
Portland State University Portland State University 

PDXScholar PDXScholar 

Dissertations and Theses Dissertations and Theses 

7-14-2020 

Detecting Reinforcement Patterns in the Stream of Detecting Reinforcement Patterns in the Stream of 

Naturalistic Observations of Social Interactions Naturalistic Observations of Social Interactions 

James Lamar DeLaney 3rd 
Portland State University 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds 

 Part of the Developmental Psychology Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
DeLaney 3rd, James Lamar, "Detecting Reinforcement Patterns in the Stream of Naturalistic Observations 
of Social Interactions" (2020). Dissertations and Theses. Paper 5553. 
https://doi.org/10.15760/etd.7427 

This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and 
Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more 
accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/open_access_etds
https://pdxscholar.library.pdx.edu/etds
https://pdxscholar.library.pdx.edu/open_access_etds?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5553&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/410?utm_source=pdxscholar.library.pdx.edu%2Fopen_access_etds%2F5553&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/open_access_etds/5553
https://doi.org/10.15760/etd.7427
mailto:pdxscholar@pdx.edu


 
 

Detecting Reinforcement Patterns in the Stream of Naturalistic Observations of Social 

Interactions 

 

 

by  

James Lamar DeLaney 3rd  

 

 

A thesis submitted in partial fulfillment of the 

requirements for the degree of 

 

Master of Science 

in 

Psychology 

 

 

Thesis Committee: 

Thomas Kindermann, Chair 

Jason Newsom 

Ellen A. Skinner 

 

 

Portland State University



 
  

 
i  

 
 

Abstract 

 

How do consequences affect future behaviors in real-world social interactions? 

The term positive reinforcer refers to those consequences that are associated with an 

increase in probability of an antecedent behavior (Skinner, 1938). To explore whether 

reinforcement occurs under naturally occuring conditions, many studies use sequential 

analysis methods to detect contingency patterns (see Quera & Bakeman, 1998). This 

study argues that these methods do not look at behavior change following putative 

reinforcers, and thus, are not sufficient for declaring reinforcement effects arising in 

naturally occuring interactions, according to the Skinner’s (1938) operational definition 

of reinforcers.           

 This study presents the conceptual and technical development of an algorithmic 

strategy and web-app used to restructuring naturalistic observations in a way that can be 

used to assess behavior change as a function of putative reinforcers. I demonstrate this 

strategy by re-examining some of the hypotheses Sage and Kindermann’s (1999) study on 

contingency patterns across fifth and sixth grade students.    

 Using methods of generalized estimating equations (e.g. Liang & Zeger, 1986) 

and Allison and Liker (1982) z-scores, this study found full support for reinforcement 

effects of Social Approval for children’s Off-Task classroom behaviors, and partial 

support for Social Approval following On-Task behaviors. Social Disapproval was shown 

to reinforce Off-Task behaviors, contrary to expectations. This paper concludes by a 

comprehensive discussion of these results and directions for future modifications of these 

reinforcement detection strategies.  
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Chapter 1 

Introduction 

 

A behavioristic view of development focuses on the ways in which environments 

can provide conditions for individuals to grow behaviorally and to maintain growth over 

time (Schlinger, 2013). One set of corresponding mechanisms for this change are the 

immediate changes a behavior makes to its environments by eliciting specific 

consequences. It is the environmental consequences of behavior which can alter the 

probability of a behavior recurring in the future.  As defined by B.F. Skinner (1953), 

"…any consequence of behavior which is rewarding, or more technically, reinforcing, 

increases the probability of further responding (B. F. Skinner, 1953; p. 345)".  

 With a rich history in developmental and social psychology (see Gewirtz & 

Peláez-Nogueras, 1992; Maccoby, 2007 for historical reviews), the concept of social 

reinforcement is especially appealing because it defines an observable mechanism of 

social influence. Reinforcing events occur naturally during “the social exchange of some 

duration between two individuals “(Rubin, Bukowski, & Parker, 1998, p. 12). Because of 

this theoretical and practical appeal, numerous observational studies have examined 

social interactions to identify potential social reinforcers involved in social-

developmental processes. Widely recognized examples are friendship making (Putallez & 

Gottman, 1981; Snyder, Horsch, & Childs, 1997) and compliant and coercive familial 

interactions (Dishion et al., 1994; Strand, Wahler, & Herring, 2000). Additionally, 

observations have identified social consequences associated with more distal behavioral 

outcomes, such as future legal violations (Dishion, Spracklen, Andrews, & Patterson, 
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1996) and future academic achievement (Greenwood, Delquadri, and Hall, 1989). A 

common practice in these naturalistic observations is to assume that a consequence is 

reinforcing when it is positive in nature and when it follows the antecedent behavior 

immediately. The current thesis builds on the idea that, to date, no such naturalistic 

observational study has examined whether putatively reinforcing consequences actually 

reinforce the behaviors they follow by changing their future probability of occurring1. 

 Traditionally, it is common to test the claim that an event is a reinforcer by 

demonstrating its direct role in a process of learning, or ongoing behavior change. 

Behavioral experiments test this by determining if a behavior is function of its 

consequences. This is accomplished by manipulating pre-defined behavior-consequence 

relations (i.e. ‘schedule of reinforcement’) and then comparing subsequent behavior rates 

across these reinforcement schedules.  If behavior is sensitive to changes in these 

conditions, then the consequence has demonstrated the function of a reinforcer (Skinner, 

1956). But this is all investigated through experimental manipulation. To my knowledge, 

there are no existing methods used for detecting the function of consequences on future 

behaviors in naturalistic streams of observations.     

 The purpose of the current thesis is to design a measurement and testing strategy 

for the identification of reinforcers in any stream of naturalistic observations – based only 

on the observed effects a consequence has on the flow of behavior probability (see Figure 

1 for an illustration). The idea is to use Skinner’s definitional criterion that a reinforcer is 

an event that causes change in the probabilities of the behavior it follows. I have designed 

 
1Skinner was skeptical of the term probability for its statistical implications (See Johnson & Morris, 1987 

for a comprehensive analysis of Skinner’s use of the term) . Accordingly, I use the term proportion in 

reference to the quantities being measured and compared in this thesis.  
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such a measure through a recounting algorithm that compares behavior probabilities 

before and after all observations of potentially reinforcing events in natural streams of 

behavior. Figure 1 shows, as an example, three putatively reinforcing events (red circles) 

in an individual’s natural stream of observed behavior. 

Figure 1. General reinforcement detection measure (a.k.a. recounting procedure) 

 

 This thesis applies the recounting procedure to measure reinforcement patterns on 

the same behavior streams used in Sage and Kindermann’s (1999) study on children’s 

classroom contingencies. I apply the algorithm using an overall strategy, which identifies 

reinforcers across all observations and across all focal children, as though observations 

occur as a single overall series of observations. I re-frame some of Sage and 

Kindermann’s (1999) hypotheses so that reinforcement patterns, and not contingency 

patterns, are expected across observations. I structure the primary hypotheses around 

Skinner’s definition of reinforcers, and the secondary hypotheses inspired by traditional 

contingency detection analytic methods used in sequential analysis (Bakeman and 

Gottman, 1997).          

 The primary reinforcement hypotheses compare behavior proportions before and 

after putative reinforcers while the secondary independence hypotheses compare 
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behaviors after reinforcers to the overall probability of behaviors (following Bakeman & 

Gottman, 1997). I test the primary reinforcement hypotheses by using general estimating 

equations to account for differences in observations ordered across all focal children 

when measuring reinforcement at an ‘overall’ level of analysis. I test the secondary 

hypotheses by comparing conditional probabilities to overall ‘base-rate’ probabilities 

obtained from three different contingency tables from the transformed (i.e. recounted) 

observations. I use a binomial z test for lagged dependence with the Allison and Liker 

(1982) corrections for each of these hypotheses. All tests are freely available to 

researchers via an R Shiny application (Chang, Cheng, Allaire, Xie, & McPherson, 2016) 

that I plan to distribute on a university website.       

 This thesis is structured to provide conceptual and practical overviews, addressing 

the ‘why’s’ and ‘how’s of the recounting procedure available in the Shiny web app and 

used to address all research questions. Accordingly, the literature review outlines theory 

used to guide observations of reinforcers, and the types of decisions and methods used to 

structure sequential observational datasets. The next chapter details the purpose of the 

study, by reviewing Sage and Kindermann’s (1999) study on classroom contingencies and 

demonstrating why this needs to be revisited from a perspective of reinforcers. This 

chapter introduces the research questions and hypotheses used to re-evaluate Sage and 

Kindermann’s study from the perspective of reinforcers as events that cause change in 

observed behaviors.          

 I follow this chapter by the Methods section which has been broken down into 

three chapters. The first methods chapter provides details of the dataset while the second 

and third methods chapters provide details on the analysis strategies and their 
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implementation in the Shiny web app. This section is followed by the chapter on the 

Results, which begins by reviewing the analyses strategies and research questions, and 

then systematically presents the results to each research question by testing each primary 

and secondary hypothesis. This thesis concludes with a discussion chapter that overviews 

the strengths and weaknesses of the current study and outlining future directions and next 

steps for reinforcement detection in naturalistic observational datasets.  
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Chapter 2 

Literature Review 

 

“Any consequence of behavior which is rewarding, or more technically, 

reinforcing, increases the probability of further responding“ (B. F. Skinner, 1953; p. 345). 

This quote provides the basis for conceptualizing and measuring naturally occurring 

reinforcers as proposed in this thesis. While there are many ‘post-Skinnerian’ theories of 

reinforcers (e.g., Killeen, 1994; Watson, 1997; Strand, 2000; McDowell & Caron, 2010; 

Gallistel, Craig & Shahan, 2014), these are all deeply rooted in experimental applications 

of operant conditioning. As the current study focuses on measures of reinforcers based on 

changes in behavior along the stream of naturalistic observations – and not direct 

measures of the operant conditioning process – I do not discuss these theories in the 

literature review.  I redirect the interested reader to Appendix A for annotated studies 

using the principles of operant conditioning in studies of children’s classroom behaviors.  

 By relying on Skinner’s original operationalization of reinforcers, the scope of the 

literature review will be restricted to fundamental behaviorist concepts, which justify and 

guide the use of observational methods to detect potentially reinforcing events.  

Accordingly, I use Skinner’s original principles to introduce the fundamental concepts 

underlying the selection of observable variables and their sequential ordering across time. 

 The literature review is divided into three sections. I begin the literature review 

chapter by introducing key terminology from Skinner’s learning theory, and when 

appropriate, their learning theoretic concepts and assumptions. The second section 

overviews the necessary steps for observing social reinforcers in a stream of naturalistic 
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observations and reviews some of the common observational systems and practices used 

to construct the types of datasets this thesis targets for its proposed reinforcer analysis. 

Finally, the third section provides a brief conceptual overview of the four elements 

comprising the meaning of naturally occurring reinforcers – as I use it in this thesis and 

the analysis.          

 It is the goal of the literature review to inform potential users of my measure on: 

a) the background of reinforcers as learning mechanisms, b) the logic behind structuring 

an observation most appropriate for such an analysis, and c) the reason for conducting a 

test of reinforcer effects on natural behavior-consequence relations as they occur in 

natural settings. These three sections provide the necessary information and logic to apply 

the proposed program to any set of observations – regardless of setting or the nature of 

variables – but also, argues for the specific case of testing social reinforcers in the manner 

and settings for which they may most likely act as learning mechanisms in ‘real-world’ 

social-developmental processes.     

Defining Functional Relations between Antecedent Behaviors and Consequences 

Traditionally, a claim of reinforcement involves the effects of particular 

environmental events (i.e. target stimulus or focal stimulus) on a particular behavior (i.e. 

target or focal behavior). Under the assumption that behaviors and stimuli can be 

meaningfully organized into discrete units, the traditional approach to detecting 

reinforcers relies on looking for stimuli which relate to changes in the frequency of 

behavioral units, across time. The following few paragraphs highlight some behavioral 

assumptions and definitional features, which are critical in a reinforcer analyses, 



 
  

 
8  

 
 

especially for sequentially ordered observations.       

 Target variables. According to reinforcement theory, any behavior is susceptible 

to reinforcement and any event can be a reinforcing stimulus. Frequency based measures 

of the reinforcing stimulus and target behavior categories serve as the sole dependent and 

independent variables of a reinforcer analysis (Skinner, 1953; p. 35). Coming from a 

mechanistic meta-theoretical perspective (Skinner et al., 2015, chapter 7, p. 4), Skinner’s 

notion of reinforcers focused only on the observable – and does not concern indirect 

behavioral measures, such as self or other reports of behaviors. As applied to 

psychological theory, this relegates the mechanism of reinforcers to the behavioral 

components of psychological processes. Skinner (1953) remarked on the complexity of 

organizing (and selecting) an appropriate set of physical gestures into a category of 

behaviors (p.62-68) – and simplified this process by defining classes of behaviors 

mechanically (e.g., button press, or lever pull). As noted by Bakeman and Gottman 

(1997) observational studies often categorize behaviors according to extant theory and 

practical utility (p. 26), a topic I revisit in the following section of this chapter.  

 Sequential relations between target behaviors and events. Traditionally, 

Skinner’s definition of a reinforcer specifies a sequential criterion for all independent 

variables to be eligible ‘reinforcer candidates’ – that is to say, a stimulus can be a putative 

reinforcer only if it follows the occurrence of a behavior. Accordingly, operant 

conditioning theory assumes that any target behaviors can be separated into observable 

‘units’ according to what precedes (i.e. antecedents) or follows (i.e. consequences) each 

event in a behavior stream across time (Skinner, 1953). Skinner made this assumption 

when defining the occurrence of a reinforcing occasion “…conditioning takes place 
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presumably because of the temporal relation only, expressed in terms of the order and 

proximity of response and reinforcement” (Skinner, 1992, p. 273). Specifically, a target 

stimulus must follow behaviors in the original order of events to affect future behaviors 

as a reinforcing consequence. While there is debate amongst contemporary behaviorists 

as to how direct and immediate a stimulus must be to qualify as a consequence (for a 

discussion, see Lattal & Poling, 1981), the predominant line of thought conceptualizes 

behavioral series in terms of “lags”. As this project does not use lags to detect reinforcers, 

I redirect the interested reader to Sizemore and Lattal (1977) for a discussion on this 

sequential criterion and its relation to other basic learning concepts, such as contingency.  

 Functional relations between target behaviors and events. According to operant 

conditioning theory, an environmental consequence can affect behaviors in one of two 

ways. When behaviors increase in frequency following a consequence, then this 

consequence (stimulus) is a reinforcer because it exhibits a reinforcing effect on 

behaviors. When behaviors decrease in frequency following a consequence, then this 

consequence (stimulus) is a punisher because it exhibits a reinforcing effect on behaviors. 

 Skinner (1953) extended this simple classification of effects also to combinations 

of consequences (i.e. differential reinforcement) and to the effects of either removing 

reinforcers to decrease behavior frequency (i.e. extinction) or removing a punishing 

consequence to increase behavior frequency (i.e. negative reinforcement). One issue 

deserves mention in this regard. In real-world situations, researchers often focus on 

patterns of reinforcement, or differential reinforcement schedules. I direct the reader to 

Appendix A for applications of differential reinforcement to modify classroom 

behaviors). This thesis focuses on identifying the positively reinforcing and punishing 
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effects for one observed consequence at a time, and not the effects of combined or 

cumulative reinforcing events (nor of the removal of a prior consequence).  

Observing Social Reinforcement in Natural Settings 

A test of applied psychological theory is whether it is of use in the “real” world. 

In the case of reinforcers, this test of applied theory concerns ‘real-world’ environments. 

Specifically, two features of real-world environments demand consideration when 

examining reinforcers in applied theory. The first feature comes from Skinner’s (1953, 

1969) theory of operant conditioning, which rests on the behaviorist assumption that 

environments control behaviors via sequential interactions, such as antecedent prompts 

and reinforcing consequences. A second feature of environments is that they control the 

availability of reinforcers.         

 The purpose of many naturalistic observations is to determine how likely 

reinforcers are to occur in the real world, without any-experimental controls or 

manipulations. Accordingly, it is necessary to select observational settings where 

reinforcement is most likely available – in order to capture enough observations to test 

the putative reinforcer for its functional effects on future behaviors. This statement needs 

little explanation for reinforcers that occur in a highly predictable and controllable way, 

such as food contingent on lever pulling or other laboratory tasks. For naturally occurring 

social reinforcers, however, observational researchers must account for a few additional 

considerations in order to maximize the number of observations of potentially reinforcing 

events. The following few paragraphs explore these considerations.   

 Social Reinforcers. A social reinforcer occurs under a scenario: “(when) the 
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behaviors of two (or more) people can provide the mediating conditions for future 

behaviors of both (or more) interactants” (Skinner, 1953; p. 299). Observing social 

reinforcers requires observing social interactions in such a way that behaviors of one 

person can be distinguished from the consequences provided by their social partners. This 

is a matter of designing an appropriate observational strategy, or the set of methods used 

to sample observations and translate these observations into a dataset suitable for 

statistical analyses, via a coding scheme. Accordingly, to analyze social interactions for 

social reinforcers it is necessary for naturalistic observational strategies to: a) sample 

situations in which social interactions are most likely and b) decompose the interaction 

into discernable behavior-consequence patterns. In Skinner’s words:  

We may analyze a social episode by considering one organism at a time. Among 

the variables to be considered are those generated by a second organism. We then 

consider the behavior of the second organism, assuming the first as a source of 

variables. By putting the analysis together, we reconstruct the episode. The 

account is complete if it embraces all the variables needed to account for the 

behavior of the individuals (Skinner, 1953; p. 304). 

Coding social behavior in the natural series of events. A continuous event-

coding sampling strategy lends itself most directly to the analyses of behavior-

consequence ordered pairs. Bakeman, Deckner and Quera (2005) describe an event (or 

categorical) coding system as one which uses a set of codes to capture all behaviors and 

events that occur during an observational ‘episode’ (p. 397). Specifically, a continuous 

event sampling procedure captures each behavior and consequence as the stream of 
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behaviors unfolds across time (Farmer & Schoenfeld, 1966; Lattal, Abreu & Rodrigues, 

1997). This contrasts with event interval sampling methods used in early behaviorist 

studies (see Kazdin & Klock, 1973; Pfiffner, Rosen, & O’Leary, 1985). These sampling 

strategies divide an observation into equally spaced intervals a-priori and fit one behavior 

into each ‘unit’. When the goal is to identify natural reinforcing social behaviors, as in the 

current case, it seems plausible to consider observations using either strategy – if the 

strategy records the behavior and events of interest as they unfold in their natural and 

ordering across time.                                                                                                                                                                  

 Common social interaction observations systems. Observational datasets 

oftentimes include more information than is necessary for a simple reinforcer analysis. 

This is especially true for observations of social interactions. According to Altman 

(1974), these observational datasets often use process-oriented behavior systems and 

contain information regarding: 1) the source of antecedent behavior (i.e., ‘actors’), 2) the 

source of social consequences (i.e. partners), 3) the order of events (i.e., antecedents and 

consequences), and 4) an indicator of time or duration of the events (p. 236). 

Observational datasets using these coding systems have adequate information to re-

construct ‘the social episode’ for the analyses of socially reinforcing interactions.   

 Process-oriented behavior systems usually use a focal person sampling strategy to 

obtain a single behavior record for each participant in an observation (Baltes, 1988). This 

strategy requires an observer to focus on the behavior of one person at a time and to 

register all of this person’s social partner’s behaviors as they interrupt the focal person’s 

stream of behaviors (see  Soloman & Whaler, 1973; Andrews & Kozma, 1990). This 

sampling strategy results in a dataset containing a stream of behaviors as well as 
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identifier for the focal person’s and their social partners. It retains the natural order of 

events as they occur during the observations      

 One example is the Interpersonal Process Coding System (Rusby, Estes, & 

Dishion, 1991). It uses a five-digit code for each focal person’s record of observations; 

where each digit of the behavioral code represents: a) the focal child, b) the behavior, c) 

its status (e.g., initiation or response), d) the ID of the social partner and e) the duration of 

behavior (p. 6). Antecedent consequence ordered pairs are identifiable when partner 

response codes (usually as categories of partners) follow a child’s behavior in the natural 

order of events. If partner ID’s are included, a reinforcer analysis of these datasets may 

easily recode partner’s identification variables into categories (e.g., parents, peers, etc.) – 

thus allowing for a continuous stream of behavior-consequence observations across all 

focal participants.          

 The Interpersonal Process Coding System contrasts with systems using the 

behavior-consequence contingency as a unit of analysis. Instead of independently 

recording the behaviors of focal person’s and their social partner behaviors, Good and 

Brophy’s (1970) scheme for observing child-teacher interactions, for example, records 

the ordered behavior-consequence pair as the unit of analysis. This system uses a 

spreadsheet format with variables for the onset and offset (i.e., duration) of behaviors 

involved in the behavior-consequence pair. A reinforcer analysis of these datasets would 

require a substantial amount of data-preparation to remove behaviors from the 

contingency codes, in order to look for future change in the antecedent focal child’s 

behavior.             

 The aforementioned coding systems have received substantial use in the study of 
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social influences (Dishion, Duncan, Eddy, Fagot & Fetrow, 1994; McDowell & Caron, 

2010), in families and educational settings (e.g. Baker, 1999). Particularly, these systems 

are suited for answering questions regarding the probabilistic contingency – or the 

probability that a specified consequence occurs given the antecedent behavior 

(Kindermann & Skinner, 1988, p. 69)2.  Using a statistical program (e.g. GSEQ; Quera & 

Bakeman, 1998), this analysis strategy ‘extracts’ all target behaviors from the ongoing 

series of observations. This subset of behaviors serves as the ‘condition’ for measuring 

the probability of a target consequence – and a claim of contingency is made by 

comparing this probability to that of the consequence occurring (unconditionally) after 

any behavior in the observations. This analysis addresses the availability of consequences 

within certain environments but not the functional effects on future behaviors of 

individuals. Consequently, the complicated structure of these observational systems is 

suitable for contingency analyses, but may prove more challenging for a reinforcer 

analysis of ongoing behavior change.        

 An alternative way an observational system can represent the potentially 

reinforcing exchange is to use a set of rules that dictate how features of the exchange 

(e.g., duration, onset, offset, initiation, response, etc.) are embedded into the coding of 

behavior streams. As Bakeman and Quera (1995) remark, such coding rules are often 

necessary when an observation stream contains a mix of mutually exclusive and 

exhaustive codes. Sage and Kindermann’s (1999) study on classroom contingencies, for 

example, used separate sets of codes for the behaviors of focal person’s behaviors and 

 
2 Note, that according to Gewirtz (1997, p. 122), the term probabilistic contingency is typically used in 
reference to non-experimental contingencies. Gewirtz notes that this term is typically used to imply an 
ordered and dependent relation between stimulus and response (e.g., S-R, R-S, S-S).  
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that of their social partners. In this scheme, the transition from one ordered pair of codes 

to another (e.g., behavior-behavior, behavior-consequence), marks the onset and offset of 

behaviors. When used in conjunction with rules for re-coding behaviors, such a scheme 

allows for a frequency-based contingency analysis as well as for the analyses of 

reinforcer effects – with minimal requirements for restructuring the observations – so 

long as the coding rules are used in the interpretation of results and the behavior category 

system consists of mutually exclusive and exhaustive categories. The proposed program 

will accept datasets using either strategy for re-constructing the social episode within the 

stream of naturalistic observations.  

Real World Reinforcement Patterns 

Since the early 1970’s, a small strand of social-developmental studies attempted 

to develop detection methods for naturally occurring reinforcers using observational and 

statistical methods. These studies do not typically rely on naturalistic observations – these 

studies (e.g., Patterson, 1974; Snyder & Patterson, 1986; Strand, Wahler, & Herring, 

2001) applied detection methods to reinforcers as they occur during short-term 

observations within quasi-experimental settings. This is a way to control the occurrence 

of behaviors as well as of social reinforcements. I mention this line of research to 

illustrate two applied dimensions of environmental control as it pertains to the study of 

reinforcement in natural settings.        

 The first dimension of environmental control is that of setting. Applied behavioral 

interventions study ‘real-world’ reinforcers – where ‘real-world’ denotes that the 

demonstration of reinforcers occurs in non-laboratory settings, such as schools or clinics. 
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These studies test reinforcers between partners who share naturally occurring bonds, such 

as teachers and their pupils, in natural school and classroom settings, but do so by 

controlling the immediate behavior consequence contingencies between a focal person’s 

behavior and the consequences provided by their social partners. One may call such 

studies naturalistic simulations. Typically, a researcher instructs a social partner to 

provide potentially reinforcing consequences systematically, rather than relying on social 

partners’ natural tendencies. Appendix A illustrates some of these strategies.  

 The second dimension is that of relations. There are three components to the 

natural relations between behaviors and their social consequences. These components are: 

1) the social/emotional bonds between partners, 2) the immediate behavior-consequence 

contingency, and 3) the functional effects a consequence has on future behaviors. Applied 

behavioral interventions, for example, may manipulate behavior-consequence relations 

between real-world partners in real-world settings. In their (1973) study on classroom 

reinforcers, Soloman and Whaler did just this, by instructing carefully selected children 

to socially praise or ignore the on or off-task behaviors of their disruptive peers. This 

study took place in a real-world classroom and only changed the immediate behavior-

consequence relations between children to determine the function of these consequences 

on future behaviors (see Appendix A for details).     

 The quasi-experimental social-developmental studies have studied the natural 

reinforcement relations between social partners. The bonds between these partners occur 

naturally, such as in the case of parents and siblings. These studies manipulate the setting 

by observing interactions in laboratories or according to structured tasks. A common goal 

of these methods is to heighten the occurrence of naturally low frequency behaviors, such 
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as violent or aggressive behaviors. Early laboratory studies (e.g. Azrin & Lindsley, 1956; 

Patterson & Anderson, 1964; Titkin & Hartup, 1965), have looked for functional 

differences in the effects of social approval from children sharing ‘self-selected’ natural 

relations, such as friends or peer groups, but did so by manipulating behavior-

consequence relations via experimental instructions. Finally, those studies using 

contingency detection methods, such as Sage and Kindermann (1999),  have studied 

differences in self-selected social partners under real-world settings but focused on the 

immediate behavior-consequence sequential contingency, without testing the assumption 

that these contingencies are indeed reinforcing. 

Conclusion  

The goal of the current project is to detect reinforcer effects observations. The 

proposed program offers a strategy for assessing all four features of naturally occurring 

reinforcers: 1) naturalistic setting, 2) naturalistic social-partner relations, 3) naturally 

occurring sequential relations, and 4) naturally occurring functional effects of 

consequences on future behaviors. The program aims to facilitate analyses in naturalistic 

datasets studying natural behavior-consequence relations in their naturally occurring 

social and physical environments.       

 This project draws inspiration from the idea that examining antecedent-

consequence probabilistic contingency analysis of putative reinforcers (Bakeman & 

Quera, 1995) can benefit from the analysis of actual reinforcement effects. These 

combined analyses can rule out behavior-consequence relations that occur contingently 

with probabilities greater than chance but have no influence on the occurrence of future 
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behavior. The goal is to demonstrate a novel method to detect naturally occurring 

reinforcers under each of the real-world features of naturally occurring social-interaction 

episodes.  
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Chapter 3 

Purpose of the Study 

The current study has as its primary goal to develop a reinforcement detection 

algorithm that allows researchers to identify patterns of naturally occuring reinforcement 

in observational datasets of naturalistic sequential observations. It is estimated that about 

a hundred or so studies exist that use naturalistic sequential observations of this type. The 

strategy is based on Skinner’s (1938) definition of reinforcement: "…any consequence of 

behavior which is rewarding, or more technically, reinforcing, increases the probability of 

further responding” (B. F. Skinner, 1953; p. 345). A second goal of the project is to 

introduce a flexible web-application to accommodate the many types of observational 

data sets. This study uses the data from Sage and Kindermann (1999) study on classroom 

contingencies in order to test for reinforcers and punishers. I adapt the research questions 

and hypotheses of Sage and Kindermann’s study to fit reinforcement patterns rather than 

contingency patterns. Because my research questions concern reinforcement (and not 

contingency), I draw from the experimental literature as support for potential 

reinforcement effects of given behaviors.   
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Figure 2. Reinforcement detection measure (a.k.a. recounting procedure) (Figure 1 

reprint) 

 

This chapter is divided into four sections. The first section provides an overview 

of Sage and Kindermann’s (1999) research questions and results concerning behavioral 

contingencies. The second section takes a closer examination of the difference between 

contingencies and reinforcers, specifically, focusing on what it means to re-examine 

classroom contingencies as potential reinforcers. The third section builds from these 

concepts and formally states the research questions and hypothesis of the current study. 

Finally, I conclude the chapter by priming the reader for the methods section of the thesis, 

which takes a more general case for examining reinforcers by introducing general 

methods and software that can re-examine contingencies as reinforcers, for any set of 

observations.  

Classroom Contingency Patterns 

Sage and Kindermann’s (1999) study on classroom contingency patterns asked a 

simple question: do classroom behaviors depend on their social consequences? A prime 

example is of a disaffected child and their off-task behaviors. Do the child’s off-topic 

jokes depend on the approval they get from their classmates? Does this child’s on-task 

behavior depend on whether the teacher gives an approving response?    
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 To address these questions, Sage and Kindermann observed a typical classroom 

for a period of two weeks and then analyzed these data for sequential contingency 

patterns, using lag-sequential analysis (see Bakeman & Quera, 1995). Lag sequential 

analyses refers to a suite of these techniques which are used to determine the probability 

of one observation following another in the stream of observations. These are oftentimes 

used in the analysis of ‘probabilistic contingency patterns’ taken from the stream of 

naturalistic observations (Ator, 1999). Because the classroom comprises a variety of 

behaviors and activities, Sage and Kindermann focused on a few behavior-consequence 

patterns, namely, that On and Off-task behaviors would both be followed by social 

approval (e.g., laughter or praise).        

 To account for context dependencies, Sage and Kindermann (1999) differentiated 

behavioral contingencies amongst classroom social partners. These social partners 

provide different social contexts, suspected to provide different ‘mediating conditions’ for 

reinforcement processes. Specifically, Sage and Kindermann focused on three categories 

of social contexts: peer group members (or close affiliates), other classmates, or the 

classroom teacher. The peer group context was expected to be the main context for which 

reinforcement occurs for On and Off task behaviors, while the teacher was expected to be 

the primary source of reinforcement for On-task behaviors.  Students were classified as 

having low or high engagement levels, as were their peer groups.    

 Contrary to expectations, Sage and Kindermann’s (1999) study did not find the 

clear support for differences between peer group members and non-members. For On-

Task behaviors, Social Approval was a significant consequence within highly engaged 

peer groups as well as in interactions with their teachers. In groups of low engaged 
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students, there was only support for teacher’s approval for On-Task behaviors. Peers 

(group members or other students) were not found to be significantly related to different 

contingencies for On or Off-Task behaviors.  

Contingency vs Reinforcement in Classroom Observations 

While compelling in its own way, Sage and Kindermann’s contingency analysis 

does not directly speak to reinforcer effects of Social Approval or any of the other 

behaviors investigated in their study. Instead of directly testing how behavior changes in 

a stream of observations, lag-sequential analyses test whether the underlying antecedent-

consequence sequential structure allows for a better prediction of target behaviors, than 

not knowing this structure at all (Bakeman and Quera, 1995). In terms of Sage and 

Kindermann’s (1999) study, all lagged sequential hypotheses concerned predicting 

putative reinforcers (e.g. consequences) for targeted antecedent behaviors. This same 

technique can be applied to test the reverse, that is, predicting behaviors as consequences 

from potential reinforcers as antecedents.        

 No matter how one looks at a lag-sequential analyses, the standard approach is 

limited from a reinforcement perspective, namely, in that it does not look for changes in 

the dependent variable across the times that reinforcement occurs. This strategy assumes 

that ‘probabilistic contingencies’ are necessary and sufficient criteria for sifting 

reinforcers from other behaviors. This is assumption may not always be the case. On the 

contrary, a putative reinforcer may have no systematic correlations with behaviors under 

real-world conditions. In this way, the only way to test a reinforcer is directly, that is, by 

its effects on future behaviors, regardless of the probability of the immediate behavior-
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consequence contingency.         

 The dependent variable in a lag sequential analysis is a specific observation at 

time t+l (conventionally called the consequence) and the independent variable is a 

specific observation at time t (conventionally called the antecedent), where l is a lag. For 

the analysis of behavior-consequence contingencies, as in Sage and Kindermann’s (1999) 

study, hypotheses were framed in terms of lag 1 contingencies, where the consequence is 

the potential reinforcer. Note, that this can be analysis can reframed so that the 

consequence is a behavior (and the antecedent is the consequence), this approach is 

discussed in more details in Appendices G and H. For illustrative purposes, I focus on 

Sage and Kindermann’s approach for testing the consequence as reinforcers.  

Figure 3. Conceptual depiction of contingency detection via lag-sequential analysis 

 

 Figure 3 shows a three-step conceptual process of identifying and sorting all 

lagged pairs in the stream of observations. The first step is to identify the order of all 
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observations using an index t (see Chapter 5 for an alternative strategy for indexing with 

lags). The second step is to pair each observation at time t with the next observation at 

t+1. Note, as is discussed latter in this chapter and throughout the thesis (see Chapters 5 

and 7), this method naturally introduces dependency by resampling the same 

observations. Thus, the consequence in the first pair of Figure 3 (e.g., observations 1 and 

2) becomes the antecedent at for the second pair (e.g., observations 2 and 3). Finally, the 

third step is to tally the number of observations for each pairing and represent this in a 

contingency table; where the rows show the dependent variable at time t and the  

 columns show the dependent variable at time t+1.      

 Table 1 shows the counts of all pairs from Figure 3 (see Chapters 5 and 8 for a 

demonstration of how this table can be broken down even further by summing across the 

non-target behaviors for the antecedents and consequences). This full 3 x 3 table is then 

used as the basis for computing the necessary proportions to test whether the target 

Table 1. All lag-one conditional frequencies from Figure 1 
  Yt+1 

  Green Red Yellow 

 
  
Yt  
 

Green  
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consequence is more likely to follow the target antecedents, than any other event in the 

stream of observations.        

 After constructing the contingency table for lagged dependence, specific 

hypotheses can be tested with the Allison and Liker z-score (1982). Originally proposed 

by Sackett and colleagues (1979), this test was latter adapted by Gottman (1980), and 

then corrected by Allison and Liker (1982), who noted an error in the original calculation 

for the standard errors. The Allison and Liker z-score is a statistical test for sequentially 

dependent observations. It compares lag-conditional proportions and overall base rate 

proportions and adjust for sequential dependence by its standard error of the difference. 

In terms of Sage and Kindermann’s study, it was used to test the target consequence given 

a target antecedent by the overall proportion of times the target consequence occurs. 

Equation 1 shows the Allison and Liker z-score.  

Equation 1. Allison and Liker (1982) binomial z-score for lag analysis  

 

𝑧1 =  
𝑃𝑟(𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡𝑡+1 | 𝑥 = 𝑇𝑎𝑟𝑔𝑒𝑡𝑡) − 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡𝑡+1 )

√
𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡) (1 − 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡) )(1 − 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟 )

(𝑁 − 1) ∗ 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟 )

 

Reframing Contingencies to Reinforcers. From a reinforcement lens, a closer look 

at the process depicted in Figure 3 reveals an important missing feature, namely, 

contingency does not indicate when a consequence is likely to occur along the series of 

observations. It is clear from the figure that more green circles occur after red circles, 

towards the end of the stream of observations. This pattern indicates reinforcement occurs 

but cannot be detected by the lag-one contingency analysis for the consequence. This is 
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because the lag-one contingency analysis computes the dependent variable lagged at one 

direction at a time (e.g., DV lagging behind or ahead of the IV), and at one step (e.g. lag 

forward one step, two steps, etc.). A contingency analysis can possibly detect this pattern 

by examining multiple lags (see Gottman and Roy, 1990, chapter 4 for a comprehensive 

discussion), and combining a ‘lag-forward’ and ‘lag-backward’ approach (see Appendix 

G for details), but these strategies fall outside the scope of this thesis, as explained latter 

in Chapter’s 5 and 7.          

 This thesis presents an alternative to the contingency detection algorithm that 

specifically accounts for where behaviors are more likely to occur along the stream of 

observations. To do this, I present a reinforcement detection strategy that can be 

conceptualized as extending a lag analysis in both directions, and across behaviors in the 

stream of observations. While the technical details of the reinforcement detection 

procedure are reserved for the next chapter, it is easy to conceive of how a contingency 

hypothesis can be reframed from this reinforcement perspective, and how this reframing 

may shed new light on past studies and observations.    

 Sage and Kindermann’s (1999) study is a good springboard for reframing 

contingency detection in terms of detecting reinforcers. Their study looked at differences 

between social partners in social contingencies, for example. One such question was 

whether Social Approval more likely to immediately follow On-Task behavior for 

children’s peer group interactions than interactions with other classmates? If we are to 

remove the peer group component and look specifically at reinforcers, we can reframe 

this question as whether On-Task behavior is more likely to occur following Social 

Approval than it is before Social Approval? In this thesis, I rephrase the research 
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questions from Sage and Kindermann’s study in terms of proportions; without reference 

to any other consequences nor the contingency between the target behavior and 

consequence.   

Research Questions and Hypotheses 

The main hypotheses of this thesis test the assumptions of Kindermann and Sage’s 

(1999) study, namely, that naturally occurring Social Approval in the classroom 

reinforces On-Task behaviors and Off-Task behaviors, and that Disapproval punishes 

Off-Task behaviors. My research questions go beyond this study, and each set of 

hypotheses concern the effect of the consequence on behaviors. Each research question 

contains a primary hypothesis which posits that the probability of a target behavior will 

be greater after reinforcers and will be greater before punishers, than before these 

behaviors. The primary hypotheses are based on Skinner’s (1953) definitional criteria of 

reinforcers, which states that "…any consequence of behavior which is rewarding, or 

more technically, reinforcing, increases the probability of further responding (B. F. 

Skinner, 1953; p. 345)".         

 Additionally, each research question contains a secondary hypothesis which tests 

for an association between the effect of a putative reinforcer and a behavior by comparing 

the overall proportion of the target behaviors to proportion of target behaviors occuring 

after reinforcers. These secondary hypotheses draw inspiration from lag-sequential 

analyses, and the conceptualization of the reinforcement detection procedure as an 

extension of this analysis strategy. All secondary hypotheses are tested three times, across 

three different contingency tables based on the recounted stream of observations (Chapter 
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5 for an elaboration of these tables). Finally, I frame each hypothesis in terms of an 

‘overall’ strategy, that is, where behaviors are classified as before or after reinforcers 

along one ‘overall series’, across all focal children and their social partners, and 

observational episodes. In this way, each hypothesis is expressed as if all observations 

belong to a single person across a single observational episode.      

Research Question 1: Reinforcers of Classroom Behaviors. Does the occurrence of 

direct social approval act as a reinforcing consequence for a child’s behaviors? 

Social affirmation has received the most experimental attention as a positive 

reinforcer for a variety of classroom behaviors. To demonstrate these effects in 

classrooms, researchers have drawn upon single-subject experimental studies in order to 

construct classroom interventions and behavioral management strategies for use in 

general education classrooms (for a comprehensive discussion see Honer, Carr, Halle, 

McGeem, Odom, & Wolery, 2005). Using the teacher to ‘distribute’ praise, a large 

number of class-wide single-subject experiments and applied classroom implementations 

have shown that social approval is generally an effective social consequence for 

increasing engage classroom participation and performance (for reviews, see Partin, 

Robertson, Maggin, Oliver, & Wehby, 2009 ; Hutchings, Martin-Forbes, Daley, & 

Williams, 2013). That is, despite variation behavior-consequence delivery ratios, 

following specific behaviors, or delivered in public or private settings, Social Approval is 

an effective means of increasing desired classroom behaviors (Houghton, Wheldell, & 

Sharpe, 1990 ; Sutherland, Wehby, & Copeland, 2000 ; White, 2010 ; Kazdin & Klock, 

1973;  Wheldall, Bevan, & Shortall, 1986 ; Broden, Bruce, Mitchell, Carter, & Hall, 
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1970 ; Blaze, Olmi, Mercer, Dufrene, & Tingstrom, 2014). Consequently, naturalistic 

observations have shown that these relations hold outside intervention contexts, using 

measures of correlation between children’s active and overt learning behaviors and 

various types of praise for on-task behaviors (see Jenkins, Flores, & Reinke, 2015 for a 

review).  

Hypothesis 1: Occurrences of social approval will lead to an increase in Active On-Task 

behaviors when treating the entire Sage and Kindermann (1999) data set as a single 

uninterrupted series of events.        

 Stated differently, the overall probability of On-Task behavior will be lower 

before events of Social Approval than they will be afterwards. A primary test of this 

hypothesis uses general estimation equations on the recounted series to account for the 

dependency between observations while testing the difference between the probability of 

On-Task behavior before after Social Approval. A secondary analysis will use a version 

of the z test for lagged dependence to test the difference between On-Task behavior after 

Social Approval and On-Task behavior across all observations.    

 Justification of Hypothesis 1. This was a significantly contingent pattern in Sage 

and Kindermann (1999). Across all focal children and their social partners, those children 

who were visibly engaged in their learning were most likely to receive overt and direct 

recognition for their efforts. As experimental studies have shown that this type of 

recognition can lead to increases of on-task behaviors, it stands that this type of 

reinforcement pattern will also appear in the everyday stream of classroom behaviors.  

Hypothesis 2: Occurrences of social approval will lead to an increase in Active Off-Task 
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behaviors when treating the entire Sage and Kindermann (1999) dataset as a single 

uninterrupted series of events.        

 Stated differently, the overall probability of Active Off-Task behavior will be 

lower before events of Social Approval than they will be afterwards. A primary test of 

this hypothesis uses general estimation equations on the recounted series to account for 

the dependency between observations while testing the difference between the probability 

of Off-Task behavior before and after Social Approval. A secondary analysis will use a 

version of the z test for lagged dependence to test the difference between Off-Task 

behavior after Social Approval and Off-Task behavior across all observations, across the 

three contingency tables representations of the recounted stream of observations.  

 Justification of Hypothesis 2. This interaction pattern is at the heart of ‘deviancy 

training’ or social influence towards rule-violating behaviors (Dishion, Piehler, & Myers, 

2008). In their seminal 1999 study, Dishion and colleagues demonstrated that behaviors 

typical of social approval (e.g. laughter) is most likely to follow ‘rule-violating’ talk or 

behaviors in ‘deviant’ adolescent friendship dyads, compared to ‘normative’ friends. 

Moreover, the frequency of these patterns was predictive of future legal violations, ten 

years later. While these patterns may occur with less frequency under the teacher’s 

presence, it is still reasonable to assume that Social Approval from disaffected peer group 

members can act as a reinforcer for Off-Task behaviors in the classroom.      

Research Question 2: Punishers of Classroom Behaviors. Does the occurrence of 

direct Disapproval act as a punishing consequence for a child’s Off-Task behaviors? 

According to reinforcement theory, social consequences can determine whether 
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behaviors continue or stop under a given setting or under given environmental conditions. 

In classrooms, a child’s disruptive or overt Off-Task behaviors, are one of the most 

heavily reported ‘problems’ teacher’s face in managing their children (Partin, Robertson, 

Maggin, Oliver, & Wehby, 2009). Intuitively, it stands that direct Disapproval would 

effectively reduce a children Off-Task behaviors, especially, when this Disapproval 

occurs in public and comes from teachers. While the effectiveness of Disapproval as a 

punisher has received most evidence in parent-child interactions outside of classrooms 

(e.g., Patterson, 1972; Strand, Wahler, Herring, 2001), its appeal as a punisher intuitively 

extends to classroom interactions.  

Hypothesis 3: Occurrences of direct Social Disapproval will lead to decrease in active 

Off-Task behaviors when treating the entire Sage and Kindermann (1999) dataset as a 

single uninterrupted series of events.         

 Stated differently, the overall probability of Active Off-Task behavior will be 

higher before events of direct Disapproval than they will be afterwards. A primary test of 

this hypothesis uses general estimation equations on the recounted series to account for 

the dependency between observations while testing the difference between the probability 

of Off-Task behaviors before and direct Disapproval. A secondary analysis will use a 

version of the z test for lagged dependence to test the difference between Off-Task 

behavior after Disapproval and Off-Task behavior across all observations, across the 

three contingency tables representations of the recounted stream of observations.  

 Justification of Hypothesis 3. An interaction pattern that direct Disapproval 

followed Active Off-Task behavior was not a statistically significantly contingency 

pattern in Sage and Kindermann (1999). While this can easily lead to the expectation of 



 
  

 
32  

 
 

non-significant reinforcement patterns, it can also lead to the opposite expectation – that 

punishing events may occur ‘vicariously’ in classroom settings. In this way, a child’s 

future behavior receives influence by watching other children receive reprimands for 

negative or inappropriate behaviors. As an example, a specific child may engage in Off-

Task behavior to be met with teacher’s direct Disapproval (one event) -- after observing 

this exchange, other children may be less inclined to engage in actively disruptive 

behaviors. It is for this reason I do not want to state an expectation of non-significance. In 

fact, it may be that the ability to detect functional effects of non-contingent social 

consequences may become a primary contribution of this project.    

Outline of Methods 

This study introduces a method used to identify reinforcement patterns in 

naturalistic observations. Specifically, this method assumes that naturalistic observations 

are typically not structured in a way that easily accommodates comparing proportions of 

behaviors before and after reinforcers, but they can be reorganized to accommodate such 

goals. Alternatively, the proposed method is intended for any set of consecutive codes, in 

which one code serves as a putative reinforcer and another code as a target behavior (to 

be reinforced). This strategy has two components; a ‘classification’ piece and a 

‘measurement’ piece. The ‘classification piece’ is used to identify observations as 

occuring ‘before’ or ‘after’ reinforcers, for ‘targets’ or ‘non-targets’. This preserves the 

structure of the observations and labels observations according to reinforcers (e.g., before 

or after). The ‘measurement’ piece is used to calculate and compare proportions, while 

accounting for dependence in repeated observations.     
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 The reinforcement detection strategy fills a gap in the social interaction literature, 

whereby studies assume reinforcement patterns using lag-sequential analysis (see 

Bakeman & Gottman, 1997; Sackett, 1979 for traditional analytic approaches). The 

current study current project adds one more step to these traditional approaches; by 

grouping all observations before and after reinforcers. In this way, the end goal of the 

project is to demonstrate and distribute a strategy for detecting reinforcing events along 

any set of observations. Additionally, this thesis proposes a web-accessible software 

application that implements this detection strategy, for use on any observational dataset 

for research studies. This thesis demonstrates this strategy and web-application on a set of 

classroom observations collected by Sage and Kindermann (1999).   

 The methods section is divided into three chapters; each chapter describes an 

aspect of the applet’s design and reinforcement detection strategies. The first methods 

chapter describes the original purpose, setting and sample, observational strategy, and 

coding categories, used to construct the specific data set (Sage & Kindermann, 1999) 

used in the current study. I  describe the variables and the repeated measurement structure 

of the original data-file. I conclude this part with an example that illustrates the 

translation of the observational methodology (including the coding rules) to a dataset 

ready for a reinforcer analysis. The remainder of this chapter uses examples inspired by 

this dataset to illustrate the strategy developed to detect reinforcers.   

 The second methods chapter details the strategies used to classify observations by 

reinforcement patterns and test these patterns for statistical significance, following all 

primary and secondary hypotheses. In doing so, this chapter introduces the reader to a 

language used throughout the thesis to refer to the transformed (i.e. recounted) 
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observation series. Figure 4 (a repetition of Figure 1), shows the process of transforming 

an observation series using an ‘overall strategy’; in which an observational dataset is 

restructured to uncover potential reinforcement patterns without regards to the repeated 

observations within separate focal individuals or days of observations. The final product 

of the recounting procedure is a restructured dataset (called the recounted datafile) that 

can be used directly in count-based data analysis methods. This chapter concludes by 

overviewing the use of general estimating equations (Liang & Zeger, 1986) for binomial 

responses and Allison and Liker z – tests (Allison & Liker, 1982) for summary 

contingency tables, used to address all primary and secondary hypotheses, respectively.  

Figure 4. Overall reinforcement detection measure (Figure 1 reprint) 

 

 The third methods chapter concludes the discussion on methods by discussing the 

implementation and distribution of the reinforcement detection strategy. This chapter 

elaborates upon the concepts covered in the second methods chapter (e.g., recounted 

data-file, contingency tables, etc.), and specifically, the statistical techniques included in 

the Shiny web-app package (Chang, Cheng, Allaire, Xie, & McPherson, 2016) using the 

R language (R Core Team, 2016). This chapter focuses on the layout of the web-applet 
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and describes its features.  
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Chapter 4 

Methods 1: Description of the Dataset 

The current study investigates naturally occuring reinforcement processes using 

the dataset from Sage and Kindermann’s (1999) observational study on classroom 

interactions. Sage and Kindermann’s dataset comprise a two-week long series of 

classroom observations, balanced across lesson subjects, and with adequate observer 

reliability. The study used this dataset to examine sequential contingency patterns, 

namely, patterns in which potential reinforcers, such as social approval, were more likely 

to follow behaviors of an individual than could be expected by chance (see Bakeman & 

Gottman, 1997). Specifically, the study examined whether putatively reinforcing 

contingencies from the members of a child’s self-selected network of peers, classmates, 

or the teacher occurred with a higher likelihood than could be expected by chance.  

 The current study goes further and applies the reinforcement detection strategy on 

Sage and Kindermann’s (1999) dataset to determine whether these contingent 

consequences are reinforcers or punishers of children’s behaviors (see Chapter 2 for 

details). To give an example, approval contingencies for on-task behaviors are ostensibly 

supportive and reinforcing, even for children who are disaffected in class. This positive  

reinforcing effect may be especially noticeable when approval comes from a member of 

that child’s well-adjusted peer group. When coming from teachers, especially in front of 

classmates, this same act of social approval may have opposing punishment effects, and 

function more as a ‘kiss of death’, by embarrassing students and making active 
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participation less likely in the future (e.g. Tal & Babad, 1999)3. The current study uses 

Sage and Kindermann’s (1999) dataset as a basis for testing these potential reinforcer 

effects from known contingencies.         

 Sample and setting. This dataset contains 12,043 behavioral observations of 

focal child behaviors and partner consequences (coming from a member of that child’s 

independently identified peer group, from a non-group classmate, or from the teacher). 

Of the 25 children in the classroom, 22 agreed to participate in the original study. The 

observations were collected across 10 consecutive school days in a small mixed 4th and 

5th grade classroom located in the Pacific Northwest. Six trained observers participated in 

the study (following four months of observer training; inter-observer reliability was 

above Cohen’s κ = .8).         

 The classroom teacher organized learning activities according to an open learning 

structure – where learning materials were distributed across various teaching formats, 

such as group projects, traditional lecture. For example, children were usually not in pre-

assigned seats in the classroom but grouped themselves according to ongoing projects, 

even during lecture times. Observations were distributed about evenly across all learning 

activities (Math/Science, Language, Social Studies) as they occurred in the uninterrupted 

daily routines.         

 Observational strategy. All observations were audio re-corded using 

microphones and headsets. A focal person observation strategy (see Baltes, 1988) was 

used to record natural social interactions. On each day of observations, children were 

 
3 I re-direct the interested reader to Appendix A for more information on this phenomenon, and how it 
may or may not alter the reinforcing function of teacher praise.  
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assigned to a three-minute observation schedule, twice per day, where the order was of 

the observation segment was randomized daily. To ensure reliability, two observers were 

present during each observation session (reliability checks were performed on 

approximately 10% of the total observations according to pre-determined times in the 

random schedules). The observed classroom activities were balanced across mathematics 

and science, reading/writing, and social studies.     

 Coding Scheme. The coding scheme comprises two sets of mutually exclusive 

and exhaustive categories, one set for focal children’s behaviors (see Table 2), and a 

second set for the consequences provided from their social partners (See Table 3).  

 

Table 2. Focal children behavior codes 

Behavior Code Description Examples 

    On-Task 

Active 

‘OA

’ 

Making a visible or overt  

contribution to the 

classroom's learning activity 

a) Asking / Initiating / Commenting on class 

topics 

 

b) Working on Blackboard / Reading aloud 

 

c) Raising Hand / Smiling or laughing during on 

task conversation 

    On-Task 

Passive 

‘OP’ Working privately or non-

overt on-task behaviors 

T a) Taking notes and / or reading class 

textbooks or working on assigned class 

activity                                                        

b) Looking at teacher (or person speaking and 

/ or working on class related topic) / Working 

on computer 

     Off-

Task 

Active                      

‘XA

’ 

Disruption to on-task activity a) Interfering with others’ on-task work  / 

Making remarks unrelated to class topic  

b) Smiling or laughing in response to off-task 

conversation 
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     Off-

Task 

Passive 

‘XP’ Working and other nonsocial 

activities unrelated to class. 

a) Reading material or taking notes on 

material unrelated to class topic                                   

b) Looking away from teacher (or person 

speaking on class related topic) / Looking at 

peer speaking or working on something that is 

off task 

 

 

 

Table 3. Social partner behavior codes 

    Behavior Cod

e 

Description Examples 

Approval ‘A’ A display of direct 

affirmation of a focal child’s 

behavior (usually 

accompanied by emotion). 

a) Praising (e.g. ’That’s great!’)                          

b) laughing or smiling 

Cooperate ‘C’ A display of indirect 

approval to target child’s 

behavior. 

a) Complying with a request /imitating a 

social partner’s behavior 

b) Picking up a topic and continuing                                   

Factual 

Disagreem

ent 

DIS A difference of opinion of 

focal child (same topic, 

different ideas) 

a) Stating a fact / cooperative correction                             

b) Displaying skepticism of target children’s 

ideas. 

Disapprov

al 

D A display of direct  

disapproval to focal children 

behavior (strong  emotion) 

a) Ridiculing  a focal child                

b) Critiquing / Changing the topic                          

Ignoring I Not attending to a focal child's 

bid for attention 

a) Looking away from focal children 

Move        M     Partner moving away from 

focal children 

    a) Moving away from a focal child 

 

The focal child’s behavioral codes were based on conceptualizations of classroom 
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engagement as a key marker of children’s emotional and behavioral engagement and 

academic motivation (e.g., Skinner, Kindermann, & Furrer, 2008). The social partner 

codes, were adapted from Charlesworth and Hartup (1967), Horn, Conners, and Wells 

(1986), and Kerr, Zigmond, Schaeffer, and Brown (1986), and have previously been used 

in a number of observational studies to capture classroom social interactions and 

appropriate (or inappropriate) classroom behaviors (for examples, see Soloman & 

Whaler, 1973; Blaze et. al., 2014).      

 Coding rules. Observations followed the natural sequence of ongoing interactions 

in the classroom, with two exceptions that applied to situations in which a focal child 

engaged in the same behavior for a long time (e.g. solitary reading), or when one 

behavior produced multiple simultaneous consequences (e.g. a joke elicited laughter from 

many people at the same time). Firstly, any two behavioral codes of children may follow 

each other in any order, and two consecutive codes of the same kind indicate that the 

behavior occurred for more than 10 seconds without change. Secondly, a social partner 

code can only follow individual behaviors, but not other partner codes (so when multiple 

people laughed, their responses were recoded as if the multiple different partners reacted 

after each other to the same recoded (joking) behavior of the target individual). In other 

words, each observation series begins with the behavior of a focal child, and in the case 

where more than one social partner responded to a focal child’s behavior, the individual 

and partner sequence was repeated.        

 Observation data-file. The observations are contained in a csv file that I 

manually re-formatted to a long-formatted structure with complete observations. Long 

format refers to a longitudinal matrix where each row is one observation (or measurement 
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period) and each column represents a variable to classify, or ‘identify’ the observations 

(Wickham, 2007, p. 3). The re-formatted observation file contains seven variables: 1) the 

order in which an observation occurs across the entire file (e.g. overall index value), 2) 

the day of observation (with 10 distinct values), 3) segment of observation (with 2 

distinct values), 4) identity of the focal child (with 23 distinct values), 5) behavior of the 

focal child (with 4 distinct values) or their social partner (with 6 distinct values), 6) 

identity of the social partner (with 27 distinct values), and lastly, 7) a description of the 

social context for interaction exchanges4.The following few paragraphs illustrate this 

structure with a fictitious interaction exchange, as depicted in Table 4 below.  This 

example illustrates the use of coding system to transcribe observe behaviors into a series 

of events and highlights the use of social partner codes and coding rules.  

Table 4. Example long-formatted observational data file 

Index Day Segment Focal Behavior Partner Description 

1 1 1 Johnny ‘XA’ Johnny Johnny makes 

joke while 

sitting with 

Steve and 

Larry 

2 1 1 Johnny ‘A’ Steve Steve and 

Larry laugh 

simultaneously 

3 1 1 Johnny ‘XA’ Johnny  

4 1 1 Johnny ‘A’ Larry Laugh 

5 1 1 Johnny ‘XA’ Johnny Johnny smiles 

at Larry 

 
4 Note, that the four values of focal child’s codes correspond to the four behavioral categories and the six 
values of social partner codes correspond to the six behavioral categories (shown in Tables 1 and 2, 
respectively). The identity of the Social partner has twenty-seven values, including all twenty-five children, 
the teacher, and any additional adult. For readers familiar with R, these values are ‘levels’, of each 
variable (as converted to a factor variable type) (R Core Team, 2016)  
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6 1 1 Johnny ‘OP’ Johnny Johnny starts 

writing notes  

(over 10 

seconds) 

7 1 1 Johnny ‘OP’ Johnny Writing 

8 1 1 Johnny ‘OA’ Johnny Johnny raises 

hand and 

Larry whispers 

to Johnny  

9 1 1 Johnny ‘XA’ Johnny Johnny 

jokingly 

pushes Larry 

away  

10 1 1 Johnny ‘D’ Larry Larry says 

stop and calls 

Johnny a dork 

 

In this example, Johnny (the focal child) is sitting at a table with two peers (e.g., 

Larry and Steve). Note, that Johnny is the focal person for this entire 10-event exchange, 

but that observations 2, 4, and 6 contain social partner codes. In the current study, social 

partner codes represent the sample space of potential reinforcers, and focal children’s 

behaviors, represent the sample space of all potentially reinforced behaviors. 

Observations 1 through 4 show an example of the first re-coding rule, where two partners 

provide a consequence simultaneously for the focal child’s behavior. Notice that this 

results in the behavior appearing twice in the data-file – while it only occurred once in the 

observations. Observations 6 through 7 demonstrate the second coding rule; where the 

focal child was writing notes for over 10 seconds. By this rule, the observed behavior 

appears twice (as a repeated code) in the data-file, simply because it occurred 

continuously for over 10 seconds.  
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Chapter 5 

Methods 2: Describing Reinforcement in the Stream of Observations 

This method’s chapter formally introduces the terminology, notational 

conventions, and general concepts that I use in the remainder of this thesis to describe the 

detection of reinforcement patterns along a stream of observations.  I describe these 

concepts at an overall level of analysis, where reinforcement is presented as a process 

detectable on an overall series across all individuals, as if all observations were made on 

a single person (as an aggregated observation series). I formally introduce a recounting 

procedure used to restructure naturalistic observations so that behavior proportions can be 

compared ‘before’ and ‘after’ each reinforcer as it occurs in its natural order in the 

observation series.          

 The methods in this thesis draw inspiration from two sources: Skinner’s (1938) 

tradition of behaviorism for defining reinforcers, and Bakeman and Gottman’s (1996) 

lag-sequential analysis for naturalistic observations. To date, these two traditions have not 

been synthesized along naturalistic observations, mainly, due to the ‘messy’ structure of 

naturalistic observations. Unlike experimental designs, naturalistic observations lack 

control over delivery of reinforcers on participants behaviors. Consequently, comparisons 

are not balanced across subjects, and thus, some participating individuals may not receive 

any reinforcers, while others, may receive multiple reinforcers. Additionally, techniques 

from lag-sequential analysis are limited in that they are best used for small ‘lags’ (e.g. 

immediate behavior-consequence relations) and test the dependent variable in one 
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direction at a time (e.g., proportion of target behaviors as a consequence, given a target 

antecedent).           

 The recounting procedure introduced in this study attempts to blend these two 

traditions by allowing any set of observations to be classified into a ‘before’ or ‘after’ 

reinforcement group.  When applied to a set of observations, the recounting procedure 

produces a ‘recounted data-file’, which contains variables used to indicate and classify 

observations as occuring before or after reinforcers, along a ‘recounted observation 

series’. This datafile provides a basis for a regression based primary analysis, such as 

general linear models for binary outcomes (see chapter 6, for details on the 

implementation of these methods in this thesis), or a contingency table analysis that 

follows more from the tradition of contingency detection strategies, such as lag-

sequential analyses (e.g. Bakeman and Quera, 1995).      

 This chapter introduces the recounting procedure, using the terminology and 

concepts used throughout this thesis. I focus on the classification piece of the recounting 

procedure, specifically, on what it means to classify observations using an ‘overall 

strategy’. This section also discusses the contingency table representation used mainly in 

the secondary analysis to summarize the counts of observations falling into the categories 

of the dependent and independent variables. Finally, I discuss the details of both analysis 

strategies. This includes a specification of the general estimating equation models for the 

primary analysis as well as three different contingency table representations of the 

recounted series, and how they may provide slight differences in the z-test used to test the 

secondary hypotheses.  

The Recounting Procedure 
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I describe the recounting procedure with the aid of Figure 1 (reprinted as Figure 

6) to provide a visual and conceptual reference for the terminology I use to refer to this 

algorithm throughout the remainder of this thesis. I divide this reprint into two 

components: a simple example observation series as it may appear from a raw set of 

observations, and then the same series with additional features introduced by the 

recounting procedure to aid in the detection of reinforcers. Figure 5 shows the sample of 

observations and Figure 6 shows the line in addition to the recounting procedure used to 

iteratively measure behavior change as reinforcement occurs, where the rectangles 

represent the moving probability windows. I first introduce the sample of observations 

(and relevant terminology and concepts) and then the process of recounting the 

observations in order to detect putative reinforcers, accordingly. I end this section with a 

summary of the procedure with an additional visual aid of the algorithmic process.  

 

Figure 5. Example classroom observation series  

 

Series and Events. Figure 5 depicts a stream of observations, using the behavior 

codes tested under Hypothesis 1 (see Chapter 3), that will serve as a sample for the 

detection of putative reinforcers. I use the term series to denote the sample of 

observations used to detect putative reinforcers. The term overall series refers to a series 

that is to be analyzed across all variables for which observations are repeatedly measured 

(e.g., focal child ID, day of observations, etc.). In this way, the term overall series simply 
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refers to a set of observations unfolding across time; Because this thesis exclusively 

examines observable behavioral events, such as On and Off-Task classroom behaviors, 

for example. I use the terms behaviors, observations, and events interchangeably when 

discussing the dataset and derived examples used in this thesis.   

 Dependent and independent variables. The observations of a given series form 

the basis of the dependent and independent variables in a reinforcer analysis. As the 

dependent variable, observations can assume one of two values; targets and non-targets. 

The recounting procedure ‘recodes’ these variables using a binary coding scheme, where 

target observations are recoded as ‘1’ and non-targets as ‘0’. In this example, all green 

circles represent the target ‘On-Task’ behaviors, while yellow circles represent all other 

values, for eligible observations of the dependent variable.     

 The term reinforcement sequence refers to the independent variable in the 

reinforcer analysis. As an independent variable, the reinforcement sequence has two 

categories; ‘before’ or ‘after’ reinforcers. In terms of Skinner’s (1953) definition of 

reinforcers as consequences which “… increases the probability of further responding”, 

the reinforcement sequence can classify observations according to ‘past’ and ‘future’ 

responding, relative to reinforcers, all within the single overall observation series. To 

properly classify observations in this way, the intervals corresponding to each category of 

the reinforcement sequence requires knowing the location of each reinforcer in the series 

(via the ‘overall index’) as well as the number of total reinforcers.    

 All observations leading up to the reinforcer’s index are classified as ‘before 

reinforcement’ and all the observations following the reinforcer’s index are classified as 

‘after’ reinforcers. To compare ‘past’ and ‘future’ observations, we simply compare 
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proportions across these two reinforcement sequences.      

 Overall application of the recounting procedure. The ‘overall strategy’ refers 

to the application of the recounting procedure across persons, observation episodes (or 

days), schools, elections, or any other variable in a dataset and that can be used to cluster 

observations of the dependent variable. In terms of sampling theory, the overall strategy 

treats observations as ‘cluster samples’, that is, each observation is assumed to be coming 

from only one ‘cluster’. The term cluster refers to a sampling group in which 

observations share some common feature (e.g., belonging to same focal person) (Kish, 

1998,p. 6). The Sage and Kindermann (1996) observations clearly violate this assumption 

by containing multiple observations across multiple individuals. This issue be resolved in 

the primary analysis which accounts for the effects of larger clusters. Generally, it is 

assumed that repeated measures occur within one cluster.        

         

Figure 6. Recounting procedure applied to classroom observations to detect reinforcers.  

 

 

 Figure 6 (see above) depicts the application of the recounting procedure using an 

‘overall strategy’ on an observation series. As time goes onwards, the proportion of green 
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circles increases in the figure. Using Skinner’s (1953) definition of reinforcers, this 

pattern suggests a reinforcing effect with respect to some other ‘observed event’. The 

three ‘sub-series’ depict each time the observations are classified by reinforcement 

sequence. The sub-series depend on the observation selected as a putative reinforcer – in 

the case of Figure 6, observations are recounted according to the red circles. By re-

classifying observations each time the reinforcer occurs, this procedure solves a common 

issue in ‘real world’ observations, namely, where reinforcers can occur at any time and at 

any rate. Accordingly, this allows observations to be comprehensively classified even 

when observation occur between reinforcers (before one and after another).   

 Technical description of the recounting procedure. The goal of the overall 

strategy and recounting procedure is to simplify a naturalistic observation series such that 

all events can be categorized as ‘before’ or ‘after’ reinforcers, with minimal assumptions 

and demands on the data (i.e., sample size of reinforcers, target behaviors, etc.). Unlike 

experimental studies, naturalistic observations may capture reinforcement in its 

naturalistic state; where there is no apriori pattern known to researchers, that connects 

observed behavioral patterns to reinforcers (e.g., reinforcement schedules, single trials, 

etc.). The ultimate goal of the recounting procedure is to accurately assess reinforcers 

when they are not uniformly delivered across individuals for consistent periods of time, 

with minimal theoretical assumptions.    
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Figure 7. Stepwise depiction of the recounting procedure. 

 

The recounting procedure meets its goals by transforming a dataset so that all the 

events and a series can resemble a balanced experimental study; where each event falls 

into a single ‘before’ or ‘after’ reinforcement category. There are three steps to this 

procedure, graphically depicted in Figure 7. The first step of the procedure is to identify 

all putative reinforcers on the overall series, without looking at any other variables except 

the observations. This is necessary for determining the number of M of sub-series, or M  

replications of the original series, where M is the total number of reinforcers. The second 

step is to label each replication by its respective sub-series (e.g., sub-series 1, 2, etc.). As 

described in more details in the next few paragraphs, this thesis implements the 

recounting procedure in R Shiny (Chang et al., 2016), which produces a dummy column 

variable for sub-series, that repeats the sub-series ID (i.e. ‘sub-series 1’, ‘sub-series 2’, 

etc.) across all recounted events. The final step is to assign all concatenated recounted 
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observations into a ‘before’ or ‘after’ reinforcement sequence. While each recounted 

observation is technically associated with a sub-series, the figure illustrates this last step 

overall sub-series, so that any statistical comparison is made on the fully classified series 

of recounted observations.       

 Contrasting the recounted data file with the original observation file. This thesis 

implements the recounting procedure in a suite of functions that are available in an R 

program that is distributed as a Shiny web-app (described in more detail in Chapter 6). 

The recounting function takes an observation series as the argument input and produces a 

spreadsheet-like data frame that is also exported as a csv file. This ‘recounted data-file’ 

preserves the variables and structure of the original datafile, but differs in three important 

ways. The first major difference is that the recounted file contains a ‘recounted series’ of 

length N x M -- where N is the number of events in the original sample (indexed by i) and 

M is the number of reinforcers, or sub-series (indexed by t). To keep track of the 

recounted observations, a recounted index is also added in the recounted data-file, in 

addition to the original and sub-series indices.              

 A second difference between the recounted and original data-files is the addition 

of the sub-series and reinforcement sequence variables. The numeric variable sub-series 

corresponds to the tth re-counted set of observations (i.e. tth sub-series) from the tth 

iteration of the recounting procedure. The categorical variable reinforcement sequence 

corresponds to a given whether the event came before or after reinforcer t (for sub-series 

t). For flexibility in statistical analyses, the reinforcement sequence is dummy coded so 

that a code of 0 indicates a given observation corresponds to the before-reinforcement 

sequence and the code 0 indicates the observation falls in the after-reinforcement 
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sequence.           

 A final difference between the two files is in the recoded observation variable that 

is created for the recounted data-file. As the dependent variable, the recoded event is a 

numeric variable using a 0 for non-target observations and a 1 for target observations. 

Note, that since reinforcers divide each sub-series into reinforcement sequences, the 

reinforcer corresponding to each sub-series is removed from that particular sub-series. 

For all other sub-series, previous and future reinforcers are coded as 0, since they are 

non-target observations. Table 5 (see next page) illustrates the transformation of an 

original series into the recounted series. This table is based off the observations in Figure 

7 (a truncated example from Figure 1), where the ‘Focal Child ID’ is arbitrary for this 

example.            

Figure 8. Shortened example data series (conceptual) 

 

 

Table 5. Shortened example recounted data series (data-frame) 

Original Data-File  Re-Counted Data-File 

Focal 

(F) 

Index 

(I) 

Obs. 

 

 F Overall 

(I) 

Recounted 

(I) 

Obs

. 

Re-coded 

Obs. 

Sequence Sub-

series 

Abe 1 Y  Abe 1 1 0 0 0 1 

Abe 2 Y  Abe 2 2 0 0 0 1 

Abe 3 Y  Abe 3 3 0 0 0 1 
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Abe 4 G  Abe 4 4 1 0 0 1 

Abe 5 R  Abe 5 5 0 1 1 1 

Abe 6 G  Abe 6 6 1 1 1 1 

. . .  . .  . . . . 

. . .  Abe 14 14 1 1 1 1 

. . .  Abe 15 15 1 1 1 1 

Abe 14 1  Abe 1 16 0 0 0 2 

Abe 15 1  Abe 2 17 0 0 0 2 

End Of Observation  Abe 3 18 0 0  2 

    Abe 4 19 1 0 0 2 

    Abe 5 20 0 0 0 2 

    Abe 6 21 1 0 0 2 

    . .  . . . . 

    Abe 15 30 1 0 0 2 

 

The Overall Strategy and its Representation in Contingency Tables 

The recounted data-file provides the necessary components for the primary and 

secondary analysis strategies used to adress the research questions in this thesis. This 

section continues on the topic of contingency detection versus reinforcement detection 

(see Chapter 3); and focusing on construction of the contingency tables used in the 

secondary analyses. Naturally, this begins with a typical approach to representing 

observations ‘before’ and ‘after’ some events for clustered samples. This leads to a 

discussion as to why primary analysis is not replicated on contingency tables, and is left 

as a future direction for future studies.       
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 This discussion leads into details regarding the tables for a lag-sequential analysis, 

and emphasizes the conceptualization of the recounting procedure as an extension of this 

strategy. I conclude this discussion by showing how concepts from either approach (e.g., 

matched pairs or lag-contingencies) can be adapted to the recounting procedure to 

produce ‘before’ and ‘after’ reinforcer contingency tables from a transition table of event 

transitions.          

 Measuring the dependent variable across the recounted series. Recall that the 

overall strategy treats the recounted series as belonging to one ‘focal person’. Figure 9 

shows such an example series where there are 3 events before and 3 after the red circle 

(i.e., reinforcer). The events are labelled in three ways. On top of the circles is the overall 

index value which counts from the first observation to the last event in the series. Beneath 

the circle is a second index for matched pairs. This index was not introduced earlier since 

it is not explicitly used in the recounted procedure. I introduce it now to illustrate an 

equivalence in the recounting procedure and a modified version of a traditional approach 

for ‘before’ and ‘after’ event comparisons for matched pairs. As this traditional approach 

uses assumptions met during more controlled observations (e.g., experimental), this 

section focuses on some necessary adjustments to concepturally envision reinforcement 

detection in naturalistic observations from matched pairs.      

 Contingency tables for matched pairs. Agresti (2013) uses to term ‘matched pairs’  

in reference to dependent data structures in the context of count based outcomes, where 

matched pairs are defined as ‘[datasets]… when each observation in one sample pairs 

with an observation in the other sample’ (pp. 413). Matched pairs analyses assume that 

each record contains a measure of the dependent variable along two occasions and that 
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each occasion is related in some way (e.g., belong to the same cluster). This assumption 

is convenient for studies looking at changes in voting behaviors, for example, where the 

only data of true interest is where a study subject submits their vote at both time points. 

Under these conditions, contingency table tests are available for complete matched pairs, 

where the hypothesis is testing whether proportions of voting behaviors are the same 

across occasions (e.g., ‘before’ and ‘after’ some event).   

Figure 9. Illustrative example of overall matched pairs 

 

 Figure 9 shows that each observation ‘before reinforcement’ contains a 

corresponding observation ‘after reinforcement’, where the ‘reinforcer’ is depicted by the 

red circle. In this case, the pairings are related only by their order in respect to 

reinforcers; beginning with the first observation and ‘resetting’ as the reinforcer occurs 

(e.g., first observation paired with first observation after reinforcer, second with second, 

etc.).While Agresti’s definition implies that the ‘matching’ is linked to some higher 

clustering variable (e.g., focal person ID, day of observations, etc.), I ignore this for now, 

and focus on just the pairings themselves, created from their relative order to reinforcers, 

as this is most easily viewed through the lens of an overall strategy.   

Figure 10. Data structure and transition table for matched pairs  
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 Figure 10 shows the construction of a ‘contingency table’5 for the transitions in 

the dependent variable across time for all matched pairs. Agresti (2013) formally defines 

a contingency table as a ‘rectangular table having I rows for categories of X and J 

columns for categories of Y [that] displays the IJ possible combinations of outcomes’ (pp. 

37). The figure shows the construction of such a table from the raw observations. This 

contingency table is known as a ‘square contingency table’ or a ‘transition table6’, in the 

lag-sequential literature, and is defined as a table where the same variable populates the 

row and columns of the two-way contingency table” (Agresti,  2013, pp. 413). The 

hilighted areas of these tables show two distributions used to peform the secondary 

analyses tests in this thesis. These ‘joint’ and ‘marginal’ distributions will come up 

throughout the remainder of this thesis when discussing the statistical tests for the 

secondary analyses.     

 
5 Gottman & Roy (1990, p.222) note that the term contingency table should be reserved for a cross-
classification of independent cells. In this thesis, I use Agresti’s definition for all rectangular displays of 
tabulated observations.  
6 This thesis uses the term ‘transition table’ in the tradition of a lag-sequential analysis.  
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Figure 11. Contingency table for marginal distribution of matched pairs.  

 

 For paired observations, the cells of the ‘transition table’ (as it called for the 

remainder of this thesis), form the joint distribution or the total observations of a given 

pair of values of the dependent variable at the first and second time points. The outer 

borders of the table show the marginal distributions; that is, the total number of 

observations of each category of the dependent variable before reinforcers (see the row 

margins), and the total number after reinforcers (see the column margins). As Figure 11 

shows, the marginal distribution can be represented in a 2 x 2 contingency table which 

shows the total observations for each combination of categories, across all pairs.    

Equation 2. Mcnemar test statistic 

Χ2=
(𝐵−𝐶)2

(𝐵+𝐶)
 

 To test the hypotheses that the proportions of transitions from ‘no’ to ‘yes’ differ 

from ‘yes’ to ‘no’, we would enter the values of the joint distribution into the Mcnemar 

test equation (shown in Equation 2). This is called a test for marginal homogeneity 
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(Agresti,  2013, pp. 414). and can determine whether there is a shift in the proportions 

across time. The reader may easily see this as a strategy for testing the primary 

hypotheses that the proportion of target behaviors is greater following reinforcers 

compared to before reinforcers. In addition to reasons discussed in the following 

paragraphs, this thesis does not use such a strategy for the secondary analyses. 

Alternatively, the secondary analyses test proportions indirectly, as an extension of the 

lag-analysis tests to reinforcers.   

Figure 12. Data structure and transition table for matched pairs  

  

 Non-matched pairs. For datasets meeting the matched pairs assumption (e.g. 

complete records at both time points, for each case of pairs), the marginal tables are 

directly obtained from the 2 x 2 transitional table. Figure 12 shows a scenario for which 

the assumption of complete matched pairs does not hold true for the third case. In this 

scenario, the margins of the transition table show the complete distributions based on the 

Figure, and are not computed from the joint distribution of the complete pairs. To 
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compute a Mcnemar test on this set of observations, we must either constrict the sample 

to complete pairs or use an alternative strategy for incomplete pairs.  

Figure 13. Contingency table for marginal distribution of matched pairs.  

 

 

Figure 13 shows one way of computing the transitional and marginal tables for 

incomplete pairs. This table applies the same logic to obtain the marginal values from cell 

transitions, but expands the square table to a 3 x 3 table so that it includes a value for 

missing observations (denoted by NA) in each category of the dependent variable (for 

each category of the independent variable). As the next section shows, this strategy can 

also be applied to the tables produced by the recounting procedures, in order to obtain a 

contingency table for the recounted frequencies directly from the transitions of 

incomplete pairs (in addition to the original conceptualization as the sum of sub-series 

tables).            

 This presence of incomplete pairs presents a dilemma for a traditional Mcnemar 
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use of the Mcnemar test and thus leaves researchers with the option to either discard 

incomplete pairs or use one of many special variations of the Mcnemar test for ‘messy’ 

data (see Choi & Stablein, 1982 ; Zhang, Cao, & Ahn, 2017). In line with the original 

scope of this thesis, I do not use either of these strategies, and instead apply a traditional 

contingency table test used in the contingency analyses literature, which relaxes some of 

the data requirements of a Mcnemar test (e.g., square transition tables, complete pairs), 

and aligns with the original conceptualization of the reinforcement detection procedure as 

an extension of lag-analysis in both directions, across all observations.    

 Allison and Liker z-score on the marginal contingency table. The Allison and 

Liker z-score has a long history in testing reinforcement hypotheses from naturalistic 

observations (e.g. Gottman and Roy, 1990). In its original usage, this test compares the 

proportions of target behaviors occuring immediately after some ‘event’ to the overall 

base-rate probability of the target behaviors, across the entire series of events. In terms of 

lag analysis, the target behavior is termed a consequence and time t+1 while the ‘event’ is 

the antecedent at time t. The lag-analysis uses a transition table to count all pairs of 

observations in an overall series, where pairs are observations of the form Yt+1 , Xt. As 

explained in the following paragraphs, this is conceptually like a reinforcer analysis, with 

a lag extended across all observations and in both directions (i.e., dependent variable lag 

forward and dependent variable lags behind the independent variable).   
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Figure 14. 3 X 3 transition table for lag-one pairs. 

 

Figure 14 shows a transition table to test one of Sage and Kindermann’s (1999) 

hypothesis that Social Approval (depicted by red circles) is more likely to follow On-

Task behaviors (depicted by Green circles). The top of this figure shows the indices used 

to match consecutive observations to form pairs by their natural ordering. This does not 

account for any ‘higher order’ clustering (e.g., same individual subjects), and simply uses 

the ordinary index as a bases for matching observations at time t with time t+1. The 

‘Transition Table for Lag-One Pairs’ shows the full tabulation of these pairs. This is 

analogous to the 2 x 2 ‘square’ table for paired transitions used in a Mcnemar analysis, 

except it includes all observations (versus just the binary dependent variable). This opens 

a traditional lag-sequential analysis to testing hypotheses regarding consequences as well 

as antecedents under naturally occuring observations.  
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Figure 15. 2 X 2 marginal table for directed lag-one hypothesis.   

 

To test Sage and Kindermann’s (1999) hypothesis that Social Approval (e.g. red 

circles) are more likely to follow On-Task behaviors (e.g. green circles) than all other 

antecedents, we need to know; a) the distribution of all antecedents, b) the distribution of 

On-Task antecedents, and c) the distribution of Social Approval consequences. Figure 15 

shows the construction of a ‘Marginal Table for Dependent Samples’ in the context of a 

lag-sequential analysis for the stated hypothesis. This table differs from the marginal 

table for matched pairs (See Figure 13) since it does not consider the sums across the full 

margins of the transition table. This is because the antecedent is paired with a different 

‘target’ (e.g. green circles) than the target consequence (e.g. red target). Accordingly, the 

‘non-target’ cells for the antecedent in the marginal table sum across the ‘Y’ and ‘R’ 

antecedent codes, while the ‘non-target’ cells for the consequence sum across the ‘Y’ and 

‘G’ consequence codes.        

 Construction from matched pairs. The reader may notice that the ‘marginal table’ 

for the lag-one consequence cannot answer whether a target behavior is more likely to 

follow a behavior-before reinforcers or after-reinforcers. This is largely a result of the 

traditional lag-sequential hypothesis; which examines either the consequence given the 
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antecedent or the antecedent given the consequence (The interested reader is directed to 

Appendix G for a table showing the construction of marginal table for a lag-one, ‘before’ 

(e.g. lag-behind) and ‘after’ (lag-forward), sequential analysis). I presented this table was 

to draw the connection between a set-up for a lag-sequential analysis, based on 

marginalizing across the relevant values of a 3 x 3 transitional table, and the set up used 

in a reinforcer analysis. Conceptually, the reinforcer analysis extends the notion of a 

contingency analysis to all antecedents and all consequences to examine large windows 

of behaviors rather than the immediate lags.    

Figure 16. Equivalency of marginal table of incomplete pairs and recounting procedure 

 

Figure 16 shows an observation series with two reinforcers to demonstrate the 

construction of a ‘Marginal Table for Dependent Samples’, using two strategies; a 

transition table for matched pairs (see top portion) and by directly computing probability 

windows across each ‘sub-series’, in the spirit of a lag-sequential analysis and then 

summing across these tables without consideration for matched pairs (see bottom 
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portion). As the top portion shows, we can conceive the series in terms of pairing events 

with their relative index to reinforcers (e.g. before first reinforcer and after first 

reinforcer, etc.). As the bottom portion shows, we can also cross-classify observations by 

reinforcement sequence (e.g., ‘before’ or ‘after’) for each reinforcer occurance, and then 

sum these values into one ‘Marginal Table for Dependent Samples’ (referred to as the 

‘recounted frequency table’, in the remainder of this thesis). As both portions show, the 

end result is the same, and thus, it logically extends that a test on marginal tables for 

paired transitions is applicable in either conceptualization of the recounting procedure.  

 With the equivalence in the construction shown graphically, it is a different 

process programatically. This thesis originally constructed the recounting procedure with 

lag-sequential analyses as a reference. In this view, the same hypotheses and same tests 

can be applied to a reinforcer analysis for sequential dependence, but by extending the 

‘lag’ to all observations and in both directions. This is not to say that a Mcnemar test 

cannot be used to compare proportions across both sequences. There is a modest body of 

literature on variants of this test that account for incomplete pairs (e.g., Tang & Tang, 

2003 ; Zhang, Cao, & Ahn, 2017), and multiple comparisons (e.g., Westfall, Troendle & 

Pennello, 2010).  Nevertheless, a straightforward application of the Mcnemar test would 

violate its assumptions, and without an inherent matching of observations (outside the 

sequential ordering), I leave this test as a future development for the next version of the 

Reinforcinator application as discussed in Chapter 8, and focus on the Allison and Liker 

z-test for testing sequentially dependent observations, for the secondary analyses in this 

thesis.    

Primary analysis for repeated measures 
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The primary analysis compares the proportions of target behaviors ‘before’ and 

‘after’ reinforcers, sampled across the recounted observation series. This comparison 

directly follows Skinner’s (1938) definitional criteria of reinforcers as “…any 

consequence of behavior which is rewarding, or more technically, reinforcing, increases 

the probability of further responding (B. F. Skinner, 1953; p. 345)". Instead of 

contingency analyses, the primary analyses use a regression-based strategy to directly 

tests the recounted series, along with indicator variables to indicate the sub-series, 

reinforcement sequences, and focal individuals (for differentiating observations from 

different individuals). While the ‘overall strategy’ classifies observations without regards 

to separate individuals, it is still of interest to consider the dependency of recounted 

observations due to occuring to repeated measures of the same individuals. This section 

discusses the statistical procedure used to account for variation within individuals.  

 General estimating equations. Repeated observations of the same individuals 

are more likely to be correlated than observations across different individuals, or 

generally, across repeated observations of the same ‘unit’. Fortunately, general estimating 

equations (Liang & Zeger, 1986) extend a regression model to non-linear outcomes (i.e. 

generalized linear model), while allowing for multiple repeated measures within a ‘unit’ 

(e.g. focal child). This class of models accounts for repeated observations by adjusting 

the standard errors, without explicitly modelling the correlation across within-individual 

response patterns. In this way, these models can produce the same overall parameter 

estimates as ordinary regression models while reducing the inflation of standard errors 

due to repeated measures within individuals.      

 Generalize Estimated Equations (GEE)  models comprise three pieces; a model 
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for the mean and variance, and a working correlation matrix for specifying the correlation 

within observations of the same ‘cluster’. As a class of the generalized linear models, 

GEE’s can be used to model non-linear outcomes via a ‘link’ function for the mean and 

variance of non-normally distributed outcomes. For binomial outcomes, the logit link is 

used to model the log odds of the outcome, based on the mean and variance of binomially 

distributed outcome. In the regression analysis, the overall marginal mean is modelled by 

this part of the general estimating equations. For the binomial models used in this thesis, 

all regression coefficients are expressed in terms of ‘logits’, which can be converted to 

‘log odds’ and then the same proportions identical to those obtained from the marginal 

table (see Appendix D for these conversion equations).     

 The third piece of general estimating equations is called the ‘working correlation 

structure’. This structure specifies the assumed within-cluster correlation pattern shared 

across all values of the clusters and is used in an iterative process to calculate the ‘robust 

standard error’, which account for the observed within-cluster correlation structures. In 

this way, the working correlation matrix provides a ‘best guess’ as a starting value for the 

within-subject correlation patterns. The actual correlation within subjects is used to 

update this guess, until the estimated correlation pattern converges to some value (i.e., 

where consecutive iterations no longer produce significantly different estimates). It is this 

process that allows gee models to produce consistent estimates of the standard errors 

even when the working correlation structure is mis-specified (Heagerty & Zerger, 1996); 

where consistency refers to a point estimate that best approximates the population value, 

as the sample size increases (Ramachandran & Tsokos, 2014, pp.266 ).     

 There are many variations of the working correlation matrix (see Wang, 2002). 
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For unbalanced longitudinal observations, where clusters may have different number of 

observations, the ‘independence’ and ‘exchangeable’ working correlation structures are 

two common choices. There are advantageous and disadvantageous to each of these 

structures, especially while considering the goals of the current study. The ‘exchangeable’ 

working correlation structure has been shown to be more efficient and theoretically 

appropriate for longitudinal observations (e.g. Pan & Connett, 2002). A disadvantage of 

this structure is that it also affects the interpretation of parameter estimates, since the 

working correlation structure is used to solve beta coefficients (e.g. Wang, 2014) in 

addition to optimizing the standard errors. In this way, the parameter estimates under an 

‘exchangeable’ working correlation matrix are not always equivalent to those from an 

ordinary logistic regression (via a logit link).       

 All models in this thesis use an ‘independence’ structure. The independence 

structure is essentially an identity matrix and does not explicitly state a correlation pattern 

for within cluster correlations. Consequently, the coefficients using this structure are 

identical to those obtained from a logistic regression analysis. Because GEE’s use an 

iterative procedure for updating the standard errors based on the observed intra-individual 

correlation patterns, the standard errors for the coefficients are improved over those from 

an ordinary logistic regression analysis. For these reasons, all models use the 

‘independence structure’, and the interested reader is encouraged to see Appendix H for 

the primary analysis results with models using the ‘exchangeable’ working correlation 

structures.  

Secondary Analysis for difference between reinforced behaviors and base rates 

along the contingency table 
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The secondary analyses use the Allison and Liker z-score for sequential 

dependence to test effects of behavior probability after reinforcers compared to the 

overall base-rate of ‘target’ beahviors. As the recounting procedure can be conceptualized 

as extending a traditional lag-one analysis across all observations, before and after 

reinforcers, this test follows suite by testing secondary hypotheses inspired by the logic of 

a contingency test for sequentially dependent observations. This section focuses on the 

details and assumptions for the construction of these tables via the recounting procedures 

and does not revist the rationale behind this approach for the secondary analyses.  

 I use language introduced earlier in this chapter to demonstrate the constrution of 

the ‘recounted frequency table’ by way of sub-series contingency tables (versus by 

incomplete matched pairs). I demonstrate this test statistic on the recounted frequency 

table and note its limitations. This motivates the derivation of two additional contingency 

tables, and the demonstration of the test using the same values across these slightly 

modified versions of the recounted frequency table.  
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    Figure 17. Stepwise depiction of the recounting procedure (Figure 7 reprint) 

 

 Derivation and assumptions of the recounted series. I reprint the step-wise 

recounitng procedure (see Figure 17)  to remind the reader that the ‘recounted series’ 

results from replicating all observations from the original series by the number of M 

reinforcrs, where M is the total number of reinforcers (see step two). As step-three  figure 

indicates (see step-three), the recounting procedure classifies events into reinforcement 

sequences on a sub-series basis. The observations of the concatenated sub-series are then 

ready for a single contingency table table in which the probability of the dependent 

variable belonging to a particular category (e.g. target or non-target) can be compared 
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across reinforcement sequences.        

 This approach solves the issues of creating consistent pairings in non-paired 

observations and allows for an accurate classification of ‘messy’ observations which fail 

to meet the assumptions of standard contingency table classifcations (e.g., mutual 

exclusive membership to a single category). Aditionally, this approach resolves a 

limitation of lag-sequential analysis from a prespective of reinforcers isnce it accounts for 

all observations, lagging behind (i.e. ‘before’ and (i.e.‘after’) all reinforcers, at all 

possible ‘lags’. Like a lag-analysis, this strategy also complies well with an overall 

measure of the dependent variable; so that classifications are made across all individuals.  

 Naturally, resampling the same observations introduces a dependency in the 

observations of the recounted series, over and above any other repeated sampling in the 

original series (e.g. repeated measures of the same individual). This is because each 

observation in the original series becomes multiple records in the recounted series. While 

testing each sub-series resolves this issue of resampling, such a procedure fails to give a 

comprehensive overview of reinforcement since it does not account for an accurate 

overall classification for events with multiple group membership (e.g., events before and 

after multiple reinforcers).         

 While the primary analysis accounts for the dependency in the recounted series by 

taking advantage of replications nested within sub-series, and sub-series nested within 

individuals, the secondary analysis relies on the Allison and Liker z-test for sequentially 

dependent observations, without regard to repeated sampling of specific individuals.

 Allison and Liker z-test on the contingency table for recounted frequencies 

The Allison and Liker z-test is a statistic originally used to correct for dependency 
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between observations using a lagged analysis. As Gottman and Roy (1990) discuss, the 

nature of a lag-analysis requires resampling the same events at time t (i.e., the antecedent) 

and time t+l (where l refers to the lag). This test corrects for the dependence introduced 

when the consequence of one pair serves as the antecedent in the next pair across the full 

series of observations. In these analyses, the number of pairs used to compute the z-score 

is the total events (i.e. N) minus the value of the lag. When appropriated to a reinforcer 

analysis, the correction is similar to a lag-one analysis, and amounts to N-17 for the 

recounted series; where the reinforcer is subtracted from the total observations in each 

sub-series.  

Figure 18. Reinforcement detection measure (a.k.a. recounting procedure) (Figure 1 

reprint) 

 

 

 

 

 

 

 

 

 
7 The actual correction (N-1)*M but because the reinforcers are subtracted within each sub-series, the 

correction simplifies to N-1 for the recounted series and its derived contingency tables.  
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Table 6 shows the contingency table for the recounted frequencies, based on the 

series Figure 18. From this table, we can see the distribution of recounted observations, 

classified as targets or non-targets, across the reinforcement sequences. This resembles 

the contingency table shown previously in this chapter for a lag-one analysis (see Figure 

15); except the rows contain the reinforcement sequence and the columns represent 

behaviors, as opposed to the different behaviors as antecedents and consequences. The 

table shows the recounted frequencies, these are mainly of interest in that they can be 

used to obtain a variety of proportions, but otherwise, do not provide any real substantive 

value. The proportions are of most interest since they are preserved by dividing across the 

sub-series, and thus, reflect the true distribution of events classified into multiple 

sequences (e.g. before and after reinforcers).  

 

 

 

Table 6. Contingency table for recounted frequencies  
 Observation  

 Target 
(Green) 

Other 
(Not Green) 

Totals 

  After 30 
(.7) a 

  

13 
(.3) 

 

43 
(1) [.6] 

 
  Before 12 

(.41) 
 

17 
(.59) 

 

29 
(1) 

 
  Totals 42 

(.58) 
 

30 
(.42) 

 

72 
(1) 

 
a. Values in parenthesis are cell values divided by the row totals (i.e. row-margin proportions). 

Values in brackets are the base-rate proportions (shown only for target behaviors   
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Equation 3. Allison and Liker z-score for recounted frequencies 

𝑧1 =  
𝑃𝑟൫𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡 ห 𝑥 = 𝐴𝑓𝑡𝑒𝑟)

⬚
− 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚

√
𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚(1 − 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚)(1 − 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟 )

(𝑁 − 1) ∗ 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟)⬚

 

=  
. 7 − .58

√
. 58 ∗ (.42)(.4)

71 ∗ (.6)

=  
. 7 − .58

ට. 0974
42.6

=  
. 12

. 0478
 

=  2.51 

 Equation 3 shows the computation of the Allison and Liker z-test for the 

recounted series. This test compares two proportions; the proportion of target behaviors 

after all reinforcers and the overall proportion (i.e.‘base-rate probability’) of target 

behaviors across all recounted observations. The significant difference in this example 

would be interpreted as potential support for the claim that the proportion of target 

behaviors occuring in windows after reinforcers is greater than tathe proportion of target 

behaviors when they can occur at any point in the observation series. Further scrutiny 

suggests that this test may be misleading due to the inflated recounted sample size. Given 

the same difference in the proportions (see the numerator of equation 5),  the recounted 

sample size raises the effect of significance, compared to the test of the same proportions 

using same test with the original sample size.  
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Contingency tables for average recounted frequencies. The average frequency 

table (see Table 7) serves the purpose of reducing the sample of the recounted series back 

to the original series, while retaining the proportions of events classified across all 

reinforcement sequences. Since this strategy retains approximately the same proportions 

as the recounted table, it will produce a more conservative z-score and p-value than the 

test on the recounted frequency table (see equation 5 for the example). This strategy is 

not without its caveats. Technically, this operation of dividing the cell values by the 

number of reinforcers should alter the distribtion since one observation is subtracted for 

each sub-series. The resulting distribution is no longer stricly binomial count response, 

and thus, is expected to lose power in comparison to a strict distribution of counts (see 

Reitan & Nielsen, 2016 for a discussion of these implications). These limitations are 

noted in the discussion of this thesis (see Chapter 8) and is presented as a warning to 

user’s of Reinforcinator web-app.  

 

Table 7. Contingency table for average recounted frequencies   
 Observation  

 Target 
(Green) 

Non-Target  
(Not Green) 

Totals 

  After 10 
(.7)a 

 

4.33 
(.3) 

 

14.3 
(1)[.59] 

 
  Before 4 

(.41) 

 

5.67 
(.58) 

 

9.67 
(1) 

 
  Totals 14.01 

(.58) 
 

10 
(.89) 

 

24 
(1) 

 
a. Values in parenthesis are cell values divided by the row totals (i.e. row-margin proportions)     
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Equation 4. Allison and Liker z-score for the  average recounted frequencies 

𝑧1 =  
𝑃𝑟൫𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡 ห 𝑥 = 𝐴𝑓𝑡𝑒𝑟)

⬚
− 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚

√
𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚(1 − 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚)(1 − 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟 )

(𝑁 − 1) ∗ 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟)⬚

 

=  
. 7 − .58

√
. 58 ∗ (.42)(.41)

24 ∗ (.59)

=  
. 12

ට. 144
14.2

=  

=  1.19 

Table 8. Contingency table for recomputed frequencies 
 Observation  

 Target 
(Green) 

Other 
(Not Green) 

Totals 

  After 10.49  
(.73) a 

 

3.85 
(.27) 

 

14.3 
(1)[.6] 

 
  Before 3.53 

(.36) 
 

6.84 
(.63) 

 

9.7 
(.99)* 

 
  Totals 14.02 

(.58) 
9.98 

 
24 

 
a. Values in parenthesis are cell values divided by the row totals (i.e. row-margin proportions)   

  

Contingency table for recomputed frequencies. The recounted and average 

frequency tables are taken directly from the recounted frequency table and do not account 

for any variation in proportions across the separate sub-series. The recomputed frequency 

table combines the row-conditioned proportions for each sub-series contingency table, 

along with the counts of the contingency table for average frequencies (See table 8 for a 

reference). Specifically, the row-conditioned proportions for each sub-series table are 

multiplied by the corresponding values of the contingency table for average frequencies. 

The resulting values are then summed across all the sub-series tables, to create a new 

contingency table for ‘re-computed’ event frequencies.     
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 By accounting for the proportions across each sub-series, this table is argued to 

provide increased reliability over the average recounted frequencies (Kindermann, 2019). 

In this way, the z-statistic uses the same sample as the z-score for the average table, but 

slightly different values in the numerator (see equation 5 for the example). As with the 

average frequencies, caution should be taken when using this in a binomial test since the 

transformation no longer uses strict count responses.  

Equation 5. Allison and Liker z-score for the recomputed frequencies 

𝑧1 =  
𝑃𝑟൫𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡 ห 𝑥 = 𝐴𝑓𝑡𝑒𝑟)

⬚
− 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚

√
𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚(1 − 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚)(1 − 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟 )

(𝑁 − 1) ∗ 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟)⬚

 

=  
. 73 − .58

√
. 58 ∗ (.42)(.4)

24 ∗ (.6)

=  
. 73 − .58

√
. 58 ∗ (.42)(.4)

24 ∗ (.6)

=  
. 15

ඥ. 0067
 

=  1.82 
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Chapter 6 

Methods 3: An Online Application for Detecting Reinforcers 

The primary goal of this project is to provide researchers with a non-experimental 

strategy for measuring reinforcers on their naturalistic observational datasets. This part of 

the chapter proposes an online application called the Reinforcinator that can serve this 

purpose. I describe the features and functions the application and begin by a brief 

overview of the R package Shiny (Chang, Cheng, Allaire, Xie, & McPherson, 2016) used 

to create the graphical user interface.        

 Shiny Web-Applications. The Reinforcinator utilizes the R core language (R 

Core Team, 2016) and the Shiny package for web-applications (Chang, Cheng, Allaire, 

Xie, & McPherson, 2016). Powered by the R language, Shiny web-applications are one 

way to distribute R code and functions via the web- without requiring the download of R 

software, nor knowledge of the R language. Shiny applications can import and exporting 

datasets and can utilize any existing package of functions from R’s statistical library. The 

Reinforcinator uses a few exiting R packages and relies mostly on functions that I 

previously created for re-counting and testing the series of observations. By using 

minimal packages, this program will require less computing power, avoid conflicts 

between similar functions from multiple sources, and finally, be fully customizable, for 

ongoing edits and additions.       

 Graphical user interface. The graphical user interface (GUI) of the 

Reinforcinator comprises a single sidebar and a split center panel / window (shown in 

Figure 19). The option sidebar provides the main interactive component for users to 
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upload files, specify target variables, and download recounted a recounted data-file. The 

center panel is divided into a section that provides a text overview of the program and a 

section that contains 11 output tabs and 1 glossary tab. The remainder of this chapter 

describes the various options for the sidebar as well as the output of the various tabs.  

Figure 19. Reinforcinator Graphical User Interface 

 

The Reinforcinator Sidebar Interface. The Reinforcinator is structured to begin 

with a raw csv file input which is used to populate the remaining options for selecting 

target behavior, reinforcer, and nesting variables for the contingency table and GEE 

analyses.           

 Input File. A data-file is necessary for any Reinforcer analysis.  Users can upload 

a data-file by clicking on ‘Choose CSV File’ and selecting a file from their computer’s 

directory. After loading the file, the user must select the ‘Input_File’ from the ‘Choose a 

dataset’ drop-down menu and then click on ‘Confirm dataset’ for the rest of the drop-
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down menus to populate. Alternatively, the user can select one of three example datasets 

from the ‘Choose a dataset’ drop-down menu. In any case, each datafile must be 

formatted in such a way that columns represent variables and rows represent 

observations.          

 Behavior stream and target variables. The columns of the data-file populate the 

options for ‘Select the Behavior Stream Column’ pull-down menu. The variable that is 

selected is assumed to contain all behavioral observations used to detect putative 

reinforcers. The unique values of the selected behavior stream populate the options for 

the ‘Select Target Behavior’ and ‘Select Target Consequence’ drop-down menus. The 

‘Target Behavior’ is the behavior code that corresponds to the behavior being reinforced 

(i.e. the dependent variable) and the ‘Target Consequence’ is a putative reinforcer (i.e. 

independent variable), for which a before and after comparison is made.   
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Figure 20. Reinforcinator text panel  

 

 

 After selecting the target variables, the user is prompted to select a ‘unit’ or 

nesting variable for specifying the larger unit of repeated measures of the dependent 

variable. This nesting variable is necessary for specifying the ‘ID’ argument in geepack 

package in R (Halekoh, Højsgaard & Yan, 2006); where ‘ID’ is synonymous with 

‘cluster’ or ‘nesting’ variable in the parlance of repeated longitudinal data analysis. All 

primary analysis models in this thesis use ‘focal child ID’ as the ‘nesting’ or clustering 

variable (see Chapter 5 for details).        

 In addition to clusters, the geepack uses a ‘waves’ argument to specify the order 

of repeated measurements of the same unit and is recommended when each cluster is of a 

different size. The ‘Sub-Series’ variable is supplied to the ‘waves’ argument for the gee’s 

used in the Reinforcinator in the backend of the program – regardless of whichever 
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variable the user selects for the clustering variable. The waves argument is used to 

identify the order in which observations are clustered within the clustering variable (e.g. 

‘ID’) that is used for repeat measures. Once the user selects the nesting variable, then 

they must click on ‘Run Analysis’ in order to populate the output tabs for all analyses.  

Figure 21. Example of an appropriately reformatted dataset 
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Figure 22. GEE analysis summary output 

 

 

 

 

 

 Output Summary. The bottom portion of the main window provides a total of 11 

tabs, each with a unique output display. I organize this section by discussing the tabs into 

qualitatively similar sections.         

 Data Tabs. There are three ‘Data tabs’ which provide a data-frame outputs. The 

‘Data’ tab simply shows the chosen dataset as a data-frame without any manipulations. 

The ‘Recounted Data’ tab shows the recounted data-file (see Chapter 5). This differs 

from the data-frame shown in the ‘Data’ tab in that it only contains the behavior stream 

variable from the original data-file and introduces the following variables from the 

Recounting procedure : 1) recount_stream,  2) sub_series, 3) recount_stream_index, 4) 

recount_recode_stream, 5) recount_sequence, 6) recode_stream_numeric, 7) 
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regression_recount_sequence (see Appendix C for the glossary of these terms). The 

‘Regression Dataset’ tab contains the same recounted data frame with the addition of a 

‘recount actor’ variable. This variable contains the values of the selected nesting variable 

corresponding to each recounted observation from the original data-file. This is used for 

all statistical tests that account for the repeated observations.     

 Contingency Table Tabs. There are three contingency table tabs, each 

corresponding to each of the three contingency tables describing the recounted series (see 

Chapter 5). Each of these tables is presented as a matrix with 6 rows. The first three rows 

contain frequency counts and the last three rows contain the row conditioned proportions.  

 

Figure 23. Recounted frequency table output 

 

 Contingency Table Test Tabs.  The Reinforcinator provides the same binomial z 

test for sequential dependence with the Allison and Liker (1982) correction that is used in 
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the secondary analyses in this thesis (see Chapter 3 and 5 for details). This test compares 

the probability of target behavior in the after-reinforcement sequence to the overall base-

rate of target behaviors independent proportions for each of the three summary 

contingency tables. Using the notation from Gottman and Roy (1991), this test uses 

Equation 5, which shows the equivalence of the notational style used in Chapter 3 and 

that of Gottman and Roy, to compare the proportions of the target behavior in the after-

reinforcement sequence (i.e., PT|A or Pr(Y = Target | x = After)) to the overall 

probability of target behaviors, that is, behaviors in both sequences (i.e., (PT or Pr(Y =

Target)). This equation is adapted from Allison & Liker (1982, pp. 395) for sequential 

dependency in a contingency analysis to the current analysis of reinforcers. In this case, k 

= 1 due to the removal of the reinforcing event in the contingency table.  

Equation 6. Binomial z test for lagged dependence  

𝑧1 =  
𝑃𝑇|𝐴 − 𝑃𝑇

√
𝑃𝑇(1 − 𝑃𝑇)(1 − 𝑃𝐴)

(𝑁 − 𝑘) ∗ 𝑃𝐴

 

=  
𝑃𝑟൫𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡 ห 𝑥 = 𝐴𝑓𝑡𝑒𝑟)

⬚
− 𝑃𝑟(𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚

√
𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚(1 − 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)⬚)(1 − 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟 )

(𝑁 − 1) ∗ 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟⬚

 

 

 

Note, this test is an alternative to the GEE analysis and the standard error does not 

specifically account for repeated observations within a nesting variable (e.g. sub-series) 

or observations ordered within a nesting variable (e.g. child’s ID). Additionally, this 

strategy does not account for the repeated observations due to recounting observations. 
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Thus, the test will use the recounted N when testing the contingency table of recounted 

series but will use the original N for the contingency tables for the average and 

recomputed recounted frequencies.        

 Regression Summary Tab. This tab provides the output of the conditional 

regression summary that is fitted by general estimating equations (GEE; Liang & Zeger, 

1986) using the regression summary using the geepack package (Halekoh, Højsgaard & 

Yan, 2006).As described in more detail in Chapter 5, general estimating equations 

account for dependency between events clustered under some secondary identification 

variable (e.g. ID) (Agresti, 2013, pp. 462). The geepack package contains a geeglm 

function which appropriates a general linear model formula to account for non-normal 

outcome variables that contain repeated measures. Because the recounting procedure 

creates a clustering by design from recounting the same events in the original series, the 

geeglm function uses the sub-series variable as the cluster variable.   

 As Halekoh, Højsgaard and Yan (2006) indicate, the standard gee model assumes 

that that observations are equally separated in time, and that observations are missing at 

random (i.e., MAR). The geeglm function in the geepack package can accommodate 

violations of this assumption through the waves argument – which allows users to 

indicate whether the observations are systematically ordered or missing by an additional 

variable. As explained earlier (see Chapters 2 and 3) the assumptions of the standard gee 

model are violated due to the nature of the naturalistic observations in this thesis; where 

observations are repeatedly measured within focal children and each focal child has a 

different number of event-coded observations within each three-minute observation 

episode. Because the sub-series preserves the order of events observed within focal 
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children (see Chapter 5 for details), all gee models used in the primary analysis use focal 

child ID as the wave argument in the gee models.      

 The Reinforcinator allow the user to specify any variable for which observations 

are ordered by the clustering variable. Additionally, the program and primary analyses 

uses a binomial distribution for modelling the outcome variable. All models in the 

Reinforcinator are specified using ‘recounted_regression’ dataset – which ensures all 

observations are recounted while preserving the variable corresponding to ‘waves’ 

variable (as indicated by the user). I direct the interested reader to Appendix E for a brief 

technical summary of the regression models and Appendix D for their corresponding 

equations.           

 Distributing the Application Online. Currently, the Reinforcinator lives on a 

Shiny IO apps website (see https://delaneyj1786.shinyapps.io/reinforcinator_shiny/). The 

plan is to redistribute this application on a on a google-hosted website (see 

https://sites.google.com/site/sonetpsu/ for an example). Users can access this website in 

one of two ways: by directly entering the URL into a web-browser or by selecting a link 

on Dr. Thomas Kindermann’s Portland State University’s faculty web page (see 

https://www.pdx.edu/psy/thomas-kindermann-phd). Updates to the application based on 

planned revisions (see the Discussion chapter 8) will be posted on both websites.   

      

 

 

 

https://delaneyj1786.shinyapps.io/reinforcinator_shiny/
https://www.pdx.edu/psy/thomas-kindermann-phd
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Chapter 7 

Results 

This section begins with a short summary of the analysis strategies described in 

Chapters 3 and 5 and then present the results of the analyses. Because the review section 

reiterates the material from  Chapters 3 (see Contingency vs. Reinforcement in 

Classroom Observations) and Chapter 5 in its entirety, the reader is encouraged to skip 

this review if necessary. All results were obtained using the functions described in 

Chapter 6, outside the web-app and in R studio directly. This approach was taken as an 

alternative to using the web app directly, mainly because of the sample size of the 

recounted sample, and the computational requirements for the GEE models with such a 

large sample and cluster size (see Chapter 8 for a discussion on this issue). All primary 

hypotheses were tested using the general estimating equations via the geepack package 

(Halekoh, Højsgaard & Yan, 2006). All secondary hypotheses were tested using binomial 

z-tests of independence for contingency tables, using the Allison and Liker (1982) 

correction for lagged dependence.  

Review of Analysis Strategies 

The analyses of this study assess reinforcers along a naturalistic stream of 

observations; specifically, the set of classroom observations used by Sage and 

Kindermann (1999) for their analysis of overall contingency patterns on children’s 

naturally occuring classroom behaviors. Each analysis corresponds to a primary and 

secondary hypothesis. The primary hypotheses are based on Skinner’s (1938) definitional 

criteria of reinforcers, and compare the target behavior probability (as determined by the 
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hypothesis) across reinforcement sequences; that is, ‘before’ and ‘after’ reinforcers.  

 The secondary hypotheses draw inspiration from traditional tests of reinforcer 

contingencies via lag-sequential analyses (e.g., Bakeman and Gottman, 1997),  and view 

the recounting procedure  as an extension of lag-sequential analyses. Accordingly, these 

secondary tests compare the probability of target behaviors after reinforcers occur to the 

overall probability of the target behaviors, using the Allison and Liker (1982) z-test for 

sequentially dependent observations). The question for these analyses is then whether a 

putative reinforcer does have alter future behaviors, in an entire set of observations and 

across all individuals, in a way that distinguishes these observations from the others, in a 

way that is consistent with Skinner’s operational definition of reinforcers (e.g. is the 

proportion of behavior greater following reinforcers, compared to the overall proportion).    

 All analyses test the ‘recounted observation series’, which is used to classify 

observations as ‘targets’ or ‘non-targets’, ‘before’ or ‘after’ reinforcers. The intent of this 

classification procedure is to re-structure a ‘messy’ set of observations, that contain 

behaviors intermixed with potential reinforcers, into a dataset where each observation can 

be categorized as a target or non-target behavior and before or after reinforcers. Stated 

differently, the purpose is to restructure a naturalistic set of observations so that a clear 

‘before’ and ‘after’ probability comparison is possible without any experimental 

manipulations or major assumptions.       

 It is important to note again that the recounting procedure is applied using an 

‘overall strategy’, such that observations are classified by their ‘reinforcement sequence’ 

(e.g., as occuring ‘before’ or ‘after’ reinforcers), without making any distinction between 

behaviors that came from separate focal children (i.e. separate individuals, in the general 



 
  

 
88  

 
 

case). This increases the appeal of the strategy, so that researchers need less worry about 

individuals with especially small samples (e.g., participants who were not available for 

all days of an observation).   

Figure 24. Reinforcement detection measure (a.k.a. recounting procedure) (Figure 1 

reprint) 

 

The recounting procedure (see Figure 24 for reference) classifies observations 

according to whether they occurred before or after a putative reinforcer. Then, it 

replicates the observation series repeatedly again for each further putative reinforcer in 

the data series, analogous to a moving average window. This is done for all occurring 

putative reinforcers, so that in each wave of replication, all observations can be cross 

classified as occurring before or after reinforcers. This strategy can be viewed as an 

extension of a lag-sequential analysis, since it classifies observations according to a 

sequential structure, and allows for a comparison across all observations and in both 

directions. However, by re-sampling the observations, this strategy introduces new 

dependencies on-top of the pre-existing dependency in the original observations (e.g. 

repeated observations within individuals). The primary and secondary analyses use 

different strategies to account for dependency structures and are reviewed in the 
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following paragraphs.        

 Overview of reinforcement detection strategy. The goal of the thesis is to 

introduce the ‘recounting procedure’ as a tool to transform any set of behavioral 

observations so that they can be analyzed for indications of reinforcement patterns by 

classifying observations into reinforcement sequences (e.g., occurring ‘before’ or ‘after’ 

reinforcers), and as ‘target behaviors’ or ‘non-target behaviors’. The procedure gives to 

usually imbalanced naturalistic observations an ordered time structure and simulates a 

situation as if just one prototypical  reinforcer occurred and as if all observations came 

from a single focal person (see Figure 25 for reference of the step-wise process). This 

makes it possible to compare the classified behavior proportions in the originally ‘messy’ 

streams of observations (e.g., multiple reinforcers, unbalanced behaviors before and after 

reinforcers, unbalanced observations across participants, etc.).   
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Figure 25. Stepwise depiction of the recounting procedure (Figure 7 reprint) 

 

Readers may also see this as a strategy that makes it possible to create moving 

averages of proportions across the observation series. The proportions of the classified 

observations reflect the relative frequencies behaviors (coded as targets or non-targets as 

the dependent variable) with respect to the reinforcement sequence (coded as ‘before’ or 

‘after’ reinforcers as the independent variable). To ensure each observation is classified 

correctly, that is, for each reinforcer in the series, observations are classified and indexed 

for each replication of the observation series (where I use the term ‘sub-series’ in 

reference to each replication).        

 Readers should note the terminology used to describe these processes. I use the 

term ‘series’ in reference to the original observations and the term ‘recounted series’, 
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after applying the recounting procedure on the series. I use the term ‘reinforcement 

sequence’ as the variable which classifies recounted observations as ‘before’ or ‘after’ 

reinforcers. Readers should see the recounted series as an ‘overall’ observation series. In 

this way, all observations are classified with respect to reinforcers across all individuals 

(as is typical for observational datasets, interindividual differences will be rather large; 

and methods to account for these are discussed in the following sub-section).   

 Primary Analysis for Reinforcement Effects. The primary analyses test 

reinforcers directly, by comparing overall proportions of target behaviors, across 

reinforcement sequences (i.e., ‘before’ and ‘after’ reinforcement), in the recounted series. 

While the recounted series assumes that all observations come from a single ‘individual’, 

this assumption is ultimately false for the observations used in this thesis. To account for 

repeated observations within focal children in Sage and Kindermann’s (1999) study, the 

primary analyses use general estimating equations implemented in the R software (Liang 

& Zeger, 1986) package geepack (Halekoh, Højsgaard, & Yan, 2006) to adjust the 

standard errors of the regression parameter estimates, in order to account for correlated 

repeated observations within focal children’s observations, when making overall 

probability comparisons. This strategy fits the assumption of an overall analysis by 

measuring the outcome across all observations, while accounting for the fact that 

observations are repeated within individuals, and that recounted observations are thus 

repeated within individuals ordered by sub-series. As explained in Chapter 6, this is done 

by specifying individuals ID as a ‘clustering’ variable and sub-series as a ‘wave’, in the 

models implemented in R.          

 The method of general estimating equations adapts a generalized linear model to 
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accommodate response variables with non-normal distributions (e.g., count data). 

Particularly, the gee models in this thesis use a ‘logit link’ function to model the relation 

between reinforcement sequence and target behavior proportions. Consequently, the 

model output is expressed in terms of logits, but can be converted by readers using 

equations provided in Appendix D. Unlike typical logistic regression models, GEE’s 

adjust parameter estimates and their standard errors using a ‘working correlation 

structure’, which accounts for the expected correlation between events under a ‘clustering 

unit’ or ‘nesting variable’. The choice of a working correlation matrix determines a 

starting value (or ‘best guess’), as to the observed intra-cluster correlations. Using an 

iterative procedure, this guess is updated based on the observed correlations. In this way, 

GEE’s provide an efficient estimate for the standard errors, even if the working 

correlation is mis-specified (Wang, 2002).      

 All primary analysis models in this thesis use a general estimating equations 

approach with a logit link function to model the log odds of target behaviors given the 

reinforcement sequence, while adjusting for the average intra-individual correlations. 

Additionally, all models are specified with an ‘independence’ working correlation matrix 

to produce the smallest standard error and thus the most accurate p-value for the model 

coefficients. Unlike alternative structures (e.g., ‘exchangeable’), the independence 

structure does not alter parameter estimates, and thus, the interpretation of the model 

parameters is the same as with a logistic regression analysis. All  models are implemented 

in R with the geepack package (Halekoh, Højsgaard, & Yan, 2006), and made available to 

the reader via the Reinforcinator web-app (see 

https://delaneyj1786.shinyapps.io/reinforcinator_shiny/), made with the shiny package 

https://delaneyj1786.shinyapps.io/reinforcinator_shiny/
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(Chang et. al., 2016).             

Secondary Analysis Strategies: Adaptation of Traditional Lag Sequential Analysis 

Methods and Delineation of Reinforcement Proportions    

The secondary analyses test reinforcers indirectly, by comparing the proportion of 

target behaviors after reinforcers to the overall base-rate of target behaviors. These 

analyses are inspired by lag-sequential analysis (e.g. Bakeman and Quera, 1996) and and 

follows from the original conceptualization of the recounting procedure extension of a 

lag-analysis to larger ‘windows’, in which the dependent variable is measured 

(aggregated) across all lags-ahead (after) and all lags before reinforcers. Following from 

the lag-sequential analysis, this secondary strategy compares proportions directly from 

contingency tables of the recounted series. Accordingly, this strategy adopts the Allison 

and Liker z-test for contingency tables, used to correct for sequential dependence across 

all recounted observations.        

 I apply the test to the 2 x 2 contingency table that classifies the dependent variable 

behavior (with categories target or non-target) by the independent variable reinforcement 

sequence (with categories before or after). While the table resembles a 2 x 2 contingency 

table for independent variables, the lag-sequential z-score is meant for tables on repeated 

measures, that is, where the rows represent the values of the dependent variable at the 

first measure and the columns represent the values of the dependent variable at the 

second measure. Accordingly, I begin this section by showing how the contingency table 

for the recounted series (called the recounted frequency table) is equivalent to a table 

where the cells represent the count of transitions across time for the dependent variable. 
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The remainder of this section reviews the three contingency tables and the Allison and 

Liker z-score for lagged dependence.      

 Traditional contingency stable style tests for complete pairs. The Allison and 

Liker (1982) z-score has a long history in testing reinforcement hypotheses from 

naturalistic observations. In its original usage, this test compares the proportions of a 

potential reinforcer that immediately follow a target ‘antecedent’ behavior and compares 

this proportion to the overall ‘base rate’ proportion of times that the potential reinforcer 

occurs across any antecedents. Like the recounting procedure, observations are identified 

as ‘antecedents’ and ‘consequences’ across all individual identifiers. While the recounting 

procedure identifies antecedents and consequences across all time points before and after 

reinforcers, the typical lag-one analysis identifies observations as immediate 

consequences one step ahead of the antecedent – said to ‘lag behind’ by one unit. Figure 

26 shows a general set of six observations where the index t  is used to label observations 

as antecedents (e.g., 𝑋𝑡), and then consequences (e.g., 𝑋𝑡+1).    

Figure 26. 3 x 3 transition table for lag-one pairs (reprint) 

 

The traditional lag-one test uses the consequence at time t+1 as the dependent 

variable and counts all pairs of antecedents and consequences in the form (𝑌𝑡+1, 𝑋𝑡). All 

pairs are then tabulated in a ‘transition table’, which shows the total number of times the 
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a given category of the dependent variable was observed at time t+1 given that a category 

of the independent variable was observed at a lag of 1 unit of time earlier. The 3 x 3 

transition table shown in Figure 26 can then be ‘broken down’ into a marginalized table 

to test hypotheses concerning any consequence given any antecedent behaviors.  

Figure 27. 2 X 2 marginalized table for directed lag-one contingency hypothesis (reprint) 

 

Figure 27 shows a 2 x 2 table used to test Sage and Kindermann’s (1999) 

hypothesis that Social Approval (e.g. red circles) are more likely to follow On-Task 

behaviors (e.g. green circles) than all other antecedents. In this case, the 3 x 3 table is 

broken down by consolidating all non-target consequences (e.g., green and yellow 

circles) into one category (corresponding to non-target consequences), and all non-target 

antecedents (e.g., red and yellow circles) into another category (corresponding to non-

target antecedents). The cells of the ‘Marginal Table’ are computed by the sums of the 

combined behaviors, as the Figure depicts.  

Equation 7. Allison and Liker Z-score (notation adjusted for contingency analysis) 

𝑧1 =  
𝑃𝑟൫𝑌𝑡+1 = 𝑇𝑎𝑟𝑔𝑒𝑡 ൫𝑅8)ห 𝑋𝑡 = 𝑇𝑎𝑟𝑔𝑒𝑡 (𝐺) ) − 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡 (𝑅))

√
𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡 (𝑅)) (1 − 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡 (𝑅)) )(1 −  𝑃𝑟 (𝑋 = (𝑇𝑎𝑟𝑔𝑒𝑡(𝐺))  

(𝑁 − 1) ∗ 𝑃𝑟 (𝑋 =  (𝑇𝑎𝑟𝑔𝑒𝑡(𝐺))

 

 
8 Where R is red circles and G represents the green circles, as depicted in Figure 26.  
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Finally, to test the hypothesis that red circles are more likely to follow green circles 

(versus any other antecedents), we compute the relevant proportions from the 

contingency table and enter them into the Allison and Liker z-score (see Equation 7).  

This equation compares the conditional probability of target consequences given target 

antecedents (e.g., red given green) to the unconditional probability of target 

consequences. The denominator accounts for the base rate proportions of red and green 

circles.          

 Limitations and Extensions of the Lag analysis for reinforcers. In its traditional 

usage, the lag analysis is limited on two fronts for addressing reinforcers. Firstly, it only 

looks at relations across one lag. That is, it only considers the dependent variable when it 

comes immediately after the target antecedents (e.g., lag 1, 2, 3, etc., assume random 

intervening observations). Translating to reinforcers, this means we would only test 

probability of On-Task behaviors immediately following Social Approval and not all 

future On-Task behaviors. This can be extended by averaging proportions across 

computations for each lag, but at the expense of extreme computational intensity.   

 A second limitation in lag analysis for reinforcer detection is that it computes the 

dependent variable lagging ‘behind’ or ‘ahead’ of the independent variable, at a time. 

This contrasts with the classification strategy in this thesis; which labels observations as 

occuring before and after reinforcers, across all lags. This latter strategy is analogous to 

classifying the dependent variable as lagging behind the independent variable (e.g. before 

reinforcement) and lagging ahead of the independent variable (e.g. after reinforcement). 

While the secondary analyses of this thesis are analogous to the tests in lag-sequential 
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analyses (e.g., comparing probability of behaviors in after reinforcers to base-rates), the 

classification strategy is generally more versatile than a lag-sequential analysis, since it 

simultaneously classifies observations bi-directionally. The interested reader in directed 

to Appendix G for an example strategy of averaging across all lags in one direction and 

computing lags in both directions (using the example of lag-one).     

 Despite its limitations, ideas from the lag analysis can be used to guide a 

reinforcer analysis. For example, the lag-sequential analysis pairs observations 

sequentially, and not according to some higher order unit of analysis (e.g., observations 

within individuals). In this way, the dependency is due to re-sampling the same 

observations, and thus, the z-score accounts for this type of dependency. A second 

example is that this strategy can be used in messy datasets; where there are uneven 

number of observations before or after reinforcers, multiple reinforcers, or mixed number 

of reinforcers across participants. This contrasts heavily with similar tests (e.g., Mcnemar 

test for before and after comparisons for matched pairs), which pair observations 

according to individuals and assume complete observations at both time points. While 

this latter test can be used with some modifications (see Chapter 5 for a discussion), it 

falls outside the scope of the current thesis and is planned for future versions of the 

program as discussed in Chapter 8.       

 Adapting the test to reinforcer analysis. The original conceptualization of the 

recounting procedure saw this strategy as a theoretical extension of a lag-sequential 

analysis. Statistically, the two techniques were envisioned differently. Instead of pairing 

observations by a lag, the recounting procedure simply classified observations via 

multiple 2 x 2 contingency tables for independent variables; where a separate table was 
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made for each reinforcer sub-series, and events were classified into independent and 

mutually exclusive ‘before’ and ‘after’ categories, and as ‘target’ or ‘non-target’ 

behaviors. By combining multiple tables, tests on the resulting recounted frequency table 

could be made using the Allison and Liker z-test for dependency introduced by 

resampling the same observations. Furthermore, the recounted frequency table resembles 

the marginalized contingency table for lag analysis, but without requiring the 

computation of transitions or pairing observations ‘before’ and ‘after’ reinforcers.    

Figure 28. Equivalency of marginal table of incomplete pairs and recounting procedure 

Figure 28 shows the equivalency of the tables produced by the recounting procedure and 

a strategy for creating ‘before’ and ‘after’ pairs on unmatched behavioral observations. 

The purpose of this figure is to further justify the secondary analyses, by showing that it 

is possible to conceive a reinforcer analysis in terms of transitions in paired observations. 

Unlike the lag-sequential analyses, pairs are created in reference to the location of each 

reinforcer in the original series.        
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 Figure 28 shows two reinforcers, corresponding to two sub-series, and thus, 

corresponding to two sets of sequential pairings. In each pairing, the index ‘resets’ when 

reinforcement occurs; such that the same index is used for observations before reinforcers 

and after reinforcers. In this way, the first observation before reinforcers pairs with the 

first observation after reinforcers, and so on and so forth. In this way, the pairing become 

analogous to matched pairs for scenarios such as voting outcomes; where the first 

observation before and after reinforcement would correspond to the votes of the first 

individual at two time points, and so on and so forth.       

 Since naturalistic observations cannot be expected to ‘balance’ across reinforcers, 

it is expected to have ‘missing’ observations across the pairs. Unlike a typical voting 

scenario, where voters who only submit a vote before some ‘event’ are not of interest and 

can easily be discarded from the analysis, each observation is of substantive interest for 

the reinforcer analysis. Accordingly, we can expand the 2 x 2 table in Figure 28 (where 

question marks are used to indicate incomplete pairs) to a 3 x 3 table that includes 

missing values. By including missing values, we can compute counts for ‘unbalanced 

pairs’, that is, where the sample size differs before and after reinforcers. We can then 

proceed to marginalize across the non-missing rows and columns, to obtain a 2 x 2 table 

the marginal distributions. The bottom portion of the figure shows how the same table is 

constructed from the sum of contingency tables for each sub-series, obtained by the 

recounting procedure.  
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Figure 29. Reinforcement detection measure  (Figure 1 reprint) 

 

 Brief review of the contingency tables of the overall recounting procedure. The bottom 

portion of Figure 28 showed the construction of the ‘recounted frequency table’, as the sum 

of M contingency tables used to cross-classify the dependent variable (i.e., target 

behaviors) by the categories of the independent variable (e.g. reinforcement sequence). 

Table 9 shows this table again using a reprint of the original example (see Figure 29) used 

to introduce the overall recounting procedure earlier in this thesis. As an overall strategy, 

this table is used to address the lag-sequential hypothesis in terms of reinforcers; that is, 

whether the proportion of target behaviors ‘after reinforcement’ is greater than the 

proportion over the whole series.         

 

As the examples illustrate, the contingency table for recounted frequencies is useful 

Table 9. Contingency table for recounted frequencies (table 6 reprint) 
 After Reinforcer   

 Green   Not Green Totals 

After Red 30 

(.7) a 

  

13 

(.3) 

 

43 

(1) [.6] 

 

Before Red 12 

(.41) 

 

17 

(.59) 

 

29 

(1) 

 

  Frequency  42 

(.58) 

 

30 

(.42) 

 

72 

(1) 

 

a. Values in brackets s are cell values divided by the row totals (i.e. row-margin proportions)   
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for providing accurate proportions that account for messy naturalistic scenarios (e.g., 

uneven observations before or after reinforcers, multiple reinforcers, etc.). When using 

these values in a test statistic such as the Allison and Liker z-score, this table may less than 

ideal due to the inflated sample size of the recounted series (recall that the total recounted 

sample is M x N, where M is the total number of reinforcers across the entire series). This 

has the effect of increasing the z-score based on a recounted sample size and providing a 

greater risk of type 1 error by not controlling for the re-sampling.  

 

The average frequency contingency table attempts to correct for the effects of re-

sampling by dividing the values of the recounted frequency table by the number of 

reinforcers M. This serves the advantage of providing the same approximate proportions 

as the recounted table, while using the original sample of observations. In this way, tests 

using this table are expected to reflect a more accurate effect of reinforcement in messy 

situations (e.g., multiple reinforcers, etc.) across the original series. Finally, the 

recomputed frequency contingency table is postulated to be the most reliable of the three 

strategies. This approach accounts for the row-conditional proportions of each sub-series, 

Table 10. Contingency table for average frequencies (table 7 reprint) 
 After Reinforcer   

 Green   Not Green Totals 

After Red 10 

(.7)a 

 

4.33 

(.3) 

 

14.3 

(1)[.59] 

 

Before Red 4 

(.41) 

 

5.67 

(.58) 

 

9.67 

(1) 

 

  Frequency  14.01 

(.58) 

 

10 

(.89) 

 

24 

(1) 

 

a. Values in brackets s are cell values divided by the row totals (i.e. row-margin proportions)   
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as well as the overall cell average (taken from the average frequency table). Specifically, 

the cells of this table are the product of each sub-series conditional probability (for a 

given cell) and the value of the average table, summed across each sub-series (see Table  

11 for the example). 

 

 

Table 12 shows the values necessary for the z-score equation for each of the three 

contingency tables. The recounted table gives an inflated z-score, despite testing the same 

difference as the contingency table for average frequencies. The average z-score provides 

a more conservative z score due to using the correct sample size. The re-computed z-

score sits in-the most conservative between the other z-scores and would be taken as 

support of the hypothesis that proportion of target behavior after reinforcement is greater 

than the chance base rate without prior knowledge of any reinforcement sequence 

 

 

 

 

Table 11. Contingency table for recomputed frequencies (table 8 reprint)) 
 After Reinforcer   

 Green   Not Green Totals 

After Red 10.49  

(.73) a 

 

3.85 

(.27) 

 

14.3 

(1)[.6] 

 

Before Red 3.53 

(.36) 

 

6.84 

(.63) 

 

9.7 

(.99) 

 

  Frequency  14.02 

(.58) 

9.98 

 

24 

 

a. Proportions are taken from the row margins 
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Equation 8. Allison and Liker z-score adapted to reinforcer analysis (re-print) 

𝑧1 =  
𝑃𝑟(𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟) − 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡)

√
𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡) (1 − 𝑃𝑟 (𝑌 = 𝑇𝑎𝑟𝑔𝑒𝑡) )(1 − 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟 )

(𝑁 − 1) ∗ 𝑃(𝑌 | 𝑥 = 𝐴𝑓𝑡𝑒𝑟)

 

 

 

 

 

 

Table 12. Proportions used in Allison and Liker (1982) z-scores 
Recounted Table  . 7 − .58

ට
. 58 ∗ (.42)(.4)

71 ∗ (.6)

= 2.51 

Pr(Green) 42

72
 (.58)  

Pr(After) 43

72
 (.6)  

Pr(Green | Red) 30

72
 (.7)  

Average Table  . 7 − .58

ට
. 58 ∗ (.42)(.41)

24 ∗ (.59)

= 1.46 

Pr(Green) 14.01

24
 (.58)  

Pr(After) 14.3

24
 (.59)  

Pr(Green | Red) 10

24
 (.7)  

Recomputed Frequency Table  . 73 − .58

ට
. 58 ∗ (.42)(.4)

24 ∗ (.6)

= 1.22 

Pr(Green) 14.01

24
 (.6)  

Pr(After) 14.3

24
 (.6)  

Pr(Green | Red) 10

24
 (.7)  
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Results 

I present the results in three steps. I begin by overviewing the descriptive statistics 

for each distribution for each research question (starting with the original data file). I then 

detail the primary analysis results and follow this with a summary of the secondary 

analysis results. I repeat this reporting process for each hypothesis.   

 Descriptive Statistics. The Sage and Kindermann (1999) data-file contained a 

total of 12,110 observations. These observations were spread across 25 focal children, 

across 11 daily observation episodes. There was a total of 135 missing observations 

across all focal children. Table 13 shows the distribution of all behaviors across the full 

observation stream, without removing missing observations.  

Table 13. Distribution of overall behaviors in original data-file 
Behavior (Code) N Percentage Valid Percentagea 

Approval (A) 249 2.1% 2.1% 

Cooperation (C) 1720 14.2% 14.4% 

Disapproval (D) 48 .4% .4% 

Factual Disagreement (DIS) 33 .3% .3% 

Ignore (I) 101 .8% .8% 

Move (M) 236 1.9% 2.0% 

On-Task Active (OA) 1957 16.2% 16.3% 

On-Task Passive (OP) 6171 51% 51.5% 

Prompt (P) 323 2.7% 2.7% 

Off-Task Active (XA) 375 3.1% 3.1% 

Off-Task Passive (XP) 762 6.3% 6.4% 

Missing (NA) 135 1.1% 2.1% 

a. Valid percentages are calculated by removing missing values from the total 

  

The 135 missing observations were removed prior to recounting the overall 

behavior streams for each research question. This brought the total number of eligible 

observations recounting to 11,975. The formula N x M was used to obtain the total 

number of recounted observations, where M is the number of cases of each reinforcer, as 

determined by each research question and N is the total number of observations (see 
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Chapter 5). Because the length of the recounted series varies depending on the 

independent variable (i.e., putative reinforcer), I report the recounted series sample size 

separately for each research question.    

Research Question 1 

  Research Question 1 asks whether social approval is a reinforcer for classroom 

behaviors. To answer this question the original file was scanned using the recounting 

procedure which duplicated the original observation stream for each of the 249 

observations of Social Approval. This resulted in a total of 2,981,775 observations in the 

recounted behavior stream used to address Research Question 1.      

Table 14. Distribution of recounted behaviors for social 

approval as a reinforcer 
Behavior  N % 

Approval (A) 6,200 2.1% 

Cooperation (C) 428,280 14.4% 

Disapproval (D) 11,952 .4% 

Factual Disagreement (DIS) 8,217 .3% 

Ignore (I) 25,149 .8% 

Move (M) 58,764 2.0% 

On-Task Active (OA) 487,293 16.3% 

On-Task Passive (OP) 1,536,579 51.5% 

Prompt (P) 80,427 2.7% 

Off-Task Active (XA) 93,375 3.1% 

Off-Task Passive (XP) 189,738 6.4% 

Totals 2,925,974 100% 

         

Hypothesis 1. Hypothesis 1 states that Social Approval is a reinforcer for 

children’s On-Task classroom behaviors. The primary test of this hypothesis compares 

the proportion of On-Task behaviors before and after Social Approval across all 

observations, under the expectation that On-Task behaviors after reinforcers will be 

greater than the proportion before reinforcers. A GEE model was specified with a logit 
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link for the mean and variance of a binomially distributed outcome, with an independence 

working correlation structure for repeated measures.     

 The observed proportion of On-Task behavior before Social Approval was .161 

and the observed proportion of On-Task behavior after Social Approval was .166. The 

difference of .005 between these two proportions was significant using the GEE model 

(β1 = .0317, Wald χ2(1) = 28.4, SE = .0059, p < .001). These findings suggest that On-

Task behavior is .05% more likely to occur after Social Approval occurs, across all 

students. This primary analysis supports the hypothesis that Social Approval reinforces 

On-Task behaviors by a direct comparison of before and after behavior proportions in the 

entire series of observations, while adjusting for the dependent observations within 

individuals.     

Table 15. Research question 1 hypothesis 1 primary analysis 

Beta  Coefficient Estimate 

(Probability) 

SE Wald χ2(1) 

𝛽0 -1.648  .004 156107***  

𝛽1 .0318  .006 28.4***  

***indicates p < .001 

 

A secondary analysis was conducted to test reinforcers using a traditional Allison 

and Liker (1982) z-test of contingencies, adapted for the analysis of reinforcers. This test 

compared the probability of On-Task behaviors following reinforcers to the overall base 

rate proportion of On-Task behaviors. The test was performed on the contingency table 

for recounted frequencies, the average frequencies, and the re-computed frequencies (see 

the review in this chapter, or chapters 5 for a description of these tables).   
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Table 16. Research question 1 hypothesis 1 proportions  
Summary 

Series  

p(Y=OA | X = After) p(Y=OA)  p(X=After) N z 

  Recounted .166 .163 . 488 2,981,526 13.5 

  Average .166 .163 . 488 11,974 .868 

 Recomputed .166 .161 . 488 11,974 

 

1.45 

 

 

 The Allison and Liker z-test (1981) found that the proportion of On-Task 

behaviors following reinforcement was significantly greater than the overall proportion 

across the recounted observation series (diff = .03, z = 13.5, p <.001). When dividing this 

distribution by the total number of reinforcers, the same difference was not significant for 

these average frequencies (diff = .03, z = .868, p >.05). Similarly, the difference was not 

significant across the recomputed frequencies at the .05 significance level (diff = .05, z = 

1.45, p >.05).           

 These secondary analyses provide almost no support at all for the hypothesis that 

Social Approval demonstrates a reinforcing effect for children On-Task behaviors, under 

a traditional test used in lag sequential analysis, for the three summary contingency 

tables. Table 17 shows the proportions used in the z score computations for each of the 

three contingency tables 

 

Table 17. Research question 1 hypothesis 1 summary secondary analysis 
  On- Task Behavior  

Summary 

Series  

Reinforcement 

Sequence 

Yes No Total 

Recounted     

 After 241,254 (.166) 

 

1,215,065 (.834) 1,456,319 

 Before 246,039 (.161) 

 

1,279,168 (.839) 1,525,207 

  Total 487,293 

 

2,494,233 2,981,526 
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Average     

 After 969 (.166) 

 

4880 (.834) 5849 

 Before 988 (.161) 5,137 (.839) 

 

6,125 

  Total 1,957 

 

10,017 11,974 

Recomputed     

 After 970 (.166) 

 

4,879 (.834) 5,849 

 Before 954 (.156) 

 

5,172 (.844) 6,125 

  Total 1,924 10,051 

 

11,974 

a. Proportions are computed from the row margins 

  

Hypothesis 2. Hypothesis 2 states that Social Approval is a reinforcer for 

children’s Off-Task classroom behaviors. The primary test of this hypothesis compares 

the proportion of Off-Task behaviors before and after Social Approval across all 

observations, under the expectation that Off-Task behaviors after reinforcers will be 

greater than the proportion before reinforcers. A GEE model was specified with a logit 

link for the mean and variance of a binomially distributed outcome, with an independence 

working correlation structure for repeated measures.     

 The observed proportion of Off-Task behavior before Social Approval was .024 

and the observed proportion of Off-Task behavior after Social Approval was .039. The 

difference of .015 between these two proportions was significant using the GEE model 

(β1 = .0525, Wald χ2(1) = 1,361, SE = .0142, p < .001). These findings suggest that Off-

Task behavior is 1.5% more likely to occur after Social Approval occurs, across all 

students. This primary analysis supports the hypothesis that Social Approval reinforces 

Off-Task behaviors by a direct comparison of before and after behavior proportions, 

while adjusting for the dependent observations within individuals.     
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Table 18. Research question 1 hypothesis 2 primary analysis 
Beta  Estimate 

 

SE Wald χ2(1) 

𝛽0 -3.72  .011 113,056*** 

𝛽1 .525  .014 1,361*** 

a. *** indicates p < .001 

 

A secondary analysis was conducted to test reinforcers using a traditional Allison 

and Liker (1982) z-test of contingencies, adapted for the analysis of reinforcers. This test 

compared the probability of Off-Task behaviors following reinforcers to the overall base 

rate probabilities of Off-Task behaviors. The test was performed on the contingency table 

for recounted frequencies, the average frequencies, and the re-computed frequencies.   

 

Table 19. Research question 1 hypothesis 2 proportions  
Summary 

Series  

p(Y = XA | X = After) p(Y=XA)  p(X=After) N z 

  Recounted .039 

 

.0313 .488 2,981,526 77.8 

  Average .039 

 

.0313 . 488 11,974 4.93 

 

Recomputed 

.041 .0311 . 488 11,974 

 

6.16 

 

The Allison and Liker z-test (1981) found that the proportion of Off-Task 

behaviors following reinforcement was significantly greater than the overall proportion 

across the recounted observation series (diff = .007, z = 27, p <.001), the average 

frequencies (diff = .007, z = 4.72, p <.001), and the recounted frequencies  (diff = .009, z 

= 6.01, p <.001). These secondary analyses provide additional and unanimous support for 

the hypothesis that Social Approval demonstrates a reinforcing effect for children’s Off-
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Task behaviors, under a traditional test used in lag sequential analysis, for the three 

summary contingency tables. Table 20 shows the proportions used in the z score 

computations for each of the three contingency tables. 

 

 

 

 

Table 20. Research question 1 hypothesis 2 summary secondary analysis 
  Off Task Behavior  

Summary 

Series  

Reinforcement 

Sequence 

Yes No Total 

Recounted     

 After 57,297 (.039) 

 

1,399,022 (.961) 1,456,319 

 Before 36,078 (.024) 

 

1,489,129 (.976) 1,525,207 

  Total 93,375 2,888,151 2,981,526 

 

Average     

 After 230 (.039) 5,619 (.961) 

 

5,849 

 Before 145 (.024) 5,980 (.976) 

 

6,125 

  Total 375 11,599 11,974 

 

Recomputed     

 After 239 (.041) 5,610 (.959) 

 

5,849 

 Before 133 (.022) 5,992 (.978) 

 

6,125 

  Total 372 11,602 11,974 

 

a. Proportions are computed from the row margins 

 

Research Question 2 

Research Question 2 asks whether direct Disapproval is a punisher r for classroom 
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behaviors. Thus, the observations were recounted according to the 48 observations of 

Social Disapproval in the original data-file. There was a total of 307,800 recounted 

observations for addressing Research Question 1 (see Table 10).    

Table 21. Distribution of recounted behaviors for direct disapproval as a 

punisher 
Behavior  N % 

Approval (A) 11,952 2.1% 

Cooperation (C) 82,560 14.4% 

Disapproval (D) 2,304 .4% 

Factual Disagreement (DIS) 1,584 .3% 

Ignore (I) 4,848 .8% 

Move (M) 11,328 2.0% 

On-Task Active (OA) 93,936 16.3% 

On-Task Passive (OP) 296,208 5.1% 

Prompt (P) 15,504 2.7% 

Off-Task Active (XA) 18,000 3.1% 

Off-Task Passive (XP) 36,576 6.4% 

Totals 306,216 100% 

       

Hypothesis 3. Hypothesis 3 states that Social Disapproval is a punisher for 

children’s Off-Task classroom behaviors. The primary test of this hypothesis compares 

the proportion of Off-Task behaviors before and after Social Disapproval across all 

observations, under the expectation that Off-Task behaviors after reinforcers will be less 

than the proportion before reinforcers. A GEE model was specified with a logit link for 

the mean and variance of a binomially distributed outcome, with an independence 

working correlation structure for repeated measures.      

 The observed proportion of Off-Task behavior before Social Disapproval 

was .026 and the observed proportion of Off-Task behavior after Social Disapproval 

was .038. The difference of .012 between these two proportions was significant using the 

GEE model (β1 = .4060, Wald χ2(1) = 174, p < .001, SE = .0308). These findings suggest 

that Off-Task behavior is 1.2% more likely to occur after Social Disapproval occurs, 
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across all students. This primary analysis directly conflicts with the hypothesis that Social 

Disapproval punishes Off-Task behaviors, and thus, does not support Hypothesis 3.    

Table 22. Research question 2 hypothesis 3 primary analysis 
Beta  Coefficient Estimate 

(Probability) 

SE. Wald χ2 

𝛽0 -3.778  .022 2,399*** 

𝛽1 .406  .031 174 *** 

a. *** indicates p < .001 

 

 Secondary Analyses. A secondary analysis was conducted to test reinforcers using 

a traditional Allison and Liker (1982) z-test of contingencies, adapted for the analysis of 

reinforcers. This test compared the probability of Off-Task behaviors following Social 

Disapproval to the overall base rate probabilities of Off-Task behaviors. The test was 

performed on the contingency table for recounted frequencies, the average frequencies, 

and the re-computed frequencies.   
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The Allison and Liker z-test (1981) found that the proportion of Off-Task 

behaviors following punishment was significantly greater than the overall proportion 

across the recounted observation series (diff = .007, z = 28.2, p <.001), the average 

frequencies (diff = .007, z = 4.07, p <.001), and the recounted frequencies  (diff = .008, z 

= 4.69, p <.001). These secondary analyses do not support the hypothesis that disapproval 

leads to decreases in Off-Task behaviors. On the contrary, these suggest a reinforcing 

effect of social disapproval for Off-Task behaviors. Table 24 shows the proportions used 

in the z score computations for each of the three contingency tables. 

 

 

Table 23. Research question 2 hypothesis 3 summary secondary analysis 
  Off Task Behavior  

Summary 

Series  

Reinforcement 

Sequence 

Yes No Total 

Recounted     

 After 9,408 (.038) 

 

234,793 (.961) 244,201 

 Before 8,592 (.026) 321,959 (.974) 

 

330,551 

  Total 18,000 556,752 

 

574,752 

Average     

 After 196 (.038) 4,892   (.961) 

 

5,088 

 Before 179 (.026) 6,707 (.974) 

 

6,886 

  Total 375 11,599 11,974 

 

Recomputed     

 After 194 (5088) 4,894 (.962) 

 

5,088 

 Before 160 (.023) 

 

6,726 (.977) 6,886 

  Total 354 11,620 11,975 

 

a. Proportions are computed from the row margins 
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Table 24. Research question 2 hypothesis 3 proportions  
Summary 

Series  

p(XA | X = After) p(XA)  p(X=After) N z 

  Recounted .038 .031 .425 574,752  
28.2 

 

  Average .038 .031 .425 11,974 

 

4.07 

 Recomputed .038 .030 .425 11,974 

 

4.69 
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Chapter 8 

Discussion 

The current study extends the behavior observational literature by implementing a 

behavioral change-based measure of social consequences in order to explore whether 

social consequences affect changes in children’s future classroom behaviors. This study 

relies on two core components: 1) a set of procedures and statistical functions 

incorporated into a web-application with a graphical user-interface, and 2) an archived set 

of classroom observations, used in Sage and Kindermann’s (1999) assessment of 

naturally occurring classroom contingencies. These components were synthesized to re-

test hypothesis on naturally occuring social contingencies to determine whether these 

putative reinforcers were indeed reinforcing.      

 The discussion proceeds in three parts. The first part overviews the results of the 

primary and secondary hypotheses tests and then interprets these major findings in terms 

of relevant theory. This section extends beyond the realm of strict behaviorism to provide 

insight from theory gleaned using a contextualistic perspective on children’s engagement 

in classrooms.  

The second part of the discussion focuses on the strengths, limitations, and future 

directions of this study. Particularly, this second part focuses on 1) the reinforcement 

detection applet (i.e. The Reinforcinator), 2) the recounting procedure and measures, and 

finally, 3) the implications of non-experimental reinforcement detection on naturalistic 

observations. The discussion ends by a brief mention of the possible extensions of the 

planned research and how the reinforcement detection strategy may have uses outside the 
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realm of pure observations.      

Results overview and implications 

There are two components in testing reinforcers. First, the behavior patterns need 

to be examined for the direction of change, following a given consequence (i.e. greater or 

lesser after reinforcement), and secondly, this observed function of a consequence needs 

to be empirically tested for significance. In this review of the results, I restate the results 

of each hypothesis test by describing the observed functional relation (i.e. reinforcer or 

punisher) and whether this was significant by the primary, or secondary, or both, 

analyses. I also note any discrepancies across analyses (e.g. comparing primary to 

secondary), and within analyses, such as comparing significance tests in the secondary 

analyses. The recounting procedure was used to address whether direct Social Approval 

acted as a reinforcing consequence (i.e., Research Question 1) and whether direct 

Disapproval acted as a punisher (i.e., Research Question 2).   

 Research Question 1. Research Question 1 asked whether Social Approval was a 

reinforcer for On-Task behavior (Hypothesis 1) and Off-Task behavior (Hypothesis 2). 

Across all observations, Social approval was the second most likely social consequence 

(behind co-operation), occuring about 2.1% across all students. For behaviors, On-Task 

active occurred about 16.3% of the time and Off-Task active was much less likely, with 

about a 3.1% base rate.         

 Social Approval was shown to significantly increase On-Task behaviors by less 

than .05% and Off-Task behaviors by 1.5%, using generalized estimating equations to 

account for dependency within students across the recounted observation series. When 
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the proportion of On and Off-task behaviors after putative reinforcers were compared to 

their respective base-rates in the secondary analyses, On-Task behavior was only .03% 

greater than base-rate, and Off-task behaviors were .08% greater than base-rate 

proportions. The difference for On-Task behaviors was only significant when using the 

inflated recounted sample. This contrasts with Off-Task behaviors which were 

significantly increased after a reinforcing event across the recounted as well as the 

corrected sample.   

The results of research question one brings light to interesting implications for 

detecting reinforcers under natural conditions. Firstly, these results imply that traditional 

measures of reinforcers may not uncover the full scope of potential reinforcers. In Sage 

and Kindermann’s (1999) analysis of classroom contingencies, for example, lag-

sequential analysis revealed that Social Approval was more likely follow On-Task 

behaviors when compared to chance. This was not the case for Off-Task behaviors. Sage 

and Kindermann’s findings suggested that Social Approval was a reinforcer for On-Task 

behaviors (and not Off-Task behaviors). The current study finds the opposite, namely, 

that Off-Task behaviors (and not On-Task behaviors) were more likely to follow Social 

Approval when compared to chance. Furthermore, the magnitude of change before and 

after Social Approval was greater for Off-Task behaviors, suggesting that Off-Task 

behaviors are more sensitive to Social Approval when compared to On-Task behaviors.  

 Taken as a whole, the discrepancies between the results contingency analysis and 

reinforcer analysis (when applied to the same set of classroom observations), suggest that 

there is more to the story of reinforcement then revealed by a single analysis alone. Sage 

and Kindermann’s (1999) contingency analyses show that is more common to observe 
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contingent Social Approval for On-Task behaviors, and less common to observe 

contingent Social Approval for Off-Task behaviors. The reinforcer analysis used in the 

present study tells us that the effects of Social Approval are greater for Off-Task 

behaviors than On-Task behaviors. When applied to classroom settings, the findings of 

the current study serve a cautionary tale; namely, that what looks like reinforcers, may 

not actually be reinforcing.        

 The results of Research Question One have a second major implication to the 

analysis of naturally occurring reinforcers, namely, the overall reinforcing effects may be 

so small in magnitude that they are barely noticeable in classroom settings, over short 

periods of time. The increases in On- and Off- Task behaviors from Social Approval were 

less than 1% across all observations; much less than what is typically produced from 

intervention studies (e.g., Soloman & Wahler, 1973). As noted by Partin and colleagues 

(2009), typical classroom interventions operate on a much longer timeframe then the two-

week observations used in the current study, which makes a comparison of experimental 

verse naturally occurring reinforcer effects somewhat tenuous.     

 A reasonable assumption is that a 1% increase in behaviors is not noticeable in 

classrooms, even over the two-week time frame used to collect observations in the 

current study. This does not imply that the effects of Social Approval stop at 1% change. 

To determine a long-term effect of reinforcers, future studies could explore short-term 

reinforcement patterns with more scrutiny than the overall analysis used in the current 

study. For example, the reinforcer analysis could look for additive patterns between 

reinforcers; that is, whether the reinforcer effect increases for subsequent reinforcers. By 

exploring additive effects, for example, future studies could answer more predictive 
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questions, such as how much reinforcement is necessary to make a noticeable change 

across a timeframe.  

Research Question 2. Research Question Two asked whether Social Disapproval 

has the role of a punisher for children’s Off-Task behaviors. Social Disapproval was one 

of the least frequent social consequences, occurring around .4% of the time. Contrary to 

expectations, Social Disapproval was shown to significantly increase children’s Off-Task 

behavior by approximately 1.2%, using general estimating equations to account for 

dependency within students. When compared to base-rates in the secondary analyses, 

Social Disapproval was shown to increase Off-Task behaviors relative to base-rate by 

about .07%. These increases in Off-Task behaviors go against the expectation that 

Disapproval was a punisher.        

 The unexpected findings of Research Question Two have major technical and 

theoretical implications. Technically, the increase in Off-Task behaviors following Social 

Disapproval may be an artifact of previous reinforcement from Social Approval of Off-

Task behaviors. Specifically, it is possible that Off-Task behaviors were first met by 

Social Approval and then future Off-Task behaviors were met by Social Disapproval. In 

this case, the effects of Social Disapproval may be distorted or suppressed by the 

lingering effects of prior Social Approval.  This implies that overall strategy used in 

current study is limited since it does not control for prior reinforcers in its analysis 

strategy. This limitation makes it impossible to truly know how Social Approval interacts 

with Disapproval for Off-Task behaviors. Consequently, this study cannot conclusively 

say determine whether Disapproval is reinforcing or punishing for Off-Task classroom 

behaviors.            
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 Technical limitations aside, the finding that Disapproval increases or sustains Off-

Task behaviors in classroom settings has precedence outside the strict behaviorist 

literature. For example, Saxton (2019) used naturalistic observations across four middle 

school classrooms and found that teacher’s disapproval did not resolve approximately 

89% of the interactions with disaffected students. Unlike the current study, these findings 

drew heavily from the engagement literature; in which student’s disaffection is part of a 

larger multi-faceted and multi-dimensional motivation construct (Skinner et al., 2008). 

From this perspective, disapproval from adults is at a direct conflict with the emerging 

adolescent’s need for autonomy, and thus, it follows that direct disapproval may ‘trigger’ 

future disobedience from students. Taken with the results of Research Question Two in 

the current study, it seems possible that non-behavioral processes may need to be 

considered when examining classroom reinforcement patterns.     

 Outside of classrooms, the reinforcing effects of disapproval do follow from the 

notion of a ‘reinforcement trap’; that is, a feedback loop of negative behaviors, typically 

studied in childhood aggression and coercive processes in families (e.g., Patterson 1982). 

The term ‘reinforcement trap’ in reference to a cycle of escalating aggressive behaviors 

occuring between two interactants. In these interactions, a child may initiate an 

aggressive response, only to be met with an aggressive consequence; either physical 

retaliation or bullying on the playground (e.g., Patterson, 1967), or verbally aggressive, 

such as a stern direct statement of approval from a parent or teacher. To my knowledge, 

little research has studied these processes in classroom settings. Taken with the findings 

of Research Question Two, it is plausible that the observed reinforcement effect was 

indeed an instance of naturally occurring reinforcement traps. In this case, what looks 
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like teacher’s use of punishment (e.g. disapproving negative behaviors), actually has the 

opposite effects on students’ future behaviors.       

Strengths and Main Contributions of Study 

This study offers a first step forward in the analysis of naturalistic observations 

with regard to empirically verifiable reinforcement. While plenty of challenges and 

refinements are expected for the future of this methodology, this study, at the very least, 

poses a good starting point for addressing limitations of existing methods. This spirit of 

curiosity led the current explore whether contingency detection really was an ‘end all’ 

methodology, or if it could be expanded upon in a way that more accurately sheds light 

on reinforcement processes in accordance with standard operational definitions and 

experimental methods. Accordingly, the result was the development of novel procedure 

for transforming observational datasets, a web-app for distributing the procedure, and a 

re-analysis of contingency hypotheses to demonstrate the methodology. 

This section discusses the strengths, limitations, and future directions of the 

current study. I organize a discussion around three major pieces: 1) the reinforcement 

detection strategy, 2) the Reinforcinator web-app, and 3) the use of naturalistic 

observations. Each topic is introduced in terms of its strengths and is followed by a 

discussion of its limitations and areas for future improvements.    

 Reinforcement detection strategy. The reinforcement detection strategy 

comprises two components: a ‘classification’ piece and a ‘measurement’ piece. The 

analyses of this thesis synthesized these pieces under an ‘overall strategy’. In this 

strategy, the observations are classified by the variable reinforcement sequence (e.g. 
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‘before’ and ‘after’ reinforcement) as reinforcers occur across all individual students. The 

relation between the reinforcement sequence and outcome is measured across all 

students. Ultimately, this synthesis yielded mixed results in terms of hypothesis testing, 

but also, shed light on many areas for future versions of the program and tangible next 

steps for future studies.         

 The ‘classification piece’ of the reinforcement detection strategy is used to 

identify observations as occuring by reinforcement sequence (i.e. ‘before’ or ‘after’ 

reinforcers) for behaviors (e.g. ‘targets’ or ‘non-targets’). While other studies have 

attempted to detect reinforcers under ‘naturalistic conditions’, this is the first study to our 

knowledge which provides an intuitive computationally simple and intuitive approach 

(see Appendix B for a more detailed review of prior attempts at naturalistic reinforcement 

detection). The ‘classification piece’ (i.e., recounting procedure) of this strategy produces 

a versatile dataset which retains all original variables and can be summarized by 

contingency tables and directly tested in regression models.    

 The ‘measurement piece’ of the strategy comprises a regression and contingency 

table tests for different hypotheses. A general estimating equations approach was used to 

test the difference in proportions. This approach was useful for testing an ‘overall’ 

measure of reinforcers;  whereby the parameter estimates were identical to raw 

proportions from contingency tables but with a standard error which accounts for 

dependencies in repeated observations within individuals. The interested reader is 

encouraged to see Appendix H for a comparison of the GEE models under an 

‘exchangeable’ working correlation structure, and with naïve standard errors from logistic 

regression models.         
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 Current limitations. The measurement piece of the strategy was implemented at 

an ‘overall level of analysis’; meaning, behaviors are identified as ‘before’ or ‘after’ a 

given reinforcer at the level of observation series. This potentially clashes with theories 

of learning since it treats all observations as coming from one person’s observation series, 

without distinguishing between individuals. For a first step, however, it was important to 

conduct reinforcement tests from a “within-”  individual perspective, so that all behaviors 

‘before’ and ‘after’ reinforcers were assumed to belong to same subject (see Skinner, 

1953 for a comprehensive discussion). Nevertheless, by not calculating reinforcement 

within individuals, the current analysis potentially misses individual differences with 

regards to reinforcement patterns.   

Figure 30. Individual reinforcement patterns.  

 

 

I use Figure 30 to fully illustrate the overall analysis and its limitations regarding 

individual learning. This figure shows two individuals, with 3 observations. One student 

(e.g. Abe) has no reinforcement effects and the other student (e.g. Jan) does. This figure 

shows the 2 x 2 contingency table for each student and the probability of On-task 
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behaviors after reinforcers. We can average the probabilities across both students to get  

average probabilities of 0 before and .25 after reinforcers. The third table shows the 

overall classification of observations, which yields a total probability of .4 after 

reinforcers. This values in this table are computed by taking the sum across both 

individuals, and thus, the overall proportion is not an average of individual’s behaviors. 

Consequently, it does not shed light on who is most affected by reinforcers, but instead 

indicates a reinforcement was present in the observation series.      

 A second limitation of this study is that the methods do not account for the affects 

of multiple reinforcers in a single analysis. The ramifications of this limitation were 

apparent in tests regarding Off-task behaviors (see hypotheses 2 and 3). In these tests, 

Off-task behaviors were shown to increase following Social Approval and Social 

Disapproval consequences. This result made it clear that the current strategy is unable to 

distinguish between effects of a multiple consequences on the same behaviors. Without 

knowing the general mathematical relations between reinforcers and punishers generally 

(e.g., how many punishers will negate the effects of reinforcers?), the challenge of 

parsing out lingering reinforcement effects from ‘fresh’ punishment effects becomes a 

very daunting task for naturalistic observations.     

 Finally, the reinforcement detections strategy is limited from the perspective of 

criterion validity. The secondary analyses do indeed test reinforcement from a different 

lens compared to the primary analyses. This lens may be a little too different in that it 

tests a slightly different hypothesis, using a different set of proportions, for its calculation 

of reinforcer effects. From a perspective of criterion validity, a more preferential strategy 

would be to test the same exact hypothesis in two different ways (e.g. regression and 
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contingency tables, for example). As discussed in Chapter 5, this study envisioned 

reinforcement as an extension of lag-sequential analysis. In this way, the current study is 

limited in that it does not repeat the same test using two different procedures.   

 A consequence of this limited validity is interpreting the regression models. While 

the GEE models were a promising start for this study, further comparisons showed that 

the independence assumption is likely wrong (see Appendix H for details). Follow up 

analyses revealed that all models in the primary analysis were less efficient than those 

under an exchangeable working correlation structure, using the QIC for comparing model 

fit (Shen & Chen, 2012). This could be due to the violation of the GEE assumption that 

no higher order of clustering exists. In the current study, sub-series is the highest order of 

nesting and supersedes individual identity, thus, violating this assumption of generalized 

estimating equations, and potentially providing unreliable standard error estimates. 

Lastly, without an alternative for comparing the same hypotheses, the results of the 

regression models must be taken cautiously since they use a much larger recounting 

sample than the original observations, thus, possibly exaggerating the reported effects.  

 Future directions. Future versions of the recounting procedure address the stated 

limitations in the following ways. Firstly, future versions are encouraged to account for 

effects within individuals for each reinforcer at a time. Such models may want to apply 

the recounting procedure on each individual behavior series for a given reinforcer to 

obtain an individual recounted behavior series. The effects of a single variable could be 

assessed by incorporating these individual behavior series into a single data matrix to be 

used in a mixed effect model for a single outcome (e.g., one reinforcer). In this way, an 

individual series for Abe and Jan (see Figure 30), would be automatically added on to the 
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recounted data-file.          

 To account for multiple reinforcer effects (and potential conflicts with punishers), 

future studies are encouraged to apply the recounting procedure across each possible 

behavior-consequence relation in an observation series. Using the data in this thesis, this 

would account for 30 different recounted observation series. If this approach was 

repeated for individuals separately, then a future analysis could comprehensively account 

for all reinforcement and punishment patterns, within and across individuals. While the 

formulation of such models is beyond the scope of this study, structural equation models 

for latent variables are one possible avenue for analyzing such datasets. The challenge for 

these studies would largely be consolidation and computational efficiency, as such a 

model would yield so much data that a standard analysis in R may not be feasible for 

most purposes. In this case, it is encouraged that such a study would also explore 

combining like codes (e.g., Active and Passive On-Task behaviors), or removing 

irrelevant codes (e.g. move away from camera).     

 Finally, future studies are encouraged to address the issue of criterion validity by 

formally expanding the recounting procedure to explicitly produce a transition table for 

matched pairs. While Chapter 5 touched upon this topic, it would be necessary to adjust 

the recounting procedure algorithmically so that transitions are computed for missing 

pairs, obtained from matching indices for observations before or after reinforcers. By 

directly computing transitions for matched pairs, even with incomplete pairs, future 

studies can apply variations of the Mcnemar test for complete, incomplete, and combined 

tables (see Tang & Tang, 2003 for such strategies). This is advantageous from the validity 

perspective; in that it would allow for the same hypothesis to be tested multiple ways. 
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This would allow the results of the regression to be verified using the original sample 

sizes, by performing an Mcnemar test on the average recounted pairs, for example. 

 Reinforcement Detection Applets. The Reinforcinator applet is a promising start 

for a software implementation of the reinforcement detection strategy in this thesis. This 

app contains all the tools used in the analysis of the present study (e.g., recounting 

procedure, gee models, contingency tables, etc.). Accordingly, it is possible to replicate 

all the analyses of this study, simply by using the app. Additionally, the app contains 

selected text and illustrations from this thesis, so that any user can have a basic 

conceptual understanding of the procedures. Taken as a whole, this is a step towards 

filling a void in the social developmental and applied behavior analysis literatures; where 

researchers have been arguing for the necessity of software and methods to extend 

observational analysis of reinforcers beyond extant methods, such as lag-sequential 

analysis (e.g. Sloman 2010; Dishion & Doge, 2005).    

 Current limitations. Despite its strengths, the applet still has a room for many 

improvements. One of the main concerns is computational efficiency and stability. To 

replicate the analysis in this study, for example, it may take the user upwards of 20 

minutes to run a single GEE model on the recounting observations! There are two main 

reasons for this. A first reason has to do with the computational efficiency of the specific 

functions used to implement the recounting procedure. These can be improved upon 

using more efficient computing procedures and data structures. The second reason has to 

do with the R Shiny interface. Since the functions are ran in R and Shiny, the 

computational speed is compounded and may also interact with user’s web-access (e.g. 

specific web-browsers and internet connection).       
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 Future directions. Future version of the Reinforcinator web-app are encouraged 

to step away from the Shiny platform and R software. Alternative frameworks may be 

more efficient in other programming languages (e.g., Django and Python). Future 

revisions are encouraged to implement some of the corrections noted for future versions 

of the recounting procedure (e.g., iterative recounting across all possible behavior-

consequence combinations; recounting across all individuals; alternative statistical 

models, etc.). As noted previously, certain additional functions may facilitate these 

computations and are encouraged for future versions of the program (e.g., combining and 

removing codes).         

 Naturalistic Observations. The current study contributes to the literature on peer 

influence by examining the effects of consequences, independently of contingency levels. 

By re-examining hypotheses from Sage and Kindermann’s (1999) study, the current 

thesis shows reinforcement effects for Social Approval and Disapproval for student’s On 

and Off-task behaviors. Taken at face value, these findings suggest there is an increase in 

these student behaviors across the observation series and these increases are related to 

putative reinforcers. These findings accord with experimental and social development 

literature on potential reinforcers experienced in classroom settings (e.g., Greenwood, 

Delquadri & Hall, 1984; Godwin, Almeda, Petroccia, Baker, & Fisher, 2013;  Vitiello, 

Booren, Downer, Williford, 2012).       

 Current limitations. Aside from known issues of the methodology (e.g., inability 

to control for confounds of prior experience from conflicting reinforcers, different 

hypothesis tests for all observations and contingency tables, inflated sample size for 

regression approaches, etc.), the current study is limited on theoretical grounds for not 
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investigating contextual effects on social reinforcers. A large part of Sage and 

Kindermann’s study was to compare contingencies across different social partners (e.g., 

peer group members vs. teachers). The current study does not distinguish these effects. 

The inability of the current study to clearly distinguish contextual effects from reinforcer 

effects may be most consequential for the analysis of Off-Task behaviors. Perhaps, if 

changes in Off-Task behaviors were measured independently for Disapproval from one’s 

peers or from the teachers, the study may find punishing effects for one social context 

exclusively (e.g. disapproval from teachers as a punisher).       

 Future revisions. The future of this methodology moves in two primary 

directions. Firstly, it is important to re-examine these classroom reinforcers once more, 

under a more refined lens that accounts for multiple reinforcers, social contexts, and 

individual differences. By implementing the noted changes in the recounting procedure, 

future studies may be able to more comprehensively comb through Sage and 

Kindermann’s (1999) to further distinguish contexts in which social consequences derive 

specific reinforcing or punishing functions. Relatedly, future studies are encouraged to 

also account for the known contingencies when computing reinforcer effects. As noted by 

Staddon and Cerruti (2003), reinforcement is theoretically a function of contingency and 

behavior change, such that knowing one without the other can only provide a fragmented 

picture in the best-case scenario.        

 A second direction for future revisions is a clear departure from the substantive 

application of the current study. Generally, the methods presented in this thesis are not 

relegated to classroom behaviors or social reinforcers. Stated differently, the recounting 

procedure can be used for any environmental ‘event’ as a reinforcer for any type of 
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behaviors. The only requirement of this strategy is longitudinal observations of the 

dependent variable. In this way, the strategy can be extended to analyze anything from 

changes in voting behaviors due to a political change, to company performance measures 

as stock prices change, to the frequency of elevator usage depending on elevator arrivals. 

A much-anticipated feature of this study is that it seeing which doors open for the 

analysis of reinforcer control over any behavior-environment observations. In this way, 

this thesis is a very promising start to the extension of Skinner’s original notion of 

reinforcers to the analysis of real-world behaviors.  
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Appendix A 

 Experimental Demonstrations of Social Reinforcers in Classrooms 

The only way to tell whether a given event is reinforcing to a given organism under given 

conditions is to make a direct test. We observe the frequency of a selected response, then 

make an event contingent upon it and observe any change in frequency. If there is a 

change, we classify the event as reinforcing to the organism under the existing conditions 

(Skinner, 1953, p. 122) 

Skinner’s statement summarizes the basic experimental premise underlying a traditional analysis 

of reinforcers; that is, a comparison of behavior when its consequences are experimentally controlled (See 

Chapter 2 for details). Used in laboratory and real-world settings, a traditional analysis of reinforcers has 

led to a robust body of knowledge regarding the reinforcement of behaviors under ‘given conditions’. In 

this sense, the majority of findings about reinforcers have received the most attention for situations in 

which reinforcers can be used to modify behaviors and environments (Dixon, Vogel, & Tarbox, 2012). This 

contrasts with the purpose of many naturalistic observations, which serve the purpose of explaining existing 

conditions and behaviors. It is for this reason that I do not include a thorough discussion of traditional 

reinforcement studies, results, and corresponding theory, in the main body of this thesis.    

 The proposed reinforcement detection applet does provide a tool for testing whether or not a 

category of events has a functional effect on behaviors as they occur in the stream of naturalistic 

observations. Because the reinforcer analyses depends on the quality of the observational datasets, a test of 

reinforcers may or may not overlook specific conditions which mediate or moderate the functional relations 

between a particular event and a given behavior. This all depends on whether or not such conditions are 

explicitly coded (or accounted for) in the observational design (see pages 17-22).  

 In the case of social events, experimental studies have shown that the delivery (i.e. verbal 

properties, non-verbal properties, affective properties) as well as the contexts (i.e. group or dyadic 

interactions, public or private) of social interactions can mediate whether or not a given behavior is 

reinforcing. Thus, to identify whether or not a particular feature of social approval enhances its reinforcing 

effects, one would need to account for this variable when coding behaviors and social interactions. As 

described by Vollmer and Hackenberg (2001): 

Unlike tangible reinforcers and punishers, which can be standardized and delivered in a fairly 

uniform fashion, social consequences come in a variety of forms—facial expressions, physical 

contact, vocalization—and are delivered in a variety of ways. A major challenge then lies in 

identifying the features that contribute to the effectiveness of social consequences (p. 248). 

  

When these features are not controlled for in a set of observations, then a test of whether or not a 

behavior is reinforcing, may overlook critical aspects of what makes a behavior reinforcing. Consequently, 

such analyses may be less precise than an analyses which accounts for mediators of reinforcers which have 

support from experimental studies.          

 The current study explores whether classroom interactions are reinforcing across a wide range of 

situations, activities, and social partners. In this way, the analyses may combine cases in which social 

approval is expected to reinforce, with observations in which social approval is not delivered under 

reinforcing conditions. As a first step in measuring naturally occurring reinforcement patterns, the current 

thesis does not directly account for the sensitivity of its measure to these potential moderating conditions. 

Accordingly, I do not discuss these features of social interactions which may produce varying degrees of 

behavior change, in the main body of this thesis.       

 This appendix provides a brief overview of the experimental findings regarding those conditions 

which may or may not moderate the reinforcing effects of Social Approval for On-Task behaviors (i.e. 

Hypothesis 1), Off-Task behaviors (i.e. Hypotheses 2), as well as the potential punishing effects of 

Disapproval for Off-Task behaviors (i.e. Hypotheses 3). I selected three potential moderating features of 
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classroom consequences on classroom behaviors: 1) its verbal specificity vs generality (i.e. great sentence, 

vs. good job), 2) whether it is delivered in a public or private setting, that is, in front of other students or 

during one-on-one interactions, and 3) whether it is delivered by teachers or peers. These conditions were 

selected because they are not controlled for in the current analyses but are likely to vary across observations 

of potentially reinforcing interactions, in naturally occurring classroom observations.      

 I present each topic with a research question that binds the reviewed studies and re-direct the 

reader to additional literature. I begin my discussion of selected studies by presenting background theory 

and the rationale behind its research questions and hypotheses. I follow this by discussing the 

methodological details (i.e. sample, experimental / observational design), and finally, the results and 

findings of the given study. I conclude my review by discussing how each study supports a given 

hypothesis and suggestions on how future studies can incorporate these findings when conducting a 

naturalistic reinforcer analyses, using the proposed reinforcer applet.   

Reinforcer Specificity and Academic Behaviors 

 Should a teacher verbally describe in detail the On-Task behavior they want to reinforce (i.e. great 

job raising your hand!), or is it enough to simply express positive affirmations without such details (i.e. 

good job!). Whether or not verbal specificity adds to the effects of positive affirmations is a question that 

has received a lot of attention in the behavioral management literature (where teacher approval is often 

referred to as praise), simply because its answer may be useful for teacher’s who wish to maximize the 

effects of social reinforcers, with the least amount of additional efforts as possible. As teacher’s attention 

and time is a valuable classroom resource, researchers have also asked whether or not teacher’s approval of 

academic performance can generalize to related classroom efforts (i.e. On-Task behaviors).   

 While the research on teacher’s praise has a long history and covers a wide range of topics, this 

thesis focuses on praise as a direct response of social approval or social affirmation (See Table 2 for 

examples). The interested reader is re-directed to Kamins and Dweck (1999) for a study on the implications 

of praise centered on the student (and not behavioral process), as well as Cameron and Pierce (1994) and 

Deci and Ryan (1999) for early and controversial meta-analytic reviews regarding the effects of praise on 

student’s educational motivation.          

 The following few paragraphs discuss two studies which show that the social approval is most 

effective when the student is given specific praise, that is, told what is earning approval (i.e. Chalk & Bizo, 

2004) and that this type of contingency can lead to increases in general On-Task behaviors, when it is made 

contingent specifically on learning activities and/or academic performance, as opposed to general on-task 

behaviors (Hay & Hay, 1977). I selected these studies because the dataset used to test this thesis’ 

hypothesis, uses consequence codes which include both forms of praise, that is, behavior specific and 

positive praise (so long as it is a direct consequence of behavior) in its operationalization of social approval 

(see Table 1).          

 Chalk and Bizo (2004).  The purpose of Chalk and Bizo’s (2004) was to test the hypothesis that 

praise is most effective when a teacher describes the behavior earning praise – a type of approval called 

behavior specific praise. The premise is simply that children will be more likely to re-engage previously 

reinforced behaviors if they know exactly which behaviors produce the reinforcer. This contrasts with 

behaviors reinforced by positive praise – a term used in this study to refer to positive and direct social 

affirmations which do not describe exactly what a student did to earn praise. While this study tested the 

hypothesis that specific praise is most effective for increasing measures of self-concept and enjoyment of 

mathematics, in addition to academic behaviors, I focus my description on the effects of praise for On-Task 

behaviors.           

 Setting and Sample. The sample was comprised of 109 fourth graders and four classroom teachers 

from two schools (matched along variables such as size, geographical area, and average family income). 

All observations took place during the mathematics class.       

 Experimental Design and Observations. Two teachers were randomly assigned to either a positive 

or specific praise condition – prior to a 45-minute debriefing. Both conditions required that praise be 

directed the behavior of either specific children or groups. Teacher’s in the behavior specific praise 

condition were instructed to link praise to a specific rule (i.e. mathematical strategy), effort (i.e. attempt at a 

challenging problem), or social behavior (i.e. encouraging or assisting a classmate). Teachers in the positive 

praise condition were instructed to praise behaviors when they occurred but were not given any additional 
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instructions. Teachers were required to complete a tally sheet after every lesson – describing the type of 

praise and behavior. The teacher’s agreed to deliver praise according to their assigned conditions, for the 

approximate sixth month duration of the study.      

 Observations were conducted across the first half of the school year (from end of summer to end 

of winter), at three time points. All observations were made during the second half of the numeracy hour – 

when students were instructed to work on assignments based on the lecture from the first 30 minutes of 

class. The researcher’s used the OPTIC coding system for teacher and student behaviors (Merret & 

Wheldall, 1986). The OPTIC requires observers to divide a classroom into three even sections and to focus 

on each group for one minute. The observer focuses on each student within a group for four seconds and 

records whether or not the child is on or off task. After cycling through each student – the observer then 

alternates to a new group. Using this procedure, each observation session lasted for approximately 25 to 30 

minutes.           

 Results. Across both conditions, student’s rates of on-task behavior increased from baseline to the 

first observation point and then showed different trajectories towards the final observations; where students 

in the specific praise condition showed a slight decrease, and those in the general praise condition showed a 

slight increase in their average percentages of on-task behaviors. Praised produced an increase from 

baseline to the end of the study, in on-task behaviors across both conditions, with specific praise group 

showing the largest effects. A repeated-measure analysis of variance performed on baseline and final 

observations found a significant main effect for change in on-task behaviors (F(1,2) = 41.68, p <.05) but 

not a significant interaction between conditions (F(1,2)=.64, p > .05). A second series of between 

participant effects revealed a significant difference in on-task behavior between conditions (F(1,2) = 41.68, 

p < .01), such that increases in on-task behavior levels were only significant for those in the specific praise 

condition.          

 Hypotheses Support and Future Directions. Chalk and Bizo’s study demonstrates that an increase 

in the frequency of teacher praise leads to increases in On-task behaviors, but that more specific praise may 

lead to larger effects than positive praise alone. As this thesis does not differentiate between these forms of 

praise, Chalk and Bizo’s findings lend support for the first primary hypothesis. The effects of specific 

praise may also be present in the dataset used in this thesis’ analysis. As an example, an Active On-Task 

student may add a comment to the teacher’s lecture, and she may respond with specific praise by 

mentioning how the student’s comment connects to other aspects of the materials. Alternatively, she may 

simply smile and say ‘thank you for that nice thought’. Chalk and Bizo’s findings suggest that either 

teacher response may reinforce the student’s future contributions, but that the former more specific form of 

praise may lead to greater increases in such behaviors.     

 Chalk and Bizo’s findings lead to potential future analyses of naturally occurring classroom 

reinforcers. As the current analyses does not differentiate between forms of praise, it may be worth 

researcher’s attention to re-code classroom observations so to distinguish between specific and positive 

approvals. As a follow-up to the current study, such a recoded analysis could explore whether analytical 

support for hypothesis 1 depends on the combination of both forms of approval – or whether positive or 

specific praise alone is enough to show reinforcement effects. Finally, such an analysis could also probe 

research question 3, that is, to see whether positive or specific praise depend on the type of On-task 

behaviors. As Chalk and Bizo’s study did not differentiate between active and passive forms, such an 

analysis may shed light towards a more nuanced understanding of how the specificity of social approval 

may differentially effects active or passive forms of student’s behaviors, in naturally occurring real-world 

interactions.           

 Hay’s, Nelson, and Hay’s (1977). The purpose of Hay’s, Nelson and Hay’s (1977) study was to 

assess whether praise for one type of classroom behaviors can lead to generalized reinforcement effects in 

other types of classroom behaviors. Specifically, it was hypothesized that praise for academic performance 

(i.e. test results, writing samples) will lead to an increase in performance as well as general on-task efforts 

(i.e. following instructions, making overt efforts), and that praise for on-task behaviors will not lead to 

increases in academic performance. These hypotheses followed a simple rationale, namely, that on-task 

behavior is a necessary, but not sufficient, pre-requisite for academic performance, and thus reinforcing 

academic performance will lead to concomitant increases in its necessary antecedent (i.e. On-task 

behavior), but that reinforcing On-task behavior will not necessitate improved performance.  

 Sample and Setting. The study took place in a small rural elementary school serving a lower 
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socioeconomic status community. All observations were conducted during a 30-minute work period for 

either mathematics or writing activities. Four teachers (one second grade, two third grade, and one fourth 

grade) were selected to implement each experimental phase. The student sample comprised a total of ten 

students (5 third grade boys, two fourth grade boys, and three second grade boys), who were nominated by 

their teacher’s as the most ‘problematic’ boys in their classrooms.     

 Experimental Design and Observations. This study assessed student behavior across three 

conditions defined by the teacher’s use of social approval contingencies. During the baseline phase, 

teachers were not given any instructions on which behaviors to praise, or how to deliver social approval to 

their students. For both experimental phases, teachers were instructed to hand each target student a ‘good 

work card’, and to mark each card with a star for every time they earned praise. Additionally, teachers were 

instructed to praise each target student five times during every 30 minute session; where praise statements 

were defined as any comment that was addressed to the student (by name) and specifically mentioned the 

behavior or performance earning praise.       

 A cross-over within subject’s strategy, with a reversal sequence, was used to assess behavioral 

levels across each experimental phase. Five students were randomly assigned to the ‘on-task contingency 

sequence’, in which teacher’s implemented a baseline, followed by the on-task contingency, return to 

baseline, and academic contingency phase. The remaining five students were assigned to the ‘academic 

contingency sequence’, in which the baseline phases were followed by the academic contingency, and 

behavioral contingency, to control for the order in which children were exposed to the experimental phase. 

Each experimental condition lasted for 30 minute daily sessions across seven consecutive school days (28 

days total).          

 All observations were conducted by two trained undergraduate psychology students. A focal 

observation strategy was used to focus on one child’s behavior for five minutes at a time. Each child was 

observed twice per day, and the order of observations were randomized daily. An interval coding procedure 

was used to divide each observation episode into 10-second intervals. The observer would select one 

instance in the interval to code whether the child was on or off task at that given moment within the ten-

second window. On-Task behavior was defined as following teacher instructions, and include all behaviors 

under the Passive and Active On-task codes used in this thesis (see Table 1).  Off-task behaviors were 

defined as any behavior that was not pertinent to a given activity/instruction (i.e. out of seat or talking to 

peers).            

 Results. On-task behavior served as the dependent variable and was measured as the daily percent 

of intervals containing on-task behaviors. The results were presented by the sequence in which children 

were presented with the experimental contingencies. In the on-task contingency sequence, the exposure to 

on-task contingencies led to a 25.4% increase in student’s on-task behaviors compared to baseline, and no 

change in academic performance. For children in this sequence, the exposure to academic contingencies led 

to an additional 6.4% increase in on-task behaviors, that is, a 31.8% increase from baseline, and also, an 

increase in the rate and accuracy of academic performances, by 41.9 and 34%, respectively. Children in the 

academic contingency sequence, who were first exposed to academic and then on-task contingencies, 

increased their on-task behaviors by 31.8% from baseline, when teachers praised their academic 

performance. The transition to on-task contingencies maintained these percentages in academic 

performance and accuracy, and increased on task behaviors by an additional 4.9% (e.g. 36.7% increase 

from baseline). Across both sequences, a repeated measure ANOVA (with arc sin transformation for 

percentage data) found significant effects for the changes in On-task behaviors across both sequences (i.e. 

F(3,12) = 96.8, p < .01 ; F(3,12) = 107.7, p < .01)), as well as changes in measures of academic 

performance (i.e. rate of attempting new problems, accuracy of response).   

 Hypotheses Support and Future Directions. Hay’s and colleague’s findings lend direct support 

for the claim that social approval can reinforce students On-Task behaviors. More importantly, however, 

may be the finding that social reinforcing effects of praise can also effect direct outcomes of On-Task 

behaviors, namely, student performance. While the current thesis does not examine student performance, 

this study does measure performance behaviors (i.e. Passive On-Task behaviors). Using an example from 

this thesis, a student who is actively writing and latter given praise for their assignments, may be more 

likely to engage in such passive On-Task behaviors in the future, in order to produce similar academic 

performances, as suggested by Hay’s and colleagues findings. In this way, Hay’s and colleagues study not 

only supports the primary hypothesis 1, but also, supports the expectation that approval will similarly effect 
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a combined class of active and passive On-Task behaviors, as explored in this study by research question 

four.            

 While the current thesis focuses on direct behavioral changes as evidence for reinforcing effects, 

future studies are encouraged to consider non-behavioral covariates in order to address the link between 

student classroom behaviors, the experience of reinforcing consequences, and change in performance 

related outcomes. One such possible variable may be measures of student’s motivation or engagement in 

the classroom (Skinner, Kindermann, & Furrer, 2008). This construct embodies a student’s overall 

absorption in the endeavor of schooling and has predictive relations with student achievement (e.g., 

Hughes, Luo, Kwok, & Loyd, 2008 ; Vollet, Kindermann, & Skinner, 2017). By incorporating either 

engagement or a direct measure of student performance, future studies may use the reinforcement applet to 

explore whether real-world reinforcement leads to not only direct gains in classroom behaviors, but also, 

gains in measures of learning, academic performance, and involvement in their schooling careers.    

Public or One-On-One Praise  

 

Can praising a student in front of their entire class counteract the reinforcing effects of praise by 

bringing unwanted attention to student? Various researchers have suggested that such public displays of 

teacher’s approval may lead to feelings of embarrassment or lead to the image of the ‘teacher’s pet’ (e.g., 

Bartholomew, 1993; Tal & Babad, 1989). This may be an important consideration when assessing the 

reinforcing status of teacher praise – as educational researchers have suggested that praise is only 

reinforcing so long as it is desired by student’s (e.g. Ware, 1978; Brophy, 1981, p. 12). It is to this point that 

studies have shown that elementary and middle-school aged students largely prefer praise to be delivered 

privately than publically (Burnett, 2001; Elwell & Triberio, 1994).     

 To my knowledge, no study has directly tested whether the context (i.e. public or private) of 

teacher’s social approval alters the functional relation between praise and on-task behaviors – regardless of 

student’s preferences for praise. The following few paragraphs describe a 2014 study by Blaze and 

colleagues which comes closest to manipulating the privacy of teacher praise, by manipulating the volume 

of praise and comparing the reinforcement effects of praise heard by multiple students (i.e. loud praise) 

versus praise heard by only by the student for whom it was intended (i.e. quiet praise). I selected this study 

because the dataset used in this thesis contains instances of praise delivered in various social settings, and 

at various volumes. By using a representative sample, the findings from this study are applicable to the 

claim that social approval is a positive reinforcer under conditions which are likely to occur in naturalistic 

observations.            

 Blaze et al. (2012). The purpose of Blaze and colleagues (2012) study was to test whether or not 

praise functions as a reinforcer for on-task behaviors in public school settings, and whether or not these 

reinforcer effects depend on praise which complies with prior recommendations. Specifically, it was tested 

whether or not the effects of praise differ according to whether it is heard by students other than its intended 

recipients. Thus, this study manipulated the volume of praise – as student’s differ along the lines of their 

preference for private (i.e. low volume) or public (i.e. high volume) delivery, and because student’s 

preference for praise has been espoused a critical variable in the reinforcing effects of teachers use of 

praise. While the study measured change in On and Off task behaviors, I focus my discussion on results 

regarding a combined class of Active and Passive On task behaviors.     

 Setting and Sample. The study took place in four high school classrooms from a school district 

serving a low socio-economic status community in the southeastern United States. Four teacher’s mixed 

aged classrooms participated – with a total of 83 students across the ninth (n = 62), tenth (n = 20), and 

eleventh (n = 1) grade levels. Three of the teacher’s taught English and one teacher taught remedial 

mathematics. This sample was selected on the basis of meeting the criteria that a) the teacher was not 

currently using a class-wide behavioral intervention and b) that appropriate student behavior occurred in 

less than 70% of all observation intervals, in a 20-minute school wide pre-screening observation phase. All 

phases of the experiment took place in student’ regularly scheduled classes.     

 Experimental Design and Observations. This study focused on Appropriately Engaged Behavior 

(AEB) as a dependent variable, where AEB included passive (i.e. reading, writing) and active (i.e. question 

asking, speaking publically) forms of On-Task behaviors used in this thesis. Students were exposed to three 

conditions of teachers praise: 1) a baseline phase, in which the teacher was not given any instructions on 
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how to deliver praise, 2) a loud phase, in which teachers were instructed to move near the given student and 

affirm their behavior loud enough for all children to hear, and finally, 3) a quiet phase, in which the teacher 

was instructed to move near a given student and praise them directly, at a volume which no other students 

could hear. Across both experimental conditions, praise was to be made on individual students and to occur 

immediately following a given behavior with a brief description as to why the behavior is receiving praise. 

All teacher’s attended a pre-experiment training session on delivering such behavior specific praise, with 

role-playing sessions on delivering quiet and loud praise across a variety of classroom conditions.  

 A multiple baseline within-subjects reversal design was used to expose all students to the same 

experimental conditions. Two classes were randomly selected to the sequence of A (baseline)-B (loud 

praise)-C (quiet praise)-A-B. The other two classes were assigned to the sequence A-C-B-A-B. The length 

of a condition varied across teacher’s and the transition from one phase to another was to occur when either 

a) average AEB exhibited less than 15% variability across three consecutive days or b) a decreasing trend 

in AEB. In order to standardize the rate at which teacher’s delivered praise, all teacher’s provided praise to 

one student at a rate of one praise statement per two minutes. Each teacher wore an electronic MotivAider 

device, which provided an electronic signal for delivering praise.      

 All twenty-minute observation sessions were made by trained graduate students, for each of  22 

days of the study. A momentary time sampling procedure was combined with an interval sampling method 

(See page 19 of this thesis) to assess whether a given interval contained AEB or off-task behaviors. Prior to 

each 30-minute observation episode, the students were organized into equally sized small groups. The 

observer sampled one student from each group for two seconds and recorded their behavior as on or off 

task – as a measure for the entire ten second interval, and then moved to a student in the next group. This 

process was repeated daily with a randomized order of selecting groups, for each of the 22 days of the 

study. Observations were conducted across a variety of learning activities (i.e. individual or group projects, 

exams, lecture, etc.)         

 Results. On-task behavior was measured as the daily percentage of 10-second intervals containing 

on-task behaviors. Across all teacher’s classrooms, loud praise produced a 38.9% increase in average 

percent of behaviors at baseline (i.e. 49.81%). The quiet praise condition lead to a 40.7% increase from 

baseline. Both of these effects were partially reversible, as a withdrawal from contingency lead to an 

average decrease of 21.9% in treatment effects for on-task behaviors.     

 In order to account for variation due to schools, a multi-level model was used to assess the average 

percent of intervals that AEB varied in a) baseline conditions (combining the baseline and withdrawal 

phase), b) treatment conditions (combining both loud and quiet phases), and c) loud versus quiet phases. A 

comparison between baseline and treatment conditions yielded a statistically significant effect (F(1,2.9) = 

51.8 , p < .01)) for AEB, but such an effect was not found to differ between the two treatment conditions 

(F(1,2.9 = .043, p =.043). The standardized mean difference effect size for AEB across both treatments was 

2.2, suggesting that AEB increases by more than two standard deviations when combining both treatment 

phases, in comparison to both non-treatment phases. The authors did not report such an effect size for the 

either distinct treatment phase.        

 Hypotheses Support and Future Directions. Blaze and Colleagues study make a strong case for 

the reinforcing effects of teacher praise, irrespective of its ‘collateral’ audience. As Sage and Kindermann’s 

observational dataset samples across a variety of classroom scenarios and learning activities, it is not 

unlikely that this thesis assess social approval when delivered in front of groups of students and during 

private one-on-one interactions. As an example, students who are working on adjacent computer stations 

may receive direct teacher approval for their projects. Blaze and colleagues findings suggest that this may 

still exhibit reinforcing effects on future behaviors, even in cases where this interaction is observed by 

neighboring classmates. This scenario could be interchanged with nearly any class activity, and still likely 

produce the same results, according to the findings from Blaze and colleagues.     

 While Blaze and colleagues study suggests that the publicity of a social interaction does not make 

a functional difference in the reinforcing effects of praise, it does so at a very general level of analyses, that 

is, by speaking to teacher-student interactions, and across students of various motivational orientations 

towards their schooling. As many researchers are interested in how to increase academic involvement in 

students who are less likely to participate in class activities, future studies are encouraged to take a closer 

look at whether the effects of teacher praise vary for these sub-groups, when praise is delivered in front of 

their peers or in private interactions. As student’s tend to affiliate according to their levels of academic 
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engagement (e.g. Kindermann, 2007), such an analysis may be informative as to whether or not the 

publicity of praise has different effects for those who are, or are not, already engaged by the endeavor of 

schooling, and thus, likely to have different preferences for praise then their motivational counterparts.  

Peer Delivered Reinforcers and Punishers 

 

 Are the reinforcing effects of social approval exclusive to teachers, or can approval from one’s 

classmates also reinforce behaviors? The research area of peer influence has received substantial attention 

across the past few decades, with research showing the unique contribution of peers towards adolescent’s 

social and psychological development (See Brown & Larson, 2009    for a review). Of particular interest to 

developmental researchers are the unique contributions of an adolescent’s ‘self-selected’ group of peers, 

that is, those children whom an adolescent chooses to spend their time with (i.e. friends, groups of shared 

interest, etc.). This line of research has shown that self-selected peers can contribute to the development of 

school related behaviors, such as engagement in school (e.g. Kindermann, 2007), as well as rule-violations 

and deviant behaviors (e.g. Dishion et al., 1996). While the role of social reinforcement has been implied as 

a mechanism by which self-selected peers exert influence, studies have mainly examined behavior-

consequence contingency patterns, and have not looked at how social consequences functionally effect 

future behavior patterns in naturally occurring social interactions between self-selected peers.  

 Since the early 1970’s, behaviorists have tested whether or not peers consequences can be 

reinforcing for On and Off task classroom behaviors. Unlike the developmentally oriented studies, this line 

of research has looked at the reinforcing role of age mates, and not necessarily self-selected peer affiliates 

(see McGee, Kaufmann, & Nussen, 1977 for an early review). For the purposes of controlling the behaviors 

of their students, teachers could directly benefit from utilizing peer delivered reinforcers and punishers, as a 

way to control the periphery of their classrooms. It is in this way that many peer-based behavioral 

management interventions have sprung up to encourage classmates to enforce appropriate behaviors, whilst 

being rewarded themselves by access to special privileges (i.e. prizes) or group rewards (i.e. early recess). 

The interested reader is re-directed to Broussard & Northrup (1997) and Dart and colleagues (2014) for 

reviews of contemporary peer-based class-wide behavioral interventions.    

 Solomon and Whaler’s (1973) seminal study, was one of the first to demonstrate that classmates 

can control each other’s On and Off-task behaviors, in typical classroom settings, by mechanisms of Social 

Approval and Disapproval for On and Off-Task behaviors. I selected this study because it supports the test 

of each primary hypothesis, by showing that peers can increase each other’s On or Off task behaviors by 

the consequences they provide. As the hypotheses of this thesis are tested across all social partners (and 

affiliations between classmates), Solomon and Whaler’s findings are relevant enough to warrant a claim 

that social approval and disapproval can reinforce/punish active forms of On and Off task behaviors.  

 Solomon and Whaler (1973). The purpose of Solomon and Whaler’s (1973) study was to 

determine whether or not one’s peer classmates can control each other’s behaviors as a function of the 

consequences they provide. Specifically, this study asked whether or not peer social consequences can 

contribute to the initial maintenance of deviant classroom behaviors, and whether or not adults can control 

the social reinforcement of peers in order to produce improvements in appropriate classroom behaviors. 

These questions were based off earlier naturalistic studies, which demonstrated peer reinforcement of 

deviant behaviors from social consequences (e.g. Patterson, Littman, & Bricker, 1967), and also, classroom 

experiments which demonstrated peer reinforcement of positive behaviors, where peers delivered non-

social reinforcers, such as good behavior points (e.g. Patterson & Broddsky,1966).  Unlike prior studies at 

this time, Solomon and Whaler’s study focused on both functions of peer reinforcers, that is, for On and Off 

task behaviors, and specifically, whether these functions can be manipulated by adults to achieve an 

classroom climate more conducive to learning.       

 Setting and Sample. This study took place during a social studies period in a single sixth grade 

classroom in a rural county school. The classroom comprised one teacher and thirty students; however, the 

intervention focused on a sample of ten children who were nominated by their teacher as the least well-

behaved pupils. Five children were selected as confederates, or ‘peer therapists’. These children were 

selected based on results of a sociometric survey (administered to all students) as well as teacher 

nominations for which children are most likely to comply.     

 Experimental Design and Observations. The experiment consisted of a baseline and treatment 
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phase, where both phases were replicated once in an ABAB within subject design. At the beginning of the 

study, the classroom seating arrangements were modified so that one ‘peer therapist’ was seated adjacent to 

one target subject. Following baseline observations, the peer therapists were instructed to differentially 

reinforce on-task behaviors while discouraging off-task behaviors. Rather than exclusively expressing 

direct approval or disapproval, these peer therapists were told to attend to (i.e. look at or express direct 

approval) On-Task behaviors and to ignore (i.e. look away from or express direct Disapproval). In this 

study, Off-Task behavior was defined by any breach of the rules during social studies, and On-Task 

behavior was defined by compliance of these rules.     

 Observations were conducted across the duration of the study (i.e. 46 consecutive school days) 

during the same social studies period. A focal person observation strategy was used to continuously record 

each focal student’s behavior for 6 minutes each day. Each six-minute interval was divided into 360 ten 

second intervals, observers were instructed to record the first On or Off task behavior falling within each 

interval. Additionally, observers were to mark any occurrence of social approval or disapproval from either 

the teacher or the peer therapists. Observations were conducted by two trained observers were stationed at 

the back of the room and began each observation with a randomly assigned focal student – and shifted to 

the next student in a sequence that was randomized daily. The baseline phase of the study began after a pre-

screening period – where observations lasted until both observers met an 80% agreement rate on all focal 

student and social partner behaviors.        

 Results. Off-task behaviors served as the dependent variable and was measured as the percent of 

intervals containing off-task behaviors, for each child, across all days for each experimental phase9. A 

descriptive analysis on individual children demonstrated a clear pattern across the phases; where each 

student decreased their Off-task behaviors when ignored by peers from baseline, with a difference of 37.2% 

averaged across children. This pattern was replicated in the second phase of the study (i.e. baseline 2 and 

treatment 2), with an average 37% decrease. Furthermore, children’s Off-Task behaviors dropped from the 

first to second baselines, with an average 13% decrease, and, a 12.8 decrease from the first to second 

treatment phases.          

 A second set of analyses was presented in order to show the percentages of social partner attention 

paid to On and Off task behaviors, across all phases of the study. During the baseline phase, only the 

teacher paid attention to target student’s On-task behaviors, and peers attended exclusively to off-task 

behaviors. This pattern switched during the first treatment phase, as the target student’s reduced their off-

task behaviors, the control peers became the biggest supports of their on-task behaviors, and gave less 

attention to Off-task behaviors than the teacher or other classmates. During the second baseline phase, 

where off-task behavior increased from the prior treatment phase, the teacher was once again the sole 

source of support or On-task behaviors, where the peer therapists and other classmates almost exclusively 

attended to Off-task behaviors. Finally, during the last treatment phase, peer therapists and the teacher were 

the only sources of support for On-task behaviors. During this phase, in which Off-task behaviors were 

lowest during the study, peer therapists provided the least amount of attention to off-task behaviors. While 

this analysis did not explicitly correlate attention with changes in student behaviors, these trends were used 

to infer that peers can control changes in on and off-task behaviors, and that approval for positive behaviors 

from certain peers can counteract attention for negative behaviors from other peers, over and above 

supports provided by the teacher.          

 Hypotheses Support and Future Directions. Solomon and Whaler’s study provides further 

support for the claim that social approval can reinforce On-Task behaviors. Additionally, this study lends 

support to the second and third primary hypotheses of this thesis, that social approval can reinforce Off-

Task behaviors, and, that disapproval can punish such behaviors. Regarding these latter results it is of 

particular interest that peers were the most likely source of naturally occurring reinforcement for Off-Task 

behaviors, and that disapproval for Off-Task behaviors was only likely from certain peers under adult 

instructions. As the analyses in this thesis do not differentiate peer from teacher behaviors, it is very likely 

that all the relations shown in Solomon and Whaler’s study will appear in the naturalistic classroom 

observations.             

 
9 Note, for convenience and clarity, I report on the average trends across all focal children, as well as the 
standard deviations. These figures were computed in an Excel spreadsheet and can be made available 
upon request.  
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 Sage and Kindermann’s (1999) study intended to capture the social contexts in which social 

influence over classroom behaviors occur. While their study focused on the behavior-consequence 

contingency, future studies can re-direct their hypotheses regarding peer and teacher differences in 

behavior-consequence contingency relations, towards such differences in behavior-consequence functional 

relations. In this way, such a study could look beyond contingency patterns and ask whether all social 

partners exert similar functional effects on behaviors, even when such consequences of Approval or 

disapproval are rare. Finally, such a study could go a step beyond that of Soloman and Whaler’s by looking 

towards naturally occurring peer relations, and not those assigned experimentally, to assess whether certain 

peers (e.g., peer group members, friends, arbitrary classmates) exert more or less of an effect on subsequent 

behaviors, by the consequences they provide during naturally occurring classroom interactions. 
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Appendix B 

Non-Experimental Reinforcement Detection Strategies  

The current thesis is not the first study to examine naturally occurring social reinforcement patterns. 

Nevertheless, it is the first study to propose a ‘user-friendly’ analytic software to detect consequences that 

alter the course of behavior probability, across time. In this way, the current thesis is unlike prior strategies 

in that a) it aligns with Skinner’s original definition of reinforcers, b) it does not require sophisticated 

programming or statistical computations from user’s, and c) it can be applied to any set of behavioral 

observations. Arguably, to build a sense of the current studies contributions to the literature, it is helpful to 

review prior strategies and emphasize their discrepancies with that proposed in this thesis.   

 The purpose of this section is to twofold: 1) draw attention to the prior strategies of tackling one 

goal of the current study, namely, to identify reinforcers/punishers without experimental manipulations, and 

2) to distinguish these methods from the proposed strategy. I selected studies that use Skinner’s original 

definition of reinforcers to look at consequences which lead to either long-term or short-term changes in 

subsequent behavioral patterns. I chose to focus on two key studies and discuss the theory/strategy/results 

of each study, re-direct the reader to related studies, and conclude by emphasizing the distinguishing 

features with the strategy proposed in this thesis.       

 The interested reader is re-directed to McDowell and Caron (2010) for a study which looks at 

global patterns of behavior and contingent consequences, as well as Strand, Whaler and Herring’s (2001) 

study which uses a ‘post-Skinnerian’ theory of reinforcer magnitude as function of reinforcement history. 

While these methods have been used to analyze naturally occurring behavior-consequence patterns for the 

purpose of inferring reinforcing consequences, they have not been tested under fully naturalistic conditions, 

as conceptualized in this thesis (See pages 22-24), and are thus, excluded from this appendix. 

Reinforcement History and Long-Term Predictions 

Skinner defined reinforcers in terms of events that can change behavior probability across time. 

Stated generally, reinforcers can apply to developmental theories of human behavior as mechanisms that 

account for the development of behavior patterns. When viewed this way, a reinforcing consequence is 

unlike non-functional consequences, in that reinforcers can ‘stamp-in’ patterns of behaviors, given a stable 

history of reinforcement contingencies. I re-direct the interested reader to Maccoby (1992; pp.1007-1110) 

for an overview of studies using this notion of reinforcement history in social-developmental theory.  

 Patterson, Littman, & Bricker’s (1967) study is one example of a naturalistic observation which 

used the notion of reinforcement history to explore whether children’s patterns of aggressive actions could 

be predicted by patterns of receiving reinforcers for prior aggressive behaviors. This study used an intra-

individual analysis of learning to look for trends of change across individuals, and to link these to a 

common pattern of behaviors and consequences.       

 As a theoretically guided study, Patterson and colleagues postulated that only a certain class of 

consequences would have reinforcing effects, and that the cumulative frequency of these consequences 

would correlate with the cumulative frequency of aggressive behaviors. The following few paragraphs 

describe the observational and analyses strategy used to collect observations of children’s social 

interactions and identify potential reinforcing relations between aggressive behaviors and an ‘a-priori’ class 

of social reinforcers.         
 Analytic Strategy and Findings.  Using a sample of 21 preschoolers, Patterson and colleagues 

(1967) obtained 2,583 aggressive responses and their consequences, over the course of sixty, 2.5-hour 

continuous observation sessions, spread across a school year (from the fall to spring). In this way, long-

term 2.5-hour observations were applied to sample behaviors each continuously at each session and also, to 

discontinuously sample sessions for the entire school year. In the absence of a baseline for the contingency, 

children were split into two groups; an ’acquisition’ group (those with less than two assertive behaviors) 

and a ’maintenance’ group (those with three to eight assertive behaviors), based on the output for the first 

15 hours of observations. Instead of focusing on the relation ongoing changes between contingencies (i.e. 

contingent versus non-contingent consequences) and behaviors, these researchers measured learning in 
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terms of overall output and observed contingencies, depending on one’s ’baseline’ level of learning, over 

the course of one’s observed reinforcement history.        

 Findings. Using a visual analysis of cumulative changes in responding (and contingencies), it was 

shown that acquisition of aggressive initiations was a function of number of counterattacks over the course 

of observations. Children who were victimized (e.g. recipients of aggression) but counterattacked rarely, 

did not show marked gains in the initiations of aggressive acts. Counterattacking demonstrated a similar 

function for the students in the ’maintenance’ group; these students preserved their rank order of aggressive 

initiations as well as aggressive counterattacks (when victimized). These findings supported the notion that 

one’s pre-existing exposure to reinforcement contingencies, such as having a history of successful 

counterattacks, may lead to more unprompted forms of future behaviors, such as aggressive initiations.  

 Related Studies and Distinguishing Features. To my knowledge, this is the only study that 

tested a theory of peer-delivered reinforcers as naturally occurring developmental mechanisms under real-

world conditions. By examining intra-individual patterns of behavior change, this study was able to show 

that aggressive responses beget aggressive behaviors, without any artificial constraints imposed by 

experimental methods. Nevertheless, this study relied on very demanding long-term observational 

protocols, which are likely to exceed the scope of most studies. In addition to its observational demands, 

this study required observers to manually identify behavior-response-recurrence patterns, to separate 

potentially reinforcing contingent consequences, from those which occur randomly.    

 The current thesis offers an alternative to the intense longitudinal observations and coding rules 

used in Patterson and colleagues’ study. This applet allows users to identify any consequence that can lead 

to behavior change, across any stream of observations. To replicate the analyses in Patterson’s study, a 

reinforcer analyses would need to be made within each individual participant’s stream of observations. This 

would require the dataset to contain individual ID variables so that the user could re-format the dataset to 

produce a cohesive stream for each individual ID. A subsequent reinforcer scan would identify which 

consequences reinforce which individuals, and this information could be used to assess how common these 

patterns are, across all individuals sharing similar consequence patterns.  

The Three Term Contingency and Short-Term Predictions 

 One of the core principles of behaviorism is that behavior is a function of its environments, where 

an environment is any stimuli external to an organism. As a stimuli which follows behaviors and shapes 

future behavior patterns, reinforcers are events which occur in contexts. As discussed in the Chapter 2 of 

this thesis, contexts can be overall environments or situations in which reinforcers occur (i.e. classrooms, 

math activities), or can be temporary events which occur in a sequence across time (i.e. prompts, behaviors, 

consequences). Skinner (1969) used the term ‘contingencies of reinforcement’ to describe the 

environmental patterns whereby reinforcement occurs. In his words:  

An adequate formulation of the interaction between an organism and its environment must 

always specify three things (1) the occasion upon which a response occurs, (2) the 

response itself and (3) the reinforcing consequences. The interrelations among them are 

the contingencies of reinforcement (p. 7) 

Snyder and Patterson (1986) used the three term contingency as an analytical device for dividing the 

behavior stream into ‘conditions’ under which aggressive behaviors occur. In this way, Patterson and 

Snyder looked at the antecedents and consequences of aggressive behaviors. To determine if a consequence 

was reinforcing, Snyder and Patterson looked for changes in behavior proportions, given that the same 

antecedent event occurs. Thus, this study used the antecedent-behavior sequence served as the dependent 

variable for these analyses. The following few paragraphs describe the statistical steps used to determine 

which consequences led to increases in future behavior proportions, given that the same antecedent event 

occurs.          

 Analysis strategy and findings. The data consisted of 8-hour long observation streams, for two 

mother child dyadic interactions in a laboratory setting. The mother-child dyads were observed across a 

variety of tasks (i.e. eating, playing) without any instructions or interference. The behavior streams were 

broken apart into antecedent-behavior sequences, and then sorted by their consequences, in a three-step 

analyses process described in the following paragraphs.      

 Antecedent-behavior-class. The first step in obtaining the dependent variable measure was to test 
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mother-antecedent child behavior sequences for statistical significance, and to group these into ‘action 

reaction classes’ used as the dependent variable. By measuring all unique antecedent-behavior 

combinations and comparing the conditional behavior probability to the base-rate probability, each dyad 

produced two action reaction classes. The child was most likely agree after following maternal requests and 

commands and was most likely to comply after these same antecedents; thus, agreement and compliant 

behaviors were combined into one action reaction class for the first dyad (the second class was antecedent 

positive talk and behavioral positive talk). The ‘action-reaction classes’ for dyad two, were maternal 

imperative-child compliance and maternal commands-child coerce, where compliance included verbal and 

physical instruction following, and coerce included verbal disapproval and threats.   

 Controlling for extended lags. The second step was to statistically control for any extended or 

‘thematic’ events of these ‘action-reaction’ classes. This step was necessary so to rule out the effects of 

extended interactions sharing a common theme (i.e. argument) from the effects of specific consequences 

outside a particular ‘thematic context’. A lag sequential analysis, carried out to a maximum of 15 lags, was 

to identify any enduring thematic patterns in which the probability of behavior exceeded its expected base 

rate probability. Only the second dyad exhibited thematic effects for the class ‘imperative-compliance’ and 

‘disapprove-coerce’. The behavior probability returned to baseline after 5 lags, thus, for this dyad, behavior 

probability was measured for reinforcer effects only for behaviors occurring after 5 observations after one 

of these last observed ‘action-reaction’ classes.  Because there were no consistent behavior-elevations, 

following the ‘action-reaction’ classes in dyad one, the reinforcer analyses was used all observations of 

these sequences without further modifications.      

 Conditional Probability Analysis. The third step was to measure changes in the conditional 

probability of a child’s behavior given that the behavior was in an ‘action reaction’ class followed by either 

positive or negative consequences. This step entailed scanning the stream for each action reaction class and 

its consequence, calculating the behavior probability up to the next antecedent (from the same action-

reaction class), and finally, aggregating these proportions and sorting them according to each type of 

consequence of the ‘action-reaction’ class. As a final step, the behavior proportions for each ‘action-

reaction’ class tested for statistical significance by comparing each probability to the base rate probability 

in each consequence group, using a binomial z-score analysis.     

 Findings. In both dyads child’s compliant behaviors was more likely after following positive 

consequences for previous compliance (z = 2.27, p < .05; z = 3.97, p < .01). In dyad two, child’s coercive 

behaviors was shown to be reinforced by positive consequences, when coercion was anteceded by a 

mother’s disapproval (z = 3.97, p < .01). Additionally, coercion and compliance were both shown to be 

punished by the disapproval for this dyad (z = -2.08, p < .05; z = -1.83, p < .1). These patterns speak to the 

short-term effects of behavior recurrence across the entire stream of observations.    

 Related studies and distinguishing features.  Snyder and Patterson’s (1986) analyses strategy 

offers an a-theoretic strategy for identifying potential reinforcers, simply by documenting the effects a 

consequence has on subsequent behavioral patterns. Unlike the strategy used in this thesis, Snyder and 

Patterson’s method classifies a reinforcer by assessing the function of a consequence the context of a three-

term behavior sequence (i.e. antecedent-behavior-consequence). This methodology was first used to assess 

naturally occurring social reinforcers in Patterson’s (1972) study of familial interactions, was refined by 

Snyder and Patterson (1986), and then subsequently used in latter quasi-experimental studies testing ‘post-

Skinnerian’ reinforcement theories in the context of mother-child interactions following behavioral 

interventions (e.g. Strand, Wahler, & Herring, 2001).       

 Snyder and Patterson’s approach differs from the proposed strategy, namely, by distinguishing 

behaviors according to their antecedents. Stated differently, the proposed reinforcement scan can be applied 

to identify consequences which alter the course of a behavior – across all of the antecedents in which 

behaviors occur. Using an example from this thesis, Approval for On-Task behaviors is tested as a 

reinforcer across all antecedent cases, that is, where On-task behavior follows passive On-task behaviors, 

Off-task behaviors, or any partner consequence. This contrasts with Snyder and Patterson’s strategy, which 

would independently test the effects of social approval across each of these possible antecedent-behavior 

patterns.           

 Unlike the analyses proposed in this thesis, Snyder and Patterson’s does not account for changes in 

the base rate recurrence of behaviors across a continuous series of observations. In this way, Snyder and 

Patterson’s strategy re-organizes the continuous stream of sequential observations, so that target behaviors 
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are organized by antecedents, and not ordered by the natural sequence of observations. Thus, this strategy 

offers a more precise account of events which alter the probability of behaviors within the context of short-

term sequences (i.e. antecedent – behavior), but not an account of events which change the general flow of 

behavior probability.     
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Appendix C 

Glossary of Terms  

After-reinforcement sequence: A subset of events from the observation series (or sub-series) which 

follow a given reinforcer. See Chapter 5, pp. 37. 

Analysis application: See The Reinforcinator. 

Analysis selection sidebar: A side-panel in the Reinforcinator that provides the user with a variety of 

options for their analyses.  

The recounted frequency contingency table : An 2 x 2  contingency table obtained by dividing the cells 

of the contingency table for recounted observations by the total number of sub-series. 

Before-reinforcement sequence: A subset of events from the observation series (or sub-series) which 

occur prior to a given reinforcer. See Chapter 5, pp. 37. 

Behavior-consequence contingency: A sequence in which an organism’s behavior is followed by an 

environmental stimulus.  See Chapter 2, pp. 11-12. 

Center main window: A center window that displays function output from the Reinforcinator and 

Reformatter web-applications.   

Continuous event coding: An observational sampling procedure that captures each behavior and 

consequence as discrete events that unfold across time (Farmer & Schoenfeld, 1966; Lattal, Abreu & 

Rodrigues, 1997). Observational datasets constructed under this procedure may have a variable length 

between observation ‘episodes’, that is, some may comprise more behaviors (and thus be longer) than 

others. See Chapter 2, pp. 10. 

Event: I use the term events interchangeable with observations, in reference to the unit of analysis used to 

infer the status of a putative reinforcer. The events comprise behaviors in an observational data-file. For 

social interactions, events are units for the independent and dependent variables. See Chapter 5, pp. 36. 

Event interval sampling: An observational sampling procedure that divides an observation interval into 

equally spaced intervals. Each interval contains one behavior code. See Chapter 2, pp. 10. 

Focal person sampling strategy: An observational sampling strategy in which observations focus on one 

person’s behavior at a time. See Chapter 2, pp. 11. 

Long format: Long format refers to a longitudinal matrix where each row is one observation (or 

measurement period) and each column represents a variable to classify, or ‘identify’ the observations 

(Wickham, 2007, p. 3). 

Naturalistic simulations: A term used to describe experimental studies that test reinforcement in 

naturalistic settings of applied interest (e.g. schools, classrooms, clinics).    

Observation stream: An analogy introduced by Farmer & Schoenfeld, 1966, and later used by Bakeman 

and Quera (1995) and others, for describing observations in terms of events unfolding across time. I use the 

term observation series exchangeabley with observation stream. 

Overall index value: An event index that begins, and ends, at the first and last events in a data-file.  

Overall series: A series of observations resulting from the concatenation of all observations (or events) in a 

given observational data-file.  

Overall strategy: A term to describe a general set of detection strategies applied to all events in a given 
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observation series. This strategy infers reinforcement across all secondary variables (e.g., individual ID, 

day of Observations). See Chapter 3, pp. 25-26. 

Probabilistic contingency: A term commonly used to describe behavior-consequence contingencies that 

are more likely than chance (in a context of sequential lag-sequential analyses of consequence probability, 

conditioned on behavior antecedents). See Chapter 2, pp. 12. 

Process-oriented behavior systems: A term used by Altman to describe observation systems specifically 

constructed for analyses of social exchange (i.e. interaction) processes. These systems contain information 

regarding 1) the ‘actors’ (i.e. source of antecedent behavior), 2) the partners (i.e. source of social 

consequences), 3) the sequence of events (i.e. transition between behavior and consequence), and 4) an 

indicator of time or duration of the events. See Chapter 2, pp. 12. 

Punishers: When behaviors decrease in frequency, following a consequence, then this consequence 

(stimulus) is a punisher because it exhibits a reinforcing effect on behaviors.  See Chapter 2, pp. 8. 

Putative reinforcer: A behavior which is hypothesized (or assumed) to have reinforcing effects on 

naturally occurring behaviors, but without evidence demonstrating these effects, in naturalistic contexts.  

See Chapter 1, pp. 10. 

Contingency table for recomputed frequencies: A contingency table obtained by the product of the row-

conditioned proportions (for each sub-series table) and the corresponding count from the contingency table 

for the average recounted frequencies. See Chapter 5, pp. 45. 

Recounting algorithm: An algorithm that recounts events in a given series of observations, based on each 

occurrence of a reinforcer. See Chapter 5, pp. 37-40. 

Re-counted series: A transformation of an observation series, in which all events are re-counted based on 

the occurrence of reinforcers in an observation series. See Chapter 5, pp. 37-40. 

The recounted data-file: A dataset resulting from the application of the overall strategy of the Re-

Counting algorithm to all events in an original observational data-file.  See Chapter 5, pp. 39. 

Reinforcer: As defined by B.F. Skinner (1953), "any consequence of behavior which is rewarding, or more 

technically, reinforcing, increases the probability of further responding (B. F. Skinner, 1953; p. 345)". See 

Chapter 2, pp. 8.  

Reinforcement detection algorithm: see Re-Counting Algorithm    

Reinforcement sequence: A subset of events in a series (or sub-series) which correspond to a phase of 

reinforcement (i.e. before or after). See Chapter 5, pp. 38. 

The Reinforcinator: A set of statistical functions, presented in a graphical user interface, allowing the user 

to apply the recounting procedure to obtain the summary series and corresponding aggregate contingency 

tables. Additionally, the app provides the interface for the general estimating equation and contingency 

table methods described in this thesis.  

Series: I use the term series to denote the sample of observations used to detect putative reinforcers. See 

Chapter 5, pp. 38. 

Sub-series: A subset of the observation stream corresponding to a reinforcer. Each segment is of length n-

1; where n is the original length of observations, and the observation containing the reinforcing event is 

removed from the segment sample. Each segment is demarcated into two windows, one before and one 

after, the reinforcing event. See Chapter 5, pp. 38. 

Summary series: A term I use in general reference to the Re-Counted Series and derived distributions 

(e.g., Average Distribution and Re-Computed Frequency Distribution). See Chapter 5, pp. 37.  

Target variables/events: A specific class of behaviors that serves as either a target behavior or 
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consequence in traditional analyses of social reinforcers. The current study classifies a dependent variable 

as either a target or a non-target event in the observation series. This classification is hypotheses dependent 

– a target for one hypothesis may be a non-target for a second hypothesis.   
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Appendix D 

Glossary of Equations  

 

Equation 9. Binomial z test for lagged dependence  

𝑧1 =  
𝑃𝑇|𝐴 − 𝑃𝑇

√
𝑃𝑇(1 − 𝑃𝑇)(1 − 𝑃𝐴)

(𝑁 − 𝑘) ∗ 𝑃𝐴

 

This equation uses a corrected standard error for binomially distributed events separated by a lag of k. This 

equation is adapted from Allison & Liker (1982, pp. 395).    

 

Equation 10. Logistic link function for linear transformation of binomially distributed 

variables 

logit൫p(y = 1|x𝑖)) = log
p(y = 1|x𝑖)

1 − p(y = 1|x𝑖)
 

 

This is the equation for the linear transformation of a binomially distributed variable, using the logit link 

function. I adapt this from Agresti (2013, pp. 163).  

 

Equation 11. Conversion of logistic coefficients to probability 

Pr(y = 1|x𝑖)  =  
𝑒𝛽0+𝛽1𝑥

1 + 𝑒𝛽0+𝛽1𝑥
 

 

This equation converts the beta coefficients from a logistic regression into conditional probability values. It 

is adapted from Agresti (2013, pp.163), where the outcome is denoted as π(x) = Pr(Y=1|X=x). I adapted 

this equation so that x is a binary categorical variable, where x𝑖=0 denotes an event in the before sequence 

and x𝑖=1 denotes an event in the after-reinforcement sequence.   
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Appendix E 

Reformatter 

This appendix reviews the ‘Reformatter’. This was originally proposed as a second part of the 

Reinforcinator. The Reformatter was intended to allow users to combine and remove codes prior to running 

the recounting procedure. Time did not allow for these functions to be implemented in this thesis. These 

functions are intended to be incorporated into a latter revision (see Chapter 8 for the discussion).  

The Reformatter 

The Reformatter is a data formatting application that modifies a pre-existing observational dataset 

(in the form specified below) into a new file such that each row has a corresponding column value for each 

variable. I propose to accomplish this by providing users with options to: a) remove any unnecessary 

variables, b) consolidate existing variables by combining its possible values, and c) downloading the new 

csv file. These changes will provide the user with a dataset ready for re-structuring according to the re-

counting algorithm so that it contains an uninterrupted and complete series of events with the necessary 

information for detecting reinforcers.       

 The following few paragraphs begin by describing the required form for data-files, the deletion 

and combination functions, and ends by discussing how future revisions for the proposal or versions of the 

applet (given time restrictions) will allow users to change their data to appropriate form by the applet and 

not manually by some other software.         

 Pre-requisite data-file. The reformatting application accept any csv files that comes in a long 

format for repeated observations. Additionally, each variable must have complete observations – such that 

every row has a value for every column (variable). Figures 7 and 8 show the same dataset with an 

inappropriate versus appropriate structure. Notice that both datasets contain a variable for identifying the 

events that correspond to the beginning and end of a given observation series. The variable ‘X’ in Figure 7 

uses the code %S1-1105A% and a semi-colon (not shown) to identify the events corresponding to series 

S1-1105A. Figure 8 shows an appropriate alternative for identifying the boundaries of each series. This 

dataset uses a ‘Day.Code’ variable to associate each event with a series, row-by-row.    

 The proposed applet requires that datasets follow the form shown in Figure 8 – and require the 

user to change their dataset to accommodate this structure, prior to using the formatting or analysis 

applications. Stated differently, the Reformatter will not transform a non-csv file into the appropriate row-

by-column long structure, with complete observations. This falls outside the scope of this thesis, and users 

can make this conversion manually in a number of ways. If time allows, I will include a function for the 

user to create new variables within the applet – but otherwise reserve this feature for future versions. 
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Figure 31. Example of an appropriately reformatted dataset 

 

 
  Proposed cleaning functions. I propose two primary functions to re-format the codes used in an 

observational data-file: 1) variable / code removal and 2) combination of event codes. The option to remove 

behavior codes allows a user to: a) delete specific values of a given variable, such as Cooperation codes 

from the event variable, or b) remove a variable entirely, such as ‘description of Observations’. The user 

can do this for theoretical reasons, such as removing teacher interactions when looking for peer reinforcers, 

or perhaps for practical reasons, such as (removing unused ‘end of observation’ codes, or for a combination 

of the two, such as  removing ‘move out of camera’ codes from the series.  Any code selected for removal 

will alter the dataset by removing all rows (or events in an observation series) that correspond to the 

removed code in the original data-file.        

 The option to combine event codes allows users to select any cases of the event variable and 

combine them into one target code value. Unlike the option to remove codes, combining codes does not 

alter the structure of the dataset by removing rows or columns. Alternatively, combining codes only affects 

the measurement of event counts, and thus, effects the measures of cross-classified events and subsequent 

statistical analyses. This occurs by: a) increasing the proportion of target to non-target events, and / or b) 

increasing the number of potential reinforcers, and thus, the number of sub-intervals used to sample event 

proportions. The proposed feature will not place limits on the number of behaviors or consequences 

combined with the target variables.           

 Future revisions. I propose two additional features (if time allows) for the code 

removal/combination functions. Firstly, I wish to add the ability for users to combine codes conditionally 

on a second variable, such as combining day of observations given a focal child. As an alternative to 

combining all events with a given code, this feature would only combine or remove codes which meet 

some criteria (e.g., removing less than 10 observations of target events, particularly active days of 

observations, etc.). Secondly, I wish to add the ability to combine or remove multiple values of a variable, 

simultaneously. In the Sage and Kindermann (1999) set of observations, for example, this feature would 

allow the user to select any number of days to remove at once, or partners to combine (e.g. all peers).  
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Appendix F 

Supplements to Analysis Strategies 

 The purpose of this Appendix is to illustrate the difference between classifying observations across 

individuals and within individuals. Since the overall strategies classified observations independently of 

individuals, it could be the case that ‘Jan’s observations occur before a reinforcer for ‘Abe’s behaviors. In 

this case, the overall strategy would label all these as before reinforcers, even though the behavior is 

unrelated to the reinforcer. The GEE approach accounts for dependency within individuals, and thus, would 

adjust the effect estimates so to account for similar observations within indiviudals.   

Individual Effects in GEE 

 Table 26 shows an example dataset of recounted observations with two individual focal children 

based on Figure 9. Each child has three observations. ‘Abe’ shows no change before or after reinforcers, 

while ‘Jan’ does. Notice how the overall strategy classifies behavior by reinforcement sequence across both 

children. Jan’s behaviors, for example, are labelled as occurring in the ‘after’ reinforcement sequence for 

the first sub-series. This differs from a traditional learning perspective, which may consider her behaviors 

as ‘before’ reinforcers only if they occur on her individual observation series.     

 Table 27 shows a 2 x 2 overall contingency table for the recounted observations. As this table 

shows, the proportions of target behaviors are both .5 before and after reinforcers. Tables 8 break this 

overall analysis down across individual children and Table 28 shows the example data series. As these 

tables show, using the overall strategy, Abe’s probability of target behaviors after reinforcers is 0 (with an 

individual before and after difference of -1). Jan’s probability of target behavior after reinforers is .5 (with 

an individual before and after difference of .5). The general estimating equations use the overall probability 

estimates in shown Table 27, while adjusting the standard error of the estimate for the individual 

differences.  

 

Figure 32. Example two-person stream (short) 
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Table 25. Structure of the recounted observations for primary 

analysis 
ID Behavior Recoded Before / After Sub Series 

Abe 0 0 Before 1 

Abe Reinforcer NA NA 1 

Abe 0 0 After 1 

Jan 0 0 After 1 

Jan Reinforcer 0 After 1 

Jan 1 1 After 1 

Abe 0 0 Before 2 

Abe Reinforcer 0 Before 2 

Abe 0 0 Before 2 

Jan 0 0 Before 2 

Jan Reinforcer NA NA 2 

Jan 1 1 After 2 

Table 26. Contingency table for the recounted 

frequencies using overall strategy 
   

 0 1 Totals 

Overall    

Before 5 0 
 

5 

After 3 2 5 

Totals 8 2 10 
 

Jan    

Before 1 0 

 

1 

After 2 2 4 

Totals 3 2 5 
 

Abe    

Before 5 0 

 

1 

After 2 2 4 

Totals 3 2 5 
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Figure 33. Matched pairs example algorithm 

 

Contriving matched pairs from non-matched data  

Equation 12 mathematically describes the process of obtaining matched pairs for the dependent 

variable (e.g. (𝑌𝑏, 𝑌𝑎))  from observations of the independent variable ‘before’ and ‘after’ reinforcement 

(e.g. (𝑥𝑖
𝑏𝑡 𝑥𝑖

𝑎𝑡)), as depicted graphically in Figure xx. I refer to the set of events comprising the original 

series with N and the set of all putative reinforcers as M. I use the index variable i to refer to a particular 

location of an event in the original series, and I use the index variable t to refer to a particular reinforcer. 

Because each reinforcer corresponds directly to an event in the original series, I use the notation it in 

reference to the location of reinforcer t in the original series. Because each observation can be classified as 

before or after reinforcers, I use the superscripts b and a in reference to whether observation x ‘belongs’ to 

one the set of events ‘Before’ (denoted by B) or ‘After’ (denoted by A), respectively.  

Equation 9. Equation for construction of matched pairs 

(𝑌𝑏 , 𝑌𝑎) = ⋃ ⋃(𝑥𝑖<𝑖𝑡

𝑏𝑡 ∈ 𝐵
, 𝑥𝑖>𝑖𝑡

𝑎𝑡 ∈ 𝐴

𝑁

𝑖=1

)

𝑀

𝑡=1 

 

 

 The first step of the process depicted in Figure 12 is to index all the events in the series from the 

beginning of the series (i.e., i = 1) to the end of the series (i.e., i =N). The second step is to classify all 

events according to the sets of observations corresponding to the reinforcement sequences (i.e., B or A). 
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The set of all events before reinforcers follows the form of (𝑥𝑖<𝑖𝑡

𝑏 ∈𝐵𝑡), and the set of all events after 

reinforcers follow the form (𝑥𝑖<𝑖𝑡

𝑎𝑡 ∈ 𝐴𝑡 
), where 𝑥𝑖𝑡

 refers to the value of x for each location of each reinforcer 

t in the series. For example, 𝑖(𝑥𝑖1
) = 2 (where i(𝑥𝑖𝑡

) refers to the function index value of x), because the 

first reinforcer occurs as the second event in the original series. Thus, all the pairs of events corresponding 

to this reinforcer follow the form (𝑥𝑖<𝑖𝑡

𝑏1 
, 𝑥𝑖>𝑖𝑡

𝑎1 ), and would include (𝑥1<𝑖=2𝑡=1

11 
, 𝑥3>𝑖=2𝑡=1)

11 , for example. 

 The third and final step is to assemble all the pairs of events so they can be cross-tabulated in a 

contingency table according to the transitions before and after reinforcers. As equation 3 indicates, this is a 

two step process, whereby events are first matched by a given reinforcer t and then starting from the first 

event  (i.e., i = 1), each event before reinforcers is matched with an event after reinforcers. This is repeated 

until the end of the series, as indicated by the first union ⋃𝑁
𝑖=1  and repeats for each reinforcer t as 

indicated by the second union ⋃𝑀
𝑡=1 .   

 

 

 

 

 

 

 

 

Table 27. Recounted series contingency table for two focal children 
  Event  

 

 

 Target (1) Non-Target (0) Reinforcement 

Sequence 

Figure 34. Overall application of recounting algorithm for classifying events by 

reinforcement sequence 



 
  

 
163  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix G 

Detailed Review of Strategies  

Adapting the Model of Lagged Independence. The model of lagged dependence is adapted from 

Bakeman and Gottman (1997) and asks: What follows a specific event contingently? As discussed earlier in 

Reinforcement  

Sequence 

Total 

After 3 

3 + 0a3 + 0 

2 

1+1 

 

5 

Before 5 

1 + 4 

0 

0+0 

 

5 

Event Total  8 2 5 

All cell values are the sum of the sub-series totals  



 
  

 
164  

 
 

this thesis (see Chapter 5), this strategy has been used as the standard for detecting naturally occuring 

(putative) reinforcers. It does not detect change in a traditional behavioral sense. Alternatively, this test 

answers whether a specific target behavior (or reinforcing event) is more (or less) likely to follow a 

specified antecedent behavior (or event), than it is to occur given any other behavior (or event). Stated 

differently, this test compares the lag-conditioned probability of a specific behavior to all other possible 

combinations (at the given lag). The following few paragraphs walk through the logic of this analysis and 

how it can be altered to examine the variable of interest in this study, namely, to address the question of 

behavior change following a putative reinforcer. 

Figure 35. Overall behavior stream (reprint)  

 

 

 Figure 35 is used to demonstrate concepts presented in this Appendix and provide the example 

data for computations and tables. Table 30 shows a 2 x 2 ‘square’ contingency table (or transition table, as it 

is referred to in the lag-sequential literature), for the hypothesis that red circles (consequences) follow red 

circles (antecedents). This table shows  the counts of transitions (or pairs) of behaviors separated by lags. 

The term lag refers to a unit of time that separates two observations. A pair of sequentially ordered 

observations where both values are ‘1’ would look like Y = (1T,1T+1).      

 The lag-sequential analysis looks at whether the conditional probability of a behavior at a given 

time differs depending on the value of behavior one step earlier (i.e. Pr(Y = 1T+1 | Y = 1T) (Bakeman & Roy, 

1990, pp.17). The table can be used to test either the probability of the consequence given an antecedent or 

an antecedent given a consequence (as discussed in the following ‘flipped’ probabilities section). In either 

case, the cells of the transition table are obtained by isolating the sample of all antecedents and then 

tabulating the distribution of the immediately succeeding observations.  

 

 

 

Table 28. Lag-one conditional frequencies and proportions for red circles 
  Red ~ Red Totals 

 
Before 

Red F(Red |Red) 
0 (0/3)a 

 

F(Not Red | Red) 
3 (3/3) 

 
3 
 

~ Red F(Red | Not Red) 
3 (3/21) 

 

F(Not Red |Not Red) 
18 (18/21) 

 21 
 Totals 3 

 
21 

 
24 

 
a. Values in parenthesis are cell values divided by the row totals (i.e. row-margin proportions)   
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Table 29. Proportions used for the Allison and Liker (1982) z-score 

Pr(Red) 3/25 

Pr(~Red) 21/25 

Pr(Red|~Red) 3/21 

(Note: ~Red denotes Not Red) 

 

The proportions shown in table 38 are used to test the hypothesis whether red (in this case) is more 

likely to immediately follow red (for example) than the other combinations (i.e., Red and not red, not red 

and red, or not red and not red). These proportions are used directly in the z-score for lagged observations 

(shown in Equation 8) corrected by Allison and Liker (1981). This equation uses the proportions shown in 

Table 22. 

Equation 10. Binomial Z test for lagged dependence 

 

𝑧1 =  
𝑃(𝑟𝑒𝑑|~𝑟𝑒𝑑) − 𝑃𝑟 (𝑟𝑒𝑑)

ට
𝑃𝑅𝑒𝑑(1 − 𝑃𝑟 (𝑟𝑒𝑑) (1 − 𝑃~𝑅𝑒𝑑)

(𝑁 − 𝑘) ∗ 𝑃𝑅

 

   

 

 This z statistic is tested using a normal approximation of the binomial distribution.    

 Flipped Predictions Using Sequential Analysis. The prior example shows how the transition table 

can answer questions about the consequence as a dependent variable. This was the type of analysis done by 

Sage and Kindermann (1999) to identify behavior-consequence pairs, and differences across social 

partners, in their study on classroom contingencies. In line with the goals of this thesis, we can flip this 

question to ask whether a target behavior is most likely to follow a potential reinforcer than any other 

consequence.   

Figure 36. Observation series 

 

 

Table 32 shows the full 3 x 3 table based on Figure 36. With this table, we can answer questions with the 

dependent variable being any behavior as the antecedent or consequence.  Antecedents. In line with this 

thesis, we may want to know whether target behaviors are more likely to follow target consequences. In 

this example, I use green circles for target behaviors, which are now treated as consequences for target 

reinforcers (shown by red circles). Table 33 shows the proportions used in the binomial z-score for testing 

whether the conditional probability of green given red is greater than chance. 
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Table 30. Flipped lag-one  prediction 3 x 3 proportions  
  After  

  Green Red Yellow 

Before  

  

 

 

Green  7 3 4 

Red 3 0 0 

    

Yellow 4 0 3 

Table 31. Proportions used for the Allison and Liker (1982) z-score on Green Circles 
 

Pr(Green) 14

25
 

Pr(~Green) 3

25
 

Pr(Green | Red) 3

3
 

Table 32. Average lag probability for green given red circles 
 Reinforcer  

Lag P(G|R1) P(G|R2) P(G|R3) Average 

1 1 1 1 1 

2 0 1 1 .66 

3 1 0 1 .66 

4 0 0 1 .33 

5 1 1 1 1 

6 1 1 1 1 

7 0 0 0 0 

8 0 1 NA .5 

...     

16 1 0 NA  

...     

20 0 NA NA  

Average    .64 
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 Extending the flipped predictions to pooled lags.  This thesis poses the argument that a reinforcer 

can be detected non-experimentally, by comparing overall behavior proportions before and after the 

potentially reinforcing event occurs. The flipped lagged contingency is a promising strategy, namely, 

because it addresses behaviors as the dependent variable. Nevertheless, this does not consider the full range 

of observations, and thus, does not account for whether there is a change in the probability once 

reinforcement occurs. To account for effects across the observations, we can extend the method of lagged 

contingency to multiple lags and then pool (or average) the conditional proportions to look for significant 

conditional proportions across the entire stream of observations.        

 

Table 34 shows a matrix used to capture the probability of green given red circles, across multiple 

lags, for each red circle. Table 35 shows how these proportions would enter a 3 x  3 table (using only the 

conditional value of green given red circles). Notice, that this strategy can effectively be seen analogously 

to reinforcement detection (i.e., recounting procedure) in this thesis. Unlike the recounting procedure, the 

strategy of extending the lags requires more computational complexity. This is because the number of pairs 

would be a factor of the total number of observations, which would determine the total number of lags. For 

datasets like Sage and Kindermann’s (1999) observations, this would require over 10,000 computations for 

all combinations of the 6 behavior and 5 consequence codes!    

Figure 37. Flipped lag analysis (both directions 

 

  

A final difference between the two strategies is that the ‘flipped’ lag analysis computes lags one direction at 

a time (i.e., testing consequence as DV or antecedent as DV). This is unlike the recounting procedure, 

Table 33. Averaged flipped prediction proportions (Green | Red) 
  After  

  Green Red Yellow 

Before  

  

 

Green  …   

Red .64 …  

 Yellow   … 
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which simultaneously calculates behavior in both directions and across all lags (although the contingency 

table strategies only compare ‘after reinforcement’ proportions to overall proportions. Figure 37 shows a 

lag-one analysis for comparing target behaviors (e.g., green circles) before and after red circles. The 

marginal table is then produced from two separate transition tables for collapsed categories. While this 

approach may not seem too demanding for a lag one analysis, the number of computations become 

impractical for any general purposes if this approach was extended to account for all lags.     
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Appendix H 

Primary Analyses with exchangeable working correlation structure 

The purpose of this appendix is to replicate the same exact primary analyses in Chapter 7 using an 

exchangeable working correlation structure. This section concludes by presenting the regression summaries 

of each hypothesis across general estimating equations with the independence and exchangeable working 

correlation structures, in addition to a logistic regression that does not account for clustering.    

 Hypothesis 1. Hypothesis 1 states that Social Approval is a reinforcer for children’s On-Task 

classroom behaviors. The primary test of this hypothesis compares the proportion of On-Task behaviors 

before and after Social Approval across all observations, under the expectation that Off-Task behaviors 

after reinforcers will be less than the proportion before reinforcers. A GEE model was specified with a logit 

link for the mean and variance of a binomially distributed outcome, and an exchangeable working 

correlation structure for the repeated sampling within individuals.     

 After adjusting for the estimated correlation within subjects (α = .101, SE. = .0006), On-Task 

behaviors was estimated to be .07% more likely to occur following Social Approval than before (β1 = .035, 

SE = .006, Wald χ2(1) = 273.3, p < .001). This model shows a better fit than an alternative GEE with an 

independence working correlation structure (CICexch = 1.92, CICind =7.24). These findings show support for 

the hypothesis that Social Approval reinforces On-Task behaviors, when directly comparing the proportion 

of behaviors across reinforcement sequences and adjusting for the correlated response patterns within 

individuals.     

Table 34. Research question 1 hypothesis 1 primary analysis 

Beta  Coefficient Estimate 

(Probability) 

SE Wald χ2(1) 

𝛽0 -1.76  .004 163,961***  

𝛽1 .035  .006 73.3.***  

***indicates p < .001 

 

Hypothesis 2. Hypothesis 2 states that Social Approval is a reinforcer for children’s Off-Task 

behaviors. The primary test of this hypothesis compares the proportion of On-Task behaviors before and 

after Social Approval across all observations, under the expectation that Off-Task behaviors after 

reinforcers will be less than the proportion before reinforcers.        

 A GEE model was specified with a logit link for the mean and variance of a binomially distributed 

outcome, and an exchangeable working correlation structure for the repeated sampling within individuals.  

After adjusting for the estimated correlation within subjects (α = .127, SE. = .0052), On-Task behaviors 

was estimated to be 1.5% more likely to occur following Social Approval than before (β1 = .499, SE = .014, 

Wald χ2(1) = 1,288, p < .001). This model shows a better fit than an alternative GEE with an independence 

working correlation structure (CICexch = 1.51, CICind =8.75). These findings show support for the hypothesis 

that Social Approval reinforces Off-Task behaviors, when directly comparing the proportion of behaviors 

across reinforcement sequences and adjusting for the correlated response patterns within individuals.     

 

Table 35. Research question 1 hypothesis 2 primary analysis 
Beta  Estimate 

 

SE Wald χ2(1) 

𝛽0 -3.85  .011 131,564*** 

𝛽1 .499  .014 1288*** 

a. *** indicates p < .001 
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Hypothesis 3. Hypothesis 3 states that Social Disapproval is a punisher for children’s’ Off-Task 

classroom behaviors. The primary test of this hypothesis compares the proportion of Off-Task behaviors 

before and after Social Approval across all observations, under the expectation that Off-Task behaviors 

after reinforcers will be less than the proportion before reinforcers. A GEE model was specified with a logit 

link for the mean and variance of a binomially distributed outcome, and an exchangeable working 

correlation structure for the repeated sampling within individuals.    

 After adjusting for the estimated correlation within subjects (α = .129, SE. = .0118), Off-Task 

behaviors was estimated to be 1.6% more likely to occur following Social Disapproval than before (β1 

= .40, SE = .014, Wald χ2(1) = 29,399, p < .001). This model shows a better fit than an alternative GEE with 

an independence working correlation structure (CICexch = 1.48, CICind = 8.81).These findings do not show 

support for the hypothesis that Social Disapproval reinforces Off-Task behaviors, when directly comparing 

the proportion of behaviors across reinforcement sequences, and adjusting for the correlated response 

patterns within individuals.  

Table 36. Research question 2 hypothesis 3 primary analysis 
Beta  Coefficient Estimate 

(Probability) 

SE. Wald χ2 

𝛽0 -3.77  .022 2,399*** 

𝛽1 .41  .031 174 *** 

a. *** indicates p < .001 

 

 

 

Table 37. Comparison of GEE and logistic regression models 
 GEE Exchangeable  GEE Independence 

Beta  Coefficient Estimate 

(Probability) 

SE.  Coefficient Estimate 

(Probability) 

SE (logistic) SE  

(GEE) 

H1       

𝛽0 -1.76*** .004  -1.649   .002 .004 

𝛽1 .035*** .006  .031 .003 .006 

H2        

𝛽0 -3.85*** .011  -3.72 .005 .011 

𝛽1 .499 (.038)*** .014  .525 .007 .014 

H3       

𝛽0 -3.77 (.023)*** .022  -3.62*** .019 .023 

𝛽1 .41 (.038)*** .031  .406*** .015 .032 
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