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Abstract 

Radiation Therapy (RT) is a common treatment for cancerous lesions that acts by 

ionizing matter in the affected tissue, causing cell death. The disadvantage of RT is that it 

is most often delivered via an external beam of radiation which must pass through healthy 

tissues to reach the target site, ionizing matter within healthy tissues as well. To address 

this drawback, techniques are being developed for increasing RT-induced cell death in a 

target tissue while minimizing cell death in surrounding tissues. This effect is known as 

radiation dose enhancement or RT enhancement.  

The approach to RT enhancement studied in this thesis involves the use of inorganic 

nanoparticles (NPs) within target cells. Theses NPs attenuate X-ray radiation more 

effectively than the tissues around them, thus depositing more energy into the target tissue. 

This enhanced energy deposition in the target tissue allows a lesser dose of radiation to be 

applied to effectively treat the target tissue, which may reduce the risk of cell damage in 

the surrounding healthy tissues.  

In this thesis, the synthesis of two types of RT-enhancing NPs was studied, and 

preliminary biological assays were used to assess their effectiveness in vitro.  

First, a novel synthesis of bismuth nanoparticles (Bi NPs) was developed. Bi NPs 

are promising RT enhancers due to their high density and atomic number, properties that 

increase X-ray attenuation. However, syntheses of Bi NPs necessitate air-free technique 

and specialized equipment. The presented synthesis is aerobic and only uses standard 

laboratory equipment, providing a practical synthesis that produces Bi NPs of an 
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appropriate size for RT enhancement applications. This is possible due to the formation of 

an iodobismuthate precursor which is rapidly reduced to form metallic bismuth, 

eliminating the need for air and light-sensitive bismuth precursors. A survey of the 

parameters of the reaction has illustrated the impact of various factors to guide further 

optimization or reproduction of the synthesis. After synthesizing Bi NPs, they were then 

covered in a silica shell which enabled their further modification in aqueous media.  

Second, CaF2:Ln NPs were synthesized and incorporated into an RT enhancing NP 

which was also radioluminescent (RL). Along with RT enhancement via X-ray scattering, 

these NPs may enable RL imaging and deep-tissue photodynamic therapy. This work 

includes a rarely found time point study which elucidates the mechanism by which 

annealing at high pressure corrects crystalline defects improves their luminescence 

intensity. The CaF2 NPs were then coated in a mesoporous silica shell which allowed for 

further surface modification as well as small molecule loading. This shell was then further 

modified with polyethylene glycol, rendering the NP highly stable in water and lessening 

the chance of immune response.  

Lastly, with both NP types completely synthesized, a variety of biological assays 

were performed to assess their effectiveness in RT enhancement. Fluorescent probes were 

used to determine that the presence of NPs increases the number of reactive oxygen species 

formed during RT, which can be correlated to cell death. In vitro experiments were 

performed with variable doses of NPs and X-ray radiation to assess the NPs effectiveness 

at enhancing RT. Finally, an in vivo experiment is reported which supported that the Bi 

NPs are biodegradable when injected intravenously. These biological assays presented 
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evidence of RT enhancement for both types of NPs in this thesis and directed future work 

to address some shortcomings in cytocompatibility and reactive oxygen species generation.  
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Graphic Outline of Nanoparticle Synthesis in this Thesis 
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CHAPTER 1 - INTRODUCTION TO RADIOTHERAPY AND X-RAY-MATTER 

INTERACTIONS 

1.1. X-ray Radiotherapy 

X-ray radiotherapy (RT) is a common treatment for the management of cancerous

lesions. RT can be used alone, used to enhance the effects of chemotherapy, or used before 

or after tumor resection to lessen the risk of tumor resurgence. In 2015, 490,000 Americans 

received RT, with that number forecasted to increase by 19% to 580,000 by 2025.1 In most 

cases of X-ray RT, the patient is positioned on a bed below a linear accelerator (LINAC) 

that serves as the source of radiation. The LINAC produces a fine beam of X-ray radiation 

on the MeV scale, which provides a predictable and homogenous path of radiation. 

Intensity Modulated Radiotherapy is most often used, in which the patient is exposed to 

the radiation in a highly controlled manner that maximizes exposure to the cancerous tissue 

while minimizing exposure to healthy tissues.2 This can be done by rotating the radiation 

source or the patient, as well as with the use of radiation shielding materials over healthy 
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tissues. By rotating the patient or radiation source around an axis containing the cancerous 

tissue, it is continuously exposed to radiation while the healthy tissue around it is only 

briefly exposed. In addition to these techniques, the latest research indicates that 

fractionating radiation doses over several visits leads to a greater tumor volume reduction, 

as well as lessened side effects.2 

Even with these considerations, some limitations are innate to RT as it is performed 

today. The most detrimental issue is the limited control of dose deposition, or determination 

of what tissues are irradiated. To treat a tumor, a beam of ionizing radiation must be fired 

through healthy tissue around the tumor, and any photons that transmit through the tumor 

tissue will pass through the healthy tissue on the other side of the tumor. The radiation dose 

deposited into the healthy tissue around the tumor can damage it and prevent it from 

functioning properly. Worse still, ionization of DNA in healthy tissues may cause 

mutations that lead to secondary carcinogenesis. This limitation has been shown to have 

significant effects on the outcome of patients who receive RT. Studies of these phenomena 

are often separated by the location of tumors, as this determines which types of healthy 

tissues are affected during RT. One such study of breast cancer patients found that while 

13% of patients who received RT and were later diagnosed with secondary carcinomas, 

3.4% of the total studied population could attribute the appearance of secondary carcinoma 

to RT.3  A large study of colorectal cancer patients showed that RT increased the risk of 

secondary carcinomas, most often endometrial, lung, and bladder cancer as well as 

lymphomas.4 Due to this issue, there are a variety of methods being studied to reduce the 

amount of radiation needed for effect RT, including the research presented in this thesis. 
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Intensity Modulated Radiotherapy limits radiation exposure to healthy tissues because they 

are prone to secondary carcinomas caused by X-ray exposure.5 RT is often used in 

situations where the surrounding tissues could be damaged by surgery; however, in cases 

like head and neck cancer or testicular cancer, these healthy surrounding tissues are made 

of up fast-replicating cells which already present a high-risk factor should they become 

cancerous. 

The primary goal of RT is to damage the cells of cancerous tissue such that they 

are killed or cannot reproduce. Several forms of cellular damage cause cell death or 

apoptosis, even in cases such as cancer where apoptosis pathways have been affected by 

mutations. The main method of killing cancer cells in RT is by producing reactive oxygen 

species (ROS). These are radicals and other highly reactive chemical species include 

hydroxyl radical, nitrogen dioxide, hydrogen peroxide, and singlet oxygen, all of which 

can react with lipids and proteins in critical organelles in a phenomenon called oxidative 

stress. In traditional RT, it is generally accepted that ROS are produced by radiolysis, where 

electrons are ejected from molecules present in the sample by photons of appropriate 

energy. Radiolysis may be caused by incident photons, or by secondary photons or excited 

states that occur as a result of local photon-matter interactions (See Section 1.2). In an 

aqueous environment, the dominant product of this radiolysis is the hydroxyl radical, 

followed by dissolved electrons and hydronium radicals.6 These ROS, being very unstable, 

do not exist for long before reacting with species in the vicinity of their formation. Whether 

a low energy photon, low energy electron, or radical is produced, this energetic species can 

only travel about 10 nm in the cytosolic environment before reacting with another species.7 
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This high reactivity provides a tradeoff, as the same property that makes ROS useful for 

cell damage necessitates their formation directly next to the target. 

1.2. Interactions of X-ray Radiation and Matter 

 

The photons that make up X-ray radiation, also referred to as X-rays themselves, 

have wavelengths between 0.01 to 10 nanometers and energies ranging from 100 eV to 100 

keV. While this is the commonly accepted energy range in the field of physics, it is 

common in the medical field to refer to radiation up to 12 MeV to be referred to as X-rays. 

Regardless of how they are defined, the interactions of X-rays with matter are dependent 

on their energy. Further, even a monochromatic X-ray beam can cause various photon-

matter interactions to occur, in different proportions depending on the incident energy. 

Whether using poly- or monochromatic radiation, incident X-rays can be scattered, 

Figure 1.1) Illustrating possible interactions between an atom and an X-ray 



 5 

absorbed, or transmitted by the atoms of the sample as shown in Figure 1.1 and described 

below.  

X-ray scattering occurs when an incident photon interacts with matter in such a way 

that its direction of movement is changed. If the X-ray is simply deflected by an atom in a 

new direction without energy loss, the elastically scattered radiation is termed Rayleigh 

scattering. More common, however, is Compton scattering, in which an X-ray interacts 

with a single electron in an atom. In this inelastic electron-photon interaction, a fraction of 

the incident X-ray energy is transferred to the electron before the photon is deflected in a 

new direction with less energy.  The resulting excited electron will in general have enough 

energy to escape the nuclear attraction of the atom, leaving an ionized atom. The 

probability of Compton scattering occurring increases with increasing density of the 

material, and decreases with increasing incident photon energy. Due to the high energy of 

X-ray photons used in RT, materials with high densities are desirable to increase scattering 

in specific locations.  

 When the energy of the incident X-ray is greater than or equal to the binding energy 

of an electron, quantized X-ray absorption of the incident photon can occur. The energy 

absorbed by the atom results in the ejection of the electron from its orbital and removes it 

from the nuclear attraction of the atom. This phenomenon is known as the photoelectric 

effect. When the X-ray and electron binding energies are similar in magnitude, absorption 

is highly probable and leads to a spike in the attenuation of X-rays at and above this energy. 

In any event that an inner shell electron is ejected from an atom, whether it be by absorption 

or Compton scattering, the empty shell will be filled by an outer-shell electron. The loss of 
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energy from the outer shell electron upon transition to the lower energy orbital is released 

as a photon of the same energy as the difference between the orbitals.  which can be an 

ultraviolet photon or an X-ray, referred to as a secondary X-ray. These high energy 

secondary photons can then go on to excite other molecular and atomic transitions 

themselves. Depending on the magnitude of the initial excited state and the matter it passes 

through, this effect can multiply the number of excited states and amplify the number of 

chemical reactions caused by the single incident photon.  

Lastly, and most simply, if an incident X-ray does not interact with any matter while 

passing through a material, it will be transmitted through the other side without being 

changed in direction or energy. Diagnostic X-ray imaging relies on transmitted X-rays to 

strike scintillator materials, allowing for spatial imaging that differentiates between dense, 

strongly X-ray-interactive tissues like bone and sparse, highly X-ray transmissive regions, 

like soft tissues or void space.  

1.3. Nanoparticles to Enhance Radiotherapy 

To address the limitations of RT a field of RT-enhancing NPs is emerging. Through 

a variety of strategies, these NPs are designed to increase the number of ROS produced 

upon irradiation of a tissue, as compared to the same radiation dose alone.  
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1.3.1. Physical Enhancement 

 

One method for enhancing RT relies on introducing materials to the cancer tissue 

that will localize the energy deposition to that tissue, also known as physical enhancement. 

Inorganic NPs in particular can be applied this way due to their generally high densities 

and average atomic numbers, as both of these properties allow them to attenuate a much 

greater number of X-rays than the less dense, lower atomic number materials found in 

tissues. These dense NPs are intended to scatter and absorb the incident photons such that 

lower energy photons are produced.8 These lower-energy photons are more likely to 

deposit their energy within the tumor volume due to their greater attenuation by the soft 

tissues. The ideal material for this application would be NPs made of heavy metals due to 

their high densities, although these come with challenges. Lead is well known to be highly 

toxic. Tungsten and Iridium are inert in physiological conditions, but the syntheses of their 

NPs typically produce very small NPs below 10 nm, which are not ideal as they can be 

filtered out of the bloodstream.9–11 Gold has historically been the most popular NP material 

Figure 1.2) One possible interaction of an NP and X-ray enabling physical enhancement of 

RT.  
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for this application due to the ease with which NPs can be made, as well as its inertness. 

However, these biologically inert materials have a flaw in their lack of excretion from the 

body, leaving this foreign material in the body permanently.12 This research focuses on the 

use of bismuth NPs for attenuation(physical)-derived enhancement, made possible with 

novel synthetic methods for bismuth NPs, bismuth’s high density, and its slow but 

complete oxidation at physiological pH.  

1.3.2. Enhancement via Excited States in Nanoparticles, Chemical Enhancement 

 

When a material is struck by an X-ray, it can absorb energy and initiate a cascade 

of secondary transitions. In the case of semiconductor or insulator materials, the lower-

energy photons produced can excite the bandgap transition, causing the generation of an 

electron-hole pair called an exciton. These point charges move around the material until 

one of two quenching events occur. If they reach the surface, they are trapped by surface 

defects and react with molecules near the surface. If a positive and negative charge 

Figure 1.3) Interactions of an NP and X-ray which enable chemical enhancement. Alternate 

energy pathways are omitted for clarity.  
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recombine while in the crystal, the exciton’s energy can be converted to a photon which 

can escape the crystal. This recombination becomes more likely when the crystal contains 

energy states with an allowed transition between them, meaning that the emitted light can 

be intentionally tuned to favor a specific wavelength. This can either be accomplished by 

altering the physical properties of the crystalline matrix, or by adding dopants with 

accessible energy states. When this process is used to convert X-ray to light in the visible 

spectrum, the process is called scintillation. Excitons can decay by producing multiple 

lower energy excitons, until those states escape the NP volume or are thermalized. The 

energy released upon exciton decay can be emitted from the particle as a combination of 

photons and chemical bonds at the surface which is unique to the material in question, the 

volume of the material, as well as the photon energy.  

In the enhancement of RT, it is often advantageous to design the NP such that the 

excitons in the material are directed into a mechanism of producing ROS. This has been 

executed in titania and silica-based NP systems when irradiated with high energy photons 

such as X-rays and vacuum UV.13,14 In fact, silica nanomaterials generate low levels of 

ROS spontaneously in water, which contributes to the hazard of breathing in silica dust 

over long periods.15–17 These mechanisms require reactions between excited states on the 

NP surface and water, dissolved species in water, or the excited states can cause 

dissociation of atoms on the surface of the NPs to form ROS.  

Another mechanism by which energy can be funneled directly into radical 

production is the attachment of photosensitizers or other organic molecules to the surface 

of the NP which can absorb the photons emitted by the NP and excite nearby dissolved 
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species such as oxygen. Photosensitizers such as Rose Bengal or M450 had been studied 

previously to absorb energy from an external beam and produce ROS, a process known as 

photodynamic therapy (PDT). Incorporation of these photosensitizers onto the surface of 

light-emitting NPs has been studied extensively, as it allows the use of PDT in tissues too 

deep to reach with an external beam, however, the production of these PDT NPs requires 

a fine degree of control over the distance between the emitting species and the PS. Energy 

transfer performed by emission and absorption is inefficient compared to forester 

resonance energy transfer, which allows the efficient transfer of energy between species 

with corresponding emissions and absorption within a few nanometers of each other.  

1.4. Examples of X-ray Radiotherapy Enhancing Nanoparticles 

A variety of NP types have been assessed for their enhancement of cancer cell 

killing during RT. These types can be separated into two categories, those that enhance 

damage through their physical properties and those that direct energy to specific radical-

producing chemical reactions.  

1.4.1. Nanoparticles used in Physical Enhancement 

The earliest example of NPs used in RT enhancement was the use of gold NPs by 

Hainfeld et al. in 2004, in which 2 nm solid gold NPs were injected into mice.18 The 

combination of NP administration with RT resulted in the eradication of tumors over a 30 

day observation period, while RT alone only delayed tumor growth. The viability of the 

group treated with NPs and RT was 86%, compared to the 50% treated by radiation alone. 

The results were impressive, although some shortcomings demanded improvement of the 
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method. The injected dose into the mice was nearly 25% gold by mass, which leads to 

issues of viscosity that limit its use as an intravenous agent. The 2 nm diameter of the NPs 

was also significant, as the NPs had rapid clearance times, with concentrations of gold 

peaking within 10 minutes of administration and reduced to half after 20-40 minutes, 

depending on tissue type. These NPs, being very small and unmodified, were rapidly 

filtered out of the blood by the kidneys and were not able to circulate long enough to 

accumulate in any intended tissues. The group has continued to research gold NPs for this 

use until recently, and have recently switched to using iodine-loaded NPs, citing reasons 

such as “poor clearance” and “cost”.19  

The use of bismuth in the enhancement of RT has also been recorded, with variable 

compositions and explanations of the dose enhancing effects. Yu et al. synthesized 3 nm 

Bi NPs by reducing Bi3+ salts with oleylamine in the presence of oleic acid, which 

stabilized the surface as well as acting as a solvent.20 The resulting hydrophobic NPs were 

treated with 1,2-diastearoyl-sn-glycero-3-phosphoethanolamine-N-

[methoxy(polyethylene glycol)], or DSPE-PEG, which anchored a long PEG strand into 

the dense alkyl chains on the surface and imparted hydrophilicity onto the NP. In addition 

to DSPE-PEG, LysP-1 peptides were added as a means of additional targeting to specific 

receptors on cells. The success of RT enhancement was supported by tumor volume 

reduction in mice, which showed synergistic effects between Bi NPs and RT. In addition 

to X-ray irradiation, tumor volumes were also shown to be affected by infrared excitation. 

As bismuth tends to absorb a large range of radiation wavelengths, this study showed 
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promise in its application to both deep-seated tumors by X-ray RT enhancement as well as 

superficial tumors via IR enhancement.  

These examples show the potential of heavy metal NPs in the enhancement of RT 

by improving the energy deposition of X-rays into tumors. To avoid working with these 

heavy metals, however, other methods have been developed which use various optical 

matrices to direct the energy to specific radical-producing reactions.  

1.4.2. Chemical Enhancement of Radiotherapy using Nanoparticles 

Either through directing energy to a radical-producing reaction or by exciting 

nearby species, specific chemical pathways can be incorporated into the design of an NP 

to further enhance RT. An NP of the former category is described by Mirjolet et al. who 

used titanite nanotubes to enhance RT and quantified the enhancement in vitro.13 Titanite 

nanotubes were synthesized using titanium dioxide powder as a precursor, which was 

treated in strong basic media within hydrothermal conditions. The resulting nanotubes were 

several hundred nanometers long, but only 10 nm in diameter, with a 4 nm open channel 

in the middle. These nanotubes proved non-toxic in vitro until X-ray radiation was applied, 

at which time DNA double strand breaks increased significantly in frequency. The authors 

credit this increase in DNA damage to the interaction of titanite with water adsorbed on its 

surface, in which excited states on the surface can hydrolyze water resulting in a similar 

product to direct water excitation by X-ray. 

By far the more popular means of directing energy to radical productions, however, 

is through the paradigm of Photodynamic Therapy (PDT). Whereas conventional PDT uses 
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an external beam to excite a photosensitizer, NPs have been developed which use light-

emitting NP as a photon source instead, attaching the PS close to the surface. This permits 

frequency resonance energy transfer between the excited states in the NP and the PS, which 

is  highly efficient. A seminal example of X-ray activated PDT NPs was the use of LaF3:Tb 

NPs with a variety of porphyrin photosensitizers attached, developed by Tang et al.21 His 

group used Tb-doped LaF3 NPs as a photon source and Rose Bengal as a PS, which is well 

suited to producing singlet oxygen. The design of the NP relied on the LaF3:Tb being 

porous, which was achieved via a rapid, disordered aggregation of smaller NPs during the 

synthesis. The pores allowed the PS to be loaded into the volume of the scintillating NP 

itself, which placed the PS and excited Tb in the crystal very close together. As a result of 

this closeness, FRET occurred efficiently and 85% of the energy which excited Tb was 

transferred to Rose Bengal, resulting in a high yield of singlet oxygen.  

Another seminal paper in the field of NP-mediated X-ray activated PDT comes 

from the Chen et al., whose platform included a SrAl2O3:Eu core paired with MC540, a 

dye which strongly absorbs red light and has been used as a PS to excite dissolved O2 and 

form singlet oxygen.22 The PS was housed in a layer of mesoporous silica, which was 

notably not coated with any biocompatible species. Despite this, the NPs were not toxic on 

their own and could be completely excreted by mice within 16 days. With radiation applied, 

however, significant enhancement of radiation damage was observed in vitro through cell 

viability and in vivo through tumor volume measurements. Whereas untreated mice or other 

forms of control mice saw tumor volume increases of 800%, mice cotreated with the NPs 

and X-ray radiation showed no tumor growth.  
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1.5. Scope of this Work 

Given the interest in using NPs to enhance RT, this thesis involves the synthesis of 

two NP types with this capability. The primary focus of the work is the synthesis of these 

NPs and their modification to adapt them to biological environments, with preliminary 

assays performed to assess their usefulness as RT enhancers. 

Chapter 2 describes the synthesis of bismuth nanoparticles. Bismuth is a high-Z, 

high-density material capable of scattering X-rays far more often than biological tissue, 

amplifying the effect of an incident photon during RT. A novel synthesis has been 

developed which negates several of the difficulties of making Bi NPs by providing an 

aerobic procedure which occurs in only a few hours. Details have been provided on the 

optimization of this procedure to produce uniform 55 nm NPs. In addition, details regarding 

the coating of silica onto that surface, and the subsequent attachment of PEG to the silica, 

provide a route to an NP suitable for biological environments.  

Chapter 3 describes the synthesis and characterization of a CaF2-core mesoporous 

silica-shell NP, designed as a physical and chemical enhancer of RT. The tunable emissions 

of CaF2 NPs may enable photocatalyzed reactions near the NP, or even fluorescence 

imaging. In this case, they were designed to physically scatter X-rays and amplify the effect 

of an incident photon during RT, while acting as a radioluminescent material. Detailed 

characterization of the CaF2 NPs at different stages and in different synthesis conditions 

show the development of their structure and X-ray luminescent properties. An optimization 

of mesoporous silica coating has been presented, allowing for a flexible scaffold for small 
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molecule loading or surface species attachment. A procedure for PEG attachment has been 

optimized and applied.  

Chapter 4 includes experiments that assess the usefulness of as-prepared NPs as RT 

enhancers. Fluorescent probes have been used to assess the radical production during 

irradiation. In vitro assays have been performed to assess the biocompatibility of these 

materials, as well as viability once they are excited with X-ray. A preliminary in vivo 

biodistribution assay has been performed in mice, which supports claims that they can be 

degraded over a short period.  
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CHAPTER 2 – A NOVEL SYNTHESIS OF BISMUTH NANOPARTICLES AND 

THEIR MODIFICATION WITH SILICA SHELLS 

2.1.  Introduction 

Bismuth nanoparticles (Bi NPs) have many characteristics that make them 

candidates as physical enhancers of RT. The synthesis of these NPs, however, can be 

difficult to control. In this introduction, the essential theory of how metallic NPs are 

synthesized and how this theory relates to Bi NPs will be discussed.  

2.1.1. Synthesis of Metallic Nanoparticles 

The synthesis of metallic NPs, such as the Bi NPs in this work, can be examined 

through the lens of classical nucleation theory, the most complete framework of colloid 

growth available today23–25. To describe the theory in general, we will use the widespread 

paradigm of metal ions being reduced to their zero-valence states and formed into NPs. A 

metal ion is placed into a controlled redox reaction in which it will be reduced into 

individual metal atoms. These atoms serve as the monomer, the smallest building block of 

the NP. This monomer is unstable in solution, but can become more stable by 

agglomerating with identical monomers. After several dozen monomers aggregate this 

way, they form a nucleus, a semi-stable solid upon which other monomers can adsorb. 

Once the nucleus crosses a certain volume threshold for the system, it becomes a NP that 

will continue to grow until the monomer-producing reaction is complete. However, should 

the nucleus fail to grow fast enough, it may destabilize and release its composite monomers 

back into the system.  
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The key to producing uniform NPs in this type of synthesis is to achieve an event 

called burst nucleation. Figure 2.1 graphically describes the ideal stages of NP nucleation 

and growth throughout a monomer-producing reaction in relation to monomer 

concentration. The monomer concentration must build in the solution until it reaches the 

critical nucleation concentration, the concentration at which solid formation is a 

spontaneous process, driven by the thermodynamic advantage of minimizing the high-

energy surface area of the monomers. Then, a large number of nuclei form simultaneously 

in the nucleation step. They then quickly adsorb most of the monomers in solution, 

reducing the monomer concentration and preventing further nucleation. Monomer formed 

later in the reaction or left over after this step can be adsorbed onto the NPs during the final 

growth phase of the reaction.  

Staying above the critical nucleation concentration for a short period is essential, 

as NPs which nucleate at the same time and grow in the same environment will be uniform 

Figure 2.1) Depiction of the different phases of NP formation and the effects of atom 

monomer concentration. 
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in diameter. Nucleation over an extended period will lead to a variety of growth times, 

leading to a distribution of NP sizes. On the other hand, if a nucleation period is too short 

or does not produce enough nuclei, the concentration of monomer in solution may rise 

above the critical nucleation concentration again and create new nuclei with shorter growth 

times. An understanding of how different reaction parameters affect the production and 

sequestration of monomer can guide decisions in the design of a synthesis to cause a single 

significant nucleation event to occur.  

There are a variety of parameters that can be altered to optimize the nucleation step 

in a NP synthesis. Altering a single parameter will rarely have a single effect, however, we 

can categorize these modifications into those that modify the reaction rate of monomer 

production and those that control the formation of solids. In the case of a metal ion 

reduction reaction, the amount of reducing agent present is the most direct way to alter the 

monomer production rate, along with the concentration of the metal ion. The temperature 

of the reaction is important for many syntheses of this type, as well as the presence of any 

catalysts. These variables alter the length of time that the system will spend above the 

critical nucleation concentration, but that nucleation concentration can be altered by the 

presence of surface stabilizers. By anchoring themselves onto the nuclei surfaces, they can 

negate much of the surface area’s high energy states. The solvent system’s ability to 

stabilize individual atoms also affects the rate at which those atoms are forced together into 

nuclei. Finally, the NP growth period must occur when most of the monomer has been 

already sequestered into nuclei and monomer production is slower than earlier in the 
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reaction. The growth stage can be detrimental if the rate at which monomers are produced 

is too fast and another nucleation event occurs. 

2.1.1.1. Syntheses of Bismuth Nanoparticles 

Syntheses of Bi NPs can be separated into two categories, the polyol method, and 

burst nucleation. In the polyol method, a polar bismuth complex is dissolved in a liquid 

polymer with oxidizable functional groups (e.g., PVP, PEG). When the complex is heated 

to reaction temperatures (140 – 200 ºC), Bi3+ is reduced through the oxidation of the 

polymer. Despite being used to make metallic NPs for over 25 years, the mechanism by 

which the metal is reduced is largely unexplored.26 Nonetheless, the polyol method has 

distinct advantages over organic-phase methods. The greatest advantage is that the as-

prepared Bi NPs are water-dispersible without the need for further ligand exchanges, 

making the product of these syntheses useful for aqueous applications. However, the 

greatest drawback of the polyol synthesis is the limited control over mean Bi NP diameter. 

In the most cited published polyol synthesis, uniform Bi NPs were produced by reacting a 

Bi3+-acetate complex with PVP.27 This reaction generated size and shape uniform Bi NPs 

ranging from 115 to 600 nm depending on reaction parameters. Unfortunately, this 

synthesis was limited to producing uniform Bi NPs with sizes greater than 115 nm and was 

not applicable to the synthesis of smaller Bi NPs.  

The best-described methods in the production of uniform Bi NPs enable the burst 

nucleation of NPs in non-coordinating solvents. A common feature of these syntheses is 

the addition of a powerful reducing agent to produce a “burst” of nucleated NPs which 

quickly deplete the available bismuth in solution. High boiling, non-coordinating solvents, 
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such as alkylbenzenes and higher alkanes, are suitable solvents for burst nucleation 

syntheses while amines and thiols are the most popular complexing and reducing agents. 

These conditions improve the reproducibility of NP nucleation by standardizing nucleation 

temperatures and bismuth complex concentrations at the time of reducing agent addition. 

While there is sufficient literature precedence for the success in controllably synthesizing 

uniform Bi NPs, these syntheses are limited by their use of organic bases and air-free 

techniques which increase the difficulty and exclusivity of their use.28–30  These methods 

have been thought necessary due to the relative ease of the oxidation of Bi3+, and indeed 

bismuth precursors used in burst nucleation synthesis are only stable in air or light for a 

matter of minutes.31 As a result, these precursors must be prepared in glovebox 

environments and ideally stored in refrigerated, light-free, air-free conditions.32  Also, 

bismuth compounds typically have poor solubility in nonpolar solvents, which is addressed 

by complexation of bismuth with reductive thiols, amines, or phosphines with long, 

branched alkyl chains. The use of phosphines requires that the reactions be done in an 

anaerobic atmosphere, and so their use is less practical in terms of reaction scaling in 

comparison to amines or thiols. When organic bases are applied to rapidly reduce a bismuth 

precursor, the issue of precursor storage is circumvented. However, in the synthesis 

reported by Kovalenko et al., the authors are upfront about the extensive safety 

considerations taken in their synthesis.28 The procedure involves the injection of n-BuLi 

into a 160 °C bismuth precursor solution. The reaction requires strict air-free conditions 

and extensive drying steps before this injection to ensure the safety of the base addition.  
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Despite these disadvantages, the advantages of Bi NP synthesis in non-coordinating 

solvents have allowed for several syntheses of highly uniform NPs over a range of sizes. 

The use of non-coordinating media affords greater control over the concentration of 

complexing ligands which can bind to bismuth and exchange it between NPs in the growth 

phase. In a polar coordinating solvent, solvent molecules can behave as carriers which can 

rearrange the bismuth between NPs, leading to Oswald ripening. Oswald ripening occurs 

when monomers exchange between slightly smaller, less stable NPs and slightly larger, 

more stable NPs. The smaller NPs lose bismuth faster than they adsorb it, making them 

smaller, with the opposite happening on the larger NPs. The result of this Oswald ripening 

is the divergence of previously uniform NPs into distinct smaller and larger populations. 

In non-coordinating solvents, these carriers are limited to the ligands which originally 

solubilized and reduced the bismuth.  

The most facile, reproducible uniform Bi NP synthesis to date was published by the 

Buhro group in 2008 and functions as the starting point for the work described in Chapter 

2.29 In this synthesis, bismuth-bis(trimethylsilyl)amide is dissolved in diisopropyl benzene 

(DIPB), along with PVP-graft-hexadecene as a surface stabilizing polymer and excess 

sodium bis(trimethylsilyl)amine, all under a nitrogen atmosphere. Upon heating the system 

to 180 °C, NPs nucleate. After 18 hours of stirring at reaction temperature, the products of 

the reaction are monodisperse spherical Bi NPs of sizes between 3 and 115 nm, depending 

only on the amount of sodium bis(trimethylsilyl)amine present in solution. While this 

synthesis offers excellent size control and monodisperse products, the preparation of 

bismuth-bis(trimethylsilyl)amine is rigorous, requiring strict air-free techniques and n-
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BuLi, followed by careful storage and use to address the precursor’s high air and light 

sensitivity. 

2.1.2. Motivation and Scope for this Work 

Bi NPs are potential physical enhancers of RT due to their high density, atomic 

number, and biodegradability. The synthesis of Bi NPs can be complicated by the air and 

light sensitivity of bismuth species used as precursors, traditionally necessitating air-free 

techniques. In this work, an aerobic synthesis is presented which requires no specialized 

equipment or techniques, enabling the synthesis of this useful product. After developing 

the synthesis of the Bi NPs, a silica shell addition procedure was developed to allow the 

covalent attachment of surface species which could further facilitate the Bi NP’s use as an 

intravenous agent.  

This chapter describes an aerobic synthesis of Bi NPs with average diameters in the range 

40-80 nm using commercially available bismuth triiodide as starting material; the method 

uses only readily available chemicals and conventional laboratory equipment. 

Furthermore, NP diameter data from replicates of the synthesis indicate that this method is 

highly reproducible in achieving Bi NP populations with low standard deviations in the 

mean diameters. The reaction results from the reduction of a soluble alkylammonium 

iodobismuthate precursor species formed immediately before NP formation.  At some 

concentrations of iodobismuthate anion, burst nucleation of Bi NPs results from the 

reduction of Bi3+ by the coordinated iodide ligands when a threshold temperature is 

exceeded. Finally, phase transfer and silica shell addition of the Bi NPs are described, 

which results in stable aqueous colloids with retention of size, morphology, and colloidal 
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stability. The resultant, high atomic number, hydrophilic Bi NPs prepared using this 

synthesis method have the potential for application in X-ray RT enhancement. 

2.2. Experimental 

2.2.1. Materials 

The following chemicals were purchased and used without purification: For Bi NP 

synthesis, parameter variations, and controls: BiI3 (99.999%, Strem), BiBr3 (98%+, Sigma-

Aldrich), BiCl3 (98%+, Acros), KOH (99%, VWR), di-isopropylbenzene (98%, 2:1 

mixture of m and p isomers, Acros), 1-hexadecylamine (90%, Technical Grade, Alfa 

Aesar), poly(1-vinylpyrrolidone)-graft-(1-triacontene) (PVPT) (Sigma-Aldrich), hexane 

(ACS grade, mixture of isomers, Fisher), and ethanol (ACS grade, Fisher). For phase 

exchange: chloroform (ACS grade, Fisher), and poly(1-vinylpyrrolidone) 29k MW 

(Sigma-Aldrich). For silica shell: tetraethoxysilane (98%, Sigma-Aldrich), and ammonium 

hydroxide (30% aq. solution, Fisher). In the water control reaction, phase exchange, and 

silica shell procedure, electrophoretically pure H2O (18 MΩ•cm resistivity) was used. All 

reactions, purifications, and analyses were performed in ambient laboratory air and light 

conditions unless otherwise indicated. 

2.2.2. Bismuth Nanoparticle Synthesis  

Standard safety precaution: All procedural steps were carried out in a chemical fume hood; 

caution must be taken due to the release of I2 gas. 

In a typical synthesis, 300 mg BiI3 (0.51 mmol, 1 equiv) was loaded into a 100 mL 

one-neck round bottom flask and dispersed in 16 mL of di-isopropylbenzene (DIPB), 
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producing a solution with a BiI3 concentration of 0.32 M. This suspension, containing 

colorless solvent and black BiI3 as a dispersed solid powder, was stirred at 650 rpm and 

heated to 180 °C for 15 minutes. At 180 °C, I2 was observed to evolve as a purple gas. A 

solution color change (to pale orange) was also observed, in addition to the formation of a 

brown-orange solid suspended in the mixture. The temperature was subsequently lowered 

to 100 °C, followed by the addition of 3.75 g of hexadecylamine (HDA) (15.5 mmol, 

concentration 95.0 M, 30.4 equiv) and 345 mg poly(1-vinylpyrrolidone)-graft-(1-

triacontene) (PVPT). This suspension was then stirred open to the atmosphere for 30 

minutes, resulting in an opaque orange suspension. The flask was then stoppered and stirred 

at 100 °C for an additional 30 minutes, during which time, no additional changes to the 

atmosphere in the flask were made. The temperature was then raised to 180 °C over a 

period of 2.5 minutes. During heating, the orange solution color gradually intensified, and 

within seconds of reaching 180 °C, became a homogeneous black colloid. The reaction 

was allowed to proceed at 180 °C for 12.5 minutes before it was quenched (total reaction 

duration including heating interval = 15 minutes). To quench the reaction, the flask was 

removed from heat and cooled in a room temperature water bath for one minute. To isolate 

the Bi NPs, a 50 mL mixture of 1:1 hexane: ethanol was added to the reaction flask, 

followed by collecting the contents in a conical tube, sonicating for one minute, and 

centrifuging at 3000 rcf for 15 minutes. The Bi NPs were twice re-dispersed and 

centrifuged out of solution using 80 mL of 1:1 hexane: ethanol. The Bi NPs could then be 

stored, either as a stable colloid in toluene or as a fully re-dispersible (in toluene) dry 



 25 

powder. After drying, the mass of the NPs was approximately 82 mg (82.1 ± 5.5 mg, n=5), 

which represents a 77% yield if the NPs are assumed to be entirely bismuth by mass.   

2.2.3. Organic to Aqueous Phase Transfer 

To achieve phase transfer of the PVPT-coated Bi NPs to water, it was necessary to 

further coat the as-prepared NPs with hydrophilic, unmodified poly(1-vinylpyrrolidone) 

(PVP). To accomplish this, ~100 mg of Bi NPs (a typical yield when using the standard 

reaction conditions) were dispersed in 50 mL of chloroform by sonication, followed by the 

addition of one gram of PVP (29k MW) to the flask. The solution was subsequently stirred 

at reflux for ~10 hours. The Bi NPs were then collected by centrifugation. Excess PVP was 

removed by twice re-dispersing the Bi NPs in 25 mL of ethanol followed by centrifugation. 

The solid obtained by centrifugation was then dried in air at 125 °C for 15 minutes.  

2.2.4. Silica Shell Addition 

As-prepared PVP-coated Bi NPs (~20 mg) were dispersed in a solution containing 

90 mL ethanol and 10 mL deionized H2O by sonicating the mixture for ~30 minutes. 

Subsequently, 2 mL of 30% aqueous ammonium hydroxide (NH4OH) and then 25 µL of 

tetraethoxysilane (TEOS) (0.11 mmol, 0.011 mM) was added while stirring. Stirring was 

continued for 30 minutes at room temperature, and then the flask was moved to a 4 °C 

freezer and cooled for ~15 hours. Silica-coated Bi NPs were collected by centrifugation. 

The silica-coated Bi NPs were isolated by twice re-dispersing them in 25 mL of ethanol 

followed by centrifugation, then dried at 80 °C. 
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2.2.5. Crystallographic, microscopic, and spectroscopic characterizations of Bi NPs 

Bi NP imaging was performed on a Technai F20 TEM operating at 4500 eV and 

equipped with an Oxford Instruments EDX detector. Samples were prepared by drop 

casting Bi NP dispersions in toluene (~4 mg/mL) onto type-B carbon-coated copper TEM 

grids (Ted Pella product #1844-F). Samples were allowed to air-dry for at least 10 minutes 

at room temperature followed by at least 5 minutes at 125 °C.  Images were processed 

using the FIJI software package. All mean diameter and standard deviation data were 

derived from at least 200 NP diameter measurements per synthesis. For any TEM image 

used, all NPs in the image were included to eliminate selective measuring.  

X-ray diffraction samples (XRD) were prepared by drying Bi NPs or other solid 

precipitates in a drying oven at 125 °C, then grinding them into a fine powder using a 

mortar and pestle. These powders were then placed in a zero-background (Si (100)) micro-

holder slide. Characterization was performed using a Rigaku Ultima IV X-ray diffraction 

system in focused beam (Bragg-Brentano) geometry with graphite monochromatized Cu 

Kɑ radiation.  

FT-IR spectra were obtained using a Thermo Scientific Nicolet iS10 spectrometer 

fitted with an attenuated total reflectance attachment having a diamond window. Solid 

samples were first heated at 125 °C to volatilize solvents, then placed directly on the 

diamond window and compressed.   

2.3. Synthesis of Bismuth Nanoparticles from an Iodobismuthate Precursor and 

Investigation of Reaction Mechanism 
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2.3.1. Products of the Standard Bi NP Synthesis 

 

This synthesis with “standard” reagent amounts presented in section 2.2.2 produces 

highly monodisperse Bi NPs which are, on average, 65 nm in diameter (Figure 2.2A). 

Some batches feature smaller, 10 nm NPs along with the predominant larger populations 

(Figure 2.2B). These smaller populations make up small fractions of the product mass and 

have negligible effects on the properties of the resulting batch. Interestingly, these smaller 

species appear to take on slightly flattened hexagonal shapes which indicate a very slow 

growth rate, implying that they were formed later in the reaction when most of the bismuth 

had already been reduced. An examination of 5 consequent batches produced by identical 

procedures showed a deviation of 16.3% from the pooled average size of 58.1 ± 9.5 nm, 

however, there were no significant outliers present in any batch that would disqualify the 

products from being useful as intravenous agents. 

Figure 2.2) TEM images of bismuth nanoparticles produced from standardized reagent 

amounts. Images A and B were taken at different sites within the same TEM sample. 
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Sample    

Number 

Mean      

Diameter 

(nm) 

Standard 

Deviation 

(nm) 

% Std. Dev. 

1 37.0 5.9 15.9 

2 60.3 9.8 16.3 

3 49.7 4.1 8.2 

4 75.9 10.0 13.2 

5 67.4 8.7 12.9 

Pooled (1-5) 58.1 9.5 16.3 

 

2.3.2. Instrumental Analysis of Bismuth Nanoparticles 

XRD analysis of the as-prepared NPs showed the expected pattern for metallic 

bismuth. Peaks were observed at 2θ positions which can be indexed to the expected planes 

of metallic bismuth (Figure 2.3). The line broadening observed in the XRD pattern can be 

used in conjunction with the Scherrer equation (Equation 1) 

τ =
Kλ

βcosθ
  

Table 2.1) NP diameter data collected from 5 subsequent batches of as-prepared Bi NPs, 

collected by analysis of TEM images 

Equation 1) The Scherrer equation, used in X-ray crystallography to determine crystallite 

size. 
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to measure the average crystallite size of the NPs (t is mean crystallite size, K is the shape 

factor which is assumed as a sphere, λ is the X-ray wavelength, and θ is the X-ray angle). 

The average crystallite size calculated from the Scherrer equation using the pattern of 

sample 5 from Table 2.1 was 68.2 nm, which corresponded to measurements taken from 

TEM images which were analyzed by measuring individual NPs, resulting in a mean size 

of 67.4 ± 8.7 nm. This is important because it indicates that the NPs are single crystals. 

Whereas similar preparations of metallic NPs can involve the aggregation of smaller 

crystalline domains to make larger particles, that can be ruled out in this case.23 

Alternatively, these single crystals can be explained as a crystal grown from a single unit 

cell, although this is unlikely as the NPs are not shaped like the orthorhombic cell of 

metallic bismuth. Instead, the Bi NPs are most often spherical, probably because the rate 

at which bismuth is added to their surfaces is too fast to be affected by the energetic 

differences between adding to specific facets. Oriented growth was observed, however, in 

two instances: Oswald ripened particles after 20 hours and small NPs amongst populations 

with larger diameters. In these instances, the addition rate of bismuth to the NP surfaces 

may have been slower than during the main growth phase of their syntheses, allowing facet 

adsorption differences to take greater effect.  
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2.3.3. Reaction Mechanism Controls  

 

Several factors motivated the use of an iodobismuthate precursor. It is relatively 

facile to form due to the principles of hard-soft acid-base theory, in which both Bi3+ and 

iodide are highly polarizable ions that can bind strongly to each other. The Bi3+ cation is 

then near six iodide anions with high oxidation potentials. It was hypothesized at the outset 

of this study that the iodide could act as a reducing agent for the Bi3+ (Scheme 2.1). The 

iodobismuthate which results carries a negative charge, which can be stabilized by a variety 

of compounds that are typically present in NP syntheses that bind to charged surfaces and 

expose long hydrophobic moieties to the organic solvent. In this case, it is most likely an 

Figure 2.3) Powder XRD patterns of as-prepared Bi NPs and bulk metallic bismuth 

Scheme 2.1) Reaction used to produce metallic bismuth 
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alkylammonium iodobismuthate produced by the protonation of HDA. This proposed 

mechanism was supported by replacing bismuth iodide with either bismuth chloride or 

bismuth bromide in equimolar amounts, which led to no bismuth reduction in the case of 

the chloride and a lower yield of metallic bismuth in the case of the bromide. This observed 

trend aligned with the strengths of these halides as reducing agents, in which iodide has the 

highest oxidation potential of these three.33 The NPs produced from the bromide reaction 

took on a mix of spherical and cubic morphologies (Figure 2.4); controlling this anisotropy 

was not further investigated. Anisotropic growth can occur due to the influence of surface 

stabilizers or slow growth rates. As the surface stabilizer concentration was unchanged 

from the standard synthesis conditions, it is more likely that this anisotropy resulted from 

the slower production of Bi0 when bismuth bromide was used as a precursor.  

 

Figure 2.4) Bi NPs produced using BiBr3 as a bismuth source. 
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In the first heating step of the reaction, before the HDA is added to stabilize 

iodobismuthate, an orange solid is formed as the bismuth iodide is heated to 180 °C. This 

solid was isolated and examined with XRD (Figure 2.5), and the pattern matches that of 

bismuth oxyiodide (JCPDS card number 10-0445). While it is undetermined if this impacts 

the monodispersity of the resultant NPs, it is most likely that the removal of some I2 from 

the reaction modifies the rate of the bismuth reduction reaction to make a single nucleation 

event more likely.  

 

2.3.4. Survey of Parameters for NP Nucleation and Growth 

After the 65 nm NP synthesis was established, modifications to that procedure were 

performed with two goals: to establish the mechanistic roles of the reagents in the synthesis 

and attain different sizes of NPs from a similar procedure. The latter motivation would 

provide options for NP diameters in later efforts to optimize the biodistribution of the NPs 

in the bloodstream. Parameters altered in this study were the amounts of HDA, bismuth 

iodide, polyvinylpyrrolidone-graft-triacontene (PVPT), as well as reaction time. This 

Figure 2.5) XRD pattern of bismuth oxyiodide produced during the first heating step of the 

Bi NP synthesis 
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survey of parameters yielded a variety of correlations when analyzed via classical 

nucleation theory, as described in this chapter’s introduction.  

 

It was hypothesized that increasing the amounts of the two main components of the 

iodobismuthate, bismuth iodide and HDA, would produce broadened NP diameter 

distributions. A higher concentration of iodobismuthate at the time of reaction should 

increase the rate of Bi0 production and cause an extended nucleation period, leading to 

many different growth times and a spectrum of NP diameters. In contrast, reducing the 

amount of these two reactants was hypothesized to result in multiple distinct diameters of 

NPs (i.e. a mix of 20 nm NPs and 50 nm NPs), as a slower rate of bismuth reduction would 

lead to fewer nuclei being formed, leaving them unable to completely adsorb the bismuth 

in solution, resulting in multiple minor nucleation periods. To assess these hypotheses, the 

amount of HDA and BiI3 added to the reaction were altered, with “100%” of these amounts 

fixed at the concentrations presented as the standards in section 2.2.2.  

Figure 2.6) Size histograms and TEM images illustrating the effect of changing HDA and 

BiI3 concentrations on resultant NP diameter distributions 



 34 

Increasing the BiI3 by 25% resulted in a range of diameters between 40 and 120 nm 

while doubling the amount of HDA provided a range between 30 and 70 nm (Figure 2.6).  

These broad NP diameter distributions can be interpreted to mean that the nucleation 

periods in these reactions were extended. Reducing the amount of HDA to 75% of the 

standard value resulted in two distinct size populations at 50-80 nm and 130 nm, which 

could have been the result of two well-defined nucleation events. Interestingly, the reduced 

amount of bismuth iodide led to single populations of smaller NPs with ~30 nm diameters 

in some trials, however, in repeated trials this result could not be consistently reproduced. 

One interpretation of this result is that a similar number of nuclei formed as in the standard 

synthesis, but grew for shorter periods due to the lesser availability of bismuth.  
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According to classical nucleation theory, a higher amount of surface stabilizer 

should better stabilize nuclei as they appear in the nucleation stage, resulting in a greater 

number of smaller NPs after the growth stage is complete.  As such, it was hypothesized 

that increasing the amount of PVPT in the reaction would result in smaller NPs and 

decreasing the amount of PVPT would result in larger NPs. While the minimum tested 

PVPT concentration (50% of standard) was found to produce larger NPs, these larger sizes 

were dispersed between 60-90 nm, with a mean diameter and standard deviation of 84±20 

nm. The lesser amount of PVPT appeared to have affected the synthesis as hypothesized, 

producing a larger mean diameter, but at the cost of the uniformity of the population. The 

maximum amount of PVPT tested was 200% of the normal value, which produced a 

Figure 2.7) TEM images and NP diameter histograms from the analysis of Bi NPs with 

(Top) 50% or (Bottom) 200% of the standard concentration of PVPT.  
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population with 55±4 nm diameters, which was uniformly sized and within the range of 

sizes expected of the standard synthesis (Figure 2.7). The greater amount of PVPT did not 

significantly shrink the diameter of the population, and further increasing the PVPT 

amounts prevented the isolation of the NPs well enough for TEM analysis. While the 

hypothesized result was not observed, the insensitivity of the synthesis to higher PVPT 

concentrations appeared positive for the synthesis’ robustness.  

 

 

Figure 2.8) TEM and size distribution histograms of the standard Bi NP synthesis stopped 

at different time points. 
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Stopping the reaction at different time points provided insight into the growth 

patterns of these particles. The bismuth collected in the Bi NPs after the standard 15 minute 

reaction time consistently provided yields above 90%, suggesting that the bismuth 

reduction was complete after this point. It was hypothesized that shorter timeframes would 

result in uniform, but smaller NPs as the nucleation step would be identical but the growth 

time would be reduced. Longer reaction times were hypothesized to induce Oswald 

ripening, producing populations with NP diameters which diverged after a period of 

uniformity. Nucleation was observed and marked as the moment the solution could be 

deemed optically “black”, which consistently occurred less than 2 minutes after the 

hotplate reached 180 °C. Whereas the reaction was normally quenched 15 minutes after 

this point, timepoints were also taken 3 minutes, 6 hours, and 18 hours afterward (Figure 

2.8). Results from the 3-minute timepoint showed uniform small particles with 25 ± 3.3 

nm diameters as well as a greater amount of leftover organic material than results from the 

standard synthesis. Due to the size of the NPs, their similarities in solubility and 

dispersibility to leftover organic species, and the low yield associated with stopping the 

reaction before full bismuth reduction, this shorter reaction period was not used as a source 

of smaller Bi NPs. The NPs recovered at each subsequent time point had larger diameters, 

with NP growth complete at a time point between 10 minutes and 6 hours. In the period 

between 6 hours and 18 hours, Oswald ripening began to take place at an accelerated rate. 

Interestingly, the larger NPs that form from this process appear to take on flattened, 

hexagonal shapes. The NPs are crystals with orthorhombic unit cells, and given a very slow 

addition of bismuth to the surfaces of these crystals, growth along some planes will be 
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faster than others, leading to the observed shapes. One practical conclusion that came from 

these experiments was that Oswald ripening required a much longer heating time than the 

standard reaction period, and is not a likely source of deviation in sizes in the previous 

experiments. This result supported the design of the synthesis in a non-coordinating solvent 

system, as Oswald ripening occurs much quicker in coordinating solvents.  

2.4. Silica Shell Addition  

2.4.1. Bi NP Nonpolar-to-Polar Phase Transfer 

After a procedure for reproducible monodisperse Bi NPs was developed, a silica 

shell was added such that silanes and biologically active molecules could be attached. 

Many reactions are available for generating silica nanoscale structures; however, these are 

typically performed in polar media and the presence of water. The as-synthesized Bi NPs 

were coated in hydrophobic triacontene moieties, preventing their dispersal in polar 

solvents. A procedure was needed to render the Bi NPs hydrophilic while maintaining the 

NPs’ uniform morphologies.  
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The first attempts at this phase transfer involved biphasic systems in which 

hydrophobic Bi NPs were dispersed in a layer of hexane above an aqueous layer saturated 

with ligands which would, hypothetically, bind to their surfaces. Whether attempted with 

thiols or polydentate binding ligands like citrate, and regardless of sonication, stirring, or 

other methods of layer mixing, the bismuth oxidized upon contact with the aqueous layer. 

This can be inferred from TEM images of Bi NPs treated with aqueous citrate, which shows 

that their smooth, spherical morphologies have been damaged and left with rough surfaces  

(Figure 2.9). In response to this, future attempts were performed in non-oxidizing aliphatic 

solvents which could disperse the NPs individually as well as to solubilize the incoming 

polar ligands. Phase exchange was finally achieved by dispersing the PVPT-coated Bi NPs 

in chloroform with a large excess of polar, unmodified, long-chain PVP. After heating for 

several hours, the resulting NPs had excellent hydrophilicity and were not oxidatively 

degraded when analyzed by TEM. However, it could not be supported that the PVPT had 

Figure 2.9) Bi NP degraded by a phase transfer process performed in a biphasic 

hexane/water mixture. 
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been removed and replaced. Marked differences in the IR spectrum of Bi NPs before and 

after this treatment indicate that change has occurred, but the similarities between the 

PVPT and PVP make it impractical to determine a ratio of the two polymers on the surface 

of the NPs.  IR spectroscopy of the as-prepared NPs shows peaks at 2916 cm-1, indicative 

of the C-H bonds seen on the triacontane moiety of the PVPT. sp2 C-O bonding is observed 

as well at 1653 cm-1, provided by the PVP backbone of the PVPT (Figure 2.10). 

 

2.4.2. Silica Shell Addition Experiments 

With the Bi NPs rendered hydrophilic, the silica could then be layered onto the 

surface of the NP. This procedure follows a common structure in which tetraethoxysilane 

(TEOS) was hydrolyzed in basic conditions, substituting ethoxy groups for hydroxyl 

anions.  This forms orthosilicic acid, which can then polycondense in a dehydration 

reaction to form silica. The silanol groups on the surface of the silica granules are partially 

deprotonated at basic pH, giving the surface a negative surface charge,  and they adsorb 

Figure 2.10) Infrared transmission spectra of A) Bi NPs after synthesis and B) Bi NPs after 

phase exchange treatment with PVP 
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onto the positively charged Bi NP surface (Scheme 2.2). 
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This synthesis structure had to be modified, however, due to issues which arose 

when the products were produced when stirring at room temperature overnight. These 

particles tended to aggregate together into large clusters, as well as take on ragged, sharp 

shells (Figure 2.11). These ragged shells were attributed to the rapid production of 

orthosilicic acid at room temperature. In these cases, large grains of silica were able to 

Scheme 2.2: Generalized Formation of Silica from Tetraethoxysilane 

Figure 2.11) Silica shells on Bi NPs before optimization. 
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condense and attach to the Bi NPs, leading to the rough surface texture. To slow down this 

reaction and form finer silica material, the reaction was briefly stirred with the TEOS at 

room temperature and proceeding with the reaction for 12 hours at 4 °C with no stirring. 

This solved both issues of ragged surfaces and clusters of particles, leading to NPs with 

smooth, individual shells (Figure 2.12A). The composition of the shell was supported by 

EDX and IR spectroscopic analysis, the former of which shows that the shell layer is 

comprised of silicon and oxygen, and the former spectrum containing a predominant peak 

at 1045 cm-1 which can be correlated to Si-O bond stretching (Figure 2.12B, C).  

 

 

 

Figure 2.12) (A) Silica shell on Bi NPs after optimization. (B) EDX mapping performed on 

Bi NPs with silica shells. (C) Infrared transmission spectrum of Bi/Silica NPs.  
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The thickness of the silica shell was optimized by adding variable amounts of TEOS 

to the reaction. An ideal silica shell would be as thin as possible to minimize the additional 

NP diameter necessary for this reactive scaffold. A minimal concentration of 25 μL TEOS 

per 200 mL reaction volume was found to completely coat the NPs in thin 10 nm silica 

shells. Lesser amounts led to the presence of uncoated NPs. A modicum of control over 

the silica shell thickness could be attained in the TEOS amount range from 25 to 100 μL, 

with 100 μL of TEOS producing a 25-30 nm thick silica shell. However, when the amount 

of TEOS was increased to 500 and 1000 μL, empty silica objects began to appear, with 

most of the mass in the 1000 μL trial being silica only (Figure 2.13). These empty silica 

objects are formed when the silicic acid concentration in solution reaches its critical 

nucleation concentration, and the clustering of this monomer leads to the formation of silica 

nuclei. In reactions without empty silica, the silicic acid and silica concentrations stayed 

low enough to avoid the creation of nuclei, while adding monomers onto the already-

existing solids.  



 44 

 

 

As this silica layer was only intended to serve as a scaffold, efforts were made to 

produce thinner shells. These efforts were not successful. Further reducing the 

concentration of TEOS in solution produced uneven, patchy shells and stopping the 

reaction at various time points was not successful due to residual silicic acid in solution. 

Upon stopping the reaction, ethanol is removed via rotary evaporation and then the 

remaining aqueous solution is centrifuged. During these processes, small silica objects are 

produced which cannot be easily removed due to their similar properties to the coated Bi 

NPs. 

2.5. Conclusions  

Figure 2.13) Bi NPs coated in Silica as a result of varying concentrations of 

tetraethoxysilane in solution.  
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In this chapter, the synthesis of Bi NPs and their modification with silica shells were 

described. The synthesis of uniform Bi NPs has been performed in literature, however, 

these syntheses rely on reagents and techniques that are hazardous and sensitive to air and 

light. This synthesis is an aerobic one-pot synthesis that forms an iodobismuthate precursor 

immediately before reducing the bismuth to nucleate NPs. The mechanism of this reduction 

has been explored by substituting the iodide for bromine or chloride, resulting in little or 

no Bi0 formation due to their lesser reducing abilities. Parameters that affect the growth of 

the NPs have also been investigated, including the amount of surface stabilizer, stabilizing 

alkylamine species, and reaction time. While many of these factors affected the system in 

ways predicted by classical nucleation theory, the complexity of the system sometimes did 

not produce such results. Lastly, after the NPs were synthesized, they were coated in a 10 

nm-thick layer of silica which served as a reactive attachment site for silane species and 

rendered the NPs hydrophilic. Several experiments involving reaction time, temperature, 

and the amount of silane precursor were performed to achieve a reproducible shell addition. 

This modification left the NPs fit for further assessment as RT enhancers, which was 

further probed in experiments discussed in Chapter 4.  
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CHAPTER 3 - SYNTHESIS AND CHEMICAL CHARACTERIZATION OF 

MESOPOROUS SILICA-COATED CALCIUM FLUORIDE NANOPARTICLES 

3.1. Introduction 

3.1.1. Synthesis of Ionic Crystal Nanoparticles 

NP syntheses most often strive to attain uniform NP products of a certain target size 

and crystallinity. When the product is an ionic nanocrystal that is insoluble in water, there 

are complications that must be surmounted to attain these goals. These ions that are 

strongly attracted to one another tend to react quickly when combined, resulting in 

uncontrolled precipitation. In terms of classical nucleation and growth theory, rapid 

monomer production and NP nucleation make it difficult to control nanocrystal size. 

Without in situ control over the reaction speed, it becomes important to control the speed 

at which the nanocrystal component ions are introduced into the system. This can be done 

simply with a dropwise addition or using a precursor technique where the nanocrystal’s 

component ions are produced from other soluble reactants (such as organometallic 

precursors).  

Rapid precipitation is also expected to result in relatively more nanocrystal defects 

relative to slow precipitation under thermodynamic control.  Under kinetic control, once 

the ions are in solution, they will rapidly associate with each other, too rapidly to allow a 

highly ordered lattice to form. In many applications of nanocrystals, it becomes important 

to improve the quality of the lattice, which can improve desirable properties such as 

density, spectral absorptivity, or photoluminescence intensity. To do this, one can heat 
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anneal the primary nanocrystals after they are formed, which generally results in decreased 

defect sites due to greater mobility of the lattice ions at higher temperatures.   In the process 

of doing this, however, smaller crystallites can be fused together to form larger species in 

a process that is very difficult to control, so that large size variations in the diameters of 

annealed NPs may result. If bringing the nanocrystals up to high temperatures undesirably 

sinters them (e.g., into a polycrystalline solid), or if drying them would result in worse 

aggregation, then a hydrothermal cell may become a better option. These Teflon-lined 

heavy steel vessels can be used to crystallize ionic nanomaterials in aqueous solution at 

moderate temperatures (~200 ºC) by a process known as hydrothermal annealing, which is 

assisted by the high pressure that builds within the closed system. To avoid aggregation 

during hydrothermal annealing, components such as organic surface stabilizers 

(surfactants) can be used at these temperatures and pressures, which provides a means of 

controlling nanocrystal growth while improving crystallinity (since organic surfactants are 

known to be somewhat kinetically labile in terminating the surface of ionic nanocrystals).  

The incorporation of dopants into ionic crystals without change of structure type is 

most easily accomplished by choosing dopant ions of the same oxidation state and similar 

ionic radius to the ion on the lattice site that one would like to dope.  The incorporation of 

a dopant ion with a different oxidation state can be compensated for by inclusion of 

additional dopants into the crystal to balance charge (e.g., an interstitial proton to balance 

an excess negative charge), or by means of lattice vacancies.  These are viewed as defect 

sites within otherwise periodic nanocrystals, and dopants and defects can have significant 

impacts on the nanocrystal physical, chemical, and photochemical properties. In more 
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complex cases, it is more likely that the crystal will change to an entirely different phase 

to accommodate the dopant. 

3.1.1.1. Synthesis of Calcium Fluoride Nanoparticles 

Calcium fluoride is a popular optical matrix in the study of luminescent materials. 

CaF2 crystallizes into a face-centered cubic structure. The high symmetry of the cation sites 

as well as the similarity in ionic radius between Ca2+ and various fluorescent lanthanide 

ions make the inclusion of such dopants straightforward and permits the symmetries of 

their excited states. The large bandgap of CaF2, 12 eV, along with a low phonon energy 

limits the loss of energy to non-radiative decay and limits radiative decay besides the 

excitation of dopants. Due to these properties, a variety of syntheses have been developed 

to make doped CaF2 NPs for photonics-based applications, including those in the 

biomedical field. Syntheses of CaF2 NPs are most often performed using coprecipitation 

procedures in either water or short-chain alcohols.34–37 The high affinity of Ca2+ for F- 

makes coprecipitation an accessible, but difficult to control process, as the reaction occurs 

very quickly. Hydrothermal annealing is often employed after coprecipitation to improve 

the crystallinity of the rapidly formed precipitate. 

As an RT-enhancing material, the use of CaF2 is rare. To date, only one other study 

has been published on the design of a CaF2 NP for X-ray activated therapy. In that work, 

Zahedifar et al. studied the use of RL-active CaF2:Tm NPs to excite Protoporphyrin IX (a 

porphine-based photosensitizer) during X-ray irradiation.38 The results of this study 

showed good overlap between the RL emission of the NPs with the absorption band of the 

photosensitizer, and indirect measurements of singlet oxygen generation suggest that the 
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platform could be useful in ROS generation enhancement.38 Moving forward, this NP 

system could prove promising for RT as it is designed to absorb and localize energy from 

X-rays which may also increase the localized production of ROS. The work in this thesis 

involving CaF2:Ln NPs goes beyond this work by adding a mesoporous silica shell to the 

NP, allowing for covalent bonding to the surface not possible in the cited study, as well as 

ROS production and in vitro assays which investigate the types and quantity of ROS 

produced during irradiation.  

 

3.1.2. Scope of this Chapter 

In this work, CaF2:Ln NPs have been synthesized, surface coated appropriately for 

biomedical usage, and studied as RT-enhancing NPs under laboratory-simulated 

radiotherapeutic conditions. This method capitalizes on the ease of synthesis of 

coprecipitation methods and the larger single-crystal NP diameter accessed through 

hydrothermal annealing. The resulting single-crystal NPs are radioluminescent (RL), 

enhanced by their increased crystal size which lessens the escape of excited states to surface 

Figure 3.1) Graphic abstract of the synthetic steps described in this chapter 
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defects. With this functioning RL agent enabling multimodal imaging, the NPs’ surface 

required modification to enable their use in biological conditions. The surface of ionic 

crystal NPs such as this tends to be difficult to covalently attach surface species to, 

however, this limitation was surmounted using a layer of mesoporous silica (MS) modified 

with PEG for the sake of biocompatibility. Various conditions for applying MS and PEG 

to the surface were tested, and conditions were found that produced thin, reproducible MS 

layers and dense layers of PEG. With these syntheses established, this dense inorganic NP 

with RL capabilities was prepared for RT enhancement experiments.  

3.2. Materials and Methods 

Materials: The following chemicals were purchased and used without purification: For 

CaF2 synthesis: CaCl2 (99%, anhydrous, Acros), TbCl3•6H2O (99%, Acros), EuCl3•6H2O 

(99%, Sigma Aldrich), Sodium citrate dihydrate (99%, J.T. Baker), Ammonium fluoride 

(98%, Sigma-Aldrich), ethanol (95%, Fisher). For Mesoporous silica coating: 

Cetyltrimethyl ammonium bromide (99%, Research Organics), ethanol (200 proof, Decon 

Labs), tetraethoxysilane (98%, Sigma-Aldrich), triethylamine (99%, Acros), 2-

[methoxy(polyethyleneoxy)9-12propyl]trimethoxysilane (tech grade, 70+%, Gelest). For 

ROS quantification assays: aminophenyl fluorescein (APF, 99%, Thermo-fisher), Singlet 

Oxygen Sensor Green (SOSG, 99%, Thermo-fisher).  (All reagents in all experiments used 

as received) 
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3.2.1. CaF2 and Ln-doped CaF2 nanoparticle syntheses 

In a typical synthesis, a 50 mL round bottom flask was loaded with calcium 

chloride, or calcium and lanthanide chlorides (Tb3+ or Eu3+).  The reagent masses used are 

detailed in Table 3.1 and were chosen to target nanomaterials with ~20 atomic percent Ln 

dopant in place of Ca ions.  

Synthesis Target 

(Dopants in Atomic %) 

Calcium Chloride 

Mass (mg) 

Doping Metal Chloride Mass 

(mg) 

Undoped CaF2 NPs 388 None 

CaF2:Tb 18% NPs 350 93 TbCl3·6H2O 

CaF2:Eu 18% NPs 350 90 EuCl3·6H2O 

 

The resulting concentrations in solution were then 126.14 mM CaCl2 and 9.96 mM 

LnCl3·6H2O. For undoped CaF2 NPs, the CaCl2 concentration was 139.84 mM (3.5 mmol, 

1 equiv). Along with the metal chlorides, 5.17 g (0.7 M, 5.0 equiv) of sodium citrate 

dihydrate was added, followed by 22 mL of distilled water. This solution was stirred for 

10 minutes to allow the solids to dissolve completely. Meanwhile, 322 mg (8.7 mmol, 1.74 

M, 2.49 equiv) of ammonium fluoride was dissolved in 5 mL of distilled water in a 15 mL 

centrifuge tube. This solution was loaded into a burette. Then, while still under continuous 

stirring, ammonium fluoride solution was added dropwise into the round bottom flask 

containing the metal chloride solution, at a rate of approximately one drop per second. 

Table 3.1) Metal chloride masses added to flasks to attain certain doping amounts 
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After all the fluoride solution was added, the slightly turbid solution in the round bottom 

flask was divided evenly into three 20 mL Teflon autoclave liners, which were placed in 

stainless steel autoclaves (Parr) and rapidly heated to a temperature of 180 °C for 6 hours. 

Following heating, the autoclaves were subsequently cooled to room temperature, and the 

product solutions in the three autoclaves were collected together into a 50 mL centrifuge 

tube. Then, 10 mL of ethanol (95%) was added, and the product suspensions were 

centrifuged to isolate the NPs. The NPs were again redispersed, in a solution of 5 mL of 

water and 35 mL of ethanol, followed by centrifugation. This process was repeated until 

the dark carbonized species left over from the reaction were no longer present. Finally, the 

CaF2 (or CaF2:Ln) NPs were dried overnight at 50 °C, then crushed to a fine powder using 

a mortar and pestle and stored for further use. 

3.2.2. Mesoporous Silica Coating  

Into a 250 mL round bottom flask were added 54 mg of dried, powdered CaF2 NPs 

and 100 mL of distilled water, followed by sonication for 30 minutes. Then, 10 mL of 

ethanol (200 proof), 84 µL of triethylamine (6.02 µmol, 5.48 µM), and 1.8 g (4.94 mmol, 

44.9 mM of cetyltrimethyl ammonium bromide (CTAB) were added to the flask. The 

reaction mixture was next heated to 80 °C and stirred at 1400 rpm with a 3 cm almond-

shaped stir bar, which resulted in the formation of CTAB micelles. Next, 300 µL of 

tetraethoxysilane (TEOS) was added to the flask dropwise over 20 seconds. The flask was 

subsequently heated and stirred for an additional 30 minutes to accomplish the hydrolysis 

and polycondensation of the TEOS around the CTAB, followed by cooling in a stirring 

water bath for 60 seconds. The reaction products were then collected in centrifuge tubes, 



 53 

followed by centrifugation to isolate the silica-coated CaF2 NP products. The silica-coated 

CaF2 NPs were next resuspended in 20 mL of ethanol (200 proof), followed by 10 minutes 

of sonication. This colloidal suspension was subsequently transferred to a 100 mL round 

bottom flask, and then 2 mL of concentrated hydrochloric acid was added to remove the 

CTAB within the silica network and render the silica coating mesoporous  (MS = 

mesoporous SiO2). The resulting colloidal solution containing the MS-CaF2 NPs was 

stirred and heated to 80 °C for 30 minutes. Then it was cooled in a stirring water bath, and 

solids were collected by centrifugation. The isolated MS-CaF2 NPs were purified two 

cycles of redispersion in a 1 mL water and 20 mL ethanol solution, followed by 

centrifugation. Finally, the MS-CaF2 NPs were dried at 50 °C, milled to a powder in a 

mortar and pestle, and stored for further use. 

3.2.3. Surface modification by covalent attachment of polyethylene glycol 

15 mg of MS-CaF2 NPs were suspended in 20 mL of distilled water in a 100 mL 

round bottom flask, followed by sonication. While stirring at room temperature, 40 µL of 

ammonium hydroxide (30% w/w in water) was added, followed by 100 µL of 2-

[methoxy(polyethyleneoxy)9-12propyl]trimethoxysilane (PEG-silane). After PEG-silane 

addition, the reaction mixture was left stirring at room temperature for two hours. At the 

end of this time, the reaction products were poured into a centrifuge tube, and 10 mL of 

ethanol was added to flocculate the pegylated MS-CaF2 NPs (PEG-MS-CaF2 NPs). The 

PEG-MS-CaF2 NPs were collected by centrifugation, followed by resuspension in 10 mL 

of 1:1 water: ethanol and centrifuging, and additional purification by 2 more cycles of 

redispersion and centrifuging with 10 mL of ethanol. Finally, the PEG-MS-CaF2 NP 
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products were dried overnight at 50 °C, then crushed to a fine powder using a mortar and 

pestle, and stored for further use. 

3.2.4. Instrumental Analysis  

The NP products through the stages of synthesis were characterized using a 

combination of transmission electron microscopy (TEM), energy dispersive X-ray 

spectroscopy (EDX), X-ray diffraction (XRD), radioluminescent spectroscopy, and x-ray 

photoelectric spectroscopy (XPS). 

Transmission Electron Microscopy was performed on a Tecnai F20 TEM operating 

at 4200 eV. Samples were prepared by dispersing NPs in ethanol (ACS) at concentrations 

of approximately 1 mg/mL and drop-casting a single drop onto type-B carbon-coated 

copper TEM grids (Ted Pella Product #1844-F). These samples were dried at room 

temperature for 10 minutes before drying in a 50 °C oven for at least one hour before 

imaging. The mean diameters of the NP samples were determined by analyzing several 

TEM images, corresponding to different (representative) areas of each sample grid. ImageJ 

software was used to measure the NPs and produce size distributions; each reported size 

value is based on the minimum requirement to measure at least 200 NPs. To prevent 

measurement bias, the minimum criteria for an individual image used in mean diameter 

determination were that it must include at least 50 NPs and that all NPs in the image had 

to be measured. EDX measurements were taken using the same instrument in scanning-

TEM mode and collected using an Oxford Instruments EDX detector.  
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X-ray diffraction patterns were collected using a Rigaku Ultima IV X-ray 

diffraction system using graphite monochromatized Cu Kɑ radiation. Samples were 

prepared by grinding dry powders in a mortar and pestle and placing them in a glass sample 

holder. Patterns were collected at a rate of 1 degree per minute from 20 to 60° 2θ. The 

resulting data was analyzed using Rigaku PDXL2 software.  FT-IR spectra were obtained 

using a Thermo Scientific Nicolet iS10 spectrometer fitted with an attenuated total 

reflectance attachment having a diamond window. Solid samples were first dried of 

solvents by heating at 125 °C, then placed directly on the diamond window and 

compressed.   

For the Ln-doped, CaF2 NPs, photoluminescence (PL) spectroscopy was performed 

using a Shimadzu RF-5301PC fluorimeter. The Ln-doped, CaF2 NPs colloidal solutions 

used in these measurements were prepared by sonicating the corresponding dry powders 

in water at a concentration of 1 mg/mL. X-ray excited luminescence spectra were also 

acquired, using 30 mg of dry Ln-doped CaF2 NP powder for each measurement, and a 

CellRad Faxitron X-ray system operating at 130 kV and 5 mA as the excitation source; no 

beam filter was applied. The X-ray excited luminescence was recorded using a StellarNet 

Silver Nova 200 spectrometer attached to a collimating lens via armored fiber-optic cable 

(Thorlabs). These measurements were collected with an integration time of 30 seconds.  

X-ray Photoelectron Spectroscopy (XPS) was performed on a Versaprobe II 

XPS/AES featuring an aluminum X-ray source. Samples were prepared for XPS 

measurements by drop-casting NP suspensions in methanol onto individual aluminum foil 

substrates heated at 50 °C, followed by drying the samples under vacuum at room 
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temperature for 12 hours before placement in the XPS transfer arm. Once in the vacuum 

chamber, the samples were bombarded with X-rays from the source, in circular spots with 

diameters of 100 um. The electron beam used in these experiments was operating at 125 V 

and 50 W, and charge balancing was provided by both an e-neutralizer and argon-derived 

ion beam. The spectra were calibrated to the carbon 1s peak present in each spectrum 
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3.3. Synthesis of CaF2 NPs and Impacts of Hydrothermal Annealing on Crystallite 

Size 

 

 

Synthesis of CaF2 NPs was achieved by a modified method adapted from Pedroni 

et al., who developed a synthesis to study near-IR to visible photon conversion in NP 

optical matrices.39 In this procedure, an aqueous solution containing calcium ions, or 

Figure 3.2) TEM images of (A) CaF2 NPs before and (B) after hydrothermal annealing, and 

(C) Tb-doped CaF2 NPs after hydrothermal annealing. XRD patterns of CaF2 NPs (D) 

before and (E) after hydrothermal annealing, and (F) Eu-doped and (G) Tb-doped CaF2 

NPs.  
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calcium and lanthanide ions, is introduced to a separate solution of fluoride ions within an 

environment highly concentrated with citrate. The citrate acts as a steric and electrostatic 

surface stabilizer. Due to the large lattice enthalpy that causes calcium and lanthanide ions 

to precipitate in the presence of fluoride, CaF2 NPs or Ln-doped CaF2 NPs readily form 

upon mixing the component ion solutions. The as-prepared NPs are typically pseudo-

spherical and have diameters ranging from 10-20 nm (Figure 3.2A). Subsequently, the as-

prepared NPs were annealed in a hydrothermal cell for 6 hours at 180 °C, which resulted 

in the formation of highly regular cubic nanocrystals; the overall mean diameter for a 

representative CaF2 NP sample following annealing is 13.6 ± 3.5 nm (Figure 3.2B), still 

within the typical range of sizes before hydrothermal treatment. Evaluation of the elemental 

composition of the CaF2 NPs via EDX measurements showed particle compositions close 

to the expected ratio of 1:2 calcium: fluorine in the undoped CaF2 NPs (Figure 3.3).  

 



 59 

 

In comparison, when 15% of the calcium ions were replaced with either terbium or 

europium ions in the metal ion precursor solution, EDX measurements showed that the Ln 

ion accounted for approximately 18% of the cations in the resulting CaF2:Ln NPs (Figure 

3.3B). This % doping was targeted as it has previously been reported that doping beyond 

15% in similar systems yielded diminishing returns of luminescence intensity.35,40 By 

TEM, it was observed that the ~18% replacement of calcium ions with either terbium or 

europium ions did not significantly alter the typical diameters or morphologies of NPs; for 

example, a typical sample of CaF2:Tb NPs after hydrothermal annealing (Figure 3.2C, 

Table 3.2) has a mean diameter of 13.4 ± 4.2 nm and is still somewhat faceted.  

 

Figure 3.3) (A) EDX spectrum of CaF2:Tb NPs and (B) EDX-derived % atomic 

compositions of CaF2 NPs. 
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NP Sample Mean Diameter 

(nm) 

Standard Deviation (± nm) 

CaF2 13.6 3.5 

CaF2:Tb 13.4 4.2 

CaF2:Eu 12.5 3.3 

 

While hydrothermal annealing did not substantively alter the TEM-observable 

mean diameters of the NPs, changes in the crystallite size were observable by PXRD. 

PXRD patterns before and after hydrothermal treatment (Figure 3.2D, E) both reveal the 

expected diffraction pattern of the fluorite-type CaF2 lattice; all peaks can be indexed to 

fluorite CaF2 (PDF Card 35816), and there are no obvious crystalline impurities. 

Noticeable peak broadening is observed both before and after hydrothermal treatment, and 

the FWHM of the peaks can be used to estimate the crystallite size using the Scherrer 

equation. Before hydrothermal annealing, the NPs have a calculated mean diameter of 3.2 

± 1.8 nm, which increases to 10.2 ± 1.6 nm following annealing. The similarity between 

the PXRD-determined crystallite size and the TEM-measured diameter of the NPs post-

annealing indicates that the annealed NPs are single crystalline, whereas they were likely 

polycrystalline before the treatment (Illustrated in Figure 3.4). It is, therefore, reasonable 

to conclude that the annealing treatment reduces grain boundaries within the as-prepared 

NPs, more so than it results in the ripening of the as-prepared NPs into larger particles.   

Table 3.2) Diameter data collected by measuring NPs with different doping qualities 
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Finally, in comparison of the PXRD patterns of Ln-doped vs. undoped CaF2 NPs 

following annealing, it was observed that both the peak positions and the crystallite sizes 

are essentially the same at the ~18% level of Ln doping (Figure 3.2F, G); that is, the 

addition of Ln-dopant does not result in substantive structural or size changes in the product 

NPs.   

Figure 3.4) Illustration of the effect of hydrothermal annealing on crystallite size 
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3.3.1.  Influence of Crystallite Size on Lanthanide Ion Photoluminescence Intensity 

 

The effect of the observed increase in crystallite size with annealing on Ln ion 

luminescence intensity was next investigated. Hypothesizing that increases in crystallite 

size would correlate with increased lanthanide ion emission intensity, photoluminescence 

excitation and emission spectra were monitored over time by removing aliquots of CaF2:Tb 

NPs at different time points during the hydrothermal treatment For the Tb-doped CaF2 NPs, 

Figure 3.5) (A) Excitation spectrum of CaF2:Tb NPs with variable hydrothermal annealing 

times, monitoring the intensity of the 545 nm emission. (B) Emission intensity of the samples 

when excited by 320 nm radiation. (C) Crystallite size data estimated from XRD patterns of 

each sample using the Scherrer equation. (D) Emission intensity at 545 nm plotted vs. 

increasing hydrothermal heating time. 
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changes to the photoluminescent properties were observed by monitoring the Tb 5D4  7F5 

transition at 545 nm (Figure 3.5A, B); corresponding PXRD measurements were also 

performed on these aliquots, and crystallite size was estimated from line broadening 

(Figure 3.5C). 

 

The as-prepared CaF2:Tb NPs were observed to be only weakly photoluminescent, 

having low initial absorptivity across the 300-400 nm range, and negligible emission 

intensity in the visible region. With increased annealing time, absorptivity initially 

increased over the wavelength range 300-400 nm. At longer time points, increased 

absorptivity extended down to 275 nm (Figure 3.5A).  These increases in absorptivity were 

well correlated with increased photoluminescence intensity in the visible region (Figure 

3.6). For example, the increase in intensity at 545 nm, which was initially significant, is 

even more dramatic at longer annealing times as the absorptivity at shorter wavelengths 

increases (Figure 3.5B). Both the excitation and emission spectral changes plateau after 

4.5 hours.           

Figure 3.6) Photograph of CaF2 NPs excited by 365 nm UV light 
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While the photoelectronic properties are observed to plateau only after 4.5 hours, 

by PXRD line broadening it was observed that the mean crystallite size no longer increased 

after 1.5 hours of hydrothermal treatment (Figure 3.5C); that is, the photoluminescence 

emission intensity continued to increase while the crystallite size did not (Figure 3.5D). 

The further increase in emission intensity with hydrothermal heating time (up to 6 hours) 

is most likely the result of the reduction in the concentrations of point defects within the 

CaF2 matrices, leading to decreasing probability of non-radiative decay of the nanocrystal 

excited state at those sites and increasing probability of radiative decay at Ln-ion dopant 

sites.41,42  One potential type of defect may be water molecules trapped in the crystalline 

lattice, made likely by the aqueous conditions in which the NPs are coprecipitated. 

Vibrations of the trapped water may lead to the loss of energy to heat within the crystal, 

reducing luminescence intensity. Other groups have presented similar hypotheses, 

however, the  introduction of new defects that occur during irradiation has left water defects 

without extensive study.43 
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3.4.  Mesoporous Silica Coating and Organosilane Surface Modification 

 

 

Following successful synthesis of citrate-stabilized CaF2:Ln NPs, a mesoporous 

silica (MS) coating was subsequently deposited on the NP surfaces to prepare CaF2:Ln-

MS NPs (Figure 3.7A). This MS coating was applied for several reasons. First, the as-

prepared citrate-stabilized NPs were not easily redispersed as stable aqueous colloids, thus 

limiting their biological potential; we hypothesized that the MS coating would increase the 

hydrophilicity of the NPs to promote colloidal stability. Further, the MS coating provides 

the opportunity to covalently modify the NP surfaces with a wide variety of commercially 

available organosilane reagents, 44 thus permitting further synthetic alterations to increase 

colloidal stability and biological utility. Finally, mesoporous silica MS NPs on their own 

are popular biomedical agents due not only to their hydrophilicity but also to their ability 

to carry and release an encapsulated small molecule payload. Mesoporous silica NPs have 

Figure 3.7) Surface modification of CaF2:Tb NPs. TEM images of (A)CaF2:Tb-MS NPs and 

(B) CaF2:Tb-MS-PEG NPs.(C) FT-IR spectra of as-prepared CaF2:Tb NPs (top), CaF2:Tb-

MS NPs (middle), and CaF2:Tb-MS-PEG NPs (bottom).  
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pores with sizes that are tailorable in synthesis, and as such, they have been studied as host 

vehicles in a variety of drug delivery, therapeutic and imaging applications.21,22,45  

To prepare CaF2:Ln-MS NPs, we modified a literature procedure used in the 

production of hollow mesoporous silica NPs, where relatively thin mesoporous silica shells 

were uniformly deposited onto solid silica cores that were later removed by selective 

structural etching.46 First, the as-prepared CaF2:Ln-MS NPs were dispersed in an aqueous 

solution along with cetyltrimethylammonium bromide (CTAB), to form a micellar solution 

upon rapid stirring. Next, tetraethoxysilane (TEOS) was added to the micellar solution, and 

the water solvent acted to initiate hydrolysis of TEOS to orthosilicic acid, and subsequent 

polycondensation of cross-linked silica onto the surfaces of the NPs. Due to surface-

associated CTAB, small silica-coated cavities containing organic surfactant were formed 

in the silica shells deposited around the CaF2:Ln NP cores. Subsequently, the silica-coated 

CaF2:Tb NPs were isolated and further treated with a concentrated solution of hydrochloric 

acid in ethanol, which removed the CTAB and left mesopores in the deposited silica shell.   

Following deposition of the MS coating, morphological evaluation of a sample of 

CaF2:Tb-MS NPs by TEM revealed that occurrences of multiple CaF2 cores in single MS 

shells were commonly observed and that isolated particles had an overall average diameter 

of 55 ± 9 nm (Figure 3.7).  Since the overall average diameter is less than 100 nm, these 

NP constructs are potentially appropriately sized for use as intravenously administered 

agents. Further, in high-resolution images (not shown), ~2-3 nm diameter pores are 

observed in the silica shells, and these voids are large enough to enclose a variety of small 
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organic molecules. EDX analysis of the CaF2:Tb-MS NPs shows that these structures are 

~61% silica and 36% CaF2:Tb by mass. 

While mesoporous silica coatings on NPs are common in literature, applying a 

silica coating to a new NP system presents optimization challenges, including avoiding the 

aggregation of multiple NPs within single shells and self-nucleation of pure mesoporous 

silica NPs. While optimization is beyond the scope of this proof of principle synthesis and 

functionality assessment, we observed that the CaF2:TEOS ratio was crucial to control the 

reproducibility of coating the CaF2:Tb NPs while maintaining a significant mass % of 

CaF2:Tb, which kept the NPs observably luminescent.  Of the various ratios tested, 300 µL 

of TEOS to 54 mg of CaF2 in a 110 mL water/ethanol system was found to be optimal for 

minimizing particle aggregation related to surface charge. Lower concentrations of TEOS 

resulted in CaF2 without silica coatings, whereas higher concentrations of TEOS led to NP 

size increases due to coating thicknesses that would be prohibitive to cellular uptake or use 

as an RL agent.  
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3.4.1. Organosilane Surface Modification 

Conditions Atomic % Si Atomic % C Ratio 

Untreated Silica 17.5 37.3 1:2.1 

Water/Triethylamine 8.5 31.7 1:3.9 

Water/NH4OH 9.0 45.7 1:5.1 

Ethanol/ 

Triethylamine 

11.8 38.1 1:3.2 

 

 

PEG-silane was bound to the mesoporous silica to neutralize the charge of the NP, 

thus avoiding opsonization, or the aggregation of proteins which signal for an immune 

resonse, in biological systems while maintaining high hydrophilicity. To prevent 

opsonization, a very dense layer of PEG is desired47–49, as the density of the PEG chains 

Table 3.3) XPS-derived Atomic % concentrations measured from the surface of differently 

treated silica NPs  

Figure 3.8) Graphic description of the process of PEG-silane attachment to silica surfaces. 
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on the surface affects the conformation that the chain takes and how effectively it shields 

the surface charge of the NP.50 Surfaces treated with very high densities of PEG show a 

“brush” style conformation with the PEG extended far off the surface, straightened on its 

sides by other PEG strands. In lower-density environments, PEG collapses on itself in a 

“mushroom” morphology, which stays closer to the surface of the NP and is less effective 

at shielding surface charge. Further complicating the effectiveness of PEGylation is the 

binding force between PEG and the surface which affects the PEG’s ability to gradually 

fall off, or “shed”.51 While this shedding reduces the density of the coating, it also removes 

proteins that have adhered to the NP and delays recognition by immune bodies.  

Strongly basic conditions were used to ensure complete and rapid hydrolysis of the 

PEG-silane precursor, encouraging dense PEG layer deposition. This was done by 

dispersing the CaF2:Tb-MS NPs in an aqueous solution with a catalytic amount of 

ammonium hydroxide and stirring at room temperature. XPS experiments were performed 

to confirm that aqueous conditions with a strong base attached the most PEG to the surface 

out of all of the conditions tested. CaF2 is not compatible with the available VersaProbe 

XPS due to the XPS’ LaB6 electron beam generator. Commercially available silica NPs 

(Ludox) were used as a stand-in for the silica surfaces.  

These conditions were tested amongst other combinations with weaker bases and 

anhydrous ethanol, and were found to attach the greatest amount of organic mass to the 

surface of the silica (Table 3.3).  After PEG attachment, the NPs are collected into a pellet 

by centrifugation without sonication, then dried in a 60ºC oven overnight in a curing step. 

This step can encourage the attachment of weakly bound silanes to either the silica surface 
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or to each other by dehydrating the material, encouraging the dehydration condensation of 

the silanol groups on the silane and silica surface52. Additionally, DLS analysis revealed 

that CaF2:Tb-MS-PEG NPs dispersed in millipure water have a mean hydrodynamic 

diameter of 299 ± 2 nm, PDI of 0.372 ± 0.016, and a zeta potential of -32.2 ± 0.473 mV. 

The success of surface modification steps was validated by FT-IR spectroscopy, 

which was used to confirm the chemical identities of surface species for isolated NP 

products (Figure 3.7C). Before the addition of the mesoporous silica coating, the most 

prominent absorbances in the CaF2:Tb spectrum result from COO- stretching vibrations, 

which can be attributed to the citrate used as a stabilizer during synthesis. After the addition 

of the silica coating, the Si-O-Si stretch becomes prominent at 1050cm-1. Lastly, 

PEGylation of the CaF2:Tb-MS NPs is supported by the presence of new alkyl C-H 

stretches at 2900 cm-1, which can be attributed to the sp3 C-H bonds of the ethyl groups in 

PEG. Taken together, these findings confirm that the CaF2:Tb-MS-PEG NPs were 

successfully produced, and their radiological and biological properties are further 

examined in the following sections. 

3.5.  Radioluminescent Properties of CaF2:Ln NPs 

Photoluminescent CaF2:Ln NPs have been studied by several groups in the fields 

of biomedical diagnostics and therapeutics,39,53–55 as CaF2:Ln NPs can act as a source of 

visible-range photons, similar to other types of NP which enable imaging within biological 

tissues.56,57 The same emitted photons can also photocatalyze specific chemical reactions, 

producing toxic species to kill local cells in a process commonly known as (PDT). One of 

the most prominent applications of CaF2:Ln NPs is in two-photon near-IR to visible energy 
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conversion for deep tissue diagnostic and therapeutic applications. However, X-rays have 

greater biological tissue penetration depth as compared to near IR radiation, and 

consequently, interest in radioluminescence (RL) applications of CaF2 optical matrices has 

been stimulated.   

While bulk CaF2 and Ln-doped CaF2 have been widely explored in RL applications, 

the RL characterization of doped CaF2 nanomaterials is less common. The intrinsic RL 

properties of undoped CaF2 NPs have been explored by Bezzera et al., who observed 

emission attributed to self-trapped excitons at 293 nm and from the F-centers at 428 nm.58 

Comparatively, Jacobsohn et al. investigated CaF2:Eu NPs, where irradiation with a 40 kV 

X-ray source resulted in emission intensity at 420 nm, indicative of the presence of Eu2+, 

as well as the expected Eu3+ emission transitions between 550-700 nm.59 These studies 

illustrate that the RL properties of CaF2 and CaF2:Ln observed on the bulk scale are 

preserved in the nanoscale materials, which promoted our interest in exploring the potential 

of RL CaF2:Ln NPs in biomedical X-ray imaging and therapeutic applications. The Eu3+ 

and Tb3+ -doped CaF2-MS NPs we have synthesized in this work have potential in multiple, 

simultaneous medical modalities such as spatial imaging, drug or therapeutic delivery, or 

X-ray activated photodynamic therapy.  
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To assess radioluminescence, dry powders of CaF2, CaF2:Tb, and CaF2:Eu were 

irradiated at 130 kVp using an X-ray irradiator and visible light emission in the 400-800 

nm range was monitored using a fiber-optic spectrophotometer. Each type of NP was 

Figure 3.9) Radioluminescence emission spectra of (A) CaF2:Eu-MS NPs and (B) CaF2:Tb-

MS NPs.  
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assessed with and without the mesoporous silica shell. Expectantly, the undoped CaF2-MS 

NPs did not produce visible radioluminescence under these conditions (Figure 3.10), as 

the self-trapped exciton transition of CaF2 emits at too short of a wavelength to be observed 

with this RL measurement apparatus. In comparison, the lanthanide-doped CaF2-MS NPs 

displayed bright radioluminescence upon X-ray excitation (Figure 3.9). The CaF2:Eu-MS 

NPs exhibited distinct Eu emission peaks at 590 nm (5D0  7F1), 610 nm (5D0  7F2), 645 

nm (5D0  7F3), and 693 nm (5D0  7F4), with the 5D1  7F2 emission at 590 nm being 

most intense. Comparatively, The CaF2:Tb-MS NPs displayed characteristic emission 

peaks at 490 nm (5D4  7F6), 542 nm (5D4  7F5), 586 nm (5D4  7F4), and 621 nm (5D4 

 7F3), of which the 5D4  7F5 transition at 542 nm displays the highest emission intensity. 

We compared the RL of these samples to the as-synthesized CaF2:Ln NPs, without the MS 

shell, and did not observe any significant spectral differences in the case of Ln = Tb (Figure 

3.10). However, in the case of Ln = Eu, the MS shell addition introduced an emission at 

540 nm, which is perhaps attributable to emissive defects in the silica, as emissions in this 

region have been previously observed upon silica’s excitation with keV-scale irradiation.60 

The relative emission intensities are known to be informative as to the coordination of the 

Eu dopant ions within the fluorite crystal structure and the dominance of the 5D0  7F1 

transition at 591 nm implies that the dopants are replacing Ca2+ in the lattice.61,62 Overall, 

these findings demonstrated the X-ray activation of lanthanide ion luminescence in the 

CaF2:Ln-MS NPs, and we further assessed the CaF2:Tb-MS NPs in cytotoxicology 

experiments, both in the absence and presence of incident X-radiation.  
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3.6. Conclusions 

This study has presented the synthesis of CaF2- core mesoporous silica-shell NPs, 

and shown them to be applicable as RT enhancing materials. Details of the optimization of 

this synthesis have been discussed to aid decision-making for those who wish to replicate 

the work. The NP is X-ray luminescent and biocompatible under standard conditions. Once 

Figure 3.10) Comparison of X-ray luminescence spectra of doped CaF2 NPs before and after 

coating with mesoporous silica.  



 75 

X-ray radiation is applied, however, the NPs begin to generate hydroxyl radical which can 

enhance RT’s killing of cells. Future work that could forward this application is the 

addition of ligands to the surface that would target the NP to specific types of tissues. Also, 

although physical enhancement has been explored here, the luminescence of the CaF2 core 

could potentially be used to enable X-ray excited photodynamic therapy, which would have 

the advantages of the current NP construct while providing additional routes for radical 

production.  
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CHAPTER 4 - ASSESSMENT OF  BISMUTH AND CALCIUM FLUORIDE 

NANOPARTICLES FOR RADIOTHERAPY ENHANCEMENT 

4.1. Introduction  

The goal of the syntheses in the previous chapters was to produce two types of NPs 

capable of increasing cell death during RT. RT damages tissues by generating (ROS), either 

by exciting the electrons of cellular structures, or more likely, exciting the electrons in 

water molecules. These radicals and other excited species are highly reactive and can 

damage critical organelles to kill the cells or prevent their division.  

We hypothesized that dense, inorganic NPs can efficiently attenuate and convert 

high-energy X-rays to produce multiple lower-energy photons, thus multiplying the 

number of ROS generated during irradiation.  In this chapter, we measured and compared 

the RT enhancement ability of Bi and CaF2:Ln NPs.  The NPs were assessed for their 

radiolytic capabilities and biocompatibility using spectroscopic assays, an in vitro assay, 

and in the case of the Bi NPs, an in vivo assay. In the spectroscopic assays, selective 

fluorescent probes for singlet oxygen and hydroxyl radical have been used to quantify ROS 

production under X-ray irradiation in the presence of NPs, as compared to irradiated 

samples without NPs. In vitro assays have been performed to assess the viability of cells 

incubated with NPs in the presence or absence of X-ray radiation. In these experiments, a 

desirable result would be that the NPs would have negligible cytotoxicity unless radiation 

is applied, and in the presence of radiation, co-treatment with NPs and RT would kill more 

cells than RT alone. For the CaF2:Tb platform only, the use of Rose Bengal was 

additionally investigated as an added photosensitizer to possibly increase singlet oxygen 
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production via RT. Finally, a preliminary in vivo experiment was performed to assess the 

biodistribution of Bi-DSPE-PEG NPs in mice and identify potential means of clearance.  

4.2. Experimental 

4.2.1. Reactive Oxygen Species Production Assays 

Stocks were prepared of various NP constructs with fixed concentrations of 1 µg/ 

mL in water. Each dispersion was sonicated for at least 5 minutes. These dispersions were 

plated into 96-well plates, 100 µL per well. Some wells received millipure water instead 

of NP solutions as a control. At this time, to each well was added either 10 µL of a 10 µM 

aminophenyl fluorescein (APF) solution or 10 µL of a 10 µM singlet oxygen sensor green 

(SOSG) solution.  These plates were transferred to a Faxitron Cellrad small animal X-ray 

irradiator and irradiated at 130 kVp and 20 mA for variable amounts of time to attain 

different radiation doses. Once the radiation exposure equated to a predetermined dose, 

some samples were removed from the irradiator and pipetted into a separate 96 well plate. 

Solutions remaining in the well plate could then continue to be irradiated. Immediately 

following X-ray irradiation, the aliquots in the 96 well plates were analyzed by 

fluorescence measurements using a plate reader. APF fluorescence intensity was measured 

using an excitation wavelength of 490 nm and was monitored at 520 nm, and SOSG 

fluorescence intensity was measured using an excitation wavelength of 500 nm and 

monitored at 525 nm. 
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4.2.2. In Vitro Assays  

Cells of various lineages were cultured in appropriate growth media through at least 

3 passages between being thawed and being used. Media selection followed 

recommendations from the American Type Culture Collection. Cells were plated into 96-

well plates at a density of 10,000 cells per well. After waiting an appropriate time for cells 

to affix to the substrate, media was replaced with NP-dosed media or non-dosed control 

media where necessary. The cells were then incubated in the media for a period of time, 

the length of which varied with the cell line. After the incubation period, new media was 

placed over the cells, and then cells were irradiated at 130 kVp via a Faxitron CellRad cell 

irradiator until 4 Gy of radiation was delivered. Cells were then cultured for another 24 

hours. Media was then replaced with new media containing 10% vol/vol Alamar Blue. 

After a set metabolizing period which varied from 2 to 4 hours with cell line, well plates 

were moved to a plate reader, and the fluorescence intensity of metabolized Alamar Blue 

was read for each well using an excitation wavelength of 530 nm and monitoring emission 

at 590 nm. Different conditions included untreated cells, cells treated with variable doses 

of NPs, cells treated with RT, and cells co-treated with variable doses of RT and a fixed 

dose of RT. The experimentally determined fluorescence intensity values for cells treated 

with various doses of NPs in the presence or absence of X-ray radiation were normalized 

to that of cells not treated by NPs or X-ray radiation.  
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4.2.3. CaF2-MS NPs Rose Bengal Loading 

15 mg of mesoporous silica-coated CaF2:Ln NPs were suspended in 20 mL of an 

aqueous 10 mM Rose Bengal solution with sonication in a 100 mL round bottom flask. 

The dispersion was stirred at room temperature for 2 hours. Then, 40 µL of ammonium 

hydroxide (30%) was added, then 100 µL of PEG-silane. This solution was stirred at room 

temperature for two hours. The reaction was poured into a centrifuge tube, and 10 mL of 

ethanol was added to flocculate the NPs. Solids were collected by centrifugation before 

undergoing resuspension in 10 mL of 1:1 water: ethanol and centrifuging. This was 

repeated two additional times with water followed by 2 more cycles of redispersion and 

centrifuging with 10 mL of ethanol. The solids were dried at 50 °C overnight before being 

gently powdered with a spatula. 

4.2.4. DSPE-PEG Addition onto Bi NPs 

10 mg Bi NPs with polyvinylpyrrolidone-graft-triacontane coatings was dispersed 

in 10 mL of chloroform through 30 minutes of sonication. In a separate container, 10 mg 

of DSPE-PEG was dissolved in 10 mL of chloroform through shaking. The two solutions 

were combined in a 500 mL flask and stirred for 10 minutes. The flask was placed on a 

rotary evaporator and chloroform was slowly removed from the system. The bath 

temperature was kept at 30 °C, system pressure at 300 mbar, and rotation speed at 150 rpm. 

After 20 minutes, no more liquid was observed. The pressure of the system was adjusted 

to 50 mbar for another 10 minutes to remove residual chloroform. The dried NPs were 

redispersed in 10 mL of 1X PBS buffer with 30 minutes of sonication, then unconjugated 

DSPE-PEG was removed with two cycles of filtering through 100k MW centrifuge filters 
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followed by resuspension in PBS. After the final resuspension of the Bi NPs in 2 mL of 

PBS, the concentrations of these stocks were determined by ICP-MS analysis. 

4.2.5. In Vivo Biodistribution  

Balb/c mice (Charles River Laboratories) were injected via tail vein with 100 uL of 

Bi-DSPE-PEG NPs at a concentration of 1.5 mg/mL, resulting in a dose of 0.15 mg per 

mouse. Mice were observed for distressed or pained behaviors hourly for 8 hours after 

injection. Three mice were sacrificed via CO2 asphyxiation after 24 hours, while one was 

sacrificed after 48 hours. Organs were collected from the mice after death, then 

homogenized, digested in nitric acid, and analyzed for bismuth content by ICP-MS. 

4.3. ROS Production Assay Results 

Before addressing the utility of Bi-Silica-PEG NPs and CaF2-MS-PEG NPs in 

biological environments, solution spectroscopy assays were performed to probe their 

ability to increase ROS production during irradiation. The two probes used in this study 

were Aminophenyl fluorescein (APF) and Singlet Oxygen Sensor Green (SOSG), which 

become strongly fluorescent when they react with hydroxyl radical or singlet oxygen, 

respectively (Figure 4.1). Both APF and SOSG are fluorescein derivatives with a 

“deactivator” moiety initially bound to the fluorescein moiety. This deactivator reduces the 

compounds’ fluorescence intensity, but can be altered or cleaved off such that fluorescence 

can be restored. In the case of APF, reaction with hydroxyl radical to cleave off the 

aminophenyl group is highly favorable and leaves a fluorescent compound. SOSG features 

an anthracene moiety as a deactivator. While the anthracene is involved in the extended pi 
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system of the fluorescein, it reduces fluorescence intensity. Upon reaction with singlet 

oxygen, however, that is negated, and fluorescence is restored.  

 

In these experiments, solutions containing the fluorescent probes were irradiated 

with various doses of 130 kVp X-rays. The fluorescence intensity of the probes was then 

measured and can be correlated to the amount of ROS produced during irradiation. The 

experiment was repeated in 1 µg/mL dispersions with various NP types. In the case of the 

Bi-Silica-PEG NPs, only the complete construct was assessed. For the CaF2-cored NPs, 

CaF2:Tb NPs and MS NPs were tested alongside the final CaF2:Tb-MS-PEG NP to 

determine the contribution of each component to ROS production. The results of these 

assays are presented in Figure 4.2. 

Figure 4.1) Reactions of reactive oxygen species probes with corresponding reactive oxygen 

species 
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In analyzing the data taken from these radical-reactive probes, the slopes of the 

curves represent the critical value of how many of a certain ROS are being produced per 

set dose of radiation applied to a sample. Compared to water alone, a steeper slope 

indicates more efficient production of ROS in the system.  The slopes of the curves for 

NP-dosed solutions are less steep than water alone in the SOSG assay (Figure 4.2A) 

indicating that no tested NPs significantly increased the singlet oxygen produced per Gy 

of radiation. While the initial intensity of the SOSG probe is slightly higher in the 

presence of NPs, the singlet oxygen production per Gy of radiation is reduced for all NP 

dispersions than water only. The presence of these NPs appears to inhibit singlet oxygen 

formation, rather than amplify it. Given the lack of suitable photosensitizers, this is 

reasonable. The generation of singlet oxygen is typically induced with specific energy 

pathways that produce near-IR photons capable of exciting triplet O2 to its singlet state. 

Section 4.5 details efforts to attach Rose Bengal to the CaF2 NP such that this type of 

energy pathway could be realized.  

Figure 4.2) Results of Reactive Oxygen Species production assays with various NP 

constructs 
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More significant findings are found in the assessment of hydroxyl radical 

production (Figure 4.2B). Compared to water alone, all NP-dosed solutions showed 

greater rates of hydroxyl radical production per Gy of radiation.  Bi-Silica-PEG NPs 

produced hydroxyl radicals the most efficiently, followed by the CaF2:Tb-MS-PEG, MS 

NP-PEG, and CaF2:Tb NPs which performed similarly to each other. The differences in 

the enhancement of hydroxyl radical production can be attributed to two prominent 

differences between the NP types, density and atomic number. The 55 nm bismuth cores 

used in the Bi NPs are the largest, densest (9.78 g/cm3), and highest Z material (Z = 83) 

among those tested. The denser, higher -Z Bi NPs were the most likely to initially scatter 

an X-ray. In addition, their greater volume made it more likely to divide the energy of the 

incident X-ray multiple times before the energy was allowed to escape the bismuth 

crystal volume, creating multiple excited states that can generate radicals. This was less 

likely in the 12 nm CaF2:Tb cores of lesser density (3.18 g/cm3) and lesser average 

atomic number (average Z by mass=26.8). Another interesting comparison is between 

CaF2:Tb and MS-PEG NPs. While MS has a lesser density than CaF2:Tb, it still produced 

more hydroxyl radicals throughout irradiation. The MS NPs are larger in volume, which 

may contribute to the effect, but much of their volume is filled with water, making it hard 

to predict how excited states and low energy photons would be scattered and absorbed in 

the structure. Silica has been studied for its ability to generate radicals on its surfaces, 

which may have provided another route for this effect.17,63  

All NP types increased the number of hydroxyl radicals produced per Gy of 

radiation, meaning that they all could enhance the cell-killing ability of RT. The 
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CaF2:Tb-MS-PEG produced the greatest number of radicals throughout irradiation out of 

all CaF2 constructs tested, leading to its continuance in further application testing. The 

visible photon emission from this NP allows for other modalities and may be explored 

further in the future.  

4.4. In Vitro Assays 

4.4.1. Assessing Radiotherapy Enhancement with NPs 

To assess the NPs abilities to enhance cell killing during RT, cells were dosed with 

variable concentrations of NPs and irradiated. Twenty-four hours after irradiation, cell 

viability was assessed using the alamarBlue assay. This assay measures the metabolic 

activity of a cell population, which can be correlated to the fraction of living cells. Due to 

the ROS-multiplying effects observed in the ROS generation assays, it was initially 

hypothesized that the presence of NPs would decrease the number of cells that survived 

RT, and that an increasing concentration of NPs would increase the degree of enhancement.  
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In experiments assessing CaF2-MS-PEG NPs, the NPs were found to be well 

tolerated across all tested concentrations, with cell viability remaining near 100% at all 

tested doses (Blue columns, Figure 4.3A). However, once radiation was applied (Red 

columns, Figure 4.3A), some concentrations of NPs between 16 and 125 µg/mL were 

found to significantly enhance cell death, as evidenced by a drop in cell viability of the 

irradiated cells as compared to the non-irradiated control samples. Some conditions led to 

mean % viabilities above 100%, which may be attributed to NPs interacting with cells and 

possibly increasing their metabolic or proliferative rate above that of the control 

population. Whereas RT in the absence of NPs decreased cell viability by 16%, some doses 

of NPs decreased viability by 41% (at 16 µg/ml). While this aligns with the hypothesis of 

Figure 4.3) Results of viability assays to assess biocompatibility and RT enhancement in the 

presence of NPs 
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the experiment, the increased cell death did not occur in a consistent trend with increasing 

concentration of NPs. Enhancement of cell killing was greatest at 63 µg/ml at 50%, but 

higher concentrations of 250 and 500 µg/mL showed little or no enhancement. Potential 

reasons why this occurs could be due to the interaction of high doses of NP with the cell 

walls, possibly preventing uptake. Future experiments to probe this limitation may include 

loading the MS shells of the NPs with a UV-fluorescent dye, then imaging single cells 

under UV excitation to correlate emission intensity with the location of the NPs. This may 

provide information as to how likely the NPs are to be internalized or adhere to the cell 

membrane.   

The same experiment performed with Bi-Silica-PEG NPs provided significantly 

different results in terms of cytotoxicity. Without radiation (Blue columns, Figure 4.3B), 

increasing doses of Bi NPs showed some cytotoxicity, with doses of 63 µg/mL causing cell 

viability to drop to 74%. This did not support the hypothesis that the NPs were inherently 

cytocompatible, as significant decreases in cell viability should not have occurred without 

radiation. Despite this, further decreased cell viability during RT was observed (Red 

Columns, Figure 4.3B), and most significantly reduced cell viability from 126 to 76% 

when a 16 µg/mL dose of NPs was applied. While the presence of Bi-Silica-PEG NPs 

decreases cell viability in all doses, this decrease is not dose-dependent, further providing 

support for the null hypothesis.   

Given the radical production assays of these species, interesting comparisons can 

be drawn. The ability of Bi NPs to enhance radiation damage to cells appears to be more 

significant at low doses, however, the cytotoxicity of the platform in its entirety is 
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deleterious. The CaF2 NPs, however, are remarkably well-tolerated and show little 

cytotoxicity even at very high doses, although their enhancement of RT is not as great as 

Bi-Silica-PEG NPs. While the enhancing ability of the NPs seems to be in line with the 

well-characterized physical characteristics of their materials, the cytotoxicity of the NP Bi-

Silica-PEG NPs will require extensive study to find its source. After these studies, a 

conclusion was drawn that the generally well-tolerated CaF2 NP platforms were promising 

but should be modified to make their RT enhancement more pronounced.  

4.5. Modification of CaF2:Tb-MS-PEG NPs with Rose Bengal 

Due to previous promising results in the enhancement of RT, improvement to the 

CaF2:Tb-MS-PEG NPs was attempted with the addition of Rose Bengal (RB) which could 

provide a means of generating singlet oxygen. The attachment of RB was done by 

electrostatic attraction between the RB and MS layer before PEG was attached to the 

surface. Further optimization of the RB loading was not achieved within the timeframe of 

this study, however, the RB concentration in the NP was determined using UV-Visible 

spectroscopy. Measurements of known concentrations of Rose Bengal were plotted on a 

calibration curve before a sample with a known mass of RB-loaded NPs was measured. 

This experiment  indicated that the RB was approximately 5% of the total NP mass, which 

was believed to be sufficient for the study.  
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In vitro experiments with RB-loaded NPs displayed some cytotoxicity with RB 

present as well as a minor improvement of RT enhancement (Figure 4.4). This differed 

from previous cell viability experiments displayed in Figure 4.3, which may be a result of 

using a different cell line. While non-RB loaded NPs showed RT enhancement of 14% at 

62.5 µg/mL, the presence of RB increased this to 17%. The greatest difference between 

non-loaded and RB loaded enhancement occurred in the highest measured NP dose, with 

unloaded enhancement at 14% and loaded enhancement at 23%. However, at this point, 

the cytotoxicity of the RB-loaded NPs had reduced the non-irradiated NP viability to 71%, 

which is not favorable for the intended application. There are two likely explanations as to 

the nature of the cytotoxicity observed with RB addition. The first is that the RB is leaking 

out of the NP, and is toxic to the cells, however, its low concentrations in solution act 

Figure 4.4) Cell Viability assays performed on CT26 NPs, assessed without Rose Bengal 

loaded (A), and with Rose Bengal Loaded (B) as well with or without X-ray RT 
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against this explanation. The second is that the electrostatic loading of the RB onto the MS 

surface may interfere with PEG attachment in the subsequent synthetic step, which would 

lead to a less neutralized surface charge and some observed cytotoxicity. Further 

experiments assessing the rate of leakage of RB from the NP or the cytotoxicity of RB 

alone could support or deny these possibilities. Overall, the inclusion of RB into the NP 

did not drastically improve RT as was hypothesized, although small improvements were 

observed. To address why this occurred, experiments were performed with ROS probes 

(Figure 4.5).  

 

These ROS generation experiments further supported the null hypothesis that RB 

was not effectively generating singlet oxygen. The SOSG assay showed no significant 

difference in SOSG produced per Gy of radiation between CaF2-MS-PEG NPs with or 

without RB (Figure 4.5A). An unexpected finding was that the presence of RB increased 

the production of hydroxyl radicals (Figure 4.5B). Mechanisms in the literature which 

Figure 4.5) ROS assays performed on CaF2-MS-PEG NPs with and without Rose Bengal. A) 

SOSG assay for singlet oxygen. B) APF assay for hydroxyl radical 
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could explain this phenomenon are scarce, and typically involve metallic catalysts, and so 

this cannot be explained at this time.64  

4.6. Shortcut Surface Modification 

Before the silica coatings presented earlier in chapters 2 and 3 were complete, an 

opportunity arose to perform some preliminary Bi NP biodistribution experiments in mice. 

The hydrophobic Bi NPs produced by the initial core synthesis were modified with DSPE-

PEG, which anchors itself into the hydrophobic alkyl chains on the surface of the Bi NPs 

while presenting a PEG chain outward. The resulting NPs were highly hydrophilic and 

stable in PBS indefinitely. DLS data showed individually dispersible NPs with 

hydrodynamic sizes of 162 ± 24 nm and a zeta potential of -19 mV, meaning that their 

surfaces are nearly neutral and would not immediately collect a protein corona in the 

bloodstream. To have a coating provide a neutral surface charge while also dispersing the 

dense Bi NP in water was valuable, but this type of modification was prohibitively 

expensive and only used for preliminary biodistribution experiments. 
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The resultant coating on the Bi NPs rendered them highly biocompatible when 

cell viability was assessed in HepG2 cells (Figure 4.6). With the maximum bismuth 

concentration of 150 µg/mL, % viability was calculated to be 78%. As there is little 

literature on the cytotoxicity of bismuth ions alone, equivalent bismuth concentrations 

were tested with bismuth nitrate as well. Neither bismuth ions nor Bi NPs were 

prohibitively toxic, and matching concentrations of the two species showed similar trends 

in % viability. These preliminary assays supported the DSPE-PEG’s effectiveness and 

permitted in vivo studies to proceed.   

Figure 4.6) Cell viability data of HepG2 cells exposed to Bi-DSPE PEG NPs and BiNO3 over 

24 hours 
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4.7. Preliminary In Vivo Biodistribution Testing: 

Initially, a single mouse was dosed with Bi NPs via tail vein injection and 

monitored over 48 hours for signs of distress that would require immediate euthanasia. 

Three more mice were then given the same treatment and monitored over 24 hours. Mice 

were sacrificed with CO2 asphyxiation after the observation periods were complete, and 

their organs were homogenized into a slurry, digested with nitric acid, and analyzed with 

ICPMS for bismuth content. Results from the biodistribution experiments showed that the 

bismuth accumulated in the liver, spleen, and kidney of the mice at the 24-hour timepoint. 

(Figure 4.7A) While the high accumulation in the liver and spleen were expected, the 

Figure 4.7) Preliminary biodistribution data of Bi NPs injected into the tail veins of mice. 
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accumulation in the kidney was not as the Bi NPs had hydrodynamic radii that should have 

been too large for renal clearance.16,65 Furthermore, the one mouse that was sacrificed after 

48 hours (Figure 4.7B) shows a decreased concentration of bismuth in the liver and spleen 

and steady concentration in the kidney.  

Further analysis of the % of the initial dose per gram of tissue provides information 

on the degree of bismuth accumulation in each tissue type. After 24 hours, the highest 

concentrations of bismuth were found in the spleen (Figure 4.7C). This mean spleen 

concentration has a high degree of error due to the similarly high concentrations of bismuth 

in each spleen combined with dissimilar masses. While the high total amounts of bismuth 

found in the kidneys (Figure 4.7A,B) may suggest renal excretion, the high concentration 

of bismuth found in the spleen at 24 hours, followed by the reduced concentration at 48 

hours, suggests that fecal excretion is the more supported clearance route (Figure 4.7C,D). 

This aligns with what is generally accepted about NP clearance in relation to NP size.65 To 

probe the clearance route most directly, future biodistribution experiments would require 

feces and urine collection for ICP-MS analysis along with organ tissues.  

These experiments must be repeated with a significant sample size, however, this 

preliminary study may suggest that the NPs are degrading and leaving the liver and spleen 

to be renally excreted as species with smaller sizes. This finding would be of the highest 

significance, as it provides an advantage over other high-density NPs like gold which can 

serve the same purpose in RT enhancement but are inert in biological conditions. One 

matter that must be addressed in future work is the effect of the silica shell on the 

biodistribution and degradation of Bi NPs. Silica has been shown to degrade in biological 
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conditions, but at a much slower rate than that of bismuth in this set of experiments.16,66 

Also, the inclusion of targeting agents will be necessary for the development of this 

platform’s usefulness as the data shows that the Bi NPs did not significantly load into the 

tumors to the point that RT is likely to be enhanced.  

4.8. Conclusions 

The Bi NPs and CaF2 NPs presented in this thesis have both been used to enhance 

the damage done to a population of cells throughout RT. The materials’ effectiveness in 

doing so is noticeably related to the physical characteristics of the materials, most notably 

their density. Attempts to improve the lesser ability in CaF2 by attaching Rose Bengal were 

not successful, as the attachment of the RB demanded extensive iteration to make it 

functional with maintaining the biocompatibility of the material. While the highly-dense 

Bi NPs showed an aptitude for physical enhancement, the surfaces used to make them 

biocompatible were too rudimentary to allow for their silica-coated use. However, the 

safety of the core in vivo was assessed and supported in mouse models, and preliminary 

data suggests that their clearance time makes them a promising alternative to the 

biologically inert heavy metals.  
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CHAPTER 5 - CONCLUSIONS  

In this thesis, NPs were synthesized with the purpose of increasing the killing of 

cancerous cells during RT while sparing nearby healthy tissues. Inorganic NPs, with their 

high densities and atomic numbers, are well suited for this task, as they interact with X-ray 

in such a manner as to localize the energy of the photon in the local environment. Novel 

syntheses of Bi NPs and CaF2-MS NPs were developed and rigorously assessed through 

surveys of important parameters and optimization. Then, these NPs were used in RT 

enhancement experiments. The overarching hypothesis of these experiments was that the 

NPs would not be innately cytotoxic until struck with X-ray radiation, upon which they 

would multiply the number of ROS produced by the radiation and increase the number of 

cells killed by this treatment. The NPs synthesized in this work are effective payloads that 

are useful to multiply the production of radicals during RT, however, future work to 

improve their biocompatibility and biodistribution to select treatment sites will be 

necessary to create working therapeutics.  

5.1. Bismuth Nanoparticles 

Bismuth NPs have many favorable traits that make them promising as RT 

enhancers, most notably their high density and sparsely reported biodegradability. In this 

work, Bi NPs were synthesized from an alkylammonium iodobismuthate, a precursor with 

distinct advantages over others in the field. The reaction can be performed in air, as 

opposed to the strictly air-free conditions needed for other preparations. Pyrophoric 

materials used at high temperatures are also unnecessary. The NP products are single 

crystals with average diameters of 55 nm, which places them within the size range for 
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intravascular agents. After the core synthesis, they were coated with silica to produce a 

smooth, minimally thick shell that provides a reactive scaffold for the attachment of a 

variety of surface species.  

However, with these advantages come limitations. The size of the Bi NPs is limited, 

as the reaction has multiple stages and conditions must be optimized for iodobismuthate 

formation as well as NP nucleation. To address these issues with the synthesis, there are 

some potential practical solutions. First, recalibration of the synthesis in a more 

conventional high boiling solvent, like dodecane, would address the issues found in the 

variation between solvent batches from a chemical supplier. The diisopropylbenzene used 

in this study was technical grade, which is convenient, however technical grade materials 

may have a higher degree of batch-to-batch variation in impurities which can affect a 

delicate NP synthesis. With that being standardized, more fine-tuning could allow the 

synthesis to reproducibly produce a range of sizes of uniform NPs, which would be 

advantageous when optimizing the characteristics of an intravenous agent.  

Once a synthesis of Bi-Silica-PEG NPs was finalized, it was assessed for its ability 

to enhance radiotherapy. Biocompatibility testing showed the moderate tolerance of cells 

for these NPs, however, it proved to be toxic at high concentrations. Despite this, in vitro 

RT assays showed that the presence of the NPs significantly increased the killing of cells, 

supporting the hypothesis which motivated their synthesis. The benefits of the effect were 

offset by the issue of dose-dependent cytotoxicity even before RT was applied. Other Bi 

NP constructs, such as Bi-DSPE-PEG, did not display this cytotoxicity, suggesting that the 

bismuth core itself may not be the problematic component. To address this gap in 
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knowledge, a more thorough set of cytotoxicity experiments could be performed featuring 

Bi-PVP, Bi-Silica, and Bi-Silica-PEG NPs. This may provide information as to which step 

in the surface modification of the NP introduces a cytotoxic compound, and allow an 

alternate compound or synthetic step to be chosen and explored.  

With DSPE-PEG coated Bi NPs, in vivo biodistribution assays were performed to 

assess if the size of the NP and oxidation rate of the Bi core would allow circulation and 

clearance. Time points of 24 hours showed bismuth collected in the liver, spleen, and 

kidneys, which changed to just the kidneys after 48 hours. As the whole NPs were too large 

to be filtered renally, these early results support that the NP can be oxidized and then 

cleared renally.  

Future work on the Bi NP platform should take advantage of the silica shell 

optimization, but address the cytotoxicity that appears to come with it. While the DSPE-

PEG-coated NP was effective in the in vivo experiments, the structure is held together by 

London dispersion forces that are less reliable than the covalent bonding strategies allowed 

by silane modification. These issues are compounded by the precision and cost that comes 

with executing DSPE-PEG coating, preventing scaling and extensive testing. As for 

improving the biocompatibility of the silica coating, the PEG chain length may be a factor 

to address. The DSPE-PEG chain had a molecular weight of 5000, while that on the PEG-

silane was only 1000. Prevalent literature suggests that the former is more ideal for 

biological conditions.67  

Besides optimizing PEG chain length, attaching not only PEG but also targeting 

ligands would allow the NP to be targeted to specific tissues; a necessity for use as an 
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intravenous agent. The attachment of this ligand would be a complicated task. It could be 

done by using a combination of PEG silane and aminosilane to decorate the surface of the 

NP with not only PEG, but primary amines. Attachment of the targeting ligand to these 

amines on the surface would likely not be successful, as it would be buried by the PEG 

layer and intangible to cellular membrane components which they must interact with. The 

ligand would have to be presented outside of the PEG layer by a spacer moiety, perhaps a 

long, linear, bifunctional molecule. A synthetic strategy of attaching the ligand to the 

spacer, then the spacer to the NP surface is the most likely to be successful.  

5.2. Calcium Fluoride NPs 

In this work, various preparations of nanomaterials have been adapted to produce a 

calcium fluoride core- mesoporous silica shell NP with several attractive features for RT 

enhancement. The CaF2 core is much denser than tissue and can scatter X-rays effectively. 

The core can be doped with terbium or europium, enabling X-ray activated fluorescence 

with either green or red emission. This would be useful to either locate the NP visually by 

excitation with UV or X-ray radiation or activate green or red photon-catalyzed reactions. 

The mesoporous shell has the advantages of a modular silica surface and accessible silane 

chemistry while also being able to host a variety of small molecules that could be of use in 

an RT agent. The synthesis of each of these components started with various literature 

preparations that were optimized or otherwise adapted to produce the presented final 

products. When attaching the biocompatible polymer PEG to the surface of the silica in 

this synthesis as well as the Bi NPs synthesis, common orthodoxy in these silane reactions 

was analyzed. While aprotic solvents and weak bases are the most common conditions for 
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producing a monolayer coating, conditions with stronger bases and aqueous reactions 

proved to produce a greater layer of polymer on the surface which is more ideal for its 

opsonization suppression application.  

When assessed at an RT enhancer, the CaF2-MS-PEG NPs performed well and were 

able to multiply the production of radicals throughout irradiation, resulting in measurable 

enhancements of cell killing. The NPs were notably non-cytotoxic in the absence of 

radiation, which allowed for a high dose of NPs to be applied. This enhancement, however, 

was variable and did not correlate with NP dose, in a way that suggests a more complicated 

enhancement mechanism than intended. The attempt to convert the platform to a 

photodynamic therapy agent has not yet been successful. Preliminary attempts to load Rose 

Bengal into the MS electrostatically were initially successful, but singlet oxygen generation 

was not observed in the system as hypothesized. Hydroxyl radical production increased 

with the addition of Rose Bengal, however, this did not improve the efficiency of the 

system enough to make up for the cytotoxicity inherent to having the dye present.  

Future improvements to the CaF2-MS NP system could be done in two ways, 

improving the biodistribution of the NPs and successfully integrating the photosensitizer. 

Surface treatments to improve the biodistribution of the NP will be similar to those 

suggested for the Bi NPs, including targeting ligands that could improve the accumulation 

of the NPs in specific types of affected sites. An equally complicated matter would be 

attaching the Rose Bengal to the NP such that photodynamic therapy is viable. This 

attachment would likely be covalent, perhaps by incorporating aminosilanes into the MS 

formation step to provide aminated surfaces in the pores. This functional group could then 
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be used for an EDC/NHS attachment strategy to RB’s carboxylate group. This type of 

attachment would likely lead to a greater concentration of RB in the pore of the MS and 

would be effective if this bonding did not negatively affect the Rose Bengal’s singlet 

oxygen-producing properties. Another detail of this alteration is that the amine on the 

surface of the NP should not be detrimental to the attachment of PEG. Whether this route 

or some other is taken, the ideal photodynamic therapy agent is a complex synthetic 

challenge which can be built upon the synthesis and assessment of the CaF2 NPs in this 

work.  
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