, which might lead 

to residual spatial autocorrelation (Getis and Griffith, 2002). Spatial filtering techniques 

generate a new set of explanatory variables representing the response variable’s spatial 

structure. A selected set of those eigenvectors are then used as spatial predictors along 

with other predictor variables in the regression models. This approach has been recently 

used to model average and trends in water quality (Mainali and Chang, 2020, 2018). 

1.2. Spatial Filtering and Different Graph Types 

In the water quality modeling literature, different spatial conceptualizations of sampling 

sites, and their role in model outputs are not adequately explored (Mainali et al., 2019). 

Most studies use the spatial filtering approach with standard neighborhood criteria and 

weight matrix parameters without any attempt to modify them. In this work, we aim to 

explore how spatial conceptualizations of sampling sites rendered as different graph types 

in spatial-filtering affect the model output of DO and conductivity. We generate spatial 

eigenvector-based filters using five different graph types -- Delaunay, Gabriel, Relative, 

Minimum Spanning Tree, and k-mean—and use respectively fitted spatial filters in the 

regression model to compare their effectiveness in modeling dissolved oxygen and 

conductivity against the simple linear regression models.  
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1.3. Water Quality in Nepal 

This work uses the Setikhola watershed in central Nepal as a case study to explore 

the relationships between water quality and landscape features in the Nepal Himalaya. In 

Nepalese Himalaya, different water quality parameters respond to the differences in land 

use, land management, natural vegetation, and atmospheric deposition that are usually 

directly affected by elevation (Jenkins et al., 1995).  As in most of the other parts of the 

world, nutrient loss from forested lands is lower than non-forested lands in the Himalayan 

region (Pandey et al., 1983).  Collins and Jenkins (1996) reported that although the 

agriculture catchments showed higher ammonium content during the wet season, they 

were unlikely to damage aquatic biota in Nepal’s mostly non-commercial agriculture 

practices. However, fertilizer input per hectare has since substantially increased, from 31 

kg in 1995 to 131 kg in 2015. As a result, surface water pollution due to agricultural 

runoff has also increased, especially in the mid-hill and lowland Terai region of Nepal 

(Bista et al., 2016; Sharma et al., 2005). Urbanization has also significantly increased in 

Nepal. In the study watershed, the urbanized area more than doubled from 1990 to 2013 

(Rimal et al., 2015). The impact of urbanization on water quality is sparsely studied in 

Nepal and is mostly focused in the capital city of Kathmandu (Kannel et al., 2007a, 

2007b; S. Hammoud et al., 2018; Vaidya and Labh, 2017). The spatially explicit 

information related to water quality and the role of different landscape characteristics 

were not explored in the study watershed.  



63 
 

1.4. Dissolved Oxygen and Conductivity 

We assessed the spatial patterns of DO and conductivity using the data collected 

from the field in December 2018 and January 2019. DO and electrical conductivity were 

chosen because they are important indicators of water pollution and the ecological 

integrity of surface water bodies (Cox, 2003; Lintern et al., 2018a). Data related to 

conductivity provide us information about the ability of water to pass electrical current, a 

measure of the availability of anions usually sourced from various chemicals, including 

alkali, chlorides, sulfides, and carbonate compounds. Conductivity is also related to 

temperature, as a warmer temperature tends to have higher conductivity (US EPA, 2013).  

Conductivity values are important indicators of biological integrity, as changes in 

conductivity usually indicate that pollution from discharge or other sources is entering the 

water bodies. The survival of aquatic organisms like fishes, algae, and macrophytes is 

directly related to oxygen availability in water. DO provides information about the 

human impacts in the water bodies, as increased temperature from anthropogenic 

activities leads to the reduction of dissolved oxygen. Polluted water has lower DO 

concentration because aquatic plants and bacteria in the polluted water consume oxygen, 

as does the decay of organic materials, which leads to eutrophic conditions (USGS DO, 

2006).  

 

1.5. Objectives and Research Questions 

A recent review by Mainali et al. (2019) reported that different spatial 

conceptualizations of the sampling sites to incorporate the neighborhood impacts on 
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water quality remain unexplored in water quality modeling literature. In this work, we 

compare various spatial conceptualizations of sampling sites by leveraging the graph 

theory literature and statistical packages available in R software. We attempt to answer 

the following research questions: 

(1) How do DO and conductivity spatially vary in this watershed?  (2) How 

different landscape features like the land cover, topography, and population density affect 

the water quality in the study watershed?  and (3) How do different spatial 

conceptualizations of the sampling sites affect model results in this watershed? 

2. Methods 

2.1. Study area 

Our study area is the Setikhola watershed which includes the Pokhara valley and 

adjoining hills and mountains (Figure 2-1). It provides an example of an urbanization 

gradient in Nepal (Rimal et al., 2015). The city of Pokhara is one of the biggest cities in 

Nepal and a famous tourist destination, and gateway to the popular Annapurna 

Conservation Area. The valley floor is a metropolis with a population greater than 

500,000, while the hills are dominated by subsistence agriculture. The high elevation 

regions are mostly near-wilderness with forests, prairies, and snow-covered mountains, 

protected as a part of the Annapurna Conservation Area (ACAP, 2017). The area of this 

watershed is about 990 km2 and  includes 381 kilometers of the river;  three major lakes 

cover approximately 9 km2 (Baral Gauli et al., 2016) 
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.  

Figure 2-1: Map of the study area with sampling sites 

The elevation of the watershed ranges from 700 meters to more than 8000 meters above 

sea level. This watershed is located in one of the wettest regions of Nepal, with a total 

annual rainfall of about 4000 to 5400 mm, most of which falls during the monsoon 

season, June-August (CBS, 2013). The flow of rivers and the volume of lakes respond to 

the cyclic pattern of rainfall. The flow rate of the river was recorded at 40 ± 37 m3/s 

during June and July of 2012 (Pokharel et al., 2018). The lake system of the valley floor 

was recently added to the list of important wetlands as a Ramsar site (Baral Gauli et al., 
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2016). The water bodies of the proposed study area are home to dozens of waterbird 

species, native fishes, endangered otters, and amphibians (Bhandari and GC, 2008; Husen 

and Sherpa, 2017; Kafle et al., 2008). Many endangered raptors, including the slender-

billed vulture, also inhabit this area and depend on the water resources directly and 

indirectly.  

 Most of the recent biodiversity-related studies in this region only focused on 

terrestrial systems like forests and rangelands, typically overlooking aquatic biodiversity 

(Thapa et al., 2015). The water system is an important habitat for different aquatic 

organisms, provides ecosystem services to people living around it, and is also a major 

economic driver in this valley,  including the tourist attractions in lakes and rivers, and 

fishery activities in the lakes (Gurung et al., 2005; Husen and Sherpa, 2017). 

Understanding the factors affecting the quality of surface water, therefore, is of 

paramount importance for both people and the ecosystem in this watershed.  

2.2. Data Collection 

2.2.1. Water quality data 

We sampled 93 data points from rivers and lakes of the watershed. These data 

points were aggregated to 61 points after combining duplicate sampling in the river and 

different locations in the lake (Table 2-1). We collected pH, conductivity, DO, and 

temperature data using the YSI probe (Professional Plus #603190). We also collected 

several other ancillary data such as land-use, depth, and width of the stream, pollution 

signs, and the pictures of the waterbodies we sampled. The field data were collected 

during December 2018 and January 2019. This dry winter period was chosen to minimize 
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the effect of meteorological factors on water quality. In this work, we only use 

conductivity and DO data because they were stable across the different times of the day 

in the watershed, thereby allowing spatial pattern analysis.  

2.2.2. Landcover Data 

A landcover classification of a Landsat 8 image was performed using the Google Earth 

Engine (Google Earth Engine, 2020). A cloud-free image was selected for the year 2017 

as there was not any cloud-free image available for the year of 2018 or early 2019 when 

sampling was performed. We used the Classification and Regression Tree (CART) 

classification method to classify land cover into seven different classes (Urban Light, 

Urban Dense, Agriculture, Forest, Sand, Bare, Snow & Glaciers). The overall accuracy of 

the landcover map was about 82 percentage. The accuracy was measured by creating an 

error-matrix with a total of 115 polygons.  Based on landcover information collected in 

the field, a set of known landcover type polygons were created, covering the entire 

watershed. The landcover category of those polygons was compared with the classified 

image by creating a confusion matrix (Lewis and Brown, 2001). The confusion matrix 

provides us information about the percentage of pixels correctly classified in different 

landcover types. The confusion matrix was used to calculate the user’s accuracy and the 

producer’s accuracy, which were averaged to derive an overall accuracy.  

2.2.3. Population Data 

The latest population estimate based on WorldPop data was used (WorldPop Nepal, 

2015). This is a 100-meter resolution population estimate for the year of 2015. The 

population raster was clipped with a watershed boundary shapefile. 
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2.2.4. Topographic Data 

We used the Department of Survey, Government of Nepal’s 20-meter contour data as our 

elevation dataset. This dataset was interpolated using the topo-to-raster the interpolation 

technique with ArcGIS (ArcGIS 10.5.1, 2020). The elevation surface was converted into 

a slope raster using the surface analysis tool of ArcGIS 10.5.1. The interpolated elevation 

surface was also used to delineate the watershed boundary for each sampling station. The 

watershed polygons were used to extract the percentage of different landcover types, 

human population density, and an average of elevation and slope. 

Table 2-1: List of different types of data used in the analysis 

Data Name Type Resolution Source 

Water 

Quality 

Point Point data Field 

sampling, 

2019 

Land Use 

Types 

Raster 30-meter raster Classified 

from Landsat 

8, 2017 

Elevation 

and Slope 

Contour layer 

converted to raster 

30-meter raster  Department of 

Survey, 

Nepal, 1986 

Population Raster 100 m, resampled to 

30 m 

WorldPop 

Nepal, 2015 
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Figure 2-2: Spatial patterns of different explanatory variables used in the analysis 

2.3. Data Processing and Analysis 

2.3.1. Watershed delineation and predictor variables extraction 

The watershed and subwatershed boundaries of the study area were delineated for each 

sampling point using the watershed hydrology tool of ArcGIS, which involved 

calculating flow direction, flow accumulation, and delineation of watershed boundary 



70 
 

based on the user-defined outlet. We used the zonal statistics tool to calculate an average 

and standard deviation of elevation, slope, and population. The zonal histogram tool was 

used to calculate the number of pixels of each landcover type for each watershed draining 

to the sampling points. That value was converted to the percentage of each landcover 

type. A buffer of 100 m from the center of the stream was calculated using the buffer tool 

in ArcGIS. Those buffer polygons were clipped for each watershed. Predictor variables 

were extracted for the buffer of each watershed draining into the sampling point.  

2.3.2. Exploratory Data Analysis 

We mapped the spatial patterns of different water quality parameters and compared the 

differences between rivers and lakes. To test whether there is significant spatial 

clustering, we carried out spatial cluster and outlier analysis (Anselin Local Moran’s I) 

statistics using ArcGIS. This clustering was used to map high and low-value clusters of 

the water quality parameters in the watershed.  

2.3.3. Regression analysis 

After all the explanatory data sets were extracted for each sampling point, we used R 

version 3.6.1 software to analyze the data (Bivand, 2019; R Core Team, 2019). Only 

stream data points were used during regression analysis to remove any noise from the 

lakes. The response data sets were evaluated for their distribution using the Shapiro-Wilk 

test. We found that DO concentration was normally distributed while conductivity was 

not. Therefore, water conductivity was log-transformed before the regression modeling. 

The variation inflation factor (VIF) statistics were run to identify the predictor variables 

that were not autocorrelated. We chose predictor variables having VIF less than 10. 
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Using the predictor variables, regression analysis was run for dissolved oxygen and 

conductivity both at the watershed and buffer scale.  

2.3.4. Spatial Regression Models and Different Graph Types 

In this work, different spatial interrelationships among sampling sites were explored 

using graph theory. Graph theory uses the simple mathematical concept of nodes 

connected by the edges that have weights and directions. These edges connected by nodes 

can be used to decipher the processes and mechanisms of the underlying spatial 

phenomenon being studied (Dale and Fortin, 2010). There are several graph types being 

used in graph theory literature. These different graph types have different levels of 

connectivity and result in different adjacency matrix (Yan et al., 2019). We hypothesize 

that using different connectivity matrices resulted from these graph types allows us to 

examine the spatial relation among sampling stations to better understand the underlying 

process and mechanism of water quality parameters. A default spatial graph type of 

spatial filtering algorithm is the Delaunay graph type, a 6-node degrees graph type (each 

node connects to 6 other nodes). The other graph types used are the subgraphs of the 

Delaunay that have different node degrees: Gabriel- 4, Minimum Spanning Tree- 2, k-

nearest neighbor- 2, and relative - 3 (Dale and Fortin, 2010). All the graph types used in 

this analysis are undirected maps where edges link two vertices symmetrically (Figure 2-

3). Some of the graph types, like Relative and Minimum Spanning Tree, mimic the 

stream network to a certain extent. 
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Figure 2-3: Schematic representation of spatial patterns of the data points based on different 

graph types (Data points are created randomly using R software version 3.6.1) 

Spatial-filtering algorithms were implemented using the spatialreg package in R version 

3.6.1 (Bivand, 2019; R Core Team, 2019). The first step of this process involved creating 

a weight matrix based on neighborhood criteria using different graph types (Figure 3). 

Each weight matrix was then decomposed and transformed using a set of mathematical 

functions to create eigenvalues and corresponding n-1 eigenvectors (Chun et al., 2016; 

Tiefelsdorf and Griffith, 2007). A set of fitted spatial filters that mimics the spatial 

structure of the response variable and can reduce the residual spatial autocorrelation was 



73 
 

then selected to use as predictor variables along with other environmental variables in 

spatial regression for each graph type (Tiefelsdorf and Griffith 2007).  

The eigenvector-based spatial filtering can be expressed as the following equation. 

𝑌 = 𝑋𝛽 + 𝐸𝑘𝛽𝜀 + 𝜀       (1) 

In equation 1, Y is a dependent variable, X is a matrix of independent variables. 

Ek denotes the selected matrix of fitted spatial-filtering based eigenvectors, β is a set of 

regression coefficients for predictor variables, 𝛽𝜀 is a set of regression coefficients for 

selected eigenvectors, and ε is random noise (error) (Chun et al., 2016; Mainali and 

Chang, 2018).  
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3. Results 

 

Figure 2-4: Spatial patterns of concentration of a) DO and b) Conductivity 

(b

) 

(a

) 
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Figure 2-5: Spatial clustering of the data values a) DO and b) Conductivity 

3.1. Spatial Patterns 

DO 

The DO values of the watershed range from 4.7 to 10.38 mg/L with an average 

concentration of about 7.00 mg/L. The DO concentration is highest in the main stem Seti 

River while they are lower in other tributaries and lakes (Figure 2-4a). There are clusters 

of high DO values in the high elevation regions, but no low-low clusters (Figure 2-5a). 

The median difference of DO is significant (p < 0.01, t-test) between rivers and lakes 

(Figure 2-6a), with higher DO in rivers than lakes. DO values along the Setikhola stem 

are the highest. This result shows that the main stem of Setikhola River has an excellent 

DO range to support aquatic life, while DO  in lakes and other tributaries are lower.  
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Figure 2-6: Range of DO (a) and conductivity (b) values in lakes and river 

Conductivity 

The conductivity of this watershed ranged from 16.1 to 354 µs/cm with a mean of about 

150 µs/cm. Pokharel et al. (2018) reported an average of 166 µs/cm conductivity in the 

Seti-Khola River. In Figure 4b we can see that some of the western tributaries have 

significantly lower conductivity than the rest of the watershed (Figure 2-5a). 

Conductivity also substantially differed between rivers and lakes in this watershed, with 

significantly higher values in rivers than lakes (Figure 2-6b).  

  

(
(b) 

(a) 
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3.2. Correlation Analysis 

Table 2-2: Pearson Correlation analysis (n = 54) between landscape matrices and water quality 

parameters at different scales. * significant at 0.05, ** significant at 0.01 level of significance 

 
Dissolved Oxygen Conductivity 

Buffer Watershed Buffer Watershed 

Elevation 0.48* 0.50** 0.25 0.30* 

Elev Std 0.54** 0.55** 0.47** 0.52** 

     

Slope 0.47** -0.08 0.17 -0.04 

Slope Std 0.44** -0.18 0.41** -0.08 

Population 

Mean 

-0.02       -0.03 0.39** 0.05 

Pop Std 0.11 0.05 0.59** 0.46** 

Urban Dense 0.02 0.10 0.13 0.001 

Urban Light -0.46** -0.01 -0.26 0.115 

Forest 0.43** 0.01 0.17 -0.19 

Agriculture -0.30* -0.01 -0.29* 0.09 

Sand -0.23 -0.1 -0.48** 0.1 

Bare 0.18 -0.085 0.27 0.085 

 

The elevation standard deviation was significantly associated with both DO and 

conductivity at both scales, while slope was positively correlated with DO at buffer scale 

only (Table 2-2). But slope standard deviation was correlated significantly with DO at the 

buffer scale while with COND at both scales. The average population density was 

significant for COND at buffer scale only, while the standard deviation was significant at 

both scales. The forest landcover was significantly positively correlated with DO at 

buffer scale, while agriculture was significantly positively correlated with both DO and 

COND at buffer scale but not at the watershed scale. The percentage of the sand cover 

was significantly negatively correlated with the conductivity at the buffer scale. 
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3.3. Regression Results 

The R2 value of the DO model ranged from 0.25 to 0.5 while R2 values of conductivity 

ranged from 0.3 to 0.85 (Table 2-3 & 2- 4). The higher R2 values for both spatial and 

aspatial models were reported using the 100-meter buffer scale. Figure 2-7 displays 

spatial interrelationship among different sampling locations. The Relative and Minimum 

Spanning Tree graph types are the closest representation of the stream network, while K-

nearest graph types have revealed the local clusters based on the immediate neighbors. 

The relative graph type yielded the highest model performance for DO, while the k-mean 

graph type yielded the highest model performance for conductivity (Figure 2-8).  

 

Figure 2-7: Different spatial interrelations of the study sites based on different graph types 
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3.3.1. Dissolved Oxygen Regression Model 

Different spatial conceptualizations yielded various model strengths for DO. The R2 

values with explanatory variables at the watershed scale ranged from 0.25 to 0.48, while 

it is generally higher at the buffer scale with values ranging from 0.35 to 0.5.  All models 

were statistically significant with a 95 percent confidence interval (p<=0.05). As shown 

in Figure 2-8a, spatial filtering-based regression always increases model performance, but 

the highest model performance for DO models was achieved when the relative graph type 

was used in both watershed and buffer scales. Only the standard deviation of elevation 

was a significant predictor at a watershed level. The standard deviation of the population 

and percentage of sand/gravel were significant predictors at the 100-meter buffer scale 

(Table 2-3).  The best model was derived using the relative graph spatial 

conceptualization at the buffer scale, with predictor variables % sand, and eigenvector 

number 6 and 16.  

3.3.2. Conductivity Regression Model 

The conductivity model strengths were generally higher than DO. All models were 

significant at p<=0.05. The model strengths of conductivity also varied according to 

different spatial conceptualization. The R2 values ranged from 0.3 to 0.85 at the 

watershed scale while the buffer scale model strength ranged from 0.62 to 0.84 R2 values 

(Table2- 4, Figure 2-7b). Buffer scale models were usually weaker for conductivity 

models except for the aspatial linear model. The k-mean graph model strength was 

comparable between watershed and buffer scale models which also yielded the highest 

model strengths at both scales. In the regression model, the population standard deviation 
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was always positively related to conductivity. When k-mean spatial conceptualization 

was used, the average elevation was also positively associated with conductivity at the 

watershed scale. But at the buffer scale, elevation standard deviation, population standard 

deviation, and percentage bare land positively explain the variation of conductivity while 

percentage sand predicts it negatively (Table 2-4). The k-mean graph at the watershed 

and the buffer scales had an R2 value close to 0.85.  However, the watershed scale model 

is simpler, with elevation and population standard deviation along with eigenvectors 3, 5, 

and 8 as the predictor variables.
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Table 2-3: Watershed scale model attributes for Dissolved Oxygen and Conductivity. Full Forms: 

rsac: Residual Spatial Autocorrelation z value. AIC: Akaike Information Criteria. elev: average 

elevation, elev_std: standard deviation of elevation, slope_std: slope standard deviation 
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Table 2-4: Buffer scale model attributes for Dissolved Oxygen and Conductivity. AIC: Akaike 

Information Criteria. elev_std: Standard deviation of elevation, pop_std: population 

standard Deviation, ag: percentage agriculture land cover, sand: percentage sand cover, 

bare: percentage bare land cover. * refers to the coefficients significant at p ≤ 0.05. 
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Figure 2-8: Model strengths of dissolved oxygen and conductivity at different scales and graph 

types 
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4. Discussions 

4.1. Spatial Patterns of Dissolved Oxygen and Conductivity 

Our DO range falls within the range reported elsewhere in Nepal and other Asian 

countries (Adhikari et al., 2017; Su et al., 2012; Yadav et al., 2019). Pokharel et al. 

(2018) reported an average of 8.0 mg/L in the Seti-Khola River from the data collected in 

July 2012. DO values greater than 4.0 mg/L are considered fair to support aquatic life, 

while higher than 6.5 is good, above 8.0 is excellent (Washington Ecology, 2002). In our 

study, DO is generally higher in the mainstream high-flow river, which is consistent with 

other studies that report increasing river flows are associated with high DO (Post et al., 

2018). A relatively random spatial pattern for DO except for a high-high cluster of the 

high elevation result suggests that the factors affecting DO concentration are also 

randomly distributed in the watershed. The high-high cluster in the high elevation region 

might be associated with proximity to forest, cooler water temperatures coming from the 

snow and glaciers, the steeper slope leading, and higher turbulence resulting in rapid re-

aeration. (de Mello et al., 2018; Su et al., 2013).  

The conductivity range we reported is within a standard limit (max of 1500 

µs/cm) according to the Nepal government (Water Quality Standard Nepal, 2005). Our 

conductivity values are within the range of previous studies like Pokharel et al. (2018) 

who reported an average of 166 µs/cm in this watershed. The higher range of 

conductivity in the high-flowing river like main SetiKhola and its bigger tributaries, and 

lower values in the smaller tributaries and lakes, suggest that conductivity is a function of 

watershed size and probably in-stream activities such as the dissolution of salts from 
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bedrock. In a larger watershed, water delivered to the surface water comes in contact with 

more soil surface, thereby washing more ions and increasing conductivity (Water on the 

Web, 2020). We also cannot rule out the possibility that the differences in conductivity in 

different parts of the watershed might be a consequence of the differences in underlying 

geology:  rock types with abundant dissolvable ions tend to increase water conductivity 

in the stream (Water on the Web, 2020).  

Water quality in the study lakes was poorer than in the fast-flowing rivers that 

recycle nutrients and oxygen quickly. Both DO and conductivity were lower in the lakes. 

Notice, however, that there were some tributaries where conductivity was lower than the 

lakes, probably because of their small watershed size and/or underlying geology. In many 

cases, lakes have different water quality conditions from rivers’ because of their stagnant 

nature, physicochemical conditions, and responses to receiving waters that are typically 

affected by a combination of natural and human impacts (Low et al., 2016). Lakes hold 

nutrients and increase concentration over time, which can lead to eutrophication. All the 

lakes in this region also suffered some form of eutrophication, with such impacts more 

visible in small lakes (Field visit 2018/2019). According to local people, the macrophyte 

growths in bigger lakes are periodically removed to make room for boats. The 

aquaculture practices in the lakes, like fish farming in some of the lakes, and other factors 

like the presence of the river in the watershed, land use, geology, and climate affect the 

intensity of human impacts in the lake (Nielsen et al., 2012; Zang et al., 2011). 
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4.2. Relationship between landscape matrix and water quality 

We report that the riparian forest cover is positively correlated to DO, which is in line 

with other studies like de Mello et al.  (2018). Urban land use did not directly correlate 

with either DO or conductivity. It is probably because urban land use only covers a small 

area and is not evenly distributed across the entire watershed. The strong correlation of 

forest land cover with DO at the buffer scale suggests that all other human-modified 

landcover types are detrimental to DO, as expected according to other studies (Zhou et 

al., 2012). The effect of land use in DO is manifested through increasing temperature, 

which leads to increased biological oxygen demand and depleted oxygen in the water 

bodies (Schindler et al., 2017). Various other studies have also found agricultural land 

use affecting DO significantly, which is consistent with our finding  (Yadav et al., 2019).  

A negative effect of the built-up area and population growth on DO are also reported in 

various parts of the world (Su et al., 2013).  

DO in surface water measures the ability of water to support life; it can be 

affected by various watershed factors. Different studies have found varying levels of 

success in modeling DO utilizing landscape characteristics and statistical approaches. Su 

et al. (2013) found a maximum of 0.83 R2 when they compared various spatial statistical 

models for the Qintiang river of China, while de Mello et al. ( 2018) reported 0.72 in the 

Sarapui River basin of Brazil. Chang (2008) reported R2 values in the range of 0.7 in the 

study of the Han River Basin, Korea. Although lower than these studies, we were 

successful in deriving the model with a reasonable R2 value of 0.5 using a combination of 

somewhat limited socio-environmental (population standard deviation, agriculture, sand, 
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and bare land cover) and spatial-filter based variables. The remaining variations might be 

explained by geology, soil types, and climatic variables, which are unavailable in the 

study region. Our result suggests that the percentage of sand coverage at the stream banks 

is a significant determinant of DO. This finding suggests that the sand and gravel mining 

rampant in the riparian area of this watershed might be reducing oxygen availability in 

the water bodies. Some previous studies have shown that sand and gravel mining can 

affect the aquatic ecosystem and also degrade overbank areas (Sreebha and Padmalal, 

2011). However, the exact mechanisms by which the gravel and sand mines impact 

surface water quality remain to be explored.  

Conductivity can be modeled with watershed characteristics better than other 

water quality parameters because of easier movements of soluble ions to the water, which 

are unique to different landscape characteristics under consideration (Lintern et al., 

2018b). We found a high of 0.8 R2 value in the current study. Conductivity can be 

affected by various watershed levels and in-stream factors like the concentration of 

phosphorus and nitrogen in the water, area of wetland surrounding water bodies, and 

climatic factors like precipitation (Fracz and Chow-Fraser, 2013). We also found several 

of these factors affecting the conductivity concentration of the river reaches. The 

presence of agriculture or sand cover and high population density reduces conductivity 

significantly in our watershed, which aligns with the study by Wenner et al. (2003) who 

reported that degraded streams usually had lower conductivity.  



88 
 

4.3. Impacts of spatial scales  

Various studies have found different results in terms of the scale at which landscape 

matrices affect water quality. Studies have found a stronger effect of watershed 

characteristics than buffer scale characteristics on water quality in their models 

(Houlahan and Findlay, 2004; Pratt and Chang, 2012; Zhou et al., 2012). In contrast, 

Mainali and Chang (2018) reported a 100-meter buffer as the best scale in explaining 

various water quality parameters in a larger river basin in South Korea. Similarly, we 

found generally higher model strength at the buffer scale for DO while similar model 

strengths between 100-m buffer and watershed scale for conductivity. Our results also 

indicate that there was a higher influence of different factors at the buffer scale than the 

watershed scale; land use in the immediate surrounding of the river like sand and 

agriculture are significantly making water quality worse by reducing DO and 

conductivity. 

4.4. Impacts of different spatial conceptualizations 

We report that spatial filters significantly increase model performance, and spatial 

conceptualizations matter when creating spatial filters because they produce different 

model outputs. When spatial eigenvectors are created, the weights are provided based on 

the values of the neighborhood, which are different in different graph types. For DO, the 

highest model strengths were with Relative Graph type while it was the k-nearest for 

conductivity. Relative and Minimum Spanning Tree are the graph types closest to the real 

river network of our watershed; a difference between Relative and Minimum Spanning 

tree is in the connections between stations on the west side of the watershed. Relative 
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graph type is closer to the real river network as the edges in this graph more closely 

follow the river network. The highest model strength in Relative Graph type suggests that 

DO is more directly affected by upstream-downstream relations along with the river 

network. Many previous studies also showed that DO concentration was predominantly 

governed by various upstream factors like solute concentrations (Bailey and Ahmadi, 

2014) and inclusion of upstream-downstream relationships improved the model 

performance of DO (Money et al., 2009).  

The k-mean spatial conceptualization refers to the neighbors defined around its 

immediate surroundings in all directions. The higher conductivity model strength using k-

mean spatial conceptualization suggests that conductivity is more affected by local than 

upstream factors. The local clustering of conductivity could be better captured by k-mean 

clustering than other graph types. Previous studies also reported that the electric 

conductivity of the river is influenced by neighbors in all directions, or upstream values 

(Lintern et al., 2018b; Peterson and Hoef, 2010).  It is also to be noted that the model 

strengths using other graph types are also significant, and only slightly lower than the k-

means spatial conceptualization.  

5. Conclusions 

The spatial patterns of DO and conductivity, their relationships with socio-environmental 

factors, and various spatial and statistical interrelationships identified in this work 

elucidate the source, mobilization, and transport of DO and conductivity and can guide 

water quality management efforts. In this watershed, we report that the spatial clustering 
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pattern of DO is affected by upstream factors, thereby revealing distinct DO 

concentrations in the main-stem and tributaries. Conductivity also revealed distinct 

spatial variations in main-stem and other tributaries and exhibited local clustering across 

tributaries.  

The spatial regression models were successfully developed and compared using 

water quality data collected in the field, and various geographic information systems 

based on social and environmental data. Among the factors considered in the analysis, we 

found the population density, agricultural land cover, and sand cover negatively impact 

the water quality as revealed by their relationships with DO and conductivity. The inter-

scale comparison revealed a generally stronger impact of a 100-m riparian scale over the 

entire watershed in explaining the variation of DO and conductivity.  

Our work provides a novel example of using graph theory in elucidating 

relationships among water quality measurement sites and their affinity with landscape 

processes. The model strengths are usually different according to the different spatial 

conceptualization of interrelations among sampling stations, as demonstrated by the 

graph types. Among different graph types compared, the relative graph types provided 

the highest model strength, signifying stronger up-stream downstream relation with DO, 

while k-mean graph types with four neighbors provided the strongest model performance, 

indicating the impact of local factors in water conductivity.  
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River Runs Downstream: Modified Geographically Weighted Regression for Stream 

Networks 

Janardan Mainali and Heejun Chang 

Abstract 

The geographically weighted regression (GWR) models, which allows us to explore local 

variations in relationships between different factors, have been widely used to examine 

water quality and their relationships with the watershed structure and processes. The 

GWR models used in surface water quality studies to date have not paid attention to the 

network structure and upstream-downstream directionality of rivers and streams. We 

incorporate upstream-distance metrics into GWR (U-GWR) models and compare the 

outputs with standard GWR (S-GWR). We use Dissolved Oxygen and Conductivity data 

from a river and its tributaries in a mountainous watershed of central Nepal as response 

variables. Land use types, elevation, slope, and population density extracted at 100-m 

buffer and watershed-scale were used as explanatory variables. The spatial stream 

network-based tools were used to derive the stream network and calculate the upstream 

distance for each site. We compared the regression model outputs between S-GWR and 

U-GWR. A successful model could be developed using U-GWR having comparable 

model strength with that of S-GWR. The resultant model revealed different spatial 

patterns of model strength (R2) as well as the relationship with explanatory variables. The 

U-GWR model can offer better insights into hydrological and biogeochemical 

relationships among different water quality measurement sites and their connections with 

watershed processes.  These insights not only help understanding fine-scale impacts of 
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socio-environmental and biophysical factors to water quality but also assist in designing 

locally specific water quality management endeavors.  

1. Background 

The linear regression models like ordinary least square regression (OLS) are mostly used 

to elucidate the impacts of various social, environmental, and climatic factors on the 

surface water quality (Ullah et al., 2018). The OLS models do not account for the spatial 

structure of the model and are usually invalid when there is spatial autocorrelation of the 

residuals. The spatial modeling approach, such as Spatial lag and error model (Anselin, 

2001), Spatial Filtering (Tiefelsdorf and Griffith, 2007), and Spatial Kriging  (Cressie, 

1988.), attempt to take into account the spatial patterns of water quality parameter being 

studied, help identify the watershed characteristics that impact water quality conditions, 

derive the spatial correlation structure among the observations, and predict water quality 

at unmonitored locations. (Yang and Jin, 2010, Chang 2008, Mainali et al. 2019). These 

regression models, however, are global as they produce only one model summary for the 

entire set of data. They are not useful when there is a high spatial variation in the 

relationships between explanatory variables and response variables. Among stream 

sections, the relationships between predictors and a response variable can vary, and the 

strength of those relations might also be dSifferent across regions (Ganio et al., 2005).  

In order to address this issue, a widely used spatial regression model, 

geographically weighted regression (GWR) can be used to explore varying local 

relationships between predictor and response variables across different sites. GWR can be 
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used to allow model coefficients to vary for each observation and create a set of local 

models based on the location of sampling sites (Brunsdon et al., 1998). The observed data 

included in each local model are geographically weighted with neighboring data points, 

depending on the proximity of the location, and are used to estimate local R2 and 

coefficients for each sample observation. The number of samples included for each data 

point is defined using a bandwidth function. GWR is increasingly used in water-quality 

modeling, not only to estimate the model parameters but also to explore the variabilities 

of those relationships in different watersheds (Chang and Psaris, 2013; Chen et al., 

2016a; Pratt and Chang, 2012; Tu, 2011; Tu and Xia, 2008). Most of these works report 

higher model strength of GWR over OLS. Scholars assert that the local models hence 

developed can facilitate site-specific water pollution mitigation efforts by accounting for 

local variations in pollution source, land use, and other relevant factors (An et al., 2016; 

Chen et al., 2016; Tu and Xia, 2008). These models, however, use the Euclidean distance 

approach where sites of all directions are used to derive the local models (Mainali et al. 

2019). The up-stream-down-stream relations are not yet incorporated in water quality 

modeling using GWR. 

Rivers and streams seldom behave in linear fashion (as crows fly); rather, they are 

better represented as a dendritic network with stems and branches (Peterson et al., 2013). 

The transport of energy, nutrients, sediments, and biological components like fish occur 

along those networks within a terrestrial landscape (Isaak et al., 2014; Ver Hoef et al., 

2006). On the other hand, there is a continuum along surface water and land where water 

that falls on the land surface eventually ends up in surface water bodies (Vannote et al., 
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1980). This continuum, to some extent, is responsible for the physical, chemical, and 

ecological characteristics of surface water. These movements of water usually wash 

various non-water components from landscape to water. After these components are 

delivered on the river system, they undergo various chemical or physical changes like 

increased concentration over time, dilution due to increased water flow, and movement of 

those compounds downstream (e.g., Lintern et al., 2018). For spatial statistical process, 

the stream distance maybe a more appropriate distance metric when modeling spatial 

properties of the various stream and river attributes. Stream distance is defined as the 

shortest distance between two locations, where distance is computed only along the 

stream network (Ver Hoef et al., 2006). In this work, we attempt to understand the local 

variations of downstream movements by leveraging two major developments in spatial 

statistics. Building on the development of spatial stream network models and GWR, this 

research attempts to modify later to incorporate the unique network structure of the 

stream network in developing the local models for stream and river networks (Figure 3-

1).  

The major challenge of this approach is identifying appropriate statistical and 

methodological tools to define up-stream downstream relationships. Determining 

upstream and downstream linkage would involve calculating the distance matrix of the 

sampling stations based on their upstream and downstream relations and using that within 

a GWR framework. A recently developed spatial stream network statistical methods 

(SSN) can potentially be used to provide a framework to define up-stream downstream 

relation and derive the flow-connected distance among different sampling sites (Peterson 
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et al., 2013; Ver Hoef and Peterson, 2010). The GIS processing toolbox STARS can be 

used to set up a stream network, define upstream-downstream relationships among 

sampling sites, and calculate the distance matrix based on those relations (Peterson and 

Ver Hoef, 2014).  

 

Figure 3-1: Spatial conceptualization of the project. a) A standard geographically weighted 

regression where a circular band is created around the site to derive the distance weight b) 

Upstream-downstream relations in spatial stream network models. The weights are provided 

based on the cumulative upstream distance or other relevant parameters like flow volume or 

watershed size. c) A modified geographic weighted regression where distance matrix for each site 

is calculated using bandwidth defined only towards upstream sites 

Objectives 

A general objective of this work is to compare the model outputs between standard 

geographically weighted regression (S-GWR) and upstream distance weighted 

geographically weighted regression (U-GWR). We hypothesize that the GWR models 
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developed from upstream-distance weighted regression are stronger (having higher R2 

and lower AIC) and can capture local variability better.  

2. Methods 

2.1. Model Data  

We use stream polyline shapefile, water quality data collected in the field and their 

corresponding coordinates, and raster-based explanatory variables related to land use, 

topography, and population density (Table 3-1). The water quality response variables are 

Dissolved Oxygen (DO) and Conductivity (COND). Data collection, processing, and GIS 

analysis processes are described in Mainali and Chang 2020, under prep). 

Table 3-1: Different data types used in this work 

Data Name Type Resolution Source 

Stream Polyline 

Shapefile 

Line Feature 
 

Department of Survey, 

Nepal, 1986 

Water Quality Point Point data Field sampling, 2019 

Land Use Types Raster 30-meter 

raster 

Classified from 

Landsat 8, 2017 

Elevation and 

Slope 

Contour layer 

converted to raster 

30-meter 

raster  

Department of Survey, 

Nepal, 1986 

Population Raster 100 m, 

resampled 

to 30 m 

WorldPop Nepal, 2015 

 

2.2. Stream Network  

The first step of this work was to create topologically correct stream networks. The 

polyline shapefiles of the stream networks are used as the stream network. We used the 

Spatial Tools For The Analysis of River Systems (STARS) tool version 2.0.7 to create 
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and analyze the stream network data (Peterson and Hoef, 2014).  The STARS tool 

requires a carefully digitized stream network to preserve upstream to downstream 

direction of the river. Using the stream network shapefile and the imagery of the study 

area, we re-digitized a stream network for the entire watershed using ArcMap version 

10.7.1 (ESRI, 2020). To make a topologically correct stream network, we digitized 

stream-network upstream to downstream with separate stream reaches.  

2.3. Landscape Network and Distance Matrices 

The digitized stream network was converted to a landscape network database using 

Polyline to Landscape Network tool available in the STARS toolset. The landscape 

network database consists of edges, nodes, and the relationship tables between them 

(Figure 3-2).  The site's points were then snapped along the stream network using Snap 

Points to Landscape Network tool available in the STARS toolset. After the points were 

snapped, the upstream distance was calculated for each site using the Calculate Upstream 

Distance Among Sites tool. The resultant landscape matrix with upstream distance 

measurement for our sites was converted to a spatial stream network object. We used 

Create SSN Object available in the same toolset to export the resultant stream network to 

R software (R Project, 2020).  
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Figure 3-2: Landscape network with the relationship table on the inset. 

After the spatial stream network object was imported to R software  (version 3.6.1), we 

used SSN package to extract the upstream distance matrix and derive flow connected and 

flow unconnected semivariogram (torgegram) of our response variables DO and COND 

(Ver Hoef and Peterson, 2020). The distance matrices use the upstream distance 

calculated in the GIS environment to derive the upstream-distance matrix. The standard 

distance matrix has 0 on the diagonal region while having a specific distance value on the 

non-diagonal region (Figure 3-3). The upstream distance matrix is different as it also 

provides a value of 0 to the sites not connected by the flow. Using the distance matrix 

created, we ran torgegram for dissolved oxygen and conductivity.  
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Figure 3-3: Different distance matrices depicting general spatial models and spatial stream based 

spatial model. Notice that flow unconnected sites have 0 distance values. 

2.4. Different Geographically Weighted Regression  

We use  R package GWmodel (Lu et al., 2019) to run S-GWR and U-GWR models. The 

first step of this analysis involved creating a standard distance matrix using a distance 

matrix function available in the package. We ran regression models for two dependent 

variables—DO and COND. The models are run on two different scales- watershed scale 

and buffer scale. The buffer scale explanatory variables capture impacts of landscape 

variables of the vicinity, while the watershed scale captures the entire upstream region 



111 
 

from a site. There are, hence, four different linear models. These standard models are 

then compared with U-GWR.  

We chose the set of explanatory variables with the lowest AICc (Akaike Information 

Criteria) and variation inflation factor (VIF) for each response variable and a set of 

explanatory variables. We used model.selection.gwr function available in the GWmodel 

package to select the best subset of the explanatory variables. That set of explanatory 

variables was used to run three different types of regressions- standard linear model 

without any spatial considerations (OLS), standard geographic weighted regression using 

the Euclidean distance matrix (S-GWR), and geographically weighted regression using 

the upstream distance matrix (U-GWR). We used robust.gwr function to run the GWR to 

come up with all relevant model outputs like local R2, model coefficients, and 

significance. The model outputs from OLS, S-GWR, and U-GWR were compared based 

on the R2 and AICc values. We also compared spatial patterns of R2 and model 

coefficients of selected significant explanatory variables between S-GWR, and U-GWR. 

3. Results 

3.1. Spatial Autocorrelation along the Network 

As shown in Figure 3-4, the spatial stream network model approach successfully derived 

upstream distance. The upstream distance was calculated for each stream reaches (edges), 

and sampling sites. The distance matrix derived from the upstream distance allows us to 

calculate flow-connected and flow-unconnected distance matrices where flow-

unconnected reaches were excluded for creating local spatial weights. 
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Figure 3-4: Upstream distance to the sites relative to watershed outlet defined in this study 

For DO concentration, spatial autocorrelation is the highest around 15000 meters in the 

flow connected model, while it is around 2800 meters in the flow unconnected model, 

signifying the greater clustering along the stream network (Figure 3-5). Both flow 

connected and flow unconnected COND autocorrelations have bimodal distribution with 

one peak at around 10000 meters and another around 30000 meters (Figure 3-6). As we 

can see from the spatial distribution of COND (Chapter 2), there are distinct pockets of 



113 
 

conductivity in different parts of the watershed with lowest in western tributary, medium 

ranges in eastern parts, and high values along the main stem of the river.  

 

Figure 3-5: Spatial autocorrelation at different distance for Dissolved Oxygen 
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Figure 3-6: Spatial autocorrelation at different distances for Conductivity. 

3.2. Comparison of different regression models 

Table 3-2: Comparison of different regression models at different scales for conductivity.  Notice 

that different sets of predictor variables were selected during model selection on the watershed 

and buffer scale model. Bold values are significant at p<0.05 

Model 

Parameters 

Buffer Scale Watershed Scale 

OLS S-GWR U-GWR OLS S-GWR U-

GWR 

R2 0.68 0.78 0.77 0.26 0.57 0.64 

AIC 575.33 534.07  538 575.3

3 

562.95 553.28 

Intercept 219.73 208.22 175.76 552.4

5 

512.15 474.77 

Elevation - - - -0.08 -0.06 -0.06 

Elevation 

Standard 

Deviation 

0.16 0.18 0.05 0.19 0.13 0.14 
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Slope 

Standard 

Deviation 

- - - -9.58 -16.37 -5.65 

Forest - - - -2.74 -1.93 -2.6 

Sand -12.38 -3.79 1.32 -22.56 

  

-18.47 

  

-14.79 

Bare 2.54 -5.96 -1.32 - - - 

Average 

Population 

 - - - 2.55 2.17 1.82 

Population 

Standard 

Deviation 

5.43 7.42 6.18 - - - 

 

 

Figure 3-7: Spatial patterns of R2 values between S-GWR and U-GWR models at buffer and 

watershed scales. U-GWR COND model at buffer scale, b) S-GWR COND model at buffer scale, 

c) U-GWR COND model at a watershed scale, and d) S-GWR  COND model at the watershed 

scale. 

Conductivity 

Buffer 
Conductivity 

Watershed 
(b) (a) (c) (d) 
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Figure 3-8: Spatial patterns of the coefficient of different explanatory variables related to S-GWR 

and U-GWR models at buffer and watershed scales. a) The spatial pattern of coefficients of 

percentage sand cover with U-GWR  with buffer scale COND model b)  Spatial pattern of 

coefficients of percentage sand cover with S-GWR COND model at buffer scale c) Spatial 

patterns of coefficients of percentage forest cover with U-GWR  with watershed-scale COND 

model, and d) Spatial patterns of coefficients of percentage forest cover with S-GWR with 

watershed-scale COND model  

3.2.1 COND Model Details 

Overall, the model strength of the buffer scale model of conductivity is the highest with 

the S-GWR, although U-GWR also exhibited only slightly lower R2 (Table 3-2). The 

AICc is also lowest with S-GWR, exhibiting better model output. At the buffer scale, 

elevation standard deviation and percentage sand are the significant explanatory 

variables, while none of the other variables exhibited overall significance in both GWR 

models. At the watershed scale, the highest R2 and lowest AIC is with the U-GWR 

model. Average elevation, elevation standard deviation, and percentage forest cover are 

Conductivity 

Buffer 
Conductivity 

Watershed 

(a) (b) 
(c) (d) 
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significant explanatory variables at the non-spatial linear model, while slope standard 

deviation and average population with S-GWR, and slope standard deviation, percentage 

forest, and average population in U-GWR. 

Spatial patterns of R2 and Coefficients 

The strength and uniqueness of GWR lie in its capability to produce a model for each 

observation. The spatial variation in these local modeling attributes might provide us with 

the behavior of these water quality parameters at different locations in response to the 

explanatory variables under consideration. For the buffer scale model of the conductivity, 

the U-GWR R2 values are significantly lower in upstream regions while those are higher 

in downstream. These relations are expected as the weight is higher downstream. The 

spatial pattern of R2 values (Figure 3-7a) shows that at U-GWR model strength is 

generally weaker in the mid and upstream region and significantly stronger in the lower 

middle region of the watershed. Some of the up-stream sites showed very low R2 values 

as low as 0.08, while it could be as high as 0.99 in some other sites in U-GWR (Figure 3-

7a). The spatial pattern of R2 with S-GWR, however, is less pronounced with R2 values 

ranging from 0.62 to 0.93 (Figure 3-7b). There are still higher model strengths with the 

sites in the middle part of the watershed than those in the upstream or downstream region. 

At the watershed scale, the general pattern of R2 is similar between S-GWR and U-GWR 

with R2 values ranging from 0.08 to 0.97 at U-GWR and -0.49 to 0.98 with S-GWR. The 

overall patterns of R2 values are slightly opposite than the buffer scale model where the 

lower range of the value is associated with S-GWR.  The spatial patterns of R2 show that 
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the watershed scale conductivity model exhibits higher model strength on the west side of 

the watershed, moderate strength on the downstream, and weaker strength on the 

upstream region (Figure 3-7c and 3-7d).  

The spatial pattern of the coefficient in percentage sand cover is similar between U-GWR 

and S-GWR associated with the buffer scale COND model (Figure 3-8a and 3-8b). While 

the percentage of sand cover is negatively associated with conductivity in the 

downstream regions, which is opposite in the upstream region and is similarly distributed 

in both S-GWR and U-GWR. In the OLS and S-GWR, the forest cover in the watershed 

generally impacts water conductivity positively. When the standard distance matrix was 

used, the relationship changes to positive in the remote forested regions of the watershed 

(Figure 8c and 8d). However, the U-GWR did not result in any positive coefficients (3-

8c). 

Table 3-3: Comparison of different dissolved oxygen regression models.  Notice that different 

sets of predictor variables were selected during model selection on watershed and buffer scale 

models. Bold values are significant at p<0.05 

  

  

Buffer Scale Watershed Scale 

OLS S-GWR U-

GWR 

OLS S-GWR U-

GWR 

R2 0.21 0.3 0.32 0.38 0.51 0.48 

AIC 128.23 128.23 127.57 115.96 109.87 113 

Intercept 4.9 3.85 4.96 9.72 10.28 10.26 

Elevation 0.001 0.0017 0.00001  -  -  - 

Elevation 

Standard 

Deviation 

- - - 0.001 0.001 0.001 

Slope Standard 

Deviation 

0.01 0.07 0.09 -0.18 -0.24 -0.2 
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Forest 0.005 0.004 0.021 - - - 

Agriculture and 

Settlements 

0.002 0.01 0.001 - - - 

Sand - - - -0.34 -0.4 -0.38 

Average 

Population 

0.09 0.1 0.11 0.006 0.005 0.003 

 

Figure 3-9: Spatial patterns of R2 values between S-GWR and U-GWR at watershed and buffer 

scale. U-GWR buffer scale DO model, b) S-GWR buffer scale DO model, c) U-GWR watershed-

scale DO model, and d) S-GWR watershed-scale DO model 

 

 

DO 
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DO 

Watershed 
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Figure 3-10: Spatial patterns of the coefficient of different predictor variables in standard and 

upstream distance weighted  GWR models of DO. a) The spatial pattern of coefficients of average 

elevation with U- GWR  with buffer level DO model b)  Spatial pattern of coefficients of  average 

elevation with S-GWR  with buffer level DO model c) Spatial pattern of slope standard deviation 

with U-GWR  with watershed level DO model, and d) Spatial pattern of slope standard deviation 

with S-GWR  with watershed level DO model 

3.2.2. Dissolved Oxygen 

General Model Characteristic 

The overall model strength of buffer scale DO is the highest in the U-GWR model with 

the highest R2 and lowest AIC (Table 3-3). At the buffer scale, none of the parameters 

showed any significance with the OLS and S-GWR. Average elevation was a significant 

predictor in the U-GWR model. At the watershed scale, model strength is the highest in 

the S-GWR model with the highest R2 and the lowest AIC. The elevation standard 

(a) (b) (d) (c) 

DO 

Buffer 

DO 

Watershed 
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deviation, slope standard deviation, and percentage sand cover are significant variables 

with OLS, while elevation standard deviation, slope standard deviation, and average 

population density are significant on average with S-GWR. On average, the elevation 

standard deviation is significant with U-GWR.  

Spatial Patterns of R2 and coefficients 

At the buffer scale, the spatial patterns of R2 are similar between S-GWR and U-GWR 

(Figure 3-9). However, the range of R2 values is lower in S-GWR with R2 ranging from 

0.19 to 0.53, while that of upstream-weighted R2 values range from 0.31 to 0.77 (Figure 

3-9a and 3-9b). The spatial pattern reveals that the R2 values of both the upstream region 

and the downstream region are lower than the middle and west regions of the watershed 

with U-GWR. But, the spatial pattern of R2 values of S-GWR shows that the R2 values 

are lower in the downstream and adjacent region, while there is not much spatial 

variability in the rest of the watershed. At the watershed scale, both range and spatial 

patterns of R2 are similar between S-GWR and U-GWR with R2 ranging from about 0.2 

to 0.72 (Figure 3-9c and 3-9d).  

Elevation can be an important determinant of water quality, especially because of its 

impact on water temperature. This watershed also has a sharp elevation gradient with 700 

to 7500 meters from sea level. The spatial patterns of the impact of elevation in DO 

concentration are significantly different between S-GWR and U-GWR (Figure 3-10a and 

3-10b). There are generally positive impacts of buffer scale elevation in DO in the S-

GWR except for a few downstream sites.  These downstream sites are in the lowest 
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elevation region of the watershed and are immediately downstream of the major urban 

region. The U-GWR, however, showed different spatial patterns in the majority of the 

upstream sites showing negative relationships with elevation. There are also a few 

downstream stations that showed a negative relation with DO. The negative coefficient in 

high elevation suggests that the DO concentration is lower in the high elevation region 

according to U-GWR. The slope standard deviation is a measure of the ruggedness of the 

landscape. The spatial patterns of the coefficients of the watershed-scale DO model are 

similar between S-GWR and U-GWR. Our result shows that the impact of ruggedness in 

DO is negative across all the regions of the watershed with strong impacts reported in 

upstream and downstream regions than the middle regions (Figure 3-10c and 3-10d).  

4. Discussions 

4.1. Spatial Autocorrelation Along a Network 

The variograms that measure the variance of data in different distance intervals are used 

to answer several spatial problems like the size and magnitude of spatial clusters. But 

their use in a stream environment might be ineffectual as the spatial patterns are not 

governed by the straight line distance but rather by distance along the stream (Ganio et 

al., 2005). The variograms that are constructed based on the stream distance, therefore, 

provide more information about the upstream-downstream relationships of the parameters 

being studied and can help detect patterns along with the network independent of spatial 

relationships over land. 

Our result also shows that the distance at which spatial autocorrelation occurs is 

lower for flow connected distance than unconnected distance, signifying a greater 
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clustering pattern for DO along with the stream network. This finding is in line with our 

previous work (Mainali and Chang 2020, under prep) where stream-like graph type 

yielded stronger model performance than other standard multidirectional graph types. 

Other studies that examined DO along the stream networks have suggested that the DO 

concentration is dependent on the upstream factors like solute concentration, therefore, 

are modeled better when upstream-downstream relations are incorporated (Money et al., 

2009). The distance at which the highest spatial autocorrelation occurred has two 

different peaks within both flows connected and flow unconnected Torgegram of electric 

conductivity. It suggests that there are various clusters of conductivity in this watershed. 

In our previous work (Mainali and Chang, under prep) we report that there are clusters of 

high to low values in different parts of the watershed with mainstem showing the highest 

conductivity. The two different bumps in the Torgegram might be a result of such 

clusters.  Mainali and Chang, in prep, conclude that the local clustering of conductivity 

could be better captured by k-mean clustering than other graph types. Other previous 

studies also reported that the electric conductivity of the river is influenced by neighbors 

in all directions or upstream values (Lintern et al., 2018b; Peterson and Hoef, 2010).  

These various levels of autocorrelation along the stream network lead to 

heterogeneity of the model along the stream network (Harris, 2019). This heterogeneity 

warrants the spatially explicit local models to account for differential relationships 

between stream attribute of the stream segments and various factors affecting them.  
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4.2. Upstream Distance Weighted GWR 

In this work, we show that the successful local models could be developed for surface 

water quality parameters by incorporating stream network structures within the GWR 

framework. The model strengths from U-GWR yielded comparable model output as of S-

GWR. The spatial patterns of model strength, as well as various coefficients from U-

GWR, are crucial in elucidating local patterns as a product of upstream-downstream 

relation, which mimics the hydrological processes more closely than S-GWR. Although 

most previous studies have used straight line distance, some researchers acknowledge 

that the straight line based distance metrics might not reflect true spatial proximity for 

various social and environmental phenomena like roads and rivers (Lu et al., 2014). 

There are a few works that have attempted to incorporate the network structure in the 

GWR model. Lu et al. (2014) used network distance and travel time matrices within the 

road network to carry out the GWR. They also attempted to use a different set of distance 

matrices for different explanatory variables in their subsequent paper (Lu et al., 2017), 

reporting that the travel time-based distance matrix worked best to model house price 

data.  

While network-based distance matrix generally improves the model performance 

of a geostatistical model, many researchers have argued that it is not always a panacea. 

Comber et al. (2020), for example, argue that in addition to road-network distance, 

modelers also need to take into account other factors like the direction of the road, 

congestion, and traffic lights. Although there has not been any research of local models 

using stream-network distance, several studies use autoregressive Spatial Stream 
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Network models and show significant increases in model strengths over traditional OLS 

models  (Neill et al., 2018; Scown et al., 2017). However, other studies did not report any 

significant changes (Turschwell et al., 2016).  We found that, although the model strength 

of S-GWR and U-GWR are comparable, stream network-based models did not always 

provide the highest model strength.  

While both upstream and downstream regions have lower R2 values, R2 values for 

conductivity with both S-GWR and U-GWR are the highest in the middle section of the 

watershed. This might be a product of higher clustering of similar values of the response 

variable as well as the explanatory variables in the middle region of the watershed. We 

can see a differential impact of distance weighting as we go upstream with the U-GWR; 

as the upstream distance gets lower; the relative strength of the model seems to dilute.  

This seems to be an issue with GWR in general while studying a single watershed as the 

water quality site density becomes lower in the high elevation upstream areas.  

 Not many studies compared spatial patterns of model coefficient between 

standard GWR and non-Euclidean distance weighted GWR. Lu et al. (2014) reported that 

the spatial variation is larger in one of the significant coefficients when using network 

distance over Euclidean distance. They found that the differences are more widespread 

while using travel time metrics which they attributed to road network speeds used to 

calculate the travel time metric. We also noticed a generally different spatial pattern of 

some of the model coefficients. Values of those coefficients ranged from the different 

intensity of the same direction (e.g., positive only) between two model types to 

completely different directions in some sites between two model types. Especially, while 
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comparing model coefficients the physical properties of the relationships are better 

captured by the S-GWR than the U-GWR. For example, the watershed scale forest 

impact in conductivity is positive in some upstream sites with S-GWR, while it is always 

negative in U-GWR. The conductivity values are generally higher along the main stem of 

the rivers and high elevation regions that are predominantly forested, leading to 

seemingly positive impacts of forest on conductivity especially on the predominantly 

forested area.  

4.3. Future Investigations/Limitations 

This work is a demonstration of the use of an upstream distance weighted approach in 

developing local models for streams and rivers. There area few things which we think 

could provide us with more insights and help develop stronger models. The GWR is used 

when there are differences in relationships between response and explanatory variables at 

different locations of the study sites. That could be explored by local spatial 

autocorrelation analysis (Harris, 2019; Ord and Getis, 1995). That would provide 

researchers with a better understanding of the spatial structure of data before running the 

model.  

The current model could be improved by including additional variables. For 

example, geology data could further explain the spatial differences of conductivity; 

unfortunately, such data are currently unavailable. Another area of model improvement 

includes better mimicking the hydrologic features in the watershed. In our study, we 

simplified our stream network by removing lakes, reservoirs, and any braided structures 

to make the stream network amenable to STARS. The addition of new variables 
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representing these features would add more meaning to the model and potentially 

increase the model performance. For example, in the travel time-related model, when 

additional factors like traffic light and directionality of the roads were incorporated, the 

models got better (Comber et al., 2020).  

 

The spatial statistics literature takes advantage of data and model simulations. This U-

GWR method could also be tested with a simulated network structure and associated 

datasets. Additionally, this work is an example of one watershed with only two water 

quality parameters with a finite set of explanatory variables. U-GWR can be tested in 

other watersheds that have more water quality  parameters and landscape variables.  Like 

any modeling, GWR can work better when there are more data points. More data points 

would increase the bandwidth for an individual site, leading to a more robust and stronger 

model.  

5. Conclusions 

We demonstrate that a successful model could be developed by combining a distance 

matrix derived from spatial stream network models and geographically weighted 

regression. The upstream distance weighted models provide a comparable model strength 

that of standard GWR.  The spatial patterns of model strength, as well as various 

coefficients from the upstream distance weighted regressions, are crucial in elucidating 

local patterns as a product of upstream-downstream relations. The U-GWR model can 

offer better insights into hydrological and biogeochemical relationships among different 

sampling sites and their relationships with watershed processes.  These insights not only 
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help understanding these processes but also designing locally specific water quality 

management endeavors. Although the stream network-based models do not always 

provide the strongest model output, they can provide a better understanding of physical, 

biological, and hydrological processes occurring between land and water as well as along 

the upstream-downstream continuum. These local models can always be improved by 

incorporating more sites, using additional explanatory variables, and accounting for 

realistic hydrologic features.  
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Overall Conclusions 

In this dissertation, I attempted to advance current knowledge in spatial modeling of 

surface water quality by carrying out a review of various spatial statistical approaches to 

water quality modeling, comparing model outputs resulted from different spatial 

conceptualizations of sampling sites, and demonstrating the incorporation of upstream 

distance while running geographically weighted regression. 

This dissertation concludes that there is still an insufficient emphasis on spatial 

aspects of water quality measuring sites (e.g., spatial autocorrelation and residual spatial 

autocorrelation) while modeling water quality. Additionally, most of the current research 

only uses standard distance matrix and do not compare spatial conceptualizations and 

resultant weight matrix. Weight matrices have great potential in informing spatial 

autocorrelation of dependent variables at different scales, and in helping test several 

hypotheses of spatial eco-socio-hydrological processes in relation to surface water. 

Although most of the spatial models are recognizing and incorporating the directional 

aspect of water flow, the local model development by using geographically weighted 

regression models has not yet considered an up-stream distance matrix.  

The second chapter provides a novel example of using graph theory in elucidating 

relationships among water quality measurement sites and their affinity with landscape 

processes. The model strengths are usually different according to the different spatial 

conceptualization of interrelations among sampling stations, as demonstrated by the 

graph types. Among different graph types compared, the relative graph types provided 

the highest model strength, signifying stronger up-stream downstream relation with 
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dissolved oxygen, while k-mean graph types with four neighbors provided the strongest 

model performance, indicating the impact of local factors in electrical conductivity. The 

spatial regression models were successfully developed and compared using water quality 

data collected in the field, and various geographic information systems based on social 

and environmental data. Among the factors considered in the analysis, we found the 

population density, agricultural land cover, and percentage sand cover negatively impact 

the water quality as revealed by their relationships with DO and conductivity. 

In chapter three, we demonstrated that a successful model could be developed by 

combining a distance matrix derived from spatial stream network models with 

geographically weighted regression. The upstream distance weighted models provided a 

comparable model strength that of standard geographically weighted regression.  The 

spatial patterns of model strength, as well as various coefficients from the upstream 

distance weighted regressions, are crucial in elucidating local patterns as a product of 

upstream-downstream relations. The upstream distance weighted geographically 

weighted regression model can offer better insights into hydrological and biogeochemical 

relationships among different sampling sites and their relationships with watershed 

processes. These insights not only help in understanding these processes but also in 

designing locally specific water quality management endeavors. 
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